Linux Audio

Check our new training course

Loading...
v5.9
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * drivers/clocksource/arm_global_timer.c
  4 *
  5 * Copyright (C) 2013 STMicroelectronics (R&D) Limited.
  6 * Author: Stuart Menefy <stuart.menefy@st.com>
  7 * Author: Srinivas Kandagatla <srinivas.kandagatla@st.com>
 
 
 
 
  8 */
  9
 10#include <linux/init.h>
 11#include <linux/interrupt.h>
 12#include <linux/clocksource.h>
 13#include <linux/clockchips.h>
 14#include <linux/cpu.h>
 15#include <linux/clk.h>
 16#include <linux/delay.h>
 17#include <linux/err.h>
 18#include <linux/io.h>
 19#include <linux/of.h>
 20#include <linux/of_irq.h>
 21#include <linux/of_address.h>
 22#include <linux/sched_clock.h>
 23
 24#include <asm/cputype.h>
 25
 26#define GT_COUNTER0	0x00
 27#define GT_COUNTER1	0x04
 28
 29#define GT_CONTROL	0x08
 30#define GT_CONTROL_TIMER_ENABLE		BIT(0)  /* this bit is NOT banked */
 31#define GT_CONTROL_COMP_ENABLE		BIT(1)	/* banked */
 32#define GT_CONTROL_IRQ_ENABLE		BIT(2)	/* banked */
 33#define GT_CONTROL_AUTO_INC		BIT(3)	/* banked */
 34
 35#define GT_INT_STATUS	0x0c
 36#define GT_INT_STATUS_EVENT_FLAG	BIT(0)
 37
 38#define GT_COMP0	0x10
 39#define GT_COMP1	0x14
 40#define GT_AUTO_INC	0x18
 41
 42/*
 43 * We are expecting to be clocked by the ARM peripheral clock.
 44 *
 45 * Note: it is assumed we are using a prescaler value of zero, so this is
 46 * the units for all operations.
 47 */
 48static void __iomem *gt_base;
 49static unsigned long gt_clk_rate;
 50static int gt_ppi;
 51static struct clock_event_device __percpu *gt_evt;
 52
 53/*
 54 * To get the value from the Global Timer Counter register proceed as follows:
 55 * 1. Read the upper 32-bit timer counter register
 56 * 2. Read the lower 32-bit timer counter register
 57 * 3. Read the upper 32-bit timer counter register again. If the value is
 58 *  different to the 32-bit upper value read previously, go back to step 2.
 59 *  Otherwise the 64-bit timer counter value is correct.
 60 */
 61static u64 notrace _gt_counter_read(void)
 62{
 63	u64 counter;
 64	u32 lower;
 65	u32 upper, old_upper;
 66
 67	upper = readl_relaxed(gt_base + GT_COUNTER1);
 68	do {
 69		old_upper = upper;
 70		lower = readl_relaxed(gt_base + GT_COUNTER0);
 71		upper = readl_relaxed(gt_base + GT_COUNTER1);
 72	} while (upper != old_upper);
 73
 74	counter = upper;
 75	counter <<= 32;
 76	counter |= lower;
 77	return counter;
 78}
 79
 80static u64 gt_counter_read(void)
 81{
 82	return _gt_counter_read();
 83}
 84
 85/**
 86 * To ensure that updates to comparator value register do not set the
 87 * Interrupt Status Register proceed as follows:
 88 * 1. Clear the Comp Enable bit in the Timer Control Register.
 89 * 2. Write the lower 32-bit Comparator Value Register.
 90 * 3. Write the upper 32-bit Comparator Value Register.
 91 * 4. Set the Comp Enable bit and, if necessary, the IRQ enable bit.
