Linux Audio

Check our new training course

Loading...
v5.9
   1/*
   2
   3  he.c
   4
   5  ForeRunnerHE ATM Adapter driver for ATM on Linux
   6  Copyright (C) 1999-2001  Naval Research Laboratory
   7
   8  This library is free software; you can redistribute it and/or
   9  modify it under the terms of the GNU Lesser General Public
  10  License as published by the Free Software Foundation; either
  11  version 2.1 of the License, or (at your option) any later version.
  12
  13  This library is distributed in the hope that it will be useful,
  14  but WITHOUT ANY WARRANTY; without even the implied warranty of
  15  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  16  Lesser General Public License for more details.
  17
  18  You should have received a copy of the GNU Lesser General Public
  19  License along with this library; if not, write to the Free Software
  20  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  21
  22*/
  23
  24/*
  25
  26  he.c
  27
  28  ForeRunnerHE ATM Adapter driver for ATM on Linux
  29  Copyright (C) 1999-2001  Naval Research Laboratory
  30
  31  Permission to use, copy, modify and distribute this software and its
  32  documentation is hereby granted, provided that both the copyright
  33  notice and this permission notice appear in all copies of the software,
  34  derivative works or modified versions, and any portions thereof, and
  35  that both notices appear in supporting documentation.
  36
  37  NRL ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" CONDITION AND
  38  DISCLAIMS ANY LIABILITY OF ANY KIND FOR ANY DAMAGES WHATSOEVER
  39  RESULTING FROM THE USE OF THIS SOFTWARE.
  40
  41  This driver was written using the "Programmer's Reference Manual for
  42  ForeRunnerHE(tm)", MANU0361-01 - Rev. A, 08/21/98.
  43
  44  AUTHORS:
  45	chas williams <chas@cmf.nrl.navy.mil>
  46	eric kinzie <ekinzie@cmf.nrl.navy.mil>
  47
  48  NOTES:
  49	4096 supported 'connections'
  50	group 0 is used for all traffic
  51	interrupt queue 0 is used for all interrupts
  52	aal0 support (based on work from ulrich.u.muller@nokia.com)
  53
  54 */
  55
  56#include <linux/module.h>
  57#include <linux/kernel.h>
  58#include <linux/skbuff.h>
  59#include <linux/pci.h>
  60#include <linux/errno.h>
  61#include <linux/types.h>
  62#include <linux/string.h>
  63#include <linux/delay.h>
  64#include <linux/init.h>
  65#include <linux/mm.h>
  66#include <linux/sched.h>
  67#include <linux/timer.h>
  68#include <linux/interrupt.h>
  69#include <linux/dma-mapping.h>
  70#include <linux/bitmap.h>
  71#include <linux/slab.h>
  72#include <asm/io.h>
  73#include <asm/byteorder.h>
  74#include <linux/uaccess.h>
  75
  76#include <linux/atmdev.h>
  77#include <linux/atm.h>
  78#include <linux/sonet.h>
  79
  80#undef USE_SCATTERGATHER
  81#undef USE_CHECKSUM_HW			/* still confused about this */
  82/* #undef HE_DEBUG */
  83
  84#include "he.h"
  85#include "suni.h"
  86#include <linux/atm_he.h>
  87
  88#define hprintk(fmt,args...)	printk(KERN_ERR DEV_LABEL "%d: " fmt, he_dev->number , ##args)
  89
  90#ifdef HE_DEBUG
  91#define HPRINTK(fmt,args...)	printk(KERN_DEBUG DEV_LABEL "%d: " fmt, he_dev->number , ##args)
  92#else /* !HE_DEBUG */
  93#define HPRINTK(fmt,args...)	do { } while (0)
  94#endif /* HE_DEBUG */
  95
  96/* declarations */
  97
  98static int he_open(struct atm_vcc *vcc);
  99static void he_close(struct atm_vcc *vcc);
 100static int he_send(struct atm_vcc *vcc, struct sk_buff *skb);
 101static int he_ioctl(struct atm_dev *dev, unsigned int cmd, void __user *arg);
 102static irqreturn_t he_irq_handler(int irq, void *dev_id);
 103static void he_tasklet(unsigned long data);
 104static int he_proc_read(struct atm_dev *dev,loff_t *pos,char *page);
 105static int he_start(struct atm_dev *dev);
 106static void he_stop(struct he_dev *dev);
 107static void he_phy_put(struct atm_dev *, unsigned char, unsigned long);
 108static unsigned char he_phy_get(struct atm_dev *, unsigned long);
 109
 110static u8 read_prom_byte(struct he_dev *he_dev, int addr);
 111
 112/* globals */
 113
 114static struct he_dev *he_devs;
 115static bool disable64;
 116static short nvpibits = -1;
 117static short nvcibits = -1;
 118static short rx_skb_reserve = 16;
 119static bool irq_coalesce = true;
 120static bool sdh;
 121
 122/* Read from EEPROM = 0000 0011b */
 123static unsigned int readtab[] = {
 124	CS_HIGH | CLK_HIGH,
 125	CS_LOW | CLK_LOW,
 126	CLK_HIGH,               /* 0 */
 127	CLK_LOW,
 128	CLK_HIGH,               /* 0 */
 129	CLK_LOW,
 130	CLK_HIGH,               /* 0 */
 131	CLK_LOW,
 132	CLK_HIGH,               /* 0 */
 133	CLK_LOW,
 134	CLK_HIGH,               /* 0 */
 135	CLK_LOW,
 136	CLK_HIGH,               /* 0 */
 137	CLK_LOW | SI_HIGH,
 138	CLK_HIGH | SI_HIGH,     /* 1 */
 139	CLK_LOW | SI_HIGH,
 140	CLK_HIGH | SI_HIGH      /* 1 */
 141};     
 142 
 143/* Clock to read from/write to the EEPROM */
 144static unsigned int clocktab[] = {
 145	CLK_LOW,
 146	CLK_HIGH,
 147	CLK_LOW,
 148	CLK_HIGH,
 149	CLK_LOW,
 150	CLK_HIGH,
 151	CLK_LOW,
 152	CLK_HIGH,
 153	CLK_LOW,
 154	CLK_HIGH,
 155	CLK_LOW,
 156	CLK_HIGH,
 157	CLK_LOW,
 158	CLK_HIGH,
 159	CLK_LOW,
 160	CLK_HIGH,
 161	CLK_LOW
 162};     
 163
 164static const struct atmdev_ops he_ops =
 165{
 166	.open =		he_open,
 167	.close =	he_close,	
 168	.ioctl =	he_ioctl,	
 169	.send =		he_send,
 170	.phy_put =	he_phy_put,
 171	.phy_get =	he_phy_get,
 172	.proc_read =	he_proc_read,
 173	.owner =	THIS_MODULE
 174};
 175
 176#define he_writel(dev, val, reg)	do { writel(val, (dev)->membase + (reg)); wmb(); } while (0)
 177#define he_readl(dev, reg)		readl((dev)->membase + (reg))
 178
 179/* section 2.12 connection memory access */
 180
 181static __inline__ void
 182he_writel_internal(struct he_dev *he_dev, unsigned val, unsigned addr,
 183								unsigned flags)
 184{
 185	he_writel(he_dev, val, CON_DAT);
 186	(void) he_readl(he_dev, CON_DAT);		/* flush posted writes */
 187	he_writel(he_dev, flags | CON_CTL_WRITE | CON_CTL_ADDR(addr), CON_CTL);
 188	while (he_readl(he_dev, CON_CTL) & CON_CTL_BUSY);
 189}
 190
 191#define he_writel_rcm(dev, val, reg) 				\
 192			he_writel_internal(dev, val, reg, CON_CTL_RCM)
 193
 194#define he_writel_tcm(dev, val, reg) 				\
 195			he_writel_internal(dev, val, reg, CON_CTL_TCM)
 196
 197#define he_writel_mbox(dev, val, reg) 				\
 198			he_writel_internal(dev, val, reg, CON_CTL_MBOX)
 199
 200static unsigned
 201he_readl_internal(struct he_dev *he_dev, unsigned addr, unsigned flags)
 202{
 203	he_writel(he_dev, flags | CON_CTL_READ | CON_CTL_ADDR(addr), CON_CTL);
 204	while (he_readl(he_dev, CON_CTL) & CON_CTL_BUSY);
 205	return he_readl(he_dev, CON_DAT);
 206}
 207
 208#define he_readl_rcm(dev, reg) \
 209			he_readl_internal(dev, reg, CON_CTL_RCM)
 210
 211#define he_readl_tcm(dev, reg) \
 212			he_readl_internal(dev, reg, CON_CTL_TCM)
 213
 214#define he_readl_mbox(dev, reg) \
 215			he_readl_internal(dev, reg, CON_CTL_MBOX)
 216
 217
 218/* figure 2.2 connection id */
 219
 220#define he_mkcid(dev, vpi, vci)		(((vpi << (dev)->vcibits) | vci) & 0x1fff)
 221
 222/* 2.5.1 per connection transmit state registers */
 223
 224#define he_writel_tsr0(dev, val, cid) \
 225		he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 0)
 226#define he_readl_tsr0(dev, cid) \
 227		he_readl_tcm(dev, CONFIG_TSRA | (cid << 3) | 0)
 228
 229#define he_writel_tsr1(dev, val, cid) \
 230		he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 1)
 231
 232#define he_writel_tsr2(dev, val, cid) \
 233		he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 2)
 234
 235#define he_writel_tsr3(dev, val, cid) \
 236		he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 3)
 237
 238#define he_writel_tsr4(dev, val, cid) \
 239		he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 4)
 240
 241	/* from page 2-20
 242	 *
 243	 * NOTE While the transmit connection is active, bits 23 through 0
 244	 *      of this register must not be written by the host.  Byte
 245	 *      enables should be used during normal operation when writing
 246	 *      the most significant byte.
 247	 */
 248
 249#define he_writel_tsr4_upper(dev, val, cid) \
 250		he_writel_internal(dev, val, CONFIG_TSRA | (cid << 3) | 4, \
 251							CON_CTL_TCM \
 252							| CON_BYTE_DISABLE_2 \
 253							| CON_BYTE_DISABLE_1 \
 254							| CON_BYTE_DISABLE_0)
 255
 256#define he_readl_tsr4(dev, cid) \
 257		he_readl_tcm(dev, CONFIG_TSRA | (cid << 3) | 4)
 258
 259#define he_writel_tsr5(dev, val, cid) \
 260		he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 5)
 261
 262#define he_writel_tsr6(dev, val, cid) \
 263		he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 6)
 264
 265#define he_writel_tsr7(dev, val, cid) \
 266		he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 7)
 267
 268
 269#define he_writel_tsr8(dev, val, cid) \
 270		he_writel_tcm(dev, val, CONFIG_TSRB | (cid << 2) | 0)
 271
 272#define he_writel_tsr9(dev, val, cid) \
 273		he_writel_tcm(dev, val, CONFIG_TSRB | (cid << 2) | 1)
 274
 275#define he_writel_tsr10(dev, val, cid) \
 276		he_writel_tcm(dev, val, CONFIG_TSRB | (cid << 2) | 2)
 277
 278#define he_writel_tsr11(dev, val, cid) \
 279		he_writel_tcm(dev, val, CONFIG_TSRB | (cid << 2) | 3)
 280
 281
 282#define he_writel_tsr12(dev, val, cid) \
 283		he_writel_tcm(dev, val, CONFIG_TSRC | (cid << 1) | 0)
 284
 285#define he_writel_tsr13(dev, val, cid) \
 286		he_writel_tcm(dev, val, CONFIG_TSRC | (cid << 1) | 1)
 287
 288
 289#define he_writel_tsr14(dev, val, cid) \
 290		he_writel_tcm(dev, val, CONFIG_TSRD | cid)
 291
 292#define he_writel_tsr14_upper(dev, val, cid) \
 293		he_writel_internal(dev, val, CONFIG_TSRD | cid, \
 294							CON_CTL_TCM \
 295							| CON_BYTE_DISABLE_2 \
 296							| CON_BYTE_DISABLE_1 \
 297							| CON_BYTE_DISABLE_0)
 298
 299/* 2.7.1 per connection receive state registers */
 300
 301#define he_writel_rsr0(dev, val, cid) \
 302		he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 0)
 303#define he_readl_rsr0(dev, cid) \
 304		he_readl_rcm(dev, 0x00000 | (cid << 3) | 0)
 305
 306#define he_writel_rsr1(dev, val, cid) \
 307		he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 1)
 308
 309#define he_writel_rsr2(dev, val, cid) \
 310		he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 2)
 311
 312#define he_writel_rsr3(dev, val, cid) \
 313		he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 3)
 314
 315#define he_writel_rsr4(dev, val, cid) \
 316		he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 4)
 317
 318#define he_writel_rsr5(dev, val, cid) \
 319		he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 5)
 320
 321#define he_writel_rsr6(dev, val, cid) \
 322		he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 6)
 323
 324#define he_writel_rsr7(dev, val, cid) \
 325		he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 7)
 326
 327static __inline__ struct atm_vcc*
 328__find_vcc(struct he_dev *he_dev, unsigned cid)
 329{
 330	struct hlist_head *head;
 331	struct atm_vcc *vcc;
 332	struct sock *s;
 333	short vpi;
 334	int vci;
 335
 336	vpi = cid >> he_dev->vcibits;
 337	vci = cid & ((1 << he_dev->vcibits) - 1);
 338	head = &vcc_hash[vci & (VCC_HTABLE_SIZE -1)];
 339
 340	sk_for_each(s, head) {
 341		vcc = atm_sk(s);
 342		if (vcc->dev == he_dev->atm_dev &&
 343		    vcc->vci == vci && vcc->vpi == vpi &&
 344		    vcc->qos.rxtp.traffic_class != ATM_NONE) {
 345				return vcc;
 346		}
 347	}
 348	return NULL;
 349}
 350
 351static int he_init_one(struct pci_dev *pci_dev,
 352		       const struct pci_device_id *pci_ent)
 353{
 354	struct atm_dev *atm_dev = NULL;
 355	struct he_dev *he_dev = NULL;
 356	int err = 0;
 357
 358	printk(KERN_INFO "ATM he driver\n");
 359
 360	if (pci_enable_device(pci_dev))
 361		return -EIO;
 362	if (dma_set_mask_and_coherent(&pci_dev->dev, DMA_BIT_MASK(32)) != 0) {
 363		printk(KERN_WARNING "he: no suitable dma available\n");
 364		err = -EIO;
 365		goto init_one_failure;
 366	}
 367
 368	atm_dev = atm_dev_register(DEV_LABEL, &pci_dev->dev, &he_ops, -1, NULL);
 369	if (!atm_dev) {
 370		err = -ENODEV;
 371		goto init_one_failure;
 372	}
 373	pci_set_drvdata(pci_dev, atm_dev);
 374
 375	he_dev = kzalloc(sizeof(struct he_dev),
 376							GFP_KERNEL);
 377	if (!he_dev) {
 378		err = -ENOMEM;
 379		goto init_one_failure;
 380	}
 381	he_dev->pci_dev = pci_dev;
 382	he_dev->atm_dev = atm_dev;
 383	he_dev->atm_dev->dev_data = he_dev;
 384	atm_dev->dev_data = he_dev;
 385	he_dev->number = atm_dev->number;
 386	tasklet_init(&he_dev->tasklet, he_tasklet, (unsigned long) he_dev);
 387	spin_lock_init(&he_dev->global_lock);
 388
 389	if (he_start(atm_dev)) {
 390		he_stop(he_dev);
 391		err = -ENODEV;
 392		goto init_one_failure;
 393	}
 394	he_dev->next = NULL;
 395	if (he_devs)
 396		he_dev->next = he_devs;
 397	he_devs = he_dev;
 398	return 0;
 399
 400init_one_failure:
 401	if (atm_dev)
 402		atm_dev_deregister(atm_dev);
 403	kfree(he_dev);
 404	pci_disable_device(pci_dev);
 405	return err;
 406}
 407
 408static void he_remove_one(struct pci_dev *pci_dev)
 409{
 410	struct atm_dev *atm_dev;
 411	struct he_dev *he_dev;
 412
 413	atm_dev = pci_get_drvdata(pci_dev);
 414	he_dev = HE_DEV(atm_dev);
 415
 416	/* need to remove from he_devs */
 417
 418	he_stop(he_dev);
 419	atm_dev_deregister(atm_dev);
 420	kfree(he_dev);
 421
 422	pci_disable_device(pci_dev);
 423}
 424
 425
 426static unsigned
 427rate_to_atmf(unsigned rate)		/* cps to atm forum format */
 428{
 429#define NONZERO (1 << 14)
 430
 431	unsigned exp = 0;
 432
 433	if (rate == 0)
 434		return 0;
 435
 436	rate <<= 9;
 437	while (rate > 0x3ff) {
 438		++exp;
 439		rate >>= 1;
 440	}
 441
 442	return (NONZERO | (exp << 9) | (rate & 0x1ff));
 443}
 444
 445static void he_init_rx_lbfp0(struct he_dev *he_dev)
 446{
 447	unsigned i, lbm_offset, lbufd_index, lbuf_addr, lbuf_count;
 448	unsigned lbufs_per_row = he_dev->cells_per_row / he_dev->cells_per_lbuf;
 449	unsigned lbuf_bufsize = he_dev->cells_per_lbuf * ATM_CELL_PAYLOAD;
 450	unsigned row_offset = he_dev->r0_startrow * he_dev->bytes_per_row;
 451	
 452	lbufd_index = 0;
 453	lbm_offset = he_readl(he_dev, RCMLBM_BA);
 454
 455	he_writel(he_dev, lbufd_index, RLBF0_H);
 456
 457	for (i = 0, lbuf_count = 0; i < he_dev->r0_numbuffs; ++i) {
 458		lbufd_index += 2;
 459		lbuf_addr = (row_offset + (lbuf_count * lbuf_bufsize)) / 32;
 460
 461		he_writel_rcm(he_dev, lbuf_addr, lbm_offset);
 462		he_writel_rcm(he_dev, lbufd_index, lbm_offset + 1);
 463
 464		if (++lbuf_count == lbufs_per_row) {
 465			lbuf_count = 0;
 466			row_offset += he_dev->bytes_per_row;
 467		}
 468		lbm_offset += 4;
 469	}
 470		
 471	he_writel(he_dev, lbufd_index - 2, RLBF0_T);
 472	he_writel(he_dev, he_dev->r0_numbuffs, RLBF0_C);
 473}
 474
 475static void he_init_rx_lbfp1(struct he_dev *he_dev)
 476{
 477	unsigned i, lbm_offset, lbufd_index, lbuf_addr, lbuf_count;
 478	unsigned lbufs_per_row = he_dev->cells_per_row / he_dev->cells_per_lbuf;
 479	unsigned lbuf_bufsize = he_dev->cells_per_lbuf * ATM_CELL_PAYLOAD;
 480	unsigned row_offset = he_dev->r1_startrow * he_dev->bytes_per_row;
 481	
 482	lbufd_index = 1;
 483	lbm_offset = he_readl(he_dev, RCMLBM_BA) + (2 * lbufd_index);
 484
 485	he_writel(he_dev, lbufd_index, RLBF1_H);
 486
 487	for (i = 0, lbuf_count = 0; i < he_dev->r1_numbuffs; ++i) {
 488		lbufd_index += 2;
 489		lbuf_addr = (row_offset + (lbuf_count * lbuf_bufsize)) / 32;
 490
 491		he_writel_rcm(he_dev, lbuf_addr, lbm_offset);
 492		he_writel_rcm(he_dev, lbufd_index, lbm_offset + 1);
 493
 494		if (++lbuf_count == lbufs_per_row) {
 495			lbuf_count = 0;
 496			row_offset += he_dev->bytes_per_row;
 497		}
 498		lbm_offset += 4;
 499	}
 500		
 501	he_writel(he_dev, lbufd_index - 2, RLBF1_T);
 502	he_writel(he_dev, he_dev->r1_numbuffs, RLBF1_C);
 503}
 504
 505static void he_init_tx_lbfp(struct he_dev *he_dev)
 506{
 507	unsigned i, lbm_offset, lbufd_index, lbuf_addr, lbuf_count;
 508	unsigned lbufs_per_row = he_dev->cells_per_row / he_dev->cells_per_lbuf;
 509	unsigned lbuf_bufsize = he_dev->cells_per_lbuf * ATM_CELL_PAYLOAD;
 510	unsigned row_offset = he_dev->tx_startrow * he_dev->bytes_per_row;
 511	
 512	lbufd_index = he_dev->r0_numbuffs + he_dev->r1_numbuffs;
 513	lbm_offset = he_readl(he_dev, RCMLBM_BA) + (2 * lbufd_index);
 514
 515	he_writel(he_dev, lbufd_index, TLBF_H);
 516
 517	for (i = 0, lbuf_count = 0; i < he_dev->tx_numbuffs; ++i) {
 518		lbufd_index += 1;
 519		lbuf_addr = (row_offset + (lbuf_count * lbuf_bufsize)) / 32;
 520
 521		he_writel_rcm(he_dev, lbuf_addr, lbm_offset);
 522		he_writel_rcm(he_dev, lbufd_index, lbm_offset + 1);
 523
 524		if (++lbuf_count == lbufs_per_row) {
 525			lbuf_count = 0;
 526			row_offset += he_dev->bytes_per_row;
 527		}
 528		lbm_offset += 2;
 529	}
 530		
 531	he_writel(he_dev, lbufd_index - 1, TLBF_T);
 532}
 533
 534static int he_init_tpdrq(struct he_dev *he_dev)
 535{
 536	he_dev->tpdrq_base = dma_alloc_coherent(&he_dev->pci_dev->dev,
 537						CONFIG_TPDRQ_SIZE * sizeof(struct he_tpdrq),
 538						&he_dev->tpdrq_phys,
 539						GFP_KERNEL);
 540	if (he_dev->tpdrq_base == NULL) {
 541		hprintk("failed to alloc tpdrq\n");
 542		return -ENOMEM;
 543	}
 544
 545	he_dev->tpdrq_tail = he_dev->tpdrq_base;
 546	he_dev->tpdrq_head = he_dev->tpdrq_base;
 547
 548	he_writel(he_dev, he_dev->tpdrq_phys, TPDRQ_B_H);
 549	he_writel(he_dev, 0, TPDRQ_T);	
 550	he_writel(he_dev, CONFIG_TPDRQ_SIZE - 1, TPDRQ_S);
 551
 552	return 0;
 553}
 554
 555static void he_init_cs_block(struct he_dev *he_dev)
 556{
 557	unsigned clock, rate, delta;
 558	int reg;
 559
 560	/* 5.1.7 cs block initialization */
 561
 562	for (reg = 0; reg < 0x20; ++reg)
 563		he_writel_mbox(he_dev, 0x0, CS_STTIM0 + reg);
 564
 565	/* rate grid timer reload values */
 566
 567	clock = he_is622(he_dev) ? 66667000 : 50000000;
 568	rate = he_dev->atm_dev->link_rate;
 569	delta = rate / 16 / 2;
 570
 571	for (reg = 0; reg < 0x10; ++reg) {
 572		/* 2.4 internal transmit function
 573		 *
 574	 	 * we initialize the first row in the rate grid.
