Loading...
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _ASM_IA64_BITOPS_H
3#define _ASM_IA64_BITOPS_H
4
5/*
6 * Copyright (C) 1998-2003 Hewlett-Packard Co
7 * David Mosberger-Tang <davidm@hpl.hp.com>
8 *
9 * 02/06/02 find_next_bit() and find_first_bit() added from Erich Focht's ia64
10 * O(1) scheduler patch
11 */
12
13#ifndef _LINUX_BITOPS_H
14#error only <linux/bitops.h> can be included directly
15#endif
16
17#include <linux/compiler.h>
18#include <linux/types.h>
19#include <asm/intrinsics.h>
20#include <asm/barrier.h>
21
22/**
23 * set_bit - Atomically set a bit in memory
24 * @nr: the bit to set
25 * @addr: the address to start counting from
26 *
27 * This function is atomic and may not be reordered. See __set_bit()
28 * if you do not require the atomic guarantees.
29 * Note that @nr may be almost arbitrarily large; this function is not
30 * restricted to acting on a single-word quantity.
31 *
32 * The address must be (at least) "long" aligned.
33 * Note that there are driver (e.g., eepro100) which use these operations to
34 * operate on hw-defined data-structures, so we can't easily change these
35 * operations to force a bigger alignment.
36 *
37 * bit 0 is the LSB of addr; bit 32 is the LSB of (addr+1).
38 */
39static __inline__ void
40set_bit (int nr, volatile void *addr)
41{
42 __u32 bit, old, new;
43 volatile __u32 *m;
44 CMPXCHG_BUGCHECK_DECL
45
46 m = (volatile __u32 *) addr + (nr >> 5);
47 bit = 1 << (nr & 31);
48 do {
49 CMPXCHG_BUGCHECK(m);
50 old = *m;
51 new = old | bit;
52 } while (cmpxchg_acq(m, old, new) != old);
53}
54
55/**
56 * __set_bit - Set a bit in memory
57 * @nr: the bit to set
58 * @addr: the address to start counting from
59 *
60 * Unlike set_bit(), this function is non-atomic and may be reordered.
61 * If it's called on the same region of memory simultaneously, the effect
62 * may be that only one operation succeeds.
63 */
64static __inline__ void
65__set_bit (int nr, volatile void *addr)
66{
67 *((__u32 *) addr + (nr >> 5)) |= (1 << (nr & 31));
68}
69
70/**
71 * clear_bit - Clears a bit in memory
72 * @nr: Bit to clear
73 * @addr: Address to start counting from
74 *
75 * clear_bit() is atomic and may not be reordered. However, it does
76 * not contain a memory barrier, so if it is used for locking purposes,
77 * you should call smp_mb__before_atomic() and/or smp_mb__after_atomic()
78 * in order to ensure changes are visible on other processors.
79 */
80static __inline__ void
81clear_bit (int nr, volatile void *addr)
82{
83 __u32 mask, old, new;
84 volatile __u32 *m;
85 CMPXCHG_BUGCHECK_DECL
86
87 m = (volatile __u32 *) addr + (nr >> 5);
88 mask = ~(1 << (nr & 31));
89 do {
90 CMPXCHG_BUGCHECK(m);
91 old = *m;
92 new = old & mask;
93 } while (cmpxchg_acq(m, old, new) != old);
94}
95
96/**
97 * clear_bit_unlock - Clears a bit in memory with release
98 * @nr: Bit to clear
99 * @addr: Address to start counting from
100 *
101 * clear_bit_unlock() is atomic and may not be reordered. It does
102 * contain a memory barrier suitable for unlock type operations.
103 */
104static __inline__ void
105clear_bit_unlock (int nr, volatile void *addr)
106{
107 __u32 mask, old, new;
108 volatile __u32 *m;
109 CMPXCHG_BUGCHECK_DECL
110
111 m = (volatile __u32 *) addr + (nr >> 5);
112 mask = ~(1 << (nr & 31));
113 do {
114 CMPXCHG_BUGCHECK(m);
115 old = *m;
116 new = old & mask;
117 } while (cmpxchg_rel(m, old, new) != old);
118}
119
120/**
121 * __clear_bit_unlock - Non-atomically clears a bit in memory with release
122 * @nr: Bit to clear
123 * @addr: Address to start counting from
124 *
125 * Similarly to clear_bit_unlock, the implementation uses a store
126 * with release semantics. See also arch_spin_unlock().
