Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3  Madge Horizon ATM Adapter driver.
   4  Copyright (C) 1995-1999  Madge Networks Ltd.
   5  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   6*/
   7
   8/*
   9  IMPORTANT NOTE: Madge Networks no longer makes the adapters
  10  supported by this driver and makes no commitment to maintain it.
  11*/
  12
  13#include <linux/module.h>
  14#include <linux/kernel.h>
  15#include <linux/sched/signal.h>
  16#include <linux/mm.h>
  17#include <linux/pci.h>
  18#include <linux/errno.h>
  19#include <linux/atm.h>
  20#include <linux/atmdev.h>
  21#include <linux/sonet.h>
  22#include <linux/skbuff.h>
  23#include <linux/time.h>
  24#include <linux/delay.h>
  25#include <linux/uio.h>
  26#include <linux/init.h>
  27#include <linux/interrupt.h>
  28#include <linux/ioport.h>
  29#include <linux/wait.h>
  30#include <linux/slab.h>
  31
  32#include <asm/io.h>
  33#include <linux/atomic.h>
  34#include <linux/uaccess.h>
  35#include <asm/string.h>
  36#include <asm/byteorder.h>
  37
  38#include "horizon.h"
  39
  40#define maintainer_string "Giuliano Procida at Madge Networks <gprocida@madge.com>"
  41#define description_string "Madge ATM Horizon [Ultra] driver"
  42#define version_string "1.2.1"
  43
  44static inline void __init show_version (void) {
  45  printk ("%s version %s\n", description_string, version_string);
  46}
  47
  48/*
  49  
  50  CREDITS
  51  
  52  Driver and documentation by:
  53  
  54  Chris Aston        Madge Networks
  55  Giuliano Procida   Madge Networks
  56  Simon Benham       Madge Networks
  57  Simon Johnson      Madge Networks
  58  Various Others     Madge Networks
  59  
  60  Some inspiration taken from other drivers by:
  61  
  62  Alexandru Cucos    UTBv
  63  Kari Mettinen      University of Helsinki
  64  Werner Almesberger EPFL LRC
  65  
  66  Theory of Operation
  67  
  68  I Hardware, detection, initialisation and shutdown.
  69  
  70  1. Supported Hardware
  71  
  72  This driver should handle all variants of the PCI Madge ATM adapters
  73  with the Horizon chipset. These are all PCI cards supporting PIO, BM
  74  DMA and a form of MMIO (registers only, not internal RAM).
  75  
  76  The driver is only known to work with SONET and UTP Horizon Ultra
  77  cards at 155Mb/s. However, code is in place to deal with both the
  78  original Horizon and 25Mb/s operation.
  79  
  80  There are two revisions of the Horizon ASIC: the original and the
  81  Ultra. Details of hardware bugs are in section III.
  82  
  83  The ASIC version can be distinguished by chip markings but is NOT
  84  indicated by the PCI revision (all adapters seem to have PCI rev 1).
  85  
  86  I believe that:
  87  
  88  Horizon       => Collage  25 PCI Adapter (UTP and STP)
  89  Horizon Ultra => Collage 155 PCI Client (UTP or SONET)
  90  Ambassador x  => Collage 155 PCI Server (completely different)
  91  
  92  Horizon (25Mb/s) is fitted with UTP and STP connectors. It seems to
  93  have a Madge B154 plus glue logic serializer. I have also found a
  94  really ancient version of this with slightly different glue. It
  95  comes with the revision 0 (140-025-01) ASIC.
  96  
  97  Horizon Ultra (155Mb/s) is fitted with either a Pulse Medialink
  98  output (UTP) or an HP HFBR 5205 output (SONET). It has either
  99  Madge's SAMBA framer or a SUNI-lite device (early versions). It
 100  comes with the revision 1 (140-027-01) ASIC.
 101  
 102  2. Detection
 103  
 104  All Horizon-based cards present with the same PCI Vendor and Device
 105  IDs. The standard Linux 2.2 PCI API is used to locate any cards and
 106  to enable bus-mastering (with appropriate latency).
 107  
 108  ATM_LAYER_STATUS in the control register distinguishes between the
 109  two possible physical layers (25 and 155). It is not clear whether
 110  the 155 cards can also operate at 25Mbps. We rely on the fact that a
 111  card operates at 155 if and only if it has the newer Horizon Ultra
 112  ASIC.
 113  
 114  For 155 cards the two possible framers are probed for and then set
 115  up for loop-timing.
 116  
 117  3. Initialisation
 118  
 119  The card is reset and then put into a known state. The physical
 120  layer is configured for normal operation at the appropriate speed;
 121  in the case of the 155 cards, the framer is initialised with
 122  line-based timing; the internal RAM is zeroed and the allocation of
 123  buffers for RX and TX is made; the Burnt In Address is read and
 124  copied to the ATM ESI; various policy settings for RX (VPI bits,
 125  unknown VCs, oam cells) are made. Ideally all policy items should be
 126  configurable at module load (if not actually on-demand), however,
 127  only the vpi vs vci bit allocation can be specified at insmod.
 128  
 129  4. Shutdown
 130  
 131  This is in response to module_cleaup. No VCs are in use and the card
 132  should be idle; it is reset.
 133  
 134  II Driver software (as it should be)
 135  
 136  0. Traffic Parameters
 137  
 138  The traffic classes (not an enumeration) are currently: ATM_NONE (no
 139  traffic), ATM_UBR, ATM_CBR, ATM_VBR and ATM_ABR, ATM_ANYCLASS
 140  (compatible with everything). Together with (perhaps only some of)
 141  the following items they make up the traffic specification.
 142  
 143  struct atm_trafprm {
 144    unsigned char traffic_class; traffic class (ATM_UBR, ...)
 145    int           max_pcr;       maximum PCR in cells per second
 146    int           pcr;           desired PCR in cells per second
 147    int           min_pcr;       minimum PCR in cells per second
 148    int           max_cdv;       maximum CDV in microseconds
 149    int           max_sdu;       maximum SDU in bytes
 150  };
 151  
 152  Note that these denote bandwidth available not bandwidth used; the
 153  possibilities according to ATMF are:
 154  
 155  Real Time (cdv and max CDT given)
 156  
 157  CBR(pcr)             pcr bandwidth always available
 158  rtVBR(pcr,scr,mbs)   scr bandwidth always available, up to pcr at mbs too
 159  
 160  Non Real Time
 161  
 162  nrtVBR(pcr,scr,mbs)  scr bandwidth always available, up to pcr at mbs too
 163  UBR()
 164  ABR(mcr,pcr)         mcr bandwidth always available, up to pcr (depending) too
 165  
 166  mbs is max burst size (bucket)
 167  pcr and scr have associated cdvt values
 168  mcr is like scr but has no cdtv
 169  cdtv may differ at each hop
 170  
 171  Some of the above items are qos items (as opposed to traffic
 172  parameters). We have nothing to do with qos. All except ABR can have
 173  their traffic parameters converted to GCRA parameters. The GCRA may
 174  be implemented as a (real-number) leaky bucket. The GCRA can be used
 175  in complicated ways by switches and in simpler ways by end-stations.
 176  It can be used both to filter incoming cells and shape out-going
 177  cells.
 178  
 179  ATM Linux actually supports:
 180  
 181  ATM_NONE() (no traffic in this direction)
 182  ATM_UBR(max_frame_size)
 183  ATM_CBR(max/min_pcr, max_cdv, max_frame_size)
 184  
 185  0 or ATM_MAX_PCR are used to indicate maximum available PCR
 186  
 187  A traffic specification consists of the AAL type and separate
 188  traffic specifications for either direction. In ATM Linux it is:
 189  
 190  struct atm_qos {
 191  struct atm_trafprm txtp;
 192  struct atm_trafprm rxtp;
 193  unsigned char aal;
 194  };
 195  
 196  AAL types are:
 197  
 198  ATM_NO_AAL    AAL not specified
 199  ATM_AAL0      "raw" ATM cells
 200  ATM_AAL1      AAL1 (CBR)
 201  ATM_AAL2      AAL2 (VBR)
 202  ATM_AAL34     AAL3/4 (data)
 203  ATM_AAL5      AAL5 (data)
 204  ATM_SAAL      signaling AAL
 205  
 206  The Horizon has support for AAL frame types: 0, 3/4 and 5. However,
 207  it does not implement AAL 3/4 SAR and it has a different notion of
 208  "raw cell" to ATM Linux's (48 bytes vs. 52 bytes) so neither are
 209  supported by this driver.
 210  
 211  The Horizon has limited support for ABR (including UBR), VBR and
 212  CBR. Each TX channel has a bucket (containing up to 31 cell units)
 213  and two timers (PCR and SCR) associated with it that can be used to
 214  govern cell emissions and host notification (in the case of ABR this
 215  is presumably so that RM cells may be emitted at appropriate times).
 216  The timers may either be disabled or may be set to any of 240 values
 217  (determined by the clock crystal, a fixed (?) per-device divider, a
 218  configurable divider and a configurable timer preload value).
 219  
 220  At the moment only UBR and CBR are supported by the driver. VBR will
 221  be supported as soon as ATM for Linux supports it. ABR support is
 222  very unlikely as RM cell handling is completely up to the driver.
 223  
 224  1. TX (TX channel setup and TX transfer)
 225  
 226  The TX half of the driver owns the TX Horizon registers. The TX
 227  component in the IRQ handler is the BM completion handler. This can
 228  only be entered when tx_busy is true (enforced by hardware). The
 229  other TX component can only be entered when tx_busy is false
 230  (enforced by driver). So TX is single-threaded.
 231  
 232  Apart from a minor optimisation to not re-select the last channel,
 233  the TX send component works as follows:
 234  
 235  Atomic test and set tx_busy until we succeed; we should implement
 236  some sort of timeout so that tx_busy will never be stuck at true.
 237  
 238  If no TX channel is set up for this VC we wait for an idle one (if
 239  necessary) and set it up.
 240  
 241  At this point we have a TX channel ready for use. We wait for enough
 242  buffers to become available then start a TX transmit (set the TX
 243  descriptor, schedule transfer, exit).
 244  
 245  The IRQ component handles TX completion (stats, free buffer, tx_busy
 246  unset, exit). We also re-schedule further transfers for the same
 247  frame if needed.
 248  
 249  TX setup in more detail:
 250  
 251  TX open is a nop, the relevant information is held in the hrz_vcc
 252  (vcc->dev_data) structure and is "cached" on the card.
 253  
 254  TX close gets the TX lock and clears the channel from the "cache".
 255  
 256  2. RX (Data Available and RX transfer)
 257  
 258  The RX half of the driver owns the RX registers. There are two RX
 259  components in the IRQ handler: the data available handler deals with
 260  fresh data that has arrived on the card, the BM completion handler
 261  is very similar to the TX completion handler. The data available
 262  handler grabs the rx_lock and it is only released once the data has
 263  been discarded or completely transferred to the host. The BM
 264  completion handler only runs when the lock is held; the data
 265  available handler is locked out over the same period.
 266  
 267  Data available on the card triggers an interrupt. If the data is not
 268  suitable for our existing RX channels or we cannot allocate a buffer
 269  it is flushed. Otherwise an RX receive is scheduled. Multiple RX
 270  transfers may be scheduled for the same frame.
 271  
 272  RX setup in more detail:
 273  
 274  RX open...
 275  RX close...
 276  
 277  III Hardware Bugs
 278  
 279  0. Byte vs Word addressing of adapter RAM.
 280  
 281  A design feature; see the .h file (especially the memory map).
 282  
 283  1. Bus Master Data Transfers (original Horizon only, fixed in Ultra)
 284  
 285  The host must not start a transmit direction transfer at a
 286  non-four-byte boundary in host memory. Instead the host should
 287  perform a byte, or a two byte, or one byte followed by two byte
 288  transfer in order to start the rest of the transfer on a four byte
 289  boundary. RX is OK.
 290  
 291  Simultaneous transmit and receive direction bus master transfers are
 292  not allowed.
 293  
 294  The simplest solution to these two is to always do PIO (never DMA)
 295  in the TX direction on the original Horizon. More complicated
 296  solutions are likely to hurt my brain.
 297  
 298  2. Loss of buffer on close VC
 299  
 300  When a VC is being closed, the buffer associated with it is not
 301  returned to the pool. The host must store the reference to this
 302  buffer and when opening a new VC then give it to that new VC.
 303  
 304  The host intervention currently consists of stacking such a buffer
 305  pointer at VC close and checking the stack at VC open.
 306  
 307  3. Failure to close a VC
 308  
 309  If a VC is currently receiving a frame then closing the VC may fail
 310  and the frame continues to be received.
 311  
 312  The solution is to make sure any received frames are flushed when
 313  ready. This is currently done just before the solution to 2.
 314  
 315  4. PCI bus (original Horizon only, fixed in Ultra)
 316  
 317  Reading from the data port prior to initialisation will hang the PCI
 318  bus. Just don't do that then! We don't.
 319  
 320  IV To Do List
 321  
 322  . Timer code may be broken.
 323  
 324  . Allow users to specify buffer allocation split for TX and RX.
 325  
 326  . Deal once and for all with buggy VC close.
 327  
 328  . Handle interrupted and/or non-blocking operations.
 329  
 330  . Change some macros to functions and move from .h to .c.
 331  
 332  . Try to limit the number of TX frames each VC may have queued, in
 333    order to reduce the chances of TX buffer exhaustion.
 334  
 335  . Implement VBR (bucket and timers not understood) and ABR (need to
 336    do RM cells manually); also no Linux support for either.
 337  
 338  . Implement QoS changes on open VCs (involves extracting parts of VC open
 339    and close into separate functions and using them to make changes).
 340  
 341*/
 342
 343/********** globals **********/
 344
 345static void do_housekeeping (struct timer_list *t);
 346
 347static unsigned short debug = 0;
 348static unsigned short vpi_bits = 0;
 349static int max_tx_size = 9000;
 350static int max_rx_size = 9000;
 351static unsigned char pci_lat = 0;
 352
 353/********** access functions **********/
 354
 355/* Read / Write Horizon registers */
 356static inline void wr_regl (const hrz_dev * dev, unsigned char reg, u32 data) {
 357  outl (cpu_to_le32 (data), dev->iobase + reg);
 358}
 359
 360static inline u32 rd_regl (const hrz_dev * dev, unsigned char reg) {
 361  return le32_to_cpu (inl (dev->iobase + reg));
 362}
 363
 364static inline void wr_regw (const hrz_dev * dev, unsigned char reg, u16 data) {
 365  outw (cpu_to_le16 (data), dev->iobase + reg);
 366}
 367
 368static inline u16 rd_regw (const hrz_dev * dev, unsigned char reg) {
 369  return le16_to_cpu (inw (dev->iobase + reg));
 370}
 371
 372static inline void wrs_regb (const hrz_dev * dev, unsigned char reg, void * addr, u32 len) {
 373  outsb (dev->iobase + reg, addr, len);
 374}
 375
 376static inline void rds_regb (const hrz_dev * dev, unsigned char reg, void * addr, u32 len) {
 377  insb (dev->iobase + reg, addr, len);
 378}
 379
 380/* Read / Write to a given address in Horizon buffer memory.
 381   Interrupts must be disabled between the address register and data
 382   port accesses as these must form an atomic operation. */
 383static inline void wr_mem (const hrz_dev * dev, HDW * addr, u32 data) {
 384  // wr_regl (dev, MEM_WR_ADDR_REG_OFF, (u32) addr);
 385  wr_regl (dev, MEM_WR_ADDR_REG_OFF, (addr - (HDW *) 0) * sizeof(HDW));
 386  wr_regl (dev, MEMORY_PORT_OFF, data);
 387}
 388
 389static inline u32 rd_mem (const hrz_dev * dev, HDW * addr) {
 390  // wr_regl (dev, MEM_RD_ADDR_REG_OFF, (u32) addr);
 391  wr_regl (dev, MEM_RD_ADDR_REG_OFF, (addr - (HDW *) 0) * sizeof(HDW));
 392  return rd_regl (dev, MEMORY_PORT_OFF);
 393}
 394
 395static inline void wr_framer (const hrz_dev * dev, u32 addr, u32 data) {
 396  wr_regl (dev, MEM_WR_ADDR_REG_OFF, (u32) addr | 0x80000000);
 397  wr_regl (dev, MEMORY_PORT_OFF, data);
 398}
 399
 400static inline u32 rd_framer (const hrz_dev * dev, u32 addr) {
 401  wr_regl (dev, MEM_RD_ADDR_REG_OFF, (u32) addr | 0x80000000);
 402  return rd_regl (dev, MEMORY_PORT_OFF);
 403}
 404
 405/********** specialised access functions **********/
 406
 407/* RX */
 408
 409static inline void FLUSH_RX_CHANNEL (hrz_dev * dev, u16 channel) {
 410  wr_regw (dev, RX_CHANNEL_PORT_OFF, FLUSH_CHANNEL | channel);
 411  return;
 412}
 413
 414static void WAIT_FLUSH_RX_COMPLETE (hrz_dev * dev) {
 415  while (rd_regw (dev, RX_CHANNEL_PORT_OFF) & FLUSH_CHANNEL)
 416    ;
 417  return;
 418}
 419
 420static inline void SELECT_RX_CHANNEL (hrz_dev * dev, u16 channel) {
 421  wr_regw (dev, RX_CHANNEL_PORT_OFF, channel);
 422  return;
 423}
 424
 425static void WAIT_UPDATE_COMPLETE (hrz_dev * dev) {
 426  while (rd_regw (dev, RX_CHANNEL_PORT_OFF) & RX_CHANNEL_UPDATE_IN_PROGRESS)
 427    ;
 428  return;
 429}
 430
 431/* TX */
 432
 433static inline void SELECT_TX_CHANNEL (hrz_dev * dev, u16 tx_channel) {
 434  wr_regl (dev, TX_CHANNEL_PORT_OFF, tx_channel);
 435  return;
 436}
 437
 438/* Update or query one configuration parameter of a particular channel. */
 439
 440static inline void update_tx_channel_config (hrz_dev * dev, short chan, u8 mode, u16 value) {
 441  wr_regw (dev, TX_CHANNEL_CONFIG_COMMAND_OFF,
 442	   chan * TX_CHANNEL_CONFIG_MULT | mode);
 443    wr_regw (dev, TX_CHANNEL_CONFIG_DATA_OFF, value);
 444    return;
 445}
 446
 447/********** dump functions **********/
 448
 449static inline void dump_skb (char * prefix, unsigned int vc, struct sk_buff * skb) {
 450#ifdef DEBUG_HORIZON
 451  unsigned int i;
 452  unsigned char * data = skb->data;
 453  PRINTDB (DBG_DATA, "%s(%u) ", prefix, vc);
 454  for (i=0; i<skb->len && i < 256;i++)
 455    PRINTDM (DBG_DATA, "%02x ", data[i]);
 456  PRINTDE (DBG_DATA,"");
 457#else
 458  (void) prefix;
 459  (void) vc;
 460  (void) skb;
 461#endif
 462  return;
 463}
 464
 465static inline void dump_regs (hrz_dev * dev) {
 466#ifdef DEBUG_HORIZON
 467  PRINTD (DBG_REGS, "CONTROL 0: %#x", rd_regl (dev, CONTROL_0_REG));
 468  PRINTD (DBG_REGS, "RX CONFIG: %#x", rd_regw (dev, RX_CONFIG_OFF));
 469  PRINTD (DBG_REGS, "TX CONFIG: %#x", rd_regw (dev, TX_CONFIG_OFF));
 470  PRINTD (DBG_REGS, "TX STATUS: %#x", rd_regw (dev, TX_STATUS_OFF));
 471  PRINTD (DBG_REGS, "IRQ ENBLE: %#x", rd_regl (dev, INT_ENABLE_REG_OFF));
 472  PRINTD (DBG_REGS, "IRQ SORCE: %#x", rd_regl (dev, INT_SOURCE_REG_OFF));
 473#else
 474  (void) dev;
 475#endif
 476  return;
 477}
 478
 479static inline void dump_framer (hrz_dev * dev) {
 480#ifdef DEBUG_HORIZON
 481  unsigned int i;
 482  PRINTDB (DBG_REGS, "framer registers:");
 483  for (i = 0; i < 0x10; ++i)
 484    PRINTDM (DBG_REGS, " %02x", rd_framer (dev, i));
 485  PRINTDE (DBG_REGS,"");
 486#else
 487  (void) dev;
 488#endif
 489  return;
 490}
 491
 492/********** VPI/VCI <-> (RX) channel conversions **********/
 493
 494/* RX channels are 10 bit integers, these fns are quite paranoid */
 495
 496static inline int vpivci_to_channel (u16 * channel, const short vpi, const int vci) {
 497  unsigned short vci_bits = 10 - vpi_bits;
 498  if (0 <= vpi && vpi < 1<<vpi_bits && 0 <= vci && vci < 1<<vci_bits) {
 499    *channel = vpi<<vci_bits | vci;
 500    return *channel ? 0 : -EINVAL;
 501  }
 502  return -EINVAL;
 503}
 504
 505/********** decode RX queue entries **********/
 506
 507static inline u16 rx_q_entry_to_length (u32 x) {
 508  return x & RX_Q_ENTRY_LENGTH_MASK;
 509}
 510
 511static inline u16 rx_q_entry_to_rx_channel (u32 x) {
 512  return (x>>RX_Q_ENTRY_CHANNEL_SHIFT) & RX_CHANNEL_MASK;
 513}
 514
 515/* Cell Transmit Rate Values
 516 *
 517 * the cell transmit rate (cells per sec) can be set to a variety of
 518 * different values by specifying two parameters: a timer preload from
 519 * 1 to 16 (stored as 0 to 15) and a clock divider (2 to the power of
 520 * an exponent from 0 to 14; the special value 15 disables the timer).
 521 *
 522 * cellrate = baserate / (preload * 2^divider)
 523 *
 524 * The maximum cell rate that can be specified is therefore just the
 525 * base rate. Halving the preload is equivalent to adding 1 to the
 526 * divider and so values 1 to 8 of the preload are redundant except
 527 * in the case of a maximal divider (14).
 528 *
 529 * Given a desired cell rate, an algorithm to determine the preload
 530 * and divider is:
 531 * 
 532 * a) x = baserate / cellrate, want p * 2^d = x (as far as possible)
 533 * b) if x > 16 * 2^14 then set p = 16, d = 14 (min rate), done
 534 *    if x <= 16 then set p = x, d = 0 (high rates), done
 535 * c) now have 16 < x <= 2^18, or 1 < x/16 <= 2^14 and we want to
 536 *    know n such that 2^(n-1) < x/16 <= 2^n, so slide a bit until
 537 *    we find the range (n will be between 1 and 14), set d = n
 538 * d) Also have 8 < x/2^n <= 16, so set p nearest x/2^n
 539 *
 540 * The algorithm used below is a minor variant of the above.
 541 *
 542 * The base rate is derived from the oscillator frequency (Hz) using a
 543 * fixed divider:
 544 *
 545 * baserate = freq / 32 in the case of some Unknown Card
 546 * baserate = freq / 8  in the case of the Horizon        25
 547 * baserate = freq / 8  in the case of the Horizon Ultra 155
 548 *
 549 * The Horizon cards have oscillators and base rates as follows:
 550 *
 551 * Card               Oscillator  Base Rate
 552 * Unknown Card       33 MHz      1.03125 MHz (33 MHz = PCI freq)
 553 * Horizon        25  32 MHz      4       MHz
 554 * Horizon Ultra 155  40 MHz      5       MHz
 555 *
 556 * The following defines give the base rates in Hz. These were
 557 * previously a factor of 100 larger, no doubt someone was using
 558 * cps*100.
 559 */
 560
 561#define BR_UKN 1031250l
 562#define BR_HRZ 4000000l
 563#define BR_ULT 5000000l
 564
 565// d is an exponent
 566#define CR_MIND 0
 567#define CR_MAXD 14
 568
 569// p ranges from 1 to a power of 2
 570#define CR_MAXPEXP 4
 571 
 572static int make_rate (const hrz_dev * dev, u32 c, rounding r,
 573		      u16 * bits, unsigned int * actual)
 574{
 575	// note: rounding the rate down means rounding 'p' up
 576	const unsigned long br = test_bit(ultra, &dev->flags) ? BR_ULT : BR_HRZ;
 577  
 578	u32 div = CR_MIND;
 579	u32 pre;
 580  
 581	// br_exp and br_man are used to avoid overflowing (c*maxp*2^d) in
 582	// the tests below. We could think harder about exact possibilities
 583	// of failure...
 584  
 585	unsigned long br_man = br;
 586	unsigned int br_exp = 0;
 587  
 588	PRINTD (DBG_QOS|DBG_FLOW, "make_rate b=%lu, c=%u, %s", br, c,
 589		r == round_up ? "up" : r == round_down ? "down" : "nearest");
 590  
 591	// avoid div by zero
 592	if (!c) {
 593		PRINTD (DBG_QOS|DBG_ERR, "zero rate is not allowed!");
 594		return -EINVAL;
 595	}
 596  
 597	while (br_exp < CR_MAXPEXP + CR_MIND && (br_man % 2 == 0)) {
 598		br_man = br_man >> 1;
 599		++br_exp;
 600	}
 601	// (br >>br_exp) <<br_exp == br and
 602	// br_exp <= CR_MAXPEXP+CR_MIND
 603  
 604	if (br_man <= (c << (CR_MAXPEXP+CR_MIND-br_exp))) {
 605		// Equivalent to: B <= (c << (MAXPEXP+MIND))
 606		// take care of rounding
 607		switch (r) {
 608			case round_down:
 609				pre = DIV_ROUND_UP(br, c<<div);
 610				// but p must be non-zero
 611				if (!pre)
 612					pre = 1;
 613				break;
 614			case round_nearest:
 615				pre = DIV_ROUND_CLOSEST(br, c<<div);
 616				// but p must be non-zero
 617				if (!pre)
 618					pre = 1;
 619				break;
 620			default:	/* round_up */
 621				pre = br/(c<<div);
 622				// but p must be non-zero
 623				if (!pre)
 624					return -EINVAL;
 625		}
 626		PRINTD (DBG_QOS, "A: p=%u, d=%u", pre, div);
 627		goto got_it;
 628	}
 629  
 630	// at this point we have
 631	// d == MIND and (c << (MAXPEXP+MIND)) < B
 632	while (div < CR_MAXD) {
 633		div++;
 634		if (br_man <= (c << (CR_MAXPEXP+div-br_exp))) {
 635			// Equivalent to: B <= (c << (MAXPEXP+d))
 636			// c << (MAXPEXP+d-1) < B <= c << (MAXPEXP+d)
 637			// 1 << (MAXPEXP-1) < B/2^d/c <= 1 << MAXPEXP
 638			// MAXP/2 < B/c2^d <= MAXP
 639			// take care of rounding
 640			switch (r) {
 641				case round_down:
 642					pre = DIV_ROUND_UP(br, c<<div);
 643					break;
 644				case round_nearest:
 645					pre = DIV_ROUND_CLOSEST(br, c<<div);
 646					break;
 647				default: /* round_up */
 648					pre = br/(c<<div);
 649			}
 650			PRINTD (DBG_QOS, "B: p=%u, d=%u", pre, div);
 651			goto got_it;
 652		}
 653	}
 654	// at this point we have
 655	// d == MAXD and (c << (MAXPEXP+MAXD)) < B
 656	// but we cannot go any higher
 657	// take care of rounding
 658	if (r == round_down)
 659		return -EINVAL;
 660	pre = 1 << CR_MAXPEXP;
 661	PRINTD (DBG_QOS, "C: p=%u, d=%u", pre, div);
 662got_it:
 663	// paranoia
 664	if (div > CR_MAXD || (!pre) || pre > 1<<CR_MAXPEXP) {
 665		PRINTD (DBG_QOS, "set_cr internal failure: d=%u p=%u",
 666			div, pre);
 667		return -EINVAL;
 668	} else {
 669		if (bits)
 670			*bits = (div<<CLOCK_SELECT_SHIFT) | (pre-1);
 671		if (actual) {
 672			*actual = DIV_ROUND_UP(br, pre<<div);
 673			PRINTD (DBG_QOS, "actual rate: %u", *actual);
 674		}
 675		return 0;
 676	}
 677}
 678
 679static int make_rate_with_tolerance (const hrz_dev * dev, u32 c, rounding r, unsigned int tol,
 680				     u16 * bit_pattern, unsigned int * actual) {
 681  unsigned int my_actual;
 682  
 683  PRINTD (DBG_QOS|DBG_FLOW, "make_rate_with_tolerance c=%u, %s, tol=%u",
 684	  c, (r == round_up) ? "up" : (r == round_down) ? "down" : "nearest", tol);
 685  
 686  if (!actual)
 687    // actual rate is not returned
 688    actual = &my_actual;
 689  
 690  if (make_rate (dev, c, round_nearest, bit_pattern, actual))
 691    // should never happen as round_nearest always succeeds
 692    return -1;
 693  
 694  if (c - tol <= *actual && *actual <= c + tol)
 695    // within tolerance
 696    return 0;
 697  else
 698    // intolerant, try rounding instead
 699    return make_rate (dev, c, r, bit_pattern, actual);
 700}
 701
 702/********** Listen on a VC **********/
 703
 704static int hrz_open_rx (hrz_dev * dev, u16 channel) {
 705  // is there any guarantee that we don't get two simulataneous
 706  // identical calls of this function from different processes? yes
 707  // rate_lock
 708  unsigned long flags;
 709  u32 channel_type; // u16?