 575		 * values are period (in clock cycles) of timer
 576		 */
 577		unsigned period = clock / rate;
 578
 579		he_writel_mbox(he_dev, period, CS_TGRLD0 + reg);
 580		rate -= delta;
 581	}
 582
 583	if (he_is622(he_dev)) {
 584		/* table 5.2 (4 cells per lbuf) */
 585		he_writel_mbox(he_dev, 0x000800fa, CS_ERTHR0);
 586		he_writel_mbox(he_dev, 0x000c33cb, CS_ERTHR1);
 587		he_writel_mbox(he_dev, 0x0010101b, CS_ERTHR2);
 588		he_writel_mbox(he_dev, 0x00181dac, CS_ERTHR3);
 589		he_writel_mbox(he_dev, 0x00280600, CS_ERTHR4);
 590
 591		/* table 5.3, 5.4, 5.5, 5.6, 5.7 */
 592		he_writel_mbox(he_dev, 0x023de8b3, CS_ERCTL0);
 593		he_writel_mbox(he_dev, 0x1801, CS_ERCTL1);
 594		he_writel_mbox(he_dev, 0x68b3, CS_ERCTL2);
 595		he_writel_mbox(he_dev, 0x1280, CS_ERSTAT0);
 596		he_writel_mbox(he_dev, 0x68b3, CS_ERSTAT1);
 597		he_writel_mbox(he_dev, 0x14585, CS_RTFWR);
 598
 599		he_writel_mbox(he_dev, 0x4680, CS_RTATR);
 600
 601		/* table 5.8 */
 602		he_writel_mbox(he_dev, 0x00159ece, CS_TFBSET);
 603		he_writel_mbox(he_dev, 0x68b3, CS_WCRMAX);
 604		he_writel_mbox(he_dev, 0x5eb3, CS_WCRMIN);
 605		he_writel_mbox(he_dev, 0xe8b3, CS_WCRINC);
 606		he_writel_mbox(he_dev, 0xdeb3, CS_WCRDEC);
 607		he_writel_mbox(he_dev, 0x68b3, CS_WCRCEIL);
 608
 609		/* table 5.9 */
 610		he_writel_mbox(he_dev, 0x5, CS_OTPPER);
 611		he_writel_mbox(he_dev, 0x14, CS_OTWPER);
 612	} else {
 613		/* table 5.1 (4 cells per lbuf) */
 614		he_writel_mbox(he_dev, 0x000400ea, CS_ERTHR0);
 615		he_writel_mbox(he_dev, 0x00063388, CS_ERTHR1);
 616		he_writel_mbox(he_dev, 0x00081018, CS_ERTHR2);
 617		he_writel_mbox(he_dev, 0x000c1dac, CS_ERTHR3);
 618		he_writel_mbox(he_dev, 0x0014051a, CS_ERTHR4);
 619
 620		/* table 5.3, 5.4, 5.5, 5.6, 5.7 */
 621		he_writel_mbox(he_dev, 0x0235e4b1, CS_ERCTL0);
 622		he_writel_mbox(he_dev, 0x4701, CS_ERCTL1);
 623		he_writel_mbox(he_dev, 0x64b1, CS_ERCTL2);
 624		he_writel_mbox(he_dev, 0x1280, CS_ERSTAT0);
 625		he_writel_mbox(he_dev, 0x64b1, CS_ERSTAT1);
 626		he_writel_mbox(he_dev, 0xf424, CS_RTFWR);
 627
 628		he_writel_mbox(he_dev, 0x4680, CS_RTATR);
 629
 630		/* table 5.8 */
 631		he_writel_mbox(he_dev, 0x000563b7, CS_TFBSET);
 632		he_writel_mbox(he_dev, 0x64b1, CS_WCRMAX);
 633		he_writel_mbox(he_dev, 0x5ab1, CS_WCRMIN);
 634		he_writel_mbox(he_dev, 0xe4b1, CS_WCRINC);
 635		he_writel_mbox(he_dev, 0xdab1, CS_WCRDEC);
 636		he_writel_mbox(he_dev, 0x64b1, CS_WCRCEIL);
 637
 638		/* table 5.9 */
 639		he_writel_mbox(he_dev, 0x6, CS_OTPPER);
 640		he_writel_mbox(he_dev, 0x1e, CS_OTWPER);
 641	}
 642
 643	he_writel_mbox(he_dev, 0x8, CS_OTTLIM);
 644
 645	for (reg = 0; reg < 0x8; ++reg)
 646		he_writel_mbox(he_dev, 0x0, CS_HGRRT0 + reg);
 647
 648}
 649
 650static int he_init_cs_block_rcm(struct he_dev *he_dev)
 651{
 652	unsigned (*rategrid)[16][16];
 653	unsigned rate, delta;
 654	int i, j, reg;
 655
 656	unsigned rate_atmf, exp, man;
 657	unsigned long long rate_cps;
 658	int mult, buf, buf_limit = 4;
 659
 660	rategrid = kmalloc( sizeof(unsigned) * 16 * 16, GFP_KERNEL);
 661	if (!rategrid)
 662		return -ENOMEM;
 663
 664	/* initialize rate grid group table */
 665
 666	for (reg = 0x0; reg < 0xff; ++reg)
 667		he_writel_rcm(he_dev, 0x0, CONFIG_RCMABR + reg);
 668
 669	/* initialize rate controller groups */
 670
 671	for (reg = 0x100; reg < 0x1ff; ++reg)
 672		he_writel_rcm(he_dev, 0x0, CONFIG_RCMABR + reg);
 673	
 674	/* initialize tNrm lookup table */
 675
 676	/* the manual makes reference to a routine in a sample driver
 677	   for proper configuration; fortunately, we only need this
 678	   in order to support abr connection */
 679	
 680	/* initialize rate to group table */
 681
 682	rate = he_dev->atm_dev->link_rate;
 683	delta = rate / 32;
 684
 685	/*
 686	 * 2.4 transmit internal functions
 687	 * 
 688	 * we construct a copy of the rate grid used by the scheduler
 689	 * in order to construct the rate to group table below
 690	 */
 691
 692	for (j = 0; j < 16; j++) {
 693		(*rategrid)[0][j] = rate;
 694		rate -= delta;
 695	}
 696
 697	for (i = 1; i < 16; i++)
 698		for (j = 0; j < 16; j++)
 699			if (i > 14)
 700				(*rategrid)[i][j] = (*rategrid)[i - 1][j] / 4;
 701			else
 702				(*rategrid)[i][j] = (*rategrid)[i - 1][j] / 2;
 703
 704	/*
 705	 * 2.4 transmit internal function
 706	 *
 707	 * this table maps the upper 5 bits of exponent and mantissa
 708	 * of the atm forum representation of the rate into an index
 709	 * on rate grid  
 710	 */
 711
 712	rate_atmf = 0;
 713	while (rate_atmf < 0x400) {
 714		man = (rate_atmf & 0x1f) << 4;
 715		exp = rate_atmf >> 5;
 716
 717		/* 
 718			instead of '/ 512', use '>> 9' to prevent a call
 719			to divdu3 on x86 platforms
 720		*/
 721		rate_cps = (unsigned long long) (1UL << exp) * (man + 512) >> 9;
 722
 723		if (rate_cps < 10)
 724			rate_cps = 10;	/* 2.2.1 minimum payload rate is 10 cps */
 725
 726		for (i = 255; i > 0; i--)
 727			if ((*rategrid)[i/16][i%16] >= rate_cps)
 728				break;	 /* pick nearest rate instead? */
 729
 730		/*
 731		 * each table entry is 16 bits: (rate grid index (8 bits)
 732		 * and a buffer limit (8 bits)
 733		 * there are two table entries in each 32-bit register
 734		 */
 735
 736#ifdef notdef
 737		buf = rate_cps * he_dev->tx_numbuffs /
 738				(he_dev->atm_dev->link_rate * 2);
 739#else
 740		/* this is pretty, but avoids _divdu3 and is mostly correct */
 741		mult = he_dev->atm_dev->link_rate / ATM_OC3_PCR;
 742		if (rate_cps > (272ULL * mult))
 743			buf = 4;
 744		else if (rate_cps > (204ULL * mult))
 745			buf = 3;
 746		else if (rate_cps > (136ULL * mult))
 747			buf = 2;
 748		else if (rate_cps > (68ULL * mult))
 749			buf = 1;
 750		else
 751			buf = 0;
 752#endif
 753		if (buf > buf_limit)
 754			buf = buf_limit;
 755		reg = (reg << 16) | ((i << 8) | buf);
 756
 757#define RTGTBL_OFFSET 0x400
 758	  
 759		if (rate_atmf & 0x1)
 760			he_writel_rcm(he_dev, reg,
 761				CONFIG_RCMABR + RTGTBL_OFFSET + (rate_atmf >> 1));
 762
 763		++rate_atmf;
 764	}
 765
 766	kfree(rategrid);
 767	return 0;
 768}
 769
 770static int he_init_group(struct he_dev *he_dev, int group)
 771{
 772	struct he_buff *heb, *next;
 773	dma_addr_t mapping;
 774	int i;
 775
 776	he_writel(he_dev, 0x0, G0_RBPS_S + (group * 32));
 777	he_writel(he_dev, 0x0, G0_RBPS_T + (group * 32));
 778	he_writel(he_dev, 0x0, G0_RBPS_QI + (group * 32));
 779	he_writel(he_dev, RBP_THRESH(0x1) | RBP_QSIZE(0x0),
 780		  G0_RBPS_BS + (group * 32));
 781
 782	/* bitmap table */
 783	he_dev->rbpl_table = kmalloc_array(BITS_TO_LONGS(RBPL_TABLE_SIZE),
 784					   sizeof(*he_dev->rbpl_table),
 785					   GFP_KERNEL);
 786	if (!he_dev->rbpl_table) {
 787		hprintk("unable to allocate rbpl bitmap table\n");
 788		return -ENOMEM;
 789	}
 790	bitmap_zero(he_dev->rbpl_table, RBPL_TABLE_SIZE);
 791
 792	/* rbpl_virt 64-bit pointers */
 793	he_dev->rbpl_virt = kmalloc_array(RBPL_TABLE_SIZE,
 794					  sizeof(*he_dev->rbpl_virt),
 795					  GFP_KERNEL);
 796	if (!he_dev->rbpl_virt) {
 797		hprintk("unable to allocate rbpl virt table\n");
 798		goto out_free_rbpl_table;
 799	}
 800
 801	/* large buffer pool */
 802	he_dev->rbpl_pool = dma_pool_create("rbpl", &he_dev->pci_dev->dev,
 803					    CONFIG_RBPL_BUFSIZE, 64, 0);
 804	if (he_dev->rbpl_pool == NULL) {
 805		hprintk("unable to create rbpl pool\n");
 806		goto out_free_rbpl_virt;
 807	}
 808
 809	he_dev->rbpl_base = dma_alloc_coherent(&he_dev->pci_dev->dev,
 810					       CONFIG_RBPL_SIZE * sizeof(struct he_rbp),
 811					       &he_dev->rbpl_phys, GFP_KERNEL);
 812	if (he_dev->rbpl_base == NULL) {
 813		hprintk("failed to alloc rbpl_base\n");
 814		goto out_destroy_rbpl_pool;
 815	}
 816
 817	INIT_LIST_HEAD(&he_dev->rbpl_outstanding);
 818
 819	for (i = 0; i < CONFIG_RBPL_SIZE; ++i) {
 820
 821		heb = dma_pool_alloc(he_dev->rbpl_pool, GFP_KERNEL, &mapping);
 822		if (!heb)
 823			goto out_free_rbpl;
 824		heb->mapping = mapping;
 825		list_add(&heb->entry, &he_dev->rbpl_outstanding);
 826
 827		set_bit(i, he_dev->rbpl_table);
 828		he_dev->rbpl_virt[i] = heb;
 829		he_dev->rbpl_hint = i + 1;
 830		he_dev->rbpl_base[i].idx =  i << RBP_IDX_OFFSET;
 831		he_dev->rbpl_base[i].phys = mapping + offsetof(struct he_buff, data);
 832	}
 833	he_dev->rbpl_tail = &he_dev->rbpl_base[CONFIG_RBPL_SIZE - 1];
 834
 835	he_writel(he_dev, he_dev->rbpl_phys, G0_RBPL_S + (group * 32));
 836	he_writel(he_dev, RBPL_MASK(he_dev->rbpl_tail),
 837						G0_RBPL_T + (group * 32));
 838	he_writel(he_dev, (CONFIG_RBPL_BUFSIZE - sizeof(struct he_buff))/4,
 839						G0_RBPL_BS + (group * 32));
 840	he_writel(he_dev,
 841			RBP_THRESH(CONFIG_RBPL_THRESH) |
 842			RBP_QSIZE(CONFIG_RBPL_SIZE - 1) |
 843			RBP_INT_ENB,
 844						G0_RBPL_QI + (group * 32));
 845
 846	/* rx buffer ready queue */
 847
 848	he_dev->rbrq_base = dma_alloc_coherent(&he_dev->pci_dev->dev,
 849					       CONFIG_RBRQ_SIZE * sizeof(struct he_rbrq),
 850					       &he_dev->rbrq_phys, GFP_KERNEL);
 851	if (he_dev->rbrq_base == NULL) {
 852		hprintk("failed to allocate rbrq\n");
 853		goto out_free_rbpl;
 854	}
 855
 856	he_dev->rbrq_head = he_dev->rbrq_base;
 857	he_writel(he_dev, he_dev->rbrq_phys, G0_RBRQ_ST + (group * 16));
 858	he_writel(he_dev, 0, G0_RBRQ_H + (group * 16));
 859	he_writel(he_dev,
 860		RBRQ_THRESH(CONFIG_RBRQ_THRESH) | RBRQ_SIZE(CONFIG_RBRQ_SIZE - 1),
 861						G0_RBRQ_Q + (group * 16));
 862	if (irq_coalesce) {
 863		hprintk("coalescing interrupts\n");
 864		he_writel(he_dev, RBRQ_TIME(768) | RBRQ_COUNT(7),
 865						G0_RBRQ_I + (group * 16));
 866	} else
 867		he_writel(he_dev, RBRQ_TIME(0) | RBRQ_COUNT(1),
 868						G0_RBRQ_I + (group * 16));
 869
 870	/* tx buffer ready queue */
 871
 872	he_dev->tbrq_base = dma_alloc_coherent(&he_dev->pci_dev->dev,
 873					       CONFIG_TBRQ_SIZE * sizeof(struct he_tbrq),
 874					       &he_dev->tbrq_phys, GFP_KERNEL);
 875	if (he_dev->tbrq_base == NULL) {
 876		hprintk("failed to allocate tbrq\n");
 877		goto out_free_rbpq_base;
 878	}
 879
 880	he_dev->tbrq_head = he_dev->tbrq_base;
 881
 882	he_writel(he_dev, he_dev->tbrq_phys, G0_TBRQ_B_T + (group * 16));
 883	he_writel(he_dev, 0, G0_TBRQ_H + (group * 16));
 884	he_writel(he_dev, CONFIG_TBRQ_SIZE - 1, G0_TBRQ_S + (group * 16));
 885	he_writel(he_dev, CONFIG_TBRQ_THRESH, G0_TBRQ_THRESH + (group * 16));
 886
 887	return 0;
 888
 889out_free_rbpq_base:
 890	dma_free_coherent(&he_dev->pci_dev->dev, CONFIG_RBRQ_SIZE *
 891			  sizeof(struct he_rbrq), he_dev->rbrq_base,
 892			  he_dev->rbrq_phys);
 893out_free_rbpl:
 894	list_for_each_entry_safe(heb, next, &he_dev->rbpl_outstanding, entry)
 895		dma_pool_free(he_dev->rbpl_pool, heb, heb->mapping);
 896
 897	dma_free_coherent(&he_dev->pci_dev->dev, CONFIG_RBPL_SIZE *
 898			  sizeof(struct he_rbp), he_dev->rbpl_base,
 899			  he_dev->rbpl_phys);
 900out_destroy_rbpl_pool:
 901	dma_pool_destroy(he_dev->rbpl_pool);
 902out_free_rbpl_virt:
 903	kfree(he_dev->rbpl_virt);
 904out_free_rbpl_table:
 905	kfree(he_dev->rbpl_table);
 906
 907	return -ENOMEM;
 908}
 909
 910static int he_init_irq(struct he_dev *he_dev)
 911{
 912	int i;
 913
 914	/* 2.9.3.5  tail offset for each interrupt queue is located after the
 915		    end of the interrupt queue */
 916
 917	he_dev->irq_base = dma_alloc_coherent(&he_dev->pci_dev->dev,
 918					      (CONFIG_IRQ_SIZE + 1) * sizeof(struct he_irq),
 919					      &he_dev->irq_phys, GFP_KERNEL);
 
 
 920	if (he_dev->irq_base == NULL) {
 921		hprintk("failed to allocate irq\n");
 922		return -ENOMEM;
 923	}
 924	he_dev->irq_tailoffset = (unsigned *)
 925					&he_dev->irq_base[CONFIG_IRQ_SIZE];
 926	*he_dev->irq_tailoffset = 0;
 927	he_dev->irq_head = he_dev->irq_base;
 928	he_dev->irq_tail = he_dev->irq_base;
 929
 930	for (i = 0; i < CONFIG_IRQ_SIZE; ++i)
 931		he_dev->irq_base[i].isw = ITYPE_INVALID;
 932
 933	he_writel(he_dev, he_dev->irq_phys, IRQ0_BASE);
 934	he_writel(he_dev,
 935		IRQ_SIZE(CONFIG_IRQ_SIZE) | IRQ_THRESH(CONFIG_IRQ_THRESH),
 936								IRQ0_HEAD);
 937	he_writel(he_dev, IRQ_INT_A | IRQ_TYPE_LINE, IRQ0_CNTL);
 938	he_writel(he_dev, 0x0, IRQ0_DATA);
 939
 940	he_writel(he_dev, 0x0, IRQ1_BASE);
 941	he_writel(he_dev, 0x0, IRQ1_HEAD);
 942	he_writel(he_dev, 0x0, IRQ1_CNTL);
 943	he_writel(he_dev, 0x0, IRQ1_DATA);
 944
 945	he_writel(he_dev, 0x0, IRQ2_BASE);
 946	he_writel(he_dev, 0x0, IRQ2_HEAD);
 947	he_writel(he_dev, 0x0, IRQ2_CNTL);
 948	he_writel(he_dev, 0x0, IRQ2_DATA);
 949
 950	he_writel(he_dev, 0x0, IRQ3_BASE);
 951	he_writel(he_dev, 0x0, IRQ3_HEAD);
 952	he_writel(he_dev, 0x0, IRQ3_CNTL);
 953	he_writel(he_dev, 0x0, IRQ3_DATA);
 954
 955	/* 2.9.3.2 interrupt queue mapping registers */
 956
 957	he_writel(he_dev, 0x0, GRP_10_MAP);
 958	he_writel(he_dev, 0x0, GRP_32_MAP);
 959	he_writel(he_dev, 0x0, GRP_54_MAP);
 960	he_writel(he_dev, 0x0, GRP_76_MAP);
 961
 962	if (request_irq(he_dev->pci_dev->irq,
 963			he_irq_handler, IRQF_SHARED, DEV_LABEL, he_dev)) {
 964		hprintk("irq %d already in use\n", he_dev->pci_dev->irq);
 965		return -EINVAL;
 966	}   
 967
 968	he_dev->irq = he_dev->pci_dev->irq;
 969
 970	return 0;
 971}
 972
 973static int he_start(struct atm_dev *dev)
 974{
 975	struct he_dev *he_dev;
 976	struct pci_dev *pci_dev;
 977	unsigned long membase;
 978
 979	u16 command;
 980	u32 gen_cntl_0, host_cntl, lb_swap;
 981	u8 cache_size, timer;
 982	
 983	unsigned err;
 984	unsigned int status, reg;
 985	int i, group;
 986
 987	he_dev = HE_DEV(dev);
 988	pci_dev = he_dev->pci_dev;
 989
 990	membase = pci_resource_start(pci_dev, 0);
 991	HPRINTK("membase = 0x%lx  irq = %d.\n", membase, pci_dev->irq);
 992
 993	/*
 994	 * pci bus controller initialization 
 995	 */
 996
 997	/* 4.3 pci bus controller-specific initialization */
 998	if (pci_read_config_dword(pci_dev, GEN_CNTL_0, &gen_cntl_0) != 0) {
 999		hprintk("can't read GEN_CNTL_0\n");
1000		return -EINVAL;
1001	}
1002	gen_cntl_0 |= (MRL_ENB | MRM_ENB | IGNORE_TIMEOUT);
1003	if (pci_write_config_dword(pci_dev, GEN_CNTL_0, gen_cntl_0) != 0) {
1004		hprintk("can't write GEN_CNTL_0.\n");
1005		return -EINVAL;
1006	}
1007
1008	if (pci_read_config_word(pci_dev, PCI_COMMAND, &command) != 0) {
1009		hprintk("can't read PCI_COMMAND.\n");
1010		return -EINVAL;
1011	}
1012
1013	command |= (PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER | PCI_COMMAND_INVALIDATE);
1014	if (pci_write_config_word(pci_dev, PCI_COMMAND, command) != 0) {
1015		hprintk("can't enable memory.\n");
1016		return -EINVAL;
1017	}
1018
1019	if (pci_read_config_byte(pci_dev, PCI_CACHE_LINE_SIZE, &cache_size)) {
1020		hprintk("can't read cache line size?\n");
1021		return -EINVAL;
1022	}
1023
1024	if (cache_size < 16) {
1025		cache_size = 16;
1026		if (pci_write_config_byte(pci_dev, PCI_CACHE_LINE_SIZE, cache_size))
1027			hprintk("can't set cache line size to %d\n", cache_size);
1028	}
1029
1030	if (pci_read_config_byte(pci_dev, PCI_LATENCY_TIMER, &timer)) {
1031		hprintk("can't read latency timer?\n");
1032		return -EINVAL;
1033	}
1034
1035	/* from table 3.9
1036	 *
1037	 * LAT_TIMER = 1 + AVG_LAT + BURST_SIZE/BUS_SIZE
1038	 * 
1039	 * AVG_LAT: The average first data read/write latency [maximum 16 clock cycles]
1040	 * BURST_SIZE: 1536 bytes (read) for 622, 768 bytes (read) for 155 [192 clock cycles]
1041	 *
1042	 */ 
1043#define LAT_TIMER 209
1044	if (timer < LAT_TIMER) {
1045		HPRINTK("latency timer was %d, setting to %d\n", timer, LAT_TIMER);
1046		timer = LAT_TIMER;
1047		if (pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, timer))
1048			hprintk("can't set latency timer to %d\n", timer);
1049	}
1050
1051	if (!(he_dev->membase = ioremap(membase, HE_REGMAP_SIZE))) {
1052		hprintk("can't set up page mapping\n");
1053		return -EINVAL;
1054	}
1055
1056	/* 4.4 card reset */
1057	he_writel(he_dev, 0x0, RESET_CNTL);
1058	he_writel(he_dev, 0xff, RESET_CNTL);
1059
1060	msleep(16);	/* 16 ms */
1061	status = he_readl(he_dev, RESET_CNTL);
1062	if ((status & BOARD_RST_STATUS) == 0) {
1063		hprintk("reset failed\n");
1064		return -EINVAL;
1065	}
1066
1067	/* 4.5 set bus width */
1068	host_cntl = he_readl(he_dev, HOST_CNTL);
1069	if (host_cntl & PCI_BUS_SIZE64)
1070		gen_cntl_0 |= ENBL_64;
1071	else
1072		gen_cntl_0 &= ~ENBL_64;
1073
1074	if (disable64 == 1) {
1075		hprintk("disabling 64-bit pci bus transfers\n");
1076		gen_cntl_0 &= ~ENBL_64;
1077	}
1078
1079	if (gen_cntl_0 & ENBL_64)
1080		hprintk("64-bit transfers enabled\n");
1081
1082	pci_write_config_dword(pci_dev, GEN_CNTL_0, gen_cntl_0);
1083
1084	/* 4.7 read prom contents */
1085	for (i = 0; i < PROD_ID_LEN; ++i)
1086		he_dev->prod_id[i] = read_prom_byte(he_dev, PROD_ID + i);
1087
1088	he_dev->media = read_prom_byte(he_dev, MEDIA);
1089
1090	for (i = 0; i < 6; ++i)
1091		dev->esi[i] = read_prom_byte(he_dev, MAC_ADDR + i);
1092
1093	hprintk("%s%s, %pM\n", he_dev->prod_id,
1094		he_dev->media & 0x40 ? "SM" : "MM", dev->esi);
1095	he_dev->atm_dev->link_rate = he_is622(he_dev) ?
1096						ATM_OC12_PCR : ATM_OC3_PCR;
1097
1098	/* 4.6 set host endianess */
1099	lb_swap = he_readl(he_dev, LB_SWAP);
1100	if (he_is622(he_dev))
1101		lb_swap &= ~XFER_SIZE;		/* 4 cells */
1102	else
1103		lb_swap |= XFER_SIZE;		/* 8 cells */
1104#ifdef __BIG_ENDIAN
1105	lb_swap |= DESC_WR_SWAP | INTR_SWAP | BIG_ENDIAN_HOST;
1106#else
1107	lb_swap &= ~(DESC_WR_SWAP | INTR_SWAP | BIG_ENDIAN_HOST |
1108			DATA_WR_SWAP | DATA_RD_SWAP | DESC_RD_SWAP);
1109#endif /* __BIG_ENDIAN */
1110	he_writel(he_dev, lb_swap, LB_SWAP);
1111
1112	/* 4.8 sdram controller initialization */
1113	he_writel(he_dev, he_is622(he_dev) ? LB_64_ENB : 0x0, SDRAM_CTL);
1114
1115	/* 4.9 initialize rnum value */
1116	lb_swap |= SWAP_RNUM_MAX(0xf);
1117	he_writel(he_dev, lb_swap, LB_SWAP);
1118
1119	/* 4.10 initialize the interrupt queues */
1120	if ((err = he_init_irq(he_dev)) != 0)
1121		return err;
1122
1123	/* 4.11 enable pci bus controller state machines */
1124	host_cntl |= (OUTFF_ENB | CMDFF_ENB |
1125				QUICK_RD_RETRY | QUICK_WR_RETRY | PERR_INT_ENB);
1126	he_writel(he_dev, host_cntl, HOST_CNTL);
1127
1128	gen_cntl_0 |= INT_PROC_ENBL|INIT_ENB;
1129	pci_write_config_dword(pci_dev, GEN_CNTL_0, gen_cntl_0);
1130
1131	/*
1132	 * atm network controller initialization
1133	 */
1134
1135	/* 5.1.1 generic configuration state */
1136
1137	/*
1138	 *		local (cell) buffer memory map
1139	 *                    
1140	 *             HE155                          HE622
1141	 *                                                      
1142	 *        0 ____________1023 bytes  0 _______________________2047 bytes
1143	 *         |            |            |                   |   |
1144	 *         |  utility   |            |        rx0        |   |
1145	 *        5|____________|         255|___________________| u |
1146	 *        6|            |         256|                   | t |
1147	 *         |            |            |                   | i |
1148	 *         |    rx0     |     row    |        tx         | l |
1149	 *         |            |            |                   | i |
1150	 *         |            |         767|___________________| t |
1151	 *      517|____________|         768|                   | y |
1152	 * row  518|            |            |        rx1        |   |
1153	 *         |            |        1023|___________________|___|
1154	 *         |            |
1155	 *         |    tx      |
1156	 *         |            |
1157	 *         |            |
1158	 *     1535|____________|
1159	 *     1536|            |
1160	 *         |    rx1     |
1161	 *     2047|____________|
1162	 *
1163	 */
1164
1165	/* total 4096 connections */
1166	he_dev->vcibits = CONFIG_DEFAULT_VCIBITS;
1167	he_dev->vpibits = CONFIG_DEFAULT_VPIBITS;
1168
1169	if (nvpibits != -1 && nvcibits != -1 && nvpibits+nvcibits != HE_MAXCIDBITS) {
1170		hprintk("nvpibits + nvcibits != %d\n", HE_MAXCIDBITS);
1171		return -ENODEV;
1172	}
1173
1174	if (nvpibits != -1) {
1175		he_dev->vpibits = nvpibits;
1176		he_dev->vcibits = HE_MAXCIDBITS - nvpibits;
1177	}
1178
1179	if (nvcibits != -1) {
1180		he_dev->vcibits = nvcibits;
1181		he_dev->vpibits = HE_MAXCIDBITS - nvcibits;
1182	}
1183
1184
1185	if (he_is622(he_dev)) {
1186		he_dev->cells_per_row = 40;
1187		he_dev->bytes_per_row = 2048;
1188		he_dev->r0_numrows = 256;
1189		he_dev->tx_numrows = 512;
1190		he_dev->r1_numrows = 256;
1191		he_dev->r0_startrow = 0;
1192		he_dev->tx_startrow = 256;
1193		he_dev->r1_startrow = 768;
1194	} else {
1195		he_dev->cells_per_row = 20;
1196		he_dev->bytes_per_row = 1024;
1197		he_dev->r0_numrows = 512;
1198		he_dev->tx_numrows = 1018;
1199		he_dev->r1_numrows = 512;
1200		he_dev->r0_startrow = 6;
1201		he_dev->tx_startrow = 518;
1202		he_dev->r1_startrow = 1536;
1203	}
1204
1205	he_dev->cells_per_lbuf = 4;
1206	he_dev->buffer_limit = 4;
1207	he_dev->r0_numbuffs = he_dev->r0_numrows *
1208				he_dev->cells_per_row / he_dev->cells_per_lbuf;
1209	if (he_dev->r0_numbuffs > 2560)
1210		he_dev->r0_numbuffs = 2560;
1211
1212	he_dev->r1_numbuffs = he_dev->r1_numrows *
1213				he_dev->cells_per_row / he_dev->cells_per_lbuf;
1214	if (he_dev->r1_numbuffs > 2560)
1215		he_dev->r1_numbuffs = 2560;
1216
1217	he_dev->tx_numbuffs = he_dev->tx_numrows *
1218				he_dev->cells_per_row / he_dev->cells_per_lbuf;
1219	if (he_dev->tx_numbuffs > 5120)
1220		he_dev->tx_numbuffs = 5120;
1221
1222	/* 5.1.2 configure hardware dependent registers */
1223
1224	he_writel(he_dev, 
1225		SLICE_X(0x2) | ARB_RNUM_MAX(0xf) | TH_PRTY(0x3) |
1226		RH_PRTY(0x3) | TL_PRTY(0x2) | RL_PRTY(0x1) |
1227		(he_is622(he_dev) ? BUS_MULTI(0x28) : BUS_MULTI(0x46)) |
1228		(he_is622(he_dev) ? NET_PREF(0x50) : NET_PREF(0x8c)),
1229								LBARB);
1230
1231	he_writel(he_dev, BANK_ON |
1232		(he_is622(he_dev) ? (REF_RATE(0x384) | WIDE_DATA) : REF_RATE(0x150)),
1233								SDRAMCON);
1234
1235	he_writel(he_dev,
1236		(he_is622(he_dev) ? RM_BANK_WAIT(1) : RM_BANK_WAIT(0)) |
1237						RM_RW_WAIT(1), RCMCONFIG);
1238	he_writel(he_dev,
1239		(he_is622(he_dev) ? TM_BANK_WAIT(2) : TM_BANK_WAIT(1)) |
1240						TM_RW_WAIT(1), TCMCONFIG);
1241
1242	he_writel(he_dev, he_dev->cells_per_lbuf * ATM_CELL_PAYLOAD, LB_CONFIG);
1243
1244	he_writel(he_dev, 
1245		(he_is622(he_dev) ? UT_RD_DELAY(8) : UT_RD_DELAY(0)) |
1246		(he_is622(he_dev) ? RC_UT_MODE(0) : RC_UT_MODE(1)) |
1247		RX_VALVP(he_dev->vpibits) |
1248		RX_VALVC(he_dev->vcibits),			 RC_CONFIG);
1249
1250	he_writel(he_dev, DRF_THRESH(0x20) |
1251		(he_is622(he_dev) ? TX_UT_MODE(0) : TX_UT_MODE(1)) |
1252		TX_VCI_MASK(he_dev->vcibits) |
1253		LBFREE_CNT(he_dev->tx_numbuffs), 		TX_CONFIG);
1254
1255	he_writel(he_dev, 0x0, TXAAL5_PROTO);
1256
1257	he_writel(he_dev, PHY_INT_ENB |
1258		(he_is622(he_dev) ? PTMR_PRE(67 - 1) : PTMR_PRE(50 - 1)),
1259								RH_CONFIG);
1260
1261	/* 5.1.3 initialize connection memory */
1262
1263	for (i = 0; i < TCM_MEM_SIZE; ++i)
1264		he_writel_tcm(he_dev, 0, i);
1265
1266	for (i = 0; i < RCM_MEM_SIZE; ++i)
1267		he_writel_rcm(he_dev, 0, i);
1268
1269	/*
1270	 *	transmit connection memory map
1271	 *
1272	 *                  tx memory
1273	 *          0x0 ___________________
1274	 *             |                   |
1275	 *             |                   |
1276	 *             |       TSRa        |
1277	 *             |                   |
1278	 *             |                   |
1279	 *       0x8000|___________________|
1280	 *             |                   |
1281	 *             |       TSRb        |
1282	 *       0xc000|___________________|
1283	 *             |                   |
1284	 *             |       TSRc        |
1285	 *       0xe000|___________________|
1286	 *             |       TSRd        |
1287	 *       0xf000|___________________|
1288	 *             |       tmABR       |
1289	 *      0x10000|___________________|
1290	 *             |                   |
1291	 *             |       tmTPD       |
1292	 *             |___________________|
1293	 *             |                   |
1294	 *                      ....
1295	 *      0x1ffff|___________________|
1296	 *
1297	 *
1298	 */
1299
1300	he_writel(he_dev, CONFIG_TSRB, TSRB_BA);
1301	he_writel(he_dev, CONFIG_TSRC, TSRC_BA);
1302	he_writel(he_dev, CONFIG_TSRD, TSRD_BA);
1303	he_writel(he_dev, CONFIG_TMABR, TMABR_BA);
1304	he_writel(he_dev, CONFIG_TPDBA, TPD_BA);
1305
1306
1307	/*
1308	 *	receive connection memory map
1309	 *
1310	 *          0x0 ___________________
1311	 *             |                   |
1312	 *             |                   |
1313	 *             |       RSRa        |
1314	 *             |                   |
1315	 *             |                   |
1316	 *       0x8000|___________________|
1317	 *             |                   |
1318	 *             |             rx0/1 |
1319	 *             |       LBM         |   link lists of local
1320	 *             |             tx    |   buffer memory 
1321	 *             |                   |
1322	 *       0xd000|___________________|
1323	 *             |                   |
1324	 *             |      rmABR        |
1325	 *       0xe000|___________________|
1326	 *             |                   |
1327	 *             |       RSRb        |
1328	 *             |___________________|
1329	 *             |                   |
1330	 *                      ....
