Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * background writeback - scan btree for dirty data and write it to the backing
4 * device
5 *
6 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
7 * Copyright 2012 Google, Inc.
8 */
9
10#include "bcache.h"
11#include "btree.h"
12#include "debug.h"
13#include "writeback.h"
14
15#include <linux/delay.h>
16#include <linux/kthread.h>
17#include <linux/sched/clock.h>
18#include <trace/events/bcache.h>
19
20static void update_gc_after_writeback(struct cache_set *c)
21{
22 if (c->gc_after_writeback != (BCH_ENABLE_AUTO_GC) ||
23 c->gc_stats.in_use < BCH_AUTO_GC_DIRTY_THRESHOLD)
24 return;
25
26 c->gc_after_writeback |= BCH_DO_AUTO_GC;
27}
28
29/* Rate limiting */
30static uint64_t __calc_target_rate(struct cached_dev *dc)
31{
32 struct cache_set *c = dc->disk.c;
33
34 /*
35 * This is the size of the cache, minus the amount used for
36 * flash-only devices
37 */
38 uint64_t cache_sectors = c->nbuckets * c->sb.bucket_size -
39 atomic_long_read(&c->flash_dev_dirty_sectors);
40
41 /*
42 * Unfortunately there is no control of global dirty data. If the
43 * user states that they want 10% dirty data in the cache, and has,
44 * e.g., 5 backing volumes of equal size, we try and ensure each
45 * backing volume uses about 2% of the cache for dirty data.
46 */
47 uint32_t bdev_share =
48 div64_u64(bdev_sectors(dc->bdev) << WRITEBACK_SHARE_SHIFT,
49 c->cached_dev_sectors);
50
51 uint64_t cache_dirty_target =
52 div_u64(cache_sectors * dc->writeback_percent, 100);
53
54 /* Ensure each backing dev gets at least one dirty share */
55 if (bdev_share < 1)
56 bdev_share = 1;
57
58 return (cache_dirty_target * bdev_share) >> WRITEBACK_SHARE_SHIFT;
59}
60
61static void __update_writeback_rate(struct cached_dev *dc)
62{
63 /*
64 * PI controller:
65 * Figures out the amount that should be written per second.
66 *
67 * First, the error (number of sectors that are dirty beyond our
68 * target) is calculated. The error is accumulated (numerically
69 * integrated).
70 *
71 * Then, the proportional value and integral value are scaled
72 * based on configured values. These are stored as inverses to
73 * avoid fixed point math and to make configuration easy-- e.g.
74 * the default value of 40 for writeback_rate_p_term_inverse
75 * attempts to write at a rate that would retire all the dirty
76 * blocks in 40 seconds.
77 *
78 * The writeback_rate_i_inverse value of 10000 means that 1/10000th
79 * of the error is accumulated in the integral term per second.
80 * This acts as a slow, long-term average that is not subject to
81 * variations in usage like the p term.
82 */
83 int64_t target = __calc_target_rate(dc);
84 int64_t dirty = bcache_dev_sectors_dirty(&dc->disk);
85 int64_t error = dirty - target;
86 int64_t proportional_scaled =
87 div_s64(error, dc->writeback_rate_p_term_inverse);
88 int64_t integral_scaled;
89 uint32_t new_rate;
90
91 if ((error < 0 && dc->writeback_rate_integral > 0) ||
92 (error > 0 && time_before64(local_clock(),
93 dc->writeback_rate.next + NSEC_PER_MSEC))) {
94 /*
95 * Only decrease the integral term if it's more than
96 * zero. Only increase the integral term if the device
97 * is keeping up. (Don't wind up the integral
98 * ineffectively in either case).
99 *
100 * It's necessary to scale this by
101 * writeback_rate_update_seconds to keep the integral
102 * term dimensioned properly.
103 */
104 dc->writeback_rate_integral += error *
105 dc->writeback_rate_update_seconds;
106 }
107
108 integral_scaled = div_s64(dc->writeback_rate_integral,
109 dc->writeback_rate_i_term_inverse);
110
111 new_rate = clamp_t(int32_t, (proportional_scaled + integral_scaled),
112 dc->writeback_rate_minimum, NSEC_PER_SEC);
113
114 dc->writeback_rate_proportional = proportional_scaled;
115 dc->writeback_rate_integral_scaled = integral_scaled;
116 dc->writeback_rate_change = new_rate -
117 atomic_long_read(&dc->writeback_rate.rate);
118 atomic_long_set(&dc->writeback_rate.rate, new_rate);
119 dc->writeback_rate_target = target;
120}
121
122static bool set_at_max_writeback_rate(struct cache_set *c,
123 struct cached_dev *dc)
124{
125 /* Don't sst max writeback rate if it is disabled */
126 if (!c->idle_max_writeback_rate_enabled)
127 return false;
128
129 /* Don't set max writeback rate if gc is running */
130 if (!c->gc_mark_valid)
131 return false;
132 /*
133 * Idle_counter is increased everytime when update_writeback_rate() is
134 * called. If all backing devices attached to the same cache set have
135 * identical dc->writeback_rate_update_seconds values, it is about 6
136 * rounds of update_writeback_rate() on each backing device before
137 * c->at_max_writeback_rate is set to 1, and then max wrteback rate set
138 * to each dc->writeback_rate.rate.
139 * In order to avoid extra locking cost for counting exact dirty cached
140 * devices number, c->attached_dev_nr is used to calculate the idle
141 * throushold. It might be bigger if not all cached device are in write-
142 * back mode, but it still works well with limited extra rounds of
143 * update_writeback_rate().
144 */
145 if (atomic_inc_return(&c->idle_counter) <
146 atomic_read(&c->attached_dev_nr) * 6)
147 return false;
148
149 if (atomic_read(&c->at_max_writeback_rate) != 1)
150 atomic_set(&c->at_max_writeback_rate, 1);
151
152 atomic_long_set(&dc->writeback_rate.rate, INT_MAX);
153
154 /* keep writeback_rate_target as existing value */
155 dc->writeback_rate_proportional = 0;
156 dc->writeback_rate_integral_scaled = 0;
157 dc->writeback_rate_change = 0;
158
159 /*
160 * Check c->idle_counter and c->at_max_writeback_rate agagain in case
161 * new I/O arrives during before set_at_max_writeback_rate() returns.
162 * Then the writeback rate is set to 1, and its new value should be
163 * decided via __update_writeback_rate().