 710  
 711  u16 buf_ptr = RX_CHANNEL_IDLE;
 712  
 713  rx_ch_desc * rx_desc = &memmap->rx_descs[channel];
 714  
 715  PRINTD (DBG_FLOW, "hrz_open_rx %x", channel);
 716  
 717  spin_lock_irqsave (&dev->mem_lock, flags);
 718  channel_type = rd_mem (dev, &rx_desc->wr_buf_type) & BUFFER_PTR_MASK;
 719  spin_unlock_irqrestore (&dev->mem_lock, flags);
 720  
 721  // very serious error, should never occur
 722  if (channel_type != RX_CHANNEL_DISABLED) {
 723    PRINTD (DBG_ERR|DBG_VCC, "RX channel for VC already open");
 724    return -EBUSY; // clean up?
 725  }
 726  
 727  // Give back spare buffer
 728  if (dev->noof_spare_buffers) {
 729    buf_ptr = dev->spare_buffers[--dev->noof_spare_buffers];
 730    PRINTD (DBG_VCC, "using a spare buffer: %u", buf_ptr);
 731    // should never occur
 732    if (buf_ptr == RX_CHANNEL_DISABLED || buf_ptr == RX_CHANNEL_IDLE) {
 733      // but easy to recover from
 734      PRINTD (DBG_ERR|DBG_VCC, "bad spare buffer pointer, using IDLE");
 735      buf_ptr = RX_CHANNEL_IDLE;
 736    }
 737  } else {
 738    PRINTD (DBG_VCC, "using IDLE buffer pointer");
 739  }
 740  
 741  // Channel is currently disabled so change its status to idle
 742  
 743  // do we really need to save the flags again?
 744  spin_lock_irqsave (&dev->mem_lock, flags);
 745  
 746  wr_mem (dev, &rx_desc->wr_buf_type,
 747	  buf_ptr | CHANNEL_TYPE_AAL5 | FIRST_CELL_OF_AAL5_FRAME);
 748  if (buf_ptr != RX_CHANNEL_IDLE)
 749    wr_mem (dev, &rx_desc->rd_buf_type, buf_ptr);
 750  
 751  spin_unlock_irqrestore (&dev->mem_lock, flags);
 752  
 753  // rxer->rate = make_rate (qos->peak_cells);
 754  
 755  PRINTD (DBG_FLOW, "hrz_open_rx ok");
 756  
 757  return 0;
 758}
 759
 760#if 0
 761/********** change vc rate for a given vc **********/
 762
 763static void hrz_change_vc_qos (ATM_RXER * rxer, MAAL_QOS * qos) {
 764  rxer->rate = make_rate (qos->peak_cells);
 765}
 766#endif
 767
 768/********** free an skb (as per ATM device driver documentation) **********/
 769
 770static void hrz_kfree_skb (struct sk_buff * skb) {
 771  if (ATM_SKB(skb)->vcc->pop) {
 772    ATM_SKB(skb)->vcc->pop (ATM_SKB(skb)->vcc, skb);
 773  } else {
 774    dev_kfree_skb_any (skb);
 775  }
 776}
 777
 778/********** cancel listen on a VC **********/
 779
 780static void hrz_close_rx (hrz_dev * dev, u16 vc) {
 781  unsigned long flags;
 782  
 783  u32 value;
 784  
 785  u32 r1, r2;
 786  
 787  rx_ch_desc * rx_desc = &memmap->rx_descs[vc];
 788  
 789  int was_idle = 0;
 790  
 791  spin_lock_irqsave (&dev->mem_lock, flags);
 792  value = rd_mem (dev, &rx_desc->wr_buf_type) & BUFFER_PTR_MASK;
 793  spin_unlock_irqrestore (&dev->mem_lock, flags);
 794  
 795  if (value == RX_CHANNEL_DISABLED) {
 796    // I suppose this could happen once we deal with _NONE traffic properly
 797    PRINTD (DBG_VCC, "closing VC: RX channel %u already disabled", vc);
 798    return;
 799  }
 800  if (value == RX_CHANNEL_IDLE)
 801    was_idle = 1;
 802  
 803  spin_lock_irqsave (&dev->mem_lock, flags);
 804  
 805  for (;;) {
 806    wr_mem (dev, &rx_desc->wr_buf_type, RX_CHANNEL_DISABLED);
 807    
 808    if ((rd_mem (dev, &rx_desc->wr_buf_type) & BUFFER_PTR_MASK) == RX_CHANNEL_DISABLED)
 809      break;
 810    
 811    was_idle = 0;
 812  }
 813  
 814  if (was_idle) {
 815    spin_unlock_irqrestore (&dev->mem_lock, flags);
 816    return;
 817  }
 818  
 819  WAIT_FLUSH_RX_COMPLETE(dev);
 820  
 821  // XXX Is this all really necessary? We can rely on the rx_data_av
 822  // handler to discard frames that remain queued for delivery. If the
 823  // worry is that immediately reopening the channel (perhaps by a
 824  // different process) may cause some data to be mis-delivered then
 825  // there may still be a simpler solution (such as busy-waiting on
 826  // rx_busy once the channel is disabled or before a new one is
 827  // opened - does this leave any holes?). Arguably setting up and
 828  // tearing down the TX and RX halves of each virtual circuit could
 829  // most safely be done within ?x_busy protected regions.
 830  
 831  // OK, current changes are that Simon's marker is disabled and we DO
 832  // look for NULL rxer elsewhere. The code here seems flush frames
 833  // and then remember the last dead cell belonging to the channel
 834  // just disabled - the cell gets relinked at the next vc_open.
 835  // However, when all VCs are closed or only a few opened there are a
 836  // handful of buffers that are unusable.
 837  
 838  // Does anyone feel like documenting spare_buffers properly?
 839  // Does anyone feel like fixing this in a nicer way?
 840  
 841  // Flush any data which is left in the channel
 842  for (;;) {
 843    // Change the rx channel port to something different to the RX
 844    // channel we are trying to close to force Horizon to flush the rx
 845    // channel read and write pointers.
 846    
 847    u16 other = vc^(RX_CHANS/2);
 848    
 849    SELECT_RX_CHANNEL (dev, other);
 850    WAIT_UPDATE_COMPLETE (dev);
 851    
 852    r1 = rd_mem (dev, &rx_desc->rd_buf_type);
 853    
 854    // Select this RX channel. Flush doesn't seem to work unless we
 855    // select an RX channel before hand
 856    
 857    SELECT_RX_CHANNEL (dev, vc);
 858    WAIT_UPDATE_COMPLETE (dev);
 859    
 860    // Attempt to flush a frame on this RX channel
 861    
 862    FLUSH_RX_CHANNEL (dev, vc);
 863    WAIT_FLUSH_RX_COMPLETE (dev);
 864    
 865    // Force Horizon to flush rx channel read and write pointers as before
 866    
 867    SELECT_RX_CHANNEL (dev, other);
 868    WAIT_UPDATE_COMPLETE (dev);
 869    
 870    r2 = rd_mem (dev, &rx_desc->rd_buf_type);
 871    
 872    PRINTD (DBG_VCC|DBG_RX, "r1 = %u, r2 = %u", r1, r2);
 873    
 874    if (r1 == r2) {
 875      dev->spare_buffers[dev->noof_spare_buffers++] = (u16)r1;
 876      break;
 877    }
 878  }
 879  
 880#if 0
 881  {
 882    rx_q_entry * wr_ptr = &memmap->rx_q_entries[rd_regw (dev, RX_QUEUE_WR_PTR_OFF)];
 883    rx_q_entry * rd_ptr = dev->rx_q_entry;
 884    
 885    PRINTD (DBG_VCC|DBG_RX, "rd_ptr = %u, wr_ptr = %u", rd_ptr, wr_ptr);
 886    
 887    while (rd_ptr != wr_ptr) {
 888      u32 x = rd_mem (dev, (HDW *) rd_ptr);
 889      
 890      if (vc == rx_q_entry_to_rx_channel (x)) {
 891	x |= SIMONS_DODGEY_MARKER;
 892	
 893	PRINTD (DBG_RX|DBG_VCC|DBG_WARN, "marking a frame as dodgey");
 894	
 895	wr_mem (dev, (HDW *) rd_ptr, x);
 896      }
 897      
 898      if (rd_ptr == dev->rx_q_wrap)
 899	rd_ptr = dev->rx_q_reset;
 900      else
 901	rd_ptr++;
 902    }
 903  }
 904#endif
 905  
 906  spin_unlock_irqrestore (&dev->mem_lock, flags);
 907  
 908  return;
 909}
 910
 911/********** schedule RX transfers **********/
 912
 913// Note on tail recursion: a GCC developer said that it is not likely
 914// to be fixed soon, so do not define TAILRECUSRIONWORKS unless you
 915// are sure it does as you may otherwise overflow the kernel stack.
 916
 917// giving this fn a return value would help GCC, allegedly
 918
 919static void rx_schedule (hrz_dev * dev, int irq) {
 920  unsigned int rx_bytes;
 921  
 922  int pio_instead = 0;
 923#ifndef TAILRECURSIONWORKS
 924  pio_instead = 1;
 925  while (pio_instead) {
 926#endif
 927    // bytes waiting for RX transfer
 928    rx_bytes = dev->rx_bytes;
 929    
 930#if 0
 931    spin_count = 0;
 932    while (rd_regl (dev, MASTER_RX_COUNT_REG_OFF)) {
 933      PRINTD (DBG_RX|DBG_WARN, "RX error: other PCI Bus Master RX still in progress!");
 934      if (++spin_count > 10) {
 935	PRINTD (DBG_RX|DBG_ERR, "spun out waiting PCI Bus Master RX completion");
 936	wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0);
 937	clear_bit (rx_busy, &dev->flags);
 938	hrz_kfree_skb (dev->rx_skb);
 939	return;
 940      }
 941    }
 942#endif
 943    
 944    // this code follows the TX code but (at the moment) there is only
 945    // one region - the skb itself. I don't know if this will change,
 946    // but it doesn't hurt to have the code here, disabled.
 947    
 948    if (rx_bytes) {
 949      // start next transfer within same region
 950      if (rx_bytes <= MAX_PIO_COUNT) {
 951	PRINTD (DBG_RX|DBG_BUS, "(pio)");
 952	pio_instead = 1;
 953      }
 954      if (rx_bytes <= MAX_TRANSFER_COUNT) {
 955	PRINTD (DBG_RX|DBG_BUS, "(simple or last multi)");
 956	dev->rx_bytes = 0;
 957      } else {
 958	PRINTD (DBG_RX|DBG_BUS, "(continuing multi)");
 959	dev->rx_bytes = rx_bytes - MAX_TRANSFER_COUNT;
 960	rx_bytes = MAX_TRANSFER_COUNT;
 961      }
 962    } else {
 963      // rx_bytes == 0 -- we're between regions
 964      // regions remaining to transfer
 965#if 0
 966      unsigned int rx_regions = dev->rx_regions;
 967#else
 968      unsigned int rx_regions = 0;
 969#endif
 970      
 971      if (rx_regions) {
 972#if 0
 973	// start a new region
 974	dev->rx_addr = dev->rx_iovec->iov_base;
 975	rx_bytes = dev->rx_iovec->iov_len;
 976	++dev->rx_iovec;
 977	dev->rx_regions = rx_regions - 1;
 978	
 979	if (rx_bytes <= MAX_PIO_COUNT) {
 980	  PRINTD (DBG_RX|DBG_BUS, "(pio)");
 981	  pio_instead = 1;
 982	}
 983	if (rx_bytes <= MAX_TRANSFER_COUNT) {
 984	  PRINTD (DBG_RX|DBG_BUS, "(full region)");
 985	  dev->rx_bytes = 0;
 986	} else {
 987	  PRINTD (DBG_RX|DBG_BUS, "(start multi region)");
 988	  dev->rx_bytes = rx_bytes - MAX_TRANSFER_COUNT;
 989	  rx_bytes = MAX_TRANSFER_COUNT;
 990	}
 991#endif
 992      } else {
 993	// rx_regions == 0
 994	// that's all folks - end of frame
 995	struct sk_buff * skb = dev->rx_skb;
 996	// dev->rx_iovec = 0;
 997	
 998	FLUSH_RX_CHANNEL (dev, dev->rx_channel);
 999	
1000	dump_skb ("<<<", dev->rx_channel, skb);
1001	
1002	PRINTD (DBG_RX|DBG_SKB, "push %p %u", skb->data, skb->len);
1003	
1004	{
1005	  struct atm_vcc * vcc = ATM_SKB(skb)->vcc;
1006	  // VC layer stats
1007	  atomic_inc(&vcc->stats->rx);
1008	  __net_timestamp(skb);
1009	  // end of our responsibility
1010	  vcc->push (vcc, skb);
1011	}
1012      }
1013    }
1014    
1015    // note: writing RX_COUNT clears any interrupt condition
1016    if (rx_bytes) {
1017      if (pio_instead) {
1018	if (irq)
1019	  wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0);
1020	rds_regb (dev, DATA_PORT_OFF, dev->rx_addr, rx_bytes);
1021      } else {
1022	wr_regl (dev, MASTER_RX_ADDR_REG_OFF, virt_to_bus (dev->rx_addr));
1023	wr_regl (dev, MASTER_RX_COUNT_REG_OFF, rx_bytes);
1024      }
1025      dev->rx_addr += rx_bytes;
1026    } else {
1027      if (irq)
1028	wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0);
1029      // allow another RX thread to start
1030      YELLOW_LED_ON(dev);
1031      clear_bit (rx_busy, &dev->flags);
1032      PRINTD (DBG_RX, "cleared rx_busy for dev %p", dev);
1033    }
1034    
1035#ifdef TAILRECURSIONWORKS
1036    // and we all bless optimised tail calls
1037    if (pio_instead)
1038      return rx_schedule (dev, 0);
1039    return;
1040#else
1041    // grrrrrrr!
1042    irq = 0;
1043  }
1044  return;
1045#endif
1046}
1047
1048/********** handle RX bus master complete events **********/
1049
1050static void rx_bus_master_complete_handler (hrz_dev * dev) {
1051  if (test_bit (rx_busy, &dev->flags)) {
1052    rx_schedule (dev, 1);
1053  } else {
1054    PRINTD (DBG_RX|DBG_ERR, "unexpected RX bus master completion");
1055    // clear interrupt condition on adapter
1056    wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0);
1057  }
1058  return;
1059}
1060
1061/********** (queue to) become the next TX thread **********/
1062
1063static int tx_hold (hrz_dev * dev) {
1064  PRINTD (DBG_TX, "sleeping at tx lock %p %lu", dev, dev->flags);
1065  wait_event_interruptible(dev->tx_queue, (!test_and_set_bit(tx_busy, &dev->flags)));
1066  PRINTD (DBG_TX, "woken at tx lock %p %lu", dev, dev->flags);
1067  if (signal_pending (current))
1068    return -1;
1069  PRINTD (DBG_TX, "set tx_busy for dev %p", dev);
1070  return 0;
1071}
1072
1073/********** allow another TX thread to start **********/
1074
1075static inline void tx_release (hrz_dev * dev) {
1076  clear_bit (tx_busy, &dev->flags);
1077  PRINTD (DBG_TX, "cleared tx_busy for dev %p", dev);
1078  wake_up_interruptible (&dev->tx_queue);
1079}
1080
1081/********** schedule TX transfers **********/
1082
1083static void tx_schedule (hrz_dev * const dev, int irq) {
1084  unsigned int tx_bytes;
1085  
1086  int append_desc = 0;
1087  
1088  int pio_instead = 0;
1089#ifndef TAILRECURSIONWORKS
1090  pio_instead = 1;
1091  while (pio_instead) {
1092#endif
1093    // bytes in current region waiting for TX transfer
1094    tx_bytes = dev->tx_bytes;
1095    
1096#if 0
1097    spin_count = 0;
1098    while (rd_regl (dev, MASTER_TX_COUNT_REG_OFF)) {
1099      PRINTD (DBG_TX|DBG_WARN, "TX error: other PCI Bus Master TX still in progress!");
1100      if (++spin_count > 10) {
1101	PRINTD (DBG_TX|DBG_ERR, "spun out waiting PCI Bus Master TX completion");
1102	wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0);
1103	tx_release (dev);
1104	hrz_kfree_skb (dev->tx_skb);
1105	return;
1106      }
1107    }
1108#endif
1109    
1110    if (tx_bytes) {
1111      // start next transfer within same region
1112      if (!test_bit (ultra, &dev->flags) || tx_bytes <= MAX_PIO_COUNT) {
1113	PRINTD (DBG_TX|DBG_BUS, "(pio)");
1114	pio_instead = 1;
1115      }
1116      if (tx_bytes <= MAX_TRANSFER_COUNT) {
1117	PRINTD (DBG_TX|DBG_BUS, "(simple or last multi)");
1118	if (!dev->tx_iovec) {
1119	  // end of last region
1120	  append_desc = 1;
1121	}
1122	dev->tx_bytes = 0;
1123      } else {
1124	PRINTD (DBG_TX|DBG_BUS, "(continuing multi)");
1125	dev->tx_bytes = tx_bytes - MAX_TRANSFER_COUNT;
1126	tx_bytes = MAX_TRANSFER_COUNT;
1127      }
1128    } else {
1129      // tx_bytes == 0 -- we're between regions
1130      // regions remaining to transfer
1131      unsigned int tx_regions = dev->tx_regions;
1132      
1133      if (tx_regions) {
1134	// start a new region
1135	dev->tx_addr = dev->tx_iovec->iov_base;
1136	tx_bytes = dev->tx_iovec->iov_len;
1137	++dev->tx_iovec;
1138	dev->tx_regions = tx_regions - 1;
1139	
1140	if (!test_bit (ultra, &dev->flags) || tx_bytes <= MAX_PIO_COUNT) {
1141	  PRINTD (DBG_TX|DBG_BUS, "(pio)");
1142	  pio_instead = 1;
1143	}
1144	if (tx_bytes <= MAX_TRANSFER_COUNT) {
1145	  PRINTD (DBG_TX|DBG_BUS, "(full region)");
1146	  dev->tx_bytes = 0;
1147	} else {
1148	  PRINTD (DBG_TX|DBG_BUS, "(start multi region)");
1149	  dev->tx_bytes = tx_bytes - MAX_TRANSFER_COUNT;
1150	  tx_bytes = MAX_TRANSFER_COUNT;
1151	}
1152      } else {
1153	// tx_regions == 0
1154	// that's all folks - end of frame
1155	struct sk_buff * skb = dev->tx_skb;
1156	dev->tx_iovec = NULL;
1157	
1158	// VC layer stats
1159	atomic_inc(&ATM_SKB(skb)->vcc->stats->tx);
1160	
1161	// free the skb
1162	hrz_kfree_skb (skb);
1163      }
1164    }
1165    
1166    // note: writing TX_COUNT clears any interrupt condition
1167    if (tx_bytes) {
1168      if (pio_instead) {
1169	if (irq)
1170	  wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0);
1171	wrs_regb (dev, DATA_PORT_OFF, dev->tx_addr, tx_bytes);
1172	if (append_desc)
1173	  wr_regl (dev, TX_DESCRIPTOR_PORT_OFF, cpu_to_be32 (dev->tx_skb->len));
1174      } else {
1175	wr_regl (dev, MASTER_TX_ADDR_REG_OFF, virt_to_bus (dev->tx_addr));
1176	if (append_desc)
1177	  wr_regl (dev, TX_DESCRIPTOR_REG_OFF, cpu_to_be32 (dev->tx_skb->len));
1178	wr_regl (dev, MASTER_TX_COUNT_REG_OFF,
1179		 append_desc
1180		 ? tx_bytes | MASTER_TX_AUTO_APPEND_DESC
1181		 : tx_bytes);
1182      }
1183      dev->tx_addr += tx_bytes;
1184    } else {
1185      if (irq)
1186	wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0);
1187      YELLOW_LED_ON(dev);
1188      tx_release (dev);
1189    }
1190    
1191#ifdef TAILRECURSIONWORKS
1192    // and we all bless optimised tail calls
1193    if (pio_instead)
1194      return tx_schedule (dev, 0);
1195    return;
1196#else
1197    // grrrrrrr!
1198    irq = 0;
1199  }
1200  return;
1201#endif
1202}
1203
1204/********** handle TX bus master complete events **********/
1205
1206static void tx_bus_master_complete_handler (hrz_dev * dev) {
1207  if (test_bit (tx_busy, &dev->flags)) {
1208    tx_schedule (dev, 1);
1209  } else {
1210    PRINTD (DBG_TX|DBG_ERR, "unexpected TX bus master completion");
1211    // clear interrupt condition on adapter
1212    wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0);
1213  }
1214  return;
1215}
1216
1217/********** move RX Q pointer to next item in circular buffer **********/
1218
1219// called only from IRQ sub-handler
1220static u32 rx_queue_entry_next (hrz_dev * dev) {
1221  u32 rx_queue_entry;
1222  spin_lock (&dev->mem_lock);
1223  rx_queue_entry = rd_mem (dev, &dev->rx_q_entry->entry);
1224  if (dev->rx_q_entry == dev->rx_q_wrap)
1225    dev->rx_q_entry = dev->rx_q_reset;
1226  else
1227    dev->rx_q_entry++;
1228  wr_regw (dev, RX_QUEUE_RD_PTR_OFF, dev->rx_q_entry - dev->rx_q_reset);
1229  spin_unlock (&dev->mem_lock);
1230  return rx_queue_entry;
1231}
1232
1233/********** handle RX data received by device **********/
1234
1235// called from IRQ handler
1236static void rx_data_av_handler (hrz_dev * dev) {
1237  u32 rx_queue_entry;
1238  u32 rx_queue_entry_flags;
1239  u16 rx_len;
1240  u16 rx_channel;
1241  
1242  PRINTD (DBG_FLOW, "hrz_data_av_handler");
1243  
1244  // try to grab rx lock (not possible during RX bus mastering)
1245  if (test_and_set_bit (rx_busy, &dev->flags)) {
1246    PRINTD (DBG_RX, "locked out of rx lock");
1247    return;
1248  }
1249  PRINTD (DBG_RX, "set rx_busy for dev %p", dev);
1250  // lock is cleared if we fail now, o/w after bus master completion
1251  
1252  YELLOW_LED_OFF(dev);
1253  
1254  rx_queue_entry = rx_queue_entry_next (dev);
1255  
1256  rx_len = rx_q_entry_to_length (rx_queue_entry);
1257  rx_channel = rx_q_entry_to_rx_channel (rx_queue_entry);
1258  
1259  WAIT_FLUSH_RX_COMPLETE (dev);
1260  
1261  SELECT_RX_CHANNEL (dev, rx_channel);
1262  
1263  PRINTD (DBG_RX, "rx_queue_entry is: %#x", rx_queue_entry);
1264  rx_queue_entry_flags = rx_queue_entry & (RX_CRC_32_OK|RX_COMPLETE_FRAME|SIMONS_DODGEY_MARKER);
1265  
1266  if (!rx_len) {
1267    // (at least) bus-mastering breaks if we try to handle a
1268    // zero-length frame, besides AAL5 does not support them
1269    PRINTK (KERN_ERR, "zero-length frame!");
1270    rx_queue_entry_flags &= ~RX_COMPLETE_FRAME;
1271  }
1272  
1273  if (rx_queue_entry_flags & SIMONS_DODGEY_MARKER) {
1274    PRINTD (DBG_RX|DBG_ERR, "Simon's marker detected!");
1275  }
1276  if (rx_queue_entry_flags == (RX_CRC_32_OK | RX_COMPLETE_FRAME)) {
1277    struct atm_vcc * atm_vcc;
1278    
1279    PRINTD (DBG_RX, "got a frame on rx_channel %x len %u", rx_channel, rx_len);
1280    
1281    atm_vcc = dev->rxer[rx_channel];
1282    // if no vcc is assigned to this channel, we should drop the frame
1283    // (is this what SIMONS etc. was trying to achieve?)
1284    
1285    if (atm_vcc) {
1286      
1287      if (atm_vcc->qos.rxtp.traffic_class != ATM_NONE) {
1288	
1289	if (rx_len <= atm_vcc->qos.rxtp.max_sdu) {
1290	    
1291	  struct sk_buff * skb = atm_alloc_charge (atm_vcc, rx_len, GFP_ATOMIC);
1292	  if (skb) {
1293	    // remember this so we can push it later
1294	    dev->rx_skb = skb;
1295	    // remember this so we can flush it later
1296	    dev->rx_channel = rx_channel;
1297	    
1298	    // prepare socket buffer
1299	    skb_put (skb, rx_len);
1300	    ATM_SKB(skb)->vcc = atm_vcc;
1301	    
1302	    // simple transfer
1303	    // dev->rx_regions = 0;
1304	    // dev->rx_iovec = 0;
1305	    dev->rx_bytes = rx_len;
1306	    dev->rx_addr = skb->data;
1307	    PRINTD (DBG_RX, "RX start simple transfer (addr %p, len %d)",
1308		    skb->data, rx_len);
1309	    
1310	    // do the business
1311	    rx_schedule (dev, 0);
1312	    return;
1313	    
1314	  } else {
1315	    PRINTD (DBG_SKB|DBG_WARN, "failed to get skb");
1316	  }
1317	  
1318	} else {
1319	  PRINTK (KERN_INFO, "frame received on TX-only VC %x", rx_channel);
1320	  // do we count this?
1321	}
1322	
1323      } else {
1324	PRINTK (KERN_WARNING, "dropped over-size frame");
1325	// do we count this?
1326      }
1327      
1328    } else {
1329      PRINTD (DBG_WARN|DBG_VCC|DBG_RX, "no VCC for this frame (VC closed)");
1330      // do we count this?
1331    }
1332    
1333  } else {
1334    // Wait update complete ? SPONG
1335  }
1336  
1337  // RX was aborted
1338  YELLOW_LED_ON(dev);
1339  
1340  FLUSH_RX_CHANNEL (dev,rx_channel);
1341  clear_bit (rx_busy, &dev->flags);
1342  
1343  return;
1344}
1345
1346/********** interrupt handler **********/
1347
1348static irqreturn_t interrupt_handler(int irq, void *dev_id)
1349{
1350  hrz_dev *dev = dev_id;
1351  u32 int_source;
1352  unsigned int irq_ok;
1353  
1354  PRINTD (DBG_FLOW, "interrupt_handler: %p", dev_id);
1355  
1356  // definitely for us
1357  irq_ok = 0;
1358  while ((int_source = rd_regl (dev, INT_SOURCE_REG_OFF)
1359	  & INTERESTING_INTERRUPTS)) {
1360    // In the interests of fairness, the handlers below are
1361    // called in sequence and without immediate return to the head of
1362    // the while loop. This is only of issue for slow hosts (or when
1363    // debugging messages are on). Really slow hosts may find a fast
1364    // sender keeps them permanently in the IRQ handler. :(
1365    
1366    // (only an issue for slow hosts) RX completion goes before
1367    // rx_data_av as the former implies rx_busy and so the latter
1368    // would just abort. If it reschedules another transfer
1369    // (continuing the same frame) then it will not clear rx_busy.
1370    
1371    // (only an issue for slow hosts) TX completion goes before RX
1372    // data available as it is a much shorter routine - there is the
1373    // chance that any further transfers it schedules will be complete
1374    // by the time of the return to the head of the while loop
1375    
1376    if (int_source & RX_BUS_MASTER_COMPLETE) {
1377      ++irq_ok;
1378      PRINTD (DBG_IRQ|DBG_BUS|DBG_RX, "rx_bus_master_complete asserted");
1379      rx_bus_master_complete_handler (dev);
1380    }
1381    if (int_source & TX_BUS_MASTER_COMPLETE) {
1382      ++irq_ok;
1383      PRINTD (DBG_IRQ|DBG_BUS|DBG_TX, "tx_bus_master_complete asserted");
1384      tx_bus_master_complete_handler (dev);
1385    }
1386    if (int_source & RX_DATA_AV) {
1387      ++irq_ok;
1388      PRINTD (DBG_IRQ|DBG_RX, "rx_data_av asserted");
1389      rx_data_av_handler (dev);
1390    }
1391  }
1392  if (irq_ok) {
1393    PRINTD (DBG_IRQ, "work done: %u", irq_ok);
1394  } else {
1395    PRINTD (DBG_IRQ|DBG_WARN, "spurious interrupt source: %#x", int_source);
1396  }
1397  
1398  PRINTD (DBG_IRQ|DBG_FLOW, "interrupt_handler done: %p", dev_id);
1399  if (irq_ok)
1400	return IRQ_HANDLED;
1401  return IRQ_NONE;
1402}
1403
1404/********** housekeeping **********/
1405
1406static void do_housekeeping (struct timer_list *t) {
1407  // just stats at the moment
1408  hrz_dev * dev = from_timer(dev, t, housekeeping);
1409
1410  // collect device-specific (not driver/atm-linux) stats here
1411  dev->tx_cell_count += rd_regw (dev, TX_CELL_COUNT_OFF);
1412  dev->rx_cell_count += rd_regw (dev, RX_CELL_COUNT_OFF);
1413  dev->hec_error_count += rd_regw (dev, HEC_ERROR_COUNT_OFF);
1414  dev->unassigned_cell_count += rd_regw (dev, UNASSIGNED_CELL_COUNT_OFF);
1415
1416  mod_timer (&dev->housekeeping, jiffies + HZ/10);
1417
1418  return;
1419}
1420
1421/********** find an idle channel for TX and set it up **********/
1422
1423// called with tx_busy set
1424static short setup_idle_tx_channel (hrz_dev * dev, hrz_vcc * vcc) {
1425  unsigned short idle_channels;
1426  short tx_channel = -1;
1427  unsigned int spin_count;
1428  PRINTD (DBG_FLOW|DBG_TX, "setup_idle_tx_channel %p", dev);
1429  
1430  // better would be to fail immediately, the caller can then decide whether
1431  // to wait or drop (depending on whether this is UBR etc.)
