Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/drivers/mmc/core/mmc.c
4 *
5 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
6 * Copyright (C) 2005-2007 Pierre Ossman, All Rights Reserved.
7 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
8 */
9
10#include <linux/err.h>
11#include <linux/of.h>
12#include <linux/slab.h>
13#include <linux/stat.h>
14#include <linux/pm_runtime.h>
15
16#include <linux/mmc/host.h>
17#include <linux/mmc/card.h>
18#include <linux/mmc/mmc.h>
19
20#include "core.h"
21#include "card.h"
22#include "host.h"
23#include "bus.h"
24#include "mmc_ops.h"
25#include "quirks.h"
26#include "sd_ops.h"
27#include "pwrseq.h"
28
29#define DEFAULT_CMD6_TIMEOUT_MS 500
30#define MIN_CACHE_EN_TIMEOUT_MS 1600
31
32static const unsigned int tran_exp[] = {
33 10000, 100000, 1000000, 10000000,
34 0, 0, 0, 0
35};
36
37static const unsigned char tran_mant[] = {
38 0, 10, 12, 13, 15, 20, 25, 30,
39 35, 40, 45, 50, 55, 60, 70, 80,
40};
41
42static const unsigned int taac_exp[] = {
43 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000,
44};
45
46static const unsigned int taac_mant[] = {
47 0, 10, 12, 13, 15, 20, 25, 30,
48 35, 40, 45, 50, 55, 60, 70, 80,
49};
50
51#define UNSTUFF_BITS(resp,start,size) \
52 ({ \
53 const int __size = size; \
54 const u32 __mask = (__size < 32 ? 1 << __size : 0) - 1; \
55 const int __off = 3 - ((start) / 32); \
56 const int __shft = (start) & 31; \
57 u32 __res; \
58 \
59 __res = resp[__off] >> __shft; \
60 if (__size + __shft > 32) \
61 __res |= resp[__off-1] << ((32 - __shft) % 32); \
62 __res & __mask; \
63 })
64
65/*
66 * Given the decoded CSD structure, decode the raw CID to our CID structure.
67 */
68static int mmc_decode_cid(struct mmc_card *card)
69{
70 u32 *resp = card->raw_cid;
71
72 /*
73 * The selection of the format here is based upon published
74 * specs from sandisk and from what people have reported.
75 */
76 switch (card->csd.mmca_vsn) {
77 case 0: /* MMC v1.0 - v1.2 */
78 case 1: /* MMC v1.4 */
79 card->cid.manfid = UNSTUFF_BITS(resp, 104, 24);
80 card->cid.prod_name[0] = UNSTUFF_BITS(resp, 96, 8);
81 card->cid.prod_name[1] = UNSTUFF_BITS(resp, 88, 8);
82 card->cid.prod_name[2] = UNSTUFF_BITS(resp, 80, 8);
83 card->cid.prod_name[3] = UNSTUFF_BITS(resp, 72, 8);
84 card->cid.prod_name[4] = UNSTUFF_BITS(resp, 64, 8);
85 card->cid.prod_name[5] = UNSTUFF_BITS(resp, 56, 8);
86 card->cid.prod_name[6] = UNSTUFF_BITS(resp, 48, 8);
87 card->cid.hwrev = UNSTUFF_BITS(resp, 44, 4);
88 card->cid.fwrev = UNSTUFF_BITS(resp, 40, 4);
89 card->cid.serial = UNSTUFF_BITS(resp, 16, 24);
90 card->cid.month = UNSTUFF_BITS(resp, 12, 4);
91 card->cid.year = UNSTUFF_BITS(resp, 8, 4) + 1997;
92 break;
93
94 case 2: /* MMC v2.0 - v2.2 */
95 case 3: /* MMC v3.1 - v3.3 */
96 case 4: /* MMC v4 */
97 card->cid.manfid = UNSTUFF_BITS(resp, 120, 8);
98 card->cid.oemid = UNSTUFF_BITS(resp, 104, 16);
99 card->cid.prod_name[0] = UNSTUFF_BITS(resp, 96, 8);
100 card->cid.prod_name[1] = UNSTUFF_BITS(resp, 88, 8);
101 card->cid.prod_name[2] = UNSTUFF_BITS(resp, 80, 8);
102 card->cid.prod_name[3] = UNSTUFF_BITS(resp, 72, 8);
103 card->cid.prod_name[4] = UNSTUFF_BITS(resp, 64, 8);
104 card->cid.prod_name[5] = UNSTUFF_BITS(resp, 56, 8);
105 card->cid.prv = UNSTUFF_BITS(resp, 48, 8);
106 card->cid.serial = UNSTUFF_BITS(resp, 16, 32);
107 card->cid.month = UNSTUFF_BITS(resp, 12, 4);
108 card->cid.year = UNSTUFF_BITS(resp, 8, 4) + 1997;
109 break;
110
111 default:
112 pr_err("%s: card has unknown MMCA version %d\n",
113 mmc_hostname(card->host), card->csd.mmca_vsn);
114 return -EINVAL;
115 }
116
117 return 0;
118}
119
120static void mmc_set_erase_size(struct mmc_card *card)
121{
122 if (card->ext_csd.erase_group_def & 1)
123 card->erase_size = card->ext_csd.hc_erase_size;
124 else
125 card->erase_size = card->csd.erase_size;
126
127 mmc_init_erase(card);
128}
129
130/*
131 * Given a 128-bit response, decode to our card CSD structure.
132 */
133static int mmc_decode_csd(struct mmc_card *card)
134{
135 struct mmc_csd *csd = &card->csd;
136 unsigned int e, m, a, b;
137 u32 *resp = card->raw_csd;
138
139 /*
140 * We only understand CSD structure v1.1 and v1.2.
141 * v1.2 has extra information in bits 15, 11 and 10.
142 * We also support eMMC v4.4 & v4.41.
143 */
144 csd->structure = UNSTUFF_BITS(resp, 126, 2);
145 if (csd->structure == 0) {
146 pr_err("%s: unrecognised CSD structure version %d\n",
147 mmc_hostname(card->host), csd->structure);
148 return -EINVAL;
149 }
150
151 csd->mmca_vsn = UNSTUFF_BITS(resp, 122, 4);
152 m = UNSTUFF_BITS(resp, 115, 4);
153 e = UNSTUFF_BITS(resp, 112, 3);
154 csd->taac_ns = (taac_exp[e] * taac_mant[m] + 9) / 10;
155 csd->taac_clks = UNSTUFF_BITS(resp, 104, 8) * 100;
156
157 m = UNSTUFF_BITS(resp, 99, 4);
158 e = UNSTUFF_BITS(resp, 96, 3);
159 csd->max_dtr = tran_exp[e] * tran_mant[m];
160 csd->cmdclass = UNSTUFF_BITS(resp, 84, 12);
161
162 e = UNSTUFF_BITS(resp, 47, 3);
163 m = UNSTUFF_BITS(resp, 62, 12);
164 csd->capacity = (1 + m) << (e + 2);
165
166 csd->read_blkbits = UNSTUFF_BITS(resp, 80, 4);
167 csd->read_partial = UNSTUFF_BITS(resp, 79, 1);
168 csd->write_misalign = UNSTUFF_BITS(resp, 78, 1);
169 csd->read_misalign = UNSTUFF_BITS(resp, 77, 1);
170 csd->dsr_imp = UNSTUFF_BITS(resp, 76, 1);
171 csd->r2w_factor = UNSTUFF_BITS(resp, 26, 3);
172 csd->write_blkbits = UNSTUFF_BITS(resp, 22, 4);
173 csd->write_partial = UNSTUFF_BITS(resp, 21, 1);
174
175 if (csd->write_blkbits >= 9) {
176 a = UNSTUFF_BITS(resp, 42, 5);
177 b = UNSTUFF_BITS(resp, 37, 5);
178 csd->erase_size = (a + 1) * (b + 1);
179 csd->erase_size <<= csd->write_blkbits - 9;
180 }
181
182 return 0;
183}
184
185static void mmc_select_card_type(struct mmc_card *card)
186{
187 struct mmc_host *host = card->host;
188 u8 card_type = card->ext_csd.raw_card_type;
189 u32 caps = host->caps, caps2 = host->caps2;
190 unsigned int hs_max_dtr = 0, hs200_max_dtr = 0;
191 unsigned int avail_type = 0;
192
193 if (caps & MMC_CAP_MMC_HIGHSPEED &&
194 card_type & EXT_CSD_CARD_TYPE_HS_26) {
195 hs_max_dtr = MMC_HIGH_26_MAX_DTR;
196 avail_type |= EXT_CSD_CARD_TYPE_HS_26;
197 }
198
199 if (caps & MMC_CAP_MMC_HIGHSPEED &&
200 card_type & EXT_CSD_CARD_TYPE_HS_52) {
201 hs_max_dtr = MMC_HIGH_52_MAX_DTR;
202 avail_type |= EXT_CSD_CARD_TYPE_HS_52;
203 }
204
205 if (caps & (MMC_CAP_1_8V_DDR | MMC_CAP_3_3V_DDR) &&
206 card_type & EXT_CSD_CARD_TYPE_DDR_1_8V) {
207 hs_max_dtr = MMC_HIGH_DDR_MAX_DTR;
208 avail_type |= EXT_CSD_CARD_TYPE_DDR_1_8V;
209 }
210
211 if (caps & MMC_CAP_1_2V_DDR &&
212 card_type & EXT_CSD_CARD_TYPE_DDR_1_2V) {
213 hs_max_dtr = MMC_HIGH_DDR_MAX_DTR;
214 avail_type |= EXT_CSD_CARD_TYPE_DDR_1_2V;
215 }
216
217 if (caps2 & MMC_CAP2_HS200_1_8V_SDR &&
218 card_type & EXT_CSD_CARD_TYPE_HS200_1_8V) {
219 hs200_max_dtr = MMC_HS200_MAX_DTR;
220 avail_type |= EXT_CSD_CARD_TYPE_HS200_1_8V;
221 }
222
223 if (caps2 & MMC_CAP2_HS200_1_2V_SDR &&
224 card_type & EXT_CSD_CARD_TYPE_HS200_1_2V) {
225 hs200_max_dtr = MMC_HS200_MAX_DTR;
226 avail_type |= EXT_CSD_CARD_TYPE_HS200_1_2V;
227 }
228
229 if (caps2 & MMC_CAP2_HS400_1_8V &&
230 card_type & EXT_CSD_CARD_TYPE_HS400_1_8V) {
231 hs200_max_dtr = MMC_HS200_MAX_DTR;
232 avail_type |= EXT_CSD_CARD_TYPE_HS400_1_8V;
233 }
234
235 if (caps2 & MMC_CAP2_HS400_1_2V &&
236 card_type & EXT_CSD_CARD_TYPE_HS400_1_2V) {
237 hs200_max_dtr = MMC_HS200_MAX_DTR;
238 avail_type |= EXT_CSD_CARD_TYPE_HS400_1_2V;
239 }
240
241 if ((caps2 & MMC_CAP2_HS400_ES) &&
242 card->ext_csd.strobe_support &&
243 (avail_type & EXT_CSD_CARD_TYPE_HS400))
244 avail_type |= EXT_CSD_CARD_TYPE_HS400ES;
245
246 card->ext_csd.hs_max_dtr = hs_max_dtr;
247 card->ext_csd.hs200_max_dtr = hs200_max_dtr;
248 card->mmc_avail_type = avail_type;
249}
250
251static void mmc_manage_enhanced_area(struct mmc_card *card, u8 *ext_csd)
252{
253 u8 hc_erase_grp_sz, hc_wp_grp_sz;
254
255 /*
256 * Disable these attributes by default
257 */
258 card->ext_csd.enhanced_area_offset = -EINVAL;
259 card->ext_csd.enhanced_area_size = -EINVAL;
260
261 /*
262 * Enhanced area feature support -- check whether the eMMC
263 * card has the Enhanced area enabled. If so, export enhanced
264 * area offset and size to user by adding sysfs interface.
265 */
266 if ((ext_csd[EXT_CSD_PARTITION_SUPPORT] & 0x2) &&
267 (ext_csd[EXT_CSD_PARTITION_ATTRIBUTE] & 0x1)) {
268 if (card->ext_csd.partition_setting_completed) {
269 hc_erase_grp_sz =
270 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
271 hc_wp_grp_sz =
272 ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
273
274 /*
275 * calculate the enhanced data area offset, in bytes
276 */
277 card->ext_csd.enhanced_area_offset =
278 (((unsigned long long)ext_csd[139]) << 24) +
279 (((unsigned long long)ext_csd[138]) << 16) +
280 (((unsigned long long)ext_csd[137]) << 8) +
281 (((unsigned long long)ext_csd[136]));
282 if (mmc_card_blockaddr(card))
283 card->ext_csd.enhanced_area_offset <<= 9;
284 /*
285 * calculate the enhanced data area size, in kilobytes
286 */
287 card->ext_csd.enhanced_area_size =
288 (ext_csd[142] << 16) + (ext_csd[141] << 8) +
289 ext_csd[140];
290 card->ext_csd.enhanced_area_size *=
291 (size_t)(hc_erase_grp_sz * hc_wp_grp_sz);
292 card->ext_csd.enhanced_area_size <<= 9;
293 } else {
294 pr_warn("%s: defines enhanced area without partition setting complete\n",
295 mmc_hostname(card->host));
296 }
297 }
298}
299
300static void mmc_part_add(struct mmc_card *card, u64 size,
301 unsigned int part_cfg, char *name, int idx, bool ro,
302 int area_type)
303{
304 card->part[card->nr_parts].size = size;
305 card->part[card->nr_parts].part_cfg = part_cfg;
306 sprintf(card->part[card->nr_parts].name, name, idx);
307 card->part[card->nr_parts].force_ro = ro;
308 card->part[card->nr_parts].area_type = area_type;
309 card->nr_parts++;
310}
311
312static void mmc_manage_gp_partitions(struct mmc_card *card, u8 *ext_csd)
313{
314 int idx;
315 u8 hc_erase_grp_sz, hc_wp_grp_sz;
316 u64 part_size;
317
318 /*
319 * General purpose partition feature support --
320 * If ext_csd has the size of general purpose partitions,
321 * set size, part_cfg, partition name in mmc_part.
322 */
323 if (ext_csd[EXT_CSD_PARTITION_SUPPORT] &
324 EXT_CSD_PART_SUPPORT_PART_EN) {
325 hc_erase_grp_sz =
326 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
327 hc_wp_grp_sz =
328 ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
329
330 for (idx = 0; idx < MMC_NUM_GP_PARTITION; idx++) {
331 if (!ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3] &&
332 !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1] &&
333 !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2])
334 continue;
335 if (card->ext_csd.partition_setting_completed == 0) {
336 pr_warn("%s: has partition size defined without partition complete\n",
337 mmc_hostname(card->host));
338 break;
339 }
340 part_size =
341 (ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2]
342 << 16) +
343 (ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1]
344 << 8) +
345 ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3];
346 part_size *= (hc_erase_grp_sz * hc_wp_grp_sz);
347 mmc_part_add(card, part_size << 19,
348 EXT_CSD_PART_CONFIG_ACC_GP0 + idx,
349 "gp%d", idx, false,
350 MMC_BLK_DATA_AREA_GP);
351 }
352 }
353}
354
355/* Minimum partition switch timeout in milliseconds */
356#define MMC_MIN_PART_SWITCH_TIME 300
357
358/*
359 * Decode extended CSD.
360 */
361static int mmc_decode_ext_csd(struct mmc_card *card, u8 *ext_csd)
362{
363 int err = 0, idx;
364 u64 part_size;
365 struct device_node *np;
366 bool broken_hpi = false;
367
368 /* Version is coded in the CSD_STRUCTURE byte in the EXT_CSD register */
369 card->ext_csd.raw_ext_csd_structure = ext_csd[EXT_CSD_STRUCTURE];
370 if (card->csd.structure == 3) {
371 if (card->ext_csd.raw_ext_csd_structure > 2) {
372 pr_err("%s: unrecognised EXT_CSD structure "
373 "version %d\n", mmc_hostname(card->host),
374 card->ext_csd.raw_ext_csd_structure);
375 err = -EINVAL;
376 goto out;
377 }
378 }
379
380 np = mmc_of_find_child_device(card->host, 0);
381 if (np && of_device_is_compatible(np, "mmc-card"))
382 broken_hpi = of_property_read_bool(np, "broken-hpi");
383 of_node_put(np);
384
385 /*
386 * The EXT_CSD format is meant to be forward compatible. As long
387 * as CSD_STRUCTURE does not change, all values for EXT_CSD_REV
388 * are authorized, see JEDEC JESD84-B50 section B.8.
389 */
390 card->ext_csd.rev = ext_csd[EXT_CSD_REV];
391
392 /* fixup device after ext_csd revision field is updated */
393 mmc_fixup_device(card, mmc_ext_csd_fixups);
394
395 card->ext_csd.raw_sectors[0] = ext_csd[EXT_CSD_SEC_CNT + 0];
396 card->ext_csd.raw_sectors[1] = ext_csd[EXT_CSD_SEC_CNT + 1];
397 card->ext_csd.raw_sectors[2] = ext_csd[EXT_CSD_SEC_CNT + 2];
398 card->ext_csd.raw_sectors[3] = ext_csd[EXT_CSD_SEC_CNT + 3];
399 if (card->ext_csd.rev >= 2) {
400 card->ext_csd.sectors =
401 ext_csd[EXT_CSD_SEC_CNT + 0] << 0 |
402 ext_csd[EXT_CSD_SEC_CNT + 1] << 8 |
403 ext_csd[EXT_CSD_SEC_CNT + 2] << 16 |
404 ext_csd[EXT_CSD_SEC_CNT + 3] << 24;
405
406 /* Cards with density > 2GiB are sector addressed */
407 if (card->ext_csd.sectors > (2u * 1024 * 1024 * 1024) / 512)
408 mmc_card_set_blockaddr(card);
409 }
410
411 card->ext_csd.strobe_support = ext_csd[EXT_CSD_STROBE_SUPPORT];
412 card->ext_csd.raw_card_type = ext_csd[EXT_CSD_CARD_TYPE];
413 mmc_select_card_type(card);
414
415 card->ext_csd.raw_s_a_timeout = ext_csd[EXT_CSD_S_A_TIMEOUT];
416 card->ext_csd.raw_erase_timeout_mult =
417 ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT];
418 card->ext_csd.raw_hc_erase_grp_size =
419 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
420 if (card->ext_csd.rev >= 3) {
421 u8 sa_shift = ext_csd[EXT_CSD_S_A_TIMEOUT];
422 card->ext_csd.part_config = ext_csd[EXT_CSD_PART_CONFIG];
423
424 /* EXT_CSD value is in units of 10ms, but we store in ms */
425 card->ext_csd.part_time = 10 * ext_csd[EXT_CSD_PART_SWITCH_TIME];
426 /* Some eMMC set the value too low so set a minimum */
427 if (card->ext_csd.part_time &&
428 card->ext_csd.part_time < MMC_MIN_PART_SWITCH_TIME)
429 card->ext_csd.part_time = MMC_MIN_PART_SWITCH_TIME;
430
431 /* Sleep / awake timeout in 100ns units */
432 if (sa_shift > 0 && sa_shift <= 0x17)
433 card->ext_csd.sa_timeout =
434 1 << ext_csd[EXT_CSD_S_A_TIMEOUT];
435 card->ext_csd.erase_group_def =
436 ext_csd[EXT_CSD_ERASE_GROUP_DEF];
437 card->ext_csd.hc_erase_timeout = 300 *
438 ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT];
439 card->ext_csd.hc_erase_size =
440 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE] << 10;
441
442 card->ext_csd.rel_sectors = ext_csd[EXT_CSD_REL_WR_SEC_C];
443
444 /*
445 * There are two boot regions of equal size, defined in
446 * multiples of 128K.
447 */
448 if (ext_csd[EXT_CSD_BOOT_MULT] && mmc_boot_partition_access(card->host)) {
449 for (idx = 0; idx < MMC_NUM_BOOT_PARTITION; idx++) {
450 part_size = ext_csd[EXT_CSD_BOOT_MULT] << 17;
451 mmc_part_add(card, part_size,
452 EXT_CSD_PART_CONFIG_ACC_BOOT0 + idx,
453 "boot%d", idx, true,
454 MMC_BLK_DATA_AREA_BOOT);
455 }
456 }
457 }
458
459 card->ext_csd.raw_hc_erase_gap_size =
460 ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
461 card->ext_csd.raw_sec_trim_mult =
462 ext_csd[EXT_CSD_SEC_TRIM_MULT];
463 card->ext_csd.raw_sec_erase_mult =
464 ext_csd[EXT_CSD_SEC_ERASE_MULT];
465 card->ext_csd.raw_sec_feature_support =
466 ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT];
467 card->ext_csd.raw_trim_mult =
468 ext_csd[EXT_CSD_TRIM_MULT];
469 card->ext_csd.raw_partition_support = ext_csd[EXT_CSD_PARTITION_SUPPORT];
470 card->ext_csd.raw_driver_strength = ext_csd[EXT_CSD_DRIVER_STRENGTH];
471 if (card->ext_csd.rev >= 4) {
472 if (ext_csd[EXT_CSD_PARTITION_SETTING_COMPLETED] &
473 EXT_CSD_PART_SETTING_COMPLETED)
474 card->ext_csd.partition_setting_completed = 1;
475 else
476 card->ext_csd.partition_setting_completed = 0;
477
478 mmc_manage_enhanced_area(card, ext_csd);
479
480 mmc_manage_gp_partitions(card, ext_csd);
481
482 card->ext_csd.sec_trim_mult =
483 ext_csd[EXT_CSD_SEC_TRIM_MULT];
484 card->ext_csd.sec_erase_mult =
485 ext_csd[EXT_CSD_SEC_ERASE_MULT];
486 card->ext_csd.sec_feature_support =
487 ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT];
488 card->ext_csd.trim_timeout = 300 *
489 ext_csd[EXT_CSD_TRIM_MULT];
490
491 /*
492 * Note that the call to mmc_part_add above defaults to read
493 * only. If this default assumption is changed, the call must
494 * take into account the value of boot_locked below.
