Linux Audio

Check our new training course

Loading...
Note: File does not exist in v5.9.
  1/*
  2 * Software multibuffer async crypto daemon.
  3 *
  4 * Copyright (c) 2014 Tim Chen <tim.c.chen@linux.intel.com>
  5 *
  6 * Adapted from crypto daemon.
  7 *
  8 * This program is free software; you can redistribute it and/or modify it
  9 * under the terms of the GNU General Public License as published by the Free
 10 * Software Foundation; either version 2 of the License, or (at your option)
 11 * any later version.
 12 *
 13 */
 14
 15#include <crypto/algapi.h>
 16#include <crypto/internal/hash.h>
 17#include <crypto/internal/aead.h>
 18#include <crypto/mcryptd.h>
 19#include <crypto/crypto_wq.h>
 20#include <linux/err.h>
 21#include <linux/init.h>
 22#include <linux/kernel.h>
 23#include <linux/list.h>
 24#include <linux/module.h>
 25#include <linux/scatterlist.h>
 26#include <linux/sched.h>
 27#include <linux/slab.h>
 28#include <linux/hardirq.h>
 29
 30#define MCRYPTD_MAX_CPU_QLEN 100
 31#define MCRYPTD_BATCH 9
 32
 33static void *mcryptd_alloc_instance(struct crypto_alg *alg, unsigned int head,
 34				   unsigned int tail);
 35
 36struct mcryptd_flush_list {
 37	struct list_head list;
 38	struct mutex lock;
 39};
 40
 41static struct mcryptd_flush_list __percpu *mcryptd_flist;
 42
 43struct hashd_instance_ctx {
 44	struct crypto_ahash_spawn spawn;
 45	struct mcryptd_queue *queue;
 46};
 47
 48static void mcryptd_queue_worker(struct work_struct *work);
 49
 50void mcryptd_arm_flusher(struct mcryptd_alg_cstate *cstate, unsigned long delay)
 51{
 52	struct mcryptd_flush_list *flist;
 53
 54	if (!cstate->flusher_engaged) {
 55		/* put the flusher on the flush list */
 56		flist = per_cpu_ptr(mcryptd_flist, smp_processor_id());
 57		mutex_lock(&flist->lock);
 58		list_add_tail(&cstate->flush_list, &flist->list);
 59		cstate->flusher_engaged = true;
 60		cstate->next_flush = jiffies + delay;
 61		queue_delayed_work_on(smp_processor_id(), kcrypto_wq,
 62			&cstate->flush, delay);
 63		mutex_unlock(&flist->lock);
 64	}
 65}
 66EXPORT_SYMBOL(mcryptd_arm_flusher);
 67
 68static int mcryptd_init_queue(struct mcryptd_queue *queue,
 69			     unsigned int max_cpu_qlen)
 70{
 71	int cpu;
 72	struct mcryptd_cpu_queue *cpu_queue;
 73
 74	queue->cpu_queue = alloc_percpu(struct mcryptd_cpu_queue);
 75	pr_debug("mqueue:%p mcryptd_cpu_queue %p\n", queue, queue->cpu_queue);
 76	if (!queue->cpu_queue)
 77		return -ENOMEM;
 78	for_each_possible_cpu(cpu) {
 79		cpu_queue = per_cpu_ptr(queue->cpu_queue, cpu);
 80		pr_debug("cpu_queue #%d %p\n", cpu, queue->cpu_queue);
 81		crypto_init_queue(&cpu_queue->queue, max_cpu_qlen);
 82		INIT_WORK(&cpu_queue->work, mcryptd_queue_worker);
 83	}
 84	return 0;
 85}
 86
 87static void mcryptd_fini_queue(struct mcryptd_queue *queue)
 88{
 89	int cpu;
 90	struct mcryptd_cpu_queue *cpu_queue;
 91
 92	for_each_possible_cpu(cpu) {
 93		cpu_queue = per_cpu_ptr(queue->cpu_queue, cpu);
 94		BUG_ON(cpu_queue->queue.qlen);
 95	}
 96	free_percpu(queue->cpu_queue);
 97}
 98
 99static int mcryptd_enqueue_request(struct mcryptd_queue *queue,
100				  struct crypto_async_request *request,
101				  struct mcryptd_hash_request_ctx *rctx)
102{
103	int cpu, err;
104	struct mcryptd_cpu_queue *cpu_queue;
105
106	cpu = get_cpu();
107	cpu_queue = this_cpu_ptr(queue->cpu_queue);
108	rctx->tag.cpu = cpu;
109
110	err = crypto_enqueue_request(&cpu_queue->queue, request);
111	pr_debug("enqueue request: cpu %d cpu_queue %p request %p\n",
112		 cpu, cpu_queue, request);
113	queue_work_on(cpu, kcrypto_wq, &cpu_queue->work);
114	put_cpu();
115
116	return err;
117}
118
119/*
120 * Try to opportunisticlly flush the partially completed jobs if
121 * crypto daemon is the only task running.