1432  spin_count = 0;
1433  while (!(idle_channels = rd_regw (dev, TX_STATUS_OFF) & IDLE_CHANNELS_MASK)) {
1434    PRINTD (DBG_TX|DBG_WARN, "waiting for idle TX channel");
1435    // delay a bit here
1436    if (++spin_count > 100) {
1437      PRINTD (DBG_TX|DBG_ERR, "spun out waiting for idle TX channel");
1438      return -EBUSY;
1439    }
1440  }
1441  
1442  // got an idle channel
1443  {
1444    // tx_idle ensures we look for idle channels in RR order
1445    int chan = dev->tx_idle;
1446    
1447    int keep_going = 1;
1448    while (keep_going) {
1449      if (idle_channels & (1<<chan)) {
1450	tx_channel = chan;
1451	keep_going = 0;
1452      }
1453      ++chan;
1454      if (chan == TX_CHANS)
1455	chan = 0;
1456    }
1457    
1458    dev->tx_idle = chan;
1459  }
1460  
1461  // set up the channel we found
1462  {
1463    // Initialise the cell header in the transmit channel descriptor
1464    // a.k.a. prepare the channel and remember that we have done so.
1465    
1466    tx_ch_desc * tx_desc = &memmap->tx_descs[tx_channel];
1467    u32 rd_ptr;
1468    u32 wr_ptr;
1469    u16 channel = vcc->channel;
1470    
1471    unsigned long flags;
1472    spin_lock_irqsave (&dev->mem_lock, flags);
1473    
1474    // Update the transmit channel record.
1475    dev->tx_channel_record[tx_channel] = channel;
1476    
1477    // xBR channel
1478    update_tx_channel_config (dev, tx_channel, RATE_TYPE_ACCESS,
1479			      vcc->tx_xbr_bits);
1480    
1481    // Update the PCR counter preload value etc.
1482    update_tx_channel_config (dev, tx_channel, PCR_TIMER_ACCESS,
1483			      vcc->tx_pcr_bits);
1484
1485#if 0
1486    if (vcc->tx_xbr_bits == VBR_RATE_TYPE) {
1487      // SCR timer
1488      update_tx_channel_config (dev, tx_channel, SCR_TIMER_ACCESS,
1489				vcc->tx_scr_bits);
1490      
1491      // Bucket size...
1492      update_tx_channel_config (dev, tx_channel, BUCKET_CAPACITY_ACCESS,
1493				vcc->tx_bucket_bits);
1494      
1495      // ... and fullness
1496      update_tx_channel_config (dev, tx_channel, BUCKET_FULLNESS_ACCESS,
1497				vcc->tx_bucket_bits);
1498    }
1499#endif
1500
1501    // Initialise the read and write buffer pointers
1502    rd_ptr = rd_mem (dev, &tx_desc->rd_buf_type) & BUFFER_PTR_MASK;
1503    wr_ptr = rd_mem (dev, &tx_desc->wr_buf_type) & BUFFER_PTR_MASK;
1504    
1505    // idle TX channels should have identical pointers
1506    if (rd_ptr != wr_ptr) {
1507      PRINTD (DBG_TX|DBG_ERR, "TX buffer pointers are broken!");
1508      // spin_unlock... return -E...
1509      // I wonder if gcc would get rid of one of the pointer aliases
1510    }
1511    PRINTD (DBG_TX, "TX buffer pointers are: rd %x, wr %x.",
1512	    rd_ptr, wr_ptr);
1513    
1514    switch (vcc->aal) {
1515      case aal0:
1516	PRINTD (DBG_QOS|DBG_TX, "tx_channel: aal0");
1517	rd_ptr |= CHANNEL_TYPE_RAW_CELLS;
1518	wr_ptr |= CHANNEL_TYPE_RAW_CELLS;
1519	break;
1520      case aal34:
1521	PRINTD (DBG_QOS|DBG_TX, "tx_channel: aal34");
1522	rd_ptr |= CHANNEL_TYPE_AAL3_4;
1523	wr_ptr |= CHANNEL_TYPE_AAL3_4;
1524	break;
1525      case aal5:
1526	rd_ptr |= CHANNEL_TYPE_AAL5;
1527	wr_ptr |= CHANNEL_TYPE_AAL5;
1528	// Initialise the CRC
1529	wr_mem (dev, &tx_desc->partial_crc, INITIAL_CRC);
1530	break;
1531    }
1532    
1533    wr_mem (dev, &tx_desc->rd_buf_type, rd_ptr);
1534    wr_mem (dev, &tx_desc->wr_buf_type, wr_ptr);
1535    
1536    // Write the Cell Header
1537    // Payload Type, CLP and GFC would go here if non-zero
1538    wr_mem (dev, &tx_desc->cell_header, channel);
1539    
1540    spin_unlock_irqrestore (&dev->mem_lock, flags);
1541  }
1542  
1543  return tx_channel;
1544}
1545
1546/********** send a frame **********/
1547
1548static int hrz_send (struct atm_vcc * atm_vcc, struct sk_buff * skb) {
1549  unsigned int spin_count;
1550  int free_buffers;
1551  hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
1552  hrz_vcc * vcc = HRZ_VCC(atm_vcc);
1553  u16 channel = vcc->channel;
1554  
1555  u32 buffers_required;
1556  
1557  /* signed for error return */
1558  short tx_channel;
1559  
1560  PRINTD (DBG_FLOW|DBG_TX, "hrz_send vc %x data %p len %u",
1561	  channel, skb->data, skb->len);
1562  
1563  dump_skb (">>>", channel, skb);
1564  
1565  if (atm_vcc->qos.txtp.traffic_class == ATM_NONE) {
1566    PRINTK (KERN_ERR, "attempt to send on RX-only VC %x", channel);
1567    hrz_kfree_skb (skb);
1568    return -EIO;
1569  }
1570  
1571  // don't understand this
1572  ATM_SKB(skb)->vcc = atm_vcc;
1573  
1574  if (skb->len > atm_vcc->qos.txtp.max_sdu) {
1575    PRINTK (KERN_ERR, "sk_buff length greater than agreed max_sdu, dropping...");
1576    hrz_kfree_skb (skb);
1577    return -EIO;
1578  }
1579  
1580  if (!channel) {
1581    PRINTD (DBG_ERR|DBG_TX, "attempt to transmit on zero (rx_)channel");
1582    hrz_kfree_skb (skb);
1583    return -EIO;
1584  }
1585  
1586#if 0
1587  {
1588    // where would be a better place for this? housekeeping?
1589    u16 status;
1590    pci_read_config_word (dev->pci_dev, PCI_STATUS, &status);
1591    if (status & PCI_STATUS_REC_MASTER_ABORT) {
1592      PRINTD (DBG_BUS|DBG_ERR, "Clearing PCI Master Abort (and cleaning up)");
1593      status &= ~PCI_STATUS_REC_MASTER_ABORT;
1594      pci_write_config_word (dev->pci_dev, PCI_STATUS, status);
1595      if (test_bit (tx_busy, &dev->flags)) {
1596	hrz_kfree_skb (dev->tx_skb);
1597	tx_release (dev);
1598      }
1599    }
1600  }
1601#endif
1602  
1603#ifdef DEBUG_HORIZON
1604  /* wey-hey! */
1605  if (channel == 1023) {
1606    unsigned int i;
1607    unsigned short d = 0;
1608    char * s = skb->data;
1609    if (*s++ == 'D') {
1610	for (i = 0; i < 4; ++i)
1611		d = (d << 4) | hex_to_bin(*s++);
1612      PRINTK (KERN_INFO, "debug bitmap is now %hx", debug = d);
1613    }
1614  }
1615#endif
1616  
1617  // wait until TX is free and grab lock
1618  if (tx_hold (dev)) {
1619    hrz_kfree_skb (skb);
1620    return -ERESTARTSYS;
1621  }
1622 
1623  // Wait for enough space to be available in transmit buffer memory.
1624  
1625  // should be number of cells needed + 2 (according to hardware docs)
1626  // = ((framelen+8)+47) / 48 + 2
1627  // = (framelen+7) / 48 + 3, hmm... faster to put addition inside XXX
1628  buffers_required = (skb->len+(ATM_AAL5_TRAILER-1)) / ATM_CELL_PAYLOAD + 3;
1629  
1630  // replace with timer and sleep, add dev->tx_buffers_queue (max 1 entry)
1631  spin_count = 0;
1632  while ((free_buffers = rd_regw (dev, TX_FREE_BUFFER_COUNT_OFF)) < buffers_required) {
1633    PRINTD (DBG_TX, "waiting for free TX buffers, got %d of %d",
1634	    free_buffers, buffers_required);
1635    // what is the appropriate delay? implement a timeout? (depending on line speed?)
1636    // mdelay (1);
1637    // what happens if we kill (current_pid, SIGKILL) ?
1638    schedule();
1639    if (++spin_count > 1000) {
1640      PRINTD (DBG_TX|DBG_ERR, "spun out waiting for tx buffers, got %d of %d",
1641	      free_buffers, buffers_required);
1642      tx_release (dev);
1643      hrz_kfree_skb (skb);
1644      return -ERESTARTSYS;
1645    }
1646  }
1647  
1648  // Select a channel to transmit the frame on.
1649  if (channel == dev->last_vc) {
1650    PRINTD (DBG_TX, "last vc hack: hit");
1651    tx_channel = dev->tx_last;
1652  } else {
1653    PRINTD (DBG_TX, "last vc hack: miss");
1654    // Are we currently transmitting this VC on one of the channels?
1655    for (tx_channel = 0; tx_channel < TX_CHANS; ++tx_channel)
1656      if (dev->tx_channel_record[tx_channel] == channel) {
1657	PRINTD (DBG_TX, "vc already on channel: hit");
1658	break;
1659      }
1660    if (tx_channel == TX_CHANS) { 
1661      PRINTD (DBG_TX, "vc already on channel: miss");
1662      // Find and set up an idle channel.
1663      tx_channel = setup_idle_tx_channel (dev, vcc);
1664      if (tx_channel < 0) {
1665	PRINTD (DBG_TX|DBG_ERR, "failed to get channel");
1666	tx_release (dev);
1667	return tx_channel;
1668      }
1669    }
1670    
1671    PRINTD (DBG_TX, "got channel");
1672    SELECT_TX_CHANNEL(dev, tx_channel);
1673    
1674    dev->last_vc = channel;
1675    dev->tx_last = tx_channel;
1676  }
1677  
1678  PRINTD (DBG_TX, "using channel %u", tx_channel);
1679  
1680  YELLOW_LED_OFF(dev);
1681  
1682  // TX start transfer
1683  
1684  {
1685    unsigned int tx_len = skb->len;
1686    unsigned int tx_iovcnt = skb_shinfo(skb)->nr_frags;
1687    // remember this so we can free it later
1688    dev->tx_skb = skb;
1689    
1690    if (tx_iovcnt) {
1691      // scatter gather transfer
1692      dev->tx_regions = tx_iovcnt;
1693      dev->tx_iovec = NULL;		/* @@@ needs rewritten */
1694      dev->tx_bytes = 0;
1695      PRINTD (DBG_TX|DBG_BUS, "TX start scatter-gather transfer (iovec %p, len %d)",
1696	      skb->data, tx_len);
1697      tx_release (dev);
1698      hrz_kfree_skb (skb);
1699      return -EIO;
1700    } else {
1701      // simple transfer
1702      dev->tx_regions = 0;
1703      dev->tx_iovec = NULL;
1704      dev->tx_bytes = tx_len;
1705      dev->tx_addr = skb->data;
1706      PRINTD (DBG_TX|DBG_BUS, "TX start simple transfer (addr %p, len %d)",
1707	      skb->data, tx_len);
1708    }
1709    
1710    // and do the business
1711    tx_schedule (dev, 0);
1712    
1713  }
1714  
1715  return 0;
1716}
1717
1718/********** reset a card **********/
1719
1720static void hrz_reset (const hrz_dev * dev) {
1721  u32 control_0_reg = rd_regl (dev, CONTROL_0_REG);
1722  
1723  // why not set RESET_HORIZON to one and wait for the card to
1724  // reassert that bit as zero? Like so:
1725  control_0_reg = control_0_reg & RESET_HORIZON;
1726  wr_regl (dev, CONTROL_0_REG, control_0_reg);
1727  while (control_0_reg & RESET_HORIZON)
1728    control_0_reg = rd_regl (dev, CONTROL_0_REG);
1729  
1730  // old reset code retained:
1731  wr_regl (dev, CONTROL_0_REG, control_0_reg |
1732	   RESET_ATM | RESET_RX | RESET_TX | RESET_HOST);
1733  // just guessing here
1734  udelay (1000);
1735  
1736  wr_regl (dev, CONTROL_0_REG, control_0_reg);
1737}
1738
1739/********** read the burnt in address **********/
1740
1741static void WRITE_IT_WAIT (const hrz_dev *dev, u32 ctrl)
1742{
1743	wr_regl (dev, CONTROL_0_REG, ctrl);
1744	udelay (5);
1745}
1746  
1747static void CLOCK_IT (const hrz_dev *dev, u32 ctrl)
1748{
1749	// DI must be valid around rising SK edge
1750	WRITE_IT_WAIT(dev, ctrl & ~SEEPROM_SK);
1751	WRITE_IT_WAIT(dev, ctrl | SEEPROM_SK);
1752}
1753
1754static u16 read_bia(const hrz_dev *dev, u16 addr)
1755{
1756  u32 ctrl = rd_regl (dev, CONTROL_0_REG);
1757  
1758  const unsigned int addr_bits = 6;
1759  const unsigned int data_bits = 16;
1760  
1761  unsigned int i;
1762  
1763  u16 res;
1764  
1765  ctrl &= ~(SEEPROM_CS | SEEPROM_SK | SEEPROM_DI);
1766  WRITE_IT_WAIT(dev, ctrl);
1767  
1768  // wake Serial EEPROM and send 110 (READ) command
1769  ctrl |=  (SEEPROM_CS | SEEPROM_DI);
1770  CLOCK_IT(dev, ctrl);
1771  
1772  ctrl |= SEEPROM_DI;
1773  CLOCK_IT(dev, ctrl);
1774  
1775  ctrl &= ~SEEPROM_DI;
1776  CLOCK_IT(dev, ctrl);
1777  
1778  for (i=0; i<addr_bits; i++) {
1779    if (addr & (1 << (addr_bits-1)))
1780      ctrl |= SEEPROM_DI;
1781    else
1782      ctrl &= ~SEEPROM_DI;
1783    
1784    CLOCK_IT(dev, ctrl);
1785    
1786    addr = addr << 1;
1787  }
1788  
1789  // we could check that we have DO = 0 here
1790  ctrl &= ~SEEPROM_DI;
1791  
1792  res = 0;
1793  for (i=0;i<data_bits;i++) {
1794    res = res >> 1;
1795    
1796    CLOCK_IT(dev, ctrl);
1797    
1798    if (rd_regl (dev, CONTROL_0_REG) & SEEPROM_DO)
1799      res |= (1 << (data_bits-1));
1800  }
1801  
1802  ctrl &= ~(SEEPROM_SK | SEEPROM_CS);
1803  WRITE_IT_WAIT(dev, ctrl);
1804  
1805  return res;
1806}
1807
1808/********** initialise a card **********/
1809
1810static int hrz_init(hrz_dev *dev)
1811{
1812  int onefivefive;
1813  
1814  u16 chan;
1815  
1816  int buff_count;
1817  
1818  HDW * mem;
1819  
1820  cell_buf * tx_desc;
1821  cell_buf * rx_desc;
1822  
1823  u32 ctrl;
1824  
1825  ctrl = rd_regl (dev, CONTROL_0_REG);
1826  PRINTD (DBG_INFO, "ctrl0reg is %#x", ctrl);
1827  onefivefive = ctrl & ATM_LAYER_STATUS;
1828  
1829  if (onefivefive)
1830    printk (DEV_LABEL ": Horizon Ultra (at 155.52 MBps)");
1831  else
1832    printk (DEV_LABEL ": Horizon (at 25 MBps)");
1833  
1834  printk (":");
1835  // Reset the card to get everything in a known state
1836  
1837  printk (" reset");
1838  hrz_reset (dev);
1839  
1840  // Clear all the buffer memory
1841  
1842  printk (" clearing memory");
1843  
1844  for (mem = (HDW *) memmap; mem < (HDW *) (memmap + 1); ++mem)
1845    wr_mem (dev, mem, 0);
1846  
1847  printk (" tx channels");
1848  
1849  // All transmit eight channels are set up as AAL5 ABR channels with
1850  // a 16us cell spacing. Why?
1851  
1852  // Channel 0 gets the free buffer at 100h, channel 1 gets the free
1853  // buffer at 110h etc.
1854  
1855  for (chan = 0; chan < TX_CHANS; ++chan) {
1856    tx_ch_desc * tx_desc = &memmap->tx_descs[chan];
1857    cell_buf * buf = &memmap->inittxbufs[chan];
1858    
1859    // initialise the read and write buffer pointers
1860    wr_mem (dev, &tx_desc->rd_buf_type, BUF_PTR(buf));
1861    wr_mem (dev, &tx_desc->wr_buf_type, BUF_PTR(buf));
1862    
1863    // set the status of the initial buffers to empty
1864    wr_mem (dev, &buf->next, BUFF_STATUS_EMPTY);
1865  }
1866  
1867  // Use space bufn3 at the moment for tx buffers
1868  
1869  printk (" tx buffers");
1870  
1871  tx_desc = memmap->bufn3;
1872  
1873  wr_mem (dev, &memmap->txfreebufstart.next, BUF_PTR(tx_desc) | BUFF_STATUS_EMPTY);
1874  
1875  for (buff_count = 0; buff_count < BUFN3_SIZE-1; buff_count++) {
1876    wr_mem (dev, &tx_desc->next, BUF_PTR(tx_desc+1) | BUFF_STATUS_EMPTY);
1877    tx_desc++;
1878  }
1879  
1880  wr_mem (dev, &tx_desc->next, BUF_PTR(&memmap->txfreebufend) | BUFF_STATUS_EMPTY);
1881  
1882  // Initialise the transmit free buffer count
1883  wr_regw (dev, TX_FREE_BUFFER_COUNT_OFF, BUFN3_SIZE);
1884  
1885  printk (" rx channels");
1886  
1887  // Initialise all of the receive channels to be AAL5 disabled with
1888  // an interrupt threshold of 0
1889  
1890  for (chan = 0; chan < RX_CHANS; ++chan) {
1891    rx_ch_desc * rx_desc = &memmap->rx_descs[chan];
1892    
1893    wr_mem (dev, &rx_desc->wr_buf_type, CHANNEL_TYPE_AAL5 | RX_CHANNEL_DISABLED);
1894  }
1895  
1896  printk (" rx buffers");
1897  
1898  // Use space bufn4 at the moment for rx buffers
1899  
1900  rx_desc = memmap->bufn4;
1901  
1902  wr_mem (dev, &memmap->rxfreebufstart.next, BUF_PTR(rx_desc) | BUFF_STATUS_EMPTY);
1903  
1904  for (buff_count = 0; buff_count < BUFN4_SIZE-1; buff_count++) {
1905    wr_mem (dev, &rx_desc->next, BUF_PTR(rx_desc+1) | BUFF_STATUS_EMPTY);
1906    
1907    rx_desc++;
1908  }
1909  
1910  wr_mem (dev, &rx_desc->next, BUF_PTR(&memmap->rxfreebufend) | BUFF_STATUS_EMPTY);
1911  
1912  // Initialise the receive free buffer count
1913  wr_regw (dev, RX_FREE_BUFFER_COUNT_OFF, BUFN4_SIZE);
1914  
1915  // Initialize Horizons registers
1916  
1917  // TX config
1918  wr_regw (dev, TX_CONFIG_OFF,
1919	   ABR_ROUND_ROBIN | TX_NORMAL_OPERATION | DRVR_DRVRBAR_ENABLE);
1920  
1921  // RX config. Use 10-x VC bits, x VP bits, non user cells in channel 0.
1922  wr_regw (dev, RX_CONFIG_OFF,
1923	   DISCARD_UNUSED_VPI_VCI_BITS_SET | NON_USER_CELLS_IN_ONE_CHANNEL | vpi_bits);
1924  
1925  // RX line config
1926  wr_regw (dev, RX_LINE_CONFIG_OFF,
1927	   LOCK_DETECT_ENABLE | FREQUENCY_DETECT_ENABLE | GXTALOUT_SELECT_DIV4);
1928  
1929  // Set the max AAL5 cell count to be just enough to contain the
1930  // largest AAL5 frame that the user wants to receive
1931  wr_regw (dev, MAX_AAL5_CELL_COUNT_OFF,
1932	   DIV_ROUND_UP(max_rx_size + ATM_AAL5_TRAILER, ATM_CELL_PAYLOAD));
1933  
1934  // Enable receive
1935  wr_regw (dev, RX_CONFIG_OFF, rd_regw (dev, RX_CONFIG_OFF) | RX_ENABLE);
1936  
1937  printk (" control");
1938  
1939  // Drive the OE of the LEDs then turn the green LED on
1940  ctrl |= GREEN_LED_OE | YELLOW_LED_OE | GREEN_LED | YELLOW_LED;
1941  wr_regl (dev, CONTROL_0_REG, ctrl);
1942  
1943  // Test for a 155-capable card
1944  
1945  if (onefivefive) {
1946    // Select 155 mode... make this a choice (or: how do we detect
1947    // external line speed and switch?)
1948    ctrl |= ATM_LAYER_SELECT;
1949    wr_regl (dev, CONTROL_0_REG, ctrl);
1950    
1951    // test SUNI-lite vs SAMBA
1952    
1953    // Register 0x00 in the SUNI will have some of bits 3-7 set, and
1954    // they will always be zero for the SAMBA.  Ha!  Bloody hardware
1955    // engineers.  It'll never work.
1956    
1957    if (rd_framer (dev, 0) & 0x00f0) {
1958      // SUNI
1959      printk (" SUNI");
1960      
1961      // Reset, just in case
1962      wr_framer (dev, 0x00, 0x0080);
1963      wr_framer (dev, 0x00, 0x0000);
1964      
1965      // Configure transmit FIFO
1966      wr_framer (dev, 0x63, rd_framer (dev, 0x63) | 0x0002);
1967      
1968      // Set line timed mode
1969      wr_framer (dev, 0x05, rd_framer (dev, 0x05) | 0x0001);
1970    } else {
1971      // SAMBA
1972      printk (" SAMBA");
1973      
1974      // Reset, just in case
1975      wr_framer (dev, 0, rd_framer (dev, 0) | 0x0001);
1976      wr_framer (dev, 0, rd_framer (dev, 0) &~ 0x0001);
1977      
1978      // Turn off diagnostic loopback and enable line-timed mode
1979      wr_framer (dev, 0, 0x0002);
1980      
1981      // Turn on transmit outputs
1982      wr_framer (dev, 2, 0x0B80);
1983    }
1984  } else {
1985    // Select 25 mode
1986    ctrl &= ~ATM_LAYER_SELECT;
1987    
1988    // Madge B154 setup
1989    // none required?
1990  }
1991  
1992  printk (" LEDs");
1993  
1994  GREEN_LED_ON(dev);
1995  YELLOW_LED_ON(dev);
1996  
1997  printk (" ESI=");
1998  
1999  {
2000    u16 b = 0;
2001    int i;
2002    u8 * esi = dev->atm_dev->esi;
2003    
2004    // in the card I have, EEPROM
2005    // addresses 0, 1, 2 contain 0
2006    // addresess 5, 6 etc. contain ffff
2007    // NB: Madge prefix is 00 00 f6 (which is 00 00 6f in Ethernet bit order)
2008    // the read_bia routine gets the BIA in Ethernet bit order
2009    
2010    for (i=0; i < ESI_LEN; ++i) {
2011      if (i % 2 == 0)
2012	b = read_bia (dev, i/2 + 2);
2013      else
2014	b = b >> 8;
2015      esi[i] = b & 0xFF;
2016      printk ("%02x", esi[i]);
2017    }
2018  }
2019  
2020  // Enable RX_Q and ?X_COMPLETE interrupts only
2021  wr_regl (dev, INT_ENABLE_REG_OFF, INTERESTING_INTERRUPTS);
2022  printk (" IRQ on");
2023  
2024  printk (".\n");
2025  
2026  return onefivefive;
2027}
2028
2029/********** check max_sdu **********/
2030
2031static int check_max_sdu (hrz_aal aal, struct atm_trafprm * tp, unsigned int max_frame_size) {
2032  PRINTD (DBG_FLOW|DBG_QOS, "check_max_sdu");
2033  
2034  switch (aal) {
2035    case aal0:
2036      if (!(tp->max_sdu)) {
2037	PRINTD (DBG_QOS, "defaulting max_sdu");
2038	tp->max_sdu = ATM_AAL0_SDU;
2039      } else if (tp->max_sdu != ATM_AAL0_SDU) {
2040	PRINTD (DBG_QOS|DBG_ERR, "rejecting max_sdu");
2041	return -EINVAL;
2042      }
2043      break;
2044    case aal34:
2045      if (tp->max_sdu == 0 || tp->max_sdu > ATM_MAX_AAL34_PDU) {
2046	PRINTD (DBG_QOS, "%sing max_sdu", tp->max_sdu ? "capp" : "default");
2047	tp->max_sdu = ATM_MAX_AAL34_PDU;
2048      }
2049      break;
2050    case aal5:
2051      if (tp->max_sdu == 0 || tp->max_sdu > max_frame_size) {
2052	PRINTD (DBG_QOS, "%sing max_sdu", tp->max_sdu ? "capp" : "default");
2053	tp->max_sdu = max_frame_size;
2054      }
2055      break;
2056  }
2057  return 0;
2058}
2059
2060/********** check pcr **********/
2061
2062// something like this should be part of ATM Linux
2063static int atm_pcr_check (struct atm_trafprm * tp, unsigned int pcr) {
2064  // we are assuming non-UBR, and non-special values of pcr
2065  if (tp->min_pcr == ATM_MAX_PCR)
2066    PRINTD (DBG_QOS, "luser gave min_pcr = ATM_MAX_PCR");
2067  else if (tp->min_pcr < 0)
2068    PRINTD (DBG_QOS, "luser gave negative min_pcr");
2069  else if (tp->min_pcr && tp->min_pcr > pcr)
2070    PRINTD (DBG_QOS, "pcr less than min_pcr");
2071  else
2072    // !! max_pcr = UNSPEC (0) is equivalent to max_pcr = MAX (-1)
2073    // easier to #define ATM_MAX_PCR 0 and have all rates unsigned?
2074    // [this would get rid of next two conditionals]
2075    if ((0) && tp->max_pcr == ATM_MAX_PCR)
2076      PRINTD (DBG_QOS, "luser gave max_pcr = ATM_MAX_PCR");
2077    else if ((tp->max_pcr != ATM_MAX_PCR) && tp->max_pcr < 0)
2078      PRINTD (DBG_QOS, "luser gave negative max_pcr");
2079    else if (tp->max_pcr && tp->max_pcr != ATM_MAX_PCR && tp->max_pcr < pcr)
2080      PRINTD (DBG_QOS, "pcr greater than max_pcr");
2081    else {
2082      // each limit unspecified or not violated
2083      PRINTD (DBG_QOS, "xBR(pcr) OK");
2084      return 0;
2085    }
2086  PRINTD (DBG_QOS, "pcr=%u, tp: min_pcr=%d, pcr=%d, max_pcr=%d",
2087	  pcr, tp->min_pcr, tp->pcr, tp->max_pcr);
2088  return -EINVAL;
2089}
2090
2091/********** open VC **********/
2092
2093static int hrz_open (struct atm_vcc *atm_vcc)
2094{
2095  int error;
2096  u16 channel;
2097  
2098  struct atm_qos * qos;
2099  struct atm_trafprm * txtp;
2100  struct atm_trafprm * rxtp;
2101  
2102  hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
2103  hrz_vcc vcc;
2104  hrz_vcc * vccp; // allocated late
2105  short vpi = atm_vcc->vpi;
2106  int vci = atm_vcc->vci;
2107  PRINTD (DBG_FLOW|DBG_VCC, "hrz_open %x %x", vpi, vci);
2108  
2109#ifdef ATM_VPI_UNSPEC
2110  // UNSPEC is deprecated, remove this code eventually
2111  if (vpi == ATM_VPI_UNSPEC || vci == ATM_VCI_UNSPEC) {
2112    PRINTK (KERN_WARNING, "rejecting open with unspecified VPI/VCI (deprecated)");
2113    return -EINVAL;
2114  }
2115#endif
2116  
2117  error = vpivci_to_channel (&channel, vpi, vci);
2118  if (error) {
2119    PRINTD (DBG_WARN|DBG_VCC, "VPI/VCI out of range: %hd/%d", vpi, vci);
2120    return error;
2121  }
2122  
2123  vcc.channel = channel;
2124  // max speed for the moment
2125  vcc.tx_rate = 0x0;
2126  
2127  qos = &atm_vcc->qos;
2128  
2129  // check AAL and remember it
2130  switch (qos->aal) {
2131    case ATM_AAL0:
2132      // we would if it were 48 bytes and not 52!
2133      PRINTD (DBG_QOS|DBG_VCC, "AAL0");
2134      vcc.aal = aal0;
2135      break;
2136    case ATM_AAL34:
2137      // we would if I knew how do the SAR!
