Linux Audio

Check our new training course

Loading...
v5.9
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/* LRW: as defined by Cyril Guyot in
  3 *	http://grouper.ieee.org/groups/1619/email/pdf00017.pdf
  4 *
  5 * Copyright (c) 2006 Rik Snel <rsnel@cube.dyndns.org>
  6 *
  7 * Based on ecb.c
  8 * Copyright (c) 2006 Herbert Xu <herbert@gondor.apana.org.au>
 
 
 
 
 
  9 */
 10/* This implementation is checked against the test vectors in the above
 11 * document and by a test vector provided by Ken Buchanan at
 12 * https://www.mail-archive.com/stds-p1619@listserv.ieee.org/msg00173.html
 13 *
 14 * The test vectors are included in the testing module tcrypt.[ch] */
 15
 16#include <crypto/internal/skcipher.h>
 17#include <crypto/scatterwalk.h>
 18#include <linux/err.h>
 19#include <linux/init.h>
 20#include <linux/kernel.h>
 21#include <linux/module.h>
 22#include <linux/scatterlist.h>
 23#include <linux/slab.h>
 24
 25#include <crypto/b128ops.h>
 26#include <crypto/gf128mul.h>
 
 27
 28#define LRW_BLOCK_SIZE 16
 29
 30struct lrw_tfm_ctx {
 31	struct crypto_skcipher *child;
 32
 33	/*
 34	 * optimizes multiplying a random (non incrementing, as at the
 35	 * start of a new sector) value with key2, we could also have
 36	 * used 4k optimization tables or no optimization at all. In the
 37	 * latter case we would have to store key2 here
 38	 */
 39	struct gf128mul_64k *table;
 40
 41	/*
 42	 * stores:
 43	 *  key2*{ 0,0,...0,0,0,0,1 }, key2*{ 0,0,...0,0,0,1,1 },
 44	 *  key2*{ 0,0,...0,0,1,1,1 }, key2*{ 0,0,...0,1,1,1,1 }
 45	 *  key2*{ 0,0,...1,1,1,1,1 }, etc
 46	 * needed for optimized multiplication of incrementing values
 47	 * with key2
 48	 */
 49	be128 mulinc[128];
 50};
 51
 52struct lrw_request_ctx {
 
 
 53	be128 t;
 
 
 
 
 
 
 
 
 
 
 54	struct skcipher_request subreq;
 55};
 56
 57static inline void lrw_setbit128_bbe(void *b, int bit)
 58{
 59	__set_bit(bit ^ (0x80 -
 60#ifdef __BIG_ENDIAN
 61			 BITS_PER_LONG
 62#else
 63			 BITS_PER_BYTE
 64#endif
 65			), b);
 66}
 67
 68static int lrw_setkey(struct crypto_skcipher *parent, const u8 *key,
 69		      unsigned int keylen)
 70{
 71	struct lrw_tfm_ctx *ctx = crypto_skcipher_ctx(parent);
 72	struct crypto_skcipher *child = ctx->child;
 73	int err, bsize = LRW_BLOCK_SIZE;
 74	const u8 *tweak = key + keylen - bsize;
 75	be128 tmp = { 0 };
 76	int i;
 77
 78	crypto_skcipher_clear_flags(child, CRYPTO_TFM_REQ_MASK);
 79	crypto_skcipher_set_flags(child, crypto_skcipher_get_flags(parent) &
 80					 CRYPTO_TFM_REQ_MASK);
 81	err = crypto_skcipher_setkey(child, key, keylen - bsize);
 82	if (err)
 83		return err;
 84
 85	if (ctx->table)
 86		gf128mul_free_64k(ctx->table);
 87
 88	/* initialize multiplication table for Key2 */
 89	ctx->table = gf128mul_init_64k_bbe((be128 *)tweak);
 90	if (!ctx->table)
 91		return -ENOMEM;
 92
 93	/* initialize optimization table */
 94	for (i = 0; i < 128; i++) {
 95		lrw_setbit128_bbe(&tmp, i);
 96		ctx->mulinc[i] = tmp;
 97		gf128mul_64k_bbe(&ctx->mulinc[i], ctx->table);
 98	}
 99
100	return 0;
101}
 
102
103/*
104 * Returns the number of trailing '1' bits in the words of the counter, which is
105 * represented by 4 32-bit words, arranged from least to most significant.
106 * At the same time, increments the counter by one.
107 *
108 * For example:
109 *
110 * u32 counter[4] = { 0xFFFFFFFF, 0x1, 0x0, 0x0 };
111 * int i = lrw_next_index(&counter);
112 * // i == 33, counter == { 0x0, 0x2, 0x0, 0x0 }
113 */
114static int lrw_next_index(u32 *counter)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
115{
116	int i, res = 0;
 
 
 