127 */
128static __inline__ void
129__clear_bit_unlock(int nr, void *addr)
130{
131 __u32 * const m = (__u32 *) addr + (nr >> 5);
132 __u32 const new = *m & ~(1 << (nr & 31));
133
134 ia64_st4_rel_nta(m, new);
135}
136
137/**
138 * __clear_bit - Clears a bit in memory (non-atomic version)
139 * @nr: the bit to clear
140 * @addr: the address to start counting from
141 *
142 * Unlike clear_bit(), this function is non-atomic and may be reordered.
143 * If it's called on the same region of memory simultaneously, the effect
144 * may be that only one operation succeeds.
145 */
146static __inline__ void
147__clear_bit (int nr, volatile void *addr)
148{
149 *((__u32 *) addr + (nr >> 5)) &= ~(1 << (nr & 31));
150}
151
152/**
153 * change_bit - Toggle a bit in memory
154 * @nr: Bit to toggle
155 * @addr: Address to start counting from
156 *
157 * change_bit() is atomic and may not be reordered.
158 * Note that @nr may be almost arbitrarily large; this function is not
159 * restricted to acting on a single-word quantity.
160 */
161static __inline__ void
162change_bit (int nr, volatile void *addr)
163{
164 __u32 bit, old, new;
165 volatile __u32 *m;
166 CMPXCHG_BUGCHECK_DECL
167
168 m = (volatile __u32 *) addr + (nr >> 5);
169 bit = (1 << (nr & 31));
170 do {
171 CMPXCHG_BUGCHECK(m);
172 old = *m;
173 new = old ^ bit;
174 } while (cmpxchg_acq(m, old, new) != old);
175}
176
177/**
178 * __change_bit - Toggle a bit in memory
179 * @nr: the bit to toggle
180 * @addr: the address to start counting from
181 *
182 * Unlike change_bit(), this function is non-atomic and may be reordered.
183 * If it's called on the same region of memory simultaneously, the effect
184 * may be that only one operation succeeds.
185 */
186static __inline__ void
187__change_bit (int nr, volatile void *addr)
188{
189 *((__u32 *) addr + (nr >> 5)) ^= (1 << (nr & 31));
190}
191
192/**
193 * test_and_set_bit - Set a bit and return its old value
194 * @nr: Bit to set
195 * @addr: Address to count from
196 *
197 * This operation is atomic and cannot be reordered.
198 * It also implies the acquisition side of the memory barrier.
199 */
200static __inline__ int
201test_and_set_bit (int nr, volatile void *addr)
202{
203 __u32 bit, old, new;
204 volatile __u32 *m;
205 CMPXCHG_BUGCHECK_DECL
206
207 m = (volatile __u32 *) addr + (nr >> 5);
208 bit = 1 << (nr & 31);
209 do {
210 CMPXCHG_BUGCHECK(m);
211 old = *m;
212 new = old | bit;
213 } while (cmpxchg_acq(m, old, new) != old);
214 return (old & bit) != 0;
215}
216
217/**
218 * test_and_set_bit_lock - Set a bit and return its old value for lock
219 * @nr: Bit to set
220 * @addr: Address to count from
221 *
222 * This is the same as test_and_set_bit on ia64
223 */
224#define test_and_set_bit_lock test_and_set_bit
225
226/**
227 * __test_and_set_bit - Set a bit and return its old value
228 * @nr: Bit to set
229 * @addr: Address to count from
230 *
231 * This operation is non-atomic and can be reordered.
232 * If two examples of this operation race, one can appear to succeed
233 * but actually fail. You must protect multiple accesses with a lock.
234 */
235static __inline__ int
236__test_and_set_bit (int nr, volatile void *addr)
237{
238 __u32 *p = (__u32 *) addr + (nr >> 5);
239 __u32 m = 1 << (nr & 31);
240 int oldbitset = (*p & m) != 0;
241
242 *p |= m;
243 return oldbitset;
244}
245
246/**
247 * test_and_clear_bit - Clear a bit and return its old value
248 * @nr: Bit to clear
249 * @addr: Address to count from
250 *
251 * This operation is atomic and cannot be reordered.