1331	 *       0xffff|___________________|
1332	 */
1333
1334	he_writel(he_dev, 0x08000, RCMLBM_BA);
1335	he_writel(he_dev, 0x0e000, RCMRSRB_BA);
1336	he_writel(he_dev, 0x0d800, RCMABR_BA);
1337
1338	/* 5.1.4 initialize local buffer free pools linked lists */
1339
1340	he_init_rx_lbfp0(he_dev);
1341	he_init_rx_lbfp1(he_dev);
1342
1343	he_writel(he_dev, 0x0, RLBC_H);
1344	he_writel(he_dev, 0x0, RLBC_T);
1345	he_writel(he_dev, 0x0, RLBC_H2);
1346
1347	he_writel(he_dev, 512, RXTHRSH);	/* 10% of r0+r1 buffers */
1348	he_writel(he_dev, 256, LITHRSH); 	/* 5% of r0+r1 buffers */
1349
1350	he_init_tx_lbfp(he_dev);
1351
1352	he_writel(he_dev, he_is622(he_dev) ? 0x104780 : 0x800, UBUFF_BA);
1353
1354	/* 5.1.5 initialize intermediate receive queues */
1355
1356	if (he_is622(he_dev)) {
1357		he_writel(he_dev, 0x000f, G0_INMQ_S);
1358		he_writel(he_dev, 0x200f, G0_INMQ_L);
1359
1360		he_writel(he_dev, 0x001f, G1_INMQ_S);
1361		he_writel(he_dev, 0x201f, G1_INMQ_L);
1362
1363		he_writel(he_dev, 0x002f, G2_INMQ_S);
1364		he_writel(he_dev, 0x202f, G2_INMQ_L);
1365
1366		he_writel(he_dev, 0x003f, G3_INMQ_S);
1367		he_writel(he_dev, 0x203f, G3_INMQ_L);
1368
1369		he_writel(he_dev, 0x004f, G4_INMQ_S);
1370		he_writel(he_dev, 0x204f, G4_INMQ_L);
1371
1372		he_writel(he_dev, 0x005f, G5_INMQ_S);
1373		he_writel(he_dev, 0x205f, G5_INMQ_L);
1374
1375		he_writel(he_dev, 0x006f, G6_INMQ_S);
1376		he_writel(he_dev, 0x206f, G6_INMQ_L);
1377
1378		he_writel(he_dev, 0x007f, G7_INMQ_S);
1379		he_writel(he_dev, 0x207f, G7_INMQ_L);
1380	} else {
1381		he_writel(he_dev, 0x0000, G0_INMQ_S);
1382		he_writel(he_dev, 0x0008, G0_INMQ_L);
1383
1384		he_writel(he_dev, 0x0001, G1_INMQ_S);
1385		he_writel(he_dev, 0x0009, G1_INMQ_L);
1386
1387		he_writel(he_dev, 0x0002, G2_INMQ_S);
1388		he_writel(he_dev, 0x000a, G2_INMQ_L);
1389
1390		he_writel(he_dev, 0x0003, G3_INMQ_S);
1391		he_writel(he_dev, 0x000b, G3_INMQ_L);
1392
1393		he_writel(he_dev, 0x0004, G4_INMQ_S);
1394		he_writel(he_dev, 0x000c, G4_INMQ_L);
1395
1396		he_writel(he_dev, 0x0005, G5_INMQ_S);
1397		he_writel(he_dev, 0x000d, G5_INMQ_L);
1398
1399		he_writel(he_dev, 0x0006, G6_INMQ_S);
1400		he_writel(he_dev, 0x000e, G6_INMQ_L);
1401
1402		he_writel(he_dev, 0x0007, G7_INMQ_S);
1403		he_writel(he_dev, 0x000f, G7_INMQ_L);
1404	}
1405
1406	/* 5.1.6 application tunable parameters */
1407
1408	he_writel(he_dev, 0x0, MCC);
1409	he_writel(he_dev, 0x0, OEC);
1410	he_writel(he_dev, 0x0, DCC);
1411	he_writel(he_dev, 0x0, CEC);
1412	
1413	/* 5.1.7 cs block initialization */
1414
1415	he_init_cs_block(he_dev);
1416
1417	/* 5.1.8 cs block connection memory initialization */
1418	
1419	if (he_init_cs_block_rcm(he_dev) < 0)
1420		return -ENOMEM;
1421
1422	/* 5.1.10 initialize host structures */
1423
1424	he_init_tpdrq(he_dev);
1425
1426	he_dev->tpd_pool = dma_pool_create("tpd", &he_dev->pci_dev->dev,
1427					   sizeof(struct he_tpd), TPD_ALIGNMENT, 0);
1428	if (he_dev->tpd_pool == NULL) {
1429		hprintk("unable to create tpd dma_pool\n");
1430		return -ENOMEM;         
1431	}
1432
1433	INIT_LIST_HEAD(&he_dev->outstanding_tpds);
1434
1435	if (he_init_group(he_dev, 0) != 0)
1436		return -ENOMEM;
1437
1438	for (group = 1; group < HE_NUM_GROUPS; ++group) {
1439		he_writel(he_dev, 0x0, G0_RBPS_S + (group * 32));
1440		he_writel(he_dev, 0x0, G0_RBPS_T + (group * 32));
1441		he_writel(he_dev, 0x0, G0_RBPS_QI + (group * 32));
1442		he_writel(he_dev, RBP_THRESH(0x1) | RBP_QSIZE(0x0),
1443						G0_RBPS_BS + (group * 32));
1444
1445		he_writel(he_dev, 0x0, G0_RBPL_S + (group * 32));
1446		he_writel(he_dev, 0x0, G0_RBPL_T + (group * 32));
1447		he_writel(he_dev, RBP_THRESH(0x1) | RBP_QSIZE(0x0),
1448						G0_RBPL_QI + (group * 32));
1449		he_writel(he_dev, 0x0, G0_RBPL_BS + (group * 32));
1450
1451		he_writel(he_dev, 0x0, G0_RBRQ_ST + (group * 16));
1452		he_writel(he_dev, 0x0, G0_RBRQ_H + (group * 16));
1453		he_writel(he_dev, RBRQ_THRESH(0x1) | RBRQ_SIZE(0x0),
1454						G0_RBRQ_Q + (group * 16));
1455		he_writel(he_dev, 0x0, G0_RBRQ_I + (group * 16));
1456
1457		he_writel(he_dev, 0x0, G0_TBRQ_B_T + (group * 16));
1458		he_writel(he_dev, 0x0, G0_TBRQ_H + (group * 16));
1459		he_writel(he_dev, TBRQ_THRESH(0x1),
1460						G0_TBRQ_THRESH + (group * 16));
1461		he_writel(he_dev, 0x0, G0_TBRQ_S + (group * 16));
1462	}
1463
1464	/* host status page */
1465
1466	he_dev->hsp = dma_alloc_coherent(&he_dev->pci_dev->dev,
1467					 sizeof(struct he_hsp),
1468					 &he_dev->hsp_phys, GFP_KERNEL);
1469	if (he_dev->hsp == NULL) {
1470		hprintk("failed to allocate host status page\n");
1471		return -ENOMEM;
1472	}
1473	he_writel(he_dev, he_dev->hsp_phys, HSP_BA);
1474
1475	/* initialize framer */
1476
1477#ifdef CONFIG_ATM_HE_USE_SUNI
1478	if (he_isMM(he_dev))
1479		suni_init(he_dev->atm_dev);
1480	if (he_dev->atm_dev->phy && he_dev->atm_dev->phy->start)
1481		he_dev->atm_dev->phy->start(he_dev->atm_dev);
1482#endif /* CONFIG_ATM_HE_USE_SUNI */
1483
1484	if (sdh) {
1485		/* this really should be in suni.c but for now... */
1486		int val;
1487
1488		val = he_phy_get(he_dev->atm_dev, SUNI_TPOP_APM);
1489		val = (val & ~SUNI_TPOP_APM_S) | (SUNI_TPOP_S_SDH << SUNI_TPOP_APM_S_SHIFT);
1490		he_phy_put(he_dev->atm_dev, val, SUNI_TPOP_APM);
1491		he_phy_put(he_dev->atm_dev, SUNI_TACP_IUCHP_CLP, SUNI_TACP_IUCHP);
1492	}
1493
1494	/* 5.1.12 enable transmit and receive */
1495
1496	reg = he_readl_mbox(he_dev, CS_ERCTL0);
1497	reg |= TX_ENABLE|ER_ENABLE;
1498	he_writel_mbox(he_dev, reg, CS_ERCTL0);
1499
1500	reg = he_readl(he_dev, RC_CONFIG);
1501	reg |= RX_ENABLE;
1502	he_writel(he_dev, reg, RC_CONFIG);
1503
1504	for (i = 0; i < HE_NUM_CS_STPER; ++i) {
1505		he_dev->cs_stper[i].inuse = 0;
1506		he_dev->cs_stper[i].pcr = -1;
1507	}
1508	he_dev->total_bw = 0;
1509
1510
1511	/* atm linux initialization */
1512
1513	he_dev->atm_dev->ci_range.vpi_bits = he_dev->vpibits;
1514	he_dev->atm_dev->ci_range.vci_bits = he_dev->vcibits;
1515
1516	he_dev->irq_peak = 0;
1517	he_dev->rbrq_peak = 0;
1518	he_dev->rbpl_peak = 0;
1519	he_dev->tbrq_peak = 0;
1520
1521	HPRINTK("hell bent for leather!\n");
1522
1523	return 0;
1524}
1525
1526static void
1527he_stop(struct he_dev *he_dev)
1528{
1529	struct he_buff *heb, *next;
1530	struct pci_dev *pci_dev;
1531	u32 gen_cntl_0, reg;
1532	u16 command;
1533
1534	pci_dev = he_dev->pci_dev;
1535
1536	/* disable interrupts */
1537
1538	if (he_dev->membase) {
1539		pci_read_config_dword(pci_dev, GEN_CNTL_0, &gen_cntl_0);
1540		gen_cntl_0 &= ~(INT_PROC_ENBL | INIT_ENB);
1541		pci_write_config_dword(pci_dev, GEN_CNTL_0, gen_cntl_0);
1542
1543		tasklet_disable(&he_dev->tasklet);
1544
1545		/* disable recv and transmit */
1546
1547		reg = he_readl_mbox(he_dev, CS_ERCTL0);
1548		reg &= ~(TX_ENABLE|ER_ENABLE);
1549		he_writel_mbox(he_dev, reg, CS_ERCTL0);
1550
1551		reg = he_readl(he_dev, RC_CONFIG);
1552		reg &= ~(RX_ENABLE);
1553		he_writel(he_dev, reg, RC_CONFIG);
1554	}
1555
1556#ifdef CONFIG_ATM_HE_USE_SUNI
1557	if (he_dev->atm_dev->phy && he_dev->atm_dev->phy->stop)
1558		he_dev->atm_dev->phy->stop(he_dev->atm_dev);
1559#endif /* CONFIG_ATM_HE_USE_SUNI */
1560
1561	if (he_dev->irq)
1562		free_irq(he_dev->irq, he_dev);
1563
1564	if (he_dev->irq_base)
1565		dma_free_coherent(&he_dev->pci_dev->dev, (CONFIG_IRQ_SIZE + 1)
1566				  * sizeof(struct he_irq), he_dev->irq_base, he_dev->irq_phys);
1567
1568	if (he_dev->hsp)
1569		dma_free_coherent(&he_dev->pci_dev->dev, sizeof(struct he_hsp),
1570				  he_dev->hsp, he_dev->hsp_phys);
1571
1572	if (he_dev->rbpl_base) {
1573		list_for_each_entry_safe(heb, next, &he_dev->rbpl_outstanding, entry)
1574			dma_pool_free(he_dev->rbpl_pool, heb, heb->mapping);
1575
1576		dma_free_coherent(&he_dev->pci_dev->dev, CONFIG_RBPL_SIZE
1577				  * sizeof(struct he_rbp), he_dev->rbpl_base, he_dev->rbpl_phys);
1578	}
1579
1580	kfree(he_dev->rbpl_virt);
1581	kfree(he_dev->rbpl_table);
1582	dma_pool_destroy(he_dev->rbpl_pool);
1583
1584	if (he_dev->rbrq_base)
1585		dma_free_coherent(&he_dev->pci_dev->dev, CONFIG_RBRQ_SIZE * sizeof(struct he_rbrq),
1586				  he_dev->rbrq_base, he_dev->rbrq_phys);
1587
1588	if (he_dev->tbrq_base)
1589		dma_free_coherent(&he_dev->pci_dev->dev, CONFIG_TBRQ_SIZE * sizeof(struct he_tbrq),
1590				  he_dev->tbrq_base, he_dev->tbrq_phys);
1591
1592	if (he_dev->tpdrq_base)
1593		dma_free_coherent(&he_dev->pci_dev->dev, CONFIG_TBRQ_SIZE * sizeof(struct he_tbrq),
1594				  he_dev->tpdrq_base, he_dev->tpdrq_phys);
1595
1596	dma_pool_destroy(he_dev->tpd_pool);
1597
1598	if (he_dev->pci_dev) {
1599		pci_read_config_word(he_dev->pci_dev, PCI_COMMAND, &command);
1600		command &= ~(PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER);
1601		pci_write_config_word(he_dev->pci_dev, PCI_COMMAND, command);
1602	}
1603	
1604	if (he_dev->membase)
1605		iounmap(he_dev->membase);
1606}
1607
1608static struct he_tpd *
1609__alloc_tpd(struct he_dev *he_dev)
1610{
1611	struct he_tpd *tpd;
1612	dma_addr_t mapping;
1613
1614	tpd = dma_pool_alloc(he_dev->tpd_pool, GFP_ATOMIC, &mapping);
1615	if (tpd == NULL)
1616		return NULL;
1617			
1618	tpd->status = TPD_ADDR(mapping);
1619	tpd->reserved = 0; 
1620	tpd->iovec[0].addr = 0; tpd->iovec[0].len = 0;
1621	tpd->iovec[1].addr = 0; tpd->iovec[1].len = 0;
1622	tpd->iovec[2].addr = 0; tpd->iovec[2].len = 0;
1623
1624	return tpd;
1625}
1626
1627#define AAL5_LEN(buf,len) 						\
1628			((((unsigned char *)(buf))[(len)-6] << 8) |	\
1629				(((unsigned char *)(buf))[(len)-5]))
1630
1631/* 2.10.1.2 receive
1632 *
1633 * aal5 packets can optionally return the tcp checksum in the lower
1634 * 16 bits of the crc (RSR0_TCP_CKSUM)
1635 */
1636
1637#define TCP_CKSUM(buf,len) 						\
1638			((((unsigned char *)(buf))[(len)-2] << 8) |	\
1639				(((unsigned char *)(buf))[(len-1)]))
1640
1641static int
1642he_service_rbrq(struct he_dev *he_dev, int group)
1643{
1644	struct he_rbrq *rbrq_tail = (struct he_rbrq *)
1645				((unsigned long)he_dev->rbrq_base |
1646					he_dev->hsp->group[group].rbrq_tail);
1647	unsigned cid, lastcid = -1;
1648	struct sk_buff *skb;
1649	struct atm_vcc *vcc = NULL;
1650	struct he_vcc *he_vcc;
1651	struct he_buff *heb, *next;
1652	int i;
1653	int pdus_assembled = 0;
1654	int updated = 0;
1655
1656	read_lock(&vcc_sklist_lock);
1657	while (he_dev->rbrq_head != rbrq_tail) {
1658		++updated;
1659
1660		HPRINTK("%p rbrq%d 0x%x len=%d cid=0x%x %s%s%s%s%s%s\n",
1661			he_dev->rbrq_head, group,
1662			RBRQ_ADDR(he_dev->rbrq_head),
1663			RBRQ_BUFLEN(he_dev->rbrq_head),
1664			RBRQ_CID(he_dev->rbrq_head),
1665			RBRQ_CRC_ERR(he_dev->rbrq_head) ? " CRC_ERR" : "",
1666			RBRQ_LEN_ERR(he_dev->rbrq_head) ? " LEN_ERR" : "",
1667			RBRQ_END_PDU(he_dev->rbrq_head) ? " END_PDU" : "",
1668			RBRQ_AAL5_PROT(he_dev->rbrq_head) ? " AAL5_PROT" : "",
1669			RBRQ_CON_CLOSED(he_dev->rbrq_head) ? " CON_CLOSED" : "",
1670			RBRQ_HBUF_ERR(he_dev->rbrq_head) ? " HBUF_ERR" : "");
1671
1672		i = RBRQ_ADDR(he_dev->rbrq_head) >> RBP_IDX_OFFSET;
1673		heb = he_dev->rbpl_virt[i];
1674
1675		cid = RBRQ_CID(he_dev->rbrq_head);
1676		if (cid != lastcid)
1677			vcc = __find_vcc(he_dev, cid);
1678		lastcid = cid;
1679
1680		if (vcc == NULL || (he_vcc = HE_VCC(vcc)) == NULL) {
1681			hprintk("vcc/he_vcc == NULL  (cid 0x%x)\n", cid);
1682			if (!RBRQ_HBUF_ERR(he_dev->rbrq_head)) {
1683				clear_bit(i, he_dev->rbpl_table);
1684				list_del(&heb->entry);
1685				dma_pool_free(he_dev->rbpl_pool, heb, heb->mapping);
1686			}
1687					
1688			goto next_rbrq_entry;
1689		}
1690
1691		if (RBRQ_HBUF_ERR(he_dev->rbrq_head)) {
1692			hprintk("HBUF_ERR!  (cid 0x%x)\n", cid);
1693			atomic_inc(&vcc->stats->rx_drop);
1694			goto return_host_buffers;
1695		}
1696
1697		heb->len = RBRQ_BUFLEN(he_dev->rbrq_head) * 4;
1698		clear_bit(i, he_dev->rbpl_table);
1699		list_move_tail(&heb->entry, &he_vcc->buffers);
1700		he_vcc->pdu_len += heb->len;
1701
1702		if (RBRQ_CON_CLOSED(he_dev->rbrq_head)) {
1703			lastcid = -1;
1704			HPRINTK("wake_up rx_waitq  (cid 0x%x)\n", cid);
1705			wake_up(&he_vcc->rx_waitq);
1706			goto return_host_buffers;
1707		}
1708
1709		if (!RBRQ_END_PDU(he_dev->rbrq_head))
1710			goto next_rbrq_entry;
1711
1712		if (RBRQ_LEN_ERR(he_dev->rbrq_head)
1713				|| RBRQ_CRC_ERR(he_dev->rbrq_head)) {
1714			HPRINTK("%s%s (%d.%d)\n",
1715				RBRQ_CRC_ERR(he_dev->rbrq_head)
1716							? "CRC_ERR " : "",
1717				RBRQ_LEN_ERR(he_dev->rbrq_head)
1718							? "LEN_ERR" : "",
1719							vcc->vpi, vcc->vci);
1720			atomic_inc(&vcc->stats->rx_err);
1721			goto return_host_buffers;
1722		}
1723
1724		skb = atm_alloc_charge(vcc, he_vcc->pdu_len + rx_skb_reserve,
1725							GFP_ATOMIC);
1726		if (!skb) {
1727			HPRINTK("charge failed (%d.%d)\n", vcc->vpi, vcc->vci);
1728			goto return_host_buffers;
1729		}
1730
1731		if (rx_skb_reserve > 0)
1732			skb_reserve(skb, rx_skb_reserve);
1733
1734		__net_timestamp(skb);
1735
1736		list_for_each_entry(heb, &he_vcc->buffers, entry)
1737			skb_put_data(skb, &heb->data, heb->len);
1738
1739		switch (vcc->qos.aal) {
1740			case ATM_AAL0:
1741				/* 2.10.1.5 raw cell receive */
1742				skb->len = ATM_AAL0_SDU;
1743				skb_set_tail_pointer(skb, skb->len);
1744				break;
1745			case ATM_AAL5:
1746				/* 2.10.1.2 aal5 receive */
1747
1748				skb->len = AAL5_LEN(skb->data, he_vcc->pdu_len);
1749				skb_set_tail_pointer(skb, skb->len);
1750#ifdef USE_CHECKSUM_HW
1751				if (vcc->vpi == 0 && vcc->vci >= ATM_NOT_RSV_VCI) {
1752					skb->ip_summed = CHECKSUM_COMPLETE;
1753					skb->csum = TCP_CKSUM(skb->data,
1754							he_vcc->pdu_len);
1755				}
1756#endif
1757				break;
1758		}
1759
1760#ifdef should_never_happen
1761		if (skb->len > vcc->qos.rxtp.max_sdu)
1762			hprintk("pdu_len (%d) > vcc->qos.rxtp.max_sdu (%d)!  cid 0x%x\n", skb->len, vcc->qos.rxtp.max_sdu, cid);
1763#endif
1764
1765#ifdef notdef
1766		ATM_SKB(skb)->vcc = vcc;
1767#endif
1768		spin_unlock(&he_dev->global_lock);
1769		vcc->push(vcc, skb);
1770		spin_lock(&he_dev->global_lock);
1771
1772		atomic_inc(&vcc->stats->rx);
1773
1774return_host_buffers:
1775		++pdus_assembled;
1776
1777		list_for_each_entry_safe(heb, next, &he_vcc->buffers, entry)
1778			dma_pool_free(he_dev->rbpl_pool, heb, heb->mapping);
1779		INIT_LIST_HEAD(&he_vcc->buffers);
1780		he_vcc->pdu_len = 0;
1781
1782next_rbrq_entry:
1783		he_dev->rbrq_head = (struct he_rbrq *)
1784				((unsigned long) he_dev->rbrq_base |
1785					RBRQ_MASK(he_dev->rbrq_head + 1));
1786
1787	}
1788	read_unlock(&vcc_sklist_lock);
1789
1790	if (updated) {
1791		if (updated > he_dev->rbrq_peak)
1792			he_dev->rbrq_peak = updated;
1793
1794		he_writel(he_dev, RBRQ_MASK(he_dev->rbrq_head),
1795						G0_RBRQ_H + (group * 16));
1796	}
1797
1798	return pdus_assembled;
1799}
1800
1801static void
1802he_service_tbrq(struct he_dev *he_dev, int group)
1803{
1804	struct he_tbrq *tbrq_tail = (struct he_tbrq *)
1805				((unsigned long)he_dev->tbrq_base |
1806					he_dev->hsp->group[group].tbrq_tail);
1807	struct he_tpd *tpd;
1808	int slot, updated = 0;
1809	struct he_tpd *__tpd;
1810
1811	/* 2.1.6 transmit buffer return queue */
1812
1813	while (he_dev->tbrq_head != tbrq_tail) {
1814		++updated;
1815
1816		HPRINTK("tbrq%d 0x%x%s%s\n",
1817			group,
1818			TBRQ_TPD(he_dev->tbrq_head), 
1819			TBRQ_EOS(he_dev->tbrq_head) ? " EOS" : "",
1820			TBRQ_MULTIPLE(he_dev->tbrq_head) ? " MULTIPLE" : "");
1821		tpd = NULL;
1822		list_for_each_entry(__tpd, &he_dev->outstanding_tpds, entry) {
1823			if (TPD_ADDR(__tpd->status) == TBRQ_TPD(he_dev->tbrq_head)) {
1824				tpd = __tpd;
1825				list_del(&__tpd->entry);
1826				break;
1827			}
1828		}
1829
1830		if (tpd == NULL) {
1831			hprintk("unable to locate tpd for dma buffer %x\n",
1832						TBRQ_TPD(he_dev->tbrq_head));
1833			goto next_tbrq_entry;
1834		}
1835
1836		if (TBRQ_EOS(he_dev->tbrq_head)) {
1837			HPRINTK("wake_up(tx_waitq) cid 0x%x\n",
1838				he_mkcid(he_dev, tpd->vcc->vpi, tpd->vcc->vci));
1839			if (tpd->vcc)
1840				wake_up(&HE_VCC(tpd->vcc)->tx_waitq);
1841
1842			goto next_tbrq_entry;
1843		}
1844
1845		for (slot = 0; slot < TPD_MAXIOV; ++slot) {
1846			if (tpd->iovec[slot].addr)
1847				dma_unmap_single(&he_dev->pci_dev->dev,
1848					tpd->iovec[slot].addr,
1849					tpd->iovec[slot].len & TPD_LEN_MASK,
1850							DMA_TO_DEVICE);
1851			if (tpd->iovec[slot].len & TPD_LST)
1852				break;
1853				
1854		}
1855
1856		if (tpd->skb) {	/* && !TBRQ_MULTIPLE(he_dev->tbrq_head) */
1857			if (tpd->vcc && tpd->vcc->pop)
1858				tpd->vcc->pop(tpd->vcc, tpd->skb);
1859			else
1860				dev_kfree_skb_any(tpd->skb);
1861		}
1862
1863next_tbrq_entry:
1864		if (tpd)
1865			dma_pool_free(he_dev->tpd_pool, tpd, TPD_ADDR(tpd->status));
1866		he_dev->tbrq_head = (struct he_tbrq *)
1867				((unsigned long) he_dev->tbrq_base |
1868					TBRQ_MASK(he_dev->tbrq_head + 1));
1869	}
1870
1871	if (updated) {
1872		if (updated > he_dev->tbrq_peak)
1873			he_dev->tbrq_peak = updated;
1874
1875		he_writel(he_dev, TBRQ_MASK(he_dev->tbrq_head),
1876						G0_TBRQ_H + (group * 16));
1877	}
1878}
1879
1880static void
1881he_service_rbpl(struct he_dev *he_dev, int group)
1882{
1883	struct he_rbp *new_tail;
1884	struct he_rbp *rbpl_head;
1885	struct he_buff *heb;
1886	dma_addr_t mapping;
1887	int i;
1888	int moved = 0;
1889
1890	rbpl_head = (struct he_rbp *) ((unsigned long)he_dev->rbpl_base |
1891					RBPL_MASK(he_readl(he_dev, G0_RBPL_S)));
1892
1893	for (;;) {
1894		new_tail = (struct he_rbp *) ((unsigned long)he_dev->rbpl_base |
1895						RBPL_MASK(he_dev->rbpl_tail+1));
1896
1897		/* table 3.42 -- rbpl_tail should never be set to rbpl_head */
1898		if (new_tail == rbpl_head)
1899			break;
1900
1901		i = find_next_zero_bit(he_dev->rbpl_table, RBPL_TABLE_SIZE, he_dev->rbpl_hint);
1902		if (i > (RBPL_TABLE_SIZE - 1)) {
1903			i = find_first_zero_bit(he_dev->rbpl_table, RBPL_TABLE_SIZE);
1904			if (i > (RBPL_TABLE_SIZE - 1))
1905				break;
1906		}
1907		he_dev->rbpl_hint = i + 1;
1908
1909		heb = dma_pool_alloc(he_dev->rbpl_pool, GFP_ATOMIC, &mapping);
1910		if (!heb)
1911			break;
1912		heb->mapping = mapping;
1913		list_add(&heb->entry, &he_dev->rbpl_outstanding);
1914		he_dev->rbpl_virt[i] = heb;
1915		set_bit(i, he_dev->rbpl_table);
1916		new_tail->idx = i << RBP_IDX_OFFSET;
1917		new_tail->phys = mapping + offsetof(struct he_buff, data);
1918
1919		he_dev->rbpl_tail = new_tail;
1920		++moved;
1921	} 
1922
1923	if (moved)
1924		he_writel(he_dev, RBPL_MASK(he_dev->rbpl_tail), G0_RBPL_T);
1925}
1926
1927static void
1928he_tasklet(unsigned long data)
1929{
1930	unsigned long flags;
1931	struct he_dev *he_dev = (struct he_dev *) data;
1932	int group, type;
1933	int updated = 0;
1934
1935	HPRINTK("tasklet (0x%lx)\n", data);
1936	spin_lock_irqsave(&he_dev->global_lock, flags);
1937
1938	while (he_dev->irq_head != he_dev->irq_tail) {
1939		++updated;
1940
1941		type = ITYPE_TYPE(he_dev->irq_head->isw);
1942		group = ITYPE_GROUP(he_dev->irq_head->isw);
1943
1944		switch (type) {
1945			case ITYPE_RBRQ_THRESH:
1946				HPRINTK("rbrq%d threshold\n", group);
1947				fallthrough;
1948			case ITYPE_RBRQ_TIMER:
1949				if (he_service_rbrq(he_dev, group))
1950					he_service_rbpl(he_dev, group);
1951				break;
1952			case ITYPE_TBRQ_THRESH:
1953				HPRINTK("tbrq%d threshold\n", group);
1954				fallthrough;
1955			case ITYPE_TPD_COMPLETE:
1956				he_service_tbrq(he_dev, group);
1957				break;
1958			case ITYPE_RBPL_THRESH:
1959				he_service_rbpl(he_dev, group);
1960				break;
1961			case ITYPE_RBPS_THRESH:
1962				/* shouldn't happen unless small buffers enabled */
1963				break;
1964			case ITYPE_PHY:
1965				HPRINTK("phy interrupt\n");
1966#ifdef CONFIG_ATM_HE_USE_SUNI
1967				spin_unlock_irqrestore(&he_dev->global_lock, flags);
1968				if (he_dev->atm_dev->phy && he_dev->atm_dev->phy->interrupt)
1969					he_dev->atm_dev->phy->interrupt(he_dev->atm_dev);
1970				spin_lock_irqsave(&he_dev->global_lock, flags);
1971#endif
1972				break;
1973			case ITYPE_OTHER:
1974				switch (type|group) {
1975					case ITYPE_PARITY:
1976						hprintk("parity error\n");
1977						break;
1978					case ITYPE_ABORT:
1979						hprintk("abort 0x%x\n", he_readl(he_dev, ABORT_ADDR));
1980						break;
1981				}
1982				break;
1983			case ITYPE_TYPE(ITYPE_INVALID):
1984				/* see 8.1.1 -- check all queues */
1985
1986				HPRINTK("isw not updated 0x%x\n", he_dev->irq_head->isw);
1987
1988				he_service_rbrq(he_dev, 0);
1989				he_service_rbpl(he_dev, 0);
1990				he_service_tbrq(he_dev, 0);
1991				break;
1992			default:
1993				hprintk("bad isw 0x%x?\n", he_dev->irq_head->isw);
1994		}
1995
1996		he_dev->irq_head->isw = ITYPE_INVALID;
1997
1998		he_dev->irq_head = (struct he_irq *) NEXT_ENTRY(he_dev->irq_base, he_dev->irq_head, IRQ_MASK);
1999	}
2000
2001	if (updated) {
2002		if (updated > he_dev->irq_peak)
2003			he_dev->irq_peak = updated;
2004
2005		he_writel(he_dev,
2006			IRQ_SIZE(CONFIG_IRQ_SIZE) |
2007			IRQ_THRESH(CONFIG_IRQ_THRESH) |
2008			IRQ_TAIL(he_dev->irq_tail), IRQ0_HEAD);
2009		(void) he_readl(he_dev, INT_FIFO); /* 8.1.2 controller errata; flush posted writes */
2010	}
2011	spin_unlock_irqrestore(&he_dev->global_lock, flags);
2012}
2013
2014static irqreturn_t
2015he_irq_handler(int irq, void *dev_id)
2016{
2017	unsigned long flags;
2018	struct he_dev *he_dev = (struct he_dev * )dev_id;
2019	int handled = 0;
2020
2021	if (he_dev == NULL)
2022		return IRQ_NONE;
2023
2024	spin_lock_irqsave(&he_dev->global_lock, flags);
2025
2026	he_dev->irq_tail = (struct he_irq *) (((unsigned long)he_dev->irq_base) |
2027						(*he_dev->irq_tailoffset << 2));
2028
2029	if (he_dev->irq_tail == he_dev->irq_head) {
2030		HPRINTK("tailoffset not updated?\n");
2031		he_dev->irq_tail = (struct he_irq *) ((unsigned long)he_dev->irq_base |
2032			((he_readl(he_dev, IRQ0_BASE) & IRQ_MASK) << 2));
2033		(void) he_readl(he_dev, INT_FIFO);	/* 8.1.2 controller errata */
2034	}
2035
2036#ifdef DEBUG
2037	if (he_dev->irq_head == he_dev->irq_tail /* && !IRQ_PENDING */)
2038		hprintk("spurious (or shared) interrupt?\n");
2039#endif
2040
2041	if (he_dev->irq_head != he_dev->irq_tail) {
2042		handled = 1;
2043		tasklet_schedule(&he_dev->tasklet);
2044		he_writel(he_dev, INT_CLEAR_A, INT_FIFO);	/* clear interrupt */
2045		(void) he_readl(he_dev, INT_FIFO);		/* flush posted writes */
2046	}
2047	spin_unlock_irqrestore(&he_dev->global_lock, flags);
2048	return IRQ_RETVAL(handled);
2049
2050}
2051
2052static __inline__ void
2053__enqueue_tpd(struct he_dev *he_dev, struct he_tpd *tpd, unsigned cid)
2054{
2055	struct he_tpdrq *new_tail;
2056
2057	HPRINTK("tpdrq %p cid 0x%x -> tpdrq_tail %p\n",
2058					tpd, cid, he_dev->tpdrq_tail);
2059
2060	/* new_tail = he_dev->tpdrq_tail; */
2061	new_tail = (struct he_tpdrq *) ((unsigned long) he_dev->tpdrq_base |
2062					TPDRQ_MASK(he_dev->tpdrq_tail+1));
2063
2064	/*
2065	 * check to see if we are about to set the tail == head
2066	 * if true, update the head pointer from the adapter
2067	 * to see if this is really the case (reading the queue
2068	 * head for every enqueue would be unnecessarily slow)
2069	 */
2070
2071	if (new_tail == he_dev->tpdrq_head) {
2072		he_dev->tpdrq_head = (struct he_tpdrq *)
2073			(((unsigned long)he_dev->tpdrq_base) |
2074				TPDRQ_MASK(he_readl(he_dev, TPDRQ_B_H)));
2075
2076		if (new_tail == he_dev->tpdrq_head) {
2077			int slot;
2078
2079			hprintk("tpdrq full (cid 0x%x)\n", cid);
2080			/*
2081			 * FIXME
2082			 * push tpd onto a transmit backlog queue
2083			 * after service_tbrq, service the backlog
2084			 * for now, we just drop the pdu
2085			 */
2086			for (slot = 0; slot < TPD_MAXIOV; ++slot) {
2087				if (tpd->iovec[slot].addr)
2088					dma_unmap_single(&he_dev->pci_dev->dev,
2089						tpd->iovec[slot].addr,
2090						tpd->iovec[slot].len & TPD_LEN_MASK,
2091								DMA_TO_DEVICE);
2092			}
2093			if (tpd->skb) {
2094				if (tpd->vcc->pop)
2095					tpd->vcc->pop(tpd->vcc, tpd->skb);
2096				else
2097					dev_kfree_skb_any(tpd->skb);
2098				atomic_inc(&tpd->vcc->stats->tx_err);
2099			}
2100			dma_pool_free(he_dev->tpd_pool, tpd, TPD_ADDR(tpd->status));
2101			return;
2102		}
2103	}
2104
2105	/* 2.1.5 transmit packet descriptor ready queue */
2106	list_add_tail(&tpd->entry, &he_dev->outstanding_tpds);
2107	he_dev->tpdrq_tail->tpd = TPD_ADDR(tpd->status);
2108	he_dev->tpdrq_tail->cid = cid;
2109	wmb();
2110
2111	he_dev->tpdrq_tail = new_tail;
2112
2113	he_writel(he_dev, TPDRQ_MASK(he_dev->tpdrq_tail), TPDRQ_T);
2114	(void) he_readl(he_dev, TPDRQ_T);		/* flush posted writes */
2115}
2116
2117static int
2118he_open(struct atm_vcc *vcc)
2119{
2120	unsigned long flags;
2121	struct he_dev *he_dev = HE_DEV(vcc->dev);
2122	struct he_vcc *he_vcc;
2123	int err = 0;
2124	unsigned cid, rsr0, rsr1, rsr4, tsr0, tsr0_aal, tsr4, period, reg, clock;
2125	short vpi = vcc->vpi;
2126	int vci = vcc->vci;
2127
2128	if (vci == ATM_VCI_UNSPEC || vpi == ATM_VPI_UNSPEC)
2129		return 0;
2130
2131	HPRINTK("open vcc %p %d.%d\n", vcc, vpi, vci);
2132
2133	set_bit(ATM_VF_ADDR, &vcc->flags);
2134
2135	cid = he_mkcid(he_dev, vpi, vci);
2136
2137	he_vcc = kmalloc(sizeof(struct he_vcc), GFP_ATOMIC);
2138	if (he_vcc == NULL) {
2139		hprintk("unable to allocate he_vcc during open\n");
2140		return -ENOMEM;
2141	}
2142
2143	INIT_LIST_HEAD(&he_vcc->buffers);
2144	he_vcc->pdu_len = 0;
2145	he_vcc->rc_index = -1;
2146
2147	init_waitqueue_head(&he_vcc->rx_waitq);
2148	init_waitqueue_head(&he_vcc->tx_waitq);
2149
2150	vcc->dev_data = he_vcc;
2151
2152	if (vcc->qos.txtp.traffic_class != ATM_NONE) {
2153		int pcr_goal;
2154
2155		pcr_goal = atm_pcr_goal(&vcc->qos.txtp);
2156		if (pcr_goal == 0)
2157			pcr_goal = he_dev->atm_dev->link_rate;
2158		if (pcr_goal < 0)	/* means round down, technically */
2159			pcr_goal = -pcr_goal;
2160
2161		HPRINTK("open tx cid 0x%x pcr_goal %d\n", cid, pcr_goal);
2162
2163		switch (vcc->qos.aal) {
2164			case ATM_AAL5:
2165				tsr0_aal = TSR0_AAL5;
2166				tsr4 = TSR4_AAL5;
2167				break;
2168			case ATM_AAL0:
2169				tsr0_aal = TSR0_AAL0_SDU;
2170				tsr4 = TSR4_AAL0_SDU;
2171				break;
2172			default:
2173				err = -EINVAL;
2174				goto open_failed;
2175		}
2176
2177		spin_lock_irqsave(&he_dev->global_lock, flags);
2178		tsr0 = he_readl_tsr0(he_dev, cid);
2179		spin_unlock_irqrestore(&he_dev->global_lock, flags);
2180
2181		if (TSR0_CONN_STATE(tsr0) != 0) {
2182			hprintk("cid 0x%x not idle (tsr0 = 0x%x)\n", cid, tsr0);
2183			err = -EBUSY;
2184			goto open_failed;
2185		}
2186
2187		switch (vcc->qos.txtp.traffic_class) {
2188			case ATM_UBR:
2189				/* 2.3.3.1 open connection ubr */
2190
2191				tsr0 = TSR0_UBR | TSR0_GROUP(0) | tsr0_aal |
2192					TSR0_USE_WMIN | TSR0_UPDATE_GER;
2193				break;
2194
2195			case ATM_CBR:
2196				/* 2.3.3.2 open connection cbr */
2197
2198				/* 8.2.3 cbr scheduler wrap problem -- limit to 90% total link rate */
2199				if ((he_dev->total_bw + pcr_goal)
2200					> (he_dev->atm_dev->link_rate * 9 / 10))
2201				{
2202					err = -EBUSY;
2203					goto open_failed;
2204				}
2205
2206				spin_lock_irqsave(&he_dev->global_lock, flags);			/* also protects he_dev->cs_stper[] */
2207
2208				/* find an unused cs_stper register */
2209				for (reg = 0; reg < HE_NUM_CS_STPER; ++reg)
2210					if (he_dev->cs_stper[reg].inuse == 0 || 
2211					    he_dev->cs_stper[reg].pcr == pcr_goal)
2212							break;
2213
2214				if (reg == HE_NUM_CS_STPER) {
2215					err = -EBUSY;
2216					spin_unlock_irqrestore(&he_dev->global_lock, flags);
2217					goto open_failed;
2218				}
2219
2220				he_dev->total_bw += pcr_goal;
2221
2222				he_vcc->rc_index = reg;
2223				++he_dev->cs_stper[reg].inuse;
2224				he_dev->cs_stper[reg].pcr = pcr_goal;
2225
2226				clock = he_is622(he_dev) ? 66667000 : 50000000;
2227				period = clock / pcr_goal;
2228				
2229				HPRINTK("rc_index = %d period = %d\n",
2230								reg, period);
2231
2232				he_writel_mbox(he_dev, rate_to_atmf(period/2),
2233							CS_STPER0 + reg);
2234				spin_unlock_irqrestore(&he_dev->global_lock, flags);
2235
2236				tsr0 = TSR0_CBR | TSR0_GROUP(0) | tsr0_aal |
2237							TSR0_RC_INDEX(reg);
2238
2239				break;
2240			default:
2241				err = -EINVAL;
2242				goto open_failed;
2243		}
2244
2245		spin_lock_irqsave(&he_dev->global_lock, flags);
2246
2247		he_writel_tsr0(he_dev, tsr0, cid);
2248		he_writel_tsr4(he_dev, tsr4 | 1, cid);
2249		he_writel_tsr1(he_dev, TSR1_MCR(rate_to_atmf(0)) |
2250					TSR1_PCR(rate_to_atmf(pcr_goal)), cid);
2251		he_writel_tsr2(he_dev, TSR2_ACR(rate_to_atmf(pcr_goal)), cid);
2252		he_writel_tsr9(he_dev, TSR9_OPEN_CONN, cid);
2253
2254		he_writel_tsr3(he_dev, 0x0, cid);
2255		he_writel_tsr5(he_dev, 0x0, cid);
2256		he_writel_tsr6(he_dev, 0x0, cid);
2257		he_writel_tsr7(he_dev, 0x0, cid);
2258		he_writel_tsr8(he_dev, 0x0, cid);
2259		he_writel_tsr10(he_dev, 0x0, cid);
2260		he_writel_tsr11(he_dev, 0x0, cid);
2261		he_writel_tsr12(he_dev, 0x0, cid);
2262		he_writel_tsr13(he_dev, 0x0, cid);
2263		he_writel_tsr14(he_dev, 0x0, cid);
2264		(void) he_readl_tsr0(he_dev, cid);		/* flush posted writes */
2265		spin_unlock_irqrestore(&he_dev->global_lock, flags);
2266	}
2267
2268	if (vcc->qos.rxtp.traffic_class != ATM_NONE) {
2269		unsigned aal;
2270
2271		HPRINTK("open rx cid 0x%x (rx_waitq %p)\n", cid,
2272		 				&HE_VCC(vcc)->rx_waitq);
2273
2274		switch (vcc->qos.aal) {
2275			case ATM_AAL5:
2276				aal = RSR0_AAL5;
2277				break;
2278			case ATM_AAL0:
2279				aal = RSR0_RAWCELL;
2280				break;
2281			default:
2282				err = -EINVAL;
2283				goto open_failed;
2284		}
2285
2286		spin_lock_irqsave(&he_dev->global_lock, flags);
2287
2288		rsr0 = he_readl_rsr0(he_dev, cid);
2289		if (rsr0 & RSR0_OPEN_CONN) {
2290			spin_unlock_irqrestore(&he_dev->global_lock, flags);
2291
2292			hprintk("cid 0x%x not idle (rsr0 = 0x%x)\n", cid, rsr0);
2293			err = -EBUSY;
2294			goto open_failed;
2295		}
2296
2297		rsr1 = RSR1_GROUP(0) | RSR1_RBPL_ONLY;
2298		rsr4 = RSR4_GROUP(0) | RSR4_RBPL_ONLY;
2299		rsr0 = vcc->qos.rxtp.traffic_class == ATM_UBR ? 