 
117
118	for (i = 0; i < 4; i++) {
119		if (counter[i] + 1 != 0)
120			return res + ffz(counter[i]++);
121
122		counter[i] = 0;
123		res += 32;
124	}
125
126	/*
127	 * If we get here, then x == 128 and we are incrementing the counter
128	 * from all ones to all zeros. This means we must return index 127, i.e.
129	 * the one corresponding to key2*{ 1,...,1 }.
130	 */
131	return 127;
132}
133
134/*
135 * We compute the tweak masks twice (both before and after the ECB encryption or
136 * decryption) to avoid having to allocate a temporary buffer and/or make
137 * mutliple calls to the 'ecb(..)' instance, which usually would be slower than
138 * just doing the lrw_next_index() calls again.
139 */
140static int lrw_xor_tweak(struct skcipher_request *req, bool second_pass)
141{
 
 
 
142	const int bs = LRW_BLOCK_SIZE;
143	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
144	const struct lrw_tfm_ctx *ctx = crypto_skcipher_ctx(tfm);
145	struct lrw_request_ctx *rctx = skcipher_request_ctx(req);
146	be128 t = rctx->t;
147	struct skcipher_walk w;
148	__be32 *iv;
149	u32 counter[4];
150	int err;
151
152	if (second_pass) {
153		req = &rctx->subreq;
154		/* set to our TFM to enforce correct alignment: */
155		skcipher_request_set_tfm(req, tfm);
 
 
 
 
 
 
 
 
 
 
 
156	}
157
158	err = skcipher_walk_virt(&w, req, false);
159	if (err)
160		return err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
161
162	iv = (__be32 *)w.iv;
163	counter[0] = be32_to_cpu(iv[3]);
164	counter[1] = be32_to_cpu(iv[2]);
165	counter[2] = be32_to_cpu(iv[1]);
166	counter[3] = be32_to_cpu(iv[0]);
167
168	while (w.nbytes) {
169		unsigned int avail = w.nbytes;
170		be128 *wsrc;
171		be128 *wdst;
172
173		wsrc = w.src.virt.addr;
174		wdst = w.dst.virt.addr;
175
176		do {
177			be128_xor(wdst++, &t, wsrc++);
 
178
179			/* T <- I*Key2, using the optimization
180			 * discussed in the specification */
181			be128_xor(&t, &t,
182				  &ctx->mulinc[lrw_next_index(counter)]);
 
183		} while ((avail -= bs) >= bs);
184
185		if (second_pass && w.nbytes == w.total) {
186			iv[0] = cpu_to_be32(counter[3]);
187			iv[1] = cpu_to_be32(counter[2]);
188			iv[2] = cpu_to_be32(counter[1]);
189			iv[3] = cpu_to_be32(counter[0]);
190		}
191
192		err = skcipher_walk_done(&w, avail);
193	}
194
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
195	return err;
196}
197
198static int lrw_xor_tweak_pre(struct skcipher_request *req)
199{
200	return lrw_xor_tweak(req, false);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
201}
202
203static int lrw_xor_tweak_post(struct skcipher_request *req)
204{
205	return lrw_xor_tweak(req, true);
 
 
 
 
 
206}
207
208static void lrw_crypt_done(struct crypto_async_request *areq, int err)
209{
210	struct skcipher_request *req = areq->data;
 
211
212	if (!err) {
213		struct lrw_request_ctx *rctx = skcipher_request_ctx(req);
214
215		rctx->subreq.base.flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
216		err = lrw_xor_tweak_post(req);
 
 
 
 
 
 
 
217	}
218
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
219	skcipher_request_complete(req, err);
220}
221
222static void lrw_init_crypt(struct skcipher_request *req)
223{
224	const struct lrw_tfm_ctx *ctx =
225		crypto_skcipher_ctx(crypto_skcipher_reqtfm(req));
226	struct lrw_request_ctx *rctx = skcipher_request_ctx(req);
227	struct skcipher_request *subreq = &rctx->subreq;
228
229	skcipher_request_set_tfm(subreq, ctx->child);
230	skcipher_request_set_callback(subreq, req->base.flags, lrw_crypt_done,
231				      req);
232	/* pass req->iv as IV (will be used by xor_tweak, ECB will ignore it) */
233	skcipher_request_set_crypt(subreq, req->dst, req->dst,
234				   req->cryptlen, req->iv);
235
236	/* calculate first value of T */
237	memcpy(&rctx->t, req->iv, sizeof(rctx->t));
238
239	/* T <- I*Key2 */
240	gf128mul_64k_bbe(&rctx->t, ctx->table);
 
 
 
 
 
 
 
 
 
 
 
241}
242
243static int lrw_encrypt(struct skcipher_request *req)
244{
245	struct lrw_request_ctx *rctx = skcipher_request_ctx(req);
246	struct skcipher_request *subreq = &rctx->subreq;
 
247
248	lrw_init_crypt(req);
249	return lrw_xor_tweak_pre(req) ?:
250		crypto_skcipher_encrypt(subreq) ?:
251		lrw_xor_tweak_post(req);
 