252 * It also implies the acquisition side of the memory barrier.
253 */
254static __inline__ int
255test_and_clear_bit (int nr, volatile void *addr)
256{
257 __u32 mask, old, new;
258 volatile __u32 *m;
259 CMPXCHG_BUGCHECK_DECL
260
261 m = (volatile __u32 *) addr + (nr >> 5);
262 mask = ~(1 << (nr & 31));
263 do {
264 CMPXCHG_BUGCHECK(m);
265 old = *m;
266 new = old & mask;
267 } while (cmpxchg_acq(m, old, new) != old);
268 return (old & ~mask) != 0;
269}
270
271/**
272 * __test_and_clear_bit - Clear a bit and return its old value
273 * @nr: Bit to clear
274 * @addr: Address to count from
275 *
276 * This operation is non-atomic and can be reordered.
277 * If two examples of this operation race, one can appear to succeed
278 * but actually fail. You must protect multiple accesses with a lock.
279 */
280static __inline__ int
281__test_and_clear_bit(int nr, volatile void * addr)
282{
283 __u32 *p = (__u32 *) addr + (nr >> 5);
284 __u32 m = 1 << (nr & 31);
285 int oldbitset = (*p & m) != 0;
286
287 *p &= ~m;
288 return oldbitset;
289}
290
291/**
292 * test_and_change_bit - Change a bit and return its old value
293 * @nr: Bit to change
294 * @addr: Address to count from
295 *
296 * This operation is atomic and cannot be reordered.
297 * It also implies the acquisition side of the memory barrier.
298 */
299static __inline__ int
300test_and_change_bit (int nr, volatile void *addr)
301{
302 __u32 bit, old, new;
303 volatile __u32 *m;
304 CMPXCHG_BUGCHECK_DECL
305
306 m = (volatile __u32 *) addr + (nr >> 5);
307 bit = (1 << (nr & 31));
308 do {
309 CMPXCHG_BUGCHECK(m);
310 old = *m;
311 new = old ^ bit;
312 } while (cmpxchg_acq(m, old, new) != old);
313 return (old & bit) != 0;
314}
315
316/**
317 * __test_and_change_bit - Change a bit and return its old value
318 * @nr: Bit to change
319 * @addr: Address to count from
320 *
321 * This operation is non-atomic and can be reordered.
322 */
323static __inline__ int
324__test_and_change_bit (int nr, void *addr)
325{
326 __u32 old, bit = (1 << (nr & 31));
327 __u32 *m = (__u32 *) addr + (nr >> 5);
328
329 old = *m;
330 *m = old ^ bit;
331 return (old & bit) != 0;
332}
333
334static __inline__ int
335test_bit (int nr, const volatile void *addr)
336{
337 return 1 & (((const volatile __u32 *) addr)[nr >> 5] >> (nr & 31));
338}
339
340/**
341 * ffz - find the first zero bit in a long word
342 * @x: The long word to find the bit in
343 *
344 * Returns the bit-number (0..63) of the first (least significant) zero bit.
345 * Undefined if no zero exists, so code should check against ~0UL first...
346 */
347static inline unsigned long
348ffz (unsigned long x)
349{
350 unsigned long result;
351
352 result = ia64_popcnt(x & (~x - 1));
353 return result;
354}
355
356/**
357 * __ffs - find first bit in word.
358 * @x: The word to search
359 *
360 * Undefined if no bit exists, so code should check against 0 first.
361 */
362static __inline__ unsigned long
363__ffs (unsigned long x)
364{
365 unsigned long result;
366
367 result = ia64_popcnt((x-1) & ~x);
368 return result;
369}
370
371#ifdef __KERNEL__
372
373/*
374 * Return bit number of last (most-significant) bit set. Undefined
375 * for x==0. Bits are numbered from 0..63 (e.g., ia64_fls(9) == 3).
376 */
377static inline unsigned long
378ia64_fls (unsigned long x)
379{
380 long double d = x;
381 long exp;
382
383 exp = ia64_getf_exp(d);
384 return exp - 0xffff;
385}
386
387/*
388 * Find the last (most significant) bit set. Returns 0 for x==0 and
389 * bits are numbered from 1..32 (e.g., fls(9) == 4).