164 */
165 if ((atomic_read(&c->idle_counter) <
166 atomic_read(&c->attached_dev_nr) * 6) ||
167 !atomic_read(&c->at_max_writeback_rate))
168 return false;
169
170 return true;
171}
172
173static void update_writeback_rate(struct work_struct *work)
174{
175 struct cached_dev *dc = container_of(to_delayed_work(work),
176 struct cached_dev,
177 writeback_rate_update);
178 struct cache_set *c = dc->disk.c;
179
180 /*
181 * should check BCACHE_DEV_RATE_DW_RUNNING before calling
182 * cancel_delayed_work_sync().
183 */
184 set_bit(BCACHE_DEV_RATE_DW_RUNNING, &dc->disk.flags);
185 /* paired with where BCACHE_DEV_RATE_DW_RUNNING is tested */
186 smp_mb__after_atomic();
187
188 /*
189 * CACHE_SET_IO_DISABLE might be set via sysfs interface,
190 * check it here too.
191 */
192 if (!test_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags) ||
193 test_bit(CACHE_SET_IO_DISABLE, &c->flags)) {
194 clear_bit(BCACHE_DEV_RATE_DW_RUNNING, &dc->disk.flags);
195 /* paired with where BCACHE_DEV_RATE_DW_RUNNING is tested */
196 smp_mb__after_atomic();
197 return;
198 }
199
200 if (atomic_read(&dc->has_dirty) && dc->writeback_percent) {
201 /*
202 * If the whole cache set is idle, set_at_max_writeback_rate()
203 * will set writeback rate to a max number. Then it is
204 * unncessary to update writeback rate for an idle cache set
205 * in maximum writeback rate number(s).
206 */
207 if (!set_at_max_writeback_rate(c, dc)) {
208 down_read(&dc->writeback_lock);
209 __update_writeback_rate(dc);
210 update_gc_after_writeback(c);
211 up_read(&dc->writeback_lock);
212 }
213 }
214
215
216 /*
217 * CACHE_SET_IO_DISABLE might be set via sysfs interface,
218 * check it here too.
219 */
220 if (test_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags) &&
221 !test_bit(CACHE_SET_IO_DISABLE, &c->flags)) {
222 schedule_delayed_work(&dc->writeback_rate_update,
223 dc->writeback_rate_update_seconds * HZ);
224 }
225
226 /*
227 * should check BCACHE_DEV_RATE_DW_RUNNING before calling
228 * cancel_delayed_work_sync().
229 */
230 clear_bit(BCACHE_DEV_RATE_DW_RUNNING, &dc->disk.flags);
231 /* paired with where BCACHE_DEV_RATE_DW_RUNNING is tested */
232 smp_mb__after_atomic();
233}
234
235static unsigned int writeback_delay(struct cached_dev *dc,
236 unsigned int sectors)
237{
238 if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) ||
239 !dc->writeback_percent)
240 return 0;
241
242 return bch_next_delay(&dc->writeback_rate, sectors);
243}
244
245struct dirty_io {
246 struct closure cl;
247 struct cached_dev *dc;
248 uint16_t sequence;
249 struct bio bio;
250};
251
252static void dirty_init(struct keybuf_key *w)
253{
254 struct dirty_io *io = w->private;
255 struct bio *bio = &io->bio;
256
257 bio_init(bio, bio->bi_inline_vecs,
258 DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS));
259 if (!io->dc->writeback_percent)
260 bio_set_prio(bio, IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0));
261
262 bio->bi_iter.bi_size = KEY_SIZE(&w->key) << 9;
263 bio->bi_private = w;
264 bch_bio_map(bio, NULL);
265}
266
267static void dirty_io_destructor(struct closure *cl)
268{
269 struct dirty_io *io = container_of(cl, struct dirty_io, cl);
270
271 kfree(io);
272}
273
274static void write_dirty_finish(struct closure *cl)
275{
276 struct dirty_io *io = container_of(cl, struct dirty_io, cl);
277 struct keybuf_key *w = io->bio.bi_private;
278 struct cached_dev *dc = io->dc;
279
280 bio_free_pages(&io->bio);
281
282 /* This is kind of a dumb way of signalling errors. */
283 if (KEY_DIRTY(&w->key)) {
284 int ret;
285 unsigned int i;
286 struct keylist keys;
287
288 bch_keylist_init(&keys);
289
290 bkey_copy(keys.top, &w->key);
291 SET_KEY_DIRTY(keys.top, false);
292 bch_keylist_push(&keys);
293
294 for (i = 0; i < KEY_PTRS(&w->key); i++)
295 atomic_inc(&PTR_BUCKET(dc->disk.c, &w->key, i)->pin);
296
297 ret = bch_btree_insert(dc->disk.c, &keys, NULL, &w->key);
298
299 if (ret)
300 trace_bcache_writeback_collision(&w->key);
301
302 atomic_long_inc(ret
303 ? &dc->disk.c->writeback_keys_failed
304 : &dc->disk.c->writeback_keys_done);
305 }
306
307 bch_keybuf_del(&dc->writeback_keys, w);
308 up(&dc->in_flight);
309
310 closure_return_with_destructor(cl, dirty_io_destructor);
311}
312
313static void dirty_endio(struct bio *bio)
314{
315 struct keybuf_key *w = bio->bi_private;
316 struct dirty_io *io = w->private;
317
318 if (bio->bi_status) {
319 SET_KEY_DIRTY(&w->key, false);
320 bch_count_backing_io_errors(io->dc, bio);
321 }
322
323 closure_put(&io->cl);
324}
325
326static void write_dirty(struct closure *cl)
327{
328 struct dirty_io *io = container_of(cl, struct dirty_io, cl);
329 struct keybuf_key *w = io->bio.bi_private;
330 struct cached_dev *dc = io->dc;
331
332 uint16_t next_sequence;
333
334 if (atomic_read(&dc->writeback_sequence_next) != io->sequence) {
335 /* Not our turn to write; wait for a write to complete */
336 closure_wait(&dc->writeback_ordering_wait, cl);
337
338 if (atomic_read(&dc->writeback_sequence_next) == io->sequence) {
339 /*
340 * Edge case-- it happened in indeterminate order
341 * relative to when we were added to wait list..
342 */
343 closure_wake_up(&dc->writeback_ordering_wait);
344 }
345
346 continue_at(cl, write_dirty, io->dc->writeback_write_wq);
347 return;
348 }
349
350 next_sequence = io->sequence + 1;
351
352 /*
353 * IO errors are signalled using the dirty bit on the key.
354 * If we failed to read, we should not attempt to write to the
355 * backing device. Instead, immediately go to write_dirty_finish
356 * to clean up.