495 */
496 card->ext_csd.boot_ro_lock = ext_csd[EXT_CSD_BOOT_WP];
497 card->ext_csd.boot_ro_lockable = true;
498
499 /* Save power class values */
500 card->ext_csd.raw_pwr_cl_52_195 =
501 ext_csd[EXT_CSD_PWR_CL_52_195];
502 card->ext_csd.raw_pwr_cl_26_195 =
503 ext_csd[EXT_CSD_PWR_CL_26_195];
504 card->ext_csd.raw_pwr_cl_52_360 =
505 ext_csd[EXT_CSD_PWR_CL_52_360];
506 card->ext_csd.raw_pwr_cl_26_360 =
507 ext_csd[EXT_CSD_PWR_CL_26_360];
508 card->ext_csd.raw_pwr_cl_200_195 =
509 ext_csd[EXT_CSD_PWR_CL_200_195];
510 card->ext_csd.raw_pwr_cl_200_360 =
511 ext_csd[EXT_CSD_PWR_CL_200_360];
512 card->ext_csd.raw_pwr_cl_ddr_52_195 =
513 ext_csd[EXT_CSD_PWR_CL_DDR_52_195];
514 card->ext_csd.raw_pwr_cl_ddr_52_360 =
515 ext_csd[EXT_CSD_PWR_CL_DDR_52_360];
516 card->ext_csd.raw_pwr_cl_ddr_200_360 =
517 ext_csd[EXT_CSD_PWR_CL_DDR_200_360];
518 }
519
520 if (card->ext_csd.rev >= 5) {
521 /* Adjust production date as per JEDEC JESD84-B451 */
522 if (card->cid.year < 2010)
523 card->cid.year += 16;
524
525 /* check whether the eMMC card supports BKOPS */
526 if (ext_csd[EXT_CSD_BKOPS_SUPPORT] & 0x1) {
527 card->ext_csd.bkops = 1;
528 card->ext_csd.man_bkops_en =
529 (ext_csd[EXT_CSD_BKOPS_EN] &
530 EXT_CSD_MANUAL_BKOPS_MASK);
531 card->ext_csd.raw_bkops_status =
532 ext_csd[EXT_CSD_BKOPS_STATUS];
533 if (card->ext_csd.man_bkops_en)
534 pr_debug("%s: MAN_BKOPS_EN bit is set\n",
535 mmc_hostname(card->host));
536 card->ext_csd.auto_bkops_en =
537 (ext_csd[EXT_CSD_BKOPS_EN] &
538 EXT_CSD_AUTO_BKOPS_MASK);
539 if (card->ext_csd.auto_bkops_en)
540 pr_debug("%s: AUTO_BKOPS_EN bit is set\n",
541 mmc_hostname(card->host));
542 }
543
544 /* check whether the eMMC card supports HPI */
545 if (!mmc_card_broken_hpi(card) &&
546 !broken_hpi && (ext_csd[EXT_CSD_HPI_FEATURES] & 0x1)) {
547 card->ext_csd.hpi = 1;
548 if (ext_csd[EXT_CSD_HPI_FEATURES] & 0x2)
549 card->ext_csd.hpi_cmd = MMC_STOP_TRANSMISSION;
550 else
551 card->ext_csd.hpi_cmd = MMC_SEND_STATUS;
552 /*
553 * Indicate the maximum timeout to close
554 * a command interrupted by HPI
555 */
556 card->ext_csd.out_of_int_time =
557 ext_csd[EXT_CSD_OUT_OF_INTERRUPT_TIME] * 10;
558 }
559
560 card->ext_csd.rel_param = ext_csd[EXT_CSD_WR_REL_PARAM];
561 card->ext_csd.rst_n_function = ext_csd[EXT_CSD_RST_N_FUNCTION];
562
563 /*
564 * RPMB regions are defined in multiples of 128K.
565 */
566 card->ext_csd.raw_rpmb_size_mult = ext_csd[EXT_CSD_RPMB_MULT];
567 if (ext_csd[EXT_CSD_RPMB_MULT] && mmc_host_cmd23(card->host)) {
568 mmc_part_add(card, ext_csd[EXT_CSD_RPMB_MULT] << 17,
569 EXT_CSD_PART_CONFIG_ACC_RPMB,
570 "rpmb", 0, false,
571 MMC_BLK_DATA_AREA_RPMB);
572 }
573 }
574
575 card->ext_csd.raw_erased_mem_count = ext_csd[EXT_CSD_ERASED_MEM_CONT];
576 if (ext_csd[EXT_CSD_ERASED_MEM_CONT])
577 card->erased_byte = 0xFF;
578 else
579 card->erased_byte = 0x0;
580
581 /* eMMC v4.5 or later */
582 card->ext_csd.generic_cmd6_time = DEFAULT_CMD6_TIMEOUT_MS;
583 if (card->ext_csd.rev >= 6) {
584 card->ext_csd.feature_support |= MMC_DISCARD_FEATURE;
585
586 card->ext_csd.generic_cmd6_time = 10 *
587 ext_csd[EXT_CSD_GENERIC_CMD6_TIME];
588 card->ext_csd.power_off_longtime = 10 *
589 ext_csd[EXT_CSD_POWER_OFF_LONG_TIME];
590
591 card->ext_csd.cache_size =
592 ext_csd[EXT_CSD_CACHE_SIZE + 0] << 0 |
593 ext_csd[EXT_CSD_CACHE_SIZE + 1] << 8 |
594 ext_csd[EXT_CSD_CACHE_SIZE + 2] << 16 |
595 ext_csd[EXT_CSD_CACHE_SIZE + 3] << 24;
596
597 if (ext_csd[EXT_CSD_DATA_SECTOR_SIZE] == 1)
598 card->ext_csd.data_sector_size = 4096;
599 else
600 card->ext_csd.data_sector_size = 512;
601
602 if ((ext_csd[EXT_CSD_DATA_TAG_SUPPORT] & 1) &&
603 (ext_csd[EXT_CSD_TAG_UNIT_SIZE] <= 8)) {
604 card->ext_csd.data_tag_unit_size =
605 ((unsigned int) 1 << ext_csd[EXT_CSD_TAG_UNIT_SIZE]) *
606 (card->ext_csd.data_sector_size);
607 } else {
608 card->ext_csd.data_tag_unit_size = 0;
609 }
610
611 card->ext_csd.max_packed_writes =
612 ext_csd[EXT_CSD_MAX_PACKED_WRITES];
613 card->ext_csd.max_packed_reads =
614 ext_csd[EXT_CSD_MAX_PACKED_READS];
615 } else {
616 card->ext_csd.data_sector_size = 512;
617 }
618
619 /* eMMC v5 or later */
620 if (card->ext_csd.rev >= 7) {
621 memcpy(card->ext_csd.fwrev, &ext_csd[EXT_CSD_FIRMWARE_VERSION],
622 MMC_FIRMWARE_LEN);
623 card->ext_csd.ffu_capable =
624 (ext_csd[EXT_CSD_SUPPORTED_MODE] & 0x1) &&
625 !(ext_csd[EXT_CSD_FW_CONFIG] & 0x1);
626
627 card->ext_csd.pre_eol_info = ext_csd[EXT_CSD_PRE_EOL_INFO];
628 card->ext_csd.device_life_time_est_typ_a =
629 ext_csd[EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_A];
630 card->ext_csd.device_life_time_est_typ_b =
631 ext_csd[EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_B];
632 }
633
634 /* eMMC v5.1 or later */
635 if (card->ext_csd.rev >= 8) {
636 card->ext_csd.cmdq_support = ext_csd[EXT_CSD_CMDQ_SUPPORT] &
637 EXT_CSD_CMDQ_SUPPORTED;
638 card->ext_csd.cmdq_depth = (ext_csd[EXT_CSD_CMDQ_DEPTH] &
639 EXT_CSD_CMDQ_DEPTH_MASK) + 1;
640 /* Exclude inefficiently small queue depths */
641 if (card->ext_csd.cmdq_depth <= 2) {
642 card->ext_csd.cmdq_support = false;
643 card->ext_csd.cmdq_depth = 0;
644 }
645 if (card->ext_csd.cmdq_support) {
646 pr_debug("%s: Command Queue supported depth %u\n",
647 mmc_hostname(card->host),
648 card->ext_csd.cmdq_depth);
649 }
650 card->ext_csd.enhanced_rpmb_supported =
651 (card->ext_csd.rel_param &
652 EXT_CSD_WR_REL_PARAM_EN_RPMB_REL_WR);
653 }
654out:
655 return err;
656}
657
658static int mmc_read_ext_csd(struct mmc_card *card)
659{
660 u8 *ext_csd;
661 int err;
662
663 if (!mmc_can_ext_csd(card))
664 return 0;
665
666 err = mmc_get_ext_csd(card, &ext_csd);
667 if (err) {
668 /* If the host or the card can't do the switch,
669 * fail more gracefully. */
670 if ((err != -EINVAL)
671 && (err != -ENOSYS)
672 && (err != -EFAULT))
673 return err;
674
675 /*
676 * High capacity cards should have this "magic" size
677 * stored in their CSD.
678 */
679 if (card->csd.capacity == (4096 * 512)) {
680 pr_err("%s: unable to read EXT_CSD on a possible high capacity card. Card will be ignored.\n",
681 mmc_hostname(card->host));
682 } else {
683 pr_warn("%s: unable to read EXT_CSD, performance might suffer\n",
684 mmc_hostname(card->host));
685 err = 0;
686 }
687
688 return err;
689 }
690
691 err = mmc_decode_ext_csd(card, ext_csd);
692 kfree(ext_csd);
693 return err;
694}
695
696static int mmc_compare_ext_csds(struct mmc_card *card, unsigned bus_width)
697{
698 u8 *bw_ext_csd;
699 int err;
700
701 if (bus_width == MMC_BUS_WIDTH_1)
702 return 0;
703
704 err = mmc_get_ext_csd(card, &bw_ext_csd);
705 if (err)
706 return err;
707
708 /* only compare read only fields */
709 err = !((card->ext_csd.raw_partition_support ==
710 bw_ext_csd[EXT_CSD_PARTITION_SUPPORT]) &&
711 (card->ext_csd.raw_erased_mem_count ==
712 bw_ext_csd[EXT_CSD_ERASED_MEM_CONT]) &&
713 (card->ext_csd.rev ==
714 bw_ext_csd[EXT_CSD_REV]) &&
715 (card->ext_csd.raw_ext_csd_structure ==
716 bw_ext_csd[EXT_CSD_STRUCTURE]) &&
717 (card->ext_csd.raw_card_type ==
718 bw_ext_csd[EXT_CSD_CARD_TYPE]) &&
719 (card->ext_csd.raw_s_a_timeout ==
720 bw_ext_csd[EXT_CSD_S_A_TIMEOUT]) &&
721 (card->ext_csd.raw_hc_erase_gap_size ==
722 bw_ext_csd[EXT_CSD_HC_WP_GRP_SIZE]) &&
723 (card->ext_csd.raw_erase_timeout_mult ==
724 bw_ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT]) &&
725 (card->ext_csd.raw_hc_erase_grp_size ==
726 bw_ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]) &&
727 (card->ext_csd.raw_sec_trim_mult ==
728 bw_ext_csd[EXT_CSD_SEC_TRIM_MULT]) &&
729 (card->ext_csd.raw_sec_erase_mult ==
730 bw_ext_csd[EXT_CSD_SEC_ERASE_MULT]) &&
731 (card->ext_csd.raw_sec_feature_support ==
732 bw_ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT]) &&
733 (card->ext_csd.raw_trim_mult ==
734 bw_ext_csd[EXT_CSD_TRIM_MULT]) &&
735 (card->ext_csd.raw_sectors[0] ==
736 bw_ext_csd[EXT_CSD_SEC_CNT + 0]) &&
737 (card->ext_csd.raw_sectors[1] ==
738 bw_ext_csd[EXT_CSD_SEC_CNT + 1]) &&
739 (card->ext_csd.raw_sectors[2] ==
740 bw_ext_csd[EXT_CSD_SEC_CNT + 2]) &&
741 (card->ext_csd.raw_sectors[3] ==
742 bw_ext_csd[EXT_CSD_SEC_CNT + 3]) &&
743 (card->ext_csd.raw_pwr_cl_52_195 ==
744 bw_ext_csd[EXT_CSD_PWR_CL_52_195]) &&
745 (card->ext_csd.raw_pwr_cl_26_195 ==
746 bw_ext_csd[EXT_CSD_PWR_CL_26_195]) &&
747 (card->ext_csd.raw_pwr_cl_52_360 ==
748 bw_ext_csd[EXT_CSD_PWR_CL_52_360]) &&
749 (card->ext_csd.raw_pwr_cl_26_360 ==
750 bw_ext_csd[EXT_CSD_PWR_CL_26_360]) &&
751 (card->ext_csd.raw_pwr_cl_200_195 ==
752 bw_ext_csd[EXT_CSD_PWR_CL_200_195]) &&
753 (card->ext_csd.raw_pwr_cl_200_360 ==
754 bw_ext_csd[EXT_CSD_PWR_CL_200_360]) &&
755 (card->ext_csd.raw_pwr_cl_ddr_52_195 ==
756 bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_195]) &&
757 (card->ext_csd.raw_pwr_cl_ddr_52_360 ==
758 bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_360]) &&
759 (card->ext_csd.raw_pwr_cl_ddr_200_360 ==
760 bw_ext_csd[EXT_CSD_PWR_CL_DDR_200_360]));
761
762 if (err)
763 err = -EINVAL;
764
765 kfree(bw_ext_csd);
766 return err;
767}
768
769MMC_DEV_ATTR(cid, "%08x%08x%08x%08x\n", card->raw_cid[0], card->raw_cid[1],
770 card->raw_cid[2], card->raw_cid[3]);
771MMC_DEV_ATTR(csd, "%08x%08x%08x%08x\n", card->raw_csd[0], card->raw_csd[1],
772 card->raw_csd[2], card->raw_csd[3]);
773MMC_DEV_ATTR(date, "%02d/%04d\n", card->cid.month, card->cid.year);
774MMC_DEV_ATTR(erase_size, "%u\n", card->erase_size << 9);
775MMC_DEV_ATTR(preferred_erase_size, "%u\n", card->pref_erase << 9);
776MMC_DEV_ATTR(ffu_capable, "%d\n", card->ext_csd.ffu_capable);
777MMC_DEV_ATTR(hwrev, "0x%x\n", card->cid.hwrev);
778MMC_DEV_ATTR(manfid, "0x%06x\n", card->cid.manfid);
779MMC_DEV_ATTR(name, "%s\n", card->cid.prod_name);
780MMC_DEV_ATTR(oemid, "0x%04x\n", card->cid.oemid);
781MMC_DEV_ATTR(prv, "0x%x\n", card->cid.prv);
782MMC_DEV_ATTR(rev, "0x%x\n", card->ext_csd.rev);
783MMC_DEV_ATTR(pre_eol_info, "0x%02x\n", card->ext_csd.pre_eol_info);
784MMC_DEV_ATTR(life_time, "0x%02x 0x%02x\n",
785 card->ext_csd.device_life_time_est_typ_a,
786 card->ext_csd.device_life_time_est_typ_b);
787MMC_DEV_ATTR(serial, "0x%08x\n", card->cid.serial);
788MMC_DEV_ATTR(enhanced_area_offset, "%llu\n",
789 card->ext_csd.enhanced_area_offset);
790MMC_DEV_ATTR(enhanced_area_size, "%u\n", card->ext_csd.enhanced_area_size);
791MMC_DEV_ATTR(raw_rpmb_size_mult, "%#x\n", card->ext_csd.raw_rpmb_size_mult);
792MMC_DEV_ATTR(enhanced_rpmb_supported, "%#x\n",
793 card->ext_csd.enhanced_rpmb_supported);
794MMC_DEV_ATTR(rel_sectors, "%#x\n", card->ext_csd.rel_sectors);
795MMC_DEV_ATTR(ocr, "0x%08x\n", card->ocr);
796MMC_DEV_ATTR(rca, "0x%04x\n", card->rca);
797MMC_DEV_ATTR(cmdq_en, "%d\n", card->ext_csd.cmdq_en);
798
799static ssize_t mmc_fwrev_show(struct device *dev,
800 struct device_attribute *attr,
801 char *buf)
802{
803 struct mmc_card *card = mmc_dev_to_card(dev);
804
805 if (card->ext_csd.rev < 7) {
806 return sprintf(buf, "0x%x\n", card->cid.fwrev);
807 } else {
808 return sprintf(buf, "0x%*phN\n", MMC_FIRMWARE_LEN,
809 card->ext_csd.fwrev);
810 }
811}
812
813static DEVICE_ATTR(fwrev, S_IRUGO, mmc_fwrev_show, NULL);
814
815static ssize_t mmc_dsr_show(struct device *dev,
816 struct device_attribute *attr,
817 char *buf)
818{
819 struct mmc_card *card = mmc_dev_to_card(dev);
820 struct mmc_host *host = card->host;
821
822 if (card->csd.dsr_imp && host->dsr_req)
823 return sprintf(buf, "0x%x\n", host->dsr);
824 else
825 /* return default DSR value */
826 return sprintf(buf, "0x%x\n", 0x404);
827}
828
829static DEVICE_ATTR(dsr, S_IRUGO, mmc_dsr_show, NULL);
830
831static struct attribute *mmc_std_attrs[] = {
832 &dev_attr_cid.attr,
833 &dev_attr_csd.attr,
834 &dev_attr_date.attr,
835 &dev_attr_erase_size.attr,
836 &dev_attr_preferred_erase_size.attr,
837 &dev_attr_fwrev.attr,
838 &dev_attr_ffu_capable.attr,
839 &dev_attr_hwrev.attr,
840 &dev_attr_manfid.attr,
841 &dev_attr_name.attr,
842 &dev_attr_oemid.attr,
843 &dev_attr_prv.attr,
844 &dev_attr_rev.attr,
845 &dev_attr_pre_eol_info.attr,
846 &dev_attr_life_time.attr,
847 &dev_attr_serial.attr,
848 &dev_attr_enhanced_area_offset.attr,
849 &dev_attr_enhanced_area_size.attr,
850 &dev_attr_raw_rpmb_size_mult.attr,
851 &dev_attr_enhanced_rpmb_supported.attr,
852 &dev_attr_rel_sectors.attr,
853 &dev_attr_ocr.attr,
854 &dev_attr_rca.attr,
855 &dev_attr_dsr.attr,
856 &dev_attr_cmdq_en.attr,
857 NULL,
858};
859ATTRIBUTE_GROUPS(mmc_std);
860
861static struct device_type mmc_type = {
862 .groups = mmc_std_groups,
863};
864
865/*
866 * Select the PowerClass for the current bus width
867 * If power class is defined for 4/8 bit bus in the
868 * extended CSD register, select it by executing the
869 * mmc_switch command.
870 */
871static int __mmc_select_powerclass(struct mmc_card *card,
872 unsigned int bus_width)
873{
874 struct mmc_host *host = card->host;
875 struct mmc_ext_csd *ext_csd = &card->ext_csd;
876 unsigned int pwrclass_val = 0;
877 int err = 0;
878
879 switch (1 << host->ios.vdd) {
880 case MMC_VDD_165_195:
881 if (host->ios.clock <= MMC_HIGH_26_MAX_DTR)
882 pwrclass_val = ext_csd->raw_pwr_cl_26_195;
883 else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR)
884 pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ?
885 ext_csd->raw_pwr_cl_52_195 :
886 ext_csd->raw_pwr_cl_ddr_52_195;
887 else if (host->ios.clock <= MMC_HS200_MAX_DTR)
888 pwrclass_val = ext_csd->raw_pwr_cl_200_195;
889 break;
890 case MMC_VDD_27_28:
891 case MMC_VDD_28_29:
892 case MMC_VDD_29_30:
893 case MMC_VDD_30_31:
894 case MMC_VDD_31_32:
895 case MMC_VDD_32_33:
896 case MMC_VDD_33_34:
897 case MMC_VDD_34_35:
898 case MMC_VDD_35_36:
899 if (host->ios.clock <= MMC_HIGH_26_MAX_DTR)
900 pwrclass_val = ext_csd->raw_pwr_cl_26_360;
901 else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR)
902 pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ?