390 */
391static inline int fls(unsigned int t)
392{
393 unsigned long x = t & 0xffffffffu;
394
395 if (!x)
396 return 0;
397 x |= x >> 1;
398 x |= x >> 2;
399 x |= x >> 4;
400 x |= x >> 8;
401 x |= x >> 16;
402 return ia64_popcnt(x);
403}
404
405/*
406 * Find the last (most significant) bit set. Undefined for x==0.
407 * Bits are numbered from 0..63 (e.g., __fls(9) == 3).
408 */
409static inline unsigned long
410__fls (unsigned long x)
411{
412 x |= x >> 1;
413 x |= x >> 2;
414 x |= x >> 4;
415 x |= x >> 8;
416 x |= x >> 16;
417 x |= x >> 32;
418 return ia64_popcnt(x) - 1;
419}
420
421#include <asm-generic/bitops/fls64.h>
422
423#include <asm-generic/bitops/builtin-ffs.h>
424
425/*
426 * hweightN: returns the hamming weight (i.e. the number
427 * of bits set) of a N-bit word
428 */
429static __inline__ unsigned long __arch_hweight64(unsigned long x)
430{
431 unsigned long result;
432 result = ia64_popcnt(x);
433 return result;
434}
435
436#define __arch_hweight32(x) ((unsigned int) __arch_hweight64((x) & 0xfffffffful))
437#define __arch_hweight16(x) ((unsigned int) __arch_hweight64((x) & 0xfffful))
438#define __arch_hweight8(x) ((unsigned int) __arch_hweight64((x) & 0xfful))
439
440#include <asm-generic/bitops/const_hweight.h>
441
442#endif /* __KERNEL__ */
443
444#include <asm-generic/bitops/find.h>
445
446#ifdef __KERNEL__
447
448#include <asm-generic/bitops/le.h>
449
450#include <asm-generic/bitops/ext2-atomic-setbit.h>
451
452#include <asm-generic/bitops/sched.h>
453
454#endif /* __KERNEL__ */
455
456#endif /* _ASM_IA64_BITOPS_H */
1#ifndef _ASM_IA64_BITOPS_H
2#define _ASM_IA64_BITOPS_H
3
4/*
5 * Copyright (C) 1998-2003 Hewlett-Packard Co
6 * David Mosberger-Tang <davidm@hpl.hp.com>
7 *
8 * 02/06/02 find_next_bit() and find_first_bit() added from Erich Focht's ia64
9 * O(1) scheduler patch
10 */
11
12#ifndef _LINUX_BITOPS_H
13#error only <linux/bitops.h> can be included directly
14#endif
15
16#include <linux/compiler.h>
17#include <linux/types.h>
18#include <asm/intrinsics.h>
19#include <asm/barrier.h>
20
21/**
22 * set_bit - Atomically set a bit in memory
23 * @nr: the bit to set
24 * @addr: the address to start counting from
25 *
26 * This function is atomic and may not be reordered. See __set_bit()
27 * if you do not require the atomic guarantees.
28 * Note that @nr may be almost arbitrarily large; this function is not
29 * restricted to acting on a single-word quantity.
30 *
31 * The address must be (at least) "long" aligned.
32 * Note that there are driver (e.g., eepro100) which use these operations to
33 * operate on hw-defined data-structures, so we can't easily change these
34 * operations to force a bigger alignment.
35 *
36 * bit 0 is the LSB of addr; bit 32 is the LSB of (addr+1).
37 */
38static __inline__ void
39set_bit (int nr, volatile void *addr)
40{
41 __u32 bit, old, new;
42 volatile __u32 *m;
43 CMPXCHG_BUGCHECK_DECL
44
45 m = (volatile __u32 *) addr + (nr >> 5);
46 bit = 1 << (nr & 31);
47 do {
48 CMPXCHG_BUGCHECK(m);
49 old = *m;
50 new = old | bit;
51 } while (cmpxchg_acq(m, old, new) != old);
52}
53
54/**
55 * __set_bit - Set a bit in memory
56 * @nr: the bit to set
57 * @addr: the address to start counting from
58 *
59 * Unlike set_bit(), this function is non-atomic and may be reordered.