 
 
 
 
 
 
 
 
 
252}
253
254static int lrw_decrypt(struct skcipher_request *req)
 
 
255{
256	struct lrw_request_ctx *rctx = skcipher_request_ctx(req);
257	struct skcipher_request *subreq = &rctx->subreq;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
258
259	lrw_init_crypt(req);
260	return lrw_xor_tweak_pre(req) ?:
261		crypto_skcipher_decrypt(subreq) ?:
262		lrw_xor_tweak_post(req);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
263}
 
264
265static int lrw_init_tfm(struct crypto_skcipher *tfm)
266{
267	struct skcipher_instance *inst = skcipher_alg_instance(tfm);
268	struct crypto_skcipher_spawn *spawn = skcipher_instance_ctx(inst);
269	struct lrw_tfm_ctx *ctx = crypto_skcipher_ctx(tfm);
270	struct crypto_skcipher *cipher;
271
272	cipher = crypto_spawn_skcipher(spawn);
273	if (IS_ERR(cipher))
274		return PTR_ERR(cipher);
275
276	ctx->child = cipher;
277
278	crypto_skcipher_set_reqsize(tfm, crypto_skcipher_reqsize(cipher) +
279					 sizeof(struct lrw_request_ctx));
280
281	return 0;
282}
283
284static void lrw_exit_tfm(struct crypto_skcipher *tfm)
285{
286	struct lrw_tfm_ctx *ctx = crypto_skcipher_ctx(tfm);
287
288	if (ctx->table)
289		gf128mul_free_64k(ctx->table);
290	crypto_free_skcipher(ctx->child);
291}
292
293static void lrw_free_instance(struct skcipher_instance *inst)
294{
295	crypto_drop_skcipher(skcipher_instance_ctx(inst));
296	kfree(inst);
297}
298
299static int lrw_create(struct crypto_template *tmpl, struct rtattr **tb)
300{
301	struct crypto_skcipher_spawn *spawn;
302	struct skcipher_instance *inst;
 
303	struct skcipher_alg *alg;
304	const char *cipher_name;
305	char ecb_name[CRYPTO_MAX_ALG_NAME];
306	u32 mask;
307	int err;
308
309	err = crypto_check_attr_type(tb, CRYPTO_ALG_TYPE_SKCIPHER, &mask);
310	if (err)
311		return err;
 
 
 
312
313	cipher_name = crypto_attr_alg_name(tb[1]);
314	if (IS_ERR(cipher_name))
315		return PTR_ERR(cipher_name);
316
317	inst = kzalloc(sizeof(*inst) + sizeof(*spawn), GFP_KERNEL);
318	if (!inst)
319		return -ENOMEM;
320
321	spawn = skcipher_instance_ctx(inst);
322
323	err = crypto_grab_skcipher(spawn, skcipher_crypto_instance(inst),
324				   cipher_name, 0, mask);
 
 
325	if (err == -ENOENT) {
326		err = -ENAMETOOLONG;
327		if (snprintf(ecb_name, CRYPTO_MAX_ALG_NAME, "ecb(%s)",
328			     cipher_name) >= CRYPTO_MAX_ALG_NAME)
329			goto err_free_inst;
330
331		err = crypto_grab_skcipher(spawn,
332					   skcipher_crypto_instance(inst),
333					   ecb_name, 0, mask);
334	}
335
336	if (err)
337		goto err_free_inst;
338
339	alg = crypto_skcipher_spawn_alg(spawn);
340
341	err = -EINVAL;
342	if (alg->base.cra_blocksize != LRW_BLOCK_SIZE)
343		goto err_free_inst;
344
345	if (crypto_skcipher_alg_ivsize(alg))
346		goto err_free_inst;
347
348	err = crypto_inst_setname(skcipher_crypto_instance(inst), "lrw",
349				  &alg->base);
350	if (err)
351		goto err_free_inst;
352
353	err = -EINVAL;
354	cipher_name = alg->base.cra_name;
355
356	/* Alas we screwed up the naming so we have to mangle the
357	 * cipher name.
358	 */
359	if (!strncmp(cipher_name, "ecb(", 4)) {
360		unsigned len;
361
362		len = strlcpy(ecb_name, cipher_name + 4, sizeof(ecb_name));
363		if (len < 2 || len >= sizeof(ecb_name))
364			goto err_free_inst;
365
366		if (ecb_name[len - 1] != ')')
367			goto err_free_inst;
368
369		ecb_name[len - 1] = 0;
370
371		if (snprintf(inst->alg.base.cra_name, CRYPTO_MAX_ALG_NAME,
372			     "lrw(%s)", ecb_name) >= CRYPTO_MAX_ALG_NAME) {
373			err = -ENAMETOOLONG;
374			goto err_free_inst;
375		}
376	} else
377		goto err_free_inst;
378
 
