Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * IP multicast routing support for mrouted 3.6/3.8
4 *
5 * (c) 1995 Alan Cox, <alan@lxorguk.ukuu.org.uk>
6 * Linux Consultancy and Custom Driver Development
7 *
8 * Fixes:
9 * Michael Chastain : Incorrect size of copying.
10 * Alan Cox : Added the cache manager code
11 * Alan Cox : Fixed the clone/copy bug and device race.
12 * Mike McLagan : Routing by source
13 * Malcolm Beattie : Buffer handling fixes.
14 * Alexey Kuznetsov : Double buffer free and other fixes.
15 * SVR Anand : Fixed several multicast bugs and problems.
16 * Alexey Kuznetsov : Status, optimisations and more.
17 * Brad Parker : Better behaviour on mrouted upcall
18 * overflow.
19 * Carlos Picoto : PIMv1 Support
20 * Pavlin Ivanov Radoslavov: PIMv2 Registers must checksum only PIM header
21 * Relax this requirement to work with older peers.
22 */
23
24#include <linux/uaccess.h>
25#include <linux/types.h>
26#include <linux/cache.h>
27#include <linux/capability.h>
28#include <linux/errno.h>
29#include <linux/mm.h>
30#include <linux/kernel.h>
31#include <linux/fcntl.h>
32#include <linux/stat.h>
33#include <linux/socket.h>
34#include <linux/in.h>
35#include <linux/inet.h>
36#include <linux/netdevice.h>
37#include <linux/inetdevice.h>
38#include <linux/igmp.h>
39#include <linux/proc_fs.h>
40#include <linux/seq_file.h>
41#include <linux/mroute.h>
42#include <linux/init.h>
43#include <linux/if_ether.h>
44#include <linux/slab.h>
45#include <net/net_namespace.h>
46#include <net/ip.h>
47#include <net/protocol.h>
48#include <linux/skbuff.h>
49#include <net/route.h>
50#include <net/icmp.h>
51#include <net/udp.h>
52#include <net/raw.h>
53#include <linux/notifier.h>
54#include <linux/if_arp.h>
55#include <linux/netfilter_ipv4.h>
56#include <linux/compat.h>
57#include <linux/export.h>
58#include <linux/rhashtable.h>
59#include <net/ip_tunnels.h>
60#include <net/checksum.h>
61#include <net/netlink.h>
62#include <net/fib_rules.h>
63#include <linux/netconf.h>
64#include <net/rtnh.h>
65
66#include <linux/nospec.h>
67
68struct ipmr_rule {
69 struct fib_rule common;
70};
71
72struct ipmr_result {
73 struct mr_table *mrt;
74};
75
76/* Big lock, protecting vif table, mrt cache and mroute socket state.
77 * Note that the changes are semaphored via rtnl_lock.
78 */
79
80static DEFINE_RWLOCK(mrt_lock);
81
82/* Multicast router control variables */
83
84/* Special spinlock for queue of unresolved entries */
85static DEFINE_SPINLOCK(mfc_unres_lock);
86
87/* We return to original Alan's scheme. Hash table of resolved
88 * entries is changed only in process context and protected
89 * with weak lock mrt_lock. Queue of unresolved entries is protected
90 * with strong spinlock mfc_unres_lock.
91 *
92 * In this case data path is free of exclusive locks at all.