2300				(RSR0_EPD_ENABLE|RSR0_PPD_ENABLE) : 0;
2301
2302#ifdef USE_CHECKSUM_HW
2303		if (vpi == 0 && vci >= ATM_NOT_RSV_VCI)
2304			rsr0 |= RSR0_TCP_CKSUM;
2305#endif
2306
2307		he_writel_rsr4(he_dev, rsr4, cid);
2308		he_writel_rsr1(he_dev, rsr1, cid);
2309		/* 5.1.11 last parameter initialized should be
2310			  the open/closed indication in rsr0 */
2311		he_writel_rsr0(he_dev,
2312			rsr0 | RSR0_START_PDU | RSR0_OPEN_CONN | aal, cid);
2313		(void) he_readl_rsr0(he_dev, cid);		/* flush posted writes */
2314
2315		spin_unlock_irqrestore(&he_dev->global_lock, flags);
2316	}
2317
2318open_failed:
2319
2320	if (err) {
2321		kfree(he_vcc);
2322		clear_bit(ATM_VF_ADDR, &vcc->flags);
2323	}
2324	else
2325		set_bit(ATM_VF_READY, &vcc->flags);
2326
2327	return err;
2328}
2329
2330static void
2331he_close(struct atm_vcc *vcc)
2332{
2333	unsigned long flags;
2334	DECLARE_WAITQUEUE(wait, current);
2335	struct he_dev *he_dev = HE_DEV(vcc->dev);
2336	struct he_tpd *tpd;
2337	unsigned cid;
2338	struct he_vcc *he_vcc = HE_VCC(vcc);
2339#define MAX_RETRY 30
2340	int retry = 0, sleep = 1, tx_inuse;
2341
2342	HPRINTK("close vcc %p %d.%d\n", vcc, vcc->vpi, vcc->vci);
2343
2344	clear_bit(ATM_VF_READY, &vcc->flags);
2345	cid = he_mkcid(he_dev, vcc->vpi, vcc->vci);
2346
2347	if (vcc->qos.rxtp.traffic_class != ATM_NONE) {
2348		int timeout;
2349
2350		HPRINTK("close rx cid 0x%x\n", cid);
2351
2352		/* 2.7.2.2 close receive operation */
2353
2354		/* wait for previous close (if any) to finish */
2355
2356		spin_lock_irqsave(&he_dev->global_lock, flags);
2357		while (he_readl(he_dev, RCC_STAT) & RCC_BUSY) {
2358			HPRINTK("close cid 0x%x RCC_BUSY\n", cid);
2359			udelay(250);
2360		}
2361
2362		set_current_state(TASK_UNINTERRUPTIBLE);
2363		add_wait_queue(&he_vcc->rx_waitq, &wait);
2364
2365		he_writel_rsr0(he_dev, RSR0_CLOSE_CONN, cid);
2366		(void) he_readl_rsr0(he_dev, cid);		/* flush posted writes */
2367		he_writel_mbox(he_dev, cid, RXCON_CLOSE);
2368		spin_unlock_irqrestore(&he_dev->global_lock, flags);
2369
2370		timeout = schedule_timeout(30*HZ);
2371
2372		remove_wait_queue(&he_vcc->rx_waitq, &wait);
2373		set_current_state(TASK_RUNNING);
2374
2375		if (timeout == 0)
2376			hprintk("close rx timeout cid 0x%x\n", cid);
2377
2378		HPRINTK("close rx cid 0x%x complete\n", cid);
2379
2380	}
2381
2382	if (vcc->qos.txtp.traffic_class != ATM_NONE) {
2383		volatile unsigned tsr4, tsr0;
2384		int timeout;
2385
2386		HPRINTK("close tx cid 0x%x\n", cid);
2387		
2388		/* 2.1.2
2389		 *
2390		 * ... the host must first stop queueing packets to the TPDRQ
2391		 * on the connection to be closed, then wait for all outstanding
2392		 * packets to be transmitted and their buffers returned to the
2393		 * TBRQ. When the last packet on the connection arrives in the
2394		 * TBRQ, the host issues the close command to the adapter.
2395		 */
2396
2397		while (((tx_inuse = refcount_read(&sk_atm(vcc)->sk_wmem_alloc)) > 1) &&
2398		       (retry < MAX_RETRY)) {
2399			msleep(sleep);
2400			if (sleep < 250)
2401				sleep = sleep * 2;
2402
2403			++retry;
2404		}
2405
2406		if (tx_inuse > 1)
2407			hprintk("close tx cid 0x%x tx_inuse = %d\n", cid, tx_inuse);
2408
2409		/* 2.3.1.1 generic close operations with flush */
2410
2411		spin_lock_irqsave(&he_dev->global_lock, flags);
2412		he_writel_tsr4_upper(he_dev, TSR4_FLUSH_CONN, cid);
2413					/* also clears TSR4_SESSION_ENDED */
2414
2415		switch (vcc->qos.txtp.traffic_class) {
2416			case ATM_UBR:
2417				he_writel_tsr1(he_dev, 
2418					TSR1_MCR(rate_to_atmf(200000))
2419					| TSR1_PCR(0), cid);
2420				break;
2421			case ATM_CBR:
2422				he_writel_tsr14_upper(he_dev, TSR14_DELETE, cid);
2423				break;
2424		}
2425		(void) he_readl_tsr4(he_dev, cid);		/* flush posted writes */
2426
2427		tpd = __alloc_tpd(he_dev);
2428		if (tpd == NULL) {
2429			hprintk("close tx he_alloc_tpd failed cid 0x%x\n", cid);
2430			goto close_tx_incomplete;
2431		}
2432		tpd->status |= TPD_EOS | TPD_INT;
2433		tpd->skb = NULL;
2434		tpd->vcc = vcc;
2435		wmb();
2436
2437		set_current_state(TASK_UNINTERRUPTIBLE);
2438		add_wait_queue(&he_vcc->tx_waitq, &wait);
2439		__enqueue_tpd(he_dev, tpd, cid);
2440		spin_unlock_irqrestore(&he_dev->global_lock, flags);
2441
2442		timeout = schedule_timeout(30*HZ);
2443
2444		remove_wait_queue(&he_vcc->tx_waitq, &wait);
2445		set_current_state(TASK_RUNNING);
2446
2447		spin_lock_irqsave(&he_dev->global_lock, flags);
2448
2449		if (timeout == 0) {
2450			hprintk("close tx timeout cid 0x%x\n", cid);
2451			goto close_tx_incomplete;
2452		}
2453
2454		while (!((tsr4 = he_readl_tsr4(he_dev, cid)) & TSR4_SESSION_ENDED)) {
2455			HPRINTK("close tx cid 0x%x !TSR4_SESSION_ENDED (tsr4 = 0x%x)\n", cid, tsr4);
2456			udelay(250);
2457		}
2458
2459		while (TSR0_CONN_STATE(tsr0 = he_readl_tsr0(he_dev, cid)) != 0) {
2460			HPRINTK("close tx cid 0x%x TSR0_CONN_STATE != 0 (tsr0 = 0x%x)\n", cid, tsr0);
2461			udelay(250);
2462		}
2463
2464close_tx_incomplete:
2465
2466		if (vcc->qos.txtp.traffic_class == ATM_CBR) {
2467			int reg = he_vcc->rc_index;
2468
2469			HPRINTK("cs_stper reg = %d\n", reg);
2470
2471			if (he_dev->cs_stper[reg].inuse == 0)
2472				hprintk("cs_stper[%d].inuse = 0!\n", reg);
2473			else
2474				--he_dev->cs_stper[reg].inuse;
2475
2476			he_dev->total_bw -= he_dev->cs_stper[reg].pcr;
2477		}
2478		spin_unlock_irqrestore(&he_dev->global_lock, flags);
2479
2480		HPRINTK("close tx cid 0x%x complete\n", cid);
2481	}
2482
2483	kfree(he_vcc);
2484
2485	clear_bit(ATM_VF_ADDR, &vcc->flags);
2486}
2487
2488static int
2489he_send(struct atm_vcc *vcc, struct sk_buff *skb)
2490{
2491	unsigned long flags;
2492	struct he_dev *he_dev = HE_DEV(vcc->dev);
2493	unsigned cid = he_mkcid(he_dev, vcc->vpi, vcc->vci);
2494	struct he_tpd *tpd;
2495#ifdef USE_SCATTERGATHER
2496	int i, slot = 0;
2497#endif
2498
2499#define HE_TPD_BUFSIZE 0xffff
2500
2501	HPRINTK("send %d.%d\n", vcc->vpi, vcc->vci);
2502
2503	if ((skb->len > HE_TPD_BUFSIZE) ||
2504	    ((vcc->qos.aal == ATM_AAL0) && (skb->len != ATM_AAL0_SDU))) {
2505		hprintk("buffer too large (or small) -- %d bytes\n", skb->len );
2506		if (vcc->pop)
2507			vcc->pop(vcc, skb);
2508		else
2509			dev_kfree_skb_any(skb);
2510		atomic_inc(&vcc->stats->tx_err);
2511		return -EINVAL;
2512	}
2513
2514#ifndef USE_SCATTERGATHER
2515	if (skb_shinfo(skb)->nr_frags) {
2516		hprintk("no scatter/gather support\n");
2517		if (vcc->pop)
2518			vcc->pop(vcc, skb);
2519		else
2520			dev_kfree_skb_any(skb);
2521		atomic_inc(&vcc->stats->tx_err);
2522		return -EINVAL;
2523	}
2524#endif
2525	spin_lock_irqsave(&he_dev->global_lock, flags);
2526
2527	tpd = __alloc_tpd(he_dev);
2528	if (tpd == NULL) {
2529		if (vcc->pop)
2530			vcc->pop(vcc, skb);
2531		else
2532			dev_kfree_skb_any(skb);
2533		atomic_inc(&vcc->stats->tx_err);
2534		spin_unlock_irqrestore(&he_dev->global_lock, flags);
2535		return -ENOMEM;
2536	}
2537
2538	if (vcc->qos.aal == ATM_AAL5)
2539		tpd->status |= TPD_CELLTYPE(TPD_USERCELL);
2540	else {
2541		char *pti_clp = (void *) (skb->data + 3);
2542		int clp, pti;
2543
2544		pti = (*pti_clp & ATM_HDR_PTI_MASK) >> ATM_HDR_PTI_SHIFT; 
2545		clp = (*pti_clp & ATM_HDR_CLP);
2546		tpd->status |= TPD_CELLTYPE(pti);
2547		if (clp)
2548			tpd->status |= TPD_CLP;
2549
2550		skb_pull(skb, ATM_AAL0_SDU - ATM_CELL_PAYLOAD);
2551	}
2552
2553#ifdef USE_SCATTERGATHER
2554	tpd->iovec[slot].addr = dma_map_single(&he_dev->pci_dev->dev, skb->data,
2555				skb_headlen(skb), DMA_TO_DEVICE);
2556	tpd->iovec[slot].len = skb_headlen(skb);
2557	++slot;
2558
2559	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2560		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2561
2562		if (slot == TPD_MAXIOV) {	/* queue tpd; start new tpd */
2563			tpd->vcc = vcc;
2564			tpd->skb = NULL;	/* not the last fragment
2565						   so dont ->push() yet */
2566			wmb();
2567
2568			__enqueue_tpd(he_dev, tpd, cid);
2569			tpd = __alloc_tpd(he_dev);
2570			if (tpd == NULL) {
2571				if (vcc->pop)
2572					vcc->pop(vcc, skb);
2573				else
2574					dev_kfree_skb_any(skb);
2575				atomic_inc(&vcc->stats->tx_err);
2576				spin_unlock_irqrestore(&he_dev->global_lock, flags);
2577				return -ENOMEM;
2578			}
2579			tpd->status |= TPD_USERCELL;
2580			slot = 0;
2581		}
2582
2583		tpd->iovec[slot].addr = skb_frag_dma_map(&he_dev->pci_dev->dev,
2584				frag, 0, skb_frag_size(frag), DMA_TO_DEVICE);
2585		tpd->iovec[slot].len = skb_frag_size(frag);
 
2586		++slot;
2587
2588	}
2589
2590	tpd->iovec[slot - 1].len |= TPD_LST;
2591#else
2592	tpd->address0 = dma_map_single(&he_dev->pci_dev->dev, skb->data, skb->len, DMA_TO_DEVICE);
2593	tpd->length0 = skb->len | TPD_LST;
2594#endif
2595	tpd->status |= TPD_INT;
2596
2597	tpd->vcc = vcc;
2598	tpd->skb = skb;
2599	wmb();
2600	ATM_SKB(skb)->vcc = vcc;
2601
2602	__enqueue_tpd(he_dev, tpd, cid);
2603	spin_unlock_irqrestore(&he_dev->global_lock, flags);
2604
2605	atomic_inc(&vcc->stats->tx);
2606
2607	return 0;
2608}
2609
2610static int
2611he_ioctl(struct atm_dev *atm_dev, unsigned int cmd, void __user *arg)
2612{
2613	unsigned long flags;
2614	struct he_dev *he_dev = HE_DEV(atm_dev);
2615	struct he_ioctl_reg reg;
2616	int err = 0;
2617
2618	switch (cmd) {
2619		case HE_GET_REG:
2620			if (!capable(CAP_NET_ADMIN))
2621				return -EPERM;
2622
2623			if (copy_from_user(&reg, arg,
2624					   sizeof(struct he_ioctl_reg)))
2625				return -EFAULT;
2626
2627			spin_lock_irqsave(&he_dev->global_lock, flags);
2628			switch (reg.type) {
2629				case HE_REGTYPE_PCI:
2630					if (reg.addr >= HE_REGMAP_SIZE) {
2631						err = -EINVAL;
2632						break;
2633					}
2634
2635					reg.val = he_readl(he_dev, reg.addr);
2636					break;
2637				case HE_REGTYPE_RCM:
2638					reg.val =
2639						he_readl_rcm(he_dev, reg.addr);
2640					break;
2641				case HE_REGTYPE_TCM:
2642					reg.val =
2643						he_readl_tcm(he_dev, reg.addr);
2644					break;
2645				case HE_REGTYPE_MBOX:
2646					reg.val =
2647						he_readl_mbox(he_dev, reg.addr);
2648					break;
2649				default:
2650					err = -EINVAL;
2651					break;
2652			}
2653			spin_unlock_irqrestore(&he_dev->global_lock, flags);
2654			if (err == 0)
2655				if (copy_to_user(arg, &reg,
2656							sizeof(struct he_ioctl_reg)))
2657					return -EFAULT;
2658			break;
2659		default:
2660#ifdef CONFIG_ATM_HE_USE_SUNI
2661			if (atm_dev->phy && atm_dev->phy->ioctl)
2662				err = atm_dev->phy->ioctl(atm_dev, cmd, arg);
2663#else /* CONFIG_ATM_HE_USE_SUNI */
2664			err = -EINVAL;
2665#endif /* CONFIG_ATM_HE_USE_SUNI */
2666			break;
2667	}
2668
2669	return err;
2670}
2671
2672static void
2673he_phy_put(struct atm_dev *atm_dev, unsigned char val, unsigned long addr)
2674{
2675	unsigned long flags;
2676	struct he_dev *he_dev = HE_DEV(atm_dev);
2677
2678	HPRINTK("phy_put(val 0x%x, addr 0x%lx)\n", val, addr);
2679
2680	spin_lock_irqsave(&he_dev->global_lock, flags);
2681	he_writel(he_dev, val, FRAMER + (addr*4));
2682	(void) he_readl(he_dev, FRAMER + (addr*4));		/* flush posted writes */
2683	spin_unlock_irqrestore(&he_dev->global_lock, flags);
2684}
2685 
2686	
2687static unsigned char
2688he_phy_get(struct atm_dev *atm_dev, unsigned long addr)
2689{ 
2690	unsigned long flags;
2691	struct he_dev *he_dev = HE_DEV(atm_dev);
2692	unsigned reg;
2693
2694	spin_lock_irqsave(&he_dev->global_lock, flags);
2695	reg = he_readl(he_dev, FRAMER + (addr*4));
2696	spin_unlock_irqrestore(&he_dev->global_lock, flags);
2697
2698	HPRINTK("phy_get(addr 0x%lx) =0x%x\n", addr, reg);
2699	return reg;
2700}
2701
2702static int
2703he_proc_read(struct atm_dev *dev, loff_t *pos, char *page)
2704{
2705	unsigned long flags;
2706	struct he_dev *he_dev = HE_DEV(dev);
2707	int left, i;
2708#ifdef notdef
2709	struct he_rbrq *rbrq_tail;
2710	struct he_tpdrq *tpdrq_head;
2711	int rbpl_head, rbpl_tail;
2712#endif
2713	static long mcc = 0, oec = 0, dcc = 0, cec = 0;
2714
2715
2716	left = *pos;
2717	if (!left--)
2718		return sprintf(page, "ATM he driver\n");
2719
2720	if (!left--)
2721		return sprintf(page, "%s%s\n\n",
2722			he_dev->prod_id, he_dev->media & 0x40 ? "SM" : "MM");
2723
2724	if (!left--)
2725		return sprintf(page, "Mismatched Cells  VPI/VCI Not Open  Dropped Cells  RCM Dropped Cells\n");
2726
2727	spin_lock_irqsave(&he_dev->global_lock, flags);
2728	mcc += he_readl(he_dev, MCC);
2729	oec += he_readl(he_dev, OEC);
2730	dcc += he_readl(he_dev, DCC);
2731	cec += he_readl(he_dev, CEC);
2732	spin_unlock_irqrestore(&he_dev->global_lock, flags);
2733
2734	if (!left--)
2735		return sprintf(page, "%16ld  %16ld  %13ld  %17ld\n\n", 
2736							mcc, oec, dcc, cec);
2737
2738	if (!left--)
2739		return sprintf(page, "irq_size = %d  inuse = ?  peak = %d\n",
2740				CONFIG_IRQ_SIZE, he_dev->irq_peak);
2741
2742	if (!left--)
2743		return sprintf(page, "tpdrq_size = %d  inuse = ?\n",
2744						CONFIG_TPDRQ_SIZE);
2745
2746	if (!left--)
2747		return sprintf(page, "rbrq_size = %d  inuse = ?  peak = %d\n",
2748				CONFIG_RBRQ_SIZE, he_dev->rbrq_peak);
2749
2750	if (!left--)
2751		return sprintf(page, "tbrq_size = %d  peak = %d\n",
2752					CONFIG_TBRQ_SIZE, he_dev->tbrq_peak);
2753
2754
2755#ifdef notdef
2756	rbpl_head = RBPL_MASK(he_readl(he_dev, G0_RBPL_S));
2757	rbpl_tail = RBPL_MASK(he_readl(he_dev, G0_RBPL_T));
2758
2759	inuse = rbpl_head - rbpl_tail;
2760	if (inuse < 0)
2761		inuse += CONFIG_RBPL_SIZE * sizeof(struct he_rbp);
2762	inuse /= sizeof(struct he_rbp);
2763
2764	if (!left--)
2765		return sprintf(page, "rbpl_size = %d  inuse = %d\n\n",
2766						CONFIG_RBPL_SIZE, inuse);
2767#endif
2768
2769	if (!left--)
2770		return sprintf(page, "rate controller periods (cbr)\n                 pcr  #vc\n");
2771
2772	for (i = 0; i < HE_NUM_CS_STPER; ++i)
2773		if (!left--)
2774			return sprintf(page, "cs_stper%-2d  %8ld  %3d\n", i,
2775						he_dev->cs_stper[i].pcr,
2776						he_dev->cs_stper[i].inuse);
2777
2778	if (!left--)
2779		return sprintf(page, "total bw (cbr): %d  (limit %d)\n",
2780			he_dev->total_bw, he_dev->atm_dev->link_rate * 10 / 9);
2781
2782	return 0;
2783}
2784
2785/* eeprom routines  -- see 4.7 */
2786
2787static u8 read_prom_byte(struct he_dev *he_dev, int addr)
2788{
2789	u32 val = 0, tmp_read = 0;
2790	int i, j = 0;
2791	u8 byte_read = 0;
2792
2793	val = readl(he_dev->membase + HOST_CNTL);
2794	val &= 0xFFFFE0FF;
2795       
2796	/* Turn on write enable */
2797	val |= 0x800;
2798	he_writel(he_dev, val, HOST_CNTL);
2799       
2800	/* Send READ instruction */
2801	for (i = 0; i < ARRAY_SIZE(readtab); i++) {
2802		he_writel(he_dev, val | readtab[i], HOST_CNTL);
2803		udelay(EEPROM_DELAY);
2804	}
2805       
2806	/* Next, we need to send the byte address to read from */
2807	for (i = 7; i >= 0; i--) {
2808		he_writel(he_dev, val | clocktab[j++] | (((addr >> i) & 1) << 9), HOST_CNTL);
2809		udelay(EEPROM_DELAY);
2810		he_writel(he_dev, val | clocktab[j++] | (((addr >> i) & 1) << 9), HOST_CNTL);
2811		udelay(EEPROM_DELAY);
2812	}
2813       
2814	j = 0;
2815
2816	val &= 0xFFFFF7FF;      /* Turn off write enable */
2817	he_writel(he_dev, val, HOST_CNTL);
2818       
2819	/* Now, we can read data from the EEPROM by clocking it in */
2820	for (i = 7; i >= 0; i--) {
2821		he_writel(he_dev, val | clocktab[j++], HOST_CNTL);
2822		udelay(EEPROM_DELAY);
2823		tmp_read = he_readl(he_dev, HOST_CNTL);
2824		byte_read |= (unsigned char)
2825			   ((tmp_read & ID_DOUT) >> ID_DOFFSET << i);
2826		he_writel(he_dev, val | clocktab[j++], HOST_CNTL);
2827		udelay(EEPROM_DELAY);
2828	}
2829       
2830	he_writel(he_dev, val | ID_CS, HOST_CNTL);
2831	udelay(EEPROM_DELAY);
2832
2833	return byte_read;
2834}
2835
2836MODULE_LICENSE("GPL");
2837MODULE_AUTHOR("chas williams <chas@cmf.nrl.navy.mil>");
2838MODULE_DESCRIPTION("ForeRunnerHE ATM Adapter driver");
2839module_param(disable64, bool, 0);
2840MODULE_PARM_DESC(disable64, "disable 64-bit pci bus transfers");
2841module_param(nvpibits, short, 0);
2842MODULE_PARM_DESC(nvpibits, "numbers of bits for vpi (default 0)");
2843module_param(nvcibits, short, 0);
2844MODULE_PARM_DESC(nvcibits, "numbers of bits for vci (default 12)");
2845module_param(rx_skb_reserve, short, 0);
2846MODULE_PARM_DESC(rx_skb_reserve, "padding for receive skb (default 16)");
2847module_param(irq_coalesce, bool, 0);
2848MODULE_PARM_DESC(irq_coalesce, "use interrupt coalescing (default 1)");
2849module_param(sdh, bool, 0);
2850MODULE_PARM_DESC(sdh, "use SDH framing (default 0)");
2851
2852static const struct pci_device_id he_pci_tbl[] = {
2853	{ PCI_VDEVICE(FORE, PCI_DEVICE_ID_FORE_HE), 0 },
2854	{ 0, }
2855};
2856
2857MODULE_DEVICE_TABLE(pci, he_pci_tbl);
2858
2859static struct pci_driver he_driver = {
2860	.name =		"he",
2861	.probe =	he_init_one,
2862	.remove =	he_remove_one,
2863	.id_table =	he_pci_tbl,
2864};
2865
2866module_pci_driver(he_driver);
v4.10.11
   1/*
   2
   3  he.c
   4
   5  ForeRunnerHE ATM Adapter driver for ATM on Linux
   6  Copyright (C) 1999-2001  Naval Research Laboratory
   7
   8  This library is free software; you can redistribute it and/or
   9  modify it under the terms of the GNU Lesser General Public
  10  License as published by the Free Software Foundation; either
  11  version 2.1 of the License, or (at your option) any later version.