 92 */
 93static void gt_compare_set(unsigned long delta, int periodic)
 94{
 95	u64 counter = gt_counter_read();
 96	unsigned long ctrl;
 97
 98	counter += delta;
 99	ctrl = GT_CONTROL_TIMER_ENABLE;
100	writel_relaxed(ctrl, gt_base + GT_CONTROL);
101	writel_relaxed(lower_32_bits(counter), gt_base + GT_COMP0);
102	writel_relaxed(upper_32_bits(counter), gt_base + GT_COMP1);
103
104	if (periodic) {
105		writel_relaxed(delta, gt_base + GT_AUTO_INC);
106		ctrl |= GT_CONTROL_AUTO_INC;
107	}
108
109	ctrl |= GT_CONTROL_COMP_ENABLE | GT_CONTROL_IRQ_ENABLE;
110	writel_relaxed(ctrl, gt_base + GT_CONTROL);
111}
112
113static int gt_clockevent_shutdown(struct clock_event_device *evt)
114{
115	unsigned long ctrl;
116
117	ctrl = readl(gt_base + GT_CONTROL);
118	ctrl &= ~(GT_CONTROL_COMP_ENABLE | GT_CONTROL_IRQ_ENABLE |
119		  GT_CONTROL_AUTO_INC);
120	writel(ctrl, gt_base + GT_CONTROL);
121	return 0;
122}
123
124static int gt_clockevent_set_periodic(struct clock_event_device *evt)
125{
126	gt_compare_set(DIV_ROUND_CLOSEST(gt_clk_rate, HZ), 1);
127	return 0;
128}
129
130static int gt_clockevent_set_next_event(unsigned long evt,
131					struct clock_event_device *unused)
132{
133	gt_compare_set(evt, 0);
134	return 0;
135}
136
137static irqreturn_t gt_clockevent_interrupt(int irq, void *dev_id)
138{
139	struct clock_event_device *evt = dev_id;
140
141	if (!(readl_relaxed(gt_base + GT_INT_STATUS) &
142				GT_INT_STATUS_EVENT_FLAG))
143		return IRQ_NONE;
144
145	/**
146	 * ERRATA 740657( Global Timer can send 2 interrupts for
147	 * the same event in single-shot mode)
148	 * Workaround:
149	 *	Either disable single-shot mode.
150	 *	Or
151	 *	Modify the Interrupt Handler to avoid the
152	 *	offending sequence. This is achieved by clearing
153	 *	the Global Timer flag _after_ having incremented
154	 *	the Comparator register	value to a higher value.
155	 */
156	if (clockevent_state_oneshot(evt))
157		gt_compare_set(ULONG_MAX, 0);
158
159	writel_relaxed(GT_INT_STATUS_EVENT_FLAG, gt_base + GT_INT_STATUS);
160	evt->event_handler(evt);
161
162	return IRQ_HANDLED;
163}
164
165static int gt_starting_cpu(unsigned int cpu)
166{
167	struct clock_event_device *clk = this_cpu_ptr(gt_evt);
168
169	clk->name = "arm_global_timer";
170	clk->features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT |
171		CLOCK_EVT_FEAT_PERCPU;
172	clk->set_state_shutdown = gt_clockevent_shutdown;
173	clk->set_state_periodic = gt_clockevent_set_periodic;
174	clk->set_state_oneshot = gt_clockevent_shutdown;
175	clk->set_state_oneshot_stopped = gt_clockevent_shutdown;
176	clk->set_next_event = gt_clockevent_set_next_event;
177	clk->cpumask = cpumask_of(cpu);
178	clk->rating = 300;
179	clk->irq = gt_ppi;
180	clockevents_config_and_register(clk, gt_clk_rate,
181					1, 0xffffffff);
182	enable_percpu_irq(clk->irq, IRQ_TYPE_NONE);
183	return 0;
184}
185
186static int gt_dying_cpu(unsigned int cpu)
187{
188	struct clock_event_device *clk = this_cpu_ptr(gt_evt);
189
190	gt_clockevent_shutdown(clk);
191	disable_percpu_irq(clk->irq);
192	return 0;
193}
194
195static u64 gt_clocksource_read(struct clocksource *cs)
196{
197	return gt_counter_read();
198}
199
200static void gt_resume(struct clocksource *cs)
201{
202	unsigned long ctrl;
203
204	ctrl = readl(gt_base + GT_CONTROL);
205	if (!(ctrl & GT_CONTROL_TIMER_ENABLE))
206		/* re-enable timer on resume */
207		writel(GT_CONTROL_TIMER_ENABLE, gt_base + GT_CONTROL);
208}
209
210static struct clocksource gt_clocksource = {
211	.name	= "arm_global_timer",
212	.rating	= 300,