379	inst->alg.base.cra_priority = alg->base.cra_priority;
380	inst->alg.base.cra_blocksize = LRW_BLOCK_SIZE;
381	inst->alg.base.cra_alignmask = alg->base.cra_alignmask |
382				       (__alignof__(be128) - 1);
383
384	inst->alg.ivsize = LRW_BLOCK_SIZE;
385	inst->alg.min_keysize = crypto_skcipher_alg_min_keysize(alg) +
386				LRW_BLOCK_SIZE;
387	inst->alg.max_keysize = crypto_skcipher_alg_max_keysize(alg) +
388				LRW_BLOCK_SIZE;
389
390	inst->alg.base.cra_ctxsize = sizeof(struct lrw_tfm_ctx);
391
392	inst->alg.init = lrw_init_tfm;
393	inst->alg.exit = lrw_exit_tfm;
394
395	inst->alg.setkey = lrw_setkey;
396	inst->alg.encrypt = lrw_encrypt;
397	inst->alg.decrypt = lrw_decrypt;
398
399	inst->free = lrw_free_instance;
400
401	err = skcipher_register_instance(tmpl, inst);
402	if (err) {
403err_free_inst:
404		lrw_free_instance(inst);
405	}
406	return err;
 
 
 
 
 
 
407}
408
409static struct crypto_template lrw_tmpl = {
410	.name = "lrw",
411	.create = lrw_create,
412	.module = THIS_MODULE,
413};
414
415static int __init lrw_module_init(void)
416{
417	return crypto_register_template(&lrw_tmpl);
418}
419
420static void __exit lrw_module_exit(void)
421{
422	crypto_unregister_template(&lrw_tmpl);
423}
424
425subsys_initcall(lrw_module_init);
426module_exit(lrw_module_exit);
427
428MODULE_LICENSE("GPL");
429MODULE_DESCRIPTION("LRW block cipher mode");
430MODULE_ALIAS_CRYPTO("lrw");
v4.10.11
 
  1/* LRW: as defined by Cyril Guyot in
  2 *	http://grouper.ieee.org/groups/1619/email/pdf00017.pdf
  3 *
  4 * Copyright (c) 2006 Rik Snel <rsnel@cube.dyndns.org>
  5 *
  6 * Based on ecb.c
  7 * Copyright (c) 2006 Herbert Xu <herbert@gondor.apana.org.au>
  8 *
  9 * This program is free software; you can redistribute it and/or modify it
 10 * under the terms of the GNU General Public License as published by the Free
 11 * Software Foundation; either version 2 of the License, or (at your option)
 12 * any later version.
 13 */
 14/* This implementation is checked against the test vectors in the above
 15 * document and by a test vector provided by Ken Buchanan at
 16 * http://www.mail-archive.com/stds-p1619@listserv.ieee.org/msg00173.html
 17 *
 18 * The test vectors are included in the testing module tcrypt.[ch] */
 19
 20#include <crypto/internal/skcipher.h>
 21#include <crypto/scatterwalk.h>
 22#include <linux/err.h>
 23#include <linux/init.h>
 24#include <linux/kernel.h>
 25#include <linux/module.h>
 26#include <linux/scatterlist.h>
 27#include <linux/slab.h>
 28
 29#include <crypto/b128ops.h>
 30#include <crypto/gf128mul.h>
 31#include <crypto/lrw.h>
 32
 33#define LRW_BUFFER_SIZE 128u
 34
 35struct priv {
 36	struct crypto_skcipher *child;
 37	struct lrw_table_ctx table;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 38};
 39
 40struct rctx {
 41	be128 buf[LRW_BUFFER_SIZE / sizeof(be128)];
 42
 43	be128 t;
 44
 45	be128 *ext;
 46
 47	struct scatterlist srcbuf[2];
 48	struct scatterlist dstbuf[2];
 49	struct scatterlist *src;
 50	struct scatterlist *dst;
 51
 52	unsigned int left;
 53
 54	struct skcipher_request subreq;
 55};
 56
 57static inline void setbit128_bbe(void *b, int bit)
 58{
 59	__set_bit(bit ^ (0x80 -
 60#ifdef __BIG_ENDIAN
 61			 BITS_PER_LONG
 62#else
 63			 BITS_PER_BYTE
 64#endif
 65			), b);
 66}
 67
 68int lrw_init_table(struct lrw_table_ctx *ctx, const u8 *tweak)
 
 69{
 
 
 
 
 70	be128 tmp = { 0 };
 71	int i;
 72
 
 
 
 
 
 
 