  12
  13  This library is distributed in the hope that it will be useful,
  14  but WITHOUT ANY WARRANTY; without even the implied warranty of
  15  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  16  Lesser General Public License for more details.
  17
  18  You should have received a copy of the GNU Lesser General Public
  19  License along with this library; if not, write to the Free Software
  20  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  21
  22*/
  23
  24/*
  25
  26  he.c
  27
  28  ForeRunnerHE ATM Adapter driver for ATM on Linux
  29  Copyright (C) 1999-2001  Naval Research Laboratory
  30
  31  Permission to use, copy, modify and distribute this software and its
  32  documentation is hereby granted, provided that both the copyright
  33  notice and this permission notice appear in all copies of the software,
  34  derivative works or modified versions, and any portions thereof, and
  35  that both notices appear in supporting documentation.
  36
  37  NRL ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" CONDITION AND
  38  DISCLAIMS ANY LIABILITY OF ANY KIND FOR ANY DAMAGES WHATSOEVER
  39  RESULTING FROM THE USE OF THIS SOFTWARE.
  40
  41  This driver was written using the "Programmer's Reference Manual for
  42  ForeRunnerHE(tm)", MANU0361-01 - Rev. A, 08/21/98.
  43
  44  AUTHORS:
  45	chas williams <chas@cmf.nrl.navy.mil>
  46	eric kinzie <ekinzie@cmf.nrl.navy.mil>
  47
  48  NOTES:
  49	4096 supported 'connections'
  50	group 0 is used for all traffic
  51	interrupt queue 0 is used for all interrupts
  52	aal0 support (based on work from ulrich.u.muller@nokia.com)
  53
  54 */
  55
  56#include <linux/module.h>
  57#include <linux/kernel.h>
  58#include <linux/skbuff.h>
  59#include <linux/pci.h>
  60#include <linux/errno.h>
  61#include <linux/types.h>
  62#include <linux/string.h>
  63#include <linux/delay.h>
  64#include <linux/init.h>
  65#include <linux/mm.h>
  66#include <linux/sched.h>
  67#include <linux/timer.h>
  68#include <linux/interrupt.h>
  69#include <linux/dma-mapping.h>
  70#include <linux/bitmap.h>
  71#include <linux/slab.h>
  72#include <asm/io.h>
  73#include <asm/byteorder.h>
  74#include <linux/uaccess.h>
  75
  76#include <linux/atmdev.h>
  77#include <linux/atm.h>
  78#include <linux/sonet.h>
  79
  80#undef USE_SCATTERGATHER
  81#undef USE_CHECKSUM_HW			/* still confused about this */
  82/* #undef HE_DEBUG */
  83
  84#include "he.h"
  85#include "suni.h"
  86#include <linux/atm_he.h>
  87
  88#define hprintk(fmt,args...)	printk(KERN_ERR DEV_LABEL "%d: " fmt, he_dev->number , ##args)
  89
  90#ifdef HE_DEBUG
  91#define HPRINTK(fmt,args...)	printk(KERN_DEBUG DEV_LABEL "%d: " fmt, he_dev->number , ##args)
  92#else /* !HE_DEBUG */
  93#define HPRINTK(fmt,args...)	do { } while (0)
  94#endif /* HE_DEBUG */
  95
  96/* declarations */
  97
  98static int he_open(struct atm_vcc *vcc);
  99static void he_close(struct atm_vcc *vcc);
 100static int he_send(struct atm_vcc *vcc, struct sk_buff *skb);
 101static int he_ioctl(struct atm_dev *dev, unsigned int cmd, void __user *arg);
 102static irqreturn_t he_irq_handler(int irq, void *dev_id);
 103static void he_tasklet(unsigned long data);
 104static int he_proc_read(struct atm_dev *dev,loff_t *pos,char *page);
 105static int he_start(struct atm_dev *dev);
 106static void he_stop(struct he_dev *dev);
 107static void he_phy_put(struct atm_dev *, unsigned char, unsigned long);
 108static unsigned char he_phy_get(struct atm_dev *, unsigned long);
 109
 110static u8 read_prom_byte(struct he_dev *he_dev, int addr);
 111
 112/* globals */
 113
 114static struct he_dev *he_devs;
 115static bool disable64;
 116static short nvpibits = -1;
 117static short nvcibits = -1;
 118static short rx_skb_reserve = 16;
 119static bool irq_coalesce = true;
 120static bool sdh;
 121
 122/* Read from EEPROM = 0000 0011b */
 123static unsigned int readtab[] = {
 124	CS_HIGH | CLK_HIGH,
 125	CS_LOW | CLK_LOW,
 126	CLK_HIGH,               /* 0 */
 127	CLK_LOW,
 128	CLK_HIGH,               /* 0 */
 129	CLK_LOW,
 130	CLK_HIGH,               /* 0 */
 131	CLK_LOW,
 132	CLK_HIGH,               /* 0 */
 133	CLK_LOW,
 134	CLK_HIGH,               /* 0 */
 135	CLK_LOW,
 136	CLK_HIGH,               /* 0 */
 137	CLK_LOW | SI_HIGH,
 138	CLK_HIGH | SI_HIGH,     /* 1 */
 139	CLK_LOW | SI_HIGH,
 140	CLK_HIGH | SI_HIGH      /* 1 */
 141};     
 142 
 143/* Clock to read from/write to the EEPROM */
 144static unsigned int clocktab[] = {
 145	CLK_LOW,
 146	CLK_HIGH,
 147	CLK_LOW,
 148	CLK_HIGH,
 149	CLK_LOW,
 150	CLK_HIGH,
 151	CLK_LOW,
 152	CLK_HIGH,
 153	CLK_LOW,
 154	CLK_HIGH,
 155	CLK_LOW,
 156	CLK_HIGH,
 157	CLK_LOW,
 158	CLK_HIGH,
 159	CLK_LOW,
 160	CLK_HIGH,
 161	CLK_LOW
 162};     
 163
 164static struct atmdev_ops he_ops =
 165{
 166	.open =		he_open,
 167	.close =	he_close,	
 168	.ioctl =	he_ioctl,	
 169	.send =		he_send,
 170	.phy_put =	he_phy_put,
 171	.phy_get =	he_phy_get,
 172	.proc_read =	he_proc_read,
 173	.owner =	THIS_MODULE
 174};
 175
 176#define he_writel(dev, val, reg)	do { writel(val, (dev)->membase + (reg)); wmb(); } while (0)
 177#define he_readl(dev, reg)		readl((dev)->membase + (reg))
 178
 179/* section 2.12 connection memory access */
 180
 181static __inline__ void
 182he_writel_internal(struct he_dev *he_dev, unsigned val, unsigned addr,
 183								unsigned flags)
 184{
 185	he_writel(he_dev, val, CON_DAT);
 186	(void) he_readl(he_dev, CON_DAT);		/* flush posted writes */
 187	he_writel(he_dev, flags | CON_CTL_WRITE | CON_CTL_ADDR(addr), CON_CTL);
 188	while (he_readl(he_dev, CON_CTL) & CON_CTL_BUSY);
 189}
 190
 191#define he_writel_rcm(dev, val, reg) 				\
 192			he_writel_internal(dev, val, reg, CON_CTL_RCM)
 193
 194#define he_writel_tcm(dev, val, reg) 				\
 195			he_writel_internal(dev, val, reg, CON_CTL_TCM)
 196
 197#define he_writel_mbox(dev, val, reg) 				\
 198			he_writel_internal(dev, val, reg, CON_CTL_MBOX)
 199
 200static unsigned
 201he_readl_internal(struct he_dev *he_dev, unsigned addr, unsigned flags)
 202{
 203	he_writel(he_dev, flags | CON_CTL_READ | CON_CTL_ADDR(addr), CON_CTL);
 204	while (he_readl(he_dev, CON_CTL) & CON_CTL_BUSY);
 205	return he_readl(he_dev, CON_DAT);
 206}
 207
 208#define he_readl_rcm(dev, reg) \
 209			he_readl_internal(dev, reg, CON_CTL_RCM)
 210
 211#define he_readl_tcm(dev, reg) \
 212			he_readl_internal(dev, reg, CON_CTL_TCM)
 213
 214#define he_readl_mbox(dev, reg) \
 215			he_readl_internal(dev, reg, CON_CTL_MBOX)
 216
 217
 218/* figure 2.2 connection id */
 219
 220#define he_mkcid(dev, vpi, vci)		(((vpi << (dev)->vcibits) | vci) & 0x1fff)
 221
 222/* 2.5.1 per connection transmit state registers */
 223
 224#define he_writel_tsr0(dev, val, cid) \
 225		he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 0)
 226#define he_readl_tsr0(dev, cid) \
 227		he_readl_tcm(dev, CONFIG_TSRA | (cid << 3) | 0)
 228
 229#define he_writel_tsr1(dev, val, cid) \
 230		he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 1)
 231
 232#define he_writel_tsr2(dev, val, cid) \
 233		he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 2)
 234
 235#define he_writel_tsr3(dev, val, cid) \
 236		he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 3)
 237
 238#define he_writel_tsr4(dev, val, cid) \
 239		he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 4)
 240
 241	/* from page 2-20
 242	 *
 243	 * NOTE While the transmit connection is active, bits 23 through 0
 244	 *      of this register must not be written by the host.  Byte
 245	 *      enables should be used during normal operation when writing
 246	 *      the most significant byte.
 247	 */
 248
 249#define he_writel_tsr4_upper(dev, val, cid) \
 250		he_writel_internal(dev, val, CONFIG_TSRA | (cid << 3) | 4, \
 251							CON_CTL_TCM \
 252							| CON_BYTE_DISABLE_2 \
 253							| CON_BYTE_DISABLE_1 \
 254							| CON_BYTE_DISABLE_0)
 255
 256#define he_readl_tsr4(dev, cid) \
 257		he_readl_tcm(dev, CONFIG_TSRA | (cid << 3) | 4)
 258
 259#define he_writel_tsr5(dev, val, cid) \
 260		he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 5)
 261
 262#define he_writel_tsr6(dev, val, cid) \
 263		he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 6)
 264
 265#define he_writel_tsr7(dev, val, cid) \
 266		he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 7)
 267
 268
 269#define he_writel_tsr8(dev, val, cid) \
 270		he_writel_tcm(dev, val, CONFIG_TSRB | (cid << 2) | 0)
 271
 272#define he_writel_tsr9(dev, val, cid) \
 273		he_writel_tcm(dev, val, CONFIG_TSRB | (cid << 2) | 1)
 274
 275#define he_writel_tsr10(dev, val, cid) \
 276		he_writel_tcm(dev, val, CONFIG_TSRB | (cid << 2) | 2)
 277
 278#define he_writel_tsr11(dev, val, cid) \
 279		he_writel_tcm(dev, val, CONFIG_TSRB | (cid << 2) | 3)
 280
 281
 282#define he_writel_tsr12(dev, val, cid) \
 283		he_writel_tcm(dev, val, CONFIG_TSRC | (cid << 1) | 0)
 284
 285#define he_writel_tsr13(dev, val, cid) \
 286		he_writel_tcm(dev, val, CONFIG_TSRC | (cid << 1) | 1)
 287
 288
 289#define he_writel_tsr14(dev, val, cid) \
 290		he_writel_tcm(dev, val, CONFIG_TSRD | cid)
 291
 292#define he_writel_tsr14_upper(dev, val, cid) \
 293		he_writel_internal(dev, val, CONFIG_TSRD | cid, \
 294							CON_CTL_TCM \
 295							| CON_BYTE_DISABLE_2 \
 296							| CON_BYTE_DISABLE_1 \
 297							| CON_BYTE_DISABLE_0)
 298
 299/* 2.7.1 per connection receive state registers */
 300
 301#define he_writel_rsr0(dev, val, cid) \
 302		he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 0)
 303#define he_readl_rsr0(dev, cid) \
 304		he_readl_rcm(dev, 0x00000 | (cid << 3) | 0)
 305
 306#define he_writel_rsr1(dev, val, cid) \
 307		he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 1)
 308
 309#define he_writel_rsr2(dev, val, cid) \
 310		he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 2)
 311
 312#define he_writel_rsr3(dev, val, cid) \
 313		he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 3)
 314
 315#define he_writel_rsr4(dev, val, cid) \
 316		he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 4)
 317
 318#define he_writel_rsr5(dev, val, cid) \
 319		he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 5)
 320
 321#define he_writel_rsr6(dev, val, cid) \
 322		he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 6)
 323
 324#define he_writel_rsr7(dev, val, cid) \
 325		he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 7)
 326
 327static __inline__ struct atm_vcc*
 328__find_vcc(struct he_dev *he_dev, unsigned cid)
 329{
 330	struct hlist_head *head;
 331	struct atm_vcc *vcc;
 332	struct sock *s;
 333	short vpi;
 334	int vci;
 335
 336	vpi = cid >> he_dev->vcibits;
 337	vci = cid & ((1 << he_dev->vcibits) - 1);
 338	head = &vcc_hash[vci & (VCC_HTABLE_SIZE -1)];
 339
 340	sk_for_each(s, head) {
 341		vcc = atm_sk(s);
 342		if (vcc->dev == he_dev->atm_dev &&
 343		    vcc->vci == vci && vcc->vpi == vpi &&
 344		    vcc->qos.rxtp.traffic_class != ATM_NONE) {
 345				return vcc;
 346		}
 347	}
 348	return NULL;
 349}
 350
 351static int he_init_one(struct pci_dev *pci_dev,
 352		       const struct pci_device_id *pci_ent)
 353{
 354	struct atm_dev *atm_dev = NULL;
 355	struct he_dev *he_dev = NULL;
 356	int err = 0;
 357
 358	printk(KERN_INFO "ATM he driver\n");
 359
 360	if (pci_enable_device(pci_dev))
 361		return -EIO;
 362	if (dma_set_mask_and_coherent(&pci_dev->dev, DMA_BIT_MASK(32)) != 0) {
 363		printk(KERN_WARNING "he: no suitable dma available\n");
 364		err = -EIO;
 365		goto init_one_failure;
 366	}
 367
 368	atm_dev = atm_dev_register(DEV_LABEL, &pci_dev->dev, &he_ops, -1, NULL);
 369	if (!atm_dev) {
 370		err = -ENODEV;
 371		goto init_one_failure;
 372	}
 373	pci_set_drvdata(pci_dev, atm_dev);
 374
 375	he_dev = kzalloc(sizeof(struct he_dev),
 376							GFP_KERNEL);
 377	if (!he_dev) {
 378		err = -ENOMEM;
 379		goto init_one_failure;
 380	}
 381	he_dev->pci_dev = pci_dev;
 382	he_dev->atm_dev = atm_dev;
 383	he_dev->atm_dev->dev_data = he_dev;
 384	atm_dev->dev_data = he_dev;
 385	he_dev->number = atm_dev->number;
 386	tasklet_init(&he_dev->tasklet, he_tasklet, (unsigned long) he_dev);
 387	spin_lock_init(&he_dev->global_lock);
 388
 389	if (he_start(atm_dev)) {
 390		he_stop(he_dev);
 391		err = -ENODEV;
 392		goto init_one_failure;
 393	}
 394	he_dev->next = NULL;
 395	if (he_devs)
 396		he_dev->next = he_devs;
 397	he_devs = he_dev;
 398	return 0;
 399
 400init_one_failure:
 401	if (atm_dev)
 402		atm_dev_deregister(atm_dev);
 403	kfree(he_dev);
 404	pci_disable_device(pci_dev);
 405	return err;
 406}
 407
 408static void he_remove_one(struct pci_dev *pci_dev)
 409{
 410	struct atm_dev *atm_dev;
 411	struct he_dev *he_dev;
 412
 413	atm_dev = pci_get_drvdata(pci_dev);
 414	he_dev = HE_DEV(atm_dev);
 415
 416	/* need to remove from he_devs */
 417
 418	he_stop(he_dev);
 419	atm_dev_deregister(atm_dev);
 420	kfree(he_dev);
 421
 422	pci_disable_device(pci_dev);
 423}
 424
 425
 426static unsigned
 427rate_to_atmf(unsigned rate)		/* cps to atm forum format */
 428{
 429#define NONZERO (1 << 14)
 430
 431	unsigned exp = 0;
 432
 433	if (rate == 0)
 434		return 0;
 435
 436	rate <<= 9;
 437	while (rate > 0x3ff) {
 438		++exp;
 439		rate >>= 1;
 440	}
 441
 442	return (NONZERO | (exp << 9) | (rate & 0x1ff));
 443}
 444
 445static void he_init_rx_lbfp0(struct he_dev *he_dev)
 446{
 447	unsigned i, lbm_offset, lbufd_index, lbuf_addr, lbuf_count;
 448	unsigned lbufs_per_row = he_dev->cells_per_row / he_dev->cells_per_lbuf;
 449	unsigned lbuf_bufsize = he_dev->cells_per_lbuf * ATM_CELL_PAYLOAD;
 450	unsigned row_offset = he_dev->r0_startrow * he_dev->bytes_per_row;
 451	
 452	lbufd_index = 0;
 453	lbm_offset = he_readl(he_dev, RCMLBM_BA);
 454
 455	he_writel(he_dev, lbufd_index, RLBF0_H);
 456
 457	for (i = 0, lbuf_count = 0; i < he_dev->r0_numbuffs; ++i) {
 458		lbufd_index += 2;
 459		lbuf_addr = (row_offset + (lbuf_count * lbuf_bufsize)) / 32;
 460
 461		he_writel_rcm(he_dev, lbuf_addr, lbm_offset);
 462		he_writel_rcm(he_dev, lbufd_index, lbm_offset + 1);
 463
 464		if (++lbuf_count == lbufs_per_row) {
 465			lbuf_count = 0;
 466			row_offset += he_dev->bytes_per_row;
 467		}
 468		lbm_offset += 4;
 469	}
 470		
 471	he_writel(he_dev, lbufd_index - 2, RLBF0_T);
 472	he_writel(he_dev, he_dev->r0_numbuffs, RLBF0_C);
 473}
 474
 475static void he_init_rx_lbfp1(struct he_dev *he_dev)
 476{
 477	unsigned i, lbm_offset, lbufd_index, lbuf_addr, lbuf_count;
 478	unsigned lbufs_per_row = he_dev->cells_per_row / he_dev->cells_per_lbuf;
 479	unsigned lbuf_bufsize = he_dev->cells_per_lbuf * ATM_CELL_PAYLOAD;
 480	unsigned row_offset = he_dev->r1_startrow * he_dev->bytes_per_row;
 481	
 482	lbufd_index = 1;
 483	lbm_offset = he_readl(he_dev, RCMLBM_BA) + (2 * lbufd_index);
 484
 485	he_writel(he_dev, lbufd_index, RLBF1_H);
 486
 487	for (i = 0, lbuf_count = 0; i < he_dev->r1_numbuffs; ++i) {
 488		lbufd_index += 2;
 489		lbuf_addr = (row_offset + (lbuf_count * lbuf_bufsize)) / 32;
 490
 491		he_writel_rcm(he_dev, lbuf_addr, lbm_offset);
 492		he_writel_rcm(he_dev, lbufd_index, lbm_offset + 1);
 493
 494		if (++lbuf_count == lbufs_per_row) {
 495			lbuf_count = 0;
 496			row_offset += he_dev->bytes_per_row;
 497		}
 498		lbm_offset += 4;
 499	}
 500		
 501	he_writel(he_dev, lbufd_index - 2, RLBF1_T);
 502	he_writel(he_dev, he_dev->r1_numbuffs, RLBF1_C);
 503}
 504
 505static void he_init_tx_lbfp(struct he_dev *he_dev)
 506{
 507	unsigned i, lbm_offset, lbufd_index, lbuf_addr, lbuf_count;
 508	unsigned lbufs_per_row = he_dev->cells_per_row / he_dev->cells_per_lbuf;
 509	unsigned lbuf_bufsize = he_dev->cells_per_lbuf * ATM_CELL_PAYLOAD;
 510	unsigned row_offset = he_dev->tx_startrow * he_dev->bytes_per_row;
 511	
 512	lbufd_index = he_dev->r0_numbuffs + he_dev->r1_numbuffs;
 513	lbm_offset = he_readl(he_dev, RCMLBM_BA) + (2 * lbufd_index);
 514
 515	he_writel(he_dev, lbufd_index, TLBF_H);
 516
 517	for (i = 0, lbuf_count = 0; i < he_dev->tx_numbuffs; ++i) {
 518		lbufd_index += 1;
 519		lbuf_addr = (row_offset + (lbuf_count * lbuf_bufsize)) / 32;
 520
 521		he_writel_rcm(he_dev, lbuf_addr, lbm_offset);
 522		he_writel_rcm(he_dev, lbufd_index, lbm_offset + 1);
 523
 524		if (++lbuf_count == lbufs_per_row) {
 525			lbuf_count = 0;
 526			row_offset += he_dev->bytes_per_row;
 527		}
 528		lbm_offset += 2;
 529	}
 530		
 531	he_writel(he_dev, lbufd_index - 1, TLBF_T);
 532}
 533
 534static int he_init_tpdrq(struct he_dev *he_dev)
 535{
 536	he_dev->tpdrq_base = dma_zalloc_coherent(&he_dev->pci_dev->dev,
 537						 CONFIG_TPDRQ_SIZE * sizeof(struct he_tpdrq),
 538						 &he_dev->tpdrq_phys, GFP_KERNEL);
 
 539	if (he_dev->tpdrq_base == NULL) {
 540		hprintk("failed to alloc tpdrq\n");
 541		return -ENOMEM;
 542	}
 543
 544	he_dev->tpdrq_tail = he_dev->tpdrq_base;
 545	he_dev->tpdrq_head = he_dev->tpdrq_base;
 546
 547	he_writel(he_dev, he_dev->tpdrq_phys, TPDRQ_B_H);
 548	he_writel(he_dev, 0, TPDRQ_T);	
 549	he_writel(he_dev, CONFIG_TPDRQ_SIZE - 1, TPDRQ_S);
 550
 551	return 0;
 552}
 553
 554static void he_init_cs_block(struct he_dev *he_dev)
 555{
 556	unsigned clock, rate, delta;
 557	int reg;
 558
 559	/* 5.1.7 cs block initialization */
 560
 561	for (reg = 0; reg < 0x20; ++reg)
 562		he_writel_mbox(he_dev, 0x0, CS_STTIM0 + reg);
 563
 564	/* rate grid timer reload values */
 565
 566	clock = he_is622(he_dev) ? 66667000 : 50000000;
 567	rate = he_dev->atm_dev->link_rate;
 568	delta = rate / 16 / 2;
 569
 570	for (reg = 0; reg < 0x10; ++reg) {
 571		/* 2.4 internal transmit function
 572		 *
 573	 	 * we initialize the first row in the rate grid.