60 * If it's called on the same region of memory simultaneously, the effect
61 * may be that only one operation succeeds.
62 */
63static __inline__ void
64__set_bit (int nr, volatile void *addr)
65{
66 *((__u32 *) addr + (nr >> 5)) |= (1 << (nr & 31));
67}
68
69/**
70 * clear_bit - Clears a bit in memory
71 * @nr: Bit to clear
72 * @addr: Address to start counting from
73 *
74 * clear_bit() is atomic and may not be reordered. However, it does
75 * not contain a memory barrier, so if it is used for locking purposes,
76 * you should call smp_mb__before_atomic() and/or smp_mb__after_atomic()
77 * in order to ensure changes are visible on other processors.
78 */
79static __inline__ void
80clear_bit (int nr, volatile void *addr)
81{
82 __u32 mask, old, new;
83 volatile __u32 *m;
84 CMPXCHG_BUGCHECK_DECL
85
86 m = (volatile __u32 *) addr + (nr >> 5);
87 mask = ~(1 << (nr & 31));
88 do {
89 CMPXCHG_BUGCHECK(m);
90 old = *m;
91 new = old & mask;
92 } while (cmpxchg_acq(m, old, new) != old);
93}
94
95/**
96 * clear_bit_unlock - Clears a bit in memory with release
97 * @nr: Bit to clear
98 * @addr: Address to start counting from
99 *
100 * clear_bit_unlock() is atomic and may not be reordered. It does
101 * contain a memory barrier suitable for unlock type operations.
102 */
103static __inline__ void
104clear_bit_unlock (int nr, volatile void *addr)
105{
106 __u32 mask, old, new;
107 volatile __u32 *m;
108 CMPXCHG_BUGCHECK_DECL
109
110 m = (volatile __u32 *) addr + (nr >> 5);
111 mask = ~(1 << (nr & 31));
112 do {
113 CMPXCHG_BUGCHECK(m);
114 old = *m;
115 new = old & mask;
116 } while (cmpxchg_rel(m, old, new) != old);
117}
118
119/**
120 * __clear_bit_unlock - Non-atomically clears a bit in memory with release
121 * @nr: Bit to clear
122 * @addr: Address to start counting from
123 *
124 * Similarly to clear_bit_unlock, the implementation uses a store
125 * with release semantics. See also arch_spin_unlock().
126 */
127static __inline__ void
128__clear_bit_unlock(int nr, void *addr)
129{
130 __u32 * const m = (__u32 *) addr + (nr >> 5);
131 __u32 const new = *m & ~(1 << (nr & 31));
132
133 ia64_st4_rel_nta(m, new);
134}
135
136/**
137 * __clear_bit - Clears a bit in memory (non-atomic version)
138 * @nr: the bit to clear
139 * @addr: the address to start counting from
140 *
141 * Unlike clear_bit(), this function is non-atomic and may be reordered.
142 * If it's called on the same region of memory simultaneously, the effect
143 * may be that only one operation succeeds.
144 */
145static __inline__ void
146__clear_bit (int nr, volatile void *addr)
147{
148 *((__u32 *) addr + (nr >> 5)) &= ~(1 << (nr & 31));
149}
150
151/**
152 * change_bit - Toggle a bit in memory
153 * @nr: Bit to toggle
154 * @addr: Address to start counting from
155 *
156 * change_bit() is atomic and may not be reordered.
157 * Note that @nr may be almost arbitrarily large; this function is not
158 * restricted to acting on a single-word quantity.
159 */
160static __inline__ void
161change_bit (int nr, volatile void *addr)
162{
163 __u32 bit, old, new;
164 volatile __u32 *m;
165 CMPXCHG_BUGCHECK_DECL
166
167 m = (volatile __u32 *) addr + (nr >> 5);
168 bit = (1 << (nr & 31));
169 do {
170 CMPXCHG_BUGCHECK(m);
171 old = *m;
172 new = old ^ bit;
173 } while (cmpxchg_acq(m, old, new) != old);
174}
175
176/**
177 * __change_bit - Toggle a bit in memory
178 * @nr: the bit to toggle
179 * @addr: the address to start counting from
180 *
181 * Unlike change_bit(), this function is non-atomic and may be reordered.