357 */
358 if (KEY_DIRTY(&w->key)) {
359 dirty_init(w);
360 bio_set_op_attrs(&io->bio, REQ_OP_WRITE, 0);
361 io->bio.bi_iter.bi_sector = KEY_START(&w->key);
362 bio_set_dev(&io->bio, io->dc->bdev);
363 io->bio.bi_end_io = dirty_endio;
364
365 /* I/O request sent to backing device */
366 closure_bio_submit(io->dc->disk.c, &io->bio, cl);
367 }
368
369 atomic_set(&dc->writeback_sequence_next, next_sequence);
370 closure_wake_up(&dc->writeback_ordering_wait);
371
372 continue_at(cl, write_dirty_finish, io->dc->writeback_write_wq);
373}
374
375static void read_dirty_endio(struct bio *bio)
376{
377 struct keybuf_key *w = bio->bi_private;
378 struct dirty_io *io = w->private;
379
380 /* is_read = 1 */
381 bch_count_io_errors(PTR_CACHE(io->dc->disk.c, &w->key, 0),
382 bio->bi_status, 1,
383 "reading dirty data from cache");
384
385 dirty_endio(bio);
386}
387
388static void read_dirty_submit(struct closure *cl)
389{
390 struct dirty_io *io = container_of(cl, struct dirty_io, cl);
391
392 closure_bio_submit(io->dc->disk.c, &io->bio, cl);
393
394 continue_at(cl, write_dirty, io->dc->writeback_write_wq);
395}
396
397static void read_dirty(struct cached_dev *dc)
398{
399 unsigned int delay = 0;
400 struct keybuf_key *next, *keys[MAX_WRITEBACKS_IN_PASS], *w;
401 size_t size;
402 int nk, i;
403 struct dirty_io *io;
404 struct closure cl;
405 uint16_t sequence = 0;
406
407 BUG_ON(!llist_empty(&dc->writeback_ordering_wait.list));
408 atomic_set(&dc->writeback_sequence_next, sequence);
409 closure_init_stack(&cl);
410
411 /*
412 * XXX: if we error, background writeback just spins. Should use some
413 * mempools.
414 */
415
416 next = bch_keybuf_next(&dc->writeback_keys);
417
418 while (!kthread_should_stop() &&
419 !test_bit(CACHE_SET_IO_DISABLE, &dc->disk.c->flags) &&
420 next) {
421 size = 0;
422 nk = 0;
423
424 do {
425 BUG_ON(ptr_stale(dc->disk.c, &next->key, 0));
426
427 /*
428 * Don't combine too many operations, even if they
429 * are all small.
430 */
431 if (nk >= MAX_WRITEBACKS_IN_PASS)
432 break;
433
434 /*
435 * If the current operation is very large, don't
436 * further combine operations.
437 */
438 if (size >= MAX_WRITESIZE_IN_PASS)
439 break;
440
441 /*
442 * Operations are only eligible to be combined
443 * if they are contiguous.
444 *
445 * TODO: add a heuristic willing to fire a
446 * certain amount of non-contiguous IO per pass,
447 * so that we can benefit from backing device
448 * command queueing.
449 */
450 if ((nk != 0) && bkey_cmp(&keys[nk-1]->key,
451 &START_KEY(&next->key)))
452 break;
453
454 size += KEY_SIZE(&next->key);
455 keys[nk++] = next;
456 } while ((next = bch_keybuf_next(&dc->writeback_keys)));
457
458 /* Now we have gathered a set of 1..5 keys to write back. */
459 for (i = 0; i < nk; i++) {
460 w = keys[i];
461
462 io = kzalloc(struct_size(io, bio.bi_inline_vecs,
463 DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS)),
464 GFP_KERNEL);
465 if (!io)
466 goto err;
467
468 w->private = io;
469 io->dc = dc;
470 io->sequence = sequence++;
471
472 dirty_init(w);
473 bio_set_op_attrs(&io->bio, REQ_OP_READ, 0);
474 io->bio.bi_iter.bi_sector = PTR_OFFSET(&w->key, 0);
475 bio_set_dev(&io->bio,
476 PTR_CACHE(dc->disk.c, &w->key, 0)->bdev);
477 io->bio.bi_end_io = read_dirty_endio;
478
479 if (bch_bio_alloc_pages(&io->bio, GFP_KERNEL))
480 goto err_free;
481
482 trace_bcache_writeback(&w->key);
483
484 down(&dc->in_flight);
485
486 /*
487 * We've acquired a semaphore for the maximum
488 * simultaneous number of writebacks; from here
489 * everything happens asynchronously.