93 */
94
95static struct kmem_cache *mrt_cachep __ro_after_init;
96
97static struct mr_table *ipmr_new_table(struct net *net, u32 id);
98static void ipmr_free_table(struct mr_table *mrt);
99
100static void ip_mr_forward(struct net *net, struct mr_table *mrt,
101 struct net_device *dev, struct sk_buff *skb,
102 struct mfc_cache *cache, int local);
103static int ipmr_cache_report(struct mr_table *mrt,
104 struct sk_buff *pkt, vifi_t vifi, int assert);
105static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
106 int cmd);
107static void igmpmsg_netlink_event(struct mr_table *mrt, struct sk_buff *pkt);
108static void mroute_clean_tables(struct mr_table *mrt, int flags);
109static void ipmr_expire_process(struct timer_list *t);
110
111#ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
112#define ipmr_for_each_table(mrt, net) \
113 list_for_each_entry_rcu(mrt, &net->ipv4.mr_tables, list, \
114 lockdep_rtnl_is_held() || \
115 list_empty(&net->ipv4.mr_tables))
116
117static struct mr_table *ipmr_mr_table_iter(struct net *net,
118 struct mr_table *mrt)
119{
120 struct mr_table *ret;
121
122 if (!mrt)
123 ret = list_entry_rcu(net->ipv4.mr_tables.next,
124 struct mr_table, list);
125 else
126 ret = list_entry_rcu(mrt->list.next,
127 struct mr_table, list);
128
129 if (&ret->list == &net->ipv4.mr_tables)
130 return NULL;
131 return ret;
132}
133
134static struct mr_table *ipmr_get_table(struct net *net, u32 id)
135{
136 struct mr_table *mrt;
137
138 ipmr_for_each_table(mrt, net) {
139 if (mrt->id == id)
140 return mrt;
141 }
142 return NULL;
143}
144
145static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
146 struct mr_table **mrt)
147{
148 int err;
149 struct ipmr_result res;
150 struct fib_lookup_arg arg = {
151 .result = &res,
152 .flags = FIB_LOOKUP_NOREF,
153 };
154
155 /* update flow if oif or iif point to device enslaved to l3mdev */
156 l3mdev_update_flow(net, flowi4_to_flowi(flp4));
157
158 err = fib_rules_lookup(net->ipv4.mr_rules_ops,
159 flowi4_to_flowi(flp4), 0, &arg);
160 if (err < 0)
161 return err;
162 *mrt = res.mrt;
163 return 0;
164}
165
166static int ipmr_rule_action(struct fib_rule *rule, struct flowi *flp,
167 int flags, struct fib_lookup_arg *arg)
168{
169 struct ipmr_result *res = arg->result;
170 struct mr_table *mrt;
171
172 switch (rule->action) {
173 case FR_ACT_TO_TBL:
174 break;
175 case FR_ACT_UNREACHABLE:
176 return -ENETUNREACH;
177 case FR_ACT_PROHIBIT:
178 return -EACCES;
179 case FR_ACT_BLACKHOLE:
180 default:
181 return -EINVAL;
182 }
183
184 arg->table = fib_rule_get_table(rule, arg);
185
186 mrt = ipmr_get_table(rule->fr_net, arg->table);
187 if (!mrt)
188 return -EAGAIN;
189 res->mrt = mrt;
190 return 0;
191}
192
193static int ipmr_rule_match(struct fib_rule *rule, struct flowi *fl, int flags)
194{
195 return 1;
196}
197
198static const struct nla_policy ipmr_rule_policy[FRA_MAX + 1] = {
199 FRA_GENERIC_POLICY,
200};
201
202static int ipmr_rule_configure(struct fib_rule *rule, struct sk_buff *skb,
203 struct fib_rule_hdr *frh, struct nlattr **tb,
204 struct netlink_ext_ack *extack)
205{
206 return 0;
207}
208
209static int ipmr_rule_compare(struct fib_rule *rule, struct fib_rule_hdr *frh,
210 struct nlattr **tb)
211{
212 return 1;
213}
214
215static int ipmr_rule_fill(struct fib_rule *rule, struct sk_buff *skb,
216 struct fib_rule_hdr *frh)
217{
218 frh->dst_len = 0;
219 frh->src_len = 0;
220 frh->tos = 0;
221 return 0;
222}
223
224static const struct fib_rules_ops __net_initconst ipmr_rules_ops_template = {
225 .family = RTNL_FAMILY_IPMR,
226 .rule_size = sizeof(struct ipmr_rule),
227 .addr_size = sizeof(u32),