213	.read	= gt_clocksource_read,
214	.mask	= CLOCKSOURCE_MASK(64),
215	.flags	= CLOCK_SOURCE_IS_CONTINUOUS,
216	.resume = gt_resume,
217};
218
219#ifdef CONFIG_CLKSRC_ARM_GLOBAL_TIMER_SCHED_CLOCK
220static u64 notrace gt_sched_clock_read(void)
221{
222	return _gt_counter_read();
223}
224#endif
225
226static unsigned long gt_read_long(void)
227{
228	return readl_relaxed(gt_base + GT_COUNTER0);
229}
230
231static struct delay_timer gt_delay_timer = {
232	.read_current_timer = gt_read_long,
233};
234
235static void __init gt_delay_timer_init(void)
236{
237	gt_delay_timer.freq = gt_clk_rate;
238	register_current_timer_delay(&gt_delay_timer);
239}
240
241static int __init gt_clocksource_init(void)
242{
243	writel(0, gt_base + GT_CONTROL);
244	writel(0, gt_base + GT_COUNTER0);
245	writel(0, gt_base + GT_COUNTER1);
246	/* enables timer on all the cores */
247	writel(GT_CONTROL_TIMER_ENABLE, gt_base + GT_CONTROL);
248
249#ifdef CONFIG_CLKSRC_ARM_GLOBAL_TIMER_SCHED_CLOCK
250	sched_clock_register(gt_sched_clock_read, 64, gt_clk_rate);
251#endif
252	return clocksource_register_hz(&gt_clocksource, gt_clk_rate);
253}
254
255static int __init global_timer_of_register(struct device_node *np)
256{
257	struct clk *gt_clk;
258	int err = 0;
259
260	/*
261	 * In A9 r2p0 the comparators for each processor with the global timer
262	 * fire when the timer value is greater than or equal to. In previous
263	 * revisions the comparators fired when the timer value was equal to.
264	 */
265	if (read_cpuid_part() == ARM_CPU_PART_CORTEX_A9
266	    && (read_cpuid_id() & 0xf0000f) < 0x200000) {
267		pr_warn("global-timer: non support for this cpu version.\n");
268		return -ENOSYS;
269	}
270
271	gt_ppi = irq_of_parse_and_map(np, 0);
272	if (!gt_ppi) {
273		pr_warn("global-timer: unable to parse irq\n");
274		return -EINVAL;
275	}
276
277	gt_base = of_iomap(np, 0);
278	if (!gt_base) {
279		pr_warn("global-timer: invalid base address\n");
280		return -ENXIO;
281	}
282
283	gt_clk = of_clk_get(np, 0);
284	if (!IS_ERR(gt_clk)) {
285		err = clk_prepare_enable(gt_clk);
286		if (err)
287			goto out_unmap;
288	} else {
289		pr_warn("global-timer: clk not found\n");
290		err = -EINVAL;
291		goto out_unmap;
292	}
293
294	gt_clk_rate = clk_get_rate(gt_clk);
295	gt_evt = alloc_percpu(struct clock_event_device);
296	if (!gt_evt) {
297		pr_warn("global-timer: can't allocate memory\n");
298		err = -ENOMEM;
299		goto out_clk;
300	}
301
302	err = request_percpu_irq(gt_ppi, gt_clockevent_interrupt,
303				 "gt", gt_evt);
304	if (err) {
305		pr_warn("global-timer: can't register interrupt %d (%d)\n",
306			gt_ppi, err);
307		goto out_free;
308	}
309
310	/* Register and immediately configure the timer on the boot CPU */
311	err = gt_clocksource_init();
312	if (err)
313		goto out_irq;
314	
315	err = cpuhp_setup_state(CPUHP_AP_ARM_GLOBAL_TIMER_STARTING,
316				"clockevents/arm/global_timer:starting",
317				gt_starting_cpu, gt_dying_cpu);
318	if (err)
319		goto out_irq;
320
321	gt_delay_timer_init();
322
323	return 0;
324
325out_irq:
326	free_percpu_irq(gt_ppi, gt_evt);
327out_free:
328	free_percpu(gt_evt);
329out_clk:
330	clk_disable_unprepare(gt_clk);
331out_unmap:
332	iounmap(gt_base);
333	WARN(err, "ARM Global timer register failed (%d)\n", err);
334
335	return err;
336}
337
338/* Only tested on r2p2 and r3p0  */
339TIMER_OF_DECLARE(arm_gt, "arm,cortex-a9-global-timer",
340			global_timer_of_register);
v4.10.11
 
  1/*
  2 * drivers/clocksource/arm_global_timer.c
  3 *
  4 * Copyright (C) 2013 STMicroelectronics (R&D) Limited.