122 */
123static void mcryptd_opportunistic_flush(void)
124{
125	struct mcryptd_flush_list *flist;
126	struct mcryptd_alg_cstate *cstate;
127
128	flist = per_cpu_ptr(mcryptd_flist, smp_processor_id());
129	while (single_task_running()) {
130		mutex_lock(&flist->lock);
131		cstate = list_first_entry_or_null(&flist->list,
132				struct mcryptd_alg_cstate, flush_list);
133		if (!cstate || !cstate->flusher_engaged) {
134			mutex_unlock(&flist->lock);
135			return;
136		}
137		list_del(&cstate->flush_list);
138		cstate->flusher_engaged = false;
139		mutex_unlock(&flist->lock);
140		cstate->alg_state->flusher(cstate);
141	}
142}
143
144/*
145 * Called in workqueue context, do one real cryption work (via
146 * req->complete) and reschedule itself if there are more work to
147 * do.
148 */
149static void mcryptd_queue_worker(struct work_struct *work)
150{
151	struct mcryptd_cpu_queue *cpu_queue;
152	struct crypto_async_request *req, *backlog;
153	int i;
154
155	/*
156	 * Need to loop through more than once for multi-buffer to
157	 * be effective.
158	 */
159
160	cpu_queue = container_of(work, struct mcryptd_cpu_queue, work);
161	i = 0;
162	while (i < MCRYPTD_BATCH || single_task_running()) {
163		/*
164		 * preempt_disable/enable is used to prevent
165		 * being preempted by mcryptd_enqueue_request()
166		 */
167		local_bh_disable();
168		preempt_disable();
169		backlog = crypto_get_backlog(&cpu_queue->queue);
170		req = crypto_dequeue_request(&cpu_queue->queue);
171		preempt_enable();
172		local_bh_enable();
173
174		if (!req) {
175			mcryptd_opportunistic_flush();
176			return;
177		}
178
179		if (backlog)
180			backlog->complete(backlog, -EINPROGRESS);
181		req->complete(req, 0);
182		if (!cpu_queue->queue.qlen)
183			return;
184		++i;
185	}
186	if (cpu_queue->queue.qlen)
187		queue_work(kcrypto_wq, &cpu_queue->work);
188}
189
190void mcryptd_flusher(struct work_struct *__work)
191{
192	struct	mcryptd_alg_cstate	*alg_cpu_state;
193	struct	mcryptd_alg_state	*alg_state;
194	struct	mcryptd_flush_list	*flist;
195	int	cpu;
196
197	cpu = smp_processor_id();
198	alg_cpu_state = container_of(to_delayed_work(__work),
199				     struct mcryptd_alg_cstate, flush);
200	alg_state = alg_cpu_state->alg_state;
201	if (alg_cpu_state->cpu != cpu)
202		pr_debug("mcryptd error: work on cpu %d, should be cpu %d\n",
203				cpu, alg_cpu_state->cpu);
204
205	if (alg_cpu_state->flusher_engaged) {
206		flist = per_cpu_ptr(mcryptd_flist, cpu);
207		mutex_lock(&flist->lock);
208		list_del(&alg_cpu_state->flush_list);
209		alg_cpu_state->flusher_engaged = false;
210		mutex_unlock(&flist->lock);
211		alg_state->flusher(alg_cpu_state);
212	}
213}
214EXPORT_SYMBOL_GPL(mcryptd_flusher);
215
216static inline struct mcryptd_queue *mcryptd_get_queue(struct crypto_tfm *tfm)
217{
218	struct crypto_instance *inst = crypto_tfm_alg_instance(tfm);
219	struct mcryptd_instance_ctx *ictx = crypto_instance_ctx(inst);
220
221	return ictx->queue;
222}
223
224static void *mcryptd_alloc_instance(struct crypto_alg *alg, unsigned int head,
225				   unsigned int tail)
226{
227	char *p;
228	struct crypto_instance *inst;
229	int err;
230
231	p = kzalloc(head + sizeof(*inst) + tail, GFP_KERNEL);
232	if (!p)
233		return ERR_PTR(-ENOMEM);
234
235	inst = (void *)(p + head);