 73	if (ctx->table)
 74		gf128mul_free_64k(ctx->table);
 75
 76	/* initialize multiplication table for Key2 */
 77	ctx->table = gf128mul_init_64k_bbe((be128 *)tweak);
 78	if (!ctx->table)
 79		return -ENOMEM;
 80
 81	/* initialize optimization table */
 82	for (i = 0; i < 128; i++) {
 83		setbit128_bbe(&tmp, i);
 84		ctx->mulinc[i] = tmp;
 85		gf128mul_64k_bbe(&ctx->mulinc[i], ctx->table);
 86	}
 87
 88	return 0;
 89}
 90EXPORT_SYMBOL_GPL(lrw_init_table);
 91
 92void lrw_free_table(struct lrw_table_ctx *ctx)
 93{
 94	if (ctx->table)
 95		gf128mul_free_64k(ctx->table);
 96}
 97EXPORT_SYMBOL_GPL(lrw_free_table);
 98
 99static int setkey(struct crypto_skcipher *parent, const u8 *key,
100		  unsigned int keylen)
101{
102	struct priv *ctx = crypto_skcipher_ctx(parent);
103	struct crypto_skcipher *child = ctx->child;
104	int err, bsize = LRW_BLOCK_SIZE;
105	const u8 *tweak = key + keylen - bsize;
106
107	crypto_skcipher_clear_flags(child, CRYPTO_TFM_REQ_MASK);
108	crypto_skcipher_set_flags(child, crypto_skcipher_get_flags(parent) &
109					 CRYPTO_TFM_REQ_MASK);
110	err = crypto_skcipher_setkey(child, key, keylen - bsize);
111	crypto_skcipher_set_flags(parent, crypto_skcipher_get_flags(child) &
112					  CRYPTO_TFM_RES_MASK);
113	if (err)
114		return err;
115
116	return lrw_init_table(&ctx->table, tweak);
117}
118
119static inline void inc(be128 *iv)
120{
121	be64_add_cpu(&iv->b, 1);
122	if (!iv->b)
123		be64_add_cpu(&iv->a, 1);
124}
125
126/* this returns the number of consequative 1 bits starting
127 * from the right, get_index128(00 00 00 00 00 00 ... 00 00 10 FB) = 2 */
128static inline int get_index128(be128 *block)
129{
130	int x;
131	__be32 *p = (__be32 *) block;
132
133	for (p += 3, x = 0; x < 128; p--, x += 32) {
134		u32 val = be32_to_cpup(p);
135
136		if (!~val)
137			continue;
 
138
139		return x + ffz(val);
 
140	}
141
142	return x;
 
 
 
 
 
143}
144
145static int post_crypt(struct skcipher_request *req)
 
 
 
 
 
 
146{
147	struct rctx *rctx = skcipher_request_ctx(req);
148	be128 *buf = rctx->ext ?: rctx->buf;
149	struct skcipher_request *subreq;
150	const int bs = LRW_BLOCK_SIZE;
 
 
 
 
151	struct skcipher_walk w;
152	struct scatterlist *sg;
153	unsigned offset;
154	int err;
155
156	subreq = &rctx->subreq;
157	err = skcipher_walk_virt(&w, subreq, false);
158
159	while (w.nbytes) {
160		unsigned int avail = w.nbytes;
161		be128 *wdst;
162
163		wdst = w.dst.virt.addr;
164
165		do {
166			be128_xor(wdst, buf++, wdst);
167			wdst++;
168		} while ((avail -= bs) >= bs);
169
170		err = skcipher_walk_done(&w, avail);
171	}
172
173	rctx->left -= subreq->cryptlen;
174
175	if (err || !rctx->left)
176		goto out;
177
178	rctx->dst = rctx->dstbuf;
179
180	scatterwalk_done(&w.out, 0, 1);
181	sg = w.out.sg;
182	offset = w.out.offset;
183
184	if (rctx->dst != sg) {
185		rctx->dst[0] = *sg;
186		sg_unmark_end(rctx->dst);
187		scatterwalk_crypto_chain(rctx->dst, sg_next(sg), 0, 2);
188	}
189	rctx->dst[0].length -= offset - sg->offset;
190	rctx->dst[0].offset = offset;
191
192out:
193	return err;
194}
195
196static int pre_crypt(struct skcipher_request *req)
197{
198	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
199	struct rctx *rctx = skcipher_request_ctx(req);
200	struct priv *ctx = crypto_skcipher_ctx(tfm);
201	be128 *buf = rctx->ext ?: rctx->buf;
202	struct skcipher_request *subreq;
203	const int bs = LRW_BLOCK_SIZE;
204	struct skcipher_walk w;
205	struct scatterlist *sg;
206	unsigned cryptlen;
207	unsigned offset;
208	be128 *iv;
209	bool more;
210	int err;
211
212	subreq = &rctx->subreq;
213	skcipher_request_set_tfm(subreq, tfm);
214
215	cryptlen = subreq->cryptlen;
216	more = rctx->left > cryptlen;
217	if (!more)
218		cryptlen = rctx->left;
219
220	skcipher_request_set_crypt(subreq, rctx->src, rctx->dst,
221				   cryptlen, req->iv);
222
223	err = skcipher_walk_virt(&w, subreq, false);
224	iv = w.iv;
225
226	while (w.nbytes) {
227		unsigned int avail = w.nbytes;
228		be128 *wsrc;
229		be128 *wdst;
230
231		wsrc = w.src.virt.addr;
232		wdst = w.dst.virt.addr;
233
234		do {
235			*buf++ = rctx->t;
236			be128_xor(wdst++, &rctx->t, wsrc++);
237
238			/* T <- I*Key2, using the optimization
239			 * discussed in the specification */
240			be128_xor(&rctx->t, &rctx->t,
241				  &ctx->table.mulinc[get_index128(iv)]);
242			inc(iv);
243		} while ((avail -= bs) >= bs);
244
 