2138      PRINTD (DBG_QOS|DBG_VCC, "AAL3/4");
2139      vcc.aal = aal34;
2140      break;
2141    case ATM_AAL5:
2142      PRINTD (DBG_QOS|DBG_VCC, "AAL5");
2143      vcc.aal = aal5;
2144      break;
2145    default:
2146      PRINTD (DBG_QOS|DBG_VCC, "Bad AAL!");
2147      return -EINVAL;
2148  }
2149  
2150  // TX traffic parameters
2151  
2152  // there are two, interrelated problems here: 1. the reservation of
2153  // PCR is not a binary choice, we are given bounds and/or a
2154  // desirable value; 2. the device is only capable of certain values,
2155  // most of which are not integers. It is almost certainly acceptable
2156  // to be off by a maximum of 1 to 10 cps.
2157  
2158  // Pragmatic choice: always store an integral PCR as that which has
2159  // been allocated, even if we allocate a little (or a lot) less,
2160  // after rounding. The actual allocation depends on what we can
2161  // manage with our rate selection algorithm. The rate selection
2162  // algorithm is given an integral PCR and a tolerance and told
2163  // whether it should round the value up or down if the tolerance is
2164  // exceeded; it returns: a) the actual rate selected (rounded up to
2165  // the nearest integer), b) a bit pattern to feed to the timer
2166  // register, and c) a failure value if no applicable rate exists.
2167  
2168  // Part of the job is done by atm_pcr_goal which gives us a PCR
2169  // specification which says: EITHER grab the maximum available PCR
2170  // (and perhaps a lower bound which we musn't pass), OR grab this
2171  // amount, rounding down if you have to (and perhaps a lower bound
2172  // which we musn't pass) OR grab this amount, rounding up if you
2173  // have to (and perhaps an upper bound which we musn't pass). If any
2174  // bounds ARE passed we fail. Note that rounding is only rounding to
2175  // match device limitations, we do not round down to satisfy
2176  // bandwidth availability even if this would not violate any given
2177  // lower bound.
2178  
2179  // Note: telephony = 64kb/s = 48 byte cell payload @ 500/3 cells/s
2180  // (say) so this is not even a binary fixpoint cell rate (but this
2181  // device can do it). To avoid this sort of hassle we use a
2182  // tolerance parameter (currently fixed at 10 cps).
2183  
2184  PRINTD (DBG_QOS, "TX:");
2185  
2186  txtp = &qos->txtp;
2187  
2188  // set up defaults for no traffic
2189  vcc.tx_rate = 0;
2190  // who knows what would actually happen if you try and send on this?
2191  vcc.tx_xbr_bits = IDLE_RATE_TYPE;
2192  vcc.tx_pcr_bits = CLOCK_DISABLE;
2193#if 0
2194  vcc.tx_scr_bits = CLOCK_DISABLE;
2195  vcc.tx_bucket_bits = 0;
2196#endif
2197  
2198  if (txtp->traffic_class != ATM_NONE) {
2199    error = check_max_sdu (vcc.aal, txtp, max_tx_size);
2200    if (error) {
2201      PRINTD (DBG_QOS, "TX max_sdu check failed");
2202      return error;
2203    }
2204    
2205    switch (txtp->traffic_class) {
2206      case ATM_UBR: {
2207	// we take "the PCR" as a rate-cap
2208	// not reserved
2209	vcc.tx_rate = 0;
2210	make_rate (dev, 1<<30, round_nearest, &vcc.tx_pcr_bits, NULL);
2211	vcc.tx_xbr_bits = ABR_RATE_TYPE;
2212	break;
2213      }
2214#if 0
2215      case ATM_ABR: {
2216	// reserve min, allow up to max
2217	vcc.tx_rate = 0; // ?
2218	make_rate (dev, 1<<30, round_nearest, &vcc.tx_pcr_bits, 0);
2219	vcc.tx_xbr_bits = ABR_RATE_TYPE;
2220	break;
2221      }
2222#endif
2223      case ATM_CBR: {
2224	int pcr = atm_pcr_goal (txtp);
2225	rounding r;
2226	if (!pcr) {
2227	  // down vs. up, remaining bandwidth vs. unlimited bandwidth!!
2228	  // should really have: once someone gets unlimited bandwidth
2229	  // that no more non-UBR channels can be opened until the
2230	  // unlimited one closes?? For the moment, round_down means
2231	  // greedy people actually get something and not nothing
2232	  r = round_down;
2233	  // slight race (no locking) here so we may get -EAGAIN
2234	  // later; the greedy bastards would deserve it :)
2235	  PRINTD (DBG_QOS, "snatching all remaining TX bandwidth");
2236	  pcr = dev->tx_avail;
2237	} else if (pcr < 0) {
2238	  r = round_down;
2239	  pcr = -pcr;
2240	} else {
2241	  r = round_up;
2242	}
2243	error = make_rate_with_tolerance (dev, pcr, r, 10,
2244					  &vcc.tx_pcr_bits, &vcc.tx_rate);
2245	if (error) {
2246	  PRINTD (DBG_QOS, "could not make rate from TX PCR");
2247	  return error;
2248	}
2249	// not really clear what further checking is needed
2250	error = atm_pcr_check (txtp, vcc.tx_rate);
2251	if (error) {
2252	  PRINTD (DBG_QOS, "TX PCR failed consistency check");
2253	  return error;
2254	}
2255	vcc.tx_xbr_bits = CBR_RATE_TYPE;
2256	break;
2257      }
2258#if 0
2259      case ATM_VBR: {
2260	int pcr = atm_pcr_goal (txtp);
2261	// int scr = atm_scr_goal (txtp);
2262	int scr = pcr/2; // just for fun
2263	unsigned int mbs = 60; // just for fun
2264	rounding pr;
2265	rounding sr;
2266	unsigned int bucket;
2267	if (!pcr) {
2268	  pr = round_nearest;
2269	  pcr = 1<<30;
2270	} else if (pcr < 0) {
2271	  pr = round_down;
2272	  pcr = -pcr;
2273	} else {
2274	  pr = round_up;
2275	}
2276	error = make_rate_with_tolerance (dev, pcr, pr, 10,
2277					  &vcc.tx_pcr_bits, 0);
2278	if (!scr) {
2279	  // see comments for PCR with CBR above
2280	  sr = round_down;
2281	  // slight race (no locking) here so we may get -EAGAIN
2282	  // later; the greedy bastards would deserve it :)
2283	  PRINTD (DBG_QOS, "snatching all remaining TX bandwidth");
2284	  scr = dev->tx_avail;
2285	} else if (scr < 0) {
2286	  sr = round_down;
2287	  scr = -scr;
2288	} else {
2289	  sr = round_up;
2290	}
2291	error = make_rate_with_tolerance (dev, scr, sr, 10,
2292					  &vcc.tx_scr_bits, &vcc.tx_rate);
2293	if (error) {
2294	  PRINTD (DBG_QOS, "could not make rate from TX SCR");
2295	  return error;
2296	}
2297	// not really clear what further checking is needed
2298	// error = atm_scr_check (txtp, vcc.tx_rate);
2299	if (error) {
2300	  PRINTD (DBG_QOS, "TX SCR failed consistency check");
2301	  return error;
2302	}
2303	// bucket calculations (from a piece of paper...) cell bucket
2304	// capacity must be largest integer smaller than m(p-s)/p + 1
2305	// where m = max burst size, p = pcr, s = scr
2306	bucket = mbs*(pcr-scr)/pcr;
2307	if (bucket*pcr != mbs*(pcr-scr))
2308	  bucket += 1;
2309	if (bucket > BUCKET_MAX_SIZE) {
2310	  PRINTD (DBG_QOS, "shrinking bucket from %u to %u",
2311		  bucket, BUCKET_MAX_SIZE);
2312	  bucket = BUCKET_MAX_SIZE;
2313	}
2314	vcc.tx_xbr_bits = VBR_RATE_TYPE;
2315	vcc.tx_bucket_bits = bucket;
2316	break;
2317      }
2318#endif
2319      default: {
2320	PRINTD (DBG_QOS, "unsupported TX traffic class");
2321	return -EINVAL;
2322      }
2323    }
2324  }
2325  
2326  // RX traffic parameters
2327  
2328  PRINTD (DBG_QOS, "RX:");
2329  
2330  rxtp = &qos->rxtp;
2331  
2332  // set up defaults for no traffic
2333  vcc.rx_rate = 0;
2334  
2335  if (rxtp->traffic_class != ATM_NONE) {
2336    error = check_max_sdu (vcc.aal, rxtp, max_rx_size);
2337    if (error) {
2338      PRINTD (DBG_QOS, "RX max_sdu check failed");
2339      return error;
2340    }
2341    switch (rxtp->traffic_class) {
2342      case ATM_UBR: {
2343	// not reserved
2344	break;
2345      }
2346#if 0
2347      case ATM_ABR: {
2348	// reserve min
2349	vcc.rx_rate = 0; // ?
2350	break;
2351      }
2352#endif
2353      case ATM_CBR: {
2354	int pcr = atm_pcr_goal (rxtp);
2355	if (!pcr) {
2356	  // slight race (no locking) here so we may get -EAGAIN
2357	  // later; the greedy bastards would deserve it :)
2358	  PRINTD (DBG_QOS, "snatching all remaining RX bandwidth");
2359	  pcr = dev->rx_avail;
2360	} else if (pcr < 0) {
2361	  pcr = -pcr;
2362	}
2363	vcc.rx_rate = pcr;
2364	// not really clear what further checking is needed
2365	error = atm_pcr_check (rxtp, vcc.rx_rate);
2366	if (error) {
2367	  PRINTD (DBG_QOS, "RX PCR failed consistency check");
2368	  return error;
2369	}
2370	break;
2371      }
2372#if 0
2373      case ATM_VBR: {
2374	// int scr = atm_scr_goal (rxtp);
2375	int scr = 1<<16; // just for fun
2376	if (!scr) {
2377	  // slight race (no locking) here so we may get -EAGAIN
2378	  // later; the greedy bastards would deserve it :)
2379	  PRINTD (DBG_QOS, "snatching all remaining RX bandwidth");
2380	  scr = dev->rx_avail;
2381	} else if (scr < 0) {
2382	  scr = -scr;
2383	}
2384	vcc.rx_rate = scr;
2385	// not really clear what further checking is needed
2386	// error = atm_scr_check (rxtp, vcc.rx_rate);
2387	if (error) {
2388	  PRINTD (DBG_QOS, "RX SCR failed consistency check");
2389	  return error;
2390	}
2391	break;
2392      }
2393#endif
2394      default: {
2395	PRINTD (DBG_QOS, "unsupported RX traffic class");
2396	return -EINVAL;
2397      }
2398    }
2399  }
2400  
2401  
2402  // late abort useful for diagnostics
2403  if (vcc.aal != aal5) {
2404    PRINTD (DBG_QOS, "AAL not supported");
2405    return -EINVAL;
2406  }
2407  
2408  // get space for our vcc stuff and copy parameters into it
2409  vccp = kmalloc (sizeof(hrz_vcc), GFP_KERNEL);
2410  if (!vccp) {
2411    PRINTK (KERN_ERR, "out of memory!");
2412    return -ENOMEM;
2413  }
2414  *vccp = vcc;
2415  
2416  // clear error and grab cell rate resource lock
2417  error = 0;
2418  spin_lock (&dev->rate_lock);
2419  
2420  if (vcc.tx_rate > dev->tx_avail) {
2421    PRINTD (DBG_QOS, "not enough TX PCR left");
2422    error = -EAGAIN;
2423  }
2424  
2425  if (vcc.rx_rate > dev->rx_avail) {
2426    PRINTD (DBG_QOS, "not enough RX PCR left");
2427    error = -EAGAIN;
2428  }
2429  
2430  if (!error) {
2431    // really consume cell rates
2432    dev->tx_avail -= vcc.tx_rate;
2433    dev->rx_avail -= vcc.rx_rate;
2434    PRINTD (DBG_QOS|DBG_VCC, "reserving %u TX PCR and %u RX PCR",
2435	    vcc.tx_rate, vcc.rx_rate);
2436  }
2437  
2438  // release lock and exit on error
2439  spin_unlock (&dev->rate_lock);
2440  if (error) {
2441    PRINTD (DBG_QOS|DBG_VCC, "insufficient cell rate resources");
2442    kfree (vccp);
2443    return error;
2444  }
2445  
2446  // this is "immediately before allocating the connection identifier
2447  // in hardware" - so long as the next call does not fail :)
2448  set_bit(ATM_VF_ADDR,&atm_vcc->flags);
2449  
2450  // any errors here are very serious and should never occur
2451  
2452  if (rxtp->traffic_class != ATM_NONE) {
2453    if (dev->rxer[channel]) {
2454      PRINTD (DBG_ERR|DBG_VCC, "VC already open for RX");
2455      error = -EBUSY;
2456    }
2457    if (!error)
2458      error = hrz_open_rx (dev, channel);
2459    if (error) {
2460      kfree (vccp);
2461      return error;
2462    }
2463    // this link allows RX frames through
2464    dev->rxer[channel] = atm_vcc;
2465  }
2466  
2467  // success, set elements of atm_vcc
2468  atm_vcc->dev_data = (void *) vccp;
2469  
2470  // indicate readiness
2471  set_bit(ATM_VF_READY,&atm_vcc->flags);
2472  
2473  return 0;
2474}
2475
2476/********** close VC **********/
2477
2478static void hrz_close (struct atm_vcc * atm_vcc) {
2479  hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
2480  hrz_vcc * vcc = HRZ_VCC(atm_vcc);
2481  u16 channel = vcc->channel;
2482  PRINTD (DBG_VCC|DBG_FLOW, "hrz_close");
2483  
2484  // indicate unreadiness
2485  clear_bit(ATM_VF_READY,&atm_vcc->flags);
2486
2487  if (atm_vcc->qos.txtp.traffic_class != ATM_NONE) {
2488    unsigned int i;
2489    
2490    // let any TX on this channel that has started complete
2491    // no restart, just keep trying
2492    while (tx_hold (dev))
2493      ;
2494    // remove record of any tx_channel having been setup for this channel
2495    for (i = 0; i < TX_CHANS; ++i)
2496      if (dev->tx_channel_record[i] == channel) {
2497	dev->tx_channel_record[i] = -1;
2498	break;
2499      }
2500    if (dev->last_vc == channel)
2501      dev->tx_last = -1;
2502    tx_release (dev);
2503  }
2504
2505  if (atm_vcc->qos.rxtp.traffic_class != ATM_NONE) {
2506    // disable RXing - it tries quite hard
2507    hrz_close_rx (dev, channel);
2508    // forget the vcc - no more skbs will be pushed
2509    if (atm_vcc != dev->rxer[channel])
2510      PRINTK (KERN_ERR, "%s atm_vcc=%p rxer[channel]=%p",
2511	      "arghhh! we're going to die!",
2512	      atm_vcc, dev->rxer[channel]);
2513    dev->rxer[channel] = NULL;
2514  }
2515  
2516  // atomically release our rate reservation
2517  spin_lock (&dev->rate_lock);
2518  PRINTD (DBG_QOS|DBG_VCC, "releasing %u TX PCR and %u RX PCR",
2519	  vcc->tx_rate, vcc->rx_rate);
2520  dev->tx_avail += vcc->tx_rate;
2521  dev->rx_avail += vcc->rx_rate;
2522  spin_unlock (&dev->rate_lock);
2523  
2524  // free our structure
2525  kfree (vcc);
2526  // say the VPI/VCI is free again
2527  clear_bit(ATM_VF_ADDR,&atm_vcc->flags);
2528}
2529
2530#if 0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2531static int hrz_ioctl (struct atm_dev * atm_dev, unsigned int cmd, void *arg) {
2532  hrz_dev * dev = HRZ_DEV(atm_dev);
2533  PRINTD (DBG_FLOW, "hrz_ioctl");
2534  return -1;
2535}
2536
2537unsigned char hrz_phy_get (struct atm_dev * atm_dev, unsigned long addr) {
2538  hrz_dev * dev = HRZ_DEV(atm_dev);
2539  PRINTD (DBG_FLOW, "hrz_phy_get");
2540  return 0;
2541}
2542
2543static void hrz_phy_put (struct atm_dev * atm_dev, unsigned char value,
2544			 unsigned long addr) {
2545  hrz_dev * dev = HRZ_DEV(atm_dev);
2546  PRINTD (DBG_FLOW, "hrz_phy_put");
2547}
2548
2549static int hrz_change_qos (struct atm_vcc * atm_vcc, struct atm_qos *qos, int flgs) {
2550  hrz_dev * dev = HRZ_DEV(vcc->dev);
2551  PRINTD (DBG_FLOW, "hrz_change_qos");
2552  return -1;
2553}
2554#endif
2555
2556/********** proc file contents **********/
2557
2558static int hrz_proc_read (struct atm_dev * atm_dev, loff_t * pos, char * page) {
2559  hrz_dev * dev = HRZ_DEV(atm_dev);
2560  int left = *pos;
2561  PRINTD (DBG_FLOW, "hrz_proc_read");
2562  
2563  /* more diagnostics here? */
2564  
2565#if 0
2566  if (!left--) {
2567    unsigned int count = sprintf (page, "vbr buckets:");
2568    unsigned int i;
2569    for (i = 0; i < TX_CHANS; ++i)
2570      count += sprintf (page, " %u/%u",
2571			query_tx_channel_config (dev, i, BUCKET_FULLNESS_ACCESS),
2572			query_tx_channel_config (dev, i, BUCKET_CAPACITY_ACCESS));
2573    count += sprintf (page+count, ".\n");
2574    return count;
2575  }
2576#endif
2577  
2578  if (!left--)
2579    return sprintf (page,
2580		    "cells: TX %lu, RX %lu, HEC errors %lu, unassigned %lu.\n",
2581		    dev->tx_cell_count, dev->rx_cell_count,
2582		    dev->hec_error_count, dev->unassigned_cell_count);
2583  
2584  if (!left--)
2585    return sprintf (page,
2586		    "free cell buffers: TX %hu, RX %hu+%hu.\n",
2587		    rd_regw (dev, TX_FREE_BUFFER_COUNT_OFF),
2588		    rd_regw (dev, RX_FREE_BUFFER_COUNT_OFF),
2589		    dev->noof_spare_buffers);
2590  
2591  if (!left--)
2592    return sprintf (page,
2593		    "cps remaining: TX %u, RX %u\n",
2594		    dev->tx_avail, dev->rx_avail);
2595  
2596  return 0;
2597}
2598
2599static const struct atmdev_ops hrz_ops = {
2600  .open	= hrz_open,
2601  .close	= hrz_close,
2602  .send	= hrz_send,
2603  .proc_read	= hrz_proc_read,
2604  .owner	= THIS_MODULE,
2605};
2606
2607static int hrz_probe(struct pci_dev *pci_dev,
2608		     const struct pci_device_id *pci_ent)
2609{
2610	hrz_dev * dev;
2611	int err = 0;
2612
2613	// adapter slot free, read resources from PCI configuration space
2614	u32 iobase = pci_resource_start (pci_dev, 0);
2615	u32 * membase = bus_to_virt (pci_resource_start (pci_dev, 1));
2616	unsigned int irq;
2617	unsigned char lat;
2618
2619	PRINTD (DBG_FLOW, "hrz_probe");
2620
2621	if (pci_enable_device(pci_dev))
2622		return -EINVAL;
2623
2624	/* XXX DEV_LABEL is a guess */
2625	if (!request_region(iobase, HRZ_IO_EXTENT, DEV_LABEL)) {
2626		err = -EINVAL;
2627		goto out_disable;
2628	}
2629
2630	dev = kzalloc(sizeof(hrz_dev), GFP_KERNEL);
2631	if (!dev) {
2632		// perhaps we should be nice: deregister all adapters and abort?
2633		PRINTD(DBG_ERR, "out of memory");
2634		err = -ENOMEM;
2635		goto out_release;
2636	}
2637
2638	pci_set_drvdata(pci_dev, dev);
2639
2640	// grab IRQ and install handler - move this someplace more sensible
2641	irq = pci_dev->irq;
2642	if (request_irq(irq,
2643			interrupt_handler,
2644			IRQF_SHARED, /* irqflags guess */
2645			DEV_LABEL, /* name guess */
2646			dev)) {
2647		PRINTD(DBG_WARN, "request IRQ failed!");
2648		err = -EINVAL;
2649		goto out_free;
2650	}
2651
2652	PRINTD(DBG_INFO, "found Madge ATM adapter (hrz) at: IO %x, IRQ %u, MEM %p",
2653	       iobase, irq, membase);
2654
2655	dev->atm_dev = atm_dev_register(DEV_LABEL, &pci_dev->dev, &hrz_ops, -1,
2656					NULL);
2657	if (!(dev->atm_dev)) {
2658		PRINTD(DBG_ERR, "failed to register Madge ATM adapter");
2659		err = -EINVAL;
2660		goto out_free_irq;
2661	}
2662
2663	PRINTD(DBG_INFO, "registered Madge ATM adapter (no. %d) (%p) at %p",
2664	       dev->atm_dev->number, dev, dev->atm_dev);
2665	dev->atm_dev->dev_data = (void *) dev;
2666	dev->pci_dev = pci_dev; 
2667
2668	// enable bus master accesses
2669	pci_set_master(pci_dev);
2670
2671	// frobnicate latency (upwards, usually)
2672	pci_read_config_byte(pci_dev, PCI_LATENCY_TIMER, &lat);
2673	if (pci_lat) {
2674		PRINTD(DBG_INFO, "%s PCI latency timer from %hu to %hu",
2675		       "changing", lat, pci_lat);
2676		pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, pci_lat);
2677	} else if (lat < MIN_PCI_LATENCY) {
2678		PRINTK(KERN_INFO, "%s PCI latency timer from %hu to %hu",
2679		       "increasing", lat, MIN_PCI_LATENCY);
2680		pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, MIN_PCI_LATENCY);
2681	}
2682
2683	dev->iobase = iobase;
2684	dev->irq = irq; 
2685	dev->membase = membase; 
2686
2687	dev->rx_q_entry = dev->rx_q_reset = &memmap->rx_q_entries[0];
2688	dev->rx_q_wrap  = &memmap->rx_q_entries[RX_CHANS-1];
2689
2690	// these next three are performance hacks
2691	dev->last_vc = -1;
2692	dev->tx_last = -1;
2693	dev->tx_idle = 0;
2694
2695	dev->tx_regions = 0;
2696	dev->tx_bytes = 0;
2697	dev->tx_skb = NULL;
2698	dev->tx_iovec = NULL;
2699
2700	dev->tx_cell_count = 0;
2701	dev->rx_cell_count = 0;
2702	dev->hec_error_count = 0;
2703	dev->unassigned_cell_count = 0;
2704
2705	dev->noof_spare_buffers = 0;
2706
2707	{
2708		unsigned int i;
2709		for (i = 0; i < TX_CHANS; ++i)
2710			dev->tx_channel_record[i] = -1;
2711	}
2712
2713	dev->flags = 0;
2714
2715	// Allocate cell rates and remember ASIC version
2716	// Fibre: ATM_OC3_PCR = 1555200000/8/270*260/53 - 29/53
2717	// Copper: (WRONG) we want 6 into the above, close to 25Mb/s
2718	// Copper: (plagarise!) 25600000/8/270*260/53 - n/53
2719
2720	if (hrz_init(dev)) {
2721		// to be really pedantic, this should be ATM_OC3c_PCR
2722		dev->tx_avail = ATM_OC3_PCR;
2723		dev->rx_avail = ATM_OC3_PCR;
2724		set_bit(ultra, &dev->flags); // NOT "|= ultra" !
2725	} else {
2726		dev->tx_avail = ((25600000/8)*26)/(27*53);
2727		dev->rx_avail = ((25600000/8)*26)/(27*53);
2728		PRINTD(DBG_WARN, "Buggy ASIC: no TX bus-mastering.");
2729	}
2730
2731	// rate changes spinlock
2732	spin_lock_init(&dev->rate_lock);
2733
2734	// on-board memory access spinlock; we want atomic reads and
2735	// writes to adapter memory (handles IRQ and SMP)
2736	spin_lock_init(&dev->mem_lock);
2737
2738	init_waitqueue_head(&dev->tx_queue);
2739
2740	// vpi in 0..4, vci in 6..10
2741	dev->atm_dev->ci_range.vpi_bits = vpi_bits;
2742	dev->atm_dev->ci_range.vci_bits = 10-vpi_bits;
2743
2744	timer_setup(&dev->housekeeping, do_housekeeping, 0);
2745	mod_timer(&dev->housekeeping, jiffies);
2746
2747out:
2748	return err;
2749
2750out_free_irq:
2751	free_irq(irq, dev);
2752out_free:
2753	kfree(dev);
2754out_release:
2755	release_region(iobase, HRZ_IO_EXTENT);
2756out_disable:
2757	pci_disable_device(pci_dev);
2758	goto out;
2759}
2760
2761static void hrz_remove_one(struct pci_dev *pci_dev)
2762{
2763	hrz_dev *dev;
2764
2765	dev = pci_get_drvdata(pci_dev);
2766
2767	PRINTD(DBG_INFO, "closing %p (atm_dev = %p)", dev, dev->atm_dev);
2768	del_timer_sync(&dev->housekeeping);
2769	hrz_reset(dev);
2770	atm_dev_deregister(dev->atm_dev);
2771	free_irq(dev->irq, dev);
2772	release_region(dev->iobase, HRZ_IO_EXTENT);
2773	kfree(dev);
2774
2775	pci_disable_device(pci_dev);
2776}
2777
2778static void __init hrz_check_args (void) {
2779#ifdef DEBUG_HORIZON
2780  PRINTK (KERN_NOTICE, "debug bitmap is %hx", debug &= DBG_MASK);
2781#else
2782  if (debug)
2783    PRINTK (KERN_NOTICE, "no debug support in this image");
2784#endif
2785  
2786  if (vpi_bits > HRZ_MAX_VPI)
2787    PRINTK (KERN_ERR, "vpi_bits has been limited to %hu",
2788	    vpi_bits = HRZ_MAX_VPI);
2789  
2790  if (max_tx_size < 0 || max_tx_size > TX_AAL5_LIMIT)
2791    PRINTK (KERN_NOTICE, "max_tx_size has been limited to %hu",
2792	    max_tx_size = TX_AAL5_LIMIT);
2793  
2794  if (max_rx_size < 0 || max_rx_size > RX_AAL5_LIMIT)
2795    PRINTK (KERN_NOTICE, "max_rx_size has been limited to %hu",
2796	    max_rx_size = RX_AAL5_LIMIT);
2797  
2798  return;
2799}
2800
2801MODULE_AUTHOR(maintainer_string);
2802MODULE_DESCRIPTION(description_string);
2803MODULE_LICENSE("GPL");
2804module_param(debug, ushort, 0644);
2805module_param(vpi_bits, ushort, 0);
2806module_param(max_tx_size, int, 0);
2807module_param(max_rx_size, int, 0);
2808module_param(pci_lat, byte, 0);
2809MODULE_PARM_DESC(debug, "debug bitmap, see .h file");
2810MODULE_PARM_DESC(vpi_bits, "number of bits (0..4) to allocate to VPIs");
2811MODULE_PARM_DESC(max_tx_size, "maximum size of TX AAL5 frames");
2812MODULE_PARM_DESC(max_rx_size, "maximum size of RX AAL5 frames");
2813MODULE_PARM_DESC(pci_lat, "PCI latency in bus cycles");
2814
2815static const struct pci_device_id hrz_pci_tbl[] = {
2816	{ PCI_VENDOR_ID_MADGE, PCI_DEVICE_ID_MADGE_HORIZON, PCI_ANY_ID, PCI_ANY_ID,
2817	  0, 0, 0 },
2818	{ 0, }
2819};
2820
2821MODULE_DEVICE_TABLE(pci, hrz_pci_tbl);
2822
2823static struct pci_driver hrz_driver = {
2824	.name =		"horizon",
2825	.probe =	hrz_probe,
2826	.remove =	hrz_remove_one,
2827	.id_table =	hrz_pci_tbl,
2828};
2829
2830/********** module entry **********/
2831
2832static int __init hrz_module_init (void) {
2833  BUILD_BUG_ON(sizeof(struct MEMMAP) != 128*1024/4);
 
 
 
 
 
2834  
2835  show_version();
2836  
2837  // check arguments
2838  hrz_check_args();
2839  
2840  // get the juice
2841  return pci_register_driver(&hrz_driver);
2842}
2843
2844/********** module exit **********/
2845
2846static void __exit hrz_module_exit (void) {
2847  PRINTD (DBG_FLOW, "cleanup_module");
2848
2849  pci_unregister_driver(&hrz_driver);
2850}
2851
2852module_init(hrz_module_init);
2853module_exit(hrz_module_exit);
v4.10.11
 
   1/*
   2  Madge Horizon ATM Adapter driver.
   3  Copyright (C) 1995-1999  Madge Networks Ltd.
   4  
   5  This program is free software; you can redistribute it and/or modify
   6  it under the terms of the GNU General Public License as published by
   7  the Free Software Foundation; either version 2 of the License, or
   8  (at your option) any later version.
   9  
  10  This program is distributed in the hope that it will be useful,
  11  but WITHOUT ANY WARRANTY; without even the implied warranty of
  12  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  13  GNU General Public License for more details.
  14  
  15  You should have received a copy of the GNU General Public License
  16  along with this program; if not, write to the Free Software
  17  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  18  
  19  The GNU GPL is contained in /usr/doc/copyright/GPL on a Debian
  20  system and in the file COPYING in the Linux kernel source.
  21*/
  22
  23/*
  24  IMPORTANT NOTE: Madge Networks no longer makes the adapters
  25  supported by this driver and makes no commitment to maintain it.