  5 * Author: Stuart Menefy <stuart.menefy@st.com>
  6 * Author: Srinivas Kandagatla <srinivas.kandagatla@st.com>
  7 *
  8 * This program is free software; you can redistribute it and/or modify
  9 * it under the terms of the GNU General Public License version 2 as
 10 * published by the Free Software Foundation.
 11 */
 12
 13#include <linux/init.h>
 14#include <linux/interrupt.h>
 15#include <linux/clocksource.h>
 16#include <linux/clockchips.h>
 17#include <linux/cpu.h>
 18#include <linux/clk.h>
 19#include <linux/delay.h>
 20#include <linux/err.h>
 21#include <linux/io.h>
 22#include <linux/of.h>
 23#include <linux/of_irq.h>
 24#include <linux/of_address.h>
 25#include <linux/sched_clock.h>
 26
 27#include <asm/cputype.h>
 28
 29#define GT_COUNTER0	0x00
 30#define GT_COUNTER1	0x04
 31
 32#define GT_CONTROL	0x08
 33#define GT_CONTROL_TIMER_ENABLE		BIT(0)  /* this bit is NOT banked */
 34#define GT_CONTROL_COMP_ENABLE		BIT(1)	/* banked */
 35#define GT_CONTROL_IRQ_ENABLE		BIT(2)	/* banked */
 36#define GT_CONTROL_AUTO_INC		BIT(3)	/* banked */
 37
 38#define GT_INT_STATUS	0x0c
 39#define GT_INT_STATUS_EVENT_FLAG	BIT(0)
 40
 41#define GT_COMP0	0x10
 42#define GT_COMP1	0x14
 43#define GT_AUTO_INC	0x18
 44
 45/*
 46 * We are expecting to be clocked by the ARM peripheral clock.
 47 *
 48 * Note: it is assumed we are using a prescaler value of zero, so this is
 49 * the units for all operations.
 50 */
 51static void __iomem *gt_base;
 52static unsigned long gt_clk_rate;
 53static int gt_ppi;
 54static struct clock_event_device __percpu *gt_evt;
 55
 56/*
 57 * To get the value from the Global Timer Counter register proceed as follows:
 58 * 1. Read the upper 32-bit timer counter register
 59 * 2. Read the lower 32-bit timer counter register
 60 * 3. Read the upper 32-bit timer counter register again. If the value is
 61 *  different to the 32-bit upper value read previously, go back to step 2.
 62 *  Otherwise the 64-bit timer counter value is correct.
 63 */
 64static u64 notrace _gt_counter_read(void)
 65{
 66	u64 counter;
 67	u32 lower;
 68	u32 upper, old_upper;
 69
 70	upper = readl_relaxed(gt_base + GT_COUNTER1);
 71	do {
 72		old_upper = upper;
 73		lower = readl_relaxed(gt_base + GT_COUNTER0);
 74		upper = readl_relaxed(gt_base + GT_COUNTER1);
 75	} while (upper != old_upper);
 76
 77	counter = upper;
 78	counter <<= 32;
 79	counter |= lower;
 80	return counter;
 81}
 82
 83static u64 gt_counter_read(void)
 84{
 85	return _gt_counter_read();
 86}
 87
 88/**
 89 * To ensure that updates to comparator value register do not set the
 90 * Interrupt Status Register proceed as follows:
 91 * 1. Clear the Comp Enable bit in the Timer Control Register.
 92 * 2. Write the lower 32-bit Comparator Value Register.
 93 * 3. Write the upper 32-bit Comparator Value Register.
 94 * 4. Set the Comp Enable bit and, if necessary, the IRQ enable bit.