903 ext_csd->raw_pwr_cl_52_360 :
904 ext_csd->raw_pwr_cl_ddr_52_360;
905 else if (host->ios.clock <= MMC_HS200_MAX_DTR)
906 pwrclass_val = (bus_width == EXT_CSD_DDR_BUS_WIDTH_8) ?
907 ext_csd->raw_pwr_cl_ddr_200_360 :
908 ext_csd->raw_pwr_cl_200_360;
909 break;
910 default:
911 pr_warn("%s: Voltage range not supported for power class\n",
912 mmc_hostname(host));
913 return -EINVAL;
914 }
915
916 if (bus_width & (EXT_CSD_BUS_WIDTH_8 | EXT_CSD_DDR_BUS_WIDTH_8))
917 pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_8BIT_MASK) >>
918 EXT_CSD_PWR_CL_8BIT_SHIFT;
919 else
920 pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_4BIT_MASK) >>
921 EXT_CSD_PWR_CL_4BIT_SHIFT;
922
923 /* If the power class is different from the default value */
924 if (pwrclass_val > 0) {
925 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
926 EXT_CSD_POWER_CLASS,
927 pwrclass_val,
928 card->ext_csd.generic_cmd6_time);
929 }
930
931 return err;
932}
933
934static int mmc_select_powerclass(struct mmc_card *card)
935{
936 struct mmc_host *host = card->host;
937 u32 bus_width, ext_csd_bits;
938 int err, ddr;
939
940 /* Power class selection is supported for versions >= 4.0 */
941 if (!mmc_can_ext_csd(card))
942 return 0;
943
944 bus_width = host->ios.bus_width;
945 /* Power class values are defined only for 4/8 bit bus */
946 if (bus_width == MMC_BUS_WIDTH_1)
947 return 0;
948
949 ddr = card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52;
950 if (ddr)
951 ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
952 EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4;
953 else
954 ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
955 EXT_CSD_BUS_WIDTH_8 : EXT_CSD_BUS_WIDTH_4;
956
957 err = __mmc_select_powerclass(card, ext_csd_bits);
958 if (err)
959 pr_warn("%s: power class selection to bus width %d ddr %d failed\n",
960 mmc_hostname(host), 1 << bus_width, ddr);
961
962 return err;
963}
964
965/*
966 * Set the bus speed for the selected speed mode.
967 */
968static void mmc_set_bus_speed(struct mmc_card *card)
969{
970 unsigned int max_dtr = (unsigned int)-1;
971
972 if ((mmc_card_hs200(card) || mmc_card_hs400(card)) &&
973 max_dtr > card->ext_csd.hs200_max_dtr)
974 max_dtr = card->ext_csd.hs200_max_dtr;
975 else if (mmc_card_hs(card) && max_dtr > card->ext_csd.hs_max_dtr)
976 max_dtr = card->ext_csd.hs_max_dtr;
977 else if (max_dtr > card->csd.max_dtr)
978 max_dtr = card->csd.max_dtr;
979
980 mmc_set_clock(card->host, max_dtr);
981}
982
983/*
984 * Select the bus width amoung 4-bit and 8-bit(SDR).
985 * If the bus width is changed successfully, return the selected width value.
986 * Zero is returned instead of error value if the wide width is not supported.
987 */
988static int mmc_select_bus_width(struct mmc_card *card)
989{
990 static unsigned ext_csd_bits[] = {
991 EXT_CSD_BUS_WIDTH_8,
992 EXT_CSD_BUS_WIDTH_4,
993 };
994 static unsigned bus_widths[] = {
995 MMC_BUS_WIDTH_8,
996 MMC_BUS_WIDTH_4,
997 };
998 struct mmc_host *host = card->host;
999 unsigned idx, bus_width = 0;
1000 int err = 0;
1001
1002 if (!mmc_can_ext_csd(card) ||
1003 !(host->caps & (MMC_CAP_4_BIT_DATA | MMC_CAP_8_BIT_DATA)))
1004 return 0;
1005
1006 idx = (host->caps & MMC_CAP_8_BIT_DATA) ? 0 : 1;
1007
1008 /*
1009 * Unlike SD, MMC cards dont have a configuration register to notify
1010 * supported bus width. So bus test command should be run to identify
1011 * the supported bus width or compare the ext csd values of current
1012 * bus width and ext csd values of 1 bit mode read earlier.
1013 */
1014 for (; idx < ARRAY_SIZE(bus_widths); idx++) {
1015 /*
1016 * Host is capable of 8bit transfer, then switch
1017 * the device to work in 8bit transfer mode. If the
1018 * mmc switch command returns error then switch to
1019 * 4bit transfer mode. On success set the corresponding
1020 * bus width on the host.
1021 */
1022 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1023 EXT_CSD_BUS_WIDTH,
1024 ext_csd_bits[idx],
1025 card->ext_csd.generic_cmd6_time);
1026 if (err)
1027 continue;
1028
1029 bus_width = bus_widths[idx];
1030 mmc_set_bus_width(host, bus_width);
1031
1032 /*
1033 * If controller can't handle bus width test,
1034 * compare ext_csd previously read in 1 bit mode
1035 * against ext_csd at new bus width
1036 */
1037 if (!(host->caps & MMC_CAP_BUS_WIDTH_TEST))
1038 err = mmc_compare_ext_csds(card, bus_width);
1039 else
1040 err = mmc_bus_test(card, bus_width);
1041
1042 if (!err) {
1043 err = bus_width;
1044 break;
1045 } else {
1046 pr_warn("%s: switch to bus width %d failed\n",
1047 mmc_hostname(host), 1 << bus_width);
1048 }
1049 }
1050
1051 return err;
1052}
1053
1054/*
1055 * Switch to the high-speed mode
1056 */
1057static int mmc_select_hs(struct mmc_card *card)
1058{
1059 int err;
1060
1061 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1062 EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS,
1063 card->ext_csd.generic_cmd6_time, MMC_TIMING_MMC_HS,
1064 true, true);
1065 if (err)
1066 pr_warn("%s: switch to high-speed failed, err:%d\n",
1067 mmc_hostname(card->host), err);
1068
1069 return err;
1070}
1071
1072/*
1073 * Activate wide bus and DDR if supported.
1074 */
1075static int mmc_select_hs_ddr(struct mmc_card *card)
1076{
1077 struct mmc_host *host = card->host;
1078 u32 bus_width, ext_csd_bits;
1079 int err = 0;
1080
1081 if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52))
1082 return 0;
1083
1084 bus_width = host->ios.bus_width;
1085 if (bus_width == MMC_BUS_WIDTH_1)
1086 return 0;
1087
1088 ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
1089 EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4;
1090
1091 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1092 EXT_CSD_BUS_WIDTH,
1093 ext_csd_bits,
1094 card->ext_csd.generic_cmd6_time,
1095 MMC_TIMING_MMC_DDR52,
1096 true, true);
1097 if (err) {
1098 pr_err("%s: switch to bus width %d ddr failed\n",
1099 mmc_hostname(host), 1 << bus_width);
1100 return err;
1101 }
1102
1103 /*
1104 * eMMC cards can support 3.3V to 1.2V i/o (vccq)
1105 * signaling.
1106 *
1107 * EXT_CSD_CARD_TYPE_DDR_1_8V means 3.3V or 1.8V vccq.
1108 *
1109 * 1.8V vccq at 3.3V core voltage (vcc) is not required
1110 * in the JEDEC spec for DDR.
1111 *
1112 * Even (e)MMC card can support 3.3v to 1.2v vccq, but not all
1113 * host controller can support this, like some of the SDHCI
1114 * controller which connect to an eMMC device. Some of these
1115 * host controller still needs to use 1.8v vccq for supporting
1116 * DDR mode.
1117 *
1118 * So the sequence will be:
1119 * if (host and device can both support 1.2v IO)
1120 * use 1.2v IO;
1121 * else if (host and device can both support 1.8v IO)
1122 * use 1.8v IO;
1123 * so if host and device can only support 3.3v IO, this is the
1124 * last choice.
1125 *
1126 * WARNING: eMMC rules are NOT the same as SD DDR
1127 */
1128 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_2V) {
1129 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1130 if (!err)
1131 return 0;
1132 }
1133
1134 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_8V &&
1135 host->caps & MMC_CAP_1_8V_DDR)
1136 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1137
1138 /* make sure vccq is 3.3v after switching disaster */
1139 if (err)
1140 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330);
1141
1142 return err;
1143}
1144
1145static int mmc_select_hs400(struct mmc_card *card)
1146{
1147 struct mmc_host *host = card->host;
1148 unsigned int max_dtr;
1149 int err = 0;
1150 u8 val;
1151
1152 /*
1153 * HS400 mode requires 8-bit bus width
1154 */
1155 if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 &&
1156 host->ios.bus_width == MMC_BUS_WIDTH_8))
1157 return 0;
1158
1159 /* Switch card to HS mode */
1160 val = EXT_CSD_TIMING_HS;
1161 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1162 EXT_CSD_HS_TIMING, val,
1163 card->ext_csd.generic_cmd6_time, 0,
1164 false, true);
1165 if (err) {
1166 pr_err("%s: switch to high-speed from hs200 failed, err:%d\n",
1167 mmc_hostname(host), err);
1168 return err;
1169 }
1170
1171 /* Set host controller to HS timing */
1172 mmc_set_timing(card->host, MMC_TIMING_MMC_HS);
1173
1174 /* Prepare host to downgrade to HS timing */
1175 if (host->ops->hs400_downgrade)
1176 host->ops->hs400_downgrade(host);
1177
1178 /* Reduce frequency to HS frequency */
1179 max_dtr = card->ext_csd.hs_max_dtr;
1180 mmc_set_clock(host, max_dtr);
1181
1182 err = mmc_switch_status(card, true);
1183 if (err)
1184 goto out_err;
1185
1186 if (host->ops->hs400_prepare_ddr)
1187 host->ops->hs400_prepare_ddr(host);
1188
1189 /* Switch card to DDR */
1190 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1191 EXT_CSD_BUS_WIDTH,
1192 EXT_CSD_DDR_BUS_WIDTH_8,
1193 card->ext_csd.generic_cmd6_time);
1194 if (err) {
1195 pr_err("%s: switch to bus width for hs400 failed, err:%d\n",
1196 mmc_hostname(host), err);
1197 return err;
1198 }
1199
1200 /* Switch card to HS400 */
1201 val = EXT_CSD_TIMING_HS400 |
1202 card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1203 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1204 EXT_CSD_HS_TIMING, val,
1205 card->ext_csd.generic_cmd6_time, 0,
1206 false, true);
1207 if (err) {
1208 pr_err("%s: switch to hs400 failed, err:%d\n",
1209 mmc_hostname(host), err);
1210 return err;
1211 }
1212
1213 /* Set host controller to HS400 timing and frequency */
1214 mmc_set_timing(host, MMC_TIMING_MMC_HS400);
1215 mmc_set_bus_speed(card);
1216
1217 if (host->ops->hs400_complete)
1218 host->ops->hs400_complete(host);
1219
1220 err = mmc_switch_status(card, true);
1221 if (err)
1222 goto out_err;
1223
1224 return 0;
1225
1226out_err:
1227 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1228 __func__, err);
1229 return err;
1230}
1231
1232int mmc_hs200_to_hs400(struct mmc_card *card)
1233{
1234 return mmc_select_hs400(card);
1235}
1236
1237int mmc_hs400_to_hs200(struct mmc_card *card)
1238{
1239 struct mmc_host *host = card->host;
1240 unsigned int max_dtr;
1241 int err;
1242 u8 val;
1243
1244 /* Reduce frequency to HS */
1245 max_dtr = card->ext_csd.hs_max_dtr;
1246 mmc_set_clock(host, max_dtr);
1247
1248 /* Switch HS400 to HS DDR */
1249 val = EXT_CSD_TIMING_HS;
1250 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING,
1251 val, card->ext_csd.generic_cmd6_time, 0,
1252 false, true);
1253 if (err)
1254 goto out_err;
1255
1256 mmc_set_timing(host, MMC_TIMING_MMC_DDR52);
1257
1258 err = mmc_switch_status(card, true);
1259 if (err)
1260 goto out_err;
1261
1262 /* Switch HS DDR to HS */
1263 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BUS_WIDTH,
1264 EXT_CSD_BUS_WIDTH_8, card->ext_csd.generic_cmd6_time,
1265 0, false, true);
1266 if (err)
1267 goto out_err;
1268
1269 mmc_set_timing(host, MMC_TIMING_MMC_HS);
1270
1271 if (host->ops->hs400_downgrade)
1272 host->ops->hs400_downgrade(host);
1273
1274 err = mmc_switch_status(card, true);
1275 if (err)
1276 goto out_err;
1277
1278 /* Switch HS to HS200 */
1279 val = EXT_CSD_TIMING_HS200 |
1280 card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1281 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING,
1282 val, card->ext_csd.generic_cmd6_time, 0,
1283 false, true);
1284 if (err)
1285 goto out_err;
1286
1287 mmc_set_timing(host, MMC_TIMING_MMC_HS200);
1288
1289 /*
1290 * For HS200, CRC errors are not a reliable way to know the switch
1291 * failed. If there really is a problem, we would expect tuning will
1292 * fail and the result ends up the same.
1293 */
1294 err = mmc_switch_status(card, false);
1295 if (err)
1296 goto out_err;
1297
1298 mmc_set_bus_speed(card);
1299
1300 /* Prepare tuning for HS400 mode. */
1301 if (host->ops->prepare_hs400_tuning)
1302 host->ops->prepare_hs400_tuning(host, &host->ios);
1303
1304 return 0;
1305
1306out_err:
1307 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1308 __func__, err);
1309 return err;
1310}
1311
1312static void mmc_select_driver_type(struct mmc_card *card)
1313{
1314 int card_drv_type, drive_strength, drv_type = 0;
1315 int fixed_drv_type = card->host->fixed_drv_type;
1316
1317 card_drv_type = card->ext_csd.raw_driver_strength |
1318 mmc_driver_type_mask(0);
1319
1320 if (fixed_drv_type >= 0)
1321 drive_strength = card_drv_type & mmc_driver_type_mask(fixed_drv_type)
1322 ? fixed_drv_type : 0;
1323 else
1324 drive_strength = mmc_select_drive_strength(card,
1325 card->ext_csd.hs200_max_dtr,
1326 card_drv_type, &drv_type);
1327
1328 card->drive_strength = drive_strength;
1329
1330 if (drv_type)
1331 mmc_set_driver_type(card->host, drv_type);
1332}
1333
1334static int mmc_select_hs400es(struct mmc_card *card)
1335{
1336 struct mmc_host *host = card->host;
1337 int err = -EINVAL;
1338 u8 val;
1339
1340 if (!(host->caps & MMC_CAP_8_BIT_DATA)) {
1341 err = -ENOTSUPP;
1342 goto out_err;
1343 }
1344
1345 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400_1_2V)
1346 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1347
1348 if (err && card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400_1_8V)
1349 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1350
1351 /* If fails try again during next card power cycle */
1352 if (err)
1353 goto out_err;
1354
1355 err = mmc_select_bus_width(card);
1356 if (err != MMC_BUS_WIDTH_8) {
1357 pr_err("%s: switch to 8bit bus width failed, err:%d\n",
1358 mmc_hostname(host), err);
1359 err = err < 0 ? err : -ENOTSUPP;
1360 goto out_err;
1361 }
1362
1363 /* Switch card to HS mode */
1364 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1365 EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS,
1366 card->ext_csd.generic_cmd6_time, 0,
1367 false, true);
1368 if (err) {
1369 pr_err("%s: switch to hs for hs400es failed, err:%d\n",
1370 mmc_hostname(host), err);
1371 goto out_err;
1372 }
1373
1374 mmc_set_timing(host, MMC_TIMING_MMC_HS);
1375 err = mmc_switch_status(card, true);
1376 if (err)
1377 goto out_err;
1378
1379 mmc_set_clock(host, card->ext_csd.hs_max_dtr);
1380
1381 /* Switch card to DDR with strobe bit */
1382 val = EXT_CSD_DDR_BUS_WIDTH_8 | EXT_CSD_BUS_WIDTH_STROBE;
1383 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1384 EXT_CSD_BUS_WIDTH,
1385 val,
1386 card->ext_csd.generic_cmd6_time);
1387 if (err) {
1388 pr_err("%s: switch to bus width for hs400es failed, err:%d\n",
1389 mmc_hostname(host), err);
1390 goto out_err;
1391 }
1392
1393 mmc_select_driver_type(card);
1394
1395 /* Switch card to HS400 */
1396 val = EXT_CSD_TIMING_HS400 |
1397 card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1398 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1399 EXT_CSD_HS_TIMING, val,
1400 card->ext_csd.generic_cmd6_time, 0,
1401 false, true);
1402 if (err) {
1403 pr_err("%s: switch to hs400es failed, err:%d\n",
1404 mmc_hostname(host), err);
1405 goto out_err;
1406 }
1407
1408 /* Set host controller to HS400 timing and frequency */
1409 mmc_set_timing(host, MMC_TIMING_MMC_HS400);
1410
1411 /* Controller enable enhanced strobe function */
1412 host->ios.enhanced_strobe = true;
1413 if (host->ops->hs400_enhanced_strobe)
1414 host->ops->hs400_enhanced_strobe(host, &host->ios);
1415
1416 err = mmc_switch_status(card, true);
1417 if (err)
1418 goto out_err;
1419
1420 return 0;
1421
1422out_err:
1423 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1424 __func__, err);
1425 return err;
1426}
1427
1428/*
1429 * For device supporting HS200 mode, the following sequence
1430 * should be done before executing the tuning process.
1431 * 1. set the desired bus width(4-bit or 8-bit, 1-bit is not supported)
1432 * 2. switch to HS200 mode
1433 * 3. set the clock to > 52Mhz and <=200MHz
1434 */
1435static int mmc_select_hs200(struct mmc_card *card)
1436{
1437 struct mmc_host *host = card->host;
1438 unsigned int old_timing, old_signal_voltage;
1439 int err = -EINVAL;
1440 u8 val;
1441
1442 old_signal_voltage = host->ios.signal_voltage;
1443 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_2V)
1444 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1445
1446 if (err && card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_8V)
1447 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1448
1449 /* If fails try again during next card power cycle */
1450 if (err)
1451 return err;
1452
1453 mmc_select_driver_type(card);
1454
1455 /*
1456 * Set the bus width(4 or 8) with host's support and
1457 * switch to HS200 mode if bus width is set successfully.
1458 */
1459 err = mmc_select_bus_width(card);
1460 if (err > 0) {
1461 val = EXT_CSD_TIMING_HS200 |
1462 card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1463 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1464 EXT_CSD_HS_TIMING, val,
1465 card->ext_csd.generic_cmd6_time, 0,
1466 false, true);
1467 if (err)
1468 goto err;
1469 old_timing = host->ios.timing;
1470 mmc_set_timing(host, MMC_TIMING_MMC_HS200);
1471
1472 /*
1473 * For HS200, CRC errors are not a reliable way to know the
1474 * switch failed. If there really is a problem, we would expect
1475 * tuning will fail and the result ends up the same.
1476 */
1477 err = mmc_switch_status(card, false);
1478
1479 /*
1480 * mmc_select_timing() assumes timing has not changed if
1481 * it is a switch error.
1482 */
1483 if (err == -EBADMSG)
1484 mmc_set_timing(host, old_timing);
1485 }
1486err:
1487 if (err) {
1488 /* fall back to the old signal voltage, if fails report error */
1489 if (mmc_set_signal_voltage(host, old_signal_voltage))
1490 err = -EIO;
1491
1492 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1493 __func__, err);
1494 }
1495 return err;
1496}
1497
1498/*
1499 * Activate High Speed, HS200 or HS400ES mode if supported.
1500 */
1501static int mmc_select_timing(struct mmc_card *card)
1502{
1503 int err = 0;
1504
1505 if (!mmc_can_ext_csd(card))
1506 goto bus_speed;
1507
1508 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400ES)
1509 err = mmc_select_hs400es(card);
1510 else if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200)
1511 err = mmc_select_hs200(card);
1512 else if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS)
1513 err = mmc_select_hs(card);
1514
1515 if (err && err != -EBADMSG)
1516 return err;
1517
1518bus_speed:
1519 /*
1520 * Set the bus speed to the selected bus timing.
1521 * If timing is not selected, backward compatible is the default.
1522 */
1523 mmc_set_bus_speed(card);
1524 return 0;
1525}
1526
1527/*
1528 * Execute tuning sequence to seek the proper bus operating
1529 * conditions for HS200 and HS400, which sends CMD21 to the device.