 574		 * values are period (in clock cycles) of timer
 575		 */
 576		unsigned period = clock / rate;
 577
 578		he_writel_mbox(he_dev, period, CS_TGRLD0 + reg);
 579		rate -= delta;
 580	}
 581
 582	if (he_is622(he_dev)) {
 583		/* table 5.2 (4 cells per lbuf) */
 584		he_writel_mbox(he_dev, 0x000800fa, CS_ERTHR0);
 585		he_writel_mbox(he_dev, 0x000c33cb, CS_ERTHR1);
 586		he_writel_mbox(he_dev, 0x0010101b, CS_ERTHR2);
 587		he_writel_mbox(he_dev, 0x00181dac, CS_ERTHR3);
 588		he_writel_mbox(he_dev, 0x00280600, CS_ERTHR4);
 589
 590		/* table 5.3, 5.4, 5.5, 5.6, 5.7 */
 591		he_writel_mbox(he_dev, 0x023de8b3, CS_ERCTL0);
 592		he_writel_mbox(he_dev, 0x1801, CS_ERCTL1);
 593		he_writel_mbox(he_dev, 0x68b3, CS_ERCTL2);
 594		he_writel_mbox(he_dev, 0x1280, CS_ERSTAT0);
 595		he_writel_mbox(he_dev, 0x68b3, CS_ERSTAT1);
 596		he_writel_mbox(he_dev, 0x14585, CS_RTFWR);
 597
 598		he_writel_mbox(he_dev, 0x4680, CS_RTATR);
 599
 600		/* table 5.8 */
 601		he_writel_mbox(he_dev, 0x00159ece, CS_TFBSET);
 602		he_writel_mbox(he_dev, 0x68b3, CS_WCRMAX);
 603		he_writel_mbox(he_dev, 0x5eb3, CS_WCRMIN);
 604		he_writel_mbox(he_dev, 0xe8b3, CS_WCRINC);
 605		he_writel_mbox(he_dev, 0xdeb3, CS_WCRDEC);
 606		he_writel_mbox(he_dev, 0x68b3, CS_WCRCEIL);
 607
 608		/* table 5.9 */
 609		he_writel_mbox(he_dev, 0x5, CS_OTPPER);
 610		he_writel_mbox(he_dev, 0x14, CS_OTWPER);
 611	} else {
 612		/* table 5.1 (4 cells per lbuf) */
 613		he_writel_mbox(he_dev, 0x000400ea, CS_ERTHR0);
 614		he_writel_mbox(he_dev, 0x00063388, CS_ERTHR1);
 615		he_writel_mbox(he_dev, 0x00081018, CS_ERTHR2);
 616		he_writel_mbox(he_dev, 0x000c1dac, CS_ERTHR3);
 617		he_writel_mbox(he_dev, 0x0014051a, CS_ERTHR4);
 618
 619		/* table 5.3, 5.4, 5.5, 5.6, 5.7 */
 620		he_writel_mbox(he_dev, 0x0235e4b1, CS_ERCTL0);
 621		he_writel_mbox(he_dev, 0x4701, CS_ERCTL1);
 622		he_writel_mbox(he_dev, 0x64b1, CS_ERCTL2);
 623		he_writel_mbox(he_dev, 0x1280, CS_ERSTAT0);
 624		he_writel_mbox(he_dev, 0x64b1, CS_ERSTAT1);
 625		he_writel_mbox(he_dev, 0xf424, CS_RTFWR);
 626
 627		he_writel_mbox(he_dev, 0x4680, CS_RTATR);
 628
 629		/* table 5.8 */
 630		he_writel_mbox(he_dev, 0x000563b7, CS_TFBSET);
 631		he_writel_mbox(he_dev, 0x64b1, CS_WCRMAX);
 632		he_writel_mbox(he_dev, 0x5ab1, CS_WCRMIN);
 633		he_writel_mbox(he_dev, 0xe4b1, CS_WCRINC);
 634		he_writel_mbox(he_dev, 0xdab1, CS_WCRDEC);
 635		he_writel_mbox(he_dev, 0x64b1, CS_WCRCEIL);
 636
 637		/* table 5.9 */
 638		he_writel_mbox(he_dev, 0x6, CS_OTPPER);
 639		he_writel_mbox(he_dev, 0x1e, CS_OTWPER);
 640	}
 641
 642	he_writel_mbox(he_dev, 0x8, CS_OTTLIM);
 643
 644	for (reg = 0; reg < 0x8; ++reg)
 645		he_writel_mbox(he_dev, 0x0, CS_HGRRT0 + reg);
 646
 647}
 648
 649static int he_init_cs_block_rcm(struct he_dev *he_dev)
 650{
 651	unsigned (*rategrid)[16][16];
 652	unsigned rate, delta;
 653	int i, j, reg;
 654
 655	unsigned rate_atmf, exp, man;
 656	unsigned long long rate_cps;
 657	int mult, buf, buf_limit = 4;
 658
 659	rategrid = kmalloc( sizeof(unsigned) * 16 * 16, GFP_KERNEL);
 660	if (!rategrid)
 661		return -ENOMEM;
 662
 663	/* initialize rate grid group table */
 664
 665	for (reg = 0x0; reg < 0xff; ++reg)
 666		he_writel_rcm(he_dev, 0x0, CONFIG_RCMABR + reg);
 667
 668	/* initialize rate controller groups */
 669
 670	for (reg = 0x100; reg < 0x1ff; ++reg)
 671		he_writel_rcm(he_dev, 0x0, CONFIG_RCMABR + reg);
 672	
 673	/* initialize tNrm lookup table */
 674
 675	/* the manual makes reference to a routine in a sample driver
 676	   for proper configuration; fortunately, we only need this
 677	   in order to support abr connection */
 678	
 679	/* initialize rate to group table */
 680
 681	rate = he_dev->atm_dev->link_rate;
 682	delta = rate / 32;
 683
 684	/*
 685	 * 2.4 transmit internal functions
 686	 * 
 687	 * we construct a copy of the rate grid used by the scheduler
 688	 * in order to construct the rate to group table below
 689	 */
 690
 691	for (j = 0; j < 16; j++) {
 692		(*rategrid)[0][j] = rate;
 693		rate -= delta;
 694	}
 695
 696	for (i = 1; i < 16; i++)
 697		for (j = 0; j < 16; j++)
 698			if (i > 14)
 699				(*rategrid)[i][j] = (*rategrid)[i - 1][j] / 4;
 700			else
 701				(*rategrid)[i][j] = (*rategrid)[i - 1][j] / 2;
 702
 703	/*
 704	 * 2.4 transmit internal function
 705	 *
 706	 * this table maps the upper 5 bits of exponent and mantissa
 707	 * of the atm forum representation of the rate into an index
 708	 * on rate grid  
 709	 */
 710
 711	rate_atmf = 0;
 712	while (rate_atmf < 0x400) {
 713		man = (rate_atmf & 0x1f) << 4;
 714		exp = rate_atmf >> 5;
 715
 716		/* 
 717			instead of '/ 512', use '>> 9' to prevent a call
 718			to divdu3 on x86 platforms
 719		*/
 720		rate_cps = (unsigned long long) (1 << exp) * (man + 512) >> 9;
 721
 722		if (rate_cps < 10)
 723			rate_cps = 10;	/* 2.2.1 minimum payload rate is 10 cps */
 724
 725		for (i = 255; i > 0; i--)
 726			if ((*rategrid)[i/16][i%16] >= rate_cps)
 727				break;	 /* pick nearest rate instead? */
 728
 729		/*
 730		 * each table entry is 16 bits: (rate grid index (8 bits)
 731		 * and a buffer limit (8 bits)
 732		 * there are two table entries in each 32-bit register
 733		 */
 734
 735#ifdef notdef
 736		buf = rate_cps * he_dev->tx_numbuffs /
 737				(he_dev->atm_dev->link_rate * 2);
 738#else
 739		/* this is pretty, but avoids _divdu3 and is mostly correct */
 740		mult = he_dev->atm_dev->link_rate / ATM_OC3_PCR;
 741		if (rate_cps > (272 * mult))
 742			buf = 4;
 743		else if (rate_cps > (204 * mult))
 744			buf = 3;
 745		else if (rate_cps > (136 * mult))
 746			buf = 2;
 747		else if (rate_cps > (68 * mult))
 748			buf = 1;
 749		else
 750			buf = 0;
 751#endif
 752		if (buf > buf_limit)
 753			buf = buf_limit;
 754		reg = (reg << 16) | ((i << 8) | buf);
 755
 756#define RTGTBL_OFFSET 0x400
 757	  
 758		if (rate_atmf & 0x1)
 759			he_writel_rcm(he_dev, reg,
 760				CONFIG_RCMABR + RTGTBL_OFFSET + (rate_atmf >> 1));
 761
 762		++rate_atmf;
 763	}
 764
 765	kfree(rategrid);
 766	return 0;
 767}
 768
 769static int he_init_group(struct he_dev *he_dev, int group)
 770{
 771	struct he_buff *heb, *next;
 772	dma_addr_t mapping;
 773	int i;
 774
 775	he_writel(he_dev, 0x0, G0_RBPS_S + (group * 32));
 776	he_writel(he_dev, 0x0, G0_RBPS_T + (group * 32));
 777	he_writel(he_dev, 0x0, G0_RBPS_QI + (group * 32));
 778	he_writel(he_dev, RBP_THRESH(0x1) | RBP_QSIZE(0x0),
 779		  G0_RBPS_BS + (group * 32));
 780
 781	/* bitmap table */
 782	he_dev->rbpl_table = kmalloc_array(BITS_TO_LONGS(RBPL_TABLE_SIZE),
 783					   sizeof(*he_dev->rbpl_table),
 784					   GFP_KERNEL);
 785	if (!he_dev->rbpl_table) {
 786		hprintk("unable to allocate rbpl bitmap table\n");
 787		return -ENOMEM;
 788	}
 789	bitmap_zero(he_dev->rbpl_table, RBPL_TABLE_SIZE);
 790
 791	/* rbpl_virt 64-bit pointers */
 792	he_dev->rbpl_virt = kmalloc_array(RBPL_TABLE_SIZE,
 793					  sizeof(*he_dev->rbpl_virt),
 794					  GFP_KERNEL);
 795	if (!he_dev->rbpl_virt) {
 796		hprintk("unable to allocate rbpl virt table\n");
 797		goto out_free_rbpl_table;
 798	}
 799
 800	/* large buffer pool */
 801	he_dev->rbpl_pool = dma_pool_create("rbpl", &he_dev->pci_dev->dev,
 802					    CONFIG_RBPL_BUFSIZE, 64, 0);
 803	if (he_dev->rbpl_pool == NULL) {
 804		hprintk("unable to create rbpl pool\n");
 805		goto out_free_rbpl_virt;
 806	}
 807
 808	he_dev->rbpl_base = dma_zalloc_coherent(&he_dev->pci_dev->dev,
 809						CONFIG_RBPL_SIZE * sizeof(struct he_rbp),
 810						&he_dev->rbpl_phys, GFP_KERNEL);
 811	if (he_dev->rbpl_base == NULL) {
 812		hprintk("failed to alloc rbpl_base\n");
 813		goto out_destroy_rbpl_pool;
 814	}
 815
 816	INIT_LIST_HEAD(&he_dev->rbpl_outstanding);
 817
 818	for (i = 0; i < CONFIG_RBPL_SIZE; ++i) {
 819
 820		heb = dma_pool_alloc(he_dev->rbpl_pool, GFP_KERNEL, &mapping);
 821		if (!heb)
 822			goto out_free_rbpl;
 823		heb->mapping = mapping;
 824		list_add(&heb->entry, &he_dev->rbpl_outstanding);
 825
 826		set_bit(i, he_dev->rbpl_table);
 827		he_dev->rbpl_virt[i] = heb;
 828		he_dev->rbpl_hint = i + 1;
 829		he_dev->rbpl_base[i].idx =  i << RBP_IDX_OFFSET;
 830		he_dev->rbpl_base[i].phys = mapping + offsetof(struct he_buff, data);
 831	}
 832	he_dev->rbpl_tail = &he_dev->rbpl_base[CONFIG_RBPL_SIZE - 1];
 833
 834	he_writel(he_dev, he_dev->rbpl_phys, G0_RBPL_S + (group * 32));
 835	he_writel(he_dev, RBPL_MASK(he_dev->rbpl_tail),
 836						G0_RBPL_T + (group * 32));
 837	he_writel(he_dev, (CONFIG_RBPL_BUFSIZE - sizeof(struct he_buff))/4,
 838						G0_RBPL_BS + (group * 32));
 839	he_writel(he_dev,
 840			RBP_THRESH(CONFIG_RBPL_THRESH) |
 841			RBP_QSIZE(CONFIG_RBPL_SIZE - 1) |
 842			RBP_INT_ENB,
 843						G0_RBPL_QI + (group * 32));
 844
 845	/* rx buffer ready queue */
 846
 847	he_dev->rbrq_base = dma_zalloc_coherent(&he_dev->pci_dev->dev,
 848						CONFIG_RBRQ_SIZE * sizeof(struct he_rbrq),
 849						&he_dev->rbrq_phys, GFP_KERNEL);
 850	if (he_dev->rbrq_base == NULL) {
 851		hprintk("failed to allocate rbrq\n");
 852		goto out_free_rbpl;
 853	}
 854
 855	he_dev->rbrq_head = he_dev->rbrq_base;
 856	he_writel(he_dev, he_dev->rbrq_phys, G0_RBRQ_ST + (group * 16));
 857	he_writel(he_dev, 0, G0_RBRQ_H + (group * 16));
 858	he_writel(he_dev,
 859		RBRQ_THRESH(CONFIG_RBRQ_THRESH) | RBRQ_SIZE(CONFIG_RBRQ_SIZE - 1),
 860						G0_RBRQ_Q + (group * 16));
 861	if (irq_coalesce) {
 862		hprintk("coalescing interrupts\n");
 863		he_writel(he_dev, RBRQ_TIME(768) | RBRQ_COUNT(7),
 864						G0_RBRQ_I + (group * 16));
 865	} else
 866		he_writel(he_dev, RBRQ_TIME(0) | RBRQ_COUNT(1),
 867						G0_RBRQ_I + (group * 16));
 868
 869	/* tx buffer ready queue */
 870
 871	he_dev->tbrq_base = dma_zalloc_coherent(&he_dev->pci_dev->dev,
 872						CONFIG_TBRQ_SIZE * sizeof(struct he_tbrq),
 873						&he_dev->tbrq_phys, GFP_KERNEL);
 874	if (he_dev->tbrq_base == NULL) {
 875		hprintk("failed to allocate tbrq\n");
 876		goto out_free_rbpq_base;
 877	}
 878
 879	he_dev->tbrq_head = he_dev->tbrq_base;
 880
 881	he_writel(he_dev, he_dev->tbrq_phys, G0_TBRQ_B_T + (group * 16));
 882	he_writel(he_dev, 0, G0_TBRQ_H + (group * 16));
 883	he_writel(he_dev, CONFIG_TBRQ_SIZE - 1, G0_TBRQ_S + (group * 16));
 884	he_writel(he_dev, CONFIG_TBRQ_THRESH, G0_TBRQ_THRESH + (group * 16));
 885
 886	return 0;
 887
 888out_free_rbpq_base:
 889	dma_free_coherent(&he_dev->pci_dev->dev, CONFIG_RBRQ_SIZE *
 890			  sizeof(struct he_rbrq), he_dev->rbrq_base,
 891			  he_dev->rbrq_phys);
 892out_free_rbpl:
 893	list_for_each_entry_safe(heb, next, &he_dev->rbpl_outstanding, entry)
 894		dma_pool_free(he_dev->rbpl_pool, heb, heb->mapping);
 895
 896	dma_free_coherent(&he_dev->pci_dev->dev, CONFIG_RBPL_SIZE *
 897			  sizeof(struct he_rbp), he_dev->rbpl_base,
 898			  he_dev->rbpl_phys);
 899out_destroy_rbpl_pool:
 900	dma_pool_destroy(he_dev->rbpl_pool);
 901out_free_rbpl_virt:
 902	kfree(he_dev->rbpl_virt);
 903out_free_rbpl_table:
 904	kfree(he_dev->rbpl_table);
 905
 906	return -ENOMEM;
 907}
 908
 909static int he_init_irq(struct he_dev *he_dev)
 910{
 911	int i;
 912
 913	/* 2.9.3.5  tail offset for each interrupt queue is located after the
 914		    end of the interrupt queue */
 915
 916	he_dev->irq_base = dma_zalloc_coherent(&he_dev->pci_dev->dev,
 917					       (CONFIG_IRQ_SIZE + 1)
 918					       * sizeof(struct he_irq),
 919					       &he_dev->irq_phys,
 920					       GFP_KERNEL);
 921	if (he_dev->irq_base == NULL) {
 922		hprintk("failed to allocate irq\n");
 923		return -ENOMEM;
 924	}
 925	he_dev->irq_tailoffset = (unsigned *)
 926					&he_dev->irq_base[CONFIG_IRQ_SIZE];
 927	*he_dev->irq_tailoffset = 0;
 928	he_dev->irq_head = he_dev->irq_base;
 929	he_dev->irq_tail = he_dev->irq_base;
 930
 931	for (i = 0; i < CONFIG_IRQ_SIZE; ++i)
 932		he_dev->irq_base[i].isw = ITYPE_INVALID;
 933
 934	he_writel(he_dev, he_dev->irq_phys, IRQ0_BASE);
 935	he_writel(he_dev,
 936		IRQ_SIZE(CONFIG_IRQ_SIZE) | IRQ_THRESH(CONFIG_IRQ_THRESH),
 937								IRQ0_HEAD);
 938	he_writel(he_dev, IRQ_INT_A | IRQ_TYPE_LINE, IRQ0_CNTL);
 939	he_writel(he_dev, 0x0, IRQ0_DATA);
 940
 941	he_writel(he_dev, 0x0, IRQ1_BASE);
 942	he_writel(he_dev, 0x0, IRQ1_HEAD);
 943	he_writel(he_dev, 0x0, IRQ1_CNTL);
 944	he_writel(he_dev, 0x0, IRQ1_DATA);
 945
 946	he_writel(he_dev, 0x0, IRQ2_BASE);
 947	he_writel(he_dev, 0x0, IRQ2_HEAD);
 948	he_writel(he_dev, 0x0, IRQ2_CNTL);
 949	he_writel(he_dev, 0x0, IRQ2_DATA);
 950
 951	he_writel(he_dev, 0x0, IRQ3_BASE);
 952	he_writel(he_dev, 0x0, IRQ3_HEAD);
 953	he_writel(he_dev, 0x0, IRQ3_CNTL);
 954	he_writel(he_dev, 0x0, IRQ3_DATA);
 955
 956	/* 2.9.3.2 interrupt queue mapping registers */
 957
 958	he_writel(he_dev, 0x0, GRP_10_MAP);
 959	he_writel(he_dev, 0x0, GRP_32_MAP);
 960	he_writel(he_dev, 0x0, GRP_54_MAP);
 961	he_writel(he_dev, 0x0, GRP_76_MAP);
 962
 963	if (request_irq(he_dev->pci_dev->irq,
 964			he_irq_handler, IRQF_SHARED, DEV_LABEL, he_dev)) {
 965		hprintk("irq %d already in use\n", he_dev->pci_dev->irq);
 966		return -EINVAL;
 967	}   
 968
 969	he_dev->irq = he_dev->pci_dev->irq;
 970
 971	return 0;
 972}
 973
 974static int he_start(struct atm_dev *dev)
 975{
 976	struct he_dev *he_dev;
 977	struct pci_dev *pci_dev;
 978	unsigned long membase;
 979
 980	u16 command;
 981	u32 gen_cntl_0, host_cntl, lb_swap;
 982	u8 cache_size, timer;
 983	
 984	unsigned err;
 985	unsigned int status, reg;
 986	int i, group;
 987
 988	he_dev = HE_DEV(dev);
 989	pci_dev = he_dev->pci_dev;
 990
 991	membase = pci_resource_start(pci_dev, 0);
 992	HPRINTK("membase = 0x%lx  irq = %d.\n", membase, pci_dev->irq);
 993
 994	/*
 995	 * pci bus controller initialization 
 996	 */
 997
 998	/* 4.3 pci bus controller-specific initialization */
 999	if (pci_read_config_dword(pci_dev, GEN_CNTL_0, &gen_cntl_0) != 0) {
1000		hprintk("can't read GEN_CNTL_0\n");
1001		return -EINVAL;
1002	}
1003	gen_cntl_0 |= (MRL_ENB | MRM_ENB | IGNORE_TIMEOUT);
1004	if (pci_write_config_dword(pci_dev, GEN_CNTL_0, gen_cntl_0) != 0) {
1005		hprintk("can't write GEN_CNTL_0.\n");
1006		return -EINVAL;
1007	}
1008
1009	if (pci_read_config_word(pci_dev, PCI_COMMAND, &command) != 0) {
1010		hprintk("can't read PCI_COMMAND.\n");
1011		return -EINVAL;
1012	}
1013
1014	command |= (PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER | PCI_COMMAND_INVALIDATE);
1015	if (pci_write_config_word(pci_dev, PCI_COMMAND, command) != 0) {
1016		hprintk("can't enable memory.\n");
1017		return -EINVAL;
1018	}
1019
1020	if (pci_read_config_byte(pci_dev, PCI_CACHE_LINE_SIZE, &cache_size)) {
1021		hprintk("can't read cache line size?\n");
1022		return -EINVAL;
1023	}
1024
1025	if (cache_size < 16) {
1026		cache_size = 16;
1027		if (pci_write_config_byte(pci_dev, PCI_CACHE_LINE_SIZE, cache_size))
1028			hprintk("can't set cache line size to %d\n", cache_size);
1029	}
1030
1031	if (pci_read_config_byte(pci_dev, PCI_LATENCY_TIMER, &timer)) {
1032		hprintk("can't read latency timer?\n");
1033		return -EINVAL;
1034	}
1035
1036	/* from table 3.9
1037	 *
1038	 * LAT_TIMER = 1 + AVG_LAT + BURST_SIZE/BUS_SIZE
1039	 * 
1040	 * AVG_LAT: The average first data read/write latency [maximum 16 clock cycles]
1041	 * BURST_SIZE: 1536 bytes (read) for 622, 768 bytes (read) for 155 [192 clock cycles]
1042	 *
1043	 */ 
1044#define LAT_TIMER 209
1045	if (timer < LAT_TIMER) {
1046		HPRINTK("latency timer was %d, setting to %d\n", timer, LAT_TIMER);
1047		timer = LAT_TIMER;
1048		if (pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, timer))
1049			hprintk("can't set latency timer to %d\n", timer);
1050	}
1051
1052	if (!(he_dev->membase = ioremap(membase, HE_REGMAP_SIZE))) {
1053		hprintk("can't set up page mapping\n");
1054		return -EINVAL;
1055	}
1056
1057	/* 4.4 card reset */
1058	he_writel(he_dev, 0x0, RESET_CNTL);
1059	he_writel(he_dev, 0xff, RESET_CNTL);
1060
1061	msleep(16);	/* 16 ms */
1062	status = he_readl(he_dev, RESET_CNTL);
1063	if ((status & BOARD_RST_STATUS) == 0) {
1064		hprintk("reset failed\n");
1065		return -EINVAL;
1066	}
1067
1068	/* 4.5 set bus width */
1069	host_cntl = he_readl(he_dev, HOST_CNTL);
1070	if (host_cntl & PCI_BUS_SIZE64)
1071		gen_cntl_0 |= ENBL_64;
1072	else
1073		gen_cntl_0 &= ~ENBL_64;
1074
1075	if (disable64 == 1) {
1076		hprintk("disabling 64-bit pci bus transfers\n");
1077		gen_cntl_0 &= ~ENBL_64;
1078	}
1079
1080	if (gen_cntl_0 & ENBL_64)
1081		hprintk("64-bit transfers enabled\n");
1082
1083	pci_write_config_dword(pci_dev, GEN_CNTL_0, gen_cntl_0);
1084
1085	/* 4.7 read prom contents */
1086	for (i = 0; i < PROD_ID_LEN; ++i)
1087		he_dev->prod_id[i] = read_prom_byte(he_dev, PROD_ID + i);
1088
1089	he_dev->media = read_prom_byte(he_dev, MEDIA);
1090
1091	for (i = 0; i < 6; ++i)
1092		dev->esi[i] = read_prom_byte(he_dev, MAC_ADDR + i);
1093
1094	hprintk("%s%s, %pM\n", he_dev->prod_id,
1095		he_dev->media & 0x40 ? "SM" : "MM", dev->esi);
1096	he_dev->atm_dev->link_rate = he_is622(he_dev) ?
1097						ATM_OC12_PCR : ATM_OC3_PCR;
1098
1099	/* 4.6 set host endianess */
1100	lb_swap = he_readl(he_dev, LB_SWAP);
1101	if (he_is622(he_dev))
1102		lb_swap &= ~XFER_SIZE;		/* 4 cells */
1103	else
1104		lb_swap |= XFER_SIZE;		/* 8 cells */
1105#ifdef __BIG_ENDIAN
1106	lb_swap |= DESC_WR_SWAP | INTR_SWAP | BIG_ENDIAN_HOST;
1107#else
1108	lb_swap &= ~(DESC_WR_SWAP | INTR_SWAP | BIG_ENDIAN_HOST |
1109			DATA_WR_SWAP | DATA_RD_SWAP | DESC_RD_SWAP);
1110#endif /* __BIG_ENDIAN */
1111	he_writel(he_dev, lb_swap, LB_SWAP);
1112
1113	/* 4.8 sdram controller initialization */
1114	he_writel(he_dev, he_is622(he_dev) ? LB_64_ENB : 0x0, SDRAM_CTL);
1115
1116	/* 4.9 initialize rnum value */
1117	lb_swap |= SWAP_RNUM_MAX(0xf);
1118	he_writel(he_dev, lb_swap, LB_SWAP);
1119
1120	/* 4.10 initialize the interrupt queues */
1121	if ((err = he_init_irq(he_dev)) != 0)
1122		return err;
1123
1124	/* 4.11 enable pci bus controller state machines */
1125	host_cntl |= (OUTFF_ENB | CMDFF_ENB |
1126				QUICK_RD_RETRY | QUICK_WR_RETRY | PERR_INT_ENB);
1127	he_writel(he_dev, host_cntl, HOST_CNTL);
1128
1129	gen_cntl_0 |= INT_PROC_ENBL|INIT_ENB;
1130	pci_write_config_dword(pci_dev, GEN_CNTL_0, gen_cntl_0);
1131
1132	/*
1133	 * atm network controller initialization
1134	 */
1135
1136	/* 5.1.1 generic configuration state */
1137
1138	/*
1139	 *		local (cell) buffer memory map
1140	 *                    
1141	 *             HE155                          HE622
1142	 *                                                      
1143	 *        0 ____________1023 bytes  0 _______________________2047 bytes
1144	 *         |            |            |                   |   |
1145	 *         |  utility   |            |        rx0        |   |
1146	 *        5|____________|         255|___________________| u |
1147	 *        6|            |         256|                   | t |
1148	 *         |            |            |                   | i |
1149	 *         |    rx0     |     row    |        tx         | l |
1150	 *         |            |            |                   | i |
1151	 *         |            |         767|___________________| t |
1152	 *      517|____________|         768|                   | y |
1153	 * row  518|            |            |        rx1        |   |
1154	 *         |            |        1023|___________________|___|
1155	 *         |            |
1156	 *         |    tx      |
1157	 *         |            |
1158	 *         |            |
1159	 *     1535|____________|
1160	 *     1536|            |
1161	 *         |    rx1     |
1162	 *     2047|____________|
1163	 *
1164	 */
1165
1166	/* total 4096 connections */
1167	he_dev->vcibits = CONFIG_DEFAULT_VCIBITS;
1168	he_dev->vpibits = CONFIG_DEFAULT_VPIBITS;
1169
1170	if (nvpibits != -1 && nvcibits != -1 && nvpibits+nvcibits != HE_MAXCIDBITS) {
1171		hprintk("nvpibits + nvcibits != %d\n", HE_MAXCIDBITS);
1172		return -ENODEV;
1173	}
1174
1175	if (nvpibits != -1) {
1176		he_dev->vpibits = nvpibits;
1177		he_dev->vcibits = HE_MAXCIDBITS - nvpibits;
1178	}
1179
1180	if (nvcibits != -1) {
1181		he_dev->vcibits = nvcibits;
1182		he_dev->vpibits = HE_MAXCIDBITS - nvcibits;
1183	}
1184
1185
1186	if (he_is622(he_dev)) {
1187		he_dev->cells_per_row = 40;
1188		he_dev->bytes_per_row = 2048;
1189		he_dev->r0_numrows = 256;
1190		he_dev->tx_numrows = 512;
1191		he_dev->r1_numrows = 256;
1192		he_dev->r0_startrow = 0;
1193		he_dev->tx_startrow = 256;
1194		he_dev->r1_startrow = 768;
1195	} else {
1196		he_dev->cells_per_row = 20;
1197		he_dev->bytes_per_row = 1024;
1198		he_dev->r0_numrows = 512;
1199		he_dev->tx_numrows = 1018;
1200		he_dev->r1_numrows = 512;
1201		he_dev->r0_startrow = 6;
1202		he_dev->tx_startrow = 518;
1203		he_dev->r1_startrow = 1536;
1204	}
1205
1206	he_dev->cells_per_lbuf = 4;
1207	he_dev->buffer_limit = 4;
1208	he_dev->r0_numbuffs = he_dev->r0_numrows *
1209				he_dev->cells_per_row / he_dev->cells_per_lbuf;
1210	if (he_dev->r0_numbuffs > 2560)
1211		he_dev->r0_numbuffs = 2560;
1212
1213	he_dev->r1_numbuffs = he_dev->r1_numrows *
1214				he_dev->cells_per_row / he_dev->cells_per_lbuf;
1215	if (he_dev->r1_numbuffs > 2560)
1216		he_dev->r1_numbuffs = 2560;
1217
1218	he_dev->tx_numbuffs = he_dev->tx_numrows *
1219				he_dev->cells_per_row / he_dev->cells_per_lbuf;
1220	if (he_dev->tx_numbuffs > 5120)
1221		he_dev->tx_numbuffs = 5120;
1222
1223	/* 5.1.2 configure hardware dependent registers */
1224
1225	he_writel(he_dev, 
1226		SLICE_X(0x2) | ARB_RNUM_MAX(0xf) | TH_PRTY(0x3) |
1227		RH_PRTY(0x3) | TL_PRTY(0x2) | RL_PRTY(0x1) |
1228		(he_is622(he_dev) ? BUS_MULTI(0x28) : BUS_MULTI(0x46)) |
1229		(he_is622(he_dev) ? NET_PREF(0x50) : NET_PREF(0x8c)),
1230								LBARB);
1231
1232	he_writel(he_dev, BANK_ON |
1233		(he_is622(he_dev) ? (REF_RATE(0x384) | WIDE_DATA) : REF_RATE(0x150)),
1234								SDRAMCON);
1235
1236	he_writel(he_dev,
1237		(he_is622(he_dev) ? RM_BANK_WAIT(1) : RM_BANK_WAIT(0)) |
1238						RM_RW_WAIT(1), RCMCONFIG);
1239	he_writel(he_dev,
1240		(he_is622(he_dev) ? TM_BANK_WAIT(2) : TM_BANK_WAIT(1)) |
1241						TM_RW_WAIT(1), TCMCONFIG);
1242
1243	he_writel(he_dev, he_dev->cells_per_lbuf * ATM_CELL_PAYLOAD, LB_CONFIG);
1244
1245	he_writel(he_dev, 
1246		(he_is622(he_dev) ? UT_RD_DELAY(8) : UT_RD_DELAY(0)) |
1247		(he_is622(he_dev) ? RC_UT_MODE(0) : RC_UT_MODE(1)) |
1248		RX_VALVP(he_dev->vpibits) |
1249		RX_VALVC(he_dev->vcibits),			 RC_CONFIG);
1250
1251	he_writel(he_dev, DRF_THRESH(0x20) |
1252		(he_is622(he_dev) ? TX_UT_MODE(0) : TX_UT_MODE(1)) |
1253		TX_VCI_MASK(he_dev->vcibits) |
1254		LBFREE_CNT(he_dev->tx_numbuffs), 		TX_CONFIG);
1255
1256	he_writel(he_dev, 0x0, TXAAL5_PROTO);
1257
1258	he_writel(he_dev, PHY_INT_ENB |
1259		(he_is622(he_dev) ? PTMR_PRE(67 - 1) : PTMR_PRE(50 - 1)),
1260								RH_CONFIG);
1261
1262	/* 5.1.3 initialize connection memory */
1263
1264	for (i = 0; i < TCM_MEM_SIZE; ++i)
1265		he_writel_tcm(he_dev, 0, i);
1266
1267	for (i = 0; i < RCM_MEM_SIZE; ++i)
1268		he_writel_rcm(he_dev, 0, i);
1269
1270	/*
1271	 *	transmit connection memory map
1272	 *
1273	 *                  tx memory
1274	 *          0x0 ___________________
1275	 *             |                   |
1276	 *             |                   |
1277	 *             |       TSRa        |
1278	 *             |                   |
1279	 *             |                   |
1280	 *       0x8000|___________________|
1281	 *             |                   |
1282	 *             |       TSRb        |
1283	 *       0xc000|___________________|
1284	 *             |                   |
1285	 *             |       TSRc        |
1286	 *       0xe000|___________________|
1287	 *             |       TSRd        |
1288	 *       0xf000|___________________|
1289	 *             |       tmABR       |
1290	 *      0x10000|___________________|
1291	 *             |                   |
1292	 *             |       tmTPD       |
1293	 *             |___________________|
1294	 *             |                   |
1295	 *                      ....
1296	 *      0x1ffff|___________________|
1297	 *
1298	 *
1299	 */
1300
1301	he_writel(he_dev, CONFIG_TSRB, TSRB_BA);
1302	he_writel(he_dev, CONFIG_TSRC, TSRC_BA);
1303	he_writel(he_dev, CONFIG_TSRD, TSRD_BA);
1304	he_writel(he_dev, CONFIG_TMABR, TMABR_BA);
1305	he_writel(he_dev, CONFIG_TPDBA, TPD_BA);
1306
1307
1308	/*
1309	 *	receive connection memory map
1310	 *
1311	 *          0x0 ___________________
1312	 *             |                   |
1313	 *             |                   |
1314	 *             |       RSRa        |
1315	 *             |                   |
1316	 *             |                   |
1317	 *       0x8000|___________________|
1318	 *             |                   |
1319	 *             |             rx0/1 |
1320	 *             |       LBM         |   link lists of local
1321	 *             |             tx    |   buffer memory 
1322	 *             |                   |
1323	 *       0xd000|___________________|
1324	 *             |                   |
1325	 *             |      rmABR        |
1326	 *       0xe000|___________________|
1327	 *             |                   |
1328	 *             |       RSRb        |
1329	 *             |___________________|
1330	 *             |                   |
1331	 *                      ....