 95 */
 96static void gt_compare_set(unsigned long delta, int periodic)
 97{
 98	u64 counter = gt_counter_read();
 99	unsigned long ctrl;
100
101	counter += delta;
102	ctrl = GT_CONTROL_TIMER_ENABLE;
103	writel_relaxed(ctrl, gt_base + GT_CONTROL);
104	writel_relaxed(lower_32_bits(counter), gt_base + GT_COMP0);
105	writel_relaxed(upper_32_bits(counter), gt_base + GT_COMP1);
106
107	if (periodic) {
108		writel_relaxed(delta, gt_base + GT_AUTO_INC);
109		ctrl |= GT_CONTROL_AUTO_INC;
110	}
111
112	ctrl |= GT_CONTROL_COMP_ENABLE | GT_CONTROL_IRQ_ENABLE;
113	writel_relaxed(ctrl, gt_base + GT_CONTROL);
114}
115
116static int gt_clockevent_shutdown(struct clock_event_device *evt)
117{
118	unsigned long ctrl;
119
120	ctrl = readl(gt_base + GT_CONTROL);
121	ctrl &= ~(GT_CONTROL_COMP_ENABLE | GT_CONTROL_IRQ_ENABLE |
122		  GT_CONTROL_AUTO_INC);
123	writel(ctrl, gt_base + GT_CONTROL);
124	return 0;
125}
126
127static int gt_clockevent_set_periodic(struct clock_event_device *evt)
128{
129	gt_compare_set(DIV_ROUND_CLOSEST(gt_clk_rate, HZ), 1);
130	return 0;
131}
132
133static int gt_clockevent_set_next_event(unsigned long evt,
134					struct clock_event_device *unused)
135{
136	gt_compare_set(evt, 0);
137	return 0;
138}
139
140static irqreturn_t gt_clockevent_interrupt(int irq, void *dev_id)
141{
142	struct clock_event_device *evt = dev_id;
143
144	if (!(readl_relaxed(gt_base + GT_INT_STATUS) &
145				GT_INT_STATUS_EVENT_FLAG))
146		return IRQ_NONE;
147
148	/**
149	 * ERRATA 740657( Global Timer can send 2 interrupts for
150	 * the same event in single-shot mode)
151	 * Workaround:
152	 *	Either disable single-shot mode.
153	 *	Or
154	 *	Modify the Interrupt Handler to avoid the
155	 *	offending sequence. This is achieved by clearing
156	 *	the Global Timer flag _after_ having incremented
157	 *	the Comparator register	value to a higher value.
158	 */
159	if (clockevent_state_oneshot(evt))
160		gt_compare_set(ULONG_MAX, 0);
161
162	writel_relaxed(GT_INT_STATUS_EVENT_FLAG, gt_base + GT_INT_STATUS);
163	evt->event_handler(evt);
164
165	return IRQ_HANDLED;
166}
167
168static int gt_starting_cpu(unsigned int cpu)
169{
170	struct clock_event_device *clk = this_cpu_ptr(gt_evt);
171
172	clk->name = "arm_global_timer";
173	clk->features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT |
174		CLOCK_EVT_FEAT_PERCPU;
175	clk->set_state_shutdown = gt_clockevent_shutdown;
176	clk->set_state_periodic = gt_clockevent_set_periodic;
177	clk->set_state_oneshot = gt_clockevent_shutdown;
178	clk->set_state_oneshot_stopped = gt_clockevent_shutdown;
179	clk->set_next_event = gt_clockevent_set_next_event;
180	clk->cpumask = cpumask_of(cpu);
181	clk->rating = 300;
182	clk->irq = gt_ppi;
183	clockevents_config_and_register(clk, gt_clk_rate,
184					1, 0xffffffff);
185	enable_percpu_irq(clk->irq, IRQ_TYPE_NONE);
186	return 0;
187}
188
189static int gt_dying_cpu(unsigned int cpu)
190{
191	struct clock_event_device *clk = this_cpu_ptr(gt_evt);
192
193	gt_clockevent_shutdown(clk);
194	disable_percpu_irq(clk->irq);
195	return 0;
196}
197
198static u64 gt_clocksource_read(struct clocksource *cs)
199{
200	return gt_counter_read();
201}
202
203static void gt_resume(struct clocksource *cs)
204{
205	unsigned long ctrl;
206
207	ctrl = readl(gt_base + GT_CONTROL);
208	if (!(ctrl & GT_CONTROL_TIMER_ENABLE))
209		/* re-enable timer on resume */
210		writel(GT_CONTROL_TIMER_ENABLE, gt_base + GT_CONTROL);
211}
212
213static struct clocksource gt_clocksource = {