490 */
491 closure_call(&io->cl, read_dirty_submit, NULL, &cl);
492 }
493
494 delay = writeback_delay(dc, size);
495
496 while (!kthread_should_stop() &&
497 !test_bit(CACHE_SET_IO_DISABLE, &dc->disk.c->flags) &&
498 delay) {
499 schedule_timeout_interruptible(delay);
500 delay = writeback_delay(dc, 0);
501 }
502 }
503
504 if (0) {
505err_free:
506 kfree(w->private);
507err:
508 bch_keybuf_del(&dc->writeback_keys, w);
509 }
510
511 /*
512 * Wait for outstanding writeback IOs to finish (and keybuf slots to be
513 * freed) before refilling again
514 */
515 closure_sync(&cl);
516}
517
518/* Scan for dirty data */
519
520void bcache_dev_sectors_dirty_add(struct cache_set *c, unsigned int inode,
521 uint64_t offset, int nr_sectors)
522{
523 struct bcache_device *d = c->devices[inode];
524 unsigned int stripe_offset, sectors_dirty;
525 int stripe;
526
527 if (!d)
528 return;
529
530 stripe = offset_to_stripe(d, offset);
531 if (stripe < 0)
532 return;
533
534 if (UUID_FLASH_ONLY(&c->uuids[inode]))
535 atomic_long_add(nr_sectors, &c->flash_dev_dirty_sectors);
536
537 stripe_offset = offset & (d->stripe_size - 1);
538
539 while (nr_sectors) {
540 int s = min_t(unsigned int, abs(nr_sectors),
541 d->stripe_size - stripe_offset);
542
543 if (nr_sectors < 0)
544 s = -s;
545
546 if (stripe >= d->nr_stripes)
547 return;
548
549 sectors_dirty = atomic_add_return(s,
550 d->stripe_sectors_dirty + stripe);
551 if (sectors_dirty == d->stripe_size)
552 set_bit(stripe, d->full_dirty_stripes);
553 else
554 clear_bit(stripe, d->full_dirty_stripes);
555
556 nr_sectors -= s;
557 stripe_offset = 0;
558 stripe++;
559 }
560}
561
562static bool dirty_pred(struct keybuf *buf, struct bkey *k)
563{
564 struct cached_dev *dc = container_of(buf,
565 struct cached_dev,
566 writeback_keys);
567
568 BUG_ON(KEY_INODE(k) != dc->disk.id);
569
570 return KEY_DIRTY(k);
571}
572
573static void refill_full_stripes(struct cached_dev *dc)
574{
575 struct keybuf *buf = &dc->writeback_keys;
576 unsigned int start_stripe, next_stripe;
577 int stripe;
578 bool wrapped = false;
579
580 stripe = offset_to_stripe(&dc->disk, KEY_OFFSET(&buf->last_scanned));
581 if (stripe < 0)
582 stripe = 0;
583
584 start_stripe = stripe;
585
586 while (1) {
587 stripe = find_next_bit(dc->disk.full_dirty_stripes,
588 dc->disk.nr_stripes, stripe);
589
590 if (stripe == dc->disk.nr_stripes)
591 goto next;
592
593 next_stripe = find_next_zero_bit(dc->disk.full_dirty_stripes,
594 dc->disk.nr_stripes, stripe);
595
596 buf->last_scanned = KEY(dc->disk.id,
597 stripe * dc->disk.stripe_size, 0);
598
599 bch_refill_keybuf(dc->disk.c, buf,
600 &KEY(dc->disk.id,
601 next_stripe * dc->disk.stripe_size, 0),
602 dirty_pred);
603
604 if (array_freelist_empty(&buf->freelist))
605 return;
606
607 stripe = next_stripe;
608next:
609 if (wrapped && stripe > start_stripe)
610 return;
611
612 if (stripe == dc->disk.nr_stripes) {
613 stripe = 0;
614 wrapped = true;
615 }
616 }
617}
618
619/*
620 * Returns true if we scanned the entire disk
621 */
622static bool refill_dirty(struct cached_dev *dc)
623{
624 struct keybuf *buf = &dc->writeback_keys;
625 struct bkey start = KEY(dc->disk.id, 0, 0);
626 struct bkey end = KEY(dc->disk.id, MAX_KEY_OFFSET, 0);
627 struct bkey start_pos;
628
629 /*
630 * make sure keybuf pos is inside the range for this disk - at bringup
631 * we might not be attached yet so this disk's inode nr isn't
632 * initialized then
633 */
634 if (bkey_cmp(&buf->last_scanned, &start) < 0 ||
635 bkey_cmp(&buf->last_scanned, &end) > 0)
636 buf->last_scanned = start;
637
638 if (dc->partial_stripes_expensive) {
639 refill_full_stripes(dc);
640 if (array_freelist_empty(&buf->freelist))
641 return false;
642 }
643
644 start_pos = buf->last_scanned;
645 bch_refill_keybuf(dc->disk.c, buf, &end, dirty_pred);
646
647 if (bkey_cmp(&buf->last_scanned, &end) < 0)
648 return false;
649
650 /*
651 * If we get to the end start scanning again from the beginning, and
652 * only scan up to where we initially started scanning from:
653 */
654 buf->last_scanned = start;
655 bch_refill_keybuf(dc->disk.c, buf, &start_pos, dirty_pred);
656
657 return bkey_cmp(&buf->last_scanned, &start_pos) >= 0;
658}
659
660static int bch_writeback_thread(void *arg)
661{
662 struct cached_dev *dc = arg;
663 struct cache_set *c = dc->disk.c;
664 bool searched_full_index;
665
666 bch_ratelimit_reset(&dc->writeback_rate);
667
668 while (!kthread_should_stop() &&
669 !test_bit(CACHE_SET_IO_DISABLE, &c->flags)) {
670 down_write(&dc->writeback_lock);
671 set_current_state(TASK_INTERRUPTIBLE);
672 /*
673 * If the bache device is detaching, skip here and continue
674 * to perform writeback. Otherwise, if no dirty data on cache,
675 * or there is dirty data on cache but writeback is disabled,
676 * the writeback thread should sleep here and wait for others
677 * to wake up it.
678 */
679 if (!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) &&
680 (!atomic_read(&dc->has_dirty) || !dc->writeback_running)) {
681 up_write(&dc->writeback_lock);
682
683 if (kthread_should_stop() ||
684 test_bit(CACHE_SET_IO_DISABLE, &c->flags)) {
685 set_current_state(TASK_RUNNING);
686 break;
687 }
688
689 schedule();
690 continue;
691 }
692 set_current_state(TASK_RUNNING);
693
694 searched_full_index = refill_dirty(dc);
695
696 if (searched_full_index &&
697 RB_EMPTY_ROOT(&dc->writeback_keys.keys)) {
698 atomic_set(&dc->has_dirty, 0);
699 SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
700 bch_write_bdev_super(dc, NULL);
701 /*
702 * If bcache device is detaching via sysfs interface,
703 * writeback thread should stop after there is no dirty
704 * data on cache. BCACHE_DEV_DETACHING flag is set in
705 * bch_cached_dev_detach().
706 */
707 if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags)) {
708 up_write(&dc->writeback_lock);
709 break;
710 }
711
712 /*
713 * When dirty data rate is high (e.g. 50%+), there might
714 * be heavy buckets fragmentation after writeback
715 * finished, which hurts following write performance.
716 * If users really care about write performance they
717 * may set BCH_ENABLE_AUTO_GC via sysfs, then when
718 * BCH_DO_AUTO_GC is set, garbage collection thread
719 * will be wake up here. After moving gc, the shrunk
720 * btree and discarded free buckets SSD space may be
721 * helpful for following write requests.