1530 */
1531static int mmc_hs200_tuning(struct mmc_card *card)
1532{
1533 struct mmc_host *host = card->host;
1534
1535 /*
1536 * Timing should be adjusted to the HS400 target
1537 * operation frequency for tuning process
1538 */
1539 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 &&
1540 host->ios.bus_width == MMC_BUS_WIDTH_8)
1541 if (host->ops->prepare_hs400_tuning)
1542 host->ops->prepare_hs400_tuning(host, &host->ios);
1543
1544 return mmc_execute_tuning(card);
1545}
1546
1547/*
1548 * Handle the detection and initialisation of a card.
1549 *
1550 * In the case of a resume, "oldcard" will contain the card
1551 * we're trying to reinitialise.
1552 */
1553static int mmc_init_card(struct mmc_host *host, u32 ocr,
1554 struct mmc_card *oldcard)
1555{
1556 struct mmc_card *card;
1557 int err;
1558 u32 cid[4];
1559 u32 rocr;
1560
1561 WARN_ON(!host->claimed);
1562
1563 /* Set correct bus mode for MMC before attempting init */
1564 if (!mmc_host_is_spi(host))
1565 mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN);
1566
1567 /*
1568 * Since we're changing the OCR value, we seem to
1569 * need to tell some cards to go back to the idle
1570 * state. We wait 1ms to give cards time to
1571 * respond.
1572 * mmc_go_idle is needed for eMMC that are asleep
1573 */
1574 mmc_go_idle(host);
1575
1576 /* The extra bit indicates that we support high capacity */
1577 err = mmc_send_op_cond(host, ocr | (1 << 30), &rocr);
1578 if (err)
1579 goto err;
1580
1581 /*
1582 * For SPI, enable CRC as appropriate.
1583 */
1584 if (mmc_host_is_spi(host)) {
1585 err = mmc_spi_set_crc(host, use_spi_crc);
1586 if (err)
1587 goto err;
1588 }
1589
1590 /*
1591 * Fetch CID from card.
1592 */
1593 err = mmc_send_cid(host, cid);
1594 if (err)
1595 goto err;
1596
1597 if (oldcard) {
1598 if (memcmp(cid, oldcard->raw_cid, sizeof(cid)) != 0) {
1599 pr_debug("%s: Perhaps the card was replaced\n",
1600 mmc_hostname(host));
1601 err = -ENOENT;
1602 goto err;
1603 }
1604
1605 card = oldcard;
1606 } else {
1607 /*
1608 * Allocate card structure.
1609 */
1610 card = mmc_alloc_card(host, &mmc_type);
1611 if (IS_ERR(card)) {
1612 err = PTR_ERR(card);
1613 goto err;
1614 }
1615
1616 card->ocr = ocr;
1617 card->type = MMC_TYPE_MMC;
1618 card->rca = 1;
1619 memcpy(card->raw_cid, cid, sizeof(card->raw_cid));
1620 }
1621
1622 /*
1623 * Call the optional HC's init_card function to handle quirks.
1624 */
1625 if (host->ops->init_card)
1626 host->ops->init_card(host, card);
1627
1628 /*
1629 * For native busses: set card RCA and quit open drain mode.
1630 */
1631 if (!mmc_host_is_spi(host)) {
1632 err = mmc_set_relative_addr(card);
1633 if (err)
1634 goto free_card;
1635
1636 mmc_set_bus_mode(host, MMC_BUSMODE_PUSHPULL);
1637 }
1638
1639 if (!oldcard) {
1640 /*
1641 * Fetch CSD from card.
1642 */
1643 err = mmc_send_csd(card, card->raw_csd);
1644 if (err)
1645 goto free_card;
1646
1647 err = mmc_decode_csd(card);
1648 if (err)
1649 goto free_card;
1650 err = mmc_decode_cid(card);
1651 if (err)
1652 goto free_card;
1653 }
1654
1655 /*
1656 * handling only for cards supporting DSR and hosts requesting
1657 * DSR configuration
1658 */
1659 if (card->csd.dsr_imp && host->dsr_req)
1660 mmc_set_dsr(host);
1661
1662 /*
1663 * Select card, as all following commands rely on that.
1664 */
1665 if (!mmc_host_is_spi(host)) {
1666 err = mmc_select_card(card);
1667 if (err)
1668 goto free_card;
1669 }
1670
1671 if (!oldcard) {
1672 /* Read extended CSD. */
1673 err = mmc_read_ext_csd(card);
1674 if (err)
1675 goto free_card;
1676
1677 /*
1678 * If doing byte addressing, check if required to do sector
1679 * addressing. Handle the case of <2GB cards needing sector
1680 * addressing. See section 8.1 JEDEC Standard JED84-A441;
1681 * ocr register has bit 30 set for sector addressing.
1682 */
1683 if (rocr & BIT(30))
1684 mmc_card_set_blockaddr(card);
1685
1686 /* Erase size depends on CSD and Extended CSD */
1687 mmc_set_erase_size(card);
1688 }
1689
1690 /* Enable ERASE_GRP_DEF. This bit is lost after a reset or power off. */
1691 if (card->ext_csd.rev >= 3) {
1692 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1693 EXT_CSD_ERASE_GROUP_DEF, 1,
1694 card->ext_csd.generic_cmd6_time);
1695
1696 if (err && err != -EBADMSG)
1697 goto free_card;
1698
1699 if (err) {
1700 err = 0;
1701 /*
1702 * Just disable enhanced area off & sz
1703 * will try to enable ERASE_GROUP_DEF
1704 * during next time reinit
1705 */
1706 card->ext_csd.enhanced_area_offset = -EINVAL;
1707 card->ext_csd.enhanced_area_size = -EINVAL;
1708 } else {
1709 card->ext_csd.erase_group_def = 1;
1710 /*
1711 * enable ERASE_GRP_DEF successfully.
1712 * This will affect the erase size, so
1713 * here need to reset erase size
1714 */
1715 mmc_set_erase_size(card);
1716 }
1717 }
1718
1719 /*
1720 * Ensure eMMC user default partition is enabled
1721 */
1722 if (card->ext_csd.part_config & EXT_CSD_PART_CONFIG_ACC_MASK) {
1723 card->ext_csd.part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
1724 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_PART_CONFIG,
1725 card->ext_csd.part_config,
1726 card->ext_csd.part_time);
1727 if (err && err != -EBADMSG)
1728 goto free_card;
1729 }
1730
1731 /*
1732 * Enable power_off_notification byte in the ext_csd register
1733 */
1734 if (card->ext_csd.rev >= 6) {
1735 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1736 EXT_CSD_POWER_OFF_NOTIFICATION,
1737 EXT_CSD_POWER_ON,
1738 card->ext_csd.generic_cmd6_time);
1739 if (err && err != -EBADMSG)
1740 goto free_card;
1741
1742 /*
1743 * The err can be -EBADMSG or 0,
1744 * so check for success and update the flag
1745 */
1746 if (!err)
1747 card->ext_csd.power_off_notification = EXT_CSD_POWER_ON;
1748 }
1749
1750 /* set erase_arg */
1751 if (mmc_can_discard(card))
1752 card->erase_arg = MMC_DISCARD_ARG;
1753 else if (mmc_can_trim(card))
1754 card->erase_arg = MMC_TRIM_ARG;
1755 else
1756 card->erase_arg = MMC_ERASE_ARG;
1757
1758 /*
1759 * Select timing interface
1760 */
1761 err = mmc_select_timing(card);
1762 if (err)
1763 goto free_card;
1764
1765 if (mmc_card_hs200(card)) {
1766 err = mmc_hs200_tuning(card);
1767 if (err)
1768 goto free_card;
1769
1770 err = mmc_select_hs400(card);
1771 if (err)
1772 goto free_card;
1773 } else if (!mmc_card_hs400es(card)) {
1774 /* Select the desired bus width optionally */
1775 err = mmc_select_bus_width(card);
1776 if (err > 0 && mmc_card_hs(card)) {
1777 err = mmc_select_hs_ddr(card);
1778 if (err)
1779 goto free_card;
1780 }
1781 }
1782
1783 /*
1784 * Choose the power class with selected bus interface
1785 */
1786 mmc_select_powerclass(card);
1787
1788 /*
1789 * Enable HPI feature (if supported)
1790 */
1791 if (card->ext_csd.hpi) {
1792 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1793 EXT_CSD_HPI_MGMT, 1,
1794 card->ext_csd.generic_cmd6_time);
1795 if (err && err != -EBADMSG)
1796 goto free_card;
1797 if (err) {
1798 pr_warn("%s: Enabling HPI failed\n",
1799 mmc_hostname(card->host));
1800 card->ext_csd.hpi_en = 0;
1801 err = 0;
1802 } else {
1803 card->ext_csd.hpi_en = 1;
1804 }
1805 }
1806
1807 /*
1808 * If cache size is higher than 0, this indicates the existence of cache
1809 * and it can be turned on. Note that some eMMCs from Micron has been
1810 * reported to need ~800 ms timeout, while enabling the cache after
1811 * sudden power failure tests. Let's extend the timeout to a minimum of
1812 * DEFAULT_CACHE_EN_TIMEOUT_MS and do it for all cards.
1813 */
1814 if (card->ext_csd.cache_size > 0) {
1815 unsigned int timeout_ms = MIN_CACHE_EN_TIMEOUT_MS;
1816
1817 timeout_ms = max(card->ext_csd.generic_cmd6_time, timeout_ms);
1818 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1819 EXT_CSD_CACHE_CTRL, 1, timeout_ms);
1820 if (err && err != -EBADMSG)
1821 goto free_card;
1822
1823 /*
1824 * Only if no error, cache is turned on successfully.
1825 */
1826 if (err) {
1827 pr_warn("%s: Cache is supported, but failed to turn on (%d)\n",
1828 mmc_hostname(card->host), err);
1829 card->ext_csd.cache_ctrl = 0;
1830 err = 0;
1831 } else {
1832 card->ext_csd.cache_ctrl = 1;
1833 }
1834 }
1835
1836 /*
1837 * Enable Command Queue if supported. Note that Packed Commands cannot
1838 * be used with Command Queue.
1839 */
1840 card->ext_csd.cmdq_en = false;
1841 if (card->ext_csd.cmdq_support && host->caps2 & MMC_CAP2_CQE) {
1842 err = mmc_cmdq_enable(card);
1843 if (err && err != -EBADMSG)
1844 goto free_card;
1845 if (err) {
1846 pr_warn("%s: Enabling CMDQ failed\n",
1847 mmc_hostname(card->host));
1848 card->ext_csd.cmdq_support = false;
1849 card->ext_csd.cmdq_depth = 0;
1850 err = 0;
1851 }
1852 }
1853 /*
1854 * In some cases (e.g. RPMB or mmc_test), the Command Queue must be
1855 * disabled for a time, so a flag is needed to indicate to re-enable the
1856 * Command Queue.
1857 */
1858 card->reenable_cmdq = card->ext_csd.cmdq_en;
1859
1860 if (host->cqe_ops && !host->cqe_enabled) {
1861 err = host->cqe_ops->cqe_enable(host, card);
1862 if (!err) {
1863 host->cqe_enabled = true;
1864
1865 if (card->ext_csd.cmdq_en) {
1866 pr_info("%s: Command Queue Engine enabled\n",
1867 mmc_hostname(host));
1868 } else {
1869 host->hsq_enabled = true;
1870 pr_info("%s: Host Software Queue enabled\n",
1871 mmc_hostname(host));
1872 }
1873 }
1874 }
1875
1876 if (host->caps2 & MMC_CAP2_AVOID_3_3V &&
1877 host->ios.signal_voltage == MMC_SIGNAL_VOLTAGE_330) {
1878 pr_err("%s: Host failed to negotiate down from 3.3V\n",
1879 mmc_hostname(host));
1880 err = -EINVAL;
1881 goto free_card;
1882 }
1883
1884 if (!oldcard)
1885 host->card = card;
1886
1887 return 0;
1888
1889free_card:
1890 if (!oldcard)
1891 mmc_remove_card(card);
1892err:
1893 return err;
1894}
1895
1896static int mmc_can_sleep(struct mmc_card *card)
1897{
1898 return (card && card->ext_csd.rev >= 3);
1899}
1900
1901static int mmc_sleep(struct mmc_host *host)
1902{
1903 struct mmc_command cmd = {};
1904 struct mmc_card *card = host->card;
1905 unsigned int timeout_ms = DIV_ROUND_UP(card->ext_csd.sa_timeout, 10000);
1906 int err;
1907
1908 /* Re-tuning can't be done once the card is deselected */
1909 mmc_retune_hold(host);
1910
1911 err = mmc_deselect_cards(host);
1912 if (err)
1913 goto out_release;
1914
1915 cmd.opcode = MMC_SLEEP_AWAKE;
1916 cmd.arg = card->rca << 16;
1917 cmd.arg |= 1 << 15;
1918
1919 /*
1920 * If the max_busy_timeout of the host is specified, validate it against
1921 * the sleep cmd timeout. A failure means we need to prevent the host
1922 * from doing hw busy detection, which is done by converting to a R1
1923 * response instead of a R1B. Note, some hosts requires R1B, which also
1924 * means they are on their own when it comes to deal with the busy
1925 * timeout.
1926 */
1927 if (!(host->caps & MMC_CAP_NEED_RSP_BUSY) && host->max_busy_timeout &&
1928 (timeout_ms > host->max_busy_timeout)) {
1929 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1930 } else {
1931 cmd.flags = MMC_RSP_R1B | MMC_CMD_AC;
1932 cmd.busy_timeout = timeout_ms;
1933 }
1934
1935 err = mmc_wait_for_cmd(host, &cmd, 0);
1936 if (err)
1937 goto out_release;
1938
1939 /*
1940 * If the host does not wait while the card signals busy, then we will
1941 * will have to wait the sleep/awake timeout. Note, we cannot use the
1942 * SEND_STATUS command to poll the status because that command (and most
1943 * others) is invalid while the card sleeps.
1944 */
1945 if (!cmd.busy_timeout || !(host->caps & MMC_CAP_WAIT_WHILE_BUSY))
1946 mmc_delay(timeout_ms);
1947
1948out_release:
1949 mmc_retune_release(host);
1950 return err;
1951}
1952
1953static int mmc_can_poweroff_notify(const struct mmc_card *card)
1954{
1955 return card &&
1956 mmc_card_mmc(card) &&
1957 (card->ext_csd.power_off_notification == EXT_CSD_POWER_ON);
1958}
1959
1960static int mmc_poweroff_notify(struct mmc_card *card, unsigned int notify_type)
1961{
1962 unsigned int timeout = card->ext_csd.generic_cmd6_time;
1963 int err;
1964
1965 /* Use EXT_CSD_POWER_OFF_SHORT as default notification type. */
1966 if (notify_type == EXT_CSD_POWER_OFF_LONG)
1967 timeout = card->ext_csd.power_off_longtime;
1968
1969 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1970 EXT_CSD_POWER_OFF_NOTIFICATION,
1971 notify_type, timeout, 0, false, false);
1972 if (err)
1973 pr_err("%s: Power Off Notification timed out, %u\n",
1974 mmc_hostname(card->host), timeout);
1975
1976 /* Disable the power off notification after the switch operation. */
1977 card->ext_csd.power_off_notification = EXT_CSD_NO_POWER_NOTIFICATION;
1978
1979 return err;
1980}
1981
1982/*
1983 * Host is being removed. Free up the current card.
1984 */
1985static void mmc_remove(struct mmc_host *host)
1986{
1987 mmc_remove_card(host->card);
1988 host->card = NULL;
1989}
1990
1991/*
1992 * Card detection - card is alive.
1993 */
1994static int mmc_alive(struct mmc_host *host)
1995{
1996 return mmc_send_status(host->card, NULL);
1997}
1998
1999/*
2000 * Card detection callback from host.
2001 */
2002static void mmc_detect(struct mmc_host *host)
2003{
2004 int err;
2005
2006 mmc_get_card(host->card, NULL);
2007
2008 /*
2009 * Just check if our card has been removed.
2010 */
2011 err = _mmc_detect_card_removed(host);
2012
2013 mmc_put_card(host->card, NULL);
2014
2015 if (err) {
2016 mmc_remove(host);
2017
2018 mmc_claim_host(host);
2019 mmc_detach_bus(host);
2020 mmc_power_off(host);
2021 mmc_release_host(host);
2022 }
2023}
2024
2025static int _mmc_suspend(struct mmc_host *host, bool is_suspend)
2026{
2027 int err = 0;
2028 unsigned int notify_type = is_suspend ? EXT_CSD_POWER_OFF_SHORT :
2029 EXT_CSD_POWER_OFF_LONG;
2030
2031 mmc_claim_host(host);
2032
2033 if (mmc_card_suspended(host->card))
2034 goto out;
2035
2036 err = mmc_flush_cache(host->card);
2037 if (err)
2038 goto out;
2039
2040 if (mmc_can_poweroff_notify(host->card) &&
2041 ((host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) || !is_suspend ||
2042 (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE_IN_SUSPEND)))
2043 err = mmc_poweroff_notify(host->card, notify_type);
2044 else if (mmc_can_sleep(host->card))
2045 err = mmc_sleep(host);
2046 else if (!mmc_host_is_spi(host))
2047 err = mmc_deselect_cards(host);
2048
2049 if (!err) {
2050 mmc_power_off(host);
2051 mmc_card_set_suspended(host->card);
2052 }
2053out:
2054 mmc_release_host(host);
2055 return err;
2056}
2057
2058/*
2059 * Suspend callback
2060 */
2061static int mmc_suspend(struct mmc_host *host)
2062{
2063 int err;
2064
2065 err = _mmc_suspend(host, true);
2066 if (!err) {
2067 pm_runtime_disable(&host->card->dev);
2068 pm_runtime_set_suspended(&host->card->dev);
2069 }
2070
2071 return err;
2072}
2073
2074/*
2075 * This function tries to determine if the same card is still present
2076 * and, if so, restore all state to it.
2077 */
2078static int _mmc_resume(struct mmc_host *host)
2079{
2080 int err = 0;
2081
2082 mmc_claim_host(host);
2083
2084 if (!mmc_card_suspended(host->card))
2085 goto out;
2086
2087 mmc_power_up(host, host->card->ocr);
2088 err = mmc_init_card(host, host->card->ocr, host->card);
2089 mmc_card_clr_suspended(host->card);
2090
2091out:
2092 mmc_release_host(host);
2093 return err;
2094}
2095
2096/*
2097 * Shutdown callback
2098 */
2099static int mmc_shutdown(struct mmc_host *host)
2100{
2101 int err = 0;
2102
2103 /*
2104 * In a specific case for poweroff notify, we need to resume the card
2105 * before we can shutdown it properly.
2106 */
2107 if (mmc_can_poweroff_notify(host->card) &&
2108 !(host->caps2 & MMC_CAP2_FULL_PWR_CYCLE))
2109 err = _mmc_resume(host);
2110
2111 if (!err)
2112 err = _mmc_suspend(host, false);
2113
2114 return err;
2115}
2116
2117/*
2118 * Callback for resume.
2119 */
2120static int mmc_resume(struct mmc_host *host)
2121{
2122 pm_runtime_enable(&host->card->dev);
2123 return 0;
2124}
2125
2126/*
2127 * Callback for runtime_suspend.
2128 */
2129static int mmc_runtime_suspend(struct mmc_host *host)
2130{
2131 int err;
2132
2133 if (!(host->caps & MMC_CAP_AGGRESSIVE_PM))
2134 return 0;
2135
2136 err = _mmc_suspend(host, true);
2137 if (err)
2138 pr_err("%s: error %d doing aggressive suspend\n",
2139 mmc_hostname(host), err);
2140
2141 return err;
2142}
2143
2144/*
2145 * Callback for runtime_resume.
2146 */
2147static int mmc_runtime_resume(struct mmc_host *host)
2148{
2149 int err;
2150
2151 err = _mmc_resume(host);
2152 if (err && err != -ENOMEDIUM)
2153 pr_err("%s: error %d doing runtime resume\n",
2154 mmc_hostname(host), err);
2155
2156 return 0;
2157}
2158
2159static int mmc_can_reset(struct mmc_card *card)
2160{
2161 u8 rst_n_function;
2162
2163 rst_n_function = card->ext_csd.rst_n_function;
2164 if ((rst_n_function & EXT_CSD_RST_N_EN_MASK) != EXT_CSD_RST_N_ENABLED)
2165 return 0;
2166 return 1;
2167}
2168
2169static int _mmc_hw_reset(struct mmc_host *host)
2170{
2171 struct mmc_card *card = host->card;
2172
2173 /*
2174 * In the case of recovery, we can't expect flushing the cache to work
2175 * always, but we have a go and ignore errors.