236
237	err = -ENAMETOOLONG;
238	if (snprintf(inst->alg.cra_driver_name, CRYPTO_MAX_ALG_NAME,
239		    "mcryptd(%s)", alg->cra_driver_name) >= CRYPTO_MAX_ALG_NAME)
240		goto out_free_inst;
241
242	memcpy(inst->alg.cra_name, alg->cra_name, CRYPTO_MAX_ALG_NAME);
243
244	inst->alg.cra_priority = alg->cra_priority + 50;
245	inst->alg.cra_blocksize = alg->cra_blocksize;
246	inst->alg.cra_alignmask = alg->cra_alignmask;
247
248out:
249	return p;
250
251out_free_inst:
252	kfree(p);
253	p = ERR_PTR(err);
254	goto out;
255}
256
257static inline bool mcryptd_check_internal(struct rtattr **tb, u32 *type,
258					  u32 *mask)
259{
260	struct crypto_attr_type *algt;
261
262	algt = crypto_get_attr_type(tb);
263	if (IS_ERR(algt))
264		return false;
265
266	*type |= algt->type & CRYPTO_ALG_INTERNAL;
267	*mask |= algt->mask & CRYPTO_ALG_INTERNAL;
268
269	if (*type & *mask & CRYPTO_ALG_INTERNAL)
270		return true;
271	else
272		return false;
273}
274
275static int mcryptd_hash_init_tfm(struct crypto_tfm *tfm)
276{
277	struct crypto_instance *inst = crypto_tfm_alg_instance(tfm);
278	struct hashd_instance_ctx *ictx = crypto_instance_ctx(inst);
279	struct crypto_ahash_spawn *spawn = &ictx->spawn;
280	struct mcryptd_hash_ctx *ctx = crypto_tfm_ctx(tfm);
281	struct crypto_ahash *hash;
282
283	hash = crypto_spawn_ahash(spawn);
284	if (IS_ERR(hash))
285		return PTR_ERR(hash);
286
287	ctx->child = hash;
288	crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
289				 sizeof(struct mcryptd_hash_request_ctx) +
290				 crypto_ahash_reqsize(hash));
291	return 0;
292}
293
294static void mcryptd_hash_exit_tfm(struct crypto_tfm *tfm)
295{
296	struct mcryptd_hash_ctx *ctx = crypto_tfm_ctx(tfm);
297
298	crypto_free_ahash(ctx->child);
299}
300
301static int mcryptd_hash_setkey(struct crypto_ahash *parent,
302				   const u8 *key, unsigned int keylen)
303{
304	struct mcryptd_hash_ctx *ctx   = crypto_ahash_ctx(parent);
305	struct crypto_ahash *child = ctx->child;
306	int err;
307
308	crypto_ahash_clear_flags(child, CRYPTO_TFM_REQ_MASK);
309	crypto_ahash_set_flags(child, crypto_ahash_get_flags(parent) &
310				      CRYPTO_TFM_REQ_MASK);
311	err = crypto_ahash_setkey(child, key, keylen);
312	crypto_ahash_set_flags(parent, crypto_ahash_get_flags(child) &
313				       CRYPTO_TFM_RES_MASK);
314	return err;
315}
316
317static int mcryptd_hash_enqueue(struct ahash_request *req,
318				crypto_completion_t complete)
319{
320	int ret;
321
322	struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
323	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
324	struct mcryptd_queue *queue =
325		mcryptd_get_queue(crypto_ahash_tfm(tfm));
326
327	rctx->complete = req->base.complete;
328	req->base.complete = complete;
329
330	ret = mcryptd_enqueue_request(queue, &req->base, rctx);
331
332	return ret;
333}
334
335static void mcryptd_hash_init(struct crypto_async_request *req_async, int err)
336{
337	struct mcryptd_hash_ctx *ctx = crypto_tfm_ctx(req_async->tfm);
338	struct crypto_ahash *child = ctx->child;
339	struct ahash_request *req = ahash_request_cast(req_async);
340	struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
341	struct ahash_request *desc = &rctx->areq;
342
343	if (unlikely(err == -EINPROGRESS))
344		goto out;
345