214	.name	= "arm_global_timer",
215	.rating	= 300,
216	.read	= gt_clocksource_read,
217	.mask	= CLOCKSOURCE_MASK(64),
218	.flags	= CLOCK_SOURCE_IS_CONTINUOUS,
219	.resume = gt_resume,
220};
221
222#ifdef CONFIG_CLKSRC_ARM_GLOBAL_TIMER_SCHED_CLOCK
223static u64 notrace gt_sched_clock_read(void)
224{
225	return _gt_counter_read();
226}
227#endif
228
229static unsigned long gt_read_long(void)
230{
231	return readl_relaxed(gt_base + GT_COUNTER0);
232}
233
234static struct delay_timer gt_delay_timer = {
235	.read_current_timer = gt_read_long,
236};
237
238static void __init gt_delay_timer_init(void)
239{
240	gt_delay_timer.freq = gt_clk_rate;
241	register_current_timer_delay(&gt_delay_timer);
242}
243
244static int __init gt_clocksource_init(void)
245{
246	writel(0, gt_base + GT_CONTROL);
247	writel(0, gt_base + GT_COUNTER0);
248	writel(0, gt_base + GT_COUNTER1);
249	/* enables timer on all the cores */
250	writel(GT_CONTROL_TIMER_ENABLE, gt_base + GT_CONTROL);
251
252#ifdef CONFIG_CLKSRC_ARM_GLOBAL_TIMER_SCHED_CLOCK
253	sched_clock_register(gt_sched_clock_read, 64, gt_clk_rate);
254#endif
255	return clocksource_register_hz(&gt_clocksource, gt_clk_rate);
256}
257
258static int __init global_timer_of_register(struct device_node *np)
259{
260	struct clk *gt_clk;
261	int err = 0;
262
263	/*
264	 * In A9 r2p0 the comparators for each processor with the global timer
265	 * fire when the timer value is greater than or equal to. In previous
266	 * revisions the comparators fired when the timer value was equal to.
267	 */
268	if (read_cpuid_part() == ARM_CPU_PART_CORTEX_A9
269	    && (read_cpuid_id() & 0xf0000f) < 0x200000) {
270		pr_warn("global-timer: non support for this cpu version.\n");
271		return -ENOSYS;
272	}
273
274	gt_ppi = irq_of_parse_and_map(np, 0);
275	if (!gt_ppi) {
276		pr_warn("global-timer: unable to parse irq\n");
277		return -EINVAL;
278	}
279
280	gt_base = of_iomap(np, 0);
281	if (!gt_base) {
282		pr_warn("global-timer: invalid base address\n");
283		return -ENXIO;
284	}
285
286	gt_clk = of_clk_get(np, 0);
287	if (!IS_ERR(gt_clk)) {
288		err = clk_prepare_enable(gt_clk);
289		if (err)
290			goto out_unmap;
291	} else {
292		pr_warn("global-timer: clk not found\n");
293		err = -EINVAL;
294		goto out_unmap;
295	}
296
297	gt_clk_rate = clk_get_rate(gt_clk);
298	gt_evt = alloc_percpu(struct clock_event_device);
299	if (!gt_evt) {
300		pr_warn("global-timer: can't allocate memory\n");
301		err = -ENOMEM;
302		goto out_clk;
303	}
304
305	err = request_percpu_irq(gt_ppi, gt_clockevent_interrupt,
306				 "gt", gt_evt);
307	if (err) {
308		pr_warn("global-timer: can't register interrupt %d (%d)\n",
309			gt_ppi, err);
310		goto out_free;
311	}
312
313	/* Register and immediately configure the timer on the boot CPU */
314	err = gt_clocksource_init();
315	if (err)
316		goto out_irq;
317	
318	err = cpuhp_setup_state(CPUHP_AP_ARM_GLOBAL_TIMER_STARTING,
319				"clockevents/arm/global_timer:starting",
320				gt_starting_cpu, gt_dying_cpu);
321	if (err)
322		goto out_irq;
323
324	gt_delay_timer_init();
325
326	return 0;
327
328out_irq:
329	free_percpu_irq(gt_ppi, gt_evt);
330out_free:
331	free_percpu(gt_evt);
332out_clk:
333	clk_disable_unprepare(gt_clk);
334out_unmap:
335	iounmap(gt_base);
336	WARN(err, "ARM Global timer register failed (%d)\n", err);
337
338	return err;
339}
340
341/* Only tested on r2p2 and r3p0  */
342CLOCKSOURCE_OF_DECLARE(arm_gt, "arm,cortex-a9-global-timer",
343			global_timer_of_register);