182 * If it's called on the same region of memory simultaneously, the effect
183 * may be that only one operation succeeds.
184 */
185static __inline__ void
186__change_bit (int nr, volatile void *addr)
187{
188 *((__u32 *) addr + (nr >> 5)) ^= (1 << (nr & 31));
189}
190
191/**
192 * test_and_set_bit - Set a bit and return its old value
193 * @nr: Bit to set
194 * @addr: Address to count from
195 *
196 * This operation is atomic and cannot be reordered.
197 * It also implies the acquisition side of the memory barrier.
198 */
199static __inline__ int
200test_and_set_bit (int nr, volatile void *addr)
201{
202 __u32 bit, old, new;
203 volatile __u32 *m;
204 CMPXCHG_BUGCHECK_DECL
205
206 m = (volatile __u32 *) addr + (nr >> 5);
207 bit = 1 << (nr & 31);
208 do {
209 CMPXCHG_BUGCHECK(m);
210 old = *m;
211 new = old | bit;
212 } while (cmpxchg_acq(m, old, new) != old);
213 return (old & bit) != 0;
214}
215
216/**
217 * test_and_set_bit_lock - Set a bit and return its old value for lock
218 * @nr: Bit to set
219 * @addr: Address to count from
220 *
221 * This is the same as test_and_set_bit on ia64
222 */
223#define test_and_set_bit_lock test_and_set_bit
224
225/**
226 * __test_and_set_bit - Set a bit and return its old value
227 * @nr: Bit to set
228 * @addr: Address to count from
229 *
230 * This operation is non-atomic and can be reordered.
231 * If two examples of this operation race, one can appear to succeed
232 * but actually fail. You must protect multiple accesses with a lock.
233 */
234static __inline__ int
235__test_and_set_bit (int nr, volatile void *addr)
236{
237 __u32 *p = (__u32 *) addr + (nr >> 5);
238 __u32 m = 1 << (nr & 31);
239 int oldbitset = (*p & m) != 0;
240
241 *p |= m;
242 return oldbitset;
243}
244
245/**
246 * test_and_clear_bit - Clear a bit and return its old value
247 * @nr: Bit to clear
248 * @addr: Address to count from
249 *
250 * This operation is atomic and cannot be reordered.
251 * It also implies the acquisition side of the memory barrier.
252 */
253static __inline__ int
254test_and_clear_bit (int nr, volatile void *addr)
255{
256 __u32 mask, old, new;
257 volatile __u32 *m;
258 CMPXCHG_BUGCHECK_DECL
259
260 m = (volatile __u32 *) addr + (nr >> 5);
261 mask = ~(1 << (nr & 31));
262 do {
263 CMPXCHG_BUGCHECK(m);
264 old = *m;
265 new = old & mask;
266 } while (cmpxchg_acq(m, old, new) != old);
267 return (old & ~mask) != 0;
268}
269
270/**
271 * __test_and_clear_bit - Clear a bit and return its old value
272 * @nr: Bit to clear
273 * @addr: Address to count from
274 *
275 * This operation is non-atomic and can be reordered.
276 * If two examples of this operation race, one can appear to succeed
277 * but actually fail. You must protect multiple accesses with a lock.
278 */
279static __inline__ int
280__test_and_clear_bit(int nr, volatile void * addr)
281{
282 __u32 *p = (__u32 *) addr + (nr >> 5);
283 __u32 m = 1 << (nr & 31);
284 int oldbitset = (*p & m) != 0;
285
286 *p &= ~m;
287 return oldbitset;
288}
289
290/**
291 * test_and_change_bit - Change a bit and return its old value
292 * @nr: Bit to change
293 * @addr: Address to count from
294 *
295 * This operation is atomic and cannot be reordered.
296 * It also implies the acquisition side of the memory barrier.
297 */
298static __inline__ int
299test_and_change_bit (int nr, volatile void *addr)
300{
301 __u32 bit, old, new;
302 volatile __u32 *m;
303 CMPXCHG_BUGCHECK_DECL
304
305 m = (volatile __u32 *) addr + (nr >> 5);
306 bit = (1 << (nr & 31));
307 do {
308 CMPXCHG_BUGCHECK(m);
309 old = *m;
310 new = old ^ bit;
311 } while (cmpxchg_acq(m, old, new) != old);
312 return (old & bit) != 0;
313}
314
315/**
316 * __test_and_change_bit - Change a bit and return its old value
317 * @nr: Bit to change
318 * @addr: Address to count from
319 *
320 * This operation is non-atomic and can be reordered.