  26*/
  27
  28#include <linux/module.h>
  29#include <linux/kernel.h>
 
  30#include <linux/mm.h>
  31#include <linux/pci.h>
  32#include <linux/errno.h>
  33#include <linux/atm.h>
  34#include <linux/atmdev.h>
  35#include <linux/sonet.h>
  36#include <linux/skbuff.h>
  37#include <linux/time.h>
  38#include <linux/delay.h>
  39#include <linux/uio.h>
  40#include <linux/init.h>
  41#include <linux/interrupt.h>
  42#include <linux/ioport.h>
  43#include <linux/wait.h>
  44#include <linux/slab.h>
  45
  46#include <asm/io.h>
  47#include <linux/atomic.h>
  48#include <linux/uaccess.h>
  49#include <asm/string.h>
  50#include <asm/byteorder.h>
  51
  52#include "horizon.h"
  53
  54#define maintainer_string "Giuliano Procida at Madge Networks <gprocida@madge.com>"
  55#define description_string "Madge ATM Horizon [Ultra] driver"
  56#define version_string "1.2.1"
  57
  58static inline void __init show_version (void) {
  59  printk ("%s version %s\n", description_string, version_string);
  60}
  61
  62/*
  63  
  64  CREDITS
  65  
  66  Driver and documentation by:
  67  
  68  Chris Aston        Madge Networks
  69  Giuliano Procida   Madge Networks
  70  Simon Benham       Madge Networks
  71  Simon Johnson      Madge Networks
  72  Various Others     Madge Networks
  73  
  74  Some inspiration taken from other drivers by:
  75  
  76  Alexandru Cucos    UTBv
  77  Kari Mettinen      University of Helsinki
  78  Werner Almesberger EPFL LRC
  79  
  80  Theory of Operation
  81  
  82  I Hardware, detection, initialisation and shutdown.
  83  
  84  1. Supported Hardware
  85  
  86  This driver should handle all variants of the PCI Madge ATM adapters
  87  with the Horizon chipset. These are all PCI cards supporting PIO, BM
  88  DMA and a form of MMIO (registers only, not internal RAM).
  89  
  90  The driver is only known to work with SONET and UTP Horizon Ultra
  91  cards at 155Mb/s. However, code is in place to deal with both the
  92  original Horizon and 25Mb/s operation.
  93  
  94  There are two revisions of the Horizon ASIC: the original and the
  95  Ultra. Details of hardware bugs are in section III.
  96  
  97  The ASIC version can be distinguished by chip markings but is NOT
  98  indicated by the PCI revision (all adapters seem to have PCI rev 1).
  99  
 100  I believe that:
 101  
 102  Horizon       => Collage  25 PCI Adapter (UTP and STP)
 103  Horizon Ultra => Collage 155 PCI Client (UTP or SONET)
 104  Ambassador x  => Collage 155 PCI Server (completely different)
 105  
 106  Horizon (25Mb/s) is fitted with UTP and STP connectors. It seems to
 107  have a Madge B154 plus glue logic serializer. I have also found a
 108  really ancient version of this with slightly different glue. It
 109  comes with the revision 0 (140-025-01) ASIC.
 110  
 111  Horizon Ultra (155Mb/s) is fitted with either a Pulse Medialink
 112  output (UTP) or an HP HFBR 5205 output (SONET). It has either
 113  Madge's SAMBA framer or a SUNI-lite device (early versions). It
 114  comes with the revision 1 (140-027-01) ASIC.
 115  
 116  2. Detection
 117  
 118  All Horizon-based cards present with the same PCI Vendor and Device
 119  IDs. The standard Linux 2.2 PCI API is used to locate any cards and
 120  to enable bus-mastering (with appropriate latency).
 121  
 122  ATM_LAYER_STATUS in the control register distinguishes between the
 123  two possible physical layers (25 and 155). It is not clear whether
 124  the 155 cards can also operate at 25Mbps. We rely on the fact that a
 125  card operates at 155 if and only if it has the newer Horizon Ultra
 126  ASIC.
 127  
 128  For 155 cards the two possible framers are probed for and then set
 129  up for loop-timing.
 130  
 131  3. Initialisation
 132  
 133  The card is reset and then put into a known state. The physical
 134  layer is configured for normal operation at the appropriate speed;
 135  in the case of the 155 cards, the framer is initialised with
 136  line-based timing; the internal RAM is zeroed and the allocation of
 137  buffers for RX and TX is made; the Burnt In Address is read and
 138  copied to the ATM ESI; various policy settings for RX (VPI bits,
 139  unknown VCs, oam cells) are made. Ideally all policy items should be
 140  configurable at module load (if not actually on-demand), however,
 141  only the vpi vs vci bit allocation can be specified at insmod.
 142  
 143  4. Shutdown
 144  
 145  This is in response to module_cleaup. No VCs are in use and the card
 146  should be idle; it is reset.
 147  
 148  II Driver software (as it should be)
 149  
 150  0. Traffic Parameters
 151  
 152  The traffic classes (not an enumeration) are currently: ATM_NONE (no
 153  traffic), ATM_UBR, ATM_CBR, ATM_VBR and ATM_ABR, ATM_ANYCLASS
 154  (compatible with everything). Together with (perhaps only some of)
 155  the following items they make up the traffic specification.
 156  
 157  struct atm_trafprm {
 158    unsigned char traffic_class; traffic class (ATM_UBR, ...)
 159    int           max_pcr;       maximum PCR in cells per second
 160    int           pcr;           desired PCR in cells per second
 161    int           min_pcr;       minimum PCR in cells per second
 162    int           max_cdv;       maximum CDV in microseconds
 163    int           max_sdu;       maximum SDU in bytes
 164  };
 165  
 166  Note that these denote bandwidth available not bandwidth used; the
 167  possibilities according to ATMF are:
 168  
 169  Real Time (cdv and max CDT given)
 170  
 171  CBR(pcr)             pcr bandwidth always available
 172  rtVBR(pcr,scr,mbs)   scr bandwidth always available, up to pcr at mbs too
 173  
 174  Non Real Time
 175  
 176  nrtVBR(pcr,scr,mbs)  scr bandwidth always available, up to pcr at mbs too
 177  UBR()
 178  ABR(mcr,pcr)         mcr bandwidth always available, up to pcr (depending) too
 179  
 180  mbs is max burst size (bucket)
 181  pcr and scr have associated cdvt values
 182  mcr is like scr but has no cdtv
 183  cdtv may differ at each hop
 184  
 185  Some of the above items are qos items (as opposed to traffic
 186  parameters). We have nothing to do with qos. All except ABR can have
 187  their traffic parameters converted to GCRA parameters. The GCRA may
 188  be implemented as a (real-number) leaky bucket. The GCRA can be used
 189  in complicated ways by switches and in simpler ways by end-stations.
 190  It can be used both to filter incoming cells and shape out-going
 191  cells.
 192  
 193  ATM Linux actually supports:
 194  
 195  ATM_NONE() (no traffic in this direction)
 196  ATM_UBR(max_frame_size)
 197  ATM_CBR(max/min_pcr, max_cdv, max_frame_size)
 198  
 199  0 or ATM_MAX_PCR are used to indicate maximum available PCR
 200  
 201  A traffic specification consists of the AAL type and separate
 202  traffic specifications for either direction. In ATM Linux it is:
 203  
 204  struct atm_qos {
 205  struct atm_trafprm txtp;
 206  struct atm_trafprm rxtp;
 207  unsigned char aal;
 208  };
 209  
 210  AAL types are:
 211  
 212  ATM_NO_AAL    AAL not specified
 213  ATM_AAL0      "raw" ATM cells
 214  ATM_AAL1      AAL1 (CBR)
 215  ATM_AAL2      AAL2 (VBR)
 216  ATM_AAL34     AAL3/4 (data)
 217  ATM_AAL5      AAL5 (data)
 218  ATM_SAAL      signaling AAL
 219  
 220  The Horizon has support for AAL frame types: 0, 3/4 and 5. However,
 221  it does not implement AAL 3/4 SAR and it has a different notion of
 222  "raw cell" to ATM Linux's (48 bytes vs. 52 bytes) so neither are
 223  supported by this driver.
 224  
 225  The Horizon has limited support for ABR (including UBR), VBR and
 226  CBR. Each TX channel has a bucket (containing up to 31 cell units)
 227  and two timers (PCR and SCR) associated with it that can be used to
 228  govern cell emissions and host notification (in the case of ABR this
 229  is presumably so that RM cells may be emitted at appropriate times).
 230  The timers may either be disabled or may be set to any of 240 values
 231  (determined by the clock crystal, a fixed (?) per-device divider, a
 232  configurable divider and a configurable timer preload value).
 233  
 234  At the moment only UBR and CBR are supported by the driver. VBR will
 235  be supported as soon as ATM for Linux supports it. ABR support is
 236  very unlikely as RM cell handling is completely up to the driver.
 237  
 238  1. TX (TX channel setup and TX transfer)
 239  
 240  The TX half of the driver owns the TX Horizon registers. The TX
 241  component in the IRQ handler is the BM completion handler. This can
 242  only be entered when tx_busy is true (enforced by hardware). The
 243  other TX component can only be entered when tx_busy is false
 244  (enforced by driver). So TX is single-threaded.
 245  
 246  Apart from a minor optimisation to not re-select the last channel,
 247  the TX send component works as follows:
 248  
 249  Atomic test and set tx_busy until we succeed; we should implement
 250  some sort of timeout so that tx_busy will never be stuck at true.
 251  
 252  If no TX channel is set up for this VC we wait for an idle one (if
 253  necessary) and set it up.
 254  
 255  At this point we have a TX channel ready for use. We wait for enough
 256  buffers to become available then start a TX transmit (set the TX
 257  descriptor, schedule transfer, exit).
 258  
 259  The IRQ component handles TX completion (stats, free buffer, tx_busy
 260  unset, exit). We also re-schedule further transfers for the same
 261  frame if needed.
 262  
 263  TX setup in more detail:
 264  
 265  TX open is a nop, the relevant information is held in the hrz_vcc
 266  (vcc->dev_data) structure and is "cached" on the card.
 267  
 268  TX close gets the TX lock and clears the channel from the "cache".
 269  
 270  2. RX (Data Available and RX transfer)
 271  
 272  The RX half of the driver owns the RX registers. There are two RX
 273  components in the IRQ handler: the data available handler deals with
 274  fresh data that has arrived on the card, the BM completion handler
 275  is very similar to the TX completion handler. The data available
 276  handler grabs the rx_lock and it is only released once the data has
 277  been discarded or completely transferred to the host. The BM
 278  completion handler only runs when the lock is held; the data
 279  available handler is locked out over the same period.
 280  
 281  Data available on the card triggers an interrupt. If the data is not
 282  suitable for our existing RX channels or we cannot allocate a buffer
 283  it is flushed. Otherwise an RX receive is scheduled. Multiple RX
 284  transfers may be scheduled for the same frame.
 285  
 286  RX setup in more detail:
 287  
 288  RX open...
 289  RX close...
 290  
 291  III Hardware Bugs
 292  
 293  0. Byte vs Word addressing of adapter RAM.
 294  
 295  A design feature; see the .h file (especially the memory map).
 296  
 297  1. Bus Master Data Transfers (original Horizon only, fixed in Ultra)
 298  
 299  The host must not start a transmit direction transfer at a
 300  non-four-byte boundary in host memory. Instead the host should
 301  perform a byte, or a two byte, or one byte followed by two byte
 302  transfer in order to start the rest of the transfer on a four byte
 303  boundary. RX is OK.
 304  
 305  Simultaneous transmit and receive direction bus master transfers are
 306  not allowed.
 307  
 308  The simplest solution to these two is to always do PIO (never DMA)
 309  in the TX direction on the original Horizon. More complicated
 310  solutions are likely to hurt my brain.
 311  
 312  2. Loss of buffer on close VC
 313  
 314  When a VC is being closed, the buffer associated with it is not
 315  returned to the pool. The host must store the reference to this
 316  buffer and when opening a new VC then give it to that new VC.
 317  
 318  The host intervention currently consists of stacking such a buffer
 319  pointer at VC close and checking the stack at VC open.
 320  
 321  3. Failure to close a VC
 322  
 323  If a VC is currently receiving a frame then closing the VC may fail
 324  and the frame continues to be received.
 325  
 326  The solution is to make sure any received frames are flushed when
 327  ready. This is currently done just before the solution to 2.
 328  
 329  4. PCI bus (original Horizon only, fixed in Ultra)
 330  
 331  Reading from the data port prior to initialisation will hang the PCI
 332  bus. Just don't do that then! We don't.
 333  
 334  IV To Do List
 335  
 336  . Timer code may be broken.
 337  
 338  . Allow users to specify buffer allocation split for TX and RX.
 339  
 340  . Deal once and for all with buggy VC close.
 341  
 342  . Handle interrupted and/or non-blocking operations.
 343  
 344  . Change some macros to functions and move from .h to .c.
 345  
 346  . Try to limit the number of TX frames each VC may have queued, in
 347    order to reduce the chances of TX buffer exhaustion.
 348  
 349  . Implement VBR (bucket and timers not understood) and ABR (need to
 350    do RM cells manually); also no Linux support for either.
 351  
 352  . Implement QoS changes on open VCs (involves extracting parts of VC open
 353    and close into separate functions and using them to make changes).
 354  
 355*/
 356
 357/********** globals **********/
 358
 359static void do_housekeeping (unsigned long arg);
 360
 361static unsigned short debug = 0;
 362static unsigned short vpi_bits = 0;
 363static int max_tx_size = 9000;
 364static int max_rx_size = 9000;
 365static unsigned char pci_lat = 0;
 366
 367/********** access functions **********/
 368
 369/* Read / Write Horizon registers */
 370static inline void wr_regl (const hrz_dev * dev, unsigned char reg, u32 data) {
 371  outl (cpu_to_le32 (data), dev->iobase + reg);
 372}
 373
 374static inline u32 rd_regl (const hrz_dev * dev, unsigned char reg) {
 375  return le32_to_cpu (inl (dev->iobase + reg));
 376}
 377
 378static inline void wr_regw (const hrz_dev * dev, unsigned char reg, u16 data) {
 379  outw (cpu_to_le16 (data), dev->iobase + reg);
 380}
 381
 382static inline u16 rd_regw (const hrz_dev * dev, unsigned char reg) {
 383  return le16_to_cpu (inw (dev->iobase + reg));
 384}
 385
 386static inline void wrs_regb (const hrz_dev * dev, unsigned char reg, void * addr, u32 len) {
 387  outsb (dev->iobase + reg, addr, len);
 388}
 389
 390static inline void rds_regb (const hrz_dev * dev, unsigned char reg, void * addr, u32 len) {
 391  insb (dev->iobase + reg, addr, len);
 392}
 393
 394/* Read / Write to a given address in Horizon buffer memory.
 395   Interrupts must be disabled between the address register and data
 396   port accesses as these must form an atomic operation. */
 397static inline void wr_mem (const hrz_dev * dev, HDW * addr, u32 data) {
 398  // wr_regl (dev, MEM_WR_ADDR_REG_OFF, (u32) addr);
 399  wr_regl (dev, MEM_WR_ADDR_REG_OFF, (addr - (HDW *) 0) * sizeof(HDW));
 400  wr_regl (dev, MEMORY_PORT_OFF, data);
 401}
 402
 403static inline u32 rd_mem (const hrz_dev * dev, HDW * addr) {
 404  // wr_regl (dev, MEM_RD_ADDR_REG_OFF, (u32) addr);
 405  wr_regl (dev, MEM_RD_ADDR_REG_OFF, (addr - (HDW *) 0) * sizeof(HDW));
 406  return rd_regl (dev, MEMORY_PORT_OFF);
 407}
 408
 409static inline void wr_framer (const hrz_dev * dev, u32 addr, u32 data) {
 410  wr_regl (dev, MEM_WR_ADDR_REG_OFF, (u32) addr | 0x80000000);
 411  wr_regl (dev, MEMORY_PORT_OFF, data);
 412}
 413
 414static inline u32 rd_framer (const hrz_dev * dev, u32 addr) {
 415  wr_regl (dev, MEM_RD_ADDR_REG_OFF, (u32) addr | 0x80000000);
 416  return rd_regl (dev, MEMORY_PORT_OFF);
 417}
 418
 419/********** specialised access functions **********/
 420
 421/* RX */
 422
 423static inline void FLUSH_RX_CHANNEL (hrz_dev * dev, u16 channel) {
 424  wr_regw (dev, RX_CHANNEL_PORT_OFF, FLUSH_CHANNEL | channel);
 425  return;
 426}
 427
 428static void WAIT_FLUSH_RX_COMPLETE (hrz_dev * dev) {
 429  while (rd_regw (dev, RX_CHANNEL_PORT_OFF) & FLUSH_CHANNEL)
 430    ;
 431  return;
 432}
 433
 434static inline void SELECT_RX_CHANNEL (hrz_dev * dev, u16 channel) {
 435  wr_regw (dev, RX_CHANNEL_PORT_OFF, channel);
 436  return;
 437}
 438
 439static void WAIT_UPDATE_COMPLETE (hrz_dev * dev) {
 440  while (rd_regw (dev, RX_CHANNEL_PORT_OFF) & RX_CHANNEL_UPDATE_IN_PROGRESS)
 441    ;
 442  return;
 443}
 444
 445/* TX */
 446
 447static inline void SELECT_TX_CHANNEL (hrz_dev * dev, u16 tx_channel) {
 448  wr_regl (dev, TX_CHANNEL_PORT_OFF, tx_channel);
 449  return;
 450}
 451
 452/* Update or query one configuration parameter of a particular channel. */
 453
 454static inline void update_tx_channel_config (hrz_dev * dev, short chan, u8 mode, u16 value) {
 455  wr_regw (dev, TX_CHANNEL_CONFIG_COMMAND_OFF,
 456	   chan * TX_CHANNEL_CONFIG_MULT | mode);
 457    wr_regw (dev, TX_CHANNEL_CONFIG_DATA_OFF, value);
 458    return;
 459}
 460
 461/********** dump functions **********/
 462
 463static inline void dump_skb (char * prefix, unsigned int vc, struct sk_buff * skb) {
 464#ifdef DEBUG_HORIZON
 465  unsigned int i;
 466  unsigned char * data = skb->data;
 467  PRINTDB (DBG_DATA, "%s(%u) ", prefix, vc);
 468  for (i=0; i<skb->len && i < 256;i++)
 469    PRINTDM (DBG_DATA, "%02x ", data[i]);
 470  PRINTDE (DBG_DATA,"");
 471#else
 472  (void) prefix;
 473  (void) vc;
 474  (void) skb;
 475#endif
 476  return;
 477}
 478
 479static inline void dump_regs (hrz_dev * dev) {
 480#ifdef DEBUG_HORIZON
 481  PRINTD (DBG_REGS, "CONTROL 0: %#x", rd_regl (dev, CONTROL_0_REG));
 482  PRINTD (DBG_REGS, "RX CONFIG: %#x", rd_regw (dev, RX_CONFIG_OFF));
 483  PRINTD (DBG_REGS, "TX CONFIG: %#x", rd_regw (dev, TX_CONFIG_OFF));
 484  PRINTD (DBG_REGS, "TX STATUS: %#x", rd_regw (dev, TX_STATUS_OFF));
 485  PRINTD (DBG_REGS, "IRQ ENBLE: %#x", rd_regl (dev, INT_ENABLE_REG_OFF));
 486  PRINTD (DBG_REGS, "IRQ SORCE: %#x", rd_regl (dev, INT_SOURCE_REG_OFF));
 487#else
 488  (void) dev;
 489#endif
 490  return;
 491}
 492
 493static inline void dump_framer (hrz_dev * dev) {
 494#ifdef DEBUG_HORIZON
 495  unsigned int i;
 496  PRINTDB (DBG_REGS, "framer registers:");
 497  for (i = 0; i < 0x10; ++i)
 498    PRINTDM (DBG_REGS, " %02x", rd_framer (dev, i));
 499  PRINTDE (DBG_REGS,"");
 500#else
 501  (void) dev;
 502#endif
 503  return;
 504}
 505
 506/********** VPI/VCI <-> (RX) channel conversions **********/
 507
 508/* RX channels are 10 bit integers, these fns are quite paranoid */
 509
 510static inline int vpivci_to_channel (u16 * channel, const short vpi, const int vci) {
 511  unsigned short vci_bits = 10 - vpi_bits;
 512  if (0 <= vpi && vpi < 1<<vpi_bits && 0 <= vci && vci < 1<<vci_bits) {
 513    *channel = vpi<<vci_bits | vci;
 514    return *channel ? 0 : -EINVAL;
 515  }
 516  return -EINVAL;
 517}
 518
 519/********** decode RX queue entries **********/
 520
 521static inline u16 rx_q_entry_to_length (u32 x) {
 522  return x & RX_Q_ENTRY_LENGTH_MASK;
 523}
 524
 525static inline u16 rx_q_entry_to_rx_channel (u32 x) {
 526  return (x>>RX_Q_ENTRY_CHANNEL_SHIFT) & RX_CHANNEL_MASK;
 527}
 528
 529/* Cell Transmit Rate Values
 530 *
 531 * the cell transmit rate (cells per sec) can be set to a variety of
 532 * different values by specifying two parameters: a timer preload from
 533 * 1 to 16 (stored as 0 to 15) and a clock divider (2 to the power of
 534 * an exponent from 0 to 14; the special value 15 disables the timer).
 535 *
 536 * cellrate = baserate / (preload * 2^divider)
 537 *
 538 * The maximum cell rate that can be specified is therefore just the
 539 * base rate. Halving the preload is equivalent to adding 1 to the
 540 * divider and so values 1 to 8 of the preload are redundant except
 541 * in the case of a maximal divider (14).
 542 *
 543 * Given a desired cell rate, an algorithm to determine the preload
 544 * and divider is:
 545 * 
 546 * a) x = baserate / cellrate, want p * 2^d = x (as far as possible)
 547 * b) if x > 16 * 2^14 then set p = 16, d = 14 (min rate), done
 548 *    if x <= 16 then set p = x, d = 0 (high rates), done
 549 * c) now have 16 < x <= 2^18, or 1 < x/16 <= 2^14 and we want to
 550 *    know n such that 2^(n-1) < x/16 <= 2^n, so slide a bit until
 551 *    we find the range (n will be between 1 and 14), set d = n
 552 * d) Also have 8 < x/2^n <= 16, so set p nearest x/2^n
 553 *
 554 * The algorithm used below is a minor variant of the above.
 555 *
 556 * The base rate is derived from the oscillator frequency (Hz) using a
 557 * fixed divider:
 558 *
 559 * baserate = freq / 32 in the case of some Unknown Card
 560 * baserate = freq / 8  in the case of the Horizon        25
 561 * baserate = freq / 8  in the case of the Horizon Ultra 155
 562 *
 563 * The Horizon cards have oscillators and base rates as follows:
 564 *
 565 * Card               Oscillator  Base Rate
 566 * Unknown Card       33 MHz      1.03125 MHz (33 MHz = PCI freq)
 567 * Horizon        25  32 MHz      4       MHz
 568 * Horizon Ultra 155  40 MHz      5       MHz
 569 *
 570 * The following defines give the base rates in Hz. These were
 571 * previously a factor of 100 larger, no doubt someone was using
 572 * cps*100.
 573 */
 574
 575#define BR_UKN 1031250l
 576#define BR_HRZ 4000000l
 577#define BR_ULT 5000000l
 578
 579// d is an exponent
 580#define CR_MIND 0
 581#define CR_MAXD 14
 582
 583// p ranges from 1 to a power of 2
 584#define CR_MAXPEXP 4
 585 
 586static int make_rate (const hrz_dev * dev, u32 c, rounding r,
 587		      u16 * bits, unsigned int * actual)
 588{
 589	// note: rounding the rate down means rounding 'p' up
 590	const unsigned long br = test_bit(ultra, &dev->flags) ? BR_ULT : BR_HRZ;
 591  
 592	u32 div = CR_MIND;
 593	u32 pre;
 594  
 595	// br_exp and br_man are used to avoid overflowing (c*maxp*2^d) in
 596	// the tests below. We could think harder about exact possibilities
 597	// of failure...
 598  
 599	unsigned long br_man = br;
 600	unsigned int br_exp = 0;
 601  
 602	PRINTD (DBG_QOS|DBG_FLOW, "make_rate b=%lu, c=%u, %s", br, c,
 603		r == round_up ? "up" : r == round_down ? "down" : "nearest");
 604  
 605	// avoid div by zero
 606	if (!c) {
 607		PRINTD (DBG_QOS|DBG_ERR, "zero rate is not allowed!");
 608		return -EINVAL;
 609	}
 610  
 611	while (br_exp < CR_MAXPEXP + CR_MIND && (br_man % 2 == 0)) {
 612		br_man = br_man >> 1;
 613		++br_exp;
 614	}
 615	// (br >>br_exp) <<br_exp == br and
 616	// br_exp <= CR_MAXPEXP+CR_MIND
 617  
 618	if (br_man <= (c << (CR_MAXPEXP+CR_MIND-br_exp))) {
 619		// Equivalent to: B <= (c << (MAXPEXP+MIND))
 620		// take care of rounding
 621		switch (r) {
 622			case round_down:
 623				pre = DIV_ROUND_UP(br, c<<div);
 624				// but p must be non-zero
 625				if (!pre)
 626					pre = 1;
 627				break;
 628			case round_nearest:
 629				pre = DIV_ROUND_CLOSEST(br, c<<div);
 630				// but p must be non-zero
 631				if (!pre)
 632					pre = 1;
 633				break;
 634			default:	/* round_up */
 635				pre = br/(c<<div);
 636				// but p must be non-zero
 637				if (!pre)
 638					return -EINVAL;
 639		}
 640		PRINTD (DBG_QOS, "A: p=%u, d=%u", pre, div);
 641		goto got_it;
 642	}
 643  
 644	// at this point we have
 645	// d == MIND and (c << (MAXPEXP+MIND)) < B
 646	while (div < CR_MAXD) {
 647		div++;
 648		if (br_man <= (c << (CR_MAXPEXP+div-br_exp))) {
 649			// Equivalent to: B <= (c << (MAXPEXP+d))
 650			// c << (MAXPEXP+d-1) < B <= c << (MAXPEXP+d)
 651			// 1 << (MAXPEXP-1) < B/2^d/c <= 1 << MAXPEXP
 652			// MAXP/2 < B/c2^d <= MAXP
 653			// take care of rounding
 654			switch (r) {
 655				case round_down:
 656					pre = DIV_ROUND_UP(br, c<<div);
 657					break;
 658				case round_nearest:
 659					pre = DIV_ROUND_CLOSEST(br, c<<div);
 660					break;
 661				default: /* round_up */
 662					pre = br/(c<<div);
 663			}
 664			PRINTD (DBG_QOS, "B: p=%u, d=%u", pre, div);
 665			goto got_it;
 666		}
 667	}
 668	// at this point we have
 669	// d == MAXD and (c << (MAXPEXP+MAXD)) < B
 670	// but we cannot go any higher
 671	// take care of rounding
 672	if (r == round_down)
 673		return -EINVAL;
 674	pre = 1 << CR_MAXPEXP;
 675	PRINTD (DBG_QOS, "C: p=%u, d=%u", pre, div);
 676got_it:
 677	// paranoia
 678	if (div > CR_MAXD || (!pre) || pre > 1<<CR_MAXPEXP) {
 679		PRINTD (DBG_QOS, "set_cr internal failure: d=%u p=%u",
 680			div, pre);
 681		return -EINVAL;
 682	} else {
 683		if (bits)
 684			*bits = (div<<CLOCK_SELECT_SHIFT) | (pre-1);
 685		if (actual) {
 686			*actual = DIV_ROUND_UP(br, pre<<div);
 687			PRINTD (DBG_QOS, "actual rate: %u", *actual);
 688		}
 689		return 0;
 690	}
 691}
 692
 693static int make_rate_with_tolerance (const hrz_dev * dev, u32 c, rounding r, unsigned int tol,
 694				     u16 * bit_pattern, unsigned int * actual) {
 695  unsigned int my_actual;
 696  
 697  PRINTD (DBG_QOS|DBG_FLOW, "make_rate_with_tolerance c=%u, %s, tol=%u",
 698	  c, (r == round_up) ? "up" : (r == round_down) ? "down" : "nearest", tol);
 699  
 700  if (!actual)
 701    // actual rate is not returned
 702    actual = &my_actual;
 703  
 704  if (make_rate (dev, c, round_nearest, bit_pattern, actual))
 705    // should never happen as round_nearest always succeeds
 706    return -1;
 707  
 708  if (c - tol <= *actual && *actual <= c + tol)
 709    // within tolerance
 710    return 0;
 711  else
 712    // intolerant, try rounding instead
 713    return make_rate (dev, c, r, bit_pattern, actual);
 714}
 715
 716/********** Listen on a VC **********/
 717
 718static int hrz_open_rx (hrz_dev * dev, u16 channel) {
 719  // is there any guarantee that we don't get two simulataneous
 720  // identical calls of this function from different processes? yes
 721  // rate_lock
 722  unsigned long flags;
 723  u32 channel_type; // u16?
 724  
 725  u16 buf_ptr = RX_CHANNEL_IDLE;
 726  
 727  rx_ch_desc * rx_desc = &memmap->rx_descs[channel];
 728  
 729  PRINTD (DBG_FLOW, "hrz_open_rx %x", channel);
 730  
 731  spin_lock_irqsave (&dev->mem_lock, flags);
 732  channel_type = rd_mem (dev, &rx_desc->wr_buf_type) & BUFFER_PTR_MASK;
 733  spin_unlock_irqrestore (&dev->mem_lock, flags);
 734  
 735  // very serious error, should never occur
 736  if (channel_type != RX_CHANNEL_DISABLED) {
 737    PRINTD (DBG_ERR|DBG_VCC, "RX channel for VC already open");
 738    return -EBUSY; // clean up?