228 .action = ipmr_rule_action,
229 .match = ipmr_rule_match,
230 .configure = ipmr_rule_configure,
231 .compare = ipmr_rule_compare,
232 .fill = ipmr_rule_fill,
233 .nlgroup = RTNLGRP_IPV4_RULE,
234 .policy = ipmr_rule_policy,
235 .owner = THIS_MODULE,
236};
237
238static int __net_init ipmr_rules_init(struct net *net)
239{
240 struct fib_rules_ops *ops;
241 struct mr_table *mrt;
242 int err;
243
244 ops = fib_rules_register(&ipmr_rules_ops_template, net);
245 if (IS_ERR(ops))
246 return PTR_ERR(ops);
247
248 INIT_LIST_HEAD(&net->ipv4.mr_tables);
249
250 mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
251 if (IS_ERR(mrt)) {
252 err = PTR_ERR(mrt);
253 goto err1;
254 }
255
256 err = fib_default_rule_add(ops, 0x7fff, RT_TABLE_DEFAULT, 0);
257 if (err < 0)
258 goto err2;
259
260 net->ipv4.mr_rules_ops = ops;
261 return 0;
262
263err2:
264 ipmr_free_table(mrt);
265err1:
266 fib_rules_unregister(ops);
267 return err;
268}
269
270static void __net_exit ipmr_rules_exit(struct net *net)
271{
272 struct mr_table *mrt, *next;
273
274 rtnl_lock();
275 list_for_each_entry_safe(mrt, next, &net->ipv4.mr_tables, list) {
276 list_del(&mrt->list);
277 ipmr_free_table(mrt);
278 }
279 fib_rules_unregister(net->ipv4.mr_rules_ops);
280 rtnl_unlock();
281}
282
283static int ipmr_rules_dump(struct net *net, struct notifier_block *nb,
284 struct netlink_ext_ack *extack)
285{
286 return fib_rules_dump(net, nb, RTNL_FAMILY_IPMR, extack);
287}
288
289static unsigned int ipmr_rules_seq_read(struct net *net)
290{
291 return fib_rules_seq_read(net, RTNL_FAMILY_IPMR);
292}
293
294bool ipmr_rule_default(const struct fib_rule *rule)
295{
296 return fib_rule_matchall(rule) && rule->table == RT_TABLE_DEFAULT;
297}
298EXPORT_SYMBOL(ipmr_rule_default);
299#else
300#define ipmr_for_each_table(mrt, net) \
301 for (mrt = net->ipv4.mrt; mrt; mrt = NULL)
302
303static struct mr_table *ipmr_mr_table_iter(struct net *net,
304 struct mr_table *mrt)
305{
306 if (!mrt)
307 return net->ipv4.mrt;
308 return NULL;
309}
310
311static struct mr_table *ipmr_get_table(struct net *net, u32 id)
312{
313 return net->ipv4.mrt;
314}
315
316static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
317 struct mr_table **mrt)
318{
319 *mrt = net->ipv4.mrt;
320 return 0;
321}
322
323static int __net_init ipmr_rules_init(struct net *net)
324{
325 struct mr_table *mrt;
326
327 mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
328 if (IS_ERR(mrt))
329 return PTR_ERR(mrt);
330 net->ipv4.mrt = mrt;
331 return 0;
332}
333
334static void __net_exit ipmr_rules_exit(struct net *net)
335{
336 rtnl_lock();
337 ipmr_free_table(net->ipv4.mrt);
338 net->ipv4.mrt = NULL;
339 rtnl_unlock();
340}
341
342static int ipmr_rules_dump(struct net *net, struct notifier_block *nb,
343 struct netlink_ext_ack *extack)
344{
345 return 0;
346}
347
348static unsigned int ipmr_rules_seq_read(struct net *net)
349{
350 return 0;
351}
352
353bool ipmr_rule_default(const struct fib_rule *rule)
354{
355 return true;
356}
357EXPORT_SYMBOL(ipmr_rule_default);
358#endif
359
360static inline int ipmr_hash_cmp(struct rhashtable_compare_arg *arg,
361 const void *ptr)
362{
363 const struct mfc_cache_cmp_arg *cmparg = arg->key;
364 struct mfc_cache *c = (struct mfc_cache *)ptr;
365
366 return cmparg->mfc_mcastgrp != c->mfc_mcastgrp ||
367 cmparg->mfc_origin != c->mfc_origin;
368}
369
370static const struct rhashtable_params ipmr_rht_params = {
371 .head_offset = offsetof(struct mr_mfc, mnode),
372 .key_offset = offsetof(struct mfc_cache, cmparg),
373 .key_len = sizeof(struct mfc_cache_cmp_arg),
374 .nelem_hint = 3,
375 .obj_cmpfn = ipmr_hash_cmp,