722 */
723 if (c->gc_after_writeback ==
724 (BCH_ENABLE_AUTO_GC|BCH_DO_AUTO_GC)) {
725 c->gc_after_writeback &= ~BCH_DO_AUTO_GC;
726 force_wake_up_gc(c);
727 }
728 }
729
730 up_write(&dc->writeback_lock);
731
732 read_dirty(dc);
733
734 if (searched_full_index) {
735 unsigned int delay = dc->writeback_delay * HZ;
736
737 while (delay &&
738 !kthread_should_stop() &&
739 !test_bit(CACHE_SET_IO_DISABLE, &c->flags) &&
740 !test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags))
741 delay = schedule_timeout_interruptible(delay);
742
743 bch_ratelimit_reset(&dc->writeback_rate);
744 }
745 }
746
747 if (dc->writeback_write_wq) {
748 flush_workqueue(dc->writeback_write_wq);
749 destroy_workqueue(dc->writeback_write_wq);
750 }
751 cached_dev_put(dc);
752 wait_for_kthread_stop();
753
754 return 0;
755}
756
757/* Init */
758#define INIT_KEYS_EACH_TIME 500000
759#define INIT_KEYS_SLEEP_MS 100
760
761struct sectors_dirty_init {
762 struct btree_op op;
763 unsigned int inode;
764 size_t count;
765 struct bkey start;
766};
767
768static int sectors_dirty_init_fn(struct btree_op *_op, struct btree *b,
769 struct bkey *k)
770{
771 struct sectors_dirty_init *op = container_of(_op,
772 struct sectors_dirty_init, op);
773 if (KEY_INODE(k) > op->inode)
774 return MAP_DONE;
775
776 if (KEY_DIRTY(k))
777 bcache_dev_sectors_dirty_add(b->c, KEY_INODE(k),
778 KEY_START(k), KEY_SIZE(k));
779
780 op->count++;
781 if (atomic_read(&b->c->search_inflight) &&
782 !(op->count % INIT_KEYS_EACH_TIME)) {
783 bkey_copy_key(&op->start, k);
784 return -EAGAIN;
785 }
786
787 return MAP_CONTINUE;
788}
789
790static int bch_root_node_dirty_init(struct cache_set *c,
791 struct bcache_device *d,
792 struct bkey *k)
793{
794 struct sectors_dirty_init op;
795 int ret;
796
797 bch_btree_op_init(&op.op, -1);
798 op.inode = d->id;
799 op.count = 0;
800 op.start = KEY(op.inode, 0, 0);
801
802 do {
803 ret = bcache_btree(map_keys_recurse,
804 k,
805 c->root,
806 &op.op,
807 &op.start,
808 sectors_dirty_init_fn,
809 0);
810 if (ret == -EAGAIN)
811 schedule_timeout_interruptible(
812 msecs_to_jiffies(INIT_KEYS_SLEEP_MS));
813 else if (ret < 0) {
814 pr_warn("sectors dirty init failed, ret=%d!\n", ret);
815 break;
816 }
817 } while (ret == -EAGAIN);
818
819 return ret;
820}
821
822static int bch_dirty_init_thread(void *arg)
823{
824 struct dirty_init_thrd_info *info = arg;
825 struct bch_dirty_init_state *state = info->state;
826 struct cache_set *c = state->c;
827 struct btree_iter iter;
828 struct bkey *k, *p;
829 int cur_idx, prev_idx, skip_nr;
830
831 k = p = NULL;
832 cur_idx = prev_idx = 0;
833
834 bch_btree_iter_init(&c->root->keys, &iter, NULL);
835 k = bch_btree_iter_next_filter(&iter, &c->root->keys, bch_ptr_bad);
836 BUG_ON(!k);
837
838 p = k;
839
840 while (k) {
841 spin_lock(&state->idx_lock);
842 cur_idx = state->key_idx;
843 state->key_idx++;
844 spin_unlock(&state->idx_lock);
845
846 skip_nr = cur_idx - prev_idx;
847
848 while (skip_nr) {
849 k = bch_btree_iter_next_filter(&iter,
850 &c->root->keys,
851 bch_ptr_bad);
852 if (k)
853 p = k;
854 else {
855 atomic_set(&state->enough, 1);
856 /* Update state->enough earlier */
857 smp_mb__after_atomic();
858 goto out;
859 }
860 skip_nr--;
861 cond_resched();
862 }
863
864 if (p) {
865 if (bch_root_node_dirty_init(c, state->d, p) < 0)
866 goto out;
867 }
868
869 p = NULL;
870 prev_idx = cur_idx;
871 cond_resched();
872 }
873
874out:
875 /* In order to wake up state->wait in time */
876 smp_mb__before_atomic();
877 if (atomic_dec_and_test(&state->started))
878 wake_up(&state->wait);
879
880 return 0;
881}
882
883static int bch_btre_dirty_init_thread_nr(void)
884{
885 int n = num_online_cpus()/2;
886
887 if (n == 0)
888 n = 1;
889 else if (n > BCH_DIRTY_INIT_THRD_MAX)
890 n = BCH_DIRTY_INIT_THRD_MAX;
891
892 return n;
893}
894
895void bch_sectors_dirty_init(struct bcache_device *d)
896{
897 int i;
898 struct bkey *k = NULL;
899 struct btree_iter iter;
900 struct sectors_dirty_init op;
901 struct cache_set *c = d->c;
902 struct bch_dirty_init_state *state;
903 char name[32];
904
905 /* Just count root keys if no leaf node */
906 if (c->root->level == 0) {
907 bch_btree_op_init(&op.op, -1);
908 op.inode = d->id;
909 op.count = 0;
910 op.start = KEY(op.inode, 0, 0);
911
912 for_each_key_filter(&c->root->keys,
913 k, &iter, bch_ptr_invalid)
914 sectors_dirty_init_fn(&op.op, c->root, k);
915 return;
916 }
917
918 state = kzalloc(sizeof(struct bch_dirty_init_state), GFP_KERNEL);
919 if (!state) {
920 pr_warn("sectors dirty init failed: cannot allocate memory\n");
921 return;
922 }
923
924 state->c = c;
925 state->d = d;
926 state->total_threads = bch_btre_dirty_init_thread_nr();
927 state->key_idx = 0;
928 spin_lock_init(&state->idx_lock);
929 atomic_set(&state->started, 0);
930 atomic_set(&state->enough, 0);
931 init_waitqueue_head(&state->wait);
932
933 for (i = 0; i < state->total_threads; i++) {
934 /* Fetch latest state->enough earlier */
935 smp_mb__before_atomic();
936 if (atomic_read(&state->enough))
937 break;
938
939 state->infos[i].state = state;
940 atomic_inc(&state->started);
941 snprintf(name, sizeof(name), "bch_dirty_init[%d]", i);
942
943 state->infos[i].thread =
944 kthread_run(bch_dirty_init_thread,
945 &state->infos[i],