 
 
 
 
 
 
245		err = skcipher_walk_done(&w, avail);
246	}
247
248	skcipher_request_set_tfm(subreq, ctx->child);
249	skcipher_request_set_crypt(subreq, rctx->dst, rctx->dst,
250				   cryptlen, NULL);
251
252	if (err || !more)
253		goto out;
254
255	rctx->src = rctx->srcbuf;
256
257	scatterwalk_done(&w.in, 0, 1);
258	sg = w.in.sg;
259	offset = w.in.offset;
260
261	if (rctx->src != sg) {
262		rctx->src[0] = *sg;
263		sg_unmark_end(rctx->src);
264		scatterwalk_crypto_chain(rctx->src, sg_next(sg), 0, 2);
265	}
266	rctx->src[0].length -= offset - sg->offset;
267	rctx->src[0].offset = offset;
268
269out:
270	return err;
271}
272
273static int init_crypt(struct skcipher_request *req, crypto_completion_t done)
274{
275	struct priv *ctx = crypto_skcipher_ctx(crypto_skcipher_reqtfm(req));
276	struct rctx *rctx = skcipher_request_ctx(req);
277	struct skcipher_request *subreq;
278	gfp_t gfp;
279
280	subreq = &rctx->subreq;
281	skcipher_request_set_callback(subreq, req->base.flags, done, req);
282
283	gfp = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ? GFP_KERNEL :
284							   GFP_ATOMIC;
285	rctx->ext = NULL;
286
287	subreq->cryptlen = LRW_BUFFER_SIZE;
288	if (req->cryptlen > LRW_BUFFER_SIZE) {
289		unsigned int n = min(req->cryptlen, (unsigned int)PAGE_SIZE);
290
291		rctx->ext = kmalloc(n, gfp);
292		if (rctx->ext)
293			subreq->cryptlen = n;
294	}
295
296	rctx->src = req->src;
297	rctx->dst = req->dst;
298	rctx->left = req->cryptlen;
299
300	/* calculate first value of T */
301	memcpy(&rctx->t, req->iv, sizeof(rctx->t));
302
303	/* T <- I*Key2 */
304	gf128mul_64k_bbe(&rctx->t, ctx->table.table);
305
306	return 0;
307}
308
309static void exit_crypt(struct skcipher_request *req)
310{
311	struct rctx *rctx = skcipher_request_ctx(req);
312
313	rctx->left = 0;
314
315	if (rctx->ext)
316		kfree(rctx->ext);
317}
318
319static int do_encrypt(struct skcipher_request *req, int err)
320{
321	struct rctx *rctx = skcipher_request_ctx(req);
322	struct skcipher_request *subreq;
323
324	subreq = &rctx->subreq;
 
325
326	while (!err && rctx->left) {
327		err = pre_crypt(req) ?:
328		      crypto_skcipher_encrypt(subreq) ?:
329		      post_crypt(req);
330
331		if (err == -EINPROGRESS ||
332		    (err == -EBUSY &&
333		     req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG))
334			return err;
335	}
336
337	exit_crypt(req);
338	return err;
339}
340
341static void encrypt_done(struct crypto_async_request *areq, int err)
342{
343	struct skcipher_request *req = areq->data;
344	struct skcipher_request *subreq;
345	struct rctx *rctx;
346
347	rctx = skcipher_request_ctx(req);
348	subreq = &rctx->subreq;
349	subreq->base.flags &= CRYPTO_TFM_REQ_MAY_BACKLOG;
350
351	err = do_encrypt(req, err ?: post_crypt(req));
352	if (rctx->left)
353		return;
354
355	skcipher_request_complete(req, err);
356}
357
358static int encrypt(struct skcipher_request *req)
359{
360	return do_encrypt(req, init_crypt(req, encrypt_done));
361}
 
 
362
363static int do_decrypt(struct skcipher_request *req, int err)
364{
365	struct rctx *rctx = skcipher_request_ctx(req);
366	struct skcipher_request *subreq;
 
 
367
368	subreq = &rctx->subreq;
 