 739  }
 740  
 741  // Give back spare buffer
 742  if (dev->noof_spare_buffers) {
 743    buf_ptr = dev->spare_buffers[--dev->noof_spare_buffers];
 744    PRINTD (DBG_VCC, "using a spare buffer: %u", buf_ptr);
 745    // should never occur
 746    if (buf_ptr == RX_CHANNEL_DISABLED || buf_ptr == RX_CHANNEL_IDLE) {
 747      // but easy to recover from
 748      PRINTD (DBG_ERR|DBG_VCC, "bad spare buffer pointer, using IDLE");
 749      buf_ptr = RX_CHANNEL_IDLE;
 750    }
 751  } else {
 752    PRINTD (DBG_VCC, "using IDLE buffer pointer");
 753  }
 754  
 755  // Channel is currently disabled so change its status to idle
 756  
 757  // do we really need to save the flags again?
 758  spin_lock_irqsave (&dev->mem_lock, flags);
 759  
 760  wr_mem (dev, &rx_desc->wr_buf_type,
 761	  buf_ptr | CHANNEL_TYPE_AAL5 | FIRST_CELL_OF_AAL5_FRAME);
 762  if (buf_ptr != RX_CHANNEL_IDLE)
 763    wr_mem (dev, &rx_desc->rd_buf_type, buf_ptr);
 764  
 765  spin_unlock_irqrestore (&dev->mem_lock, flags);
 766  
 767  // rxer->rate = make_rate (qos->peak_cells);
 768  
 769  PRINTD (DBG_FLOW, "hrz_open_rx ok");
 770  
 771  return 0;
 772}
 773
 774#if 0
 775/********** change vc rate for a given vc **********/
 776
 777static void hrz_change_vc_qos (ATM_RXER * rxer, MAAL_QOS * qos) {
 778  rxer->rate = make_rate (qos->peak_cells);
 779}
 780#endif
 781
 782/********** free an skb (as per ATM device driver documentation) **********/
 783
 784static void hrz_kfree_skb (struct sk_buff * skb) {
 785  if (ATM_SKB(skb)->vcc->pop) {
 786    ATM_SKB(skb)->vcc->pop (ATM_SKB(skb)->vcc, skb);
 787  } else {
 788    dev_kfree_skb_any (skb);
 789  }
 790}
 791
 792/********** cancel listen on a VC **********/
 793
 794static void hrz_close_rx (hrz_dev * dev, u16 vc) {
 795  unsigned long flags;
 796  
 797  u32 value;
 798  
 799  u32 r1, r2;
 800  
 801  rx_ch_desc * rx_desc = &memmap->rx_descs[vc];
 802  
 803  int was_idle = 0;
 804  
 805  spin_lock_irqsave (&dev->mem_lock, flags);
 806  value = rd_mem (dev, &rx_desc->wr_buf_type) & BUFFER_PTR_MASK;
 807  spin_unlock_irqrestore (&dev->mem_lock, flags);
 808  
 809  if (value == RX_CHANNEL_DISABLED) {
 810    // I suppose this could happen once we deal with _NONE traffic properly
 811    PRINTD (DBG_VCC, "closing VC: RX channel %u already disabled", vc);
 812    return;
 813  }
 814  if (value == RX_CHANNEL_IDLE)
 815    was_idle = 1;
 816  
 817  spin_lock_irqsave (&dev->mem_lock, flags);
 818  
 819  for (;;) {
 820    wr_mem (dev, &rx_desc->wr_buf_type, RX_CHANNEL_DISABLED);
 821    
 822    if ((rd_mem (dev, &rx_desc->wr_buf_type) & BUFFER_PTR_MASK) == RX_CHANNEL_DISABLED)
 823      break;
 824    
 825    was_idle = 0;
 826  }
 827  
 828  if (was_idle) {
 829    spin_unlock_irqrestore (&dev->mem_lock, flags);
 830    return;
 831  }
 832  
 833  WAIT_FLUSH_RX_COMPLETE(dev);
 834  
 835  // XXX Is this all really necessary? We can rely on the rx_data_av
 836  // handler to discard frames that remain queued for delivery. If the
 837  // worry is that immediately reopening the channel (perhaps by a
 838  // different process) may cause some data to be mis-delivered then
 839  // there may still be a simpler solution (such as busy-waiting on
 840  // rx_busy once the channel is disabled or before a new one is
 841  // opened - does this leave any holes?). Arguably setting up and
 842  // tearing down the TX and RX halves of each virtual circuit could
 843  // most safely be done within ?x_busy protected regions.
 844  
 845  // OK, current changes are that Simon's marker is disabled and we DO
 846  // look for NULL rxer elsewhere. The code here seems flush frames
 847  // and then remember the last dead cell belonging to the channel
 848  // just disabled - the cell gets relinked at the next vc_open.
 849  // However, when all VCs are closed or only a few opened there are a
 850  // handful of buffers that are unusable.
 851  
 852  // Does anyone feel like documenting spare_buffers properly?
 853  // Does anyone feel like fixing this in a nicer way?
 854  
 855  // Flush any data which is left in the channel
 856  for (;;) {
 857    // Change the rx channel port to something different to the RX
 858    // channel we are trying to close to force Horizon to flush the rx
 859    // channel read and write pointers.
 860    
 861    u16 other = vc^(RX_CHANS/2);
 862    
 863    SELECT_RX_CHANNEL (dev, other);
 864    WAIT_UPDATE_COMPLETE (dev);
 865    
 866    r1 = rd_mem (dev, &rx_desc->rd_buf_type);
 867    
 868    // Select this RX channel. Flush doesn't seem to work unless we
 869    // select an RX channel before hand
 870    
 871    SELECT_RX_CHANNEL (dev, vc);
 872    WAIT_UPDATE_COMPLETE (dev);
 873    
 874    // Attempt to flush a frame on this RX channel
 875    
 876    FLUSH_RX_CHANNEL (dev, vc);
 877    WAIT_FLUSH_RX_COMPLETE (dev);
 878    
 879    // Force Horizon to flush rx channel read and write pointers as before
 880    
 881    SELECT_RX_CHANNEL (dev, other);
 882    WAIT_UPDATE_COMPLETE (dev);
 883    
 884    r2 = rd_mem (dev, &rx_desc->rd_buf_type);
 885    
 886    PRINTD (DBG_VCC|DBG_RX, "r1 = %u, r2 = %u", r1, r2);
 887    
 888    if (r1 == r2) {
 889      dev->spare_buffers[dev->noof_spare_buffers++] = (u16)r1;
 890      break;
 891    }
 892  }
 893  
 894#if 0
 895  {
 896    rx_q_entry * wr_ptr = &memmap->rx_q_entries[rd_regw (dev, RX_QUEUE_WR_PTR_OFF)];
 897    rx_q_entry * rd_ptr = dev->rx_q_entry;
 898    
 899    PRINTD (DBG_VCC|DBG_RX, "rd_ptr = %u, wr_ptr = %u", rd_ptr, wr_ptr);
 900    
 901    while (rd_ptr != wr_ptr) {
 902      u32 x = rd_mem (dev, (HDW *) rd_ptr);
 903      
 904      if (vc == rx_q_entry_to_rx_channel (x)) {
 905	x |= SIMONS_DODGEY_MARKER;
 906	
 907	PRINTD (DBG_RX|DBG_VCC|DBG_WARN, "marking a frame as dodgey");
 908	
 909	wr_mem (dev, (HDW *) rd_ptr, x);
 910      }
 911      
 912      if (rd_ptr == dev->rx_q_wrap)
 913	rd_ptr = dev->rx_q_reset;
 914      else
 915	rd_ptr++;
 916    }
 917  }
 918#endif
 919  
 920  spin_unlock_irqrestore (&dev->mem_lock, flags);
 921  
 922  return;
 923}
 924
 925/********** schedule RX transfers **********/
 926
 927// Note on tail recursion: a GCC developer said that it is not likely
 928// to be fixed soon, so do not define TAILRECUSRIONWORKS unless you
 929// are sure it does as you may otherwise overflow the kernel stack.
 930
 931// giving this fn a return value would help GCC, allegedly
 932
 933static void rx_schedule (hrz_dev * dev, int irq) {
 934  unsigned int rx_bytes;
 935  
 936  int pio_instead = 0;
 937#ifndef TAILRECURSIONWORKS
 938  pio_instead = 1;
 939  while (pio_instead) {
 940#endif
 941    // bytes waiting for RX transfer
 942    rx_bytes = dev->rx_bytes;
 943    
 944#if 0
 945    spin_count = 0;
 946    while (rd_regl (dev, MASTER_RX_COUNT_REG_OFF)) {
 947      PRINTD (DBG_RX|DBG_WARN, "RX error: other PCI Bus Master RX still in progress!");
 948      if (++spin_count > 10) {
 949	PRINTD (DBG_RX|DBG_ERR, "spun out waiting PCI Bus Master RX completion");
 950	wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0);
 951	clear_bit (rx_busy, &dev->flags);
 952	hrz_kfree_skb (dev->rx_skb);
 953	return;
 954      }
 955    }
 956#endif
 957    
 958    // this code follows the TX code but (at the moment) there is only
 959    // one region - the skb itself. I don't know if this will change,
 960    // but it doesn't hurt to have the code here, disabled.
 961    
 962    if (rx_bytes) {
 963      // start next transfer within same region
 964      if (rx_bytes <= MAX_PIO_COUNT) {
 965	PRINTD (DBG_RX|DBG_BUS, "(pio)");
 966	pio_instead = 1;
 967      }
 968      if (rx_bytes <= MAX_TRANSFER_COUNT) {
 969	PRINTD (DBG_RX|DBG_BUS, "(simple or last multi)");
 970	dev->rx_bytes = 0;
 971      } else {
 972	PRINTD (DBG_RX|DBG_BUS, "(continuing multi)");
 973	dev->rx_bytes = rx_bytes - MAX_TRANSFER_COUNT;
 974	rx_bytes = MAX_TRANSFER_COUNT;
 975      }
 976    } else {
 977      // rx_bytes == 0 -- we're between regions
 978      // regions remaining to transfer
 979#if 0
 980      unsigned int rx_regions = dev->rx_regions;
 981#else
 982      unsigned int rx_regions = 0;
 983#endif
 984      
 985      if (rx_regions) {
 986#if 0
 987	// start a new region
 988	dev->rx_addr = dev->rx_iovec->iov_base;
 989	rx_bytes = dev->rx_iovec->iov_len;
 990	++dev->rx_iovec;
 991	dev->rx_regions = rx_regions - 1;
 992	
 993	if (rx_bytes <= MAX_PIO_COUNT) {
 994	  PRINTD (DBG_RX|DBG_BUS, "(pio)");
 995	  pio_instead = 1;
 996	}
 997	if (rx_bytes <= MAX_TRANSFER_COUNT) {
 998	  PRINTD (DBG_RX|DBG_BUS, "(full region)");
 999	  dev->rx_bytes = 0;
1000	} else {
1001	  PRINTD (DBG_RX|DBG_BUS, "(start multi region)");
1002	  dev->rx_bytes = rx_bytes - MAX_TRANSFER_COUNT;
1003	  rx_bytes = MAX_TRANSFER_COUNT;
1004	}
1005#endif
1006      } else {
1007	// rx_regions == 0
1008	// that's all folks - end of frame
1009	struct sk_buff * skb = dev->rx_skb;
1010	// dev->rx_iovec = 0;
1011	
1012	FLUSH_RX_CHANNEL (dev, dev->rx_channel);
1013	
1014	dump_skb ("<<<", dev->rx_channel, skb);
1015	
1016	PRINTD (DBG_RX|DBG_SKB, "push %p %u", skb->data, skb->len);
1017	
1018	{
1019	  struct atm_vcc * vcc = ATM_SKB(skb)->vcc;
1020	  // VC layer stats
1021	  atomic_inc(&vcc->stats->rx);
1022	  __net_timestamp(skb);
1023	  // end of our responsibility
1024	  vcc->push (vcc, skb);
1025	}
1026      }
1027    }
1028    
1029    // note: writing RX_COUNT clears any interrupt condition
1030    if (rx_bytes) {
1031      if (pio_instead) {
1032	if (irq)
1033	  wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0);
1034	rds_regb (dev, DATA_PORT_OFF, dev->rx_addr, rx_bytes);
1035      } else {
1036	wr_regl (dev, MASTER_RX_ADDR_REG_OFF, virt_to_bus (dev->rx_addr));
1037	wr_regl (dev, MASTER_RX_COUNT_REG_OFF, rx_bytes);
1038      }
1039      dev->rx_addr += rx_bytes;
1040    } else {
1041      if (irq)
1042	wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0);
1043      // allow another RX thread to start
1044      YELLOW_LED_ON(dev);
1045      clear_bit (rx_busy, &dev->flags);
1046      PRINTD (DBG_RX, "cleared rx_busy for dev %p", dev);
1047    }
1048    
1049#ifdef TAILRECURSIONWORKS
1050    // and we all bless optimised tail calls
1051    if (pio_instead)
1052      return rx_schedule (dev, 0);
1053    return;
1054#else
1055    // grrrrrrr!
1056    irq = 0;
1057  }
1058  return;
1059#endif
1060}
1061
1062/********** handle RX bus master complete events **********/
1063
1064static void rx_bus_master_complete_handler (hrz_dev * dev) {
1065  if (test_bit (rx_busy, &dev->flags)) {
1066    rx_schedule (dev, 1);
1067  } else {
1068    PRINTD (DBG_RX|DBG_ERR, "unexpected RX bus master completion");
1069    // clear interrupt condition on adapter
1070    wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0);
1071  }
1072  return;
1073}
1074
1075/********** (queue to) become the next TX thread **********/
1076
1077static int tx_hold (hrz_dev * dev) {
1078  PRINTD (DBG_TX, "sleeping at tx lock %p %lu", dev, dev->flags);
1079  wait_event_interruptible(dev->tx_queue, (!test_and_set_bit(tx_busy, &dev->flags)));
1080  PRINTD (DBG_TX, "woken at tx lock %p %lu", dev, dev->flags);
1081  if (signal_pending (current))
1082    return -1;
1083  PRINTD (DBG_TX, "set tx_busy for dev %p", dev);
1084  return 0;
1085}
1086
1087/********** allow another TX thread to start **********/
1088
1089static inline void tx_release (hrz_dev * dev) {
1090  clear_bit (tx_busy, &dev->flags);
1091  PRINTD (DBG_TX, "cleared tx_busy for dev %p", dev);
1092  wake_up_interruptible (&dev->tx_queue);
1093}
1094
1095/********** schedule TX transfers **********/
1096
1097static void tx_schedule (hrz_dev * const dev, int irq) {
1098  unsigned int tx_bytes;
1099  
1100  int append_desc = 0;
1101  
1102  int pio_instead = 0;
1103#ifndef TAILRECURSIONWORKS
1104  pio_instead = 1;
1105  while (pio_instead) {
1106#endif
1107    // bytes in current region waiting for TX transfer
1108    tx_bytes = dev->tx_bytes;
1109    
1110#if 0
1111    spin_count = 0;
1112    while (rd_regl (dev, MASTER_TX_COUNT_REG_OFF)) {
1113      PRINTD (DBG_TX|DBG_WARN, "TX error: other PCI Bus Master TX still in progress!");
1114      if (++spin_count > 10) {
1115	PRINTD (DBG_TX|DBG_ERR, "spun out waiting PCI Bus Master TX completion");
1116	wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0);
1117	tx_release (dev);
1118	hrz_kfree_skb (dev->tx_skb);
1119	return;
1120      }
1121    }
1122#endif
1123    
1124    if (tx_bytes) {
1125      // start next transfer within same region
1126      if (!test_bit (ultra, &dev->flags) || tx_bytes <= MAX_PIO_COUNT) {
1127	PRINTD (DBG_TX|DBG_BUS, "(pio)");
1128	pio_instead = 1;
1129      }
1130      if (tx_bytes <= MAX_TRANSFER_COUNT) {
1131	PRINTD (DBG_TX|DBG_BUS, "(simple or last multi)");
1132	if (!dev->tx_iovec) {
1133	  // end of last region
1134	  append_desc = 1;
1135	}
1136	dev->tx_bytes = 0;
1137      } else {
1138	PRINTD (DBG_TX|DBG_BUS, "(continuing multi)");
1139	dev->tx_bytes = tx_bytes - MAX_TRANSFER_COUNT;
1140	tx_bytes = MAX_TRANSFER_COUNT;
1141      }
1142    } else {
1143      // tx_bytes == 0 -- we're between regions
1144      // regions remaining to transfer
1145      unsigned int tx_regions = dev->tx_regions;
1146      
1147      if (tx_regions) {
1148	// start a new region
1149	dev->tx_addr = dev->tx_iovec->iov_base;
1150	tx_bytes = dev->tx_iovec->iov_len;
1151	++dev->tx_iovec;
1152	dev->tx_regions = tx_regions - 1;
1153	
1154	if (!test_bit (ultra, &dev->flags) || tx_bytes <= MAX_PIO_COUNT) {
1155	  PRINTD (DBG_TX|DBG_BUS, "(pio)");
1156	  pio_instead = 1;
1157	}
1158	if (tx_bytes <= MAX_TRANSFER_COUNT) {
1159	  PRINTD (DBG_TX|DBG_BUS, "(full region)");
1160	  dev->tx_bytes = 0;
1161	} else {
1162	  PRINTD (DBG_TX|DBG_BUS, "(start multi region)");
1163	  dev->tx_bytes = tx_bytes - MAX_TRANSFER_COUNT;
1164	  tx_bytes = MAX_TRANSFER_COUNT;
1165	}
1166      } else {
1167	// tx_regions == 0
1168	// that's all folks - end of frame
1169	struct sk_buff * skb = dev->tx_skb;
1170	dev->tx_iovec = NULL;
1171	
1172	// VC layer stats
1173	atomic_inc(&ATM_SKB(skb)->vcc->stats->tx);
1174	
1175	// free the skb
1176	hrz_kfree_skb (skb);
1177      }
1178    }
1179    
1180    // note: writing TX_COUNT clears any interrupt condition
1181    if (tx_bytes) {
1182      if (pio_instead) {
1183	if (irq)
1184	  wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0);
1185	wrs_regb (dev, DATA_PORT_OFF, dev->tx_addr, tx_bytes);
1186	if (append_desc)
1187	  wr_regl (dev, TX_DESCRIPTOR_PORT_OFF, cpu_to_be32 (dev->tx_skb->len));
1188      } else {
1189	wr_regl (dev, MASTER_TX_ADDR_REG_OFF, virt_to_bus (dev->tx_addr));
1190	if (append_desc)
1191	  wr_regl (dev, TX_DESCRIPTOR_REG_OFF, cpu_to_be32 (dev->tx_skb->len));
1192	wr_regl (dev, MASTER_TX_COUNT_REG_OFF,
1193		 append_desc
1194		 ? tx_bytes | MASTER_TX_AUTO_APPEND_DESC
1195		 : tx_bytes);
1196      }
1197      dev->tx_addr += tx_bytes;
1198    } else {
1199      if (irq)
1200	wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0);
1201      YELLOW_LED_ON(dev);
1202      tx_release (dev);
1203    }
1204    
1205#ifdef TAILRECURSIONWORKS
1206    // and we all bless optimised tail calls
1207    if (pio_instead)
1208      return tx_schedule (dev, 0);
1209    return;
1210#else
1211    // grrrrrrr!
1212    irq = 0;
1213  }
1214  return;
1215#endif
1216}
1217
1218/********** handle TX bus master complete events **********/
1219
1220static void tx_bus_master_complete_handler (hrz_dev * dev) {
1221  if (test_bit (tx_busy, &dev->flags)) {
1222    tx_schedule (dev, 1);
1223  } else {
1224    PRINTD (DBG_TX|DBG_ERR, "unexpected TX bus master completion");
1225    // clear interrupt condition on adapter
1226    wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0);
1227  }
1228  return;
1229}
1230
1231/********** move RX Q pointer to next item in circular buffer **********/
1232
1233// called only from IRQ sub-handler
1234static u32 rx_queue_entry_next (hrz_dev * dev) {
1235  u32 rx_queue_entry;
1236  spin_lock (&dev->mem_lock);
1237  rx_queue_entry = rd_mem (dev, &dev->rx_q_entry->entry);
1238  if (dev->rx_q_entry == dev->rx_q_wrap)
1239    dev->rx_q_entry = dev->rx_q_reset;
1240  else
1241    dev->rx_q_entry++;
1242  wr_regw (dev, RX_QUEUE_RD_PTR_OFF, dev->rx_q_entry - dev->rx_q_reset);
1243  spin_unlock (&dev->mem_lock);
1244  return rx_queue_entry;
1245}
1246
1247/********** handle RX data received by device **********/
1248
1249// called from IRQ handler
1250static void rx_data_av_handler (hrz_dev * dev) {
1251  u32 rx_queue_entry;
1252  u32 rx_queue_entry_flags;
1253  u16 rx_len;
1254  u16 rx_channel;
1255  
1256  PRINTD (DBG_FLOW, "hrz_data_av_handler");
1257  
1258  // try to grab rx lock (not possible during RX bus mastering)
1259  if (test_and_set_bit (rx_busy, &dev->flags)) {
1260    PRINTD (DBG_RX, "locked out of rx lock");
1261    return;
1262  }
1263  PRINTD (DBG_RX, "set rx_busy for dev %p", dev);
1264  // lock is cleared if we fail now, o/w after bus master completion
1265  
1266  YELLOW_LED_OFF(dev);
1267  
1268  rx_queue_entry = rx_queue_entry_next (dev);
1269  
1270  rx_len = rx_q_entry_to_length (rx_queue_entry);
1271  rx_channel = rx_q_entry_to_rx_channel (rx_queue_entry);
1272  
1273  WAIT_FLUSH_RX_COMPLETE (dev);
1274  
1275  SELECT_RX_CHANNEL (dev, rx_channel);
1276  
1277  PRINTD (DBG_RX, "rx_queue_entry is: %#x", rx_queue_entry);
1278  rx_queue_entry_flags = rx_queue_entry & (RX_CRC_32_OK|RX_COMPLETE_FRAME|SIMONS_DODGEY_MARKER);
1279  
1280  if (!rx_len) {
1281    // (at least) bus-mastering breaks if we try to handle a
1282    // zero-length frame, besides AAL5 does not support them
1283    PRINTK (KERN_ERR, "zero-length frame!");
1284    rx_queue_entry_flags &= ~RX_COMPLETE_FRAME;
1285  }
1286  
1287  if (rx_queue_entry_flags & SIMONS_DODGEY_MARKER) {
1288    PRINTD (DBG_RX|DBG_ERR, "Simon's marker detected!");
1289  }
1290  if (rx_queue_entry_flags == (RX_CRC_32_OK | RX_COMPLETE_FRAME)) {
1291    struct atm_vcc * atm_vcc;
1292    
1293    PRINTD (DBG_RX, "got a frame on rx_channel %x len %u", rx_channel, rx_len);
1294    
1295    atm_vcc = dev->rxer[rx_channel];
1296    // if no vcc is assigned to this channel, we should drop the frame
1297    // (is this what SIMONS etc. was trying to achieve?)
1298    
1299    if (atm_vcc) {
1300      
1301      if (atm_vcc->qos.rxtp.traffic_class != ATM_NONE) {
1302	
1303	if (rx_len <= atm_vcc->qos.rxtp.max_sdu) {
1304	    
1305	  struct sk_buff * skb = atm_alloc_charge (atm_vcc, rx_len, GFP_ATOMIC);
1306	  if (skb) {
1307	    // remember this so we can push it later
1308	    dev->rx_skb = skb;
1309	    // remember this so we can flush it later
1310	    dev->rx_channel = rx_channel;
1311	    
1312	    // prepare socket buffer
1313	    skb_put (skb, rx_len);
1314	    ATM_SKB(skb)->vcc = atm_vcc;
1315	    
1316	    // simple transfer
1317	    // dev->rx_regions = 0;
1318	    // dev->rx_iovec = 0;
1319	    dev->rx_bytes = rx_len;
1320	    dev->rx_addr = skb->data;
1321	    PRINTD (DBG_RX, "RX start simple transfer (addr %p, len %d)",
1322		    skb->data, rx_len);
1323	    
1324	    // do the business
1325	    rx_schedule (dev, 0);
1326	    return;
1327	    
1328	  } else {
1329	    PRINTD (DBG_SKB|DBG_WARN, "failed to get skb");
1330	  }
1331	  
1332	} else {
1333	  PRINTK (KERN_INFO, "frame received on TX-only VC %x", rx_channel);
1334	  // do we count this?
1335	}
1336	
1337      } else {
1338	PRINTK (KERN_WARNING, "dropped over-size frame");
1339	// do we count this?
1340      }
1341      
1342    } else {
1343      PRINTD (DBG_WARN|DBG_VCC|DBG_RX, "no VCC for this frame (VC closed)");
1344      // do we count this?
1345    }
1346    
1347  } else {
1348    // Wait update complete ? SPONG
1349  }
1350  
1351  // RX was aborted
1352  YELLOW_LED_ON(dev);
1353  
1354  FLUSH_RX_CHANNEL (dev,rx_channel);
1355  clear_bit (rx_busy, &dev->flags);
1356  
1357  return;
1358}
1359
1360/********** interrupt handler **********/
1361
1362static irqreturn_t interrupt_handler(int irq, void *dev_id)
1363{
1364  hrz_dev *dev = dev_id;
1365  u32 int_source;
1366  unsigned int irq_ok;
1367  
1368  PRINTD (DBG_FLOW, "interrupt_handler: %p", dev_id);
1369  
1370  // definitely for us
1371  irq_ok = 0;
1372  while ((int_source = rd_regl (dev, INT_SOURCE_REG_OFF)
1373	  & INTERESTING_INTERRUPTS)) {
1374    // In the interests of fairness, the handlers below are
1375    // called in sequence and without immediate return to the head of
1376    // the while loop. This is only of issue for slow hosts (or when
1377    // debugging messages are on). Really slow hosts may find a fast
1378    // sender keeps them permanently in the IRQ handler. :(
1379    
1380    // (only an issue for slow hosts) RX completion goes before
1381    // rx_data_av as the former implies rx_busy and so the latter
1382    // would just abort. If it reschedules another transfer
1383    // (continuing the same frame) then it will not clear rx_busy.
1384    
1385    // (only an issue for slow hosts) TX completion goes before RX
1386    // data available as it is a much shorter routine - there is the
1387    // chance that any further transfers it schedules will be complete
1388    // by the time of the return to the head of the while loop
1389    
1390    if (int_source & RX_BUS_MASTER_COMPLETE) {
1391      ++irq_ok;
1392      PRINTD (DBG_IRQ|DBG_BUS|DBG_RX, "rx_bus_master_complete asserted");
1393      rx_bus_master_complete_handler (dev);
1394    }
1395    if (int_source & TX_BUS_MASTER_COMPLETE) {
1396      ++irq_ok;
1397      PRINTD (DBG_IRQ|DBG_BUS|DBG_TX, "tx_bus_master_complete asserted");
1398      tx_bus_master_complete_handler (dev);
1399    }
1400    if (int_source & RX_DATA_AV) {
1401      ++irq_ok;
1402      PRINTD (DBG_IRQ|DBG_RX, "rx_data_av asserted");
1403      rx_data_av_handler (dev);
1404    }
1405  }
1406  if (irq_ok) {
1407    PRINTD (DBG_IRQ, "work done: %u", irq_ok);
1408  } else {
1409    PRINTD (DBG_IRQ|DBG_WARN, "spurious interrupt source: %#x", int_source);
1410  }
1411  
1412  PRINTD (DBG_IRQ|DBG_FLOW, "interrupt_handler done: %p", dev_id);
1413  if (irq_ok)
1414	return IRQ_HANDLED;
1415  return IRQ_NONE;
1416}
1417
1418/********** housekeeping **********/
1419
1420static void do_housekeeping (unsigned long arg) {
1421  // just stats at the moment
1422  hrz_dev * dev = (hrz_dev *) arg;
1423
1424  // collect device-specific (not driver/atm-linux) stats here
1425  dev->tx_cell_count += rd_regw (dev, TX_CELL_COUNT_OFF);
1426  dev->rx_cell_count += rd_regw (dev, RX_CELL_COUNT_OFF);
1427  dev->hec_error_count += rd_regw (dev, HEC_ERROR_COUNT_OFF);
1428  dev->unassigned_cell_count += rd_regw (dev, UNASSIGNED_CELL_COUNT_OFF);
1429
1430  mod_timer (&dev->housekeeping, jiffies + HZ/10);
1431
1432  return;
1433}
1434
1435/********** find an idle channel for TX and set it up **********/
1436
1437// called with tx_busy set
1438static short setup_idle_tx_channel (hrz_dev * dev, hrz_vcc * vcc) {
1439  unsigned short idle_channels;
1440  short tx_channel = -1;
1441  unsigned int spin_count;
1442  PRINTD (DBG_FLOW|DBG_TX, "setup_idle_tx_channel %p", dev);
1443  
1444  // better would be to fail immediately, the caller can then decide whether
1445  // to wait or drop (depending on whether this is UBR etc.)