946 name);
947 if (IS_ERR(state->infos[i].thread)) {
948 pr_err("fails to run thread bch_dirty_init[%d]\n", i);
949 for (--i; i >= 0; i--)
950 kthread_stop(state->infos[i].thread);
951 goto out;
952 }
953 }
954
955 wait_event_interruptible(state->wait,
956 atomic_read(&state->started) == 0 ||
957 test_bit(CACHE_SET_IO_DISABLE, &c->flags));
958
959out:
960 kfree(state);
961}
962
963void bch_cached_dev_writeback_init(struct cached_dev *dc)
964{
965 sema_init(&dc->in_flight, 64);
966 init_rwsem(&dc->writeback_lock);
967 bch_keybuf_init(&dc->writeback_keys);
968
969 dc->writeback_metadata = true;
970 dc->writeback_running = false;
971 dc->writeback_percent = 10;
972 dc->writeback_delay = 30;
973 atomic_long_set(&dc->writeback_rate.rate, 1024);
974 dc->writeback_rate_minimum = 8;
975
976 dc->writeback_rate_update_seconds = WRITEBACK_RATE_UPDATE_SECS_DEFAULT;
977 dc->writeback_rate_p_term_inverse = 40;
978 dc->writeback_rate_i_term_inverse = 10000;
979
980 WARN_ON(test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags));
981 INIT_DELAYED_WORK(&dc->writeback_rate_update, update_writeback_rate);
982}
983
984int bch_cached_dev_writeback_start(struct cached_dev *dc)
985{
986 dc->writeback_write_wq = alloc_workqueue("bcache_writeback_wq",
987 WQ_MEM_RECLAIM, 0);
988 if (!dc->writeback_write_wq)
989 return -ENOMEM;
990
991 cached_dev_get(dc);
992 dc->writeback_thread = kthread_create(bch_writeback_thread, dc,
993 "bcache_writeback");
994 if (IS_ERR(dc->writeback_thread)) {
995 cached_dev_put(dc);
996 destroy_workqueue(dc->writeback_write_wq);
997 return PTR_ERR(dc->writeback_thread);
998 }
999 dc->writeback_running = true;
1000
1001 WARN_ON(test_and_set_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags));
1002 schedule_delayed_work(&dc->writeback_rate_update,
1003 dc->writeback_rate_update_seconds * HZ);
1004
1005 bch_writeback_queue(dc);
1006
1007 return 0;
1008}
1/*
2 * background writeback - scan btree for dirty data and write it to the backing
3 * device
4 *
5 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
6 * Copyright 2012 Google, Inc.
7 */
8
9#include "bcache.h"
10#include "btree.h"
11#include "debug.h"
12#include "writeback.h"
13
14#include <linux/delay.h>
15#include <linux/kthread.h>
16#include <trace/events/bcache.h>
17
18/* Rate limiting */
19
20static void __update_writeback_rate(struct cached_dev *dc)
21{
22 struct cache_set *c = dc->disk.c;
23 uint64_t cache_sectors = c->nbuckets * c->sb.bucket_size;
24 uint64_t cache_dirty_target =
25 div_u64(cache_sectors * dc->writeback_percent, 100);
26
27 int64_t target = div64_u64(cache_dirty_target * bdev_sectors(dc->bdev),
28 c->cached_dev_sectors);
29
30 /* PD controller */
31
32 int64_t dirty = bcache_dev_sectors_dirty(&dc->disk);
33 int64_t derivative = dirty - dc->disk.sectors_dirty_last;
34 int64_t proportional = dirty - target;
35 int64_t change;
36
37 dc->disk.sectors_dirty_last = dirty;
38
39 /* Scale to sectors per second */
40
41 proportional *= dc->writeback_rate_update_seconds;
42 proportional = div_s64(proportional, dc->writeback_rate_p_term_inverse);
43
44 derivative = div_s64(derivative, dc->writeback_rate_update_seconds);
45
46 derivative = ewma_add(dc->disk.sectors_dirty_derivative, derivative,
47 (dc->writeback_rate_d_term /
48 dc->writeback_rate_update_seconds) ?: 1, 0);
49
50 derivative *= dc->writeback_rate_d_term;
51 derivative = div_s64(derivative, dc->writeback_rate_p_term_inverse);
52
53 change = proportional + derivative;
54
55 /* Don't increase writeback rate if the device isn't keeping up */
56 if (change > 0 &&
57 time_after64(local_clock(),
58 dc->writeback_rate.next + NSEC_PER_MSEC))
59 change = 0;
60
61 dc->writeback_rate.rate =
62 clamp_t(int64_t, (int64_t) dc->writeback_rate.rate + change,
63 1, NSEC_PER_MSEC);
64
65 dc->writeback_rate_proportional = proportional;
66 dc->writeback_rate_derivative = derivative;
67 dc->writeback_rate_change = change;
68 dc->writeback_rate_target = target;
69}
70
71static void update_writeback_rate(struct work_struct *work)
72{
73 struct cached_dev *dc = container_of(to_delayed_work(work),
74 struct cached_dev,
75 writeback_rate_update);
76
77 down_read(&dc->writeback_lock);
78
79 if (atomic_read(&dc->has_dirty) &&
80 dc->writeback_percent)
81 __update_writeback_rate(dc);
82
83 up_read(&dc->writeback_lock);
84
85 schedule_delayed_work(&dc->writeback_rate_update,
86 dc->writeback_rate_update_seconds * HZ);
87}
88
89static unsigned writeback_delay(struct cached_dev *dc, unsigned sectors)
90{
91 if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) ||
92 !dc->writeback_percent)
93 return 0;
94
95 return bch_next_delay(&dc->writeback_rate, sectors);
96}
97
98struct dirty_io {
99 struct closure cl;
100 struct cached_dev *dc;
101 struct bio bio;
102};
103
104static void dirty_init(struct keybuf_key *w)
105{
106 struct dirty_io *io = w->private;
107 struct bio *bio = &io->bio;
108
109 bio_init(bio, bio->bi_inline_vecs,
110 DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS));
111 if (!io->dc->writeback_percent)
112 bio_set_prio(bio, IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0));
113
114 bio->bi_iter.bi_size = KEY_SIZE(&w->key) << 9;
115 bio->bi_private = w;
116 bch_bio_map(bio, NULL);
117}
118