369
370	while (!err && rctx->left) {
371		err = pre_crypt(req) ?:
372		      crypto_skcipher_decrypt(subreq) ?:
373		      post_crypt(req);
374
375		if (err == -EINPROGRESS ||
376		    (err == -EBUSY &&
377		     req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG))
378			return err;
379	}
380
381	exit_crypt(req);
382	return err;
383}
384
385static void decrypt_done(struct crypto_async_request *areq, int err)
386{
387	struct skcipher_request *req = areq->data;
388	struct skcipher_request *subreq;
389	struct rctx *rctx;
390
391	rctx = skcipher_request_ctx(req);
392	subreq = &rctx->subreq;
393	subreq->base.flags &= CRYPTO_TFM_REQ_MAY_BACKLOG;
394
395	err = do_decrypt(req, err ?: post_crypt(req));
396	if (rctx->left)
397		return;
398
399	skcipher_request_complete(req, err);
400}
401
402static int decrypt(struct skcipher_request *req)
403{
404	return do_decrypt(req, init_crypt(req, decrypt_done));
405}
406
407int lrw_crypt(struct blkcipher_desc *desc, struct scatterlist *sdst,
408	      struct scatterlist *ssrc, unsigned int nbytes,
409	      struct lrw_crypt_req *req)
410{
411	const unsigned int bsize = LRW_BLOCK_SIZE;
412	const unsigned int max_blks = req->tbuflen / bsize;
413	struct lrw_table_ctx *ctx = req->table_ctx;
414	struct blkcipher_walk walk;
415	unsigned int nblocks;
416	be128 *iv, *src, *dst, *t;
417	be128 *t_buf = req->tbuf;
418	int err, i;
419
420	BUG_ON(max_blks < 1);
421
422	blkcipher_walk_init(&walk, sdst, ssrc, nbytes);
423
424	err = blkcipher_walk_virt(desc, &walk);
425	nbytes = walk.nbytes;
426	if (!nbytes)
427		return err;
428
429	nblocks = min(walk.nbytes / bsize, max_blks);
430	src = (be128 *)walk.src.virt.addr;
431	dst = (be128 *)walk.dst.virt.addr;
432
433	/* calculate first value of T */
434	iv = (be128 *)walk.iv;
435	t_buf[0] = *iv;
436
437	/* T <- I*Key2 */
438	gf128mul_64k_bbe(&t_buf[0], ctx->table);
439
440	i = 0;
441	goto first;
442
443	for (;;) {
444		do {
445			for (i = 0; i < nblocks; i++) {
446				/* T <- I*Key2, using the optimization
447				 * discussed in the specification */
448				be128_xor(&t_buf[i], t,
449						&ctx->mulinc[get_index128(iv)]);
450				inc(iv);
451first:
452				t = &t_buf[i];
453
454				/* PP <- T xor P */
455				be128_xor(dst + i, t, src + i);
456			}
457
458			/* CC <- E(Key2,PP) */
459			req->crypt_fn(req->crypt_ctx, (u8 *)dst,
460				      nblocks * bsize);
461
462			/* C <- T xor CC */
463			for (i = 0; i < nblocks; i++)
464				be128_xor(dst + i, dst + i, &t_buf[i]);
465
466			src += nblocks;
467			dst += nblocks;
468			nbytes -= nblocks * bsize;
469			nblocks = min(nbytes / bsize, max_blks);
470		} while (nblocks > 0);
471
472		err = blkcipher_walk_done(desc, &walk, nbytes);
473		nbytes = walk.nbytes;
474		if (!nbytes)
475			break;
476
477		nblocks = min(nbytes / bsize, max_blks);
478		src = (be128 *)walk.src.virt.addr;
479		dst = (be128 *)walk.dst.virt.addr;
480	}
481
482	return err;
483}
484EXPORT_SYMBOL_GPL(lrw_crypt);
485
486static int init_tfm(struct crypto_skcipher *tfm)
487{
488	struct skcipher_instance *inst = skcipher_alg_instance(tfm);
489	struct crypto_skcipher_spawn *spawn = skcipher_instance_ctx(inst);
490	struct priv *ctx = crypto_skcipher_ctx(tfm);
491	struct crypto_skcipher *cipher;
492
493	cipher = crypto_spawn_skcipher(spawn);
494	if (IS_ERR(cipher))
495		return PTR_ERR(cipher);
496
497	ctx->child = cipher;
498
499	crypto_skcipher_set_reqsize(tfm, crypto_skcipher_reqsize(cipher) +
500					 sizeof(struct rctx));
501
502	return 0;
503}
504
505static void exit_tfm(struct crypto_skcipher *tfm)
506{
507	struct priv *ctx = crypto_skcipher_ctx(tfm);
508
509	lrw_free_table(&ctx->table);
 
510	crypto_free_skcipher(ctx->child);
511}
512
513static void free(struct skcipher_instance *inst)
514{
515	crypto_drop_skcipher(skcipher_instance_ctx(inst));
516	kfree(inst);
517}
518
519static int create(struct crypto_template *tmpl, struct rtattr **tb)
520{
521	struct crypto_skcipher_spawn *spawn;
522	struct skcipher_instance *inst;
523	struct crypto_attr_type *algt;
524	struct skcipher_alg *alg;
525	const char *cipher_name;
526	char ecb_name[CRYPTO_MAX_ALG_NAME];
 