1446  spin_count = 0;
1447  while (!(idle_channels = rd_regw (dev, TX_STATUS_OFF) & IDLE_CHANNELS_MASK)) {
1448    PRINTD (DBG_TX|DBG_WARN, "waiting for idle TX channel");
1449    // delay a bit here
1450    if (++spin_count > 100) {
1451      PRINTD (DBG_TX|DBG_ERR, "spun out waiting for idle TX channel");
1452      return -EBUSY;
1453    }
1454  }
1455  
1456  // got an idle channel
1457  {
1458    // tx_idle ensures we look for idle channels in RR order
1459    int chan = dev->tx_idle;
1460    
1461    int keep_going = 1;
1462    while (keep_going) {
1463      if (idle_channels & (1<<chan)) {
1464	tx_channel = chan;
1465	keep_going = 0;
1466      }
1467      ++chan;
1468      if (chan == TX_CHANS)
1469	chan = 0;
1470    }
1471    
1472    dev->tx_idle = chan;
1473  }
1474  
1475  // set up the channel we found
1476  {
1477    // Initialise the cell header in the transmit channel descriptor
1478    // a.k.a. prepare the channel and remember that we have done so.
1479    
1480    tx_ch_desc * tx_desc = &memmap->tx_descs[tx_channel];
1481    u32 rd_ptr;
1482    u32 wr_ptr;
1483    u16 channel = vcc->channel;
1484    
1485    unsigned long flags;
1486    spin_lock_irqsave (&dev->mem_lock, flags);
1487    
1488    // Update the transmit channel record.
1489    dev->tx_channel_record[tx_channel] = channel;
1490    
1491    // xBR channel
1492    update_tx_channel_config (dev, tx_channel, RATE_TYPE_ACCESS,
1493			      vcc->tx_xbr_bits);
1494    
1495    // Update the PCR counter preload value etc.
1496    update_tx_channel_config (dev, tx_channel, PCR_TIMER_ACCESS,
1497			      vcc->tx_pcr_bits);
1498
1499#if 0
1500    if (vcc->tx_xbr_bits == VBR_RATE_TYPE) {
1501      // SCR timer
1502      update_tx_channel_config (dev, tx_channel, SCR_TIMER_ACCESS,
1503				vcc->tx_scr_bits);
1504      
1505      // Bucket size...
1506      update_tx_channel_config (dev, tx_channel, BUCKET_CAPACITY_ACCESS,
1507				vcc->tx_bucket_bits);
1508      
1509      // ... and fullness
1510      update_tx_channel_config (dev, tx_channel, BUCKET_FULLNESS_ACCESS,
1511				vcc->tx_bucket_bits);
1512    }
1513#endif
1514
1515    // Initialise the read and write buffer pointers
1516    rd_ptr = rd_mem (dev, &tx_desc->rd_buf_type) & BUFFER_PTR_MASK;
1517    wr_ptr = rd_mem (dev, &tx_desc->wr_buf_type) & BUFFER_PTR_MASK;
1518    
1519    // idle TX channels should have identical pointers
1520    if (rd_ptr != wr_ptr) {
1521      PRINTD (DBG_TX|DBG_ERR, "TX buffer pointers are broken!");
1522      // spin_unlock... return -E...
1523      // I wonder if gcc would get rid of one of the pointer aliases
1524    }
1525    PRINTD (DBG_TX, "TX buffer pointers are: rd %x, wr %x.",
1526	    rd_ptr, wr_ptr);
1527    
1528    switch (vcc->aal) {
1529      case aal0:
1530	PRINTD (DBG_QOS|DBG_TX, "tx_channel: aal0");
1531	rd_ptr |= CHANNEL_TYPE_RAW_CELLS;
1532	wr_ptr |= CHANNEL_TYPE_RAW_CELLS;
1533	break;
1534      case aal34:
1535	PRINTD (DBG_QOS|DBG_TX, "tx_channel: aal34");
1536	rd_ptr |= CHANNEL_TYPE_AAL3_4;
1537	wr_ptr |= CHANNEL_TYPE_AAL3_4;
1538	break;
1539      case aal5:
1540	rd_ptr |= CHANNEL_TYPE_AAL5;
1541	wr_ptr |= CHANNEL_TYPE_AAL5;
1542	// Initialise the CRC
1543	wr_mem (dev, &tx_desc->partial_crc, INITIAL_CRC);
1544	break;
1545    }
1546    
1547    wr_mem (dev, &tx_desc->rd_buf_type, rd_ptr);
1548    wr_mem (dev, &tx_desc->wr_buf_type, wr_ptr);
1549    
1550    // Write the Cell Header
1551    // Payload Type, CLP and GFC would go here if non-zero
1552    wr_mem (dev, &tx_desc->cell_header, channel);
1553    
1554    spin_unlock_irqrestore (&dev->mem_lock, flags);
1555  }
1556  
1557  return tx_channel;
1558}
1559
1560/********** send a frame **********/
1561
1562static int hrz_send (struct atm_vcc * atm_vcc, struct sk_buff * skb) {
1563  unsigned int spin_count;
1564  int free_buffers;
1565  hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
1566  hrz_vcc * vcc = HRZ_VCC(atm_vcc);
1567  u16 channel = vcc->channel;
1568  
1569  u32 buffers_required;
1570  
1571  /* signed for error return */
1572  short tx_channel;
1573  
1574  PRINTD (DBG_FLOW|DBG_TX, "hrz_send vc %x data %p len %u",
1575	  channel, skb->data, skb->len);
1576  
1577  dump_skb (">>>", channel, skb);
1578  
1579  if (atm_vcc->qos.txtp.traffic_class == ATM_NONE) {
1580    PRINTK (KERN_ERR, "attempt to send on RX-only VC %x", channel);
1581    hrz_kfree_skb (skb);
1582    return -EIO;
1583  }
1584  
1585  // don't understand this
1586  ATM_SKB(skb)->vcc = atm_vcc;
1587  
1588  if (skb->len > atm_vcc->qos.txtp.max_sdu) {
1589    PRINTK (KERN_ERR, "sk_buff length greater than agreed max_sdu, dropping...");
1590    hrz_kfree_skb (skb);
1591    return -EIO;
1592  }
1593  
1594  if (!channel) {
1595    PRINTD (DBG_ERR|DBG_TX, "attempt to transmit on zero (rx_)channel");
1596    hrz_kfree_skb (skb);
1597    return -EIO;
1598  }
1599  
1600#if 0
1601  {
1602    // where would be a better place for this? housekeeping?
1603    u16 status;
1604    pci_read_config_word (dev->pci_dev, PCI_STATUS, &status);
1605    if (status & PCI_STATUS_REC_MASTER_ABORT) {
1606      PRINTD (DBG_BUS|DBG_ERR, "Clearing PCI Master Abort (and cleaning up)");
1607      status &= ~PCI_STATUS_REC_MASTER_ABORT;
1608      pci_write_config_word (dev->pci_dev, PCI_STATUS, status);
1609      if (test_bit (tx_busy, &dev->flags)) {
1610	hrz_kfree_skb (dev->tx_skb);
1611	tx_release (dev);
1612      }
1613    }
1614  }
1615#endif
1616  
1617#ifdef DEBUG_HORIZON
1618  /* wey-hey! */
1619  if (channel == 1023) {
1620    unsigned int i;
1621    unsigned short d = 0;
1622    char * s = skb->data;
1623    if (*s++ == 'D') {
1624	for (i = 0; i < 4; ++i)
1625		d = (d << 4) | hex_to_bin(*s++);
1626      PRINTK (KERN_INFO, "debug bitmap is now %hx", debug = d);
1627    }
1628  }
1629#endif
1630  
1631  // wait until TX is free and grab lock
1632  if (tx_hold (dev)) {
1633    hrz_kfree_skb (skb);
1634    return -ERESTARTSYS;
1635  }
1636 
1637  // Wait for enough space to be available in transmit buffer memory.
1638  
1639  // should be number of cells needed + 2 (according to hardware docs)
1640  // = ((framelen+8)+47) / 48 + 2
1641  // = (framelen+7) / 48 + 3, hmm... faster to put addition inside XXX
1642  buffers_required = (skb->len+(ATM_AAL5_TRAILER-1)) / ATM_CELL_PAYLOAD + 3;
1643  
1644  // replace with timer and sleep, add dev->tx_buffers_queue (max 1 entry)
1645  spin_count = 0;
1646  while ((free_buffers = rd_regw (dev, TX_FREE_BUFFER_COUNT_OFF)) < buffers_required) {
1647    PRINTD (DBG_TX, "waiting for free TX buffers, got %d of %d",
1648	    free_buffers, buffers_required);
1649    // what is the appropriate delay? implement a timeout? (depending on line speed?)
1650    // mdelay (1);
1651    // what happens if we kill (current_pid, SIGKILL) ?
1652    schedule();
1653    if (++spin_count > 1000) {
1654      PRINTD (DBG_TX|DBG_ERR, "spun out waiting for tx buffers, got %d of %d",
1655	      free_buffers, buffers_required);
1656      tx_release (dev);
1657      hrz_kfree_skb (skb);
1658      return -ERESTARTSYS;
1659    }
1660  }
1661  
1662  // Select a channel to transmit the frame on.
1663  if (channel == dev->last_vc) {
1664    PRINTD (DBG_TX, "last vc hack: hit");
1665    tx_channel = dev->tx_last;
1666  } else {
1667    PRINTD (DBG_TX, "last vc hack: miss");
1668    // Are we currently transmitting this VC on one of the channels?
1669    for (tx_channel = 0; tx_channel < TX_CHANS; ++tx_channel)
1670      if (dev->tx_channel_record[tx_channel] == channel) {
1671	PRINTD (DBG_TX, "vc already on channel: hit");
1672	break;
1673      }
1674    if (tx_channel == TX_CHANS) { 
1675      PRINTD (DBG_TX, "vc already on channel: miss");
1676      // Find and set up an idle channel.
1677      tx_channel = setup_idle_tx_channel (dev, vcc);
1678      if (tx_channel < 0) {
1679	PRINTD (DBG_TX|DBG_ERR, "failed to get channel");
1680	tx_release (dev);
1681	return tx_channel;
1682      }
1683    }
1684    
1685    PRINTD (DBG_TX, "got channel");
1686    SELECT_TX_CHANNEL(dev, tx_channel);
1687    
1688    dev->last_vc = channel;
1689    dev->tx_last = tx_channel;
1690  }
1691  
1692  PRINTD (DBG_TX, "using channel %u", tx_channel);
1693  
1694  YELLOW_LED_OFF(dev);
1695  
1696  // TX start transfer
1697  
1698  {
1699    unsigned int tx_len = skb->len;
1700    unsigned int tx_iovcnt = skb_shinfo(skb)->nr_frags;
1701    // remember this so we can free it later
1702    dev->tx_skb = skb;
1703    
1704    if (tx_iovcnt) {
1705      // scatter gather transfer
1706      dev->tx_regions = tx_iovcnt;
1707      dev->tx_iovec = NULL;		/* @@@ needs rewritten */
1708      dev->tx_bytes = 0;
1709      PRINTD (DBG_TX|DBG_BUS, "TX start scatter-gather transfer (iovec %p, len %d)",
1710	      skb->data, tx_len);
1711      tx_release (dev);
1712      hrz_kfree_skb (skb);
1713      return -EIO;
1714    } else {
1715      // simple transfer
1716      dev->tx_regions = 0;
1717      dev->tx_iovec = NULL;
1718      dev->tx_bytes = tx_len;
1719      dev->tx_addr = skb->data;
1720      PRINTD (DBG_TX|DBG_BUS, "TX start simple transfer (addr %p, len %d)",
1721	      skb->data, tx_len);
1722    }
1723    
1724    // and do the business
1725    tx_schedule (dev, 0);
1726    
1727  }
1728  
1729  return 0;
1730}
1731
1732/********** reset a card **********/
1733
1734static void hrz_reset (const hrz_dev * dev) {
1735  u32 control_0_reg = rd_regl (dev, CONTROL_0_REG);
1736  
1737  // why not set RESET_HORIZON to one and wait for the card to
1738  // reassert that bit as zero? Like so:
1739  control_0_reg = control_0_reg & RESET_HORIZON;
1740  wr_regl (dev, CONTROL_0_REG, control_0_reg);
1741  while (control_0_reg & RESET_HORIZON)
1742    control_0_reg = rd_regl (dev, CONTROL_0_REG);
1743  
1744  // old reset code retained:
1745  wr_regl (dev, CONTROL_0_REG, control_0_reg |
1746	   RESET_ATM | RESET_RX | RESET_TX | RESET_HOST);
1747  // just guessing here
1748  udelay (1000);
1749  
1750  wr_regl (dev, CONTROL_0_REG, control_0_reg);
1751}
1752
1753/********** read the burnt in address **********/
1754
1755static void WRITE_IT_WAIT (const hrz_dev *dev, u32 ctrl)
1756{
1757	wr_regl (dev, CONTROL_0_REG, ctrl);
1758	udelay (5);
1759}
1760  
1761static void CLOCK_IT (const hrz_dev *dev, u32 ctrl)
1762{
1763	// DI must be valid around rising SK edge
1764	WRITE_IT_WAIT(dev, ctrl & ~SEEPROM_SK);
1765	WRITE_IT_WAIT(dev, ctrl | SEEPROM_SK);
1766}
1767
1768static u16 read_bia(const hrz_dev *dev, u16 addr)
1769{
1770  u32 ctrl = rd_regl (dev, CONTROL_0_REG);
1771  
1772  const unsigned int addr_bits = 6;
1773  const unsigned int data_bits = 16;
1774  
1775  unsigned int i;
1776  
1777  u16 res;
1778  
1779  ctrl &= ~(SEEPROM_CS | SEEPROM_SK | SEEPROM_DI);
1780  WRITE_IT_WAIT(dev, ctrl);
1781  
1782  // wake Serial EEPROM and send 110 (READ) command
1783  ctrl |=  (SEEPROM_CS | SEEPROM_DI);
1784  CLOCK_IT(dev, ctrl);
1785  
1786  ctrl |= SEEPROM_DI;
1787  CLOCK_IT(dev, ctrl);
1788  
1789  ctrl &= ~SEEPROM_DI;
1790  CLOCK_IT(dev, ctrl);
1791  
1792  for (i=0; i<addr_bits; i++) {
1793    if (addr & (1 << (addr_bits-1)))
1794      ctrl |= SEEPROM_DI;
1795    else
1796      ctrl &= ~SEEPROM_DI;
1797    
1798    CLOCK_IT(dev, ctrl);
1799    
1800    addr = addr << 1;
1801  }
1802  
1803  // we could check that we have DO = 0 here
1804  ctrl &= ~SEEPROM_DI;
1805  
1806  res = 0;
1807  for (i=0;i<data_bits;i++) {
1808    res = res >> 1;
1809    
1810    CLOCK_IT(dev, ctrl);
1811    
1812    if (rd_regl (dev, CONTROL_0_REG) & SEEPROM_DO)
1813      res |= (1 << (data_bits-1));
1814  }
1815  
1816  ctrl &= ~(SEEPROM_SK | SEEPROM_CS);
1817  WRITE_IT_WAIT(dev, ctrl);
1818  
1819  return res;
1820}
1821
1822/********** initialise a card **********/
1823
1824static int hrz_init(hrz_dev *dev)
1825{
1826  int onefivefive;
1827  
1828  u16 chan;
1829  
1830  int buff_count;
1831  
1832  HDW * mem;
1833  
1834  cell_buf * tx_desc;
1835  cell_buf * rx_desc;
1836  
1837  u32 ctrl;
1838  
1839  ctrl = rd_regl (dev, CONTROL_0_REG);
1840  PRINTD (DBG_INFO, "ctrl0reg is %#x", ctrl);
1841  onefivefive = ctrl & ATM_LAYER_STATUS;
1842  
1843  if (onefivefive)
1844    printk (DEV_LABEL ": Horizon Ultra (at 155.52 MBps)");
1845  else
1846    printk (DEV_LABEL ": Horizon (at 25 MBps)");
1847  
1848  printk (":");
1849  // Reset the card to get everything in a known state
1850  
1851  printk (" reset");
1852  hrz_reset (dev);
1853  
1854  // Clear all the buffer memory
1855  
1856  printk (" clearing memory");
1857  
1858  for (mem = (HDW *) memmap; mem < (HDW *) (memmap + 1); ++mem)
1859    wr_mem (dev, mem, 0);
1860  
1861  printk (" tx channels");
1862  
1863  // All transmit eight channels are set up as AAL5 ABR channels with
1864  // a 16us cell spacing. Why?
1865  
1866  // Channel 0 gets the free buffer at 100h, channel 1 gets the free
1867  // buffer at 110h etc.
1868  
1869  for (chan = 0; chan < TX_CHANS; ++chan) {
1870    tx_ch_desc * tx_desc = &memmap->tx_descs[chan];
1871    cell_buf * buf = &memmap->inittxbufs[chan];
1872    
1873    // initialise the read and write buffer pointers
1874    wr_mem (dev, &tx_desc->rd_buf_type, BUF_PTR(buf));
1875    wr_mem (dev, &tx_desc->wr_buf_type, BUF_PTR(buf));
1876    
1877    // set the status of the initial buffers to empty
1878    wr_mem (dev, &buf->next, BUFF_STATUS_EMPTY);
1879  }
1880  
1881  // Use space bufn3 at the moment for tx buffers
1882  
1883  printk (" tx buffers");
1884  
1885  tx_desc = memmap->bufn3;
1886  
1887  wr_mem (dev, &memmap->txfreebufstart.next, BUF_PTR(tx_desc) | BUFF_STATUS_EMPTY);
1888  
1889  for (buff_count = 0; buff_count < BUFN3_SIZE-1; buff_count++) {
1890    wr_mem (dev, &tx_desc->next, BUF_PTR(tx_desc+1) | BUFF_STATUS_EMPTY);
1891    tx_desc++;
1892  }
1893  
1894  wr_mem (dev, &tx_desc->next, BUF_PTR(&memmap->txfreebufend) | BUFF_STATUS_EMPTY);
1895  
1896  // Initialise the transmit free buffer count
1897  wr_regw (dev, TX_FREE_BUFFER_COUNT_OFF, BUFN3_SIZE);
1898  
1899  printk (" rx channels");
1900  
1901  // Initialise all of the receive channels to be AAL5 disabled with
1902  // an interrupt threshold of 0
1903  
1904  for (chan = 0; chan < RX_CHANS; ++chan) {
1905    rx_ch_desc * rx_desc = &memmap->rx_descs[chan];
1906    
1907    wr_mem (dev, &rx_desc->wr_buf_type, CHANNEL_TYPE_AAL5 | RX_CHANNEL_DISABLED);
1908  }
1909  
1910  printk (" rx buffers");
1911  
1912  // Use space bufn4 at the moment for rx buffers
1913  
1914  rx_desc = memmap->bufn4;
1915  
1916  wr_mem (dev, &memmap->rxfreebufstart.next, BUF_PTR(rx_desc) | BUFF_STATUS_EMPTY);
1917  
1918  for (buff_count = 0; buff_count < BUFN4_SIZE-1; buff_count++) {
1919    wr_mem (dev, &rx_desc->next, BUF_PTR(rx_desc+1) | BUFF_STATUS_EMPTY);
1920    
1921    rx_desc++;
1922  }
1923  
1924  wr_mem (dev, &rx_desc->next, BUF_PTR(&memmap->rxfreebufend) | BUFF_STATUS_EMPTY);
1925  
1926  // Initialise the receive free buffer count
1927  wr_regw (dev, RX_FREE_BUFFER_COUNT_OFF, BUFN4_SIZE);
1928  
1929  // Initialize Horizons registers
1930  
1931  // TX config
1932  wr_regw (dev, TX_CONFIG_OFF,
1933	   ABR_ROUND_ROBIN | TX_NORMAL_OPERATION | DRVR_DRVRBAR_ENABLE);
1934  
1935  // RX config. Use 10-x VC bits, x VP bits, non user cells in channel 0.
1936  wr_regw (dev, RX_CONFIG_OFF,
1937	   DISCARD_UNUSED_VPI_VCI_BITS_SET | NON_USER_CELLS_IN_ONE_CHANNEL | vpi_bits);
1938  
1939  // RX line config
1940  wr_regw (dev, RX_LINE_CONFIG_OFF,
1941	   LOCK_DETECT_ENABLE | FREQUENCY_DETECT_ENABLE | GXTALOUT_SELECT_DIV4);
1942  
1943  // Set the max AAL5 cell count to be just enough to contain the
1944  // largest AAL5 frame that the user wants to receive
1945  wr_regw (dev, MAX_AAL5_CELL_COUNT_OFF,
1946	   DIV_ROUND_UP(max_rx_size + ATM_AAL5_TRAILER, ATM_CELL_PAYLOAD));
1947  
1948  // Enable receive
1949  wr_regw (dev, RX_CONFIG_OFF, rd_regw (dev, RX_CONFIG_OFF) | RX_ENABLE);
1950  
1951  printk (" control");
1952  
1953  // Drive the OE of the LEDs then turn the green LED on
1954  ctrl |= GREEN_LED_OE | YELLOW_LED_OE | GREEN_LED | YELLOW_LED;
1955  wr_regl (dev, CONTROL_0_REG, ctrl);
1956  
1957  // Test for a 155-capable card
1958  
1959  if (onefivefive) {
1960    // Select 155 mode... make this a choice (or: how do we detect
1961    // external line speed and switch?)
1962    ctrl |= ATM_LAYER_SELECT;
1963    wr_regl (dev, CONTROL_0_REG, ctrl);
1964    
1965    // test SUNI-lite vs SAMBA
1966    
1967    // Register 0x00 in the SUNI will have some of bits 3-7 set, and
1968    // they will always be zero for the SAMBA.  Ha!  Bloody hardware
1969    // engineers.  It'll never work.
1970    
1971    if (rd_framer (dev, 0) & 0x00f0) {
1972      // SUNI
1973      printk (" SUNI");
1974      
1975      // Reset, just in case
1976      wr_framer (dev, 0x00, 0x0080);
1977      wr_framer (dev, 0x00, 0x0000);
1978      
1979      // Configure transmit FIFO
1980      wr_framer (dev, 0x63, rd_framer (dev, 0x63) | 0x0002);
1981      
1982      // Set line timed mode
1983      wr_framer (dev, 0x05, rd_framer (dev, 0x05) | 0x0001);
1984    } else {
1985      // SAMBA
1986      printk (" SAMBA");
1987      
1988      // Reset, just in case
1989      wr_framer (dev, 0, rd_framer (dev, 0) | 0x0001);
1990      wr_framer (dev, 0, rd_framer (dev, 0) &~ 0x0001);
1991      
1992      // Turn off diagnostic loopback and enable line-timed mode
1993      wr_framer (dev, 0, 0x0002);
1994      
1995      // Turn on transmit outputs
1996      wr_framer (dev, 2, 0x0B80);
1997    }
1998  } else {
1999    // Select 25 mode
2000    ctrl &= ~ATM_LAYER_SELECT;
2001    
2002    // Madge B154 setup
2003    // none required?
2004  }
2005  
2006  printk (" LEDs");
2007  
2008  GREEN_LED_ON(dev);
2009  YELLOW_LED_ON(dev);
2010  
2011  printk (" ESI=");
2012  
2013  {
2014    u16 b = 0;
2015    int i;
2016    u8 * esi = dev->atm_dev->esi;
2017    
2018    // in the card I have, EEPROM
2019    // addresses 0, 1, 2 contain 0
2020    // addresess 5, 6 etc. contain ffff
2021    // NB: Madge prefix is 00 00 f6 (which is 00 00 6f in Ethernet bit order)
2022    // the read_bia routine gets the BIA in Ethernet bit order
2023    
2024    for (i=0; i < ESI_LEN; ++i) {
2025      if (i % 2 == 0)
2026	b = read_bia (dev, i/2 + 2);
2027      else
2028	b = b >> 8;
2029      esi[i] = b & 0xFF;
2030      printk ("%02x", esi[i]);
2031    }
2032  }
2033  
2034  // Enable RX_Q and ?X_COMPLETE interrupts only
2035  wr_regl (dev, INT_ENABLE_REG_OFF, INTERESTING_INTERRUPTS);
2036  printk (" IRQ on");
2037  
2038  printk (".\n");
2039  
2040  return onefivefive;
2041}
2042
2043/********** check max_sdu **********/
2044
2045static int check_max_sdu (hrz_aal aal, struct atm_trafprm * tp, unsigned int max_frame_size) {
2046  PRINTD (DBG_FLOW|DBG_QOS, "check_max_sdu");
2047  
2048  switch (aal) {
2049    case aal0:
2050      if (!(tp->max_sdu)) {
2051	PRINTD (DBG_QOS, "defaulting max_sdu");
2052	tp->max_sdu = ATM_AAL0_SDU;
2053      } else if (tp->max_sdu != ATM_AAL0_SDU) {
2054	PRINTD (DBG_QOS|DBG_ERR, "rejecting max_sdu");
2055	return -EINVAL;
2056      }
2057      break;
2058    case aal34:
2059      if (tp->max_sdu == 0 || tp->max_sdu > ATM_MAX_AAL34_PDU) {
2060	PRINTD (DBG_QOS, "%sing max_sdu", tp->max_sdu ? "capp" : "default");
2061	tp->max_sdu = ATM_MAX_AAL34_PDU;
2062      }
2063      break;
2064    case aal5:
2065      if (tp->max_sdu == 0 || tp->max_sdu > max_frame_size) {
2066	PRINTD (DBG_QOS, "%sing max_sdu", tp->max_sdu ? "capp" : "default");
2067	tp->max_sdu = max_frame_size;
2068      }
2069      break;
2070  }
2071  return 0;
2072}
2073
2074/********** check pcr **********/
2075
2076// something like this should be part of ATM Linux
2077static int atm_pcr_check (struct atm_trafprm * tp, unsigned int pcr) {
2078  // we are assuming non-UBR, and non-special values of pcr
2079  if (tp->min_pcr == ATM_MAX_PCR)
2080    PRINTD (DBG_QOS, "luser gave min_pcr = ATM_MAX_PCR");
2081  else if (tp->min_pcr < 0)
2082    PRINTD (DBG_QOS, "luser gave negative min_pcr");
2083  else if (tp->min_pcr && tp->min_pcr > pcr)
2084    PRINTD (DBG_QOS, "pcr less than min_pcr");
2085  else
2086    // !! max_pcr = UNSPEC (0) is equivalent to max_pcr = MAX (-1)
2087    // easier to #define ATM_MAX_PCR 0 and have all rates unsigned?
2088    // [this would get rid of next two conditionals]
2089    if ((0) && tp->max_pcr == ATM_MAX_PCR)
2090      PRINTD (DBG_QOS, "luser gave max_pcr = ATM_MAX_PCR");
2091    else if ((tp->max_pcr != ATM_MAX_PCR) && tp->max_pcr < 0)
2092      PRINTD (DBG_QOS, "luser gave negative max_pcr");
2093    else if (tp->max_pcr && tp->max_pcr != ATM_MAX_PCR && tp->max_pcr < pcr)
2094      PRINTD (DBG_QOS, "pcr greater than max_pcr");
2095    else {
2096      // each limit unspecified or not violated
2097      PRINTD (DBG_QOS, "xBR(pcr) OK");
2098      return 0;
2099    }
2100  PRINTD (DBG_QOS, "pcr=%u, tp: min_pcr=%d, pcr=%d, max_pcr=%d",
2101	  pcr, tp->min_pcr, tp->pcr, tp->max_pcr);
2102  return -EINVAL;
2103}
2104
2105/********** open VC **********/
2106
2107static int hrz_open (struct atm_vcc *atm_vcc)
2108{
2109  int error;
2110  u16 channel;
2111  
2112  struct atm_qos * qos;
2113  struct atm_trafprm * txtp;
2114  struct atm_trafprm * rxtp;
2115  
2116  hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
2117  hrz_vcc vcc;
2118  hrz_vcc * vccp; // allocated late
2119  short vpi = atm_vcc->vpi;
2120  int vci = atm_vcc->vci;
2121  PRINTD (DBG_FLOW|DBG_VCC, "hrz_open %x %x", vpi, vci);
2122  
2123#ifdef ATM_VPI_UNSPEC
2124  // UNSPEC is deprecated, remove this code eventually
2125  if (vpi == ATM_VPI_UNSPEC || vci == ATM_VCI_UNSPEC) {
2126    PRINTK (KERN_WARNING, "rejecting open with unspecified VPI/VCI (deprecated)");
2127    return -EINVAL;
2128  }
2129#endif
2130  
2131  error = vpivci_to_channel (&channel, vpi, vci);
2132  if (error) {
2133    PRINTD (DBG_WARN|DBG_VCC, "VPI/VCI out of range: %hd/%d", vpi, vci);
2134    return error;
2135  }
2136  
2137  vcc.channel = channel;
2138  // max speed for the moment
2139  vcc.tx_rate = 0x0;
2140  
2141  qos = &atm_vcc->qos;
2142  
2143  // check AAL and remember it
2144  switch (qos->aal) {
2145    case ATM_AAL0:
2146      // we would if it were 48 bytes and not 52!
2147      PRINTD (DBG_QOS|DBG_VCC, "AAL0");
2148      vcc.aal = aal0;
2149      break;
2150    case ATM_AAL34:
2151      // we would if I knew how do the SAR!
2152      PRINTD (DBG_QOS|DBG_VCC, "AAL3/4");
2153      vcc.aal = aal34;
2154      break;
2155    case ATM_AAL5:
2156      PRINTD (DBG_QOS|DBG_VCC, "AAL5");
2157      vcc.aal = aal5;
2158      break;
2159    default:
2160      PRINTD (DBG_QOS|DBG_VCC, "Bad AAL!");
2161      return -EINVAL;
2162  }
2163  
2164  // TX traffic parameters
2165  
2166  // there are two, interrelated problems here: 1. the reservation of
2167  // PCR is not a binary choice, we are given bounds and/or a
2168  // desirable value; 2. the device is only capable of certain values,
2169  // most of which are not integers. It is almost certainly acceptable
2170  // to be off by a maximum of 1 to 10 cps.