346	ahash_request_set_tfm(desc, child);
347	ahash_request_set_callback(desc, CRYPTO_TFM_REQ_MAY_SLEEP,
348						rctx->complete, req_async);
349
350	rctx->out = req->result;
351	err = crypto_ahash_init(desc);
352
353out:
354	local_bh_disable();
355	rctx->complete(&req->base, err);
356	local_bh_enable();
357}
358
359static int mcryptd_hash_init_enqueue(struct ahash_request *req)
360{
361	return mcryptd_hash_enqueue(req, mcryptd_hash_init);
362}
363
364static void mcryptd_hash_update(struct crypto_async_request *req_async, int err)
365{
366	struct ahash_request *req = ahash_request_cast(req_async);
367	struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
368
369	if (unlikely(err == -EINPROGRESS))
370		goto out;
371
372	rctx->out = req->result;
373	err = ahash_mcryptd_update(&rctx->areq);
374	if (err) {
375		req->base.complete = rctx->complete;
376		goto out;
377	}
378
379	return;
380out:
381	local_bh_disable();
382	rctx->complete(&req->base, err);
383	local_bh_enable();
384}
385
386static int mcryptd_hash_update_enqueue(struct ahash_request *req)
387{
388	return mcryptd_hash_enqueue(req, mcryptd_hash_update);
389}
390
391static void mcryptd_hash_final(struct crypto_async_request *req_async, int err)
392{
393	struct ahash_request *req = ahash_request_cast(req_async);
394	struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
395
396	if (unlikely(err == -EINPROGRESS))
397		goto out;
398
399	rctx->out = req->result;
400	err = ahash_mcryptd_final(&rctx->areq);
401	if (err) {
402		req->base.complete = rctx->complete;
403		goto out;
404	}
405
406	return;
407out:
408	local_bh_disable();
409	rctx->complete(&req->base, err);
410	local_bh_enable();
411}
412
413static int mcryptd_hash_final_enqueue(struct ahash_request *req)
414{
415	return mcryptd_hash_enqueue(req, mcryptd_hash_final);
416}
417
418static void mcryptd_hash_finup(struct crypto_async_request *req_async, int err)
419{
420	struct ahash_request *req = ahash_request_cast(req_async);
421	struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
422
423	if (unlikely(err == -EINPROGRESS))
424		goto out;
425	rctx->out = req->result;
426	err = ahash_mcryptd_finup(&rctx->areq);
427
428	if (err) {
429		req->base.complete = rctx->complete;
430		goto out;
431	}
432
433	return;
434out:
435	local_bh_disable();
436	rctx->complete(&req->base, err);
437	local_bh_enable();
438}
439
440static int mcryptd_hash_finup_enqueue(struct ahash_request *req)
441{
442	return mcryptd_hash_enqueue(req, mcryptd_hash_finup);
443}
444
445static void mcryptd_hash_digest(struct crypto_async_request *req_async, int err)
446{
447	struct mcryptd_hash_ctx *ctx = crypto_tfm_ctx(req_async->tfm);
448	struct crypto_ahash *child = ctx->child;
449	struct ahash_request *req = ahash_request_cast(req_async);
450	struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
451	struct ahash_request *desc = &rctx->areq;
452
453	if (unlikely(err == -EINPROGRESS))
454		goto out;
455
456	ahash_request_set_tfm(desc, child);
457	ahash_request_set_callback(desc, CRYPTO_TFM_REQ_MAY_SLEEP,
458						rctx->complete, req_async);
459
460	rctx->out = req->result;
461	err = ahash_mcryptd_digest(desc);
462
463out:
464	local_bh_disable();
465	rctx->complete(&req->base, err);
466	local_bh_enable();
467}
468