321 */
322static __inline__ int
323__test_and_change_bit (int nr, void *addr)
324{
325 __u32 old, bit = (1 << (nr & 31));
326 __u32 *m = (__u32 *) addr + (nr >> 5);
327
328 old = *m;
329 *m = old ^ bit;
330 return (old & bit) != 0;
331}
332
333static __inline__ int
334test_bit (int nr, const volatile void *addr)
335{
336 return 1 & (((const volatile __u32 *) addr)[nr >> 5] >> (nr & 31));
337}
338
339/**
340 * ffz - find the first zero bit in a long word
341 * @x: The long word to find the bit in
342 *
343 * Returns the bit-number (0..63) of the first (least significant) zero bit.
344 * Undefined if no zero exists, so code should check against ~0UL first...
345 */
346static inline unsigned long
347ffz (unsigned long x)
348{
349 unsigned long result;
350
351 result = ia64_popcnt(x & (~x - 1));
352 return result;
353}
354
355/**
356 * __ffs - find first bit in word.
357 * @x: The word to search
358 *
359 * Undefined if no bit exists, so code should check against 0 first.
360 */
361static __inline__ unsigned long
362__ffs (unsigned long x)
363{
364 unsigned long result;
365
366 result = ia64_popcnt((x-1) & ~x);
367 return result;
368}
369
370#ifdef __KERNEL__
371
372/*
373 * Return bit number of last (most-significant) bit set. Undefined
374 * for x==0. Bits are numbered from 0..63 (e.g., ia64_fls(9) == 3).
375 */
376static inline unsigned long
377ia64_fls (unsigned long x)
378{
379 long double d = x;
380 long exp;
381
382 exp = ia64_getf_exp(d);
383 return exp - 0xffff;
384}
385
386/*
387 * Find the last (most significant) bit set. Returns 0 for x==0 and
388 * bits are numbered from 1..32 (e.g., fls(9) == 4).
389 */
390static inline int
391fls (int t)
392{
393 unsigned long x = t & 0xffffffffu;
394
395 if (!x)
396 return 0;
397 x |= x >> 1;
398 x |= x >> 2;
399 x |= x >> 4;
400 x |= x >> 8;
401 x |= x >> 16;
402 return ia64_popcnt(x);
403}
404
405/*
406 * Find the last (most significant) bit set. Undefined for x==0.
407 * Bits are numbered from 0..63 (e.g., __fls(9) == 3).
408 */
409static inline unsigned long
410__fls (unsigned long x)
411{
412 x |= x >> 1;
413 x |= x >> 2;
414 x |= x >> 4;
415 x |= x >> 8;
416 x |= x >> 16;
417 x |= x >> 32;
418 return ia64_popcnt(x) - 1;
419}
420
421#include <asm-generic/bitops/fls64.h>
422
423#include <asm-generic/bitops/builtin-ffs.h>
424
425/*
426 * hweightN: returns the hamming weight (i.e. the number
427 * of bits set) of a N-bit word
428 */
429static __inline__ unsigned long __arch_hweight64(unsigned long x)
430{
431 unsigned long result;
432 result = ia64_popcnt(x);
433 return result;
434}
435
436#define __arch_hweight32(x) ((unsigned int) __arch_hweight64((x) & 0xfffffffful))
437#define __arch_hweight16(x) ((unsigned int) __arch_hweight64((x) & 0xfffful))
438#define __arch_hweight8(x) ((unsigned int) __arch_hweight64((x) & 0xfful))
439
440#include <asm-generic/bitops/const_hweight.h>
441
442#endif /* __KERNEL__ */
443
444#include <asm-generic/bitops/find.h>
445
446#ifdef __KERNEL__
447
448#include <asm-generic/bitops/le.h>
449
450#include <asm-generic/bitops/ext2-atomic-setbit.h>
451
452#include <asm-generic/bitops/sched.h>
453
454#endif /* __KERNEL__ */
455
456#endif /* _ASM_IA64_BITOPS_H */