527	int err;
528
529	algt = crypto_get_attr_type(tb);
530	if (IS_ERR(algt))
531		return PTR_ERR(algt);
532
533	if ((algt->type ^ CRYPTO_ALG_TYPE_SKCIPHER) & algt->mask)
534		return -EINVAL;
535
536	cipher_name = crypto_attr_alg_name(tb[1]);
537	if (IS_ERR(cipher_name))
538		return PTR_ERR(cipher_name);
539
540	inst = kzalloc(sizeof(*inst) + sizeof(*spawn), GFP_KERNEL);
541	if (!inst)
542		return -ENOMEM;
543
544	spawn = skcipher_instance_ctx(inst);
545
546	crypto_set_skcipher_spawn(spawn, skcipher_crypto_instance(inst));
547	err = crypto_grab_skcipher(spawn, cipher_name, 0,
548				   crypto_requires_sync(algt->type,
549							algt->mask));
550	if (err == -ENOENT) {
551		err = -ENAMETOOLONG;
552		if (snprintf(ecb_name, CRYPTO_MAX_ALG_NAME, "ecb(%s)",
553			     cipher_name) >= CRYPTO_MAX_ALG_NAME)
554			goto err_free_inst;
555
556		err = crypto_grab_skcipher(spawn, ecb_name, 0,
557					   crypto_requires_sync(algt->type,
558								algt->mask));
559	}
560
561	if (err)
562		goto err_free_inst;
563
564	alg = crypto_skcipher_spawn_alg(spawn);
565
566	err = -EINVAL;
567	if (alg->base.cra_blocksize != LRW_BLOCK_SIZE)
568		goto err_drop_spawn;
569
570	if (crypto_skcipher_alg_ivsize(alg))
571		goto err_drop_spawn;
572
573	err = crypto_inst_setname(skcipher_crypto_instance(inst), "lrw",
574				  &alg->base);
575	if (err)
576		goto err_drop_spawn;
577
578	err = -EINVAL;
579	cipher_name = alg->base.cra_name;
580
581	/* Alas we screwed up the naming so we have to mangle the
582	 * cipher name.
583	 */
584	if (!strncmp(cipher_name, "ecb(", 4)) {
585		unsigned len;
586
587		len = strlcpy(ecb_name, cipher_name + 4, sizeof(ecb_name));
588		if (len < 2 || len >= sizeof(ecb_name))
589			goto err_drop_spawn;
590
591		if (ecb_name[len - 1] != ')')
592			goto err_drop_spawn;
593
594		ecb_name[len - 1] = 0;
595
596		if (snprintf(inst->alg.base.cra_name, CRYPTO_MAX_ALG_NAME,
597			     "lrw(%s)", ecb_name) >= CRYPTO_MAX_ALG_NAME)
598			return -ENAMETOOLONG;
599	}
 
 
 
600
601	inst->alg.base.cra_flags = alg->base.cra_flags & CRYPTO_ALG_ASYNC;
602	inst->alg.base.cra_priority = alg->base.cra_priority;
603	inst->alg.base.cra_blocksize = LRW_BLOCK_SIZE;
604	inst->alg.base.cra_alignmask = alg->base.cra_alignmask |
605				       (__alignof__(u64) - 1);
606
607	inst->alg.ivsize = LRW_BLOCK_SIZE;
608	inst->alg.min_keysize = crypto_skcipher_alg_min_keysize(alg) +
609				LRW_BLOCK_SIZE;
610	inst->alg.max_keysize = crypto_skcipher_alg_max_keysize(alg) +
611				LRW_BLOCK_SIZE;
612
613	inst->alg.base.cra_ctxsize = sizeof(struct priv);
614
615	inst->alg.init = init_tfm;
616	inst->alg.exit = exit_tfm;
617
618	inst->alg.setkey = setkey;
619	inst->alg.encrypt = encrypt;
620	inst->alg.decrypt = decrypt;
621
622	inst->free = free;
623
624	err = skcipher_register_instance(tmpl, inst);
625	if (err)
626		goto err_drop_spawn;
627
628out:
629	return err;
630
631err_drop_spawn:
632	crypto_drop_skcipher(spawn);
633err_free_inst:
634	kfree(inst);
635	goto out;
636}
637
638static struct crypto_template crypto_tmpl = {
639	.name = "lrw",
640	.create = create,
641	.module = THIS_MODULE,
642};
643
644static int __init crypto_module_init(void)
645{
646	return crypto_register_template(&crypto_tmpl);
647}
648
649static void __exit crypto_module_exit(void)
650{
651	crypto_unregister_template(&crypto_tmpl);
652}
653
654module_init(crypto_module_init);
655module_exit(crypto_module_exit);
656
657MODULE_LICENSE("GPL");
658MODULE_DESCRIPTION("LRW block cipher mode");
659MODULE_ALIAS_CRYPTO("lrw");