469static int mcryptd_hash_digest_enqueue(struct ahash_request *req)
470{
471	return mcryptd_hash_enqueue(req, mcryptd_hash_digest);
472}
473
474static int mcryptd_hash_export(struct ahash_request *req, void *out)
475{
476	struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
477
478	return crypto_ahash_export(&rctx->areq, out);
479}
480
481static int mcryptd_hash_import(struct ahash_request *req, const void *in)
482{
483	struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
484
485	return crypto_ahash_import(&rctx->areq, in);
486}
487
488static int mcryptd_create_hash(struct crypto_template *tmpl, struct rtattr **tb,
489			      struct mcryptd_queue *queue)
490{
491	struct hashd_instance_ctx *ctx;
492	struct ahash_instance *inst;
493	struct hash_alg_common *halg;
494	struct crypto_alg *alg;
495	u32 type = 0;
496	u32 mask = 0;
497	int err;
498
499	if (!mcryptd_check_internal(tb, &type, &mask))
500		return -EINVAL;
501
502	halg = ahash_attr_alg(tb[1], type, mask);
503	if (IS_ERR(halg))
504		return PTR_ERR(halg);
505
506	alg = &halg->base;
507	pr_debug("crypto: mcryptd hash alg: %s\n", alg->cra_name);
508	inst = mcryptd_alloc_instance(alg, ahash_instance_headroom(),
509					sizeof(*ctx));
510	err = PTR_ERR(inst);
511	if (IS_ERR(inst))
512		goto out_put_alg;
513
514	ctx = ahash_instance_ctx(inst);
515	ctx->queue = queue;
516
517	err = crypto_init_ahash_spawn(&ctx->spawn, halg,
518				      ahash_crypto_instance(inst));
519	if (err)
520		goto out_free_inst;
521
522	type = CRYPTO_ALG_ASYNC;
523	if (alg->cra_flags & CRYPTO_ALG_INTERNAL)
524		type |= CRYPTO_ALG_INTERNAL;
525	inst->alg.halg.base.cra_flags = type;
526
527	inst->alg.halg.digestsize = halg->digestsize;
528	inst->alg.halg.statesize = halg->statesize;
529	inst->alg.halg.base.cra_ctxsize = sizeof(struct mcryptd_hash_ctx);
530
531	inst->alg.halg.base.cra_init = mcryptd_hash_init_tfm;
532	inst->alg.halg.base.cra_exit = mcryptd_hash_exit_tfm;
533
534	inst->alg.init   = mcryptd_hash_init_enqueue;
535	inst->alg.update = mcryptd_hash_update_enqueue;
536	inst->alg.final  = mcryptd_hash_final_enqueue;
537	inst->alg.finup  = mcryptd_hash_finup_enqueue;
538	inst->alg.export = mcryptd_hash_export;
539	inst->alg.import = mcryptd_hash_import;
540	inst->alg.setkey = mcryptd_hash_setkey;
541	inst->alg.digest = mcryptd_hash_digest_enqueue;
542
543	err = ahash_register_instance(tmpl, inst);
544	if (err) {
545		crypto_drop_ahash(&ctx->spawn);
546out_free_inst:
547		kfree(inst);
548	}
549
550out_put_alg:
551	crypto_mod_put(alg);
552	return err;
553}
554
555static struct mcryptd_queue mqueue;
556
557static int mcryptd_create(struct crypto_template *tmpl, struct rtattr **tb)
558{
559	struct crypto_attr_type *algt;
560
561	algt = crypto_get_attr_type(tb);
562	if (IS_ERR(algt))
563		return PTR_ERR(algt);
564
565	switch (algt->type & algt->mask & CRYPTO_ALG_TYPE_MASK) {
566	case CRYPTO_ALG_TYPE_DIGEST:
567		return mcryptd_create_hash(tmpl, tb, &mqueue);
568	break;
569	}
570
571	return -EINVAL;
572}
573
574static void mcryptd_free(struct crypto_instance *inst)
575{
576	struct mcryptd_instance_ctx *ctx = crypto_instance_ctx(inst);
577	struct hashd_instance_ctx *hctx = crypto_instance_ctx(inst);
578
579	switch (inst->alg.cra_flags & CRYPTO_ALG_TYPE_MASK) {
580	case CRYPTO_ALG_TYPE_AHASH:
581		crypto_drop_ahash(&hctx->spawn);
582		kfree(ahash_instance(inst));
583		return;
584	default:
585		crypto_drop_spawn(&ctx->spawn);
586		kfree(inst);
587	}
588}
589
590static struct crypto_template mcryptd_tmpl = {
591	.name = "mcryptd",
592	.create = mcryptd_create,
593	.free = mcryptd_free,
594	.module = THIS_MODULE,
595};
596
597struct mcryptd_ahash *mcryptd_alloc_ahash(const char *alg_name,
598					u32 type, u32 mask)
599{
600	char mcryptd_alg_name[CRYPTO_MAX_ALG_NAME];
601	struct crypto_ahash *tfm;
602
603	if (snprintf(mcryptd_alg_name, CRYPTO_MAX_ALG_NAME,
604		     "mcryptd(%s)", alg_name) >= CRYPTO_MAX_ALG_NAME)
605		return ERR_PTR(-EINVAL);
606	tfm = crypto_alloc_ahash(mcryptd_alg_name, type, mask);
607	if (IS_ERR(tfm))
608		return ERR_CAST(tfm);
609	if (tfm->base.__crt_alg->cra_module != THIS_MODULE) {
610		crypto_free_ahash(tfm);
611		return ERR_PTR(-EINVAL);
612	}
613
614	return __mcryptd_ahash_cast(tfm);
615}
616EXPORT_SYMBOL_GPL(mcryptd_alloc_ahash);
617
618int ahash_mcryptd_digest(struct ahash_request *desc)
619{
620	return crypto_ahash_init(desc) ?: ahash_mcryptd_finup(desc);
621}
622
623int ahash_mcryptd_update(struct ahash_request *desc)
624{
625	/* alignment is to be done by multi-buffer crypto algorithm if needed */
626
627	return crypto_ahash_update(desc);
628}
629
630int ahash_mcryptd_finup(struct ahash_request *desc)
631{
632	/* alignment is to be done by multi-buffer crypto algorithm if needed */
633
634	return crypto_ahash_finup(desc);
635}
636
637int ahash_mcryptd_final(struct ahash_request *desc)
638{
639	/* alignment is to be done by multi-buffer crypto algorithm if needed */
640
641	return crypto_ahash_final(desc);
642}
643
644struct crypto_ahash *mcryptd_ahash_child(struct mcryptd_ahash *tfm)
645{
646	struct mcryptd_hash_ctx *ctx = crypto_ahash_ctx(&tfm->base);
647
648	return ctx->child;
649}
650EXPORT_SYMBOL_GPL(mcryptd_ahash_child);
651
652struct ahash_request *mcryptd_ahash_desc(struct ahash_request *req)
653{
654	struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
655	return &rctx->areq;
656}
657EXPORT_SYMBOL_GPL(mcryptd_ahash_desc);
658
659void mcryptd_free_ahash(struct mcryptd_ahash *tfm)
660{
661	crypto_free_ahash(&tfm->base);
662}
663EXPORT_SYMBOL_GPL(mcryptd_free_ahash);
664
665static int __init mcryptd_init(void)
666{
667	int err, cpu;
668	struct mcryptd_flush_list *flist;
669
670	mcryptd_flist = alloc_percpu(struct mcryptd_flush_list);
671	for_each_possible_cpu(cpu) {
672		flist = per_cpu_ptr(mcryptd_flist, cpu);
673		INIT_LIST_HEAD(&flist->list);
674		mutex_init(&flist->lock);
675	}
676
677	err = mcryptd_init_queue(&mqueue, MCRYPTD_MAX_CPU_QLEN);
678	if (err) {
679		free_percpu(mcryptd_flist);
680		return err;
681	}
682
683	err = crypto_register_template(&mcryptd_tmpl);
684	if (err) {
685		mcryptd_fini_queue(&mqueue);
686		free_percpu(mcryptd_flist);
687	}
688
689	return err;
690}
691
692static void __exit mcryptd_exit(void)
693{
694	mcryptd_fini_queue(&mqueue);
695	crypto_unregister_template(&mcryptd_tmpl);
696	free_percpu(mcryptd_flist);
697}
698
699subsys_initcall(mcryptd_init);
700module_exit(mcryptd_exit);
701
702MODULE_LICENSE("GPL");
703MODULE_DESCRIPTION("Software async multibuffer crypto daemon");
704MODULE_ALIAS_CRYPTO("mcryptd");