2176 */
2177 mmc_flush_cache(host->card);
2178
2179 if ((host->caps & MMC_CAP_HW_RESET) && host->ops->hw_reset &&
2180 mmc_can_reset(card)) {
2181 /* If the card accept RST_n signal, send it. */
2182 mmc_set_clock(host, host->f_init);
2183 host->ops->hw_reset(host);
2184 /* Set initial state and call mmc_set_ios */
2185 mmc_set_initial_state(host);
2186 } else {
2187 /* Do a brute force power cycle */
2188 mmc_power_cycle(host, card->ocr);
2189 mmc_pwrseq_reset(host);
2190 }
2191 return mmc_init_card(host, card->ocr, card);
2192}
2193
2194static const struct mmc_bus_ops mmc_ops = {
2195 .remove = mmc_remove,
2196 .detect = mmc_detect,
2197 .suspend = mmc_suspend,
2198 .resume = mmc_resume,
2199 .runtime_suspend = mmc_runtime_suspend,
2200 .runtime_resume = mmc_runtime_resume,
2201 .alive = mmc_alive,
2202 .shutdown = mmc_shutdown,
2203 .hw_reset = _mmc_hw_reset,
2204};
2205
2206/*
2207 * Starting point for MMC card init.
2208 */
2209int mmc_attach_mmc(struct mmc_host *host)
2210{
2211 int err;
2212 u32 ocr, rocr;
2213
2214 WARN_ON(!host->claimed);
2215
2216 /* Set correct bus mode for MMC before attempting attach */
2217 if (!mmc_host_is_spi(host))
2218 mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN);
2219
2220 err = mmc_send_op_cond(host, 0, &ocr);
2221 if (err)
2222 return err;
2223
2224 mmc_attach_bus(host, &mmc_ops);
2225 if (host->ocr_avail_mmc)
2226 host->ocr_avail = host->ocr_avail_mmc;
2227
2228 /*
2229 * We need to get OCR a different way for SPI.
2230 */
2231 if (mmc_host_is_spi(host)) {
2232 err = mmc_spi_read_ocr(host, 1, &ocr);
2233 if (err)
2234 goto err;
2235 }
2236
2237 rocr = mmc_select_voltage(host, ocr);
2238
2239 /*
2240 * Can we support the voltage of the card?
2241 */
2242 if (!rocr) {
2243 err = -EINVAL;
2244 goto err;
2245 }
2246
2247 /*
2248 * Detect and init the card.
2249 */
2250 err = mmc_init_card(host, rocr, NULL);
2251 if (err)
2252 goto err;
2253
2254 mmc_release_host(host);
2255 err = mmc_add_card(host->card);
2256 if (err)
2257 goto remove_card;
2258
2259 mmc_claim_host(host);
2260 return 0;
2261
2262remove_card:
2263 mmc_remove_card(host->card);
2264 mmc_claim_host(host);
2265 host->card = NULL;
2266err:
2267 mmc_detach_bus(host);
2268
2269 pr_err("%s: error %d whilst initialising MMC card\n",
2270 mmc_hostname(host), err);
2271
2272 return err;
2273}
1/*
2 * linux/drivers/mmc/core/mmc.c
3 *
4 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
5 * Copyright (C) 2005-2007 Pierre Ossman, All Rights Reserved.
6 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13#include <linux/err.h>
14#include <linux/of.h>
15#include <linux/slab.h>
16#include <linux/stat.h>
17#include <linux/pm_runtime.h>
18
19#include <linux/mmc/host.h>
20#include <linux/mmc/card.h>
21#include <linux/mmc/mmc.h>
22
23#include "core.h"
24#include "host.h"
25#include "bus.h"
26#include "mmc_ops.h"
27#include "sd_ops.h"
28
29#define DEFAULT_CMD6_TIMEOUT_MS 500
30
31static const unsigned int tran_exp[] = {
32 10000, 100000, 1000000, 10000000,
33 0, 0, 0, 0
34};
35
36static const unsigned char tran_mant[] = {
37 0, 10, 12, 13, 15, 20, 25, 30,
38 35, 40, 45, 50, 55, 60, 70, 80,
39};
40
41static const unsigned int tacc_exp[] = {
42 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000,
43};
44
45static const unsigned int tacc_mant[] = {
46 0, 10, 12, 13, 15, 20, 25, 30,
47 35, 40, 45, 50, 55, 60, 70, 80,
48};
49
50static const struct mmc_fixup mmc_ext_csd_fixups[] = {
51 /*
52 * Certain Hynix eMMC 4.41 cards might get broken when HPI feature
53 * is used so disable the HPI feature for such buggy cards.
54 */
55 MMC_FIXUP_EXT_CSD_REV(CID_NAME_ANY, CID_MANFID_HYNIX,
56 0x014a, add_quirk, MMC_QUIRK_BROKEN_HPI, 5),
57
58 END_FIXUP
59};
60
61#define UNSTUFF_BITS(resp,start,size) \
62 ({ \
63 const int __size = size; \
64 const u32 __mask = (__size < 32 ? 1 << __size : 0) - 1; \
65 const int __off = 3 - ((start) / 32); \
66 const int __shft = (start) & 31; \
67 u32 __res; \
68 \
69 __res = resp[__off] >> __shft; \
70 if (__size + __shft > 32) \
71 __res |= resp[__off-1] << ((32 - __shft) % 32); \
72 __res & __mask; \
73 })
74
75/*
76 * Given the decoded CSD structure, decode the raw CID to our CID structure.
77 */
78static int mmc_decode_cid(struct mmc_card *card)
79{
80 u32 *resp = card->raw_cid;
81
82 /*
83 * The selection of the format here is based upon published
84 * specs from sandisk and from what people have reported.
85 */
86 switch (card->csd.mmca_vsn) {
87 case 0: /* MMC v1.0 - v1.2 */
88 case 1: /* MMC v1.4 */
89 card->cid.manfid = UNSTUFF_BITS(resp, 104, 24);
90 card->cid.prod_name[0] = UNSTUFF_BITS(resp, 96, 8);
91 card->cid.prod_name[1] = UNSTUFF_BITS(resp, 88, 8);
92 card->cid.prod_name[2] = UNSTUFF_BITS(resp, 80, 8);
93 card->cid.prod_name[3] = UNSTUFF_BITS(resp, 72, 8);
94 card->cid.prod_name[4] = UNSTUFF_BITS(resp, 64, 8);
95 card->cid.prod_name[5] = UNSTUFF_BITS(resp, 56, 8);
96 card->cid.prod_name[6] = UNSTUFF_BITS(resp, 48, 8);
97 card->cid.hwrev = UNSTUFF_BITS(resp, 44, 4);
98 card->cid.fwrev = UNSTUFF_BITS(resp, 40, 4);
99 card->cid.serial = UNSTUFF_BITS(resp, 16, 24);
100 card->cid.month = UNSTUFF_BITS(resp, 12, 4);
101 card->cid.year = UNSTUFF_BITS(resp, 8, 4) + 1997;
102 break;
103
104 case 2: /* MMC v2.0 - v2.2 */
105 case 3: /* MMC v3.1 - v3.3 */
106 case 4: /* MMC v4 */
107 card->cid.manfid = UNSTUFF_BITS(resp, 120, 8);
108 card->cid.oemid = UNSTUFF_BITS(resp, 104, 16);
109 card->cid.prod_name[0] = UNSTUFF_BITS(resp, 96, 8);
110 card->cid.prod_name[1] = UNSTUFF_BITS(resp, 88, 8);
111 card->cid.prod_name[2] = UNSTUFF_BITS(resp, 80, 8);
112 card->cid.prod_name[3] = UNSTUFF_BITS(resp, 72, 8);
113 card->cid.prod_name[4] = UNSTUFF_BITS(resp, 64, 8);
114 card->cid.prod_name[5] = UNSTUFF_BITS(resp, 56, 8);
115 card->cid.prv = UNSTUFF_BITS(resp, 48, 8);
116 card->cid.serial = UNSTUFF_BITS(resp, 16, 32);
117 card->cid.month = UNSTUFF_BITS(resp, 12, 4);
118 card->cid.year = UNSTUFF_BITS(resp, 8, 4) + 1997;
119 break;
120
121 default:
122 pr_err("%s: card has unknown MMCA version %d\n",
123 mmc_hostname(card->host), card->csd.mmca_vsn);
124 return -EINVAL;
125 }
126
127 return 0;
128}
129
130static void mmc_set_erase_size(struct mmc_card *card)
131{
132 if (card->ext_csd.erase_group_def & 1)
133 card->erase_size = card->ext_csd.hc_erase_size;
134 else
135 card->erase_size = card->csd.erase_size;
136
137 mmc_init_erase(card);
138}
139
140/*
141 * Given a 128-bit response, decode to our card CSD structure.
142 */
143static int mmc_decode_csd(struct mmc_card *card)
144{
145 struct mmc_csd *csd = &card->csd;
146 unsigned int e, m, a, b;
147 u32 *resp = card->raw_csd;
148
149 /*
150 * We only understand CSD structure v1.1 and v1.2.
151 * v1.2 has extra information in bits 15, 11 and 10.
152 * We also support eMMC v4.4 & v4.41.
153 */
154 csd->structure = UNSTUFF_BITS(resp, 126, 2);
155 if (csd->structure == 0) {
156 pr_err("%s: unrecognised CSD structure version %d\n",
157 mmc_hostname(card->host), csd->structure);
158 return -EINVAL;
159 }
160
161 csd->mmca_vsn = UNSTUFF_BITS(resp, 122, 4);
162 m = UNSTUFF_BITS(resp, 115, 4);
163 e = UNSTUFF_BITS(resp, 112, 3);
164 csd->tacc_ns = (tacc_exp[e] * tacc_mant[m] + 9) / 10;
165 csd->tacc_clks = UNSTUFF_BITS(resp, 104, 8) * 100;
166
167 m = UNSTUFF_BITS(resp, 99, 4);
168 e = UNSTUFF_BITS(resp, 96, 3);
169 csd->max_dtr = tran_exp[e] * tran_mant[m];
170 csd->cmdclass = UNSTUFF_BITS(resp, 84, 12);
171
172 e = UNSTUFF_BITS(resp, 47, 3);
173 m = UNSTUFF_BITS(resp, 62, 12);
174 csd->capacity = (1 + m) << (e + 2);
175
176 csd->read_blkbits = UNSTUFF_BITS(resp, 80, 4);
177 csd->read_partial = UNSTUFF_BITS(resp, 79, 1);
178 csd->write_misalign = UNSTUFF_BITS(resp, 78, 1);
179 csd->read_misalign = UNSTUFF_BITS(resp, 77, 1);
180 csd->dsr_imp = UNSTUFF_BITS(resp, 76, 1);
181 csd->r2w_factor = UNSTUFF_BITS(resp, 26, 3);
182 csd->write_blkbits = UNSTUFF_BITS(resp, 22, 4);
183 csd->write_partial = UNSTUFF_BITS(resp, 21, 1);
184
185 if (csd->write_blkbits >= 9) {
186 a = UNSTUFF_BITS(resp, 42, 5);
187 b = UNSTUFF_BITS(resp, 37, 5);
188 csd->erase_size = (a + 1) * (b + 1);
189 csd->erase_size <<= csd->write_blkbits - 9;
190 }
191
192 return 0;
193}
194
195static void mmc_select_card_type(struct mmc_card *card)
196{
197 struct mmc_host *host = card->host;
198 u8 card_type = card->ext_csd.raw_card_type;
199 u32 caps = host->caps, caps2 = host->caps2;
200 unsigned int hs_max_dtr = 0, hs200_max_dtr = 0;
201 unsigned int avail_type = 0;
202
203 if (caps & MMC_CAP_MMC_HIGHSPEED &&
204 card_type & EXT_CSD_CARD_TYPE_HS_26) {
205 hs_max_dtr = MMC_HIGH_26_MAX_DTR;
206 avail_type |= EXT_CSD_CARD_TYPE_HS_26;
207 }
208
209 if (caps & MMC_CAP_MMC_HIGHSPEED &&
210 card_type & EXT_CSD_CARD_TYPE_HS_52) {
211 hs_max_dtr = MMC_HIGH_52_MAX_DTR;
212 avail_type |= EXT_CSD_CARD_TYPE_HS_52;
213 }
214
215 if (caps & MMC_CAP_1_8V_DDR &&
216 card_type & EXT_CSD_CARD_TYPE_DDR_1_8V) {
217 hs_max_dtr = MMC_HIGH_DDR_MAX_DTR;
218 avail_type |= EXT_CSD_CARD_TYPE_DDR_1_8V;
219 }
220
221 if (caps & MMC_CAP_1_2V_DDR &&
222 card_type & EXT_CSD_CARD_TYPE_DDR_1_2V) {
223 hs_max_dtr = MMC_HIGH_DDR_MAX_DTR;
224 avail_type |= EXT_CSD_CARD_TYPE_DDR_1_2V;
225 }
226
227 if (caps2 & MMC_CAP2_HS200_1_8V_SDR &&
228 card_type & EXT_CSD_CARD_TYPE_HS200_1_8V) {
229 hs200_max_dtr = MMC_HS200_MAX_DTR;
230 avail_type |= EXT_CSD_CARD_TYPE_HS200_1_8V;
231 }
232
233 if (caps2 & MMC_CAP2_HS200_1_2V_SDR &&
234 card_type & EXT_CSD_CARD_TYPE_HS200_1_2V) {
235 hs200_max_dtr = MMC_HS200_MAX_DTR;
236 avail_type |= EXT_CSD_CARD_TYPE_HS200_1_2V;
237 }
238
239 if (caps2 & MMC_CAP2_HS400_1_8V &&
240 card_type & EXT_CSD_CARD_TYPE_HS400_1_8V) {
241 hs200_max_dtr = MMC_HS200_MAX_DTR;
242 avail_type |= EXT_CSD_CARD_TYPE_HS400_1_8V;
243 }
244
245 if (caps2 & MMC_CAP2_HS400_1_2V &&
246 card_type & EXT_CSD_CARD_TYPE_HS400_1_2V) {
247 hs200_max_dtr = MMC_HS200_MAX_DTR;
248 avail_type |= EXT_CSD_CARD_TYPE_HS400_1_2V;
249 }
250
251 if ((caps2 & MMC_CAP2_HS400_ES) &&
252 card->ext_csd.strobe_support &&
253 (avail_type & EXT_CSD_CARD_TYPE_HS400))
254 avail_type |= EXT_CSD_CARD_TYPE_HS400ES;
255
256 card->ext_csd.hs_max_dtr = hs_max_dtr;
257 card->ext_csd.hs200_max_dtr = hs200_max_dtr;
258 card->mmc_avail_type = avail_type;
259}
260
261static void mmc_manage_enhanced_area(struct mmc_card *card, u8 *ext_csd)
262{
263 u8 hc_erase_grp_sz, hc_wp_grp_sz;
264
265 /*
266 * Disable these attributes by default
267 */
268 card->ext_csd.enhanced_area_offset = -EINVAL;
269 card->ext_csd.enhanced_area_size = -EINVAL;
270
271 /*
272 * Enhanced area feature support -- check whether the eMMC
273 * card has the Enhanced area enabled. If so, export enhanced
274 * area offset and size to user by adding sysfs interface.
275 */
276 if ((ext_csd[EXT_CSD_PARTITION_SUPPORT] & 0x2) &&
277 (ext_csd[EXT_CSD_PARTITION_ATTRIBUTE] & 0x1)) {
278 if (card->ext_csd.partition_setting_completed) {
279 hc_erase_grp_sz =
280 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
281 hc_wp_grp_sz =
282 ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
283
284 /*
285 * calculate the enhanced data area offset, in bytes
286 */
287 card->ext_csd.enhanced_area_offset =
288 (((unsigned long long)ext_csd[139]) << 24) +
289 (((unsigned long long)ext_csd[138]) << 16) +
290 (((unsigned long long)ext_csd[137]) << 8) +
291 (((unsigned long long)ext_csd[136]));
292 if (mmc_card_blockaddr(card))
293 card->ext_csd.enhanced_area_offset <<= 9;
294 /*
295 * calculate the enhanced data area size, in kilobytes
296 */
297 card->ext_csd.enhanced_area_size =
298 (ext_csd[142] << 16) + (ext_csd[141] << 8) +
299 ext_csd[140];
300 card->ext_csd.enhanced_area_size *=
301 (size_t)(hc_erase_grp_sz * hc_wp_grp_sz);
302 card->ext_csd.enhanced_area_size <<= 9;
303 } else {
304 pr_warn("%s: defines enhanced area without partition setting complete\n",
305 mmc_hostname(card->host));
306 }
307 }
308}
309
310static void mmc_manage_gp_partitions(struct mmc_card *card, u8 *ext_csd)
311{
312 int idx;
313 u8 hc_erase_grp_sz, hc_wp_grp_sz;
314 unsigned int part_size;
315
316 /*
317 * General purpose partition feature support --
318 * If ext_csd has the size of general purpose partitions,
319 * set size, part_cfg, partition name in mmc_part.
320 */
321 if (ext_csd[EXT_CSD_PARTITION_SUPPORT] &
322 EXT_CSD_PART_SUPPORT_PART_EN) {
323 hc_erase_grp_sz =
324 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
325 hc_wp_grp_sz =
326 ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
327
328 for (idx = 0; idx < MMC_NUM_GP_PARTITION; idx++) {
329 if (!ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3] &&
330 !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1] &&
331 !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2])
332 continue;
333 if (card->ext_csd.partition_setting_completed == 0) {
334 pr_warn("%s: has partition size defined without partition complete\n",
335 mmc_hostname(card->host));
336 break;
337 }
338 part_size =
339 (ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2]
340 << 16) +
341 (ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1]
342 << 8) +
343 ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3];
344 part_size *= (size_t)(hc_erase_grp_sz *
345 hc_wp_grp_sz);
346 mmc_part_add(card, part_size << 19,
347 EXT_CSD_PART_CONFIG_ACC_GP0 + idx,
348 "gp%d", idx, false,
349 MMC_BLK_DATA_AREA_GP);
350 }
351 }
352}
353
354/* Minimum partition switch timeout in milliseconds */
355#define MMC_MIN_PART_SWITCH_TIME 300
356
357/*
358 * Decode extended CSD.
359 */
360static int mmc_decode_ext_csd(struct mmc_card *card, u8 *ext_csd)
361{
362 int err = 0, idx;
363 unsigned int part_size;
364 struct device_node *np;
365 bool broken_hpi = false;
366
367 /* Version is coded in the CSD_STRUCTURE byte in the EXT_CSD register */
368 card->ext_csd.raw_ext_csd_structure = ext_csd[EXT_CSD_STRUCTURE];
369 if (card->csd.structure == 3) {
370 if (card->ext_csd.raw_ext_csd_structure > 2) {
371 pr_err("%s: unrecognised EXT_CSD structure "
372 "version %d\n", mmc_hostname(card->host),
373 card->ext_csd.raw_ext_csd_structure);
374 err = -EINVAL;
375 goto out;
376 }
377 }
378
379 np = mmc_of_find_child_device(card->host, 0);
380 if (np && of_device_is_compatible(np, "mmc-card"))
381 broken_hpi = of_property_read_bool(np, "broken-hpi");
382 of_node_put(np);
383
384 /*
385 * The EXT_CSD format is meant to be forward compatible. As long
386 * as CSD_STRUCTURE does not change, all values for EXT_CSD_REV
387 * are authorized, see JEDEC JESD84-B50 section B.8.
388 */
389 card->ext_csd.rev = ext_csd[EXT_CSD_REV];
390
391 /* fixup device after ext_csd revision field is updated */
392 mmc_fixup_device(card, mmc_ext_csd_fixups);
393
394 card->ext_csd.raw_sectors[0] = ext_csd[EXT_CSD_SEC_CNT + 0];
395 card->ext_csd.raw_sectors[1] = ext_csd[EXT_CSD_SEC_CNT + 1];
396 card->ext_csd.raw_sectors[2] = ext_csd[EXT_CSD_SEC_CNT + 2];
397 card->ext_csd.raw_sectors[3] = ext_csd[EXT_CSD_SEC_CNT + 3];
398 if (card->ext_csd.rev >= 2) {
399 card->ext_csd.sectors =
400 ext_csd[EXT_CSD_SEC_CNT + 0] << 0 |
401 ext_csd[EXT_CSD_SEC_CNT + 1] << 8 |
402 ext_csd[EXT_CSD_SEC_CNT + 2] << 16 |
403 ext_csd[EXT_CSD_SEC_CNT + 3] << 24;
404
405 /* Cards with density > 2GiB are sector addressed */
406 if (card->ext_csd.sectors > (2u * 1024 * 1024 * 1024) / 512)
407 mmc_card_set_blockaddr(card);
408 }
409
410 card->ext_csd.strobe_support = ext_csd[EXT_CSD_STROBE_SUPPORT];
411 card->ext_csd.raw_card_type = ext_csd[EXT_CSD_CARD_TYPE];
412 mmc_select_card_type(card);
413
414 card->ext_csd.raw_s_a_timeout = ext_csd[EXT_CSD_S_A_TIMEOUT];
415 card->ext_csd.raw_erase_timeout_mult =
416 ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT];
417 card->ext_csd.raw_hc_erase_grp_size =
418 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
419 if (card->ext_csd.rev >= 3) {
420 u8 sa_shift = ext_csd[EXT_CSD_S_A_TIMEOUT];
421 card->ext_csd.part_config = ext_csd[EXT_CSD_PART_CONFIG];
422
423 /* EXT_CSD value is in units of 10ms, but we store in ms */
424 card->ext_csd.part_time = 10 * ext_csd[EXT_CSD_PART_SWITCH_TIME];
425 /* Some eMMC set the value too low so set a minimum */
426 if (card->ext_csd.part_time &&
427 card->ext_csd.part_time < MMC_MIN_PART_SWITCH_TIME)
428 card->ext_csd.part_time = MMC_MIN_PART_SWITCH_TIME;
429
430 /* Sleep / awake timeout in 100ns units */
431 if (sa_shift > 0 && sa_shift <= 0x17)
432 card->ext_csd.sa_timeout =
433 1 << ext_csd[EXT_CSD_S_A_TIMEOUT];
434 card->ext_csd.erase_group_def =
435 ext_csd[EXT_CSD_ERASE_GROUP_DEF];
436 card->ext_csd.hc_erase_timeout = 300 *
437 ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT];
438 card->ext_csd.hc_erase_size =
439 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE] << 10;
440
441 card->ext_csd.rel_sectors = ext_csd[EXT_CSD_REL_WR_SEC_C];
442
443 /*
444 * There are two boot regions of equal size, defined in
445 * multiples of 128K.