2171  
2172  // Pragmatic choice: always store an integral PCR as that which has
2173  // been allocated, even if we allocate a little (or a lot) less,
2174  // after rounding. The actual allocation depends on what we can
2175  // manage with our rate selection algorithm. The rate selection
2176  // algorithm is given an integral PCR and a tolerance and told
2177  // whether it should round the value up or down if the tolerance is
2178  // exceeded; it returns: a) the actual rate selected (rounded up to
2179  // the nearest integer), b) a bit pattern to feed to the timer
2180  // register, and c) a failure value if no applicable rate exists.
2181  
2182  // Part of the job is done by atm_pcr_goal which gives us a PCR
2183  // specification which says: EITHER grab the maximum available PCR
2184  // (and perhaps a lower bound which we musn't pass), OR grab this
2185  // amount, rounding down if you have to (and perhaps a lower bound
2186  // which we musn't pass) OR grab this amount, rounding up if you
2187  // have to (and perhaps an upper bound which we musn't pass). If any
2188  // bounds ARE passed we fail. Note that rounding is only rounding to
2189  // match device limitations, we do not round down to satisfy
2190  // bandwidth availability even if this would not violate any given
2191  // lower bound.
2192  
2193  // Note: telephony = 64kb/s = 48 byte cell payload @ 500/3 cells/s
2194  // (say) so this is not even a binary fixpoint cell rate (but this
2195  // device can do it). To avoid this sort of hassle we use a
2196  // tolerance parameter (currently fixed at 10 cps).
2197  
2198  PRINTD (DBG_QOS, "TX:");
2199  
2200  txtp = &qos->txtp;
2201  
2202  // set up defaults for no traffic
2203  vcc.tx_rate = 0;
2204  // who knows what would actually happen if you try and send on this?
2205  vcc.tx_xbr_bits = IDLE_RATE_TYPE;
2206  vcc.tx_pcr_bits = CLOCK_DISABLE;
2207#if 0
2208  vcc.tx_scr_bits = CLOCK_DISABLE;
2209  vcc.tx_bucket_bits = 0;
2210#endif
2211  
2212  if (txtp->traffic_class != ATM_NONE) {
2213    error = check_max_sdu (vcc.aal, txtp, max_tx_size);
2214    if (error) {
2215      PRINTD (DBG_QOS, "TX max_sdu check failed");
2216      return error;
2217    }
2218    
2219    switch (txtp->traffic_class) {
2220      case ATM_UBR: {
2221	// we take "the PCR" as a rate-cap
2222	// not reserved
2223	vcc.tx_rate = 0;
2224	make_rate (dev, 1<<30, round_nearest, &vcc.tx_pcr_bits, NULL);
2225	vcc.tx_xbr_bits = ABR_RATE_TYPE;
2226	break;
2227      }
2228#if 0
2229      case ATM_ABR: {
2230	// reserve min, allow up to max
2231	vcc.tx_rate = 0; // ?
2232	make_rate (dev, 1<<30, round_nearest, &vcc.tx_pcr_bits, 0);
2233	vcc.tx_xbr_bits = ABR_RATE_TYPE;
2234	break;
2235      }
2236#endif
2237      case ATM_CBR: {
2238	int pcr = atm_pcr_goal (txtp);
2239	rounding r;
2240	if (!pcr) {
2241	  // down vs. up, remaining bandwidth vs. unlimited bandwidth!!
2242	  // should really have: once someone gets unlimited bandwidth
2243	  // that no more non-UBR channels can be opened until the
2244	  // unlimited one closes?? For the moment, round_down means
2245	  // greedy people actually get something and not nothing
2246	  r = round_down;
2247	  // slight race (no locking) here so we may get -EAGAIN
2248	  // later; the greedy bastards would deserve it :)
2249	  PRINTD (DBG_QOS, "snatching all remaining TX bandwidth");
2250	  pcr = dev->tx_avail;
2251	} else if (pcr < 0) {
2252	  r = round_down;
2253	  pcr = -pcr;
2254	} else {
2255	  r = round_up;
2256	}
2257	error = make_rate_with_tolerance (dev, pcr, r, 10,
2258					  &vcc.tx_pcr_bits, &vcc.tx_rate);
2259	if (error) {
2260	  PRINTD (DBG_QOS, "could not make rate from TX PCR");
2261	  return error;
2262	}
2263	// not really clear what further checking is needed
2264	error = atm_pcr_check (txtp, vcc.tx_rate);
2265	if (error) {
2266	  PRINTD (DBG_QOS, "TX PCR failed consistency check");
2267	  return error;
2268	}
2269	vcc.tx_xbr_bits = CBR_RATE_TYPE;
2270	break;
2271      }
2272#if 0
2273      case ATM_VBR: {
2274	int pcr = atm_pcr_goal (txtp);
2275	// int scr = atm_scr_goal (txtp);
2276	int scr = pcr/2; // just for fun
2277	unsigned int mbs = 60; // just for fun
2278	rounding pr;
2279	rounding sr;
2280	unsigned int bucket;
2281	if (!pcr) {
2282	  pr = round_nearest;
2283	  pcr = 1<<30;
2284	} else if (pcr < 0) {
2285	  pr = round_down;
2286	  pcr = -pcr;
2287	} else {
2288	  pr = round_up;
2289	}
2290	error = make_rate_with_tolerance (dev, pcr, pr, 10,
2291					  &vcc.tx_pcr_bits, 0);
2292	if (!scr) {
2293	  // see comments for PCR with CBR above
2294	  sr = round_down;
2295	  // slight race (no locking) here so we may get -EAGAIN
2296	  // later; the greedy bastards would deserve it :)
2297	  PRINTD (DBG_QOS, "snatching all remaining TX bandwidth");
2298	  scr = dev->tx_avail;
2299	} else if (scr < 0) {
2300	  sr = round_down;
2301	  scr = -scr;
2302	} else {
2303	  sr = round_up;
2304	}
2305	error = make_rate_with_tolerance (dev, scr, sr, 10,
2306					  &vcc.tx_scr_bits, &vcc.tx_rate);
2307	if (error) {
2308	  PRINTD (DBG_QOS, "could not make rate from TX SCR");
2309	  return error;
2310	}
2311	// not really clear what further checking is needed
2312	// error = atm_scr_check (txtp, vcc.tx_rate);
2313	if (error) {
2314	  PRINTD (DBG_QOS, "TX SCR failed consistency check");
2315	  return error;
2316	}
2317	// bucket calculations (from a piece of paper...) cell bucket
2318	// capacity must be largest integer smaller than m(p-s)/p + 1
2319	// where m = max burst size, p = pcr, s = scr
2320	bucket = mbs*(pcr-scr)/pcr;
2321	if (bucket*pcr != mbs*(pcr-scr))
2322	  bucket += 1;
2323	if (bucket > BUCKET_MAX_SIZE) {
2324	  PRINTD (DBG_QOS, "shrinking bucket from %u to %u",
2325		  bucket, BUCKET_MAX_SIZE);
2326	  bucket = BUCKET_MAX_SIZE;
2327	}
2328	vcc.tx_xbr_bits = VBR_RATE_TYPE;
2329	vcc.tx_bucket_bits = bucket;
2330	break;
2331      }
2332#endif
2333      default: {
2334	PRINTD (DBG_QOS, "unsupported TX traffic class");
2335	return -EINVAL;
2336      }
2337    }
2338  }
2339  
2340  // RX traffic parameters
2341  
2342  PRINTD (DBG_QOS, "RX:");
2343  
2344  rxtp = &qos->rxtp;
2345  
2346  // set up defaults for no traffic
2347  vcc.rx_rate = 0;
2348  
2349  if (rxtp->traffic_class != ATM_NONE) {
2350    error = check_max_sdu (vcc.aal, rxtp, max_rx_size);
2351    if (error) {
2352      PRINTD (DBG_QOS, "RX max_sdu check failed");
2353      return error;
2354    }
2355    switch (rxtp->traffic_class) {
2356      case ATM_UBR: {
2357	// not reserved
2358	break;
2359      }
2360#if 0
2361      case ATM_ABR: {
2362	// reserve min
2363	vcc.rx_rate = 0; // ?
2364	break;
2365      }
2366#endif
2367      case ATM_CBR: {
2368	int pcr = atm_pcr_goal (rxtp);
2369	if (!pcr) {
2370	  // slight race (no locking) here so we may get -EAGAIN
2371	  // later; the greedy bastards would deserve it :)
2372	  PRINTD (DBG_QOS, "snatching all remaining RX bandwidth");
2373	  pcr = dev->rx_avail;
2374	} else if (pcr < 0) {
2375	  pcr = -pcr;
2376	}
2377	vcc.rx_rate = pcr;
2378	// not really clear what further checking is needed
2379	error = atm_pcr_check (rxtp, vcc.rx_rate);
2380	if (error) {
2381	  PRINTD (DBG_QOS, "RX PCR failed consistency check");
2382	  return error;
2383	}
2384	break;
2385      }
2386#if 0
2387      case ATM_VBR: {
2388	// int scr = atm_scr_goal (rxtp);
2389	int scr = 1<<16; // just for fun
2390	if (!scr) {
2391	  // slight race (no locking) here so we may get -EAGAIN
2392	  // later; the greedy bastards would deserve it :)
2393	  PRINTD (DBG_QOS, "snatching all remaining RX bandwidth");
2394	  scr = dev->rx_avail;
2395	} else if (scr < 0) {
2396	  scr = -scr;
2397	}
2398	vcc.rx_rate = scr;
2399	// not really clear what further checking is needed
2400	// error = atm_scr_check (rxtp, vcc.rx_rate);
2401	if (error) {
2402	  PRINTD (DBG_QOS, "RX SCR failed consistency check");
2403	  return error;
2404	}
2405	break;
2406      }
2407#endif
2408      default: {
2409	PRINTD (DBG_QOS, "unsupported RX traffic class");
2410	return -EINVAL;
2411      }
2412    }
2413  }
2414  
2415  
2416  // late abort useful for diagnostics
2417  if (vcc.aal != aal5) {
2418    PRINTD (DBG_QOS, "AAL not supported");
2419    return -EINVAL;
2420  }
2421  
2422  // get space for our vcc stuff and copy parameters into it
2423  vccp = kmalloc (sizeof(hrz_vcc), GFP_KERNEL);
2424  if (!vccp) {
2425    PRINTK (KERN_ERR, "out of memory!");
2426    return -ENOMEM;
2427  }
2428  *vccp = vcc;
2429  
2430  // clear error and grab cell rate resource lock
2431  error = 0;
2432  spin_lock (&dev->rate_lock);
2433  
2434  if (vcc.tx_rate > dev->tx_avail) {
2435    PRINTD (DBG_QOS, "not enough TX PCR left");
2436    error = -EAGAIN;
2437  }
2438  
2439  if (vcc.rx_rate > dev->rx_avail) {
2440    PRINTD (DBG_QOS, "not enough RX PCR left");
2441    error = -EAGAIN;
2442  }
2443  
2444  if (!error) {
2445    // really consume cell rates
2446    dev->tx_avail -= vcc.tx_rate;
2447    dev->rx_avail -= vcc.rx_rate;
2448    PRINTD (DBG_QOS|DBG_VCC, "reserving %u TX PCR and %u RX PCR",
2449	    vcc.tx_rate, vcc.rx_rate);
2450  }
2451  
2452  // release lock and exit on error
2453  spin_unlock (&dev->rate_lock);
2454  if (error) {
2455    PRINTD (DBG_QOS|DBG_VCC, "insufficient cell rate resources");
2456    kfree (vccp);
2457    return error;
2458  }
2459  
2460  // this is "immediately before allocating the connection identifier
2461  // in hardware" - so long as the next call does not fail :)
2462  set_bit(ATM_VF_ADDR,&atm_vcc->flags);
2463  
2464  // any errors here are very serious and should never occur
2465  
2466  if (rxtp->traffic_class != ATM_NONE) {
2467    if (dev->rxer[channel]) {
2468      PRINTD (DBG_ERR|DBG_VCC, "VC already open for RX");
2469      error = -EBUSY;
2470    }
2471    if (!error)
2472      error = hrz_open_rx (dev, channel);
2473    if (error) {
2474      kfree (vccp);
2475      return error;
2476    }
2477    // this link allows RX frames through
2478    dev->rxer[channel] = atm_vcc;
2479  }
2480  
2481  // success, set elements of atm_vcc
2482  atm_vcc->dev_data = (void *) vccp;
2483  
2484  // indicate readiness
2485  set_bit(ATM_VF_READY,&atm_vcc->flags);
2486  
2487  return 0;
2488}
2489
2490/********** close VC **********/
2491
2492static void hrz_close (struct atm_vcc * atm_vcc) {
2493  hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
2494  hrz_vcc * vcc = HRZ_VCC(atm_vcc);
2495  u16 channel = vcc->channel;
2496  PRINTD (DBG_VCC|DBG_FLOW, "hrz_close");
2497  
2498  // indicate unreadiness
2499  clear_bit(ATM_VF_READY,&atm_vcc->flags);
2500
2501  if (atm_vcc->qos.txtp.traffic_class != ATM_NONE) {
2502    unsigned int i;
2503    
2504    // let any TX on this channel that has started complete
2505    // no restart, just keep trying
2506    while (tx_hold (dev))
2507      ;
2508    // remove record of any tx_channel having been setup for this channel
2509    for (i = 0; i < TX_CHANS; ++i)
2510      if (dev->tx_channel_record[i] == channel) {
2511	dev->tx_channel_record[i] = -1;
2512	break;
2513      }
2514    if (dev->last_vc == channel)
2515      dev->tx_last = -1;
2516    tx_release (dev);
2517  }
2518
2519  if (atm_vcc->qos.rxtp.traffic_class != ATM_NONE) {
2520    // disable RXing - it tries quite hard
2521    hrz_close_rx (dev, channel);
2522    // forget the vcc - no more skbs will be pushed
2523    if (atm_vcc != dev->rxer[channel])
2524      PRINTK (KERN_ERR, "%s atm_vcc=%p rxer[channel]=%p",
2525	      "arghhh! we're going to die!",
2526	      atm_vcc, dev->rxer[channel]);
2527    dev->rxer[channel] = NULL;
2528  }
2529  
2530  // atomically release our rate reservation
2531  spin_lock (&dev->rate_lock);
2532  PRINTD (DBG_QOS|DBG_VCC, "releasing %u TX PCR and %u RX PCR",
2533	  vcc->tx_rate, vcc->rx_rate);
2534  dev->tx_avail += vcc->tx_rate;
2535  dev->rx_avail += vcc->rx_rate;
2536  spin_unlock (&dev->rate_lock);
2537  
2538  // free our structure
2539  kfree (vcc);
2540  // say the VPI/VCI is free again
2541  clear_bit(ATM_VF_ADDR,&atm_vcc->flags);
2542}
2543
2544#if 0
2545static int hrz_getsockopt (struct atm_vcc * atm_vcc, int level, int optname,
2546			   void *optval, int optlen) {
2547  hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
2548  PRINTD (DBG_FLOW|DBG_VCC, "hrz_getsockopt");
2549  switch (level) {
2550    case SOL_SOCKET:
2551      switch (optname) {
2552//	case SO_BCTXOPT:
2553//	  break;
2554//	case SO_BCRXOPT:
2555//	  break;
2556	default:
2557	  return -ENOPROTOOPT;
2558      };
2559      break;
2560  }
2561  return -EINVAL;
2562}
2563
2564static int hrz_setsockopt (struct atm_vcc * atm_vcc, int level, int optname,
2565			   void *optval, unsigned int optlen) {
2566  hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
2567  PRINTD (DBG_FLOW|DBG_VCC, "hrz_setsockopt");
2568  switch (level) {
2569    case SOL_SOCKET:
2570      switch (optname) {
2571//	case SO_BCTXOPT:
2572//	  break;
2573//	case SO_BCRXOPT:
2574//	  break;
2575	default:
2576	  return -ENOPROTOOPT;
2577      };
2578      break;
2579  }
2580  return -EINVAL;
2581}
2582#endif
2583
2584#if 0
2585static int hrz_ioctl (struct atm_dev * atm_dev, unsigned int cmd, void *arg) {
2586  hrz_dev * dev = HRZ_DEV(atm_dev);
2587  PRINTD (DBG_FLOW, "hrz_ioctl");
2588  return -1;
2589}
2590
2591unsigned char hrz_phy_get (struct atm_dev * atm_dev, unsigned long addr) {
2592  hrz_dev * dev = HRZ_DEV(atm_dev);
2593  PRINTD (DBG_FLOW, "hrz_phy_get");
2594  return 0;
2595}
2596
2597static void hrz_phy_put (struct atm_dev * atm_dev, unsigned char value,
2598			 unsigned long addr) {
2599  hrz_dev * dev = HRZ_DEV(atm_dev);
2600  PRINTD (DBG_FLOW, "hrz_phy_put");
2601}
2602
2603static int hrz_change_qos (struct atm_vcc * atm_vcc, struct atm_qos *qos, int flgs) {
2604  hrz_dev * dev = HRZ_DEV(vcc->dev);
2605  PRINTD (DBG_FLOW, "hrz_change_qos");
2606  return -1;
2607}
2608#endif
2609
2610/********** proc file contents **********/
2611
2612static int hrz_proc_read (struct atm_dev * atm_dev, loff_t * pos, char * page) {
2613  hrz_dev * dev = HRZ_DEV(atm_dev);
2614  int left = *pos;
2615  PRINTD (DBG_FLOW, "hrz_proc_read");
2616  
2617  /* more diagnostics here? */
2618  
2619#if 0
2620  if (!left--) {
2621    unsigned int count = sprintf (page, "vbr buckets:");
2622    unsigned int i;
2623    for (i = 0; i < TX_CHANS; ++i)
2624      count += sprintf (page, " %u/%u",
2625			query_tx_channel_config (dev, i, BUCKET_FULLNESS_ACCESS),
2626			query_tx_channel_config (dev, i, BUCKET_CAPACITY_ACCESS));
2627    count += sprintf (page+count, ".\n");
2628    return count;
2629  }
2630#endif
2631  
2632  if (!left--)
2633    return sprintf (page,
2634		    "cells: TX %lu, RX %lu, HEC errors %lu, unassigned %lu.\n",
2635		    dev->tx_cell_count, dev->rx_cell_count,
2636		    dev->hec_error_count, dev->unassigned_cell_count);
2637  
2638  if (!left--)
2639    return sprintf (page,
2640		    "free cell buffers: TX %hu, RX %hu+%hu.\n",
2641		    rd_regw (dev, TX_FREE_BUFFER_COUNT_OFF),
2642		    rd_regw (dev, RX_FREE_BUFFER_COUNT_OFF),
2643		    dev->noof_spare_buffers);
2644  
2645  if (!left--)
2646    return sprintf (page,
2647		    "cps remaining: TX %u, RX %u\n",
2648		    dev->tx_avail, dev->rx_avail);
2649  
2650  return 0;
2651}
2652
2653static const struct atmdev_ops hrz_ops = {
2654  .open	= hrz_open,
2655  .close	= hrz_close,
2656  .send	= hrz_send,
2657  .proc_read	= hrz_proc_read,
2658  .owner	= THIS_MODULE,
2659};
2660
2661static int hrz_probe(struct pci_dev *pci_dev,
2662		     const struct pci_device_id *pci_ent)
2663{
2664	hrz_dev * dev;
2665	int err = 0;
2666
2667	// adapter slot free, read resources from PCI configuration space
2668	u32 iobase = pci_resource_start (pci_dev, 0);
2669	u32 * membase = bus_to_virt (pci_resource_start (pci_dev, 1));
2670	unsigned int irq;
2671	unsigned char lat;
2672
2673	PRINTD (DBG_FLOW, "hrz_probe");
2674
2675	if (pci_enable_device(pci_dev))
2676		return -EINVAL;
2677
2678	/* XXX DEV_LABEL is a guess */
2679	if (!request_region(iobase, HRZ_IO_EXTENT, DEV_LABEL)) {
2680		err = -EINVAL;
2681		goto out_disable;
2682	}
2683
2684	dev = kzalloc(sizeof(hrz_dev), GFP_KERNEL);
2685	if (!dev) {
2686		// perhaps we should be nice: deregister all adapters and abort?
2687		PRINTD(DBG_ERR, "out of memory");
2688		err = -ENOMEM;
2689		goto out_release;
2690	}
2691
2692	pci_set_drvdata(pci_dev, dev);
2693
2694	// grab IRQ and install handler - move this someplace more sensible
2695	irq = pci_dev->irq;
2696	if (request_irq(irq,
2697			interrupt_handler,
2698			IRQF_SHARED, /* irqflags guess */
2699			DEV_LABEL, /* name guess */
2700			dev)) {
2701		PRINTD(DBG_WARN, "request IRQ failed!");
2702		err = -EINVAL;
2703		goto out_free;
2704	}
2705
2706	PRINTD(DBG_INFO, "found Madge ATM adapter (hrz) at: IO %x, IRQ %u, MEM %p",
2707	       iobase, irq, membase);
2708
2709	dev->atm_dev = atm_dev_register(DEV_LABEL, &pci_dev->dev, &hrz_ops, -1,
2710					NULL);
2711	if (!(dev->atm_dev)) {
2712		PRINTD(DBG_ERR, "failed to register Madge ATM adapter");
2713		err = -EINVAL;
2714		goto out_free_irq;
2715	}
2716
2717	PRINTD(DBG_INFO, "registered Madge ATM adapter (no. %d) (%p) at %p",
2718	       dev->atm_dev->number, dev, dev->atm_dev);
2719	dev->atm_dev->dev_data = (void *) dev;
2720	dev->pci_dev = pci_dev; 
2721
2722	// enable bus master accesses
2723	pci_set_master(pci_dev);
2724
2725	// frobnicate latency (upwards, usually)
2726	pci_read_config_byte(pci_dev, PCI_LATENCY_TIMER, &lat);
2727	if (pci_lat) {
2728		PRINTD(DBG_INFO, "%s PCI latency timer from %hu to %hu",
2729		       "changing", lat, pci_lat);
2730		pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, pci_lat);
2731	} else if (lat < MIN_PCI_LATENCY) {
2732		PRINTK(KERN_INFO, "%s PCI latency timer from %hu to %hu",
2733		       "increasing", lat, MIN_PCI_LATENCY);
2734		pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, MIN_PCI_LATENCY);
2735	}
2736
2737	dev->iobase = iobase;
2738	dev->irq = irq; 
2739	dev->membase = membase; 
2740
2741	dev->rx_q_entry = dev->rx_q_reset = &memmap->rx_q_entries[0];
2742	dev->rx_q_wrap  = &memmap->rx_q_entries[RX_CHANS-1];
2743
2744	// these next three are performance hacks
2745	dev->last_vc = -1;
2746	dev->tx_last = -1;
2747	dev->tx_idle = 0;
2748
2749	dev->tx_regions = 0;
2750	dev->tx_bytes = 0;
2751	dev->tx_skb = NULL;
2752	dev->tx_iovec = NULL;
2753
2754	dev->tx_cell_count = 0;
2755	dev->rx_cell_count = 0;
2756	dev->hec_error_count = 0;
2757	dev->unassigned_cell_count = 0;
2758
2759	dev->noof_spare_buffers = 0;
2760
2761	{
2762		unsigned int i;
2763		for (i = 0; i < TX_CHANS; ++i)
2764			dev->tx_channel_record[i] = -1;
2765	}
2766
2767	dev->flags = 0;
2768
2769	// Allocate cell rates and remember ASIC version
2770	// Fibre: ATM_OC3_PCR = 1555200000/8/270*260/53 - 29/53
2771	// Copper: (WRONG) we want 6 into the above, close to 25Mb/s
2772	// Copper: (plagarise!) 25600000/8/270*260/53 - n/53
2773
2774	if (hrz_init(dev)) {
2775		// to be really pedantic, this should be ATM_OC3c_PCR
2776		dev->tx_avail = ATM_OC3_PCR;
2777		dev->rx_avail = ATM_OC3_PCR;
2778		set_bit(ultra, &dev->flags); // NOT "|= ultra" !
2779	} else {
2780		dev->tx_avail = ((25600000/8)*26)/(27*53);
2781		dev->rx_avail = ((25600000/8)*26)/(27*53);
2782		PRINTD(DBG_WARN, "Buggy ASIC: no TX bus-mastering.");
2783	}
2784
2785	// rate changes spinlock
2786	spin_lock_init(&dev->rate_lock);
2787
2788	// on-board memory access spinlock; we want atomic reads and
2789	// writes to adapter memory (handles IRQ and SMP)
2790	spin_lock_init(&dev->mem_lock);
2791
2792	init_waitqueue_head(&dev->tx_queue);
2793
2794	// vpi in 0..4, vci in 6..10
2795	dev->atm_dev->ci_range.vpi_bits = vpi_bits;
2796	dev->atm_dev->ci_range.vci_bits = 10-vpi_bits;
2797
2798	setup_timer(&dev->housekeeping, do_housekeeping, (unsigned long) dev);
2799	mod_timer(&dev->housekeeping, jiffies);
2800
2801out:
2802	return err;
2803
2804out_free_irq:
2805	free_irq(dev->irq, dev);
2806out_free:
2807	kfree(dev);
2808out_release:
2809	release_region(iobase, HRZ_IO_EXTENT);
2810out_disable:
2811	pci_disable_device(pci_dev);
2812	goto out;
2813}
2814
2815static void hrz_remove_one(struct pci_dev *pci_dev)
2816{
2817	hrz_dev *dev;
2818
2819	dev = pci_get_drvdata(pci_dev);
2820
2821	PRINTD(DBG_INFO, "closing %p (atm_dev = %p)", dev, dev->atm_dev);
2822	del_timer_sync(&dev->housekeeping);
2823	hrz_reset(dev);
2824	atm_dev_deregister(dev->atm_dev);
2825	free_irq(dev->irq, dev);
2826	release_region(dev->iobase, HRZ_IO_EXTENT);
2827	kfree(dev);
2828
2829	pci_disable_device(pci_dev);
2830}
2831
2832static void __init hrz_check_args (void) {
2833#ifdef DEBUG_HORIZON
2834  PRINTK (KERN_NOTICE, "debug bitmap is %hx", debug &= DBG_MASK);
2835#else
2836  if (debug)
2837    PRINTK (KERN_NOTICE, "no debug support in this image");
2838#endif
2839  
2840  if (vpi_bits > HRZ_MAX_VPI)
2841    PRINTK (KERN_ERR, "vpi_bits has been limited to %hu",
2842	    vpi_bits = HRZ_MAX_VPI);
2843  
2844  if (max_tx_size < 0 || max_tx_size > TX_AAL5_LIMIT)
2845    PRINTK (KERN_NOTICE, "max_tx_size has been limited to %hu",
2846	    max_tx_size = TX_AAL5_LIMIT);
2847  
2848  if (max_rx_size < 0 || max_rx_size > RX_AAL5_LIMIT)
2849    PRINTK (KERN_NOTICE, "max_rx_size has been limited to %hu",
2850	    max_rx_size = RX_AAL5_LIMIT);
2851  
2852  return;
2853}
2854
2855MODULE_AUTHOR(maintainer_string);
2856MODULE_DESCRIPTION(description_string);
2857MODULE_LICENSE("GPL");
2858module_param(debug, ushort, 0644);
2859module_param(vpi_bits, ushort, 0);
2860module_param(max_tx_size, int, 0);
2861module_param(max_rx_size, int, 0);
2862module_param(pci_lat, byte, 0);
2863MODULE_PARM_DESC(debug, "debug bitmap, see .h file");
2864MODULE_PARM_DESC(vpi_bits, "number of bits (0..4) to allocate to VPIs");
2865MODULE_PARM_DESC(max_tx_size, "maximum size of TX AAL5 frames");
2866MODULE_PARM_DESC(max_rx_size, "maximum size of RX AAL5 frames");
2867MODULE_PARM_DESC(pci_lat, "PCI latency in bus cycles");
2868
2869static struct pci_device_id hrz_pci_tbl[] = {
2870	{ PCI_VENDOR_ID_MADGE, PCI_DEVICE_ID_MADGE_HORIZON, PCI_ANY_ID, PCI_ANY_ID,
2871	  0, 0, 0 },
2872	{ 0, }
2873};
2874
2875MODULE_DEVICE_TABLE(pci, hrz_pci_tbl);
2876
2877static struct pci_driver hrz_driver = {
2878	.name =		"horizon",
2879	.probe =	hrz_probe,
2880	.remove =	hrz_remove_one,
2881	.id_table =	hrz_pci_tbl,
2882};
2883
2884/********** module entry **********/
2885
2886static int __init hrz_module_init (void) {
2887  // sanity check - cast is needed since printk does not support %Zu
2888  if (sizeof(struct MEMMAP) != 128*1024/4) {
2889    PRINTK (KERN_ERR, "Fix struct MEMMAP (is %lu fakewords).",
2890	    (unsigned long) sizeof(struct MEMMAP));
2891    return -ENOMEM;
2892  }
2893  
2894  show_version();
2895  
2896  // check arguments
2897  hrz_check_args();
2898  
2899  // get the juice
2900  return pci_register_driver(&hrz_driver);
2901}
2902
2903/********** module exit **********/
2904
2905static void __exit hrz_module_exit (void) {
2906  PRINTD (DBG_FLOW, "cleanup_module");
2907
2908  pci_unregister_driver(&hrz_driver);
2909}
2910
2911module_init(hrz_module_init);
2912module_exit(hrz_module_exit);