1332	 *       0xffff|___________________|
1333	 */
1334
1335	he_writel(he_dev, 0x08000, RCMLBM_BA);
1336	he_writel(he_dev, 0x0e000, RCMRSRB_BA);
1337	he_writel(he_dev, 0x0d800, RCMABR_BA);
1338
1339	/* 5.1.4 initialize local buffer free pools linked lists */
1340
1341	he_init_rx_lbfp0(he_dev);
1342	he_init_rx_lbfp1(he_dev);
1343
1344	he_writel(he_dev, 0x0, RLBC_H);
1345	he_writel(he_dev, 0x0, RLBC_T);
1346	he_writel(he_dev, 0x0, RLBC_H2);
1347
1348	he_writel(he_dev, 512, RXTHRSH);	/* 10% of r0+r1 buffers */
1349	he_writel(he_dev, 256, LITHRSH); 	/* 5% of r0+r1 buffers */
1350
1351	he_init_tx_lbfp(he_dev);
1352
1353	he_writel(he_dev, he_is622(he_dev) ? 0x104780 : 0x800, UBUFF_BA);
1354
1355	/* 5.1.5 initialize intermediate receive queues */
1356
1357	if (he_is622(he_dev)) {
1358		he_writel(he_dev, 0x000f, G0_INMQ_S);
1359		he_writel(he_dev, 0x200f, G0_INMQ_L);
1360
1361		he_writel(he_dev, 0x001f, G1_INMQ_S);
1362		he_writel(he_dev, 0x201f, G1_INMQ_L);
1363
1364		he_writel(he_dev, 0x002f, G2_INMQ_S);
1365		he_writel(he_dev, 0x202f, G2_INMQ_L);
1366
1367		he_writel(he_dev, 0x003f, G3_INMQ_S);
1368		he_writel(he_dev, 0x203f, G3_INMQ_L);
1369
1370		he_writel(he_dev, 0x004f, G4_INMQ_S);
1371		he_writel(he_dev, 0x204f, G4_INMQ_L);
1372
1373		he_writel(he_dev, 0x005f, G5_INMQ_S);
1374		he_writel(he_dev, 0x205f, G5_INMQ_L);
1375
1376		he_writel(he_dev, 0x006f, G6_INMQ_S);
1377		he_writel(he_dev, 0x206f, G6_INMQ_L);
1378
1379		he_writel(he_dev, 0x007f, G7_INMQ_S);
1380		he_writel(he_dev, 0x207f, G7_INMQ_L);
1381	} else {
1382		he_writel(he_dev, 0x0000, G0_INMQ_S);
1383		he_writel(he_dev, 0x0008, G0_INMQ_L);
1384
1385		he_writel(he_dev, 0x0001, G1_INMQ_S);
1386		he_writel(he_dev, 0x0009, G1_INMQ_L);
1387
1388		he_writel(he_dev, 0x0002, G2_INMQ_S);
1389		he_writel(he_dev, 0x000a, G2_INMQ_L);
1390
1391		he_writel(he_dev, 0x0003, G3_INMQ_S);
1392		he_writel(he_dev, 0x000b, G3_INMQ_L);
1393
1394		he_writel(he_dev, 0x0004, G4_INMQ_S);
1395		he_writel(he_dev, 0x000c, G4_INMQ_L);
1396
1397		he_writel(he_dev, 0x0005, G5_INMQ_S);
1398		he_writel(he_dev, 0x000d, G5_INMQ_L);
1399
1400		he_writel(he_dev, 0x0006, G6_INMQ_S);
1401		he_writel(he_dev, 0x000e, G6_INMQ_L);
1402
1403		he_writel(he_dev, 0x0007, G7_INMQ_S);
1404		he_writel(he_dev, 0x000f, G7_INMQ_L);
1405	}
1406
1407	/* 5.1.6 application tunable parameters */
1408
1409	he_writel(he_dev, 0x0, MCC);
1410	he_writel(he_dev, 0x0, OEC);
1411	he_writel(he_dev, 0x0, DCC);
1412	he_writel(he_dev, 0x0, CEC);
1413	
1414	/* 5.1.7 cs block initialization */
1415
1416	he_init_cs_block(he_dev);
1417
1418	/* 5.1.8 cs block connection memory initialization */
1419	
1420	if (he_init_cs_block_rcm(he_dev) < 0)
1421		return -ENOMEM;
1422
1423	/* 5.1.10 initialize host structures */
1424
1425	he_init_tpdrq(he_dev);
1426
1427	he_dev->tpd_pool = dma_pool_create("tpd", &he_dev->pci_dev->dev,
1428					   sizeof(struct he_tpd), TPD_ALIGNMENT, 0);
1429	if (he_dev->tpd_pool == NULL) {
1430		hprintk("unable to create tpd dma_pool\n");
1431		return -ENOMEM;         
1432	}
1433
1434	INIT_LIST_HEAD(&he_dev->outstanding_tpds);
1435
1436	if (he_init_group(he_dev, 0) != 0)
1437		return -ENOMEM;
1438
1439	for (group = 1; group < HE_NUM_GROUPS; ++group) {
1440		he_writel(he_dev, 0x0, G0_RBPS_S + (group * 32));
1441		he_writel(he_dev, 0x0, G0_RBPS_T + (group * 32));
1442		he_writel(he_dev, 0x0, G0_RBPS_QI + (group * 32));
1443		he_writel(he_dev, RBP_THRESH(0x1) | RBP_QSIZE(0x0),
1444						G0_RBPS_BS + (group * 32));
1445
1446		he_writel(he_dev, 0x0, G0_RBPL_S + (group * 32));
1447		he_writel(he_dev, 0x0, G0_RBPL_T + (group * 32));
1448		he_writel(he_dev, RBP_THRESH(0x1) | RBP_QSIZE(0x0),
1449						G0_RBPL_QI + (group * 32));
1450		he_writel(he_dev, 0x0, G0_RBPL_BS + (group * 32));
1451
1452		he_writel(he_dev, 0x0, G0_RBRQ_ST + (group * 16));
1453		he_writel(he_dev, 0x0, G0_RBRQ_H + (group * 16));
1454		he_writel(he_dev, RBRQ_THRESH(0x1) | RBRQ_SIZE(0x0),
1455						G0_RBRQ_Q + (group * 16));
1456		he_writel(he_dev, 0x0, G0_RBRQ_I + (group * 16));
1457
1458		he_writel(he_dev, 0x0, G0_TBRQ_B_T + (group * 16));
1459		he_writel(he_dev, 0x0, G0_TBRQ_H + (group * 16));
1460		he_writel(he_dev, TBRQ_THRESH(0x1),
1461						G0_TBRQ_THRESH + (group * 16));
1462		he_writel(he_dev, 0x0, G0_TBRQ_S + (group * 16));
1463	}
1464
1465	/* host status page */
1466
1467	he_dev->hsp = dma_zalloc_coherent(&he_dev->pci_dev->dev,
1468					  sizeof(struct he_hsp),
1469					  &he_dev->hsp_phys, GFP_KERNEL);
1470	if (he_dev->hsp == NULL) {
1471		hprintk("failed to allocate host status page\n");
1472		return -ENOMEM;
1473	}
1474	he_writel(he_dev, he_dev->hsp_phys, HSP_BA);
1475
1476	/* initialize framer */
1477
1478#ifdef CONFIG_ATM_HE_USE_SUNI
1479	if (he_isMM(he_dev))
1480		suni_init(he_dev->atm_dev);
1481	if (he_dev->atm_dev->phy && he_dev->atm_dev->phy->start)
1482		he_dev->atm_dev->phy->start(he_dev->atm_dev);
1483#endif /* CONFIG_ATM_HE_USE_SUNI */
1484
1485	if (sdh) {
1486		/* this really should be in suni.c but for now... */
1487		int val;
1488
1489		val = he_phy_get(he_dev->atm_dev, SUNI_TPOP_APM);
1490		val = (val & ~SUNI_TPOP_APM_S) | (SUNI_TPOP_S_SDH << SUNI_TPOP_APM_S_SHIFT);
1491		he_phy_put(he_dev->atm_dev, val, SUNI_TPOP_APM);
1492		he_phy_put(he_dev->atm_dev, SUNI_TACP_IUCHP_CLP, SUNI_TACP_IUCHP);
1493	}
1494
1495	/* 5.1.12 enable transmit and receive */
1496
1497	reg = he_readl_mbox(he_dev, CS_ERCTL0);
1498	reg |= TX_ENABLE|ER_ENABLE;
1499	he_writel_mbox(he_dev, reg, CS_ERCTL0);
1500
1501	reg = he_readl(he_dev, RC_CONFIG);
1502	reg |= RX_ENABLE;
1503	he_writel(he_dev, reg, RC_CONFIG);
1504
1505	for (i = 0; i < HE_NUM_CS_STPER; ++i) {
1506		he_dev->cs_stper[i].inuse = 0;
1507		he_dev->cs_stper[i].pcr = -1;
1508	}
1509	he_dev->total_bw = 0;
1510
1511
1512	/* atm linux initialization */
1513
1514	he_dev->atm_dev->ci_range.vpi_bits = he_dev->vpibits;
1515	he_dev->atm_dev->ci_range.vci_bits = he_dev->vcibits;
1516
1517	he_dev->irq_peak = 0;
1518	he_dev->rbrq_peak = 0;
1519	he_dev->rbpl_peak = 0;
1520	he_dev->tbrq_peak = 0;
1521
1522	HPRINTK("hell bent for leather!\n");
1523
1524	return 0;
1525}
1526
1527static void
1528he_stop(struct he_dev *he_dev)
1529{
1530	struct he_buff *heb, *next;
1531	struct pci_dev *pci_dev;
1532	u32 gen_cntl_0, reg;
1533	u16 command;
1534
1535	pci_dev = he_dev->pci_dev;
1536
1537	/* disable interrupts */
1538
1539	if (he_dev->membase) {
1540		pci_read_config_dword(pci_dev, GEN_CNTL_0, &gen_cntl_0);
1541		gen_cntl_0 &= ~(INT_PROC_ENBL | INIT_ENB);
1542		pci_write_config_dword(pci_dev, GEN_CNTL_0, gen_cntl_0);
1543
1544		tasklet_disable(&he_dev->tasklet);
1545
1546		/* disable recv and transmit */
1547
1548		reg = he_readl_mbox(he_dev, CS_ERCTL0);
1549		reg &= ~(TX_ENABLE|ER_ENABLE);
1550		he_writel_mbox(he_dev, reg, CS_ERCTL0);
1551
1552		reg = he_readl(he_dev, RC_CONFIG);
1553		reg &= ~(RX_ENABLE);
1554		he_writel(he_dev, reg, RC_CONFIG);
1555	}
1556
1557#ifdef CONFIG_ATM_HE_USE_SUNI
1558	if (he_dev->atm_dev->phy && he_dev->atm_dev->phy->stop)
1559		he_dev->atm_dev->phy->stop(he_dev->atm_dev);
1560#endif /* CONFIG_ATM_HE_USE_SUNI */
1561
1562	if (he_dev->irq)
1563		free_irq(he_dev->irq, he_dev);
1564
1565	if (he_dev->irq_base)
1566		dma_free_coherent(&he_dev->pci_dev->dev, (CONFIG_IRQ_SIZE + 1)
1567				  * sizeof(struct he_irq), he_dev->irq_base, he_dev->irq_phys);
1568
1569	if (he_dev->hsp)
1570		dma_free_coherent(&he_dev->pci_dev->dev, sizeof(struct he_hsp),
1571				  he_dev->hsp, he_dev->hsp_phys);
1572
1573	if (he_dev->rbpl_base) {
1574		list_for_each_entry_safe(heb, next, &he_dev->rbpl_outstanding, entry)
1575			dma_pool_free(he_dev->rbpl_pool, heb, heb->mapping);
1576
1577		dma_free_coherent(&he_dev->pci_dev->dev, CONFIG_RBPL_SIZE
1578				  * sizeof(struct he_rbp), he_dev->rbpl_base, he_dev->rbpl_phys);
1579	}
1580
1581	kfree(he_dev->rbpl_virt);
1582	kfree(he_dev->rbpl_table);
1583	dma_pool_destroy(he_dev->rbpl_pool);
1584
1585	if (he_dev->rbrq_base)
1586		dma_free_coherent(&he_dev->pci_dev->dev, CONFIG_RBRQ_SIZE * sizeof(struct he_rbrq),
1587				  he_dev->rbrq_base, he_dev->rbrq_phys);
1588
1589	if (he_dev->tbrq_base)
1590		dma_free_coherent(&he_dev->pci_dev->dev, CONFIG_TBRQ_SIZE * sizeof(struct he_tbrq),
1591				  he_dev->tbrq_base, he_dev->tbrq_phys);
1592
1593	if (he_dev->tpdrq_base)
1594		dma_free_coherent(&he_dev->pci_dev->dev, CONFIG_TBRQ_SIZE * sizeof(struct he_tbrq),
1595				  he_dev->tpdrq_base, he_dev->tpdrq_phys);
1596
1597	dma_pool_destroy(he_dev->tpd_pool);
1598
1599	if (he_dev->pci_dev) {
1600		pci_read_config_word(he_dev->pci_dev, PCI_COMMAND, &command);
1601		command &= ~(PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER);
1602		pci_write_config_word(he_dev->pci_dev, PCI_COMMAND, command);
1603	}
1604	
1605	if (he_dev->membase)
1606		iounmap(he_dev->membase);
1607}
1608
1609static struct he_tpd *
1610__alloc_tpd(struct he_dev *he_dev)
1611{
1612	struct he_tpd *tpd;
1613	dma_addr_t mapping;
1614
1615	tpd = dma_pool_alloc(he_dev->tpd_pool, GFP_ATOMIC, &mapping);
1616	if (tpd == NULL)
1617		return NULL;
1618			
1619	tpd->status = TPD_ADDR(mapping);
1620	tpd->reserved = 0; 
1621	tpd->iovec[0].addr = 0; tpd->iovec[0].len = 0;
1622	tpd->iovec[1].addr = 0; tpd->iovec[1].len = 0;
1623	tpd->iovec[2].addr = 0; tpd->iovec[2].len = 0;
1624
1625	return tpd;
1626}
1627
1628#define AAL5_LEN(buf,len) 						\
1629			((((unsigned char *)(buf))[(len)-6] << 8) |	\
1630				(((unsigned char *)(buf))[(len)-5]))
1631
1632/* 2.10.1.2 receive
1633 *
1634 * aal5 packets can optionally return the tcp checksum in the lower
1635 * 16 bits of the crc (RSR0_TCP_CKSUM)
1636 */
1637
1638#define TCP_CKSUM(buf,len) 						\
1639			((((unsigned char *)(buf))[(len)-2] << 8) |	\
1640				(((unsigned char *)(buf))[(len-1)]))
1641
1642static int
1643he_service_rbrq(struct he_dev *he_dev, int group)
1644{
1645	struct he_rbrq *rbrq_tail = (struct he_rbrq *)
1646				((unsigned long)he_dev->rbrq_base |
1647					he_dev->hsp->group[group].rbrq_tail);
1648	unsigned cid, lastcid = -1;
1649	struct sk_buff *skb;
1650	struct atm_vcc *vcc = NULL;
1651	struct he_vcc *he_vcc;
1652	struct he_buff *heb, *next;
1653	int i;
1654	int pdus_assembled = 0;
1655	int updated = 0;
1656
1657	read_lock(&vcc_sklist_lock);
1658	while (he_dev->rbrq_head != rbrq_tail) {
1659		++updated;
1660
1661		HPRINTK("%p rbrq%d 0x%x len=%d cid=0x%x %s%s%s%s%s%s\n",
1662			he_dev->rbrq_head, group,
1663			RBRQ_ADDR(he_dev->rbrq_head),
1664			RBRQ_BUFLEN(he_dev->rbrq_head),
1665			RBRQ_CID(he_dev->rbrq_head),
1666			RBRQ_CRC_ERR(he_dev->rbrq_head) ? " CRC_ERR" : "",
1667			RBRQ_LEN_ERR(he_dev->rbrq_head) ? " LEN_ERR" : "",
1668			RBRQ_END_PDU(he_dev->rbrq_head) ? " END_PDU" : "",
1669			RBRQ_AAL5_PROT(he_dev->rbrq_head) ? " AAL5_PROT" : "",
1670			RBRQ_CON_CLOSED(he_dev->rbrq_head) ? " CON_CLOSED" : "",
1671			RBRQ_HBUF_ERR(he_dev->rbrq_head) ? " HBUF_ERR" : "");
1672
1673		i = RBRQ_ADDR(he_dev->rbrq_head) >> RBP_IDX_OFFSET;
1674		heb = he_dev->rbpl_virt[i];
1675
1676		cid = RBRQ_CID(he_dev->rbrq_head);
1677		if (cid != lastcid)
1678			vcc = __find_vcc(he_dev, cid);
1679		lastcid = cid;
1680
1681		if (vcc == NULL || (he_vcc = HE_VCC(vcc)) == NULL) {
1682			hprintk("vcc/he_vcc == NULL  (cid 0x%x)\n", cid);
1683			if (!RBRQ_HBUF_ERR(he_dev->rbrq_head)) {
1684				clear_bit(i, he_dev->rbpl_table);
1685				list_del(&heb->entry);
1686				dma_pool_free(he_dev->rbpl_pool, heb, heb->mapping);
1687			}
1688					
1689			goto next_rbrq_entry;
1690		}
1691
1692		if (RBRQ_HBUF_ERR(he_dev->rbrq_head)) {
1693			hprintk("HBUF_ERR!  (cid 0x%x)\n", cid);
1694				atomic_inc(&vcc->stats->rx_drop);
1695			goto return_host_buffers;
1696		}
1697
1698		heb->len = RBRQ_BUFLEN(he_dev->rbrq_head) * 4;
1699		clear_bit(i, he_dev->rbpl_table);
1700		list_move_tail(&heb->entry, &he_vcc->buffers);
1701		he_vcc->pdu_len += heb->len;
1702
1703		if (RBRQ_CON_CLOSED(he_dev->rbrq_head)) {
1704			lastcid = -1;
1705			HPRINTK("wake_up rx_waitq  (cid 0x%x)\n", cid);
1706			wake_up(&he_vcc->rx_waitq);
1707			goto return_host_buffers;
1708		}
1709
1710		if (!RBRQ_END_PDU(he_dev->rbrq_head))
1711			goto next_rbrq_entry;
1712
1713		if (RBRQ_LEN_ERR(he_dev->rbrq_head)
1714				|| RBRQ_CRC_ERR(he_dev->rbrq_head)) {
1715			HPRINTK("%s%s (%d.%d)\n",
1716				RBRQ_CRC_ERR(he_dev->rbrq_head)
1717							? "CRC_ERR " : "",
1718				RBRQ_LEN_ERR(he_dev->rbrq_head)
1719							? "LEN_ERR" : "",
1720							vcc->vpi, vcc->vci);
1721			atomic_inc(&vcc->stats->rx_err);
1722			goto return_host_buffers;
1723		}
1724
1725		skb = atm_alloc_charge(vcc, he_vcc->pdu_len + rx_skb_reserve,
1726							GFP_ATOMIC);
1727		if (!skb) {
1728			HPRINTK("charge failed (%d.%d)\n", vcc->vpi, vcc->vci);
1729			goto return_host_buffers;
1730		}
1731
1732		if (rx_skb_reserve > 0)
1733			skb_reserve(skb, rx_skb_reserve);
1734
1735		__net_timestamp(skb);
1736
1737		list_for_each_entry(heb, &he_vcc->buffers, entry)
1738			memcpy(skb_put(skb, heb->len), &heb->data, heb->len);
1739
1740		switch (vcc->qos.aal) {
1741			case ATM_AAL0:
1742				/* 2.10.1.5 raw cell receive */
1743				skb->len = ATM_AAL0_SDU;
1744				skb_set_tail_pointer(skb, skb->len);
1745				break;
1746			case ATM_AAL5:
1747				/* 2.10.1.2 aal5 receive */
1748
1749				skb->len = AAL5_LEN(skb->data, he_vcc->pdu_len);
1750				skb_set_tail_pointer(skb, skb->len);
1751#ifdef USE_CHECKSUM_HW
1752				if (vcc->vpi == 0 && vcc->vci >= ATM_NOT_RSV_VCI) {
1753					skb->ip_summed = CHECKSUM_COMPLETE;
1754					skb->csum = TCP_CKSUM(skb->data,
1755							he_vcc->pdu_len);
1756				}
1757#endif
1758				break;
1759		}
1760
1761#ifdef should_never_happen
1762		if (skb->len > vcc->qos.rxtp.max_sdu)
1763			hprintk("pdu_len (%d) > vcc->qos.rxtp.max_sdu (%d)!  cid 0x%x\n", skb->len, vcc->qos.rxtp.max_sdu, cid);
1764#endif
1765
1766#ifdef notdef
1767		ATM_SKB(skb)->vcc = vcc;
1768#endif
1769		spin_unlock(&he_dev->global_lock);
1770		vcc->push(vcc, skb);
1771		spin_lock(&he_dev->global_lock);
1772
1773		atomic_inc(&vcc->stats->rx);
1774
1775return_host_buffers:
1776		++pdus_assembled;
1777
1778		list_for_each_entry_safe(heb, next, &he_vcc->buffers, entry)
1779			dma_pool_free(he_dev->rbpl_pool, heb, heb->mapping);
1780		INIT_LIST_HEAD(&he_vcc->buffers);
1781		he_vcc->pdu_len = 0;
1782
1783next_rbrq_entry:
1784		he_dev->rbrq_head = (struct he_rbrq *)
1785				((unsigned long) he_dev->rbrq_base |
1786					RBRQ_MASK(he_dev->rbrq_head + 1));
1787
1788	}
1789	read_unlock(&vcc_sklist_lock);
1790
1791	if (updated) {
1792		if (updated > he_dev->rbrq_peak)
1793			he_dev->rbrq_peak = updated;
1794
1795		he_writel(he_dev, RBRQ_MASK(he_dev->rbrq_head),
1796						G0_RBRQ_H + (group * 16));
1797	}
1798
1799	return pdus_assembled;
1800}
1801
1802static void
1803he_service_tbrq(struct he_dev *he_dev, int group)
1804{
1805	struct he_tbrq *tbrq_tail = (struct he_tbrq *)
1806				((unsigned long)he_dev->tbrq_base |
1807					he_dev->hsp->group[group].tbrq_tail);
1808	struct he_tpd *tpd;
1809	int slot, updated = 0;
1810	struct he_tpd *__tpd;
1811
1812	/* 2.1.6 transmit buffer return queue */
1813
1814	while (he_dev->tbrq_head != tbrq_tail) {
1815		++updated;
1816
1817		HPRINTK("tbrq%d 0x%x%s%s\n",
1818			group,
1819			TBRQ_TPD(he_dev->tbrq_head), 
1820			TBRQ_EOS(he_dev->tbrq_head) ? " EOS" : "",
1821			TBRQ_MULTIPLE(he_dev->tbrq_head) ? " MULTIPLE" : "");
1822		tpd = NULL;
1823		list_for_each_entry(__tpd, &he_dev->outstanding_tpds, entry) {
1824			if (TPD_ADDR(__tpd->status) == TBRQ_TPD(he_dev->tbrq_head)) {
1825				tpd = __tpd;
1826				list_del(&__tpd->entry);
1827				break;
1828			}
1829		}
1830
1831		if (tpd == NULL) {
1832			hprintk("unable to locate tpd for dma buffer %x\n",
1833						TBRQ_TPD(he_dev->tbrq_head));
1834			goto next_tbrq_entry;
1835		}
1836
1837		if (TBRQ_EOS(he_dev->tbrq_head)) {
1838			HPRINTK("wake_up(tx_waitq) cid 0x%x\n",
1839				he_mkcid(he_dev, tpd->vcc->vpi, tpd->vcc->vci));
1840			if (tpd->vcc)
1841				wake_up(&HE_VCC(tpd->vcc)->tx_waitq);
1842
1843			goto next_tbrq_entry;
1844		}
1845
1846		for (slot = 0; slot < TPD_MAXIOV; ++slot) {
1847			if (tpd->iovec[slot].addr)
1848				dma_unmap_single(&he_dev->pci_dev->dev,
1849					tpd->iovec[slot].addr,
1850					tpd->iovec[slot].len & TPD_LEN_MASK,
1851							DMA_TO_DEVICE);
1852			if (tpd->iovec[slot].len & TPD_LST)
1853				break;
1854				
1855		}
1856
1857		if (tpd->skb) {	/* && !TBRQ_MULTIPLE(he_dev->tbrq_head) */
1858			if (tpd->vcc && tpd->vcc->pop)
1859				tpd->vcc->pop(tpd->vcc, tpd->skb);
1860			else
1861				dev_kfree_skb_any(tpd->skb);
1862		}
1863
1864next_tbrq_entry:
1865		if (tpd)
1866			dma_pool_free(he_dev->tpd_pool, tpd, TPD_ADDR(tpd->status));
1867		he_dev->tbrq_head = (struct he_tbrq *)
1868				((unsigned long) he_dev->tbrq_base |
1869					TBRQ_MASK(he_dev->tbrq_head + 1));
1870	}
1871
1872	if (updated) {
1873		if (updated > he_dev->tbrq_peak)
1874			he_dev->tbrq_peak = updated;
1875
1876		he_writel(he_dev, TBRQ_MASK(he_dev->tbrq_head),
1877						G0_TBRQ_H + (group * 16));
1878	}
1879}
1880
1881static void
1882he_service_rbpl(struct he_dev *he_dev, int group)
1883{
1884	struct he_rbp *new_tail;
1885	struct he_rbp *rbpl_head;
1886	struct he_buff *heb;
1887	dma_addr_t mapping;
1888	int i;
1889	int moved = 0;
1890
1891	rbpl_head = (struct he_rbp *) ((unsigned long)he_dev->rbpl_base |
1892					RBPL_MASK(he_readl(he_dev, G0_RBPL_S)));
1893
1894	for (;;) {
1895		new_tail = (struct he_rbp *) ((unsigned long)he_dev->rbpl_base |
1896						RBPL_MASK(he_dev->rbpl_tail+1));
1897
1898		/* table 3.42 -- rbpl_tail should never be set to rbpl_head */
1899		if (new_tail == rbpl_head)
1900			break;
1901
1902		i = find_next_zero_bit(he_dev->rbpl_table, RBPL_TABLE_SIZE, he_dev->rbpl_hint);
1903		if (i > (RBPL_TABLE_SIZE - 1)) {
1904			i = find_first_zero_bit(he_dev->rbpl_table, RBPL_TABLE_SIZE);
1905			if (i > (RBPL_TABLE_SIZE - 1))
1906				break;
1907		}
1908		he_dev->rbpl_hint = i + 1;
1909
1910		heb = dma_pool_alloc(he_dev->rbpl_pool, GFP_ATOMIC, &mapping);
1911		if (!heb)
1912			break;
1913		heb->mapping = mapping;
1914		list_add(&heb->entry, &he_dev->rbpl_outstanding);
1915		he_dev->rbpl_virt[i] = heb;
1916		set_bit(i, he_dev->rbpl_table);
1917		new_tail->idx = i << RBP_IDX_OFFSET;
1918		new_tail->phys = mapping + offsetof(struct he_buff, data);
1919
1920		he_dev->rbpl_tail = new_tail;
1921		++moved;
1922	} 
1923
1924	if (moved)
1925		he_writel(he_dev, RBPL_MASK(he_dev->rbpl_tail), G0_RBPL_T);
1926}
1927
1928static void
1929he_tasklet(unsigned long data)
1930{
1931	unsigned long flags;
1932	struct he_dev *he_dev = (struct he_dev *) data;
1933	int group, type;
1934	int updated = 0;
1935
1936	HPRINTK("tasklet (0x%lx)\n", data);
1937	spin_lock_irqsave(&he_dev->global_lock, flags);
1938
1939	while (he_dev->irq_head != he_dev->irq_tail) {
1940		++updated;
1941
1942		type = ITYPE_TYPE(he_dev->irq_head->isw);
1943		group = ITYPE_GROUP(he_dev->irq_head->isw);
1944
1945		switch (type) {
1946			case ITYPE_RBRQ_THRESH:
1947				HPRINTK("rbrq%d threshold\n", group);
1948				/* fall through */
1949			case ITYPE_RBRQ_TIMER:
1950				if (he_service_rbrq(he_dev, group))
1951					he_service_rbpl(he_dev, group);
1952				break;
1953			case ITYPE_TBRQ_THRESH:
1954				HPRINTK("tbrq%d threshold\n", group);
1955				/* fall through */
1956			case ITYPE_TPD_COMPLETE:
1957				he_service_tbrq(he_dev, group);
1958				break;
1959			case ITYPE_RBPL_THRESH:
1960				he_service_rbpl(he_dev, group);
1961				break;
1962			case ITYPE_RBPS_THRESH:
1963				/* shouldn't happen unless small buffers enabled */
1964				break;
1965			case ITYPE_PHY:
1966				HPRINTK("phy interrupt\n");
1967#ifdef CONFIG_ATM_HE_USE_SUNI
1968				spin_unlock_irqrestore(&he_dev->global_lock, flags);
1969				if (he_dev->atm_dev->phy && he_dev->atm_dev->phy->interrupt)
1970					he_dev->atm_dev->phy->interrupt(he_dev->atm_dev);
1971				spin_lock_irqsave(&he_dev->global_lock, flags);
1972#endif
1973				break;
1974			case ITYPE_OTHER:
1975				switch (type|group) {
1976					case ITYPE_PARITY:
1977						hprintk("parity error\n");
1978						break;
1979					case ITYPE_ABORT:
1980						hprintk("abort 0x%x\n", he_readl(he_dev, ABORT_ADDR));
1981						break;
1982				}
1983				break;
1984			case ITYPE_TYPE(ITYPE_INVALID):
1985				/* see 8.1.1 -- check all queues */
1986
1987				HPRINTK("isw not updated 0x%x\n", he_dev->irq_head->isw);
1988
1989				he_service_rbrq(he_dev, 0);
1990				he_service_rbpl(he_dev, 0);
1991				he_service_tbrq(he_dev, 0);
1992				break;
1993			default:
1994				hprintk("bad isw 0x%x?\n", he_dev->irq_head->isw);
1995		}
1996
1997		he_dev->irq_head->isw = ITYPE_INVALID;
1998
1999		he_dev->irq_head = (struct he_irq *) NEXT_ENTRY(he_dev->irq_base, he_dev->irq_head, IRQ_MASK);
2000	}
2001
2002	if (updated) {
2003		if (updated > he_dev->irq_peak)
2004			he_dev->irq_peak = updated;
2005
2006		he_writel(he_dev,
2007			IRQ_SIZE(CONFIG_IRQ_SIZE) |
2008			IRQ_THRESH(CONFIG_IRQ_THRESH) |
2009			IRQ_TAIL(he_dev->irq_tail), IRQ0_HEAD);
2010		(void) he_readl(he_dev, INT_FIFO); /* 8.1.2 controller errata; flush posted writes */
2011	}
2012	spin_unlock_irqrestore(&he_dev->global_lock, flags);
2013}
2014
2015static irqreturn_t
2016he_irq_handler(int irq, void *dev_id)
2017{
2018	unsigned long flags;
2019	struct he_dev *he_dev = (struct he_dev * )dev_id;
2020	int handled = 0;
2021
2022	if (he_dev == NULL)
2023		return IRQ_NONE;
2024
2025	spin_lock_irqsave(&he_dev->global_lock, flags);
2026
2027	he_dev->irq_tail = (struct he_irq *) (((unsigned long)he_dev->irq_base) |
2028						(*he_dev->irq_tailoffset << 2));
2029
2030	if (he_dev->irq_tail == he_dev->irq_head) {
2031		HPRINTK("tailoffset not updated?\n");
2032		he_dev->irq_tail = (struct he_irq *) ((unsigned long)he_dev->irq_base |
2033			((he_readl(he_dev, IRQ0_BASE) & IRQ_MASK) << 2));
2034		(void) he_readl(he_dev, INT_FIFO);	/* 8.1.2 controller errata */
2035	}
2036
2037#ifdef DEBUG
2038	if (he_dev->irq_head == he_dev->irq_tail /* && !IRQ_PENDING */)
2039		hprintk("spurious (or shared) interrupt?\n");
2040#endif
2041
2042	if (he_dev->irq_head != he_dev->irq_tail) {
2043		handled = 1;
2044		tasklet_schedule(&he_dev->tasklet);
2045		he_writel(he_dev, INT_CLEAR_A, INT_FIFO);	/* clear interrupt */
2046		(void) he_readl(he_dev, INT_FIFO);		/* flush posted writes */
2047	}
2048	spin_unlock_irqrestore(&he_dev->global_lock, flags);
2049	return IRQ_RETVAL(handled);
2050
2051}
2052
2053static __inline__ void
2054__enqueue_tpd(struct he_dev *he_dev, struct he_tpd *tpd, unsigned cid)
2055{
2056	struct he_tpdrq *new_tail;
2057
2058	HPRINTK("tpdrq %p cid 0x%x -> tpdrq_tail %p\n",
2059					tpd, cid, he_dev->tpdrq_tail);
2060
2061	/* new_tail = he_dev->tpdrq_tail; */
2062	new_tail = (struct he_tpdrq *) ((unsigned long) he_dev->tpdrq_base |
2063					TPDRQ_MASK(he_dev->tpdrq_tail+1));
2064
2065	/*
2066	 * check to see if we are about to set the tail == head
2067	 * if true, update the head pointer from the adapter
2068	 * to see if this is really the case (reading the queue
2069	 * head for every enqueue would be unnecessarily slow)
2070	 */
2071
2072	if (new_tail == he_dev->tpdrq_head) {
2073		he_dev->tpdrq_head = (struct he_tpdrq *)
2074			(((unsigned long)he_dev->tpdrq_base) |
2075				TPDRQ_MASK(he_readl(he_dev, TPDRQ_B_H)));
2076
2077		if (new_tail == he_dev->tpdrq_head) {
2078			int slot;
2079
2080			hprintk("tpdrq full (cid 0x%x)\n", cid);
2081			/*
2082			 * FIXME
2083			 * push tpd onto a transmit backlog queue
2084			 * after service_tbrq, service the backlog
2085			 * for now, we just drop the pdu
2086			 */
2087			for (slot = 0; slot < TPD_MAXIOV; ++slot) {
2088				if (tpd->iovec[slot].addr)
2089					dma_unmap_single(&he_dev->pci_dev->dev,
2090						tpd->iovec[slot].addr,
2091						tpd->iovec[slot].len & TPD_LEN_MASK,
2092								DMA_TO_DEVICE);
2093			}
2094			if (tpd->skb) {
2095				if (tpd->vcc->pop)
2096					tpd->vcc->pop(tpd->vcc, tpd->skb);
2097				else
2098					dev_kfree_skb_any(tpd->skb);
2099				atomic_inc(&tpd->vcc->stats->tx_err);
2100			}
2101			dma_pool_free(he_dev->tpd_pool, tpd, TPD_ADDR(tpd->status));
2102			return;
2103		}
2104	}
2105
2106	/* 2.1.5 transmit packet descriptor ready queue */
2107	list_add_tail(&tpd->entry, &he_dev->outstanding_tpds);
2108	he_dev->tpdrq_tail->tpd = TPD_ADDR(tpd->status);
2109	he_dev->tpdrq_tail->cid = cid;
2110	wmb();
2111
2112	he_dev->tpdrq_tail = new_tail;
2113
2114	he_writel(he_dev, TPDRQ_MASK(he_dev->tpdrq_tail), TPDRQ_T);
2115	(void) he_readl(he_dev, TPDRQ_T);		/* flush posted writes */
2116}
2117
2118static int
2119he_open(struct atm_vcc *vcc)
2120{
2121	unsigned long flags;
2122	struct he_dev *he_dev = HE_DEV(vcc->dev);
2123	struct he_vcc *he_vcc;
2124	int err = 0;
2125	unsigned cid, rsr0, rsr1, rsr4, tsr0, tsr0_aal, tsr4, period, reg, clock;
2126	short vpi = vcc->vpi;
2127	int vci = vcc->vci;
2128
2129	if (vci == ATM_VCI_UNSPEC || vpi == ATM_VPI_UNSPEC)
2130		return 0;
2131
2132	HPRINTK("open vcc %p %d.%d\n", vcc, vpi, vci);
2133
2134	set_bit(ATM_VF_ADDR, &vcc->flags);
2135
2136	cid = he_mkcid(he_dev, vpi, vci);
2137
2138	he_vcc = kmalloc(sizeof(struct he_vcc), GFP_ATOMIC);
2139	if (he_vcc == NULL) {
2140		hprintk("unable to allocate he_vcc during open\n");
2141		return -ENOMEM;
2142	}
2143
2144	INIT_LIST_HEAD(&he_vcc->buffers);
2145	he_vcc->pdu_len = 0;
2146	he_vcc->rc_index = -1;
2147
2148	init_waitqueue_head(&he_vcc->rx_waitq);
2149	init_waitqueue_head(&he_vcc->tx_waitq);
2150
2151	vcc->dev_data = he_vcc;
2152
2153	if (vcc->qos.txtp.traffic_class != ATM_NONE) {
2154		int pcr_goal;
2155
2156		pcr_goal = atm_pcr_goal(&vcc->qos.txtp);
2157		if (pcr_goal == 0)
2158			pcr_goal = he_dev->atm_dev->link_rate;
2159		if (pcr_goal < 0)	/* means round down, technically */
2160			pcr_goal = -pcr_goal;
2161
2162		HPRINTK("open tx cid 0x%x pcr_goal %d\n", cid, pcr_goal);
2163
2164		switch (vcc->qos.aal) {
2165			case ATM_AAL5:
2166				tsr0_aal = TSR0_AAL5;
2167				tsr4 = TSR4_AAL5;
2168				break;
2169			case ATM_AAL0:
2170				tsr0_aal = TSR0_AAL0_SDU;
2171				tsr4 = TSR4_AAL0_SDU;
2172				break;
2173			default:
2174				err = -EINVAL;
2175				goto open_failed;
2176		}
2177
2178		spin_lock_irqsave(&he_dev->global_lock, flags);
2179		tsr0 = he_readl_tsr0(he_dev, cid);
2180		spin_unlock_irqrestore(&he_dev->global_lock, flags);
2181
2182		if (TSR0_CONN_STATE(tsr0) != 0) {
2183			hprintk("cid 0x%x not idle (tsr0 = 0x%x)\n", cid, tsr0);
2184			err = -EBUSY;
2185			goto open_failed;
2186		}
2187
2188		switch (vcc->qos.txtp.traffic_class) {
2189			case ATM_UBR:
2190				/* 2.3.3.1 open connection ubr */
2191
2192				tsr0 = TSR0_UBR | TSR0_GROUP(0) | tsr0_aal |
2193					TSR0_USE_WMIN | TSR0_UPDATE_GER;
2194				break;
2195
2196			case ATM_CBR:
2197				/* 2.3.3.2 open connection cbr */
2198
2199				/* 8.2.3 cbr scheduler wrap problem -- limit to 90% total link rate */
2200				if ((he_dev->total_bw + pcr_goal)
2201					> (he_dev->atm_dev->link_rate * 9 / 10))
2202				{
2203					err = -EBUSY;
2204					goto open_failed;
2205				}
2206
2207				spin_lock_irqsave(&he_dev->global_lock, flags);			/* also protects he_dev->cs_stper[] */
2208
2209				/* find an unused cs_stper register */
2210				for (reg = 0; reg < HE_NUM_CS_STPER; ++reg)
2211					if (he_dev->cs_stper[reg].inuse == 0 || 
2212					    he_dev->cs_stper[reg].pcr == pcr_goal)
2213							break;
2214
2215				if (reg == HE_NUM_CS_STPER) {
2216					err = -EBUSY;
2217					spin_unlock_irqrestore(&he_dev->global_lock, flags);
2218					goto open_failed;
2219				}
2220
2221				he_dev->total_bw += pcr_goal;
2222
2223				he_vcc->rc_index = reg;
2224				++he_dev->cs_stper[reg].inuse;
2225				he_dev->cs_stper[reg].pcr = pcr_goal;
2226
2227				clock = he_is622(he_dev) ? 66667000 : 50000000;
2228				period = clock / pcr_goal;
2229				
2230				HPRINTK("rc_index = %d period = %d\n",
2231								reg, period);
2232
2233				he_writel_mbox(he_dev, rate_to_atmf(period/2),
2234							CS_STPER0 + reg);
2235				spin_unlock_irqrestore(&he_dev->global_lock, flags);
2236
2237				tsr0 = TSR0_CBR | TSR0_GROUP(0) | tsr0_aal |
2238							TSR0_RC_INDEX(reg);
2239
2240				break;
2241			default:
2242				err = -EINVAL;
2243				goto open_failed;
2244		}
2245
2246		spin_lock_irqsave(&he_dev->global_lock, flags);
2247
2248		he_writel_tsr0(he_dev, tsr0, cid);
2249		he_writel_tsr4(he_dev, tsr4 | 1, cid);
2250		he_writel_tsr1(he_dev, TSR1_MCR(rate_to_atmf(0)) |
2251					TSR1_PCR(rate_to_atmf(pcr_goal)), cid);
2252		he_writel_tsr2(he_dev, TSR2_ACR(rate_to_atmf(pcr_goal)), cid);
2253		he_writel_tsr9(he_dev, TSR9_OPEN_CONN, cid);
2254
2255		he_writel_tsr3(he_dev, 0x0, cid);
2256		he_writel_tsr5(he_dev, 0x0, cid);
2257		he_writel_tsr6(he_dev, 0x0, cid);
2258		he_writel_tsr7(he_dev, 0x0, cid);
2259		he_writel_tsr8(he_dev, 0x0, cid);
2260		he_writel_tsr10(he_dev, 0x0, cid);
2261		he_writel_tsr11(he_dev, 0x0, cid);
2262		he_writel_tsr12(he_dev, 0x0, cid);
2263		he_writel_tsr13(he_dev, 0x0, cid);
2264		he_writel_tsr14(he_dev, 0x0, cid);
2265		(void) he_readl_tsr0(he_dev, cid);		/* flush posted writes */
2266		spin_unlock_irqrestore(&he_dev->global_lock, flags);
2267	}
2268
2269	if (vcc->qos.rxtp.traffic_class != ATM_NONE) {
2270		unsigned aal;
2271
2272		HPRINTK("open rx cid 0x%x (rx_waitq %p)\n", cid,
2273		 				&HE_VCC(vcc)->rx_waitq);
2274
2275		switch (vcc->qos.aal) {
2276			case ATM_AAL5:
2277				aal = RSR0_AAL5;
2278				break;
2279			case ATM_AAL0:
2280				aal = RSR0_RAWCELL;
2281				break;
2282			default:
2283				err = -EINVAL;
2284				goto open_failed;
2285		}
2286
2287		spin_lock_irqsave(&he_dev->global_lock, flags);
2288
2289		rsr0 = he_readl_rsr0(he_dev, cid);
2290		if (rsr0 & RSR0_OPEN_CONN) {
2291			spin_unlock_irqrestore(&he_dev->global_lock, flags);
2292
2293			hprintk("cid 0x%x not idle (rsr0 = 0x%x)\n", cid, rsr0);
2294			err = -EBUSY;
2295			goto open_failed;
2296		}
2297
2298		rsr1 = RSR1_GROUP(0) | RSR1_RBPL_ONLY;
2299		rsr4 = RSR4_GROUP(0) | RSR4_RBPL_ONLY;
2300		rsr0 = vcc->qos.rxtp.traffic_class == ATM_UBR ? 