446 */
447 if (ext_csd[EXT_CSD_BOOT_MULT] && mmc_boot_partition_access(card->host)) {
448 for (idx = 0; idx < MMC_NUM_BOOT_PARTITION; idx++) {
449 part_size = ext_csd[EXT_CSD_BOOT_MULT] << 17;
450 mmc_part_add(card, part_size,
451 EXT_CSD_PART_CONFIG_ACC_BOOT0 + idx,
452 "boot%d", idx, true,
453 MMC_BLK_DATA_AREA_BOOT);
454 }
455 }
456 }
457
458 card->ext_csd.raw_hc_erase_gap_size =
459 ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
460 card->ext_csd.raw_sec_trim_mult =
461 ext_csd[EXT_CSD_SEC_TRIM_MULT];
462 card->ext_csd.raw_sec_erase_mult =
463 ext_csd[EXT_CSD_SEC_ERASE_MULT];
464 card->ext_csd.raw_sec_feature_support =
465 ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT];
466 card->ext_csd.raw_trim_mult =
467 ext_csd[EXT_CSD_TRIM_MULT];
468 card->ext_csd.raw_partition_support = ext_csd[EXT_CSD_PARTITION_SUPPORT];
469 card->ext_csd.raw_driver_strength = ext_csd[EXT_CSD_DRIVER_STRENGTH];
470 if (card->ext_csd.rev >= 4) {
471 if (ext_csd[EXT_CSD_PARTITION_SETTING_COMPLETED] &
472 EXT_CSD_PART_SETTING_COMPLETED)
473 card->ext_csd.partition_setting_completed = 1;
474 else
475 card->ext_csd.partition_setting_completed = 0;
476
477 mmc_manage_enhanced_area(card, ext_csd);
478
479 mmc_manage_gp_partitions(card, ext_csd);
480
481 card->ext_csd.sec_trim_mult =
482 ext_csd[EXT_CSD_SEC_TRIM_MULT];
483 card->ext_csd.sec_erase_mult =
484 ext_csd[EXT_CSD_SEC_ERASE_MULT];
485 card->ext_csd.sec_feature_support =
486 ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT];
487 card->ext_csd.trim_timeout = 300 *
488 ext_csd[EXT_CSD_TRIM_MULT];
489
490 /*
491 * Note that the call to mmc_part_add above defaults to read
492 * only. If this default assumption is changed, the call must
493 * take into account the value of boot_locked below.
494 */
495 card->ext_csd.boot_ro_lock = ext_csd[EXT_CSD_BOOT_WP];
496 card->ext_csd.boot_ro_lockable = true;
497
498 /* Save power class values */
499 card->ext_csd.raw_pwr_cl_52_195 =
500 ext_csd[EXT_CSD_PWR_CL_52_195];
501 card->ext_csd.raw_pwr_cl_26_195 =
502 ext_csd[EXT_CSD_PWR_CL_26_195];
503 card->ext_csd.raw_pwr_cl_52_360 =
504 ext_csd[EXT_CSD_PWR_CL_52_360];
505 card->ext_csd.raw_pwr_cl_26_360 =
506 ext_csd[EXT_CSD_PWR_CL_26_360];
507 card->ext_csd.raw_pwr_cl_200_195 =
508 ext_csd[EXT_CSD_PWR_CL_200_195];
509 card->ext_csd.raw_pwr_cl_200_360 =
510 ext_csd[EXT_CSD_PWR_CL_200_360];
511 card->ext_csd.raw_pwr_cl_ddr_52_195 =
512 ext_csd[EXT_CSD_PWR_CL_DDR_52_195];
513 card->ext_csd.raw_pwr_cl_ddr_52_360 =
514 ext_csd[EXT_CSD_PWR_CL_DDR_52_360];
515 card->ext_csd.raw_pwr_cl_ddr_200_360 =
516 ext_csd[EXT_CSD_PWR_CL_DDR_200_360];
517 }
518
519 if (card->ext_csd.rev >= 5) {
520 /* Adjust production date as per JEDEC JESD84-B451 */
521 if (card->cid.year < 2010)
522 card->cid.year += 16;
523
524 /* check whether the eMMC card supports BKOPS */
525 if (!mmc_card_broken_hpi(card) &&
526 ext_csd[EXT_CSD_BKOPS_SUPPORT] & 0x1) {
527 card->ext_csd.bkops = 1;
528 card->ext_csd.man_bkops_en =
529 (ext_csd[EXT_CSD_BKOPS_EN] &
530 EXT_CSD_MANUAL_BKOPS_MASK);
531 card->ext_csd.raw_bkops_status =
532 ext_csd[EXT_CSD_BKOPS_STATUS];
533 if (!card->ext_csd.man_bkops_en)
534 pr_debug("%s: MAN_BKOPS_EN bit is not set\n",
535 mmc_hostname(card->host));
536 }
537
538 /* check whether the eMMC card supports HPI */
539 if (!mmc_card_broken_hpi(card) &&
540 !broken_hpi && (ext_csd[EXT_CSD_HPI_FEATURES] & 0x1)) {
541 card->ext_csd.hpi = 1;
542 if (ext_csd[EXT_CSD_HPI_FEATURES] & 0x2)
543 card->ext_csd.hpi_cmd = MMC_STOP_TRANSMISSION;
544 else
545 card->ext_csd.hpi_cmd = MMC_SEND_STATUS;
546 /*
547 * Indicate the maximum timeout to close
548 * a command interrupted by HPI
549 */
550 card->ext_csd.out_of_int_time =
551 ext_csd[EXT_CSD_OUT_OF_INTERRUPT_TIME] * 10;
552 }
553
554 card->ext_csd.rel_param = ext_csd[EXT_CSD_WR_REL_PARAM];
555 card->ext_csd.rst_n_function = ext_csd[EXT_CSD_RST_N_FUNCTION];
556
557 /*
558 * RPMB regions are defined in multiples of 128K.
559 */
560 card->ext_csd.raw_rpmb_size_mult = ext_csd[EXT_CSD_RPMB_MULT];
561 if (ext_csd[EXT_CSD_RPMB_MULT] && mmc_host_cmd23(card->host)) {
562 mmc_part_add(card, ext_csd[EXT_CSD_RPMB_MULT] << 17,
563 EXT_CSD_PART_CONFIG_ACC_RPMB,
564 "rpmb", 0, false,
565 MMC_BLK_DATA_AREA_RPMB);
566 }
567 }
568
569 card->ext_csd.raw_erased_mem_count = ext_csd[EXT_CSD_ERASED_MEM_CONT];
570 if (ext_csd[EXT_CSD_ERASED_MEM_CONT])
571 card->erased_byte = 0xFF;
572 else
573 card->erased_byte = 0x0;
574
575 /* eMMC v4.5 or later */
576 card->ext_csd.generic_cmd6_time = DEFAULT_CMD6_TIMEOUT_MS;
577 if (card->ext_csd.rev >= 6) {
578 card->ext_csd.feature_support |= MMC_DISCARD_FEATURE;
579
580 card->ext_csd.generic_cmd6_time = 10 *
581 ext_csd[EXT_CSD_GENERIC_CMD6_TIME];
582 card->ext_csd.power_off_longtime = 10 *
583 ext_csd[EXT_CSD_POWER_OFF_LONG_TIME];
584
585 card->ext_csd.cache_size =
586 ext_csd[EXT_CSD_CACHE_SIZE + 0] << 0 |
587 ext_csd[EXT_CSD_CACHE_SIZE + 1] << 8 |
588 ext_csd[EXT_CSD_CACHE_SIZE + 2] << 16 |
589 ext_csd[EXT_CSD_CACHE_SIZE + 3] << 24;
590
591 if (ext_csd[EXT_CSD_DATA_SECTOR_SIZE] == 1)
592 card->ext_csd.data_sector_size = 4096;
593 else
594 card->ext_csd.data_sector_size = 512;
595
596 if ((ext_csd[EXT_CSD_DATA_TAG_SUPPORT] & 1) &&
597 (ext_csd[EXT_CSD_TAG_UNIT_SIZE] <= 8)) {
598 card->ext_csd.data_tag_unit_size =
599 ((unsigned int) 1 << ext_csd[EXT_CSD_TAG_UNIT_SIZE]) *
600 (card->ext_csd.data_sector_size);
601 } else {
602 card->ext_csd.data_tag_unit_size = 0;
603 }
604
605 card->ext_csd.max_packed_writes =
606 ext_csd[EXT_CSD_MAX_PACKED_WRITES];
607 card->ext_csd.max_packed_reads =
608 ext_csd[EXT_CSD_MAX_PACKED_READS];
609 } else {
610 card->ext_csd.data_sector_size = 512;
611 }
612
613 /* eMMC v5 or later */
614 if (card->ext_csd.rev >= 7) {
615 memcpy(card->ext_csd.fwrev, &ext_csd[EXT_CSD_FIRMWARE_VERSION],
616 MMC_FIRMWARE_LEN);
617 card->ext_csd.ffu_capable =
618 (ext_csd[EXT_CSD_SUPPORTED_MODE] & 0x1) &&
619 !(ext_csd[EXT_CSD_FW_CONFIG] & 0x1);
620 }
621
622 /* eMMC v5.1 or later */
623 if (card->ext_csd.rev >= 8) {
624 card->ext_csd.cmdq_support = ext_csd[EXT_CSD_CMDQ_SUPPORT] &
625 EXT_CSD_CMDQ_SUPPORTED;
626 card->ext_csd.cmdq_depth = (ext_csd[EXT_CSD_CMDQ_DEPTH] &
627 EXT_CSD_CMDQ_DEPTH_MASK) + 1;
628 /* Exclude inefficiently small queue depths */
629 if (card->ext_csd.cmdq_depth <= 2) {
630 card->ext_csd.cmdq_support = false;
631 card->ext_csd.cmdq_depth = 0;
632 }
633 if (card->ext_csd.cmdq_support) {
634 pr_debug("%s: Command Queue supported depth %u\n",
635 mmc_hostname(card->host),
636 card->ext_csd.cmdq_depth);
637 }
638 }
639out:
640 return err;
641}
642
643static int mmc_read_ext_csd(struct mmc_card *card)
644{
645 u8 *ext_csd;
646 int err;
647
648 if (!mmc_can_ext_csd(card))
649 return 0;
650
651 err = mmc_get_ext_csd(card, &ext_csd);
652 if (err) {
653 /* If the host or the card can't do the switch,
654 * fail more gracefully. */
655 if ((err != -EINVAL)
656 && (err != -ENOSYS)
657 && (err != -EFAULT))
658 return err;
659
660 /*
661 * High capacity cards should have this "magic" size
662 * stored in their CSD.
663 */
664 if (card->csd.capacity == (4096 * 512)) {
665 pr_err("%s: unable to read EXT_CSD on a possible high capacity card. Card will be ignored.\n",
666 mmc_hostname(card->host));
667 } else {
668 pr_warn("%s: unable to read EXT_CSD, performance might suffer\n",
669 mmc_hostname(card->host));
670 err = 0;
671 }
672
673 return err;
674 }
675
676 err = mmc_decode_ext_csd(card, ext_csd);
677 kfree(ext_csd);
678 return err;
679}
680
681static int mmc_compare_ext_csds(struct mmc_card *card, unsigned bus_width)
682{
683 u8 *bw_ext_csd;
684 int err;
685
686 if (bus_width == MMC_BUS_WIDTH_1)
687 return 0;
688
689 err = mmc_get_ext_csd(card, &bw_ext_csd);
690 if (err)
691 return err;
692
693 /* only compare read only fields */
694 err = !((card->ext_csd.raw_partition_support ==
695 bw_ext_csd[EXT_CSD_PARTITION_SUPPORT]) &&
696 (card->ext_csd.raw_erased_mem_count ==
697 bw_ext_csd[EXT_CSD_ERASED_MEM_CONT]) &&
698 (card->ext_csd.rev ==
699 bw_ext_csd[EXT_CSD_REV]) &&
700 (card->ext_csd.raw_ext_csd_structure ==
701 bw_ext_csd[EXT_CSD_STRUCTURE]) &&
702 (card->ext_csd.raw_card_type ==
703 bw_ext_csd[EXT_CSD_CARD_TYPE]) &&
704 (card->ext_csd.raw_s_a_timeout ==
705 bw_ext_csd[EXT_CSD_S_A_TIMEOUT]) &&
706 (card->ext_csd.raw_hc_erase_gap_size ==
707 bw_ext_csd[EXT_CSD_HC_WP_GRP_SIZE]) &&
708 (card->ext_csd.raw_erase_timeout_mult ==
709 bw_ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT]) &&
710 (card->ext_csd.raw_hc_erase_grp_size ==
711 bw_ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]) &&
712 (card->ext_csd.raw_sec_trim_mult ==
713 bw_ext_csd[EXT_CSD_SEC_TRIM_MULT]) &&
714 (card->ext_csd.raw_sec_erase_mult ==
715 bw_ext_csd[EXT_CSD_SEC_ERASE_MULT]) &&
716 (card->ext_csd.raw_sec_feature_support ==
717 bw_ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT]) &&
718 (card->ext_csd.raw_trim_mult ==
719 bw_ext_csd[EXT_CSD_TRIM_MULT]) &&
720 (card->ext_csd.raw_sectors[0] ==
721 bw_ext_csd[EXT_CSD_SEC_CNT + 0]) &&
722 (card->ext_csd.raw_sectors[1] ==
723 bw_ext_csd[EXT_CSD_SEC_CNT + 1]) &&
724 (card->ext_csd.raw_sectors[2] ==
725 bw_ext_csd[EXT_CSD_SEC_CNT + 2]) &&
726 (card->ext_csd.raw_sectors[3] ==
727 bw_ext_csd[EXT_CSD_SEC_CNT + 3]) &&
728 (card->ext_csd.raw_pwr_cl_52_195 ==
729 bw_ext_csd[EXT_CSD_PWR_CL_52_195]) &&
730 (card->ext_csd.raw_pwr_cl_26_195 ==
731 bw_ext_csd[EXT_CSD_PWR_CL_26_195]) &&
732 (card->ext_csd.raw_pwr_cl_52_360 ==
733 bw_ext_csd[EXT_CSD_PWR_CL_52_360]) &&
734 (card->ext_csd.raw_pwr_cl_26_360 ==
735 bw_ext_csd[EXT_CSD_PWR_CL_26_360]) &&
736 (card->ext_csd.raw_pwr_cl_200_195 ==
737 bw_ext_csd[EXT_CSD_PWR_CL_200_195]) &&
738 (card->ext_csd.raw_pwr_cl_200_360 ==
739 bw_ext_csd[EXT_CSD_PWR_CL_200_360]) &&
740 (card->ext_csd.raw_pwr_cl_ddr_52_195 ==
741 bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_195]) &&
742 (card->ext_csd.raw_pwr_cl_ddr_52_360 ==
743 bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_360]) &&
744 (card->ext_csd.raw_pwr_cl_ddr_200_360 ==
745 bw_ext_csd[EXT_CSD_PWR_CL_DDR_200_360]));
746
747 if (err)
748 err = -EINVAL;
749
750 kfree(bw_ext_csd);
751 return err;
752}
753
754MMC_DEV_ATTR(cid, "%08x%08x%08x%08x\n", card->raw_cid[0], card->raw_cid[1],
755 card->raw_cid[2], card->raw_cid[3]);
756MMC_DEV_ATTR(csd, "%08x%08x%08x%08x\n", card->raw_csd[0], card->raw_csd[1],
757 card->raw_csd[2], card->raw_csd[3]);
758MMC_DEV_ATTR(date, "%02d/%04d\n", card->cid.month, card->cid.year);
759MMC_DEV_ATTR(erase_size, "%u\n", card->erase_size << 9);
760MMC_DEV_ATTR(preferred_erase_size, "%u\n", card->pref_erase << 9);
761MMC_DEV_ATTR(ffu_capable, "%d\n", card->ext_csd.ffu_capable);
762MMC_DEV_ATTR(hwrev, "0x%x\n", card->cid.hwrev);
763MMC_DEV_ATTR(manfid, "0x%06x\n", card->cid.manfid);
764MMC_DEV_ATTR(name, "%s\n", card->cid.prod_name);
765MMC_DEV_ATTR(oemid, "0x%04x\n", card->cid.oemid);
766MMC_DEV_ATTR(prv, "0x%x\n", card->cid.prv);
767MMC_DEV_ATTR(serial, "0x%08x\n", card->cid.serial);
768MMC_DEV_ATTR(enhanced_area_offset, "%llu\n",
769 card->ext_csd.enhanced_area_offset);
770MMC_DEV_ATTR(enhanced_area_size, "%u\n", card->ext_csd.enhanced_area_size);
771MMC_DEV_ATTR(raw_rpmb_size_mult, "%#x\n", card->ext_csd.raw_rpmb_size_mult);
772MMC_DEV_ATTR(rel_sectors, "%#x\n", card->ext_csd.rel_sectors);
773MMC_DEV_ATTR(ocr, "%08x\n", card->ocr);
774
775static ssize_t mmc_fwrev_show(struct device *dev,
776 struct device_attribute *attr,
777 char *buf)
778{
779 struct mmc_card *card = mmc_dev_to_card(dev);
780
781 if (card->ext_csd.rev < 7) {
782 return sprintf(buf, "0x%x\n", card->cid.fwrev);
783 } else {
784 return sprintf(buf, "0x%*phN\n", MMC_FIRMWARE_LEN,
785 card->ext_csd.fwrev);
786 }
787}
788
789static DEVICE_ATTR(fwrev, S_IRUGO, mmc_fwrev_show, NULL);
790
791static ssize_t mmc_dsr_show(struct device *dev,
792 struct device_attribute *attr,
793 char *buf)
794{
795 struct mmc_card *card = mmc_dev_to_card(dev);
796 struct mmc_host *host = card->host;
797
798 if (card->csd.dsr_imp && host->dsr_req)
799 return sprintf(buf, "0x%x\n", host->dsr);
800 else
801 /* return default DSR value */
802 return sprintf(buf, "0x%x\n", 0x404);
803}
804
805static DEVICE_ATTR(dsr, S_IRUGO, mmc_dsr_show, NULL);
806
807static struct attribute *mmc_std_attrs[] = {
808 &dev_attr_cid.attr,
809 &dev_attr_csd.attr,
810 &dev_attr_date.attr,
811 &dev_attr_erase_size.attr,
812 &dev_attr_preferred_erase_size.attr,
813 &dev_attr_fwrev.attr,
814 &dev_attr_ffu_capable.attr,
815 &dev_attr_hwrev.attr,
816 &dev_attr_manfid.attr,
817 &dev_attr_name.attr,
818 &dev_attr_oemid.attr,
819 &dev_attr_prv.attr,
820 &dev_attr_serial.attr,
821 &dev_attr_enhanced_area_offset.attr,
822 &dev_attr_enhanced_area_size.attr,
823 &dev_attr_raw_rpmb_size_mult.attr,
824 &dev_attr_rel_sectors.attr,
825 &dev_attr_ocr.attr,
826 &dev_attr_dsr.attr,
827 NULL,
828};
829ATTRIBUTE_GROUPS(mmc_std);
830
831static struct device_type mmc_type = {
832 .groups = mmc_std_groups,
833};
834
835/*
836 * Select the PowerClass for the current bus width
837 * If power class is defined for 4/8 bit bus in the
838 * extended CSD register, select it by executing the
839 * mmc_switch command.
840 */
841static int __mmc_select_powerclass(struct mmc_card *card,
842 unsigned int bus_width)
843{
844 struct mmc_host *host = card->host;
845 struct mmc_ext_csd *ext_csd = &card->ext_csd;
846 unsigned int pwrclass_val = 0;
847 int err = 0;
848
849 switch (1 << host->ios.vdd) {
850 case MMC_VDD_165_195:
851 if (host->ios.clock <= MMC_HIGH_26_MAX_DTR)
852 pwrclass_val = ext_csd->raw_pwr_cl_26_195;
853 else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR)
854 pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ?