119static void dirty_io_destructor(struct closure *cl)
120{
121 struct dirty_io *io = container_of(cl, struct dirty_io, cl);
122 kfree(io);
123}
124
125static void write_dirty_finish(struct closure *cl)
126{
127 struct dirty_io *io = container_of(cl, struct dirty_io, cl);
128 struct keybuf_key *w = io->bio.bi_private;
129 struct cached_dev *dc = io->dc;
130
131 bio_free_pages(&io->bio);
132
133 /* This is kind of a dumb way of signalling errors. */
134 if (KEY_DIRTY(&w->key)) {
135 int ret;
136 unsigned i;
137 struct keylist keys;
138
139 bch_keylist_init(&keys);
140
141 bkey_copy(keys.top, &w->key);
142 SET_KEY_DIRTY(keys.top, false);
143 bch_keylist_push(&keys);
144
145 for (i = 0; i < KEY_PTRS(&w->key); i++)
146 atomic_inc(&PTR_BUCKET(dc->disk.c, &w->key, i)->pin);
147
148 ret = bch_btree_insert(dc->disk.c, &keys, NULL, &w->key);
149
150 if (ret)
151 trace_bcache_writeback_collision(&w->key);
152
153 atomic_long_inc(ret
154 ? &dc->disk.c->writeback_keys_failed
155 : &dc->disk.c->writeback_keys_done);
156 }
157
158 bch_keybuf_del(&dc->writeback_keys, w);
159 up(&dc->in_flight);
160
161 closure_return_with_destructor(cl, dirty_io_destructor);
162}
163
164static void dirty_endio(struct bio *bio)
165{
166 struct keybuf_key *w = bio->bi_private;
167 struct dirty_io *io = w->private;
168
169 if (bio->bi_error)
170 SET_KEY_DIRTY(&w->key, false);
171
172 closure_put(&io->cl);
173}
174
175static void write_dirty(struct closure *cl)
176{
177 struct dirty_io *io = container_of(cl, struct dirty_io, cl);
178 struct keybuf_key *w = io->bio.bi_private;
179
180 dirty_init(w);
181 bio_set_op_attrs(&io->bio, REQ_OP_WRITE, 0);
182 io->bio.bi_iter.bi_sector = KEY_START(&w->key);
183 io->bio.bi_bdev = io->dc->bdev;
184 io->bio.bi_end_io = dirty_endio;
185
186 closure_bio_submit(&io->bio, cl);
187
188 continue_at(cl, write_dirty_finish, system_wq);
189}
190
191static void read_dirty_endio(struct bio *bio)
192{
193 struct keybuf_key *w = bio->bi_private;
194 struct dirty_io *io = w->private;
195
196 bch_count_io_errors(PTR_CACHE(io->dc->disk.c, &w->key, 0),
197 bio->bi_error, "reading dirty data from cache");
198
199 dirty_endio(bio);
200}
201
202static void read_dirty_submit(struct closure *cl)
203{
204 struct dirty_io *io = container_of(cl, struct dirty_io, cl);
205
206 closure_bio_submit(&io->bio, cl);
207
208 continue_at(cl, write_dirty, system_wq);
209}
210
211static void read_dirty(struct cached_dev *dc)
212{
213 unsigned delay = 0;
214 struct keybuf_key *w;
215 struct dirty_io *io;
216 struct closure cl;
217
218 closure_init_stack(&cl);
219
220 /*
221 * XXX: if we error, background writeback just spins. Should use some
222 * mempools.
223 */
224
225 while (!kthread_should_stop()) {
226
227 w = bch_keybuf_next(&dc->writeback_keys);
228 if (!w)
229 break;
230
231 BUG_ON(ptr_stale(dc->disk.c, &w->key, 0));
232
233 if (KEY_START(&w->key) != dc->last_read ||
234 jiffies_to_msecs(delay) > 50)
235 while (!kthread_should_stop() && delay)
236 delay = schedule_timeout_interruptible(delay);
237
238 dc->last_read = KEY_OFFSET(&w->key);
239
240 io = kzalloc(sizeof(struct dirty_io) + sizeof(struct bio_vec)
241 * DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS),
242 GFP_KERNEL);
243 if (!io)
244 goto err;
245
246 w->private = io;
247 io->dc = dc;
248
249 dirty_init(w);
250 bio_set_op_attrs(&io->bio, REQ_OP_READ, 0);
251 io->bio.bi_iter.bi_sector = PTR_OFFSET(&w->key, 0);
252 io->bio.bi_bdev = PTR_CACHE(dc->disk.c,
253 &w->key, 0)->bdev;
254 io->bio.bi_end_io = read_dirty_endio;
255
256 if (bio_alloc_pages(&io->bio, GFP_KERNEL))
257 goto err_free;
258
259 trace_bcache_writeback(&w->key);
260
261 down(&dc->in_flight);
262 closure_call(&io->cl, read_dirty_submit, NULL, &cl);
263
264 delay = writeback_delay(dc, KEY_SIZE(&w->key));
265 }
266
267 if (0) {
268err_free:
269 kfree(w->private);
270err:
271 bch_keybuf_del(&dc->writeback_keys, w);
272 }
273
274 /*
275 * Wait for outstanding writeback IOs to finish (and keybuf slots to be
276 * freed) before refilling again
277 */
278 closure_sync(&cl);
279}
280
281/* Scan for dirty data */
282
283void bcache_dev_sectors_dirty_add(struct cache_set *c, unsigned inode,
284 uint64_t offset, int nr_sectors)
285{
286 struct bcache_device *d = c->devices[inode];
287 unsigned stripe_offset, stripe, sectors_dirty;
288
289 if (!d)
290 return;
291
292 stripe = offset_to_stripe(d, offset);
293 stripe_offset = offset & (d->stripe_size - 1);
294
295 while (nr_sectors) {
296 int s = min_t(unsigned, abs(nr_sectors),
297 d->stripe_size - stripe_offset);
298
299 if (nr_sectors < 0)
300 s = -s;
301
302 if (stripe >= d->nr_stripes)
303 return;
304
305 sectors_dirty = atomic_add_return(s,
306 d->stripe_sectors_dirty + stripe);
307 if (sectors_dirty == d->stripe_size)
308 set_bit(stripe, d->full_dirty_stripes);
309 else
310 clear_bit(stripe, d->full_dirty_stripes);
311
312 nr_sectors -= s;
313 stripe_offset = 0;
314 stripe++;
315 }
316}
317
318static bool dirty_pred(struct keybuf *buf, struct bkey *k)
319{
320 struct cached_dev *dc = container_of(buf, struct cached_dev, writeback_keys);
321
322 BUG_ON(KEY_INODE(k) != dc->disk.id);
323
324 return KEY_DIRTY(k);
325}
326
327static void refill_full_stripes(struct cached_dev *dc)
328{