2301				(RSR0_EPD_ENABLE|RSR0_PPD_ENABLE) : 0;
2302
2303#ifdef USE_CHECKSUM_HW
2304		if (vpi == 0 && vci >= ATM_NOT_RSV_VCI)
2305			rsr0 |= RSR0_TCP_CKSUM;
2306#endif
2307
2308		he_writel_rsr4(he_dev, rsr4, cid);
2309		he_writel_rsr1(he_dev, rsr1, cid);
2310		/* 5.1.11 last parameter initialized should be
2311			  the open/closed indication in rsr0 */
2312		he_writel_rsr0(he_dev,
2313			rsr0 | RSR0_START_PDU | RSR0_OPEN_CONN | aal, cid);
2314		(void) he_readl_rsr0(he_dev, cid);		/* flush posted writes */
2315
2316		spin_unlock_irqrestore(&he_dev->global_lock, flags);
2317	}
2318
2319open_failed:
2320
2321	if (err) {
2322		kfree(he_vcc);
2323		clear_bit(ATM_VF_ADDR, &vcc->flags);
2324	}
2325	else
2326		set_bit(ATM_VF_READY, &vcc->flags);
2327
2328	return err;
2329}
2330
2331static void
2332he_close(struct atm_vcc *vcc)
2333{
2334	unsigned long flags;
2335	DECLARE_WAITQUEUE(wait, current);
2336	struct he_dev *he_dev = HE_DEV(vcc->dev);
2337	struct he_tpd *tpd;
2338	unsigned cid;
2339	struct he_vcc *he_vcc = HE_VCC(vcc);
2340#define MAX_RETRY 30
2341	int retry = 0, sleep = 1, tx_inuse;
2342
2343	HPRINTK("close vcc %p %d.%d\n", vcc, vcc->vpi, vcc->vci);
2344
2345	clear_bit(ATM_VF_READY, &vcc->flags);
2346	cid = he_mkcid(he_dev, vcc->vpi, vcc->vci);
2347
2348	if (vcc->qos.rxtp.traffic_class != ATM_NONE) {
2349		int timeout;
2350
2351		HPRINTK("close rx cid 0x%x\n", cid);
2352
2353		/* 2.7.2.2 close receive operation */
2354
2355		/* wait for previous close (if any) to finish */
2356
2357		spin_lock_irqsave(&he_dev->global_lock, flags);
2358		while (he_readl(he_dev, RCC_STAT) & RCC_BUSY) {
2359			HPRINTK("close cid 0x%x RCC_BUSY\n", cid);
2360			udelay(250);
2361		}
2362
2363		set_current_state(TASK_UNINTERRUPTIBLE);
2364		add_wait_queue(&he_vcc->rx_waitq, &wait);
2365
2366		he_writel_rsr0(he_dev, RSR0_CLOSE_CONN, cid);
2367		(void) he_readl_rsr0(he_dev, cid);		/* flush posted writes */
2368		he_writel_mbox(he_dev, cid, RXCON_CLOSE);
2369		spin_unlock_irqrestore(&he_dev->global_lock, flags);
2370
2371		timeout = schedule_timeout(30*HZ);
2372
2373		remove_wait_queue(&he_vcc->rx_waitq, &wait);
2374		set_current_state(TASK_RUNNING);
2375
2376		if (timeout == 0)
2377			hprintk("close rx timeout cid 0x%x\n", cid);
2378
2379		HPRINTK("close rx cid 0x%x complete\n", cid);
2380
2381	}
2382
2383	if (vcc->qos.txtp.traffic_class != ATM_NONE) {
2384		volatile unsigned tsr4, tsr0;
2385		int timeout;
2386
2387		HPRINTK("close tx cid 0x%x\n", cid);
2388		
2389		/* 2.1.2
2390		 *
2391		 * ... the host must first stop queueing packets to the TPDRQ
2392		 * on the connection to be closed, then wait for all outstanding
2393		 * packets to be transmitted and their buffers returned to the
2394		 * TBRQ. When the last packet on the connection arrives in the
2395		 * TBRQ, the host issues the close command to the adapter.
2396		 */
2397
2398		while (((tx_inuse = atomic_read(&sk_atm(vcc)->sk_wmem_alloc)) > 1) &&
2399		       (retry < MAX_RETRY)) {
2400			msleep(sleep);
2401			if (sleep < 250)
2402				sleep = sleep * 2;
2403
2404			++retry;
2405		}
2406
2407		if (tx_inuse > 1)
2408			hprintk("close tx cid 0x%x tx_inuse = %d\n", cid, tx_inuse);
2409
2410		/* 2.3.1.1 generic close operations with flush */
2411
2412		spin_lock_irqsave(&he_dev->global_lock, flags);
2413		he_writel_tsr4_upper(he_dev, TSR4_FLUSH_CONN, cid);
2414					/* also clears TSR4_SESSION_ENDED */
2415
2416		switch (vcc->qos.txtp.traffic_class) {
2417			case ATM_UBR:
2418				he_writel_tsr1(he_dev, 
2419					TSR1_MCR(rate_to_atmf(200000))
2420					| TSR1_PCR(0), cid);
2421				break;
2422			case ATM_CBR:
2423				he_writel_tsr14_upper(he_dev, TSR14_DELETE, cid);
2424				break;
2425		}
2426		(void) he_readl_tsr4(he_dev, cid);		/* flush posted writes */
2427
2428		tpd = __alloc_tpd(he_dev);
2429		if (tpd == NULL) {
2430			hprintk("close tx he_alloc_tpd failed cid 0x%x\n", cid);
2431			goto close_tx_incomplete;
2432		}
2433		tpd->status |= TPD_EOS | TPD_INT;
2434		tpd->skb = NULL;
2435		tpd->vcc = vcc;
2436		wmb();
2437
2438		set_current_state(TASK_UNINTERRUPTIBLE);
2439		add_wait_queue(&he_vcc->tx_waitq, &wait);
2440		__enqueue_tpd(he_dev, tpd, cid);
2441		spin_unlock_irqrestore(&he_dev->global_lock, flags);
2442
2443		timeout = schedule_timeout(30*HZ);
2444
2445		remove_wait_queue(&he_vcc->tx_waitq, &wait);
2446		set_current_state(TASK_RUNNING);
2447
2448		spin_lock_irqsave(&he_dev->global_lock, flags);
2449
2450		if (timeout == 0) {
2451			hprintk("close tx timeout cid 0x%x\n", cid);
2452			goto close_tx_incomplete;
2453		}
2454
2455		while (!((tsr4 = he_readl_tsr4(he_dev, cid)) & TSR4_SESSION_ENDED)) {
2456			HPRINTK("close tx cid 0x%x !TSR4_SESSION_ENDED (tsr4 = 0x%x)\n", cid, tsr4);
2457			udelay(250);
2458		}
2459
2460		while (TSR0_CONN_STATE(tsr0 = he_readl_tsr0(he_dev, cid)) != 0) {
2461			HPRINTK("close tx cid 0x%x TSR0_CONN_STATE != 0 (tsr0 = 0x%x)\n", cid, tsr0);
2462			udelay(250);
2463		}
2464
2465close_tx_incomplete:
2466
2467		if (vcc->qos.txtp.traffic_class == ATM_CBR) {
2468			int reg = he_vcc->rc_index;
2469
2470			HPRINTK("cs_stper reg = %d\n", reg);
2471
2472			if (he_dev->cs_stper[reg].inuse == 0)
2473				hprintk("cs_stper[%d].inuse = 0!\n", reg);
2474			else
2475				--he_dev->cs_stper[reg].inuse;
2476
2477			he_dev->total_bw -= he_dev->cs_stper[reg].pcr;
2478		}
2479		spin_unlock_irqrestore(&he_dev->global_lock, flags);
2480
2481		HPRINTK("close tx cid 0x%x complete\n", cid);
2482	}
2483
2484	kfree(he_vcc);
2485
2486	clear_bit(ATM_VF_ADDR, &vcc->flags);
2487}
2488
2489static int
2490he_send(struct atm_vcc *vcc, struct sk_buff *skb)
2491{
2492	unsigned long flags;
2493	struct he_dev *he_dev = HE_DEV(vcc->dev);
2494	unsigned cid = he_mkcid(he_dev, vcc->vpi, vcc->vci);
2495	struct he_tpd *tpd;
2496#ifdef USE_SCATTERGATHER
2497	int i, slot = 0;
2498#endif
2499
2500#define HE_TPD_BUFSIZE 0xffff
2501
2502	HPRINTK("send %d.%d\n", vcc->vpi, vcc->vci);
2503
2504	if ((skb->len > HE_TPD_BUFSIZE) ||
2505	    ((vcc->qos.aal == ATM_AAL0) && (skb->len != ATM_AAL0_SDU))) {
2506		hprintk("buffer too large (or small) -- %d bytes\n", skb->len );
2507		if (vcc->pop)
2508			vcc->pop(vcc, skb);
2509		else
2510			dev_kfree_skb_any(skb);
2511		atomic_inc(&vcc->stats->tx_err);
2512		return -EINVAL;
2513	}
2514
2515#ifndef USE_SCATTERGATHER
2516	if (skb_shinfo(skb)->nr_frags) {
2517		hprintk("no scatter/gather support\n");
2518		if (vcc->pop)
2519			vcc->pop(vcc, skb);
2520		else
2521			dev_kfree_skb_any(skb);
2522		atomic_inc(&vcc->stats->tx_err);
2523		return -EINVAL;
2524	}
2525#endif
2526	spin_lock_irqsave(&he_dev->global_lock, flags);
2527
2528	tpd = __alloc_tpd(he_dev);
2529	if (tpd == NULL) {
2530		if (vcc->pop)
2531			vcc->pop(vcc, skb);
2532		else
2533			dev_kfree_skb_any(skb);
2534		atomic_inc(&vcc->stats->tx_err);
2535		spin_unlock_irqrestore(&he_dev->global_lock, flags);
2536		return -ENOMEM;
2537	}
2538
2539	if (vcc->qos.aal == ATM_AAL5)
2540		tpd->status |= TPD_CELLTYPE(TPD_USERCELL);
2541	else {
2542		char *pti_clp = (void *) (skb->data + 3);
2543		int clp, pti;
2544
2545		pti = (*pti_clp & ATM_HDR_PTI_MASK) >> ATM_HDR_PTI_SHIFT; 
2546		clp = (*pti_clp & ATM_HDR_CLP);
2547		tpd->status |= TPD_CELLTYPE(pti);
2548		if (clp)
2549			tpd->status |= TPD_CLP;
2550
2551		skb_pull(skb, ATM_AAL0_SDU - ATM_CELL_PAYLOAD);
2552	}
2553
2554#ifdef USE_SCATTERGATHER
2555	tpd->iovec[slot].addr = dma_map_single(&he_dev->pci_dev->dev, skb->data,
2556				skb_headlen(skb), DMA_TO_DEVICE);
2557	tpd->iovec[slot].len = skb_headlen(skb);
2558	++slot;
2559
2560	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2561		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2562
2563		if (slot == TPD_MAXIOV) {	/* queue tpd; start new tpd */
2564			tpd->vcc = vcc;
2565			tpd->skb = NULL;	/* not the last fragment
2566						   so dont ->push() yet */
2567			wmb();
2568
2569			__enqueue_tpd(he_dev, tpd, cid);
2570			tpd = __alloc_tpd(he_dev);
2571			if (tpd == NULL) {
2572				if (vcc->pop)
2573					vcc->pop(vcc, skb);
2574				else
2575					dev_kfree_skb_any(skb);
2576				atomic_inc(&vcc->stats->tx_err);
2577				spin_unlock_irqrestore(&he_dev->global_lock, flags);
2578				return -ENOMEM;
2579			}
2580			tpd->status |= TPD_USERCELL;
2581			slot = 0;
2582		}
2583
2584		tpd->iovec[slot].addr = dma_map_single(&he_dev->pci_dev->dev,
2585			(void *) page_address(frag->page) + frag->page_offset,
2586				frag->size, DMA_TO_DEVICE);
2587		tpd->iovec[slot].len = frag->size;
2588		++slot;
2589
2590	}
2591
2592	tpd->iovec[slot - 1].len |= TPD_LST;
2593#else
2594	tpd->address0 = dma_map_single(&he_dev->pci_dev->dev, skb->data, skb->len, DMA_TO_DEVICE);
2595	tpd->length0 = skb->len | TPD_LST;
2596#endif
2597	tpd->status |= TPD_INT;
2598
2599	tpd->vcc = vcc;
2600	tpd->skb = skb;
2601	wmb();
2602	ATM_SKB(skb)->vcc = vcc;
2603
2604	__enqueue_tpd(he_dev, tpd, cid);
2605	spin_unlock_irqrestore(&he_dev->global_lock, flags);
2606
2607	atomic_inc(&vcc->stats->tx);
2608
2609	return 0;
2610}
2611
2612static int
2613he_ioctl(struct atm_dev *atm_dev, unsigned int cmd, void __user *arg)
2614{
2615	unsigned long flags;
2616	struct he_dev *he_dev = HE_DEV(atm_dev);
2617	struct he_ioctl_reg reg;
2618	int err = 0;
2619
2620	switch (cmd) {
2621		case HE_GET_REG:
2622			if (!capable(CAP_NET_ADMIN))
2623				return -EPERM;
2624
2625			if (copy_from_user(&reg, arg,
2626					   sizeof(struct he_ioctl_reg)))
2627				return -EFAULT;
2628
2629			spin_lock_irqsave(&he_dev->global_lock, flags);
2630			switch (reg.type) {
2631				case HE_REGTYPE_PCI:
2632					if (reg.addr >= HE_REGMAP_SIZE) {
2633						err = -EINVAL;
2634						break;
2635					}
2636
2637					reg.val = he_readl(he_dev, reg.addr);
2638					break;
2639				case HE_REGTYPE_RCM:
2640					reg.val =
2641						he_readl_rcm(he_dev, reg.addr);
2642					break;
2643				case HE_REGTYPE_TCM:
2644					reg.val =
2645						he_readl_tcm(he_dev, reg.addr);
2646					break;
2647				case HE_REGTYPE_MBOX:
2648					reg.val =
2649						he_readl_mbox(he_dev, reg.addr);
2650					break;
2651				default:
2652					err = -EINVAL;
2653					break;
2654			}
2655			spin_unlock_irqrestore(&he_dev->global_lock, flags);
2656			if (err == 0)
2657				if (copy_to_user(arg, &reg,
2658							sizeof(struct he_ioctl_reg)))
2659					return -EFAULT;
2660			break;
2661		default:
2662#ifdef CONFIG_ATM_HE_USE_SUNI
2663			if (atm_dev->phy && atm_dev->phy->ioctl)
2664				err = atm_dev->phy->ioctl(atm_dev, cmd, arg);
2665#else /* CONFIG_ATM_HE_USE_SUNI */
2666			err = -EINVAL;
2667#endif /* CONFIG_ATM_HE_USE_SUNI */
2668			break;
2669	}
2670
2671	return err;
2672}
2673
2674static void
2675he_phy_put(struct atm_dev *atm_dev, unsigned char val, unsigned long addr)
2676{
2677	unsigned long flags;
2678	struct he_dev *he_dev = HE_DEV(atm_dev);
2679
2680	HPRINTK("phy_put(val 0x%x, addr 0x%lx)\n", val, addr);
2681
2682	spin_lock_irqsave(&he_dev->global_lock, flags);
2683	he_writel(he_dev, val, FRAMER + (addr*4));
2684	(void) he_readl(he_dev, FRAMER + (addr*4));		/* flush posted writes */
2685	spin_unlock_irqrestore(&he_dev->global_lock, flags);
2686}
2687 
2688	
2689static unsigned char
2690he_phy_get(struct atm_dev *atm_dev, unsigned long addr)
2691{ 
2692	unsigned long flags;
2693	struct he_dev *he_dev = HE_DEV(atm_dev);
2694	unsigned reg;
2695
2696	spin_lock_irqsave(&he_dev->global_lock, flags);
2697	reg = he_readl(he_dev, FRAMER + (addr*4));
2698	spin_unlock_irqrestore(&he_dev->global_lock, flags);
2699
2700	HPRINTK("phy_get(addr 0x%lx) =0x%x\n", addr, reg);
2701	return reg;
2702}
2703
2704static int
2705he_proc_read(struct atm_dev *dev, loff_t *pos, char *page)
2706{
2707	unsigned long flags;
2708	struct he_dev *he_dev = HE_DEV(dev);
2709	int left, i;
2710#ifdef notdef
2711	struct he_rbrq *rbrq_tail;
2712	struct he_tpdrq *tpdrq_head;
2713	int rbpl_head, rbpl_tail;
2714#endif
2715	static long mcc = 0, oec = 0, dcc = 0, cec = 0;
2716
2717
2718	left = *pos;
2719	if (!left--)
2720		return sprintf(page, "ATM he driver\n");
2721
2722	if (!left--)
2723		return sprintf(page, "%s%s\n\n",
2724			he_dev->prod_id, he_dev->media & 0x40 ? "SM" : "MM");
2725
2726	if (!left--)
2727		return sprintf(page, "Mismatched Cells  VPI/VCI Not Open  Dropped Cells  RCM Dropped Cells\n");
2728
2729	spin_lock_irqsave(&he_dev->global_lock, flags);
2730	mcc += he_readl(he_dev, MCC);
2731	oec += he_readl(he_dev, OEC);
2732	dcc += he_readl(he_dev, DCC);
2733	cec += he_readl(he_dev, CEC);
2734	spin_unlock_irqrestore(&he_dev->global_lock, flags);
2735
2736	if (!left--)
2737		return sprintf(page, "%16ld  %16ld  %13ld  %17ld\n\n", 
2738							mcc, oec, dcc, cec);
2739
2740	if (!left--)
2741		return sprintf(page, "irq_size = %d  inuse = ?  peak = %d\n",
2742				CONFIG_IRQ_SIZE, he_dev->irq_peak);
2743
2744	if (!left--)
2745		return sprintf(page, "tpdrq_size = %d  inuse = ?\n",
2746						CONFIG_TPDRQ_SIZE);
2747
2748	if (!left--)
2749		return sprintf(page, "rbrq_size = %d  inuse = ?  peak = %d\n",
2750				CONFIG_RBRQ_SIZE, he_dev->rbrq_peak);
2751
2752	if (!left--)
2753		return sprintf(page, "tbrq_size = %d  peak = %d\n",
2754					CONFIG_TBRQ_SIZE, he_dev->tbrq_peak);
2755
2756
2757#ifdef notdef
2758	rbpl_head = RBPL_MASK(he_readl(he_dev, G0_RBPL_S));
2759	rbpl_tail = RBPL_MASK(he_readl(he_dev, G0_RBPL_T));
2760
2761	inuse = rbpl_head - rbpl_tail;
2762	if (inuse < 0)
2763		inuse += CONFIG_RBPL_SIZE * sizeof(struct he_rbp);
2764	inuse /= sizeof(struct he_rbp);
2765
2766	if (!left--)
2767		return sprintf(page, "rbpl_size = %d  inuse = %d\n\n",
2768						CONFIG_RBPL_SIZE, inuse);
2769#endif
2770
2771	if (!left--)
2772		return sprintf(page, "rate controller periods (cbr)\n                 pcr  #vc\n");
2773
2774	for (i = 0; i < HE_NUM_CS_STPER; ++i)
2775		if (!left--)
2776			return sprintf(page, "cs_stper%-2d  %8ld  %3d\n", i,
2777						he_dev->cs_stper[i].pcr,
2778						he_dev->cs_stper[i].inuse);
2779
2780	if (!left--)
2781		return sprintf(page, "total bw (cbr): %d  (limit %d)\n",
2782			he_dev->total_bw, he_dev->atm_dev->link_rate * 10 / 9);
2783
2784	return 0;
2785}
2786
2787/* eeprom routines  -- see 4.7 */
2788
2789static u8 read_prom_byte(struct he_dev *he_dev, int addr)
2790{
2791	u32 val = 0, tmp_read = 0;
2792	int i, j = 0;
2793	u8 byte_read = 0;
2794
2795	val = readl(he_dev->membase + HOST_CNTL);
2796	val &= 0xFFFFE0FF;
2797       
2798	/* Turn on write enable */
2799	val |= 0x800;
2800	he_writel(he_dev, val, HOST_CNTL);
2801       
2802	/* Send READ instruction */
2803	for (i = 0; i < ARRAY_SIZE(readtab); i++) {
2804		he_writel(he_dev, val | readtab[i], HOST_CNTL);
2805		udelay(EEPROM_DELAY);
2806	}
2807       
2808	/* Next, we need to send the byte address to read from */
2809	for (i = 7; i >= 0; i--) {
2810		he_writel(he_dev, val | clocktab[j++] | (((addr >> i) & 1) << 9), HOST_CNTL);
2811		udelay(EEPROM_DELAY);
2812		he_writel(he_dev, val | clocktab[j++] | (((addr >> i) & 1) << 9), HOST_CNTL);
2813		udelay(EEPROM_DELAY);
2814	}
2815       
2816	j = 0;
2817
2818	val &= 0xFFFFF7FF;      /* Turn off write enable */
2819	he_writel(he_dev, val, HOST_CNTL);
2820       
2821	/* Now, we can read data from the EEPROM by clocking it in */
2822	for (i = 7; i >= 0; i--) {
2823		he_writel(he_dev, val | clocktab[j++], HOST_CNTL);
2824		udelay(EEPROM_DELAY);
2825		tmp_read = he_readl(he_dev, HOST_CNTL);
2826		byte_read |= (unsigned char)
2827			   ((tmp_read & ID_DOUT) >> ID_DOFFSET << i);
2828		he_writel(he_dev, val | clocktab[j++], HOST_CNTL);
2829		udelay(EEPROM_DELAY);
2830	}
2831       
2832	he_writel(he_dev, val | ID_CS, HOST_CNTL);
2833	udelay(EEPROM_DELAY);
2834
2835	return byte_read;
2836}
2837
2838MODULE_LICENSE("GPL");
2839MODULE_AUTHOR("chas williams <chas@cmf.nrl.navy.mil>");
2840MODULE_DESCRIPTION("ForeRunnerHE ATM Adapter driver");
2841module_param(disable64, bool, 0);
2842MODULE_PARM_DESC(disable64, "disable 64-bit pci bus transfers");
2843module_param(nvpibits, short, 0);
2844MODULE_PARM_DESC(nvpibits, "numbers of bits for vpi (default 0)");
2845module_param(nvcibits, short, 0);
2846MODULE_PARM_DESC(nvcibits, "numbers of bits for vci (default 12)");
2847module_param(rx_skb_reserve, short, 0);
2848MODULE_PARM_DESC(rx_skb_reserve, "padding for receive skb (default 16)");
2849module_param(irq_coalesce, bool, 0);
2850MODULE_PARM_DESC(irq_coalesce, "use interrupt coalescing (default 1)");
2851module_param(sdh, bool, 0);
2852MODULE_PARM_DESC(sdh, "use SDH framing (default 0)");
2853
2854static struct pci_device_id he_pci_tbl[] = {
2855	{ PCI_VDEVICE(FORE, PCI_DEVICE_ID_FORE_HE), 0 },
2856	{ 0, }
2857};
2858
2859MODULE_DEVICE_TABLE(pci, he_pci_tbl);
2860
2861static struct pci_driver he_driver = {
2862	.name =		"he",
2863	.probe =	he_init_one,
2864	.remove =	he_remove_one,
2865	.id_table =	he_pci_tbl,
2866};
2867
2868module_pci_driver(he_driver);