855 ext_csd->raw_pwr_cl_52_195 :
856 ext_csd->raw_pwr_cl_ddr_52_195;
857 else if (host->ios.clock <= MMC_HS200_MAX_DTR)
858 pwrclass_val = ext_csd->raw_pwr_cl_200_195;
859 break;
860 case MMC_VDD_27_28:
861 case MMC_VDD_28_29:
862 case MMC_VDD_29_30:
863 case MMC_VDD_30_31:
864 case MMC_VDD_31_32:
865 case MMC_VDD_32_33:
866 case MMC_VDD_33_34:
867 case MMC_VDD_34_35:
868 case MMC_VDD_35_36:
869 if (host->ios.clock <= MMC_HIGH_26_MAX_DTR)
870 pwrclass_val = ext_csd->raw_pwr_cl_26_360;
871 else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR)
872 pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ?
873 ext_csd->raw_pwr_cl_52_360 :
874 ext_csd->raw_pwr_cl_ddr_52_360;
875 else if (host->ios.clock <= MMC_HS200_MAX_DTR)
876 pwrclass_val = (bus_width == EXT_CSD_DDR_BUS_WIDTH_8) ?
877 ext_csd->raw_pwr_cl_ddr_200_360 :
878 ext_csd->raw_pwr_cl_200_360;
879 break;
880 default:
881 pr_warn("%s: Voltage range not supported for power class\n",
882 mmc_hostname(host));
883 return -EINVAL;
884 }
885
886 if (bus_width & (EXT_CSD_BUS_WIDTH_8 | EXT_CSD_DDR_BUS_WIDTH_8))
887 pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_8BIT_MASK) >>
888 EXT_CSD_PWR_CL_8BIT_SHIFT;
889 else
890 pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_4BIT_MASK) >>
891 EXT_CSD_PWR_CL_4BIT_SHIFT;
892
893 /* If the power class is different from the default value */
894 if (pwrclass_val > 0) {
895 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
896 EXT_CSD_POWER_CLASS,
897 pwrclass_val,
898 card->ext_csd.generic_cmd6_time);
899 }
900
901 return err;
902}
903
904static int mmc_select_powerclass(struct mmc_card *card)
905{
906 struct mmc_host *host = card->host;
907 u32 bus_width, ext_csd_bits;
908 int err, ddr;
909
910 /* Power class selection is supported for versions >= 4.0 */
911 if (!mmc_can_ext_csd(card))
912 return 0;
913
914 bus_width = host->ios.bus_width;
915 /* Power class values are defined only for 4/8 bit bus */
916 if (bus_width == MMC_BUS_WIDTH_1)
917 return 0;
918
919 ddr = card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52;
920 if (ddr)
921 ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
922 EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4;
923 else
924 ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
925 EXT_CSD_BUS_WIDTH_8 : EXT_CSD_BUS_WIDTH_4;
926
927 err = __mmc_select_powerclass(card, ext_csd_bits);
928 if (err)
929 pr_warn("%s: power class selection to bus width %d ddr %d failed\n",
930 mmc_hostname(host), 1 << bus_width, ddr);
931
932 return err;
933}
934
935/*
936 * Set the bus speed for the selected speed mode.
937 */
938static void mmc_set_bus_speed(struct mmc_card *card)
939{
940 unsigned int max_dtr = (unsigned int)-1;
941
942 if ((mmc_card_hs200(card) || mmc_card_hs400(card)) &&
943 max_dtr > card->ext_csd.hs200_max_dtr)
944 max_dtr = card->ext_csd.hs200_max_dtr;
945 else if (mmc_card_hs(card) && max_dtr > card->ext_csd.hs_max_dtr)
946 max_dtr = card->ext_csd.hs_max_dtr;
947 else if (max_dtr > card->csd.max_dtr)
948 max_dtr = card->csd.max_dtr;
949
950 mmc_set_clock(card->host, max_dtr);
951}
952
953/*
954 * Select the bus width amoung 4-bit and 8-bit(SDR).
955 * If the bus width is changed successfully, return the selected width value.
956 * Zero is returned instead of error value if the wide width is not supported.
957 */
958static int mmc_select_bus_width(struct mmc_card *card)
959{
960 static unsigned ext_csd_bits[] = {
961 EXT_CSD_BUS_WIDTH_8,
962 EXT_CSD_BUS_WIDTH_4,
963 };
964 static unsigned bus_widths[] = {
965 MMC_BUS_WIDTH_8,
966 MMC_BUS_WIDTH_4,
967 };
968 struct mmc_host *host = card->host;
969 unsigned idx, bus_width = 0;
970 int err = 0;
971
972 if (!mmc_can_ext_csd(card) ||
973 !(host->caps & (MMC_CAP_4_BIT_DATA | MMC_CAP_8_BIT_DATA)))
974 return 0;
975
976 idx = (host->caps & MMC_CAP_8_BIT_DATA) ? 0 : 1;
977
978 /*
979 * Unlike SD, MMC cards dont have a configuration register to notify
980 * supported bus width. So bus test command should be run to identify
981 * the supported bus width or compare the ext csd values of current
982 * bus width and ext csd values of 1 bit mode read earlier.
983 */
984 for (; idx < ARRAY_SIZE(bus_widths); idx++) {
985 /*
986 * Host is capable of 8bit transfer, then switch
987 * the device to work in 8bit transfer mode. If the
988 * mmc switch command returns error then switch to
989 * 4bit transfer mode. On success set the corresponding
990 * bus width on the host.
991 */
992 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
993 EXT_CSD_BUS_WIDTH,
994 ext_csd_bits[idx],
995 card->ext_csd.generic_cmd6_time);
996 if (err)
997 continue;
998
999 bus_width = bus_widths[idx];
1000 mmc_set_bus_width(host, bus_width);
1001
1002 /*
1003 * If controller can't handle bus width test,
1004 * compare ext_csd previously read in 1 bit mode
1005 * against ext_csd at new bus width
1006 */
1007 if (!(host->caps & MMC_CAP_BUS_WIDTH_TEST))
1008 err = mmc_compare_ext_csds(card, bus_width);
1009 else
1010 err = mmc_bus_test(card, bus_width);
1011
1012 if (!err) {
1013 err = bus_width;
1014 break;
1015 } else {
1016 pr_warn("%s: switch to bus width %d failed\n",
1017 mmc_hostname(host), 1 << bus_width);
1018 }
1019 }
1020
1021 return err;
1022}
1023
1024/*
1025 * Switch to the high-speed mode
1026 */
1027static int mmc_select_hs(struct mmc_card *card)
1028{
1029 int err;
1030
1031 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1032 EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS,
1033 card->ext_csd.generic_cmd6_time, MMC_TIMING_MMC_HS,
1034 true, true, true);
1035 if (err)
1036 pr_warn("%s: switch to high-speed failed, err:%d\n",
1037 mmc_hostname(card->host), err);
1038
1039 return err;
1040}
1041
1042/*
1043 * Activate wide bus and DDR if supported.
1044 */
1045static int mmc_select_hs_ddr(struct mmc_card *card)
1046{
1047 struct mmc_host *host = card->host;
1048 u32 bus_width, ext_csd_bits;
1049 int err = 0;
1050
1051 if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52))
1052 return 0;
1053
1054 bus_width = host->ios.bus_width;
1055 if (bus_width == MMC_BUS_WIDTH_1)
1056 return 0;
1057
1058 ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
1059 EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4;
1060
1061 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1062 EXT_CSD_BUS_WIDTH,
1063 ext_csd_bits,
1064 card->ext_csd.generic_cmd6_time,
1065 MMC_TIMING_MMC_DDR52,
1066 true, true, true);
1067 if (err) {
1068 pr_err("%s: switch to bus width %d ddr failed\n",
1069 mmc_hostname(host), 1 << bus_width);
1070 return err;
1071 }
1072
1073 /*
1074 * eMMC cards can support 3.3V to 1.2V i/o (vccq)
1075 * signaling.
1076 *
1077 * EXT_CSD_CARD_TYPE_DDR_1_8V means 3.3V or 1.8V vccq.
1078 *
1079 * 1.8V vccq at 3.3V core voltage (vcc) is not required
1080 * in the JEDEC spec for DDR.
1081 *
1082 * Even (e)MMC card can support 3.3v to 1.2v vccq, but not all
1083 * host controller can support this, like some of the SDHCI
1084 * controller which connect to an eMMC device. Some of these
1085 * host controller still needs to use 1.8v vccq for supporting
1086 * DDR mode.
1087 *
1088 * So the sequence will be:
1089 * if (host and device can both support 1.2v IO)
1090 * use 1.2v IO;
1091 * else if (host and device can both support 1.8v IO)
1092 * use 1.8v IO;
1093 * so if host and device can only support 3.3v IO, this is the
1094 * last choice.
1095 *
1096 * WARNING: eMMC rules are NOT the same as SD DDR
1097 */
1098 err = -EINVAL;
1099 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_2V)
1100 err = __mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1101
1102 if (err && (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_8V))
1103 err = __mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1104
1105 /* make sure vccq is 3.3v after switching disaster */
1106 if (err)
1107 err = __mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330);
1108
1109 return err;
1110}
1111
1112static int mmc_select_hs400(struct mmc_card *card)
1113{
1114 struct mmc_host *host = card->host;
1115 unsigned int max_dtr;
1116 int err = 0;
1117 u8 val;
1118
1119 /*
1120 * HS400 mode requires 8-bit bus width
1121 */
1122 if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 &&
1123 host->ios.bus_width == MMC_BUS_WIDTH_8))
1124 return 0;
1125
1126 /* Switch card to HS mode */
1127 val = EXT_CSD_TIMING_HS;
1128 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1129 EXT_CSD_HS_TIMING, val,
1130 card->ext_csd.generic_cmd6_time, 0,
1131 true, false, true);
1132 if (err) {
1133 pr_err("%s: switch to high-speed from hs200 failed, err:%d\n",
1134 mmc_hostname(host), err);
1135 return err;
1136 }
1137
1138 /* Set host controller to HS timing */
1139 mmc_set_timing(card->host, MMC_TIMING_MMC_HS);
1140
1141 /* Reduce frequency to HS frequency */
1142 max_dtr = card->ext_csd.hs_max_dtr;
1143 mmc_set_clock(host, max_dtr);
1144
1145 err = mmc_switch_status(card);
1146 if (err)
1147 goto out_err;
1148
1149 /* Switch card to DDR */
1150 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1151 EXT_CSD_BUS_WIDTH,
1152 EXT_CSD_DDR_BUS_WIDTH_8,
1153 card->ext_csd.generic_cmd6_time);
1154 if (err) {
1155 pr_err("%s: switch to bus width for hs400 failed, err:%d\n",
1156 mmc_hostname(host), err);
1157 return err;
1158 }
1159
1160 /* Switch card to HS400 */
1161 val = EXT_CSD_TIMING_HS400 |
1162 card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1163 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1164 EXT_CSD_HS_TIMING, val,
1165 card->ext_csd.generic_cmd6_time, 0,
1166 true, false, true);
1167 if (err) {
1168 pr_err("%s: switch to hs400 failed, err:%d\n",
1169 mmc_hostname(host), err);
1170 return err;
1171 }
1172
1173 /* Set host controller to HS400 timing and frequency */
1174 mmc_set_timing(host, MMC_TIMING_MMC_HS400);
1175 mmc_set_bus_speed(card);
1176
1177 err = mmc_switch_status(card);
1178 if (err)
1179 goto out_err;
1180
1181 return 0;
1182
1183out_err:
1184 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1185 __func__, err);
1186 return err;
1187}
1188
1189int mmc_hs200_to_hs400(struct mmc_card *card)
1190{
1191 return mmc_select_hs400(card);
1192}
1193
1194int mmc_hs400_to_hs200(struct mmc_card *card)
1195{
1196 struct mmc_host *host = card->host;
1197 unsigned int max_dtr;
1198 int err;
1199 u8 val;
1200
1201 /* Reduce frequency to HS */
1202 max_dtr = card->ext_csd.hs_max_dtr;
1203 mmc_set_clock(host, max_dtr);
1204
1205 /* Switch HS400 to HS DDR */
1206 val = EXT_CSD_TIMING_HS;
1207 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING,
1208 val, card->ext_csd.generic_cmd6_time, 0,
1209 true, false, true);
1210 if (err)
1211 goto out_err;
1212
1213 mmc_set_timing(host, MMC_TIMING_MMC_DDR52);
1214
1215 err = mmc_switch_status(card);
1216 if (err)
1217 goto out_err;
1218
1219 /* Switch HS DDR to HS */
1220 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BUS_WIDTH,
1221 EXT_CSD_BUS_WIDTH_8, card->ext_csd.generic_cmd6_time,
1222 0, true, false, true);
1223 if (err)
1224 goto out_err;
1225
1226 mmc_set_timing(host, MMC_TIMING_MMC_HS);
1227
1228 err = mmc_switch_status(card);
1229 if (err)
1230 goto out_err;
1231
1232 /* Switch HS to HS200 */
1233 val = EXT_CSD_TIMING_HS200 |
1234 card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1235 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING,
1236 val, card->ext_csd.generic_cmd6_time, 0,
1237 true, false, true);
1238 if (err)
1239 goto out_err;
1240
1241 mmc_set_timing(host, MMC_TIMING_MMC_HS200);
1242
1243 /*
1244 * For HS200, CRC errors are not a reliable way to know the switch
1245 * failed. If there really is a problem, we would expect tuning will
1246 * fail and the result ends up the same.
1247 */
1248 err = __mmc_switch_status(card, false);
1249 if (err)
1250 goto out_err;
1251
1252 mmc_set_bus_speed(card);
1253
1254 return 0;
1255
1256out_err:
1257 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1258 __func__, err);
1259 return err;
1260}
1261
1262static int mmc_select_hs400es(struct mmc_card *card)
1263{
1264 struct mmc_host *host = card->host;
1265 int err = 0;
1266 u8 val;
1267
1268 if (!(host->caps & MMC_CAP_8_BIT_DATA)) {
1269 err = -ENOTSUPP;
1270 goto out_err;
1271 }
1272
1273 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400_1_2V)
1274 err = __mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1275
1276 if (err && card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400_1_8V)
1277 err = __mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1278
1279 /* If fails try again during next card power cycle */
1280 if (err)
1281 goto out_err;
1282
1283 err = mmc_select_bus_width(card);
1284 if (err < 0)
1285 goto out_err;
1286
1287 /* Switch card to HS mode */
1288 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1289 EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS,
1290 card->ext_csd.generic_cmd6_time, 0,
1291 true, false, true);
1292 if (err) {
1293 pr_err("%s: switch to hs for hs400es failed, err:%d\n",
1294 mmc_hostname(host), err);
1295 goto out_err;
1296 }
1297
1298 mmc_set_timing(host, MMC_TIMING_MMC_HS);
1299 err = mmc_switch_status(card);
1300 if (err)
1301 goto out_err;
1302
1303 mmc_set_clock(host, card->ext_csd.hs_max_dtr);
1304
1305 /* Switch card to DDR with strobe bit */
1306 val = EXT_CSD_DDR_BUS_WIDTH_8 | EXT_CSD_BUS_WIDTH_STROBE;
1307 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1308 EXT_CSD_BUS_WIDTH,
1309 val,
1310 card->ext_csd.generic_cmd6_time);
1311 if (err) {
1312 pr_err("%s: switch to bus width for hs400es failed, err:%d\n",
1313 mmc_hostname(host), err);
1314 goto out_err;
1315 }
1316
1317 /* Switch card to HS400 */
1318 val = EXT_CSD_TIMING_HS400 |
1319 card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1320 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1321 EXT_CSD_HS_TIMING, val,
1322 card->ext_csd.generic_cmd6_time, 0,
1323 true, false, true);
1324 if (err) {
1325 pr_err("%s: switch to hs400es failed, err:%d\n",
1326 mmc_hostname(host), err);
1327 goto out_err;
1328 }
1329
1330 /* Set host controller to HS400 timing and frequency */
1331 mmc_set_timing(host, MMC_TIMING_MMC_HS400);
1332
1333 /* Controller enable enhanced strobe function */
1334 host->ios.enhanced_strobe = true;
1335 if (host->ops->hs400_enhanced_strobe)
1336 host->ops->hs400_enhanced_strobe(host, &host->ios);
1337
1338 err = mmc_switch_status(card);
1339 if (err)
1340 goto out_err;
1341
1342 return 0;
1343
1344out_err:
1345 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1346 __func__, err);
1347 return err;
1348}
1349
1350static void mmc_select_driver_type(struct mmc_card *card)
1351{
1352 int card_drv_type, drive_strength, drv_type;
1353
1354 card_drv_type = card->ext_csd.raw_driver_strength |
1355 mmc_driver_type_mask(0);
1356
1357 drive_strength = mmc_select_drive_strength(card,
1358 card->ext_csd.hs200_max_dtr,
1359 card_drv_type, &drv_type);
1360
1361 card->drive_strength = drive_strength;
1362
1363 if (drv_type)
1364 mmc_set_driver_type(card->host, drv_type);
1365}
1366
1367/*
1368 * For device supporting HS200 mode, the following sequence
1369 * should be done before executing the tuning process.
1370 * 1. set the desired bus width(4-bit or 8-bit, 1-bit is not supported)
1371 * 2. switch to HS200 mode
1372 * 3. set the clock to > 52Mhz and <=200MHz
1373 */
1374static int mmc_select_hs200(struct mmc_card *card)
1375{
1376 struct mmc_host *host = card->host;
1377 unsigned int old_timing, old_signal_voltage;
1378 int err = -EINVAL;
1379 u8 val;
1380
1381 old_signal_voltage = host->ios.signal_voltage;
1382 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_2V)
1383 err = __mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1384
1385 if (err && card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_8V)
1386 err = __mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1387
1388 /* If fails try again during next card power cycle */
1389 if (err)
1390 return err;
1391
1392 mmc_select_driver_type(card);
1393
1394 /*
1395 * Set the bus width(4 or 8) with host's support and
1396 * switch to HS200 mode if bus width is set successfully.
1397 */
1398 err = mmc_select_bus_width(card);
1399 if (err > 0) {
1400 val = EXT_CSD_TIMING_HS200 |
1401 card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1402 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1403 EXT_CSD_HS_TIMING, val,
1404 card->ext_csd.generic_cmd6_time, 0,
1405 true, false, true);
1406 if (err)
1407 goto err;
1408 old_timing = host->ios.timing;
1409 mmc_set_timing(host, MMC_TIMING_MMC_HS200);
1410
1411 /*
1412 * For HS200, CRC errors are not a reliable way to know the
1413 * switch failed. If there really is a problem, we would expect
1414 * tuning will fail and the result ends up the same.
1415 */
1416 err = __mmc_switch_status(card, false);
1417
1418 /*
1419 * mmc_select_timing() assumes timing has not changed if
1420 * it is a switch error.
1421 */
1422 if (err == -EBADMSG)
1423 mmc_set_timing(host, old_timing);
1424 }
1425err:
1426 if (err) {
1427 /* fall back to the old signal voltage, if fails report error */
1428 if (__mmc_set_signal_voltage(host, old_signal_voltage))
1429 err = -EIO;
1430
1431 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1432 __func__, err);
1433 }
1434 return err;
1435}
1436
1437/*
1438 * Activate High Speed, HS200 or HS400ES mode if supported.
1439 */
1440static int mmc_select_timing(struct mmc_card *card)
1441{
1442 int err = 0;
1443
1444 if (!mmc_can_ext_csd(card))
1445 goto bus_speed;
1446
1447 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400ES)
1448 err = mmc_select_hs400es(card);
1449 else if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200)
1450 err = mmc_select_hs200(card);
1451 else if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS)
1452 err = mmc_select_hs(card);
1453
1454 if (err && err != -EBADMSG)
1455 return err;
1456
1457bus_speed:
1458 /*
1459 * Set the bus speed to the selected bus timing.
1460 * If timing is not selected, backward compatible is the default.
1461 */
1462 mmc_set_bus_speed(card);
1463 return 0;
1464}
1465
1466/*
1467 * Execute tuning sequence to seek the proper bus operating
1468 * conditions for HS200 and HS400, which sends CMD21 to the device.
1469 */
1470static int mmc_hs200_tuning(struct mmc_card *card)
1471{
1472 struct mmc_host *host = card->host;
1473
1474 /*
1475 * Timing should be adjusted to the HS400 target
1476 * operation frequency for tuning process
1477 */
1478 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 &&
1479 host->ios.bus_width == MMC_BUS_WIDTH_8)
1480 if (host->ops->prepare_hs400_tuning)
1481 host->ops->prepare_hs400_tuning(host, &host->ios);
1482
1483 return mmc_execute_tuning(card);
1484}
1485
1486/*
1487 * Handle the detection and initialisation of a card.
1488 *
1489 * In the case of a resume, "oldcard" will contain the card
1490 * we're trying to reinitialise.
1491 */
1492static int mmc_init_card(struct mmc_host *host, u32 ocr,
1493 struct mmc_card *oldcard)
1494{
1495 struct mmc_card *card;
1496 int err;
1497 u32 cid[4];
1498 u32 rocr;
1499
1500 WARN_ON(!host->claimed);
1501
1502 /* Set correct bus mode for MMC before attempting init */
1503 if (!mmc_host_is_spi(host))
1504 mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN);
1505
1506 /*
1507 * Since we're changing the OCR value, we seem to
1508 * need to tell some cards to go back to the idle
1509 * state. We wait 1ms to give cards time to
1510 * respond.