329 struct keybuf *buf = &dc->writeback_keys;
330 unsigned start_stripe, stripe, next_stripe;
331 bool wrapped = false;
332
333 stripe = offset_to_stripe(&dc->disk, KEY_OFFSET(&buf->last_scanned));
334
335 if (stripe >= dc->disk.nr_stripes)
336 stripe = 0;
337
338 start_stripe = stripe;
339
340 while (1) {
341 stripe = find_next_bit(dc->disk.full_dirty_stripes,
342 dc->disk.nr_stripes, stripe);
343
344 if (stripe == dc->disk.nr_stripes)
345 goto next;
346
347 next_stripe = find_next_zero_bit(dc->disk.full_dirty_stripes,
348 dc->disk.nr_stripes, stripe);
349
350 buf->last_scanned = KEY(dc->disk.id,
351 stripe * dc->disk.stripe_size, 0);
352
353 bch_refill_keybuf(dc->disk.c, buf,
354 &KEY(dc->disk.id,
355 next_stripe * dc->disk.stripe_size, 0),
356 dirty_pred);
357
358 if (array_freelist_empty(&buf->freelist))
359 return;
360
361 stripe = next_stripe;
362next:
363 if (wrapped && stripe > start_stripe)
364 return;
365
366 if (stripe == dc->disk.nr_stripes) {
367 stripe = 0;
368 wrapped = true;
369 }
370 }
371}
372
373/*
374 * Returns true if we scanned the entire disk
375 */
376static bool refill_dirty(struct cached_dev *dc)
377{
378 struct keybuf *buf = &dc->writeback_keys;
379 struct bkey start = KEY(dc->disk.id, 0, 0);
380 struct bkey end = KEY(dc->disk.id, MAX_KEY_OFFSET, 0);
381 struct bkey start_pos;
382
383 /*
384 * make sure keybuf pos is inside the range for this disk - at bringup
385 * we might not be attached yet so this disk's inode nr isn't
386 * initialized then
387 */
388 if (bkey_cmp(&buf->last_scanned, &start) < 0 ||
389 bkey_cmp(&buf->last_scanned, &end) > 0)
390 buf->last_scanned = start;
391
392 if (dc->partial_stripes_expensive) {
393 refill_full_stripes(dc);
394 if (array_freelist_empty(&buf->freelist))
395 return false;
396 }
397
398 start_pos = buf->last_scanned;
399 bch_refill_keybuf(dc->disk.c, buf, &end, dirty_pred);
400
401 if (bkey_cmp(&buf->last_scanned, &end) < 0)
402 return false;
403
404 /*
405 * If we get to the end start scanning again from the beginning, and
406 * only scan up to where we initially started scanning from:
407 */
408 buf->last_scanned = start;
409 bch_refill_keybuf(dc->disk.c, buf, &start_pos, dirty_pred);
410
411 return bkey_cmp(&buf->last_scanned, &start_pos) >= 0;
412}
413
414static int bch_writeback_thread(void *arg)
415{
416 struct cached_dev *dc = arg;
417 bool searched_full_index;
418
419 while (!kthread_should_stop()) {
420 down_write(&dc->writeback_lock);
421 if (!atomic_read(&dc->has_dirty) ||
422 (!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) &&
423 !dc->writeback_running)) {
424 up_write(&dc->writeback_lock);
425 set_current_state(TASK_INTERRUPTIBLE);
426
427 if (kthread_should_stop())
428 return 0;
429
430 schedule();
431 continue;
432 }
433
434 searched_full_index = refill_dirty(dc);
435
436 if (searched_full_index &&
437 RB_EMPTY_ROOT(&dc->writeback_keys.keys)) {
438 atomic_set(&dc->has_dirty, 0);
439 cached_dev_put(dc);
440 SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
441 bch_write_bdev_super(dc, NULL);
442 }
443
444 up_write(&dc->writeback_lock);
445
446 bch_ratelimit_reset(&dc->writeback_rate);
447 read_dirty(dc);
448
449 if (searched_full_index) {
450 unsigned delay = dc->writeback_delay * HZ;
451
452 while (delay &&
453 !kthread_should_stop() &&
454 !test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags))
455 delay = schedule_timeout_interruptible(delay);
456 }
457 }
458
459 return 0;
460}
461
462/* Init */
463
464struct sectors_dirty_init {
465 struct btree_op op;
466 unsigned inode;
467};
468
469static int sectors_dirty_init_fn(struct btree_op *_op, struct btree *b,
470 struct bkey *k)
471{
472 struct sectors_dirty_init *op = container_of(_op,
473 struct sectors_dirty_init, op);
474 if (KEY_INODE(k) > op->inode)
475 return MAP_DONE;
476
477 if (KEY_DIRTY(k))
478 bcache_dev_sectors_dirty_add(b->c, KEY_INODE(k),
479 KEY_START(k), KEY_SIZE(k));
480
481 return MAP_CONTINUE;
482}
483
484void bch_sectors_dirty_init(struct cached_dev *dc)
485{
486 struct sectors_dirty_init op;
487
488 bch_btree_op_init(&op.op, -1);
489 op.inode = dc->disk.id;
490
491 bch_btree_map_keys(&op.op, dc->disk.c, &KEY(op.inode, 0, 0),
492 sectors_dirty_init_fn, 0);
493
494 dc->disk.sectors_dirty_last = bcache_dev_sectors_dirty(&dc->disk);
495}
496
497void bch_cached_dev_writeback_init(struct cached_dev *dc)
498{
499 sema_init(&dc->in_flight, 64);
500 init_rwsem(&dc->writeback_lock);
501 bch_keybuf_init(&dc->writeback_keys);
502
503 dc->writeback_metadata = true;
504 dc->writeback_running = true;
505 dc->writeback_percent = 10;
506 dc->writeback_delay = 30;
507 dc->writeback_rate.rate = 1024;
508
509 dc->writeback_rate_update_seconds = 5;
510 dc->writeback_rate_d_term = 30;
511 dc->writeback_rate_p_term_inverse = 6000;
512
513 INIT_DELAYED_WORK(&dc->writeback_rate_update, update_writeback_rate);
514}
515
516int bch_cached_dev_writeback_start(struct cached_dev *dc)
517{
518 dc->writeback_thread = kthread_create(bch_writeback_thread, dc,
519 "bcache_writeback");
520 if (IS_ERR(dc->writeback_thread))
521 return PTR_ERR(dc->writeback_thread);
522
523 schedule_delayed_work(&dc->writeback_rate_update,
524 dc->writeback_rate_update_seconds * HZ);
525
526 bch_writeback_queue(dc);
527
528 return 0;
529}