1511 * mmc_go_idle is needed for eMMC that are asleep
1512 */
1513 mmc_go_idle(host);
1514
1515 /* The extra bit indicates that we support high capacity */
1516 err = mmc_send_op_cond(host, ocr | (1 << 30), &rocr);
1517 if (err)
1518 goto err;
1519
1520 /*
1521 * For SPI, enable CRC as appropriate.
1522 */
1523 if (mmc_host_is_spi(host)) {
1524 err = mmc_spi_set_crc(host, use_spi_crc);
1525 if (err)
1526 goto err;
1527 }
1528
1529 /*
1530 * Fetch CID from card.
1531 */
1532 if (mmc_host_is_spi(host))
1533 err = mmc_send_cid(host, cid);
1534 else
1535 err = mmc_all_send_cid(host, cid);
1536 if (err)
1537 goto err;
1538
1539 if (oldcard) {
1540 if (memcmp(cid, oldcard->raw_cid, sizeof(cid)) != 0) {
1541 err = -ENOENT;
1542 goto err;
1543 }
1544
1545 card = oldcard;
1546 } else {
1547 /*
1548 * Allocate card structure.
1549 */
1550 card = mmc_alloc_card(host, &mmc_type);
1551 if (IS_ERR(card)) {
1552 err = PTR_ERR(card);
1553 goto err;
1554 }
1555
1556 card->ocr = ocr;
1557 card->type = MMC_TYPE_MMC;
1558 card->rca = 1;
1559 memcpy(card->raw_cid, cid, sizeof(card->raw_cid));
1560 }
1561
1562 /*
1563 * Call the optional HC's init_card function to handle quirks.
1564 */
1565 if (host->ops->init_card)
1566 host->ops->init_card(host, card);
1567
1568 /*
1569 * For native busses: set card RCA and quit open drain mode.
1570 */
1571 if (!mmc_host_is_spi(host)) {
1572 err = mmc_set_relative_addr(card);
1573 if (err)
1574 goto free_card;
1575
1576 mmc_set_bus_mode(host, MMC_BUSMODE_PUSHPULL);
1577 }
1578
1579 if (!oldcard) {
1580 /*
1581 * Fetch CSD from card.
1582 */
1583 err = mmc_send_csd(card, card->raw_csd);
1584 if (err)
1585 goto free_card;
1586
1587 err = mmc_decode_csd(card);
1588 if (err)
1589 goto free_card;
1590 err = mmc_decode_cid(card);
1591 if (err)
1592 goto free_card;
1593 }
1594
1595 /*
1596 * handling only for cards supporting DSR and hosts requesting
1597 * DSR configuration
1598 */
1599 if (card->csd.dsr_imp && host->dsr_req)
1600 mmc_set_dsr(host);
1601
1602 /*
1603 * Select card, as all following commands rely on that.
1604 */
1605 if (!mmc_host_is_spi(host)) {
1606 err = mmc_select_card(card);
1607 if (err)
1608 goto free_card;
1609 }
1610
1611 if (!oldcard) {
1612 /* Read extended CSD. */
1613 err = mmc_read_ext_csd(card);
1614 if (err)
1615 goto free_card;
1616
1617 /*
1618 * If doing byte addressing, check if required to do sector
1619 * addressing. Handle the case of <2GB cards needing sector
1620 * addressing. See section 8.1 JEDEC Standard JED84-A441;
1621 * ocr register has bit 30 set for sector addressing.
1622 */
1623 if (rocr & BIT(30))
1624 mmc_card_set_blockaddr(card);
1625
1626 /* Erase size depends on CSD and Extended CSD */
1627 mmc_set_erase_size(card);
1628 }
1629
1630 /*
1631 * If enhanced_area_en is TRUE, host needs to enable ERASE_GRP_DEF
1632 * bit. This bit will be lost every time after a reset or power off.
1633 */
1634 if (card->ext_csd.partition_setting_completed ||
1635 (card->ext_csd.rev >= 3 && (host->caps2 & MMC_CAP2_HC_ERASE_SZ))) {
1636 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1637 EXT_CSD_ERASE_GROUP_DEF, 1,
1638 card->ext_csd.generic_cmd6_time);
1639
1640 if (err && err != -EBADMSG)
1641 goto free_card;
1642
1643 if (err) {
1644 err = 0;
1645 /*
1646 * Just disable enhanced area off & sz
1647 * will try to enable ERASE_GROUP_DEF
1648 * during next time reinit
1649 */
1650 card->ext_csd.enhanced_area_offset = -EINVAL;
1651 card->ext_csd.enhanced_area_size = -EINVAL;
1652 } else {
1653 card->ext_csd.erase_group_def = 1;
1654 /*
1655 * enable ERASE_GRP_DEF successfully.
1656 * This will affect the erase size, so
1657 * here need to reset erase size
1658 */
1659 mmc_set_erase_size(card);
1660 }
1661 }
1662
1663 /*
1664 * Ensure eMMC user default partition is enabled
1665 */
1666 if (card->ext_csd.part_config & EXT_CSD_PART_CONFIG_ACC_MASK) {
1667 card->ext_csd.part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
1668 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_PART_CONFIG,
1669 card->ext_csd.part_config,
1670 card->ext_csd.part_time);
1671 if (err && err != -EBADMSG)
1672 goto free_card;
1673 }
1674
1675 /*
1676 * Enable power_off_notification byte in the ext_csd register
1677 */
1678 if (card->ext_csd.rev >= 6) {
1679 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1680 EXT_CSD_POWER_OFF_NOTIFICATION,
1681 EXT_CSD_POWER_ON,
1682 card->ext_csd.generic_cmd6_time);
1683 if (err && err != -EBADMSG)
1684 goto free_card;
1685
1686 /*
1687 * The err can be -EBADMSG or 0,
1688 * so check for success and update the flag
1689 */
1690 if (!err)
1691 card->ext_csd.power_off_notification = EXT_CSD_POWER_ON;
1692 }
1693
1694 /*
1695 * Select timing interface
1696 */
1697 err = mmc_select_timing(card);
1698 if (err)
1699 goto free_card;
1700
1701 if (mmc_card_hs200(card)) {
1702 err = mmc_hs200_tuning(card);
1703 if (err)
1704 goto free_card;
1705
1706 err = mmc_select_hs400(card);
1707 if (err)
1708 goto free_card;
1709 } else if (!mmc_card_hs400es(card)) {
1710 /* Select the desired bus width optionally */
1711 err = mmc_select_bus_width(card);
1712 if (err > 0 && mmc_card_hs(card)) {
1713 err = mmc_select_hs_ddr(card);
1714 if (err)
1715 goto free_card;
1716 }
1717 }
1718
1719 /*
1720 * Choose the power class with selected bus interface
1721 */
1722 mmc_select_powerclass(card);
1723
1724 /*
1725 * Enable HPI feature (if supported)
1726 */
1727 if (card->ext_csd.hpi) {
1728 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1729 EXT_CSD_HPI_MGMT, 1,
1730 card->ext_csd.generic_cmd6_time);
1731 if (err && err != -EBADMSG)
1732 goto free_card;
1733 if (err) {
1734 pr_warn("%s: Enabling HPI failed\n",
1735 mmc_hostname(card->host));
1736 err = 0;
1737 } else
1738 card->ext_csd.hpi_en = 1;
1739 }
1740
1741 /*
1742 * If cache size is higher than 0, this indicates
1743 * the existence of cache and it can be turned on.
1744 */
1745 if (!mmc_card_broken_hpi(card) &&
1746 card->ext_csd.cache_size > 0) {
1747 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1748 EXT_CSD_CACHE_CTRL, 1,
1749 card->ext_csd.generic_cmd6_time);
1750 if (err && err != -EBADMSG)
1751 goto free_card;
1752
1753 /*
1754 * Only if no error, cache is turned on successfully.
1755 */
1756 if (err) {
1757 pr_warn("%s: Cache is supported, but failed to turn on (%d)\n",
1758 mmc_hostname(card->host), err);
1759 card->ext_csd.cache_ctrl = 0;
1760 err = 0;
1761 } else {
1762 card->ext_csd.cache_ctrl = 1;
1763 }
1764 }
1765
1766 /*
1767 * The mandatory minimum values are defined for packed command.
1768 * read: 5, write: 3
1769 */
1770 if (card->ext_csd.max_packed_writes >= 3 &&
1771 card->ext_csd.max_packed_reads >= 5 &&
1772 host->caps2 & MMC_CAP2_PACKED_CMD) {
1773 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1774 EXT_CSD_EXP_EVENTS_CTRL,
1775 EXT_CSD_PACKED_EVENT_EN,
1776 card->ext_csd.generic_cmd6_time);
1777 if (err && err != -EBADMSG)
1778 goto free_card;
1779 if (err) {
1780 pr_warn("%s: Enabling packed event failed\n",
1781 mmc_hostname(card->host));
1782 card->ext_csd.packed_event_en = 0;
1783 err = 0;
1784 } else {
1785 card->ext_csd.packed_event_en = 1;
1786 }
1787 }
1788
1789 if (!oldcard)
1790 host->card = card;
1791
1792 return 0;
1793
1794free_card:
1795 if (!oldcard)
1796 mmc_remove_card(card);
1797err:
1798 return err;
1799}
1800
1801static int mmc_can_sleep(struct mmc_card *card)
1802{
1803 return (card && card->ext_csd.rev >= 3);
1804}
1805
1806static int mmc_sleep(struct mmc_host *host)
1807{
1808 struct mmc_command cmd = {0};
1809 struct mmc_card *card = host->card;
1810 unsigned int timeout_ms = DIV_ROUND_UP(card->ext_csd.sa_timeout, 10000);
1811 int err;
1812
1813 /* Re-tuning can't be done once the card is deselected */
1814 mmc_retune_hold(host);
1815
1816 err = mmc_deselect_cards(host);
1817 if (err)
1818 goto out_release;
1819
1820 cmd.opcode = MMC_SLEEP_AWAKE;
1821 cmd.arg = card->rca << 16;
1822 cmd.arg |= 1 << 15;
1823
1824 /*
1825 * If the max_busy_timeout of the host is specified, validate it against
1826 * the sleep cmd timeout. A failure means we need to prevent the host
1827 * from doing hw busy detection, which is done by converting to a R1
1828 * response instead of a R1B.
1829 */
1830 if (host->max_busy_timeout && (timeout_ms > host->max_busy_timeout)) {
1831 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1832 } else {
1833 cmd.flags = MMC_RSP_R1B | MMC_CMD_AC;
1834 cmd.busy_timeout = timeout_ms;
1835 }
1836
1837 err = mmc_wait_for_cmd(host, &cmd, 0);
1838 if (err)
1839 goto out_release;
1840
1841 /*
1842 * If the host does not wait while the card signals busy, then we will
1843 * will have to wait the sleep/awake timeout. Note, we cannot use the
1844 * SEND_STATUS command to poll the status because that command (and most
1845 * others) is invalid while the card sleeps.
1846 */
1847 if (!cmd.busy_timeout || !(host->caps & MMC_CAP_WAIT_WHILE_BUSY))
1848 mmc_delay(timeout_ms);
1849
1850out_release:
1851 mmc_retune_release(host);
1852 return err;
1853}
1854
1855static int mmc_can_poweroff_notify(const struct mmc_card *card)
1856{
1857 return card &&
1858 mmc_card_mmc(card) &&
1859 (card->ext_csd.power_off_notification == EXT_CSD_POWER_ON);
1860}
1861
1862static int mmc_poweroff_notify(struct mmc_card *card, unsigned int notify_type)
1863{
1864 unsigned int timeout = card->ext_csd.generic_cmd6_time;
1865 int err;
1866
1867 /* Use EXT_CSD_POWER_OFF_SHORT as default notification type. */
1868 if (notify_type == EXT_CSD_POWER_OFF_LONG)
1869 timeout = card->ext_csd.power_off_longtime;
1870
1871 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1872 EXT_CSD_POWER_OFF_NOTIFICATION,
1873 notify_type, timeout, 0, true, false, false);
1874 if (err)
1875 pr_err("%s: Power Off Notification timed out, %u\n",
1876 mmc_hostname(card->host), timeout);
1877
1878 /* Disable the power off notification after the switch operation. */
1879 card->ext_csd.power_off_notification = EXT_CSD_NO_POWER_NOTIFICATION;
1880
1881 return err;
1882}
1883
1884/*
1885 * Host is being removed. Free up the current card.
1886 */
1887static void mmc_remove(struct mmc_host *host)
1888{
1889 mmc_remove_card(host->card);
1890 host->card = NULL;
1891}
1892
1893/*
1894 * Card detection - card is alive.
1895 */
1896static int mmc_alive(struct mmc_host *host)
1897{
1898 return mmc_send_status(host->card, NULL);
1899}
1900
1901/*
1902 * Card detection callback from host.
1903 */
1904static void mmc_detect(struct mmc_host *host)
1905{
1906 int err;
1907
1908 mmc_get_card(host->card);
1909
1910 /*
1911 * Just check if our card has been removed.
1912 */
1913 err = _mmc_detect_card_removed(host);
1914
1915 mmc_put_card(host->card);
1916
1917 if (err) {
1918 mmc_remove(host);
1919
1920 mmc_claim_host(host);
1921 mmc_detach_bus(host);
1922 mmc_power_off(host);
1923 mmc_release_host(host);
1924 }
1925}
1926
1927static int _mmc_suspend(struct mmc_host *host, bool is_suspend)
1928{
1929 int err = 0;
1930 unsigned int notify_type = is_suspend ? EXT_CSD_POWER_OFF_SHORT :
1931 EXT_CSD_POWER_OFF_LONG;
1932
1933 mmc_claim_host(host);
1934
1935 if (mmc_card_suspended(host->card))
1936 goto out;
1937
1938 if (mmc_card_doing_bkops(host->card)) {
1939 err = mmc_stop_bkops(host->card);
1940 if (err)
1941 goto out;
1942 }
1943
1944 err = mmc_flush_cache(host->card);
1945 if (err)
1946 goto out;
1947
1948 if (mmc_can_poweroff_notify(host->card) &&
1949 ((host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) || !is_suspend))
1950 err = mmc_poweroff_notify(host->card, notify_type);
1951 else if (mmc_can_sleep(host->card))
1952 err = mmc_sleep(host);
1953 else if (!mmc_host_is_spi(host))
1954 err = mmc_deselect_cards(host);
1955
1956 if (!err) {
1957 mmc_power_off(host);
1958 mmc_card_set_suspended(host->card);
1959 }
1960out:
1961 mmc_release_host(host);
1962 return err;
1963}
1964
1965/*
1966 * Suspend callback
1967 */
1968static int mmc_suspend(struct mmc_host *host)
1969{
1970 int err;
1971
1972 err = _mmc_suspend(host, true);
1973 if (!err) {
1974 pm_runtime_disable(&host->card->dev);
1975 pm_runtime_set_suspended(&host->card->dev);
1976 }
1977
1978 return err;
1979}
1980
1981/*
1982 * This function tries to determine if the same card is still present
1983 * and, if so, restore all state to it.
1984 */
1985static int _mmc_resume(struct mmc_host *host)
1986{
1987 int err = 0;
1988
1989 mmc_claim_host(host);
1990
1991 if (!mmc_card_suspended(host->card))
1992 goto out;
1993
1994 mmc_power_up(host, host->card->ocr);
1995 err = mmc_init_card(host, host->card->ocr, host->card);
1996 mmc_card_clr_suspended(host->card);
1997
1998out:
1999 mmc_release_host(host);
2000 return err;
2001}
2002
2003/*
2004 * Shutdown callback
2005 */
2006static int mmc_shutdown(struct mmc_host *host)
2007{
2008 int err = 0;
2009
2010 /*
2011 * In a specific case for poweroff notify, we need to resume the card
2012 * before we can shutdown it properly.
2013 */
2014 if (mmc_can_poweroff_notify(host->card) &&
2015 !(host->caps2 & MMC_CAP2_FULL_PWR_CYCLE))
2016 err = _mmc_resume(host);
2017
2018 if (!err)
2019 err = _mmc_suspend(host, false);
2020
2021 return err;
2022}
2023
2024/*
2025 * Callback for resume.
2026 */
2027static int mmc_resume(struct mmc_host *host)
2028{
2029 pm_runtime_enable(&host->card->dev);
2030 return 0;
2031}
2032
2033/*
2034 * Callback for runtime_suspend.
2035 */
2036static int mmc_runtime_suspend(struct mmc_host *host)
2037{
2038 int err;
2039
2040 if (!(host->caps & MMC_CAP_AGGRESSIVE_PM))
2041 return 0;
2042
2043 err = _mmc_suspend(host, true);
2044 if (err)
2045 pr_err("%s: error %d doing aggressive suspend\n",
2046 mmc_hostname(host), err);
2047
2048 return err;
2049}
2050
2051/*
2052 * Callback for runtime_resume.
2053 */
2054static int mmc_runtime_resume(struct mmc_host *host)
2055{
2056 int err;
2057
2058 err = _mmc_resume(host);
2059 if (err && err != -ENOMEDIUM)
2060 pr_err("%s: error %d doing runtime resume\n",
2061 mmc_hostname(host), err);
2062
2063 return 0;
2064}
2065
2066int mmc_can_reset(struct mmc_card *card)
2067{
2068 u8 rst_n_function;
2069
2070 rst_n_function = card->ext_csd.rst_n_function;
2071 if ((rst_n_function & EXT_CSD_RST_N_EN_MASK) != EXT_CSD_RST_N_ENABLED)
2072 return 0;
2073 return 1;
2074}
2075EXPORT_SYMBOL(mmc_can_reset);
2076
2077static int mmc_reset(struct mmc_host *host)
2078{
2079 struct mmc_card *card = host->card;
2080
2081 /*
2082 * In the case of recovery, we can't expect flushing the cache to work
2083 * always, but we have a go and ignore errors.
2084 */
2085 mmc_flush_cache(host->card);
2086
2087 if ((host->caps & MMC_CAP_HW_RESET) && host->ops->hw_reset &&
2088 mmc_can_reset(card)) {
2089 /* If the card accept RST_n signal, send it. */
2090 mmc_set_clock(host, host->f_init);
2091 host->ops->hw_reset(host);
2092 /* Set initial state and call mmc_set_ios */
2093 mmc_set_initial_state(host);
2094 } else {
2095 /* Do a brute force power cycle */
2096 mmc_power_cycle(host, card->ocr);
2097 }
2098 return mmc_init_card(host, card->ocr, card);
2099}
2100
2101static const struct mmc_bus_ops mmc_ops = {
2102 .remove = mmc_remove,
2103 .detect = mmc_detect,
2104 .suspend = mmc_suspend,
2105 .resume = mmc_resume,
2106 .runtime_suspend = mmc_runtime_suspend,
2107 .runtime_resume = mmc_runtime_resume,
2108 .alive = mmc_alive,
2109 .shutdown = mmc_shutdown,
2110 .reset = mmc_reset,
2111};
2112
2113/*
2114 * Starting point for MMC card init.
2115 */
2116int mmc_attach_mmc(struct mmc_host *host)
2117{
2118 int err;
2119 u32 ocr, rocr;
2120
2121 WARN_ON(!host->claimed);
2122
2123 /* Set correct bus mode for MMC before attempting attach */
2124 if (!mmc_host_is_spi(host))
2125 mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN);
2126
2127 err = mmc_send_op_cond(host, 0, &ocr);
2128 if (err)
2129 return err;
2130
2131 mmc_attach_bus(host, &mmc_ops);
2132 if (host->ocr_avail_mmc)
2133 host->ocr_avail = host->ocr_avail_mmc;
2134
2135 /*
2136 * We need to get OCR a different way for SPI.
2137 */
2138 if (mmc_host_is_spi(host)) {
2139 err = mmc_spi_read_ocr(host, 1, &ocr);
2140 if (err)
2141 goto err;
2142 }
2143
2144 rocr = mmc_select_voltage(host, ocr);
2145
2146 /*
2147 * Can we support the voltage of the card?
2148 */
2149 if (!rocr) {
2150 err = -EINVAL;
2151 goto err;
2152 }
2153
2154 /*
2155 * Detect and init the card.
2156 */
2157 err = mmc_init_card(host, rocr, NULL);
2158 if (err)
2159 goto err;
2160
2161 mmc_release_host(host);
2162 err = mmc_add_card(host->card);
2163 if (err)
2164 goto remove_card;
2165
2166 mmc_claim_host(host);
2167 return 0;
2168
2169remove_card:
2170 mmc_remove_card(host->card);
2171 mmc_claim_host(host);
2172 host->card = NULL;
2173err:
2174 mmc_detach_bus(host);
2175
2176 pr_err("%s: error %d whilst initialising MMC card\n",
2177 mmc_hostname(host), err);
2178
2179 return err;
2180}