376 .automatic_shrinking = true,
377};
378
379static void ipmr_new_table_set(struct mr_table *mrt,
380 struct net *net)
381{
382#ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
383 list_add_tail_rcu(&mrt->list, &net->ipv4.mr_tables);
384#endif
385}
386
387static struct mfc_cache_cmp_arg ipmr_mr_table_ops_cmparg_any = {
388 .mfc_mcastgrp = htonl(INADDR_ANY),
389 .mfc_origin = htonl(INADDR_ANY),
390};
391
392static struct mr_table_ops ipmr_mr_table_ops = {
393 .rht_params = &ipmr_rht_params,
394 .cmparg_any = &ipmr_mr_table_ops_cmparg_any,
395};
396
397static struct mr_table *ipmr_new_table(struct net *net, u32 id)
398{
399 struct mr_table *mrt;
400
401 /* "pimreg%u" should not exceed 16 bytes (IFNAMSIZ) */
402 if (id != RT_TABLE_DEFAULT && id >= 1000000000)
403 return ERR_PTR(-EINVAL);
404
405 mrt = ipmr_get_table(net, id);
406 if (mrt)
407 return mrt;
408
409 return mr_table_alloc(net, id, &ipmr_mr_table_ops,
410 ipmr_expire_process, ipmr_new_table_set);
411}
412
413static void ipmr_free_table(struct mr_table *mrt)
414{
415 del_timer_sync(&mrt->ipmr_expire_timer);
416 mroute_clean_tables(mrt, MRT_FLUSH_VIFS | MRT_FLUSH_VIFS_STATIC |
417 MRT_FLUSH_MFC | MRT_FLUSH_MFC_STATIC);
418 rhltable_destroy(&mrt->mfc_hash);
419 kfree(mrt);
420}
421
422/* Service routines creating virtual interfaces: DVMRP tunnels and PIMREG */
423
424/* Initialize ipmr pimreg/tunnel in_device */
425static bool ipmr_init_vif_indev(const struct net_device *dev)
426{
427 struct in_device *in_dev;
428
429 ASSERT_RTNL();
430
431 in_dev = __in_dev_get_rtnl(dev);
432 if (!in_dev)
433 return false;
434 ipv4_devconf_setall(in_dev);
435 neigh_parms_data_state_setall(in_dev->arp_parms);
436 IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
437
438 return true;
439}
440
441static struct net_device *ipmr_new_tunnel(struct net *net, struct vifctl *v)
442{
443 struct net_device *tunnel_dev, *new_dev;
444 struct ip_tunnel_parm p = { };
445 int err;
446
447 tunnel_dev = __dev_get_by_name(net, "tunl0");
448 if (!tunnel_dev)
449 goto out;
450
451 p.iph.daddr = v->vifc_rmt_addr.s_addr;
452 p.iph.saddr = v->vifc_lcl_addr.s_addr;
453 p.iph.version = 4;
454 p.iph.ihl = 5;
455 p.iph.protocol = IPPROTO_IPIP;
456 sprintf(p.name, "dvmrp%d", v->vifc_vifi);
457
458 if (!tunnel_dev->netdev_ops->ndo_tunnel_ctl)
459 goto out;
460 err = tunnel_dev->netdev_ops->ndo_tunnel_ctl(tunnel_dev, &p,
461 SIOCADDTUNNEL);
462 if (err)
463 goto out;
464
465 new_dev = __dev_get_by_name(net, p.name);
466 if (!new_dev)
467 goto out;
468
469 new_dev->flags |= IFF_MULTICAST;
470 if (!ipmr_init_vif_indev(new_dev))
471 goto out_unregister;
472 if (dev_open(new_dev, NULL))
473 goto out_unregister;
474 dev_hold(new_dev);
475 err = dev_set_allmulti(new_dev, 1);
476 if (err) {
477 dev_close(new_dev);
478 tunnel_dev->netdev_ops->ndo_tunnel_ctl(tunnel_dev, &p,
479 SIOCDELTUNNEL);
480 dev_put(new_dev);
481 new_dev = ERR_PTR(err);
482 }
483 return new_dev;
484
485out_unregister:
486 unregister_netdevice(new_dev);
487out:
488 return ERR_PTR(-ENOBUFS);
489}
490
491#if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
492static netdev_tx_t reg_vif_xmit(struct sk_buff *skb, struct net_device *dev)
493{
494 struct net *net = dev_net(dev);
495 struct mr_table *mrt;
496 struct flowi4 fl4 = {
497 .flowi4_oif = dev->ifindex,
498 .flowi4_iif = skb->skb_iif ? : LOOPBACK_IFINDEX,
499 .flowi4_mark = skb->mark,
500 };
501 int err;
502
503 err = ipmr_fib_lookup(net, &fl4, &mrt);
504 if (err < 0) {
505 kfree_skb(skb);
506 return err;
507 }
508
509 read_lock(&mrt_lock);
510 dev->stats.tx_bytes += skb->len;
511 dev->stats.tx_packets++;
512 ipmr_cache_report(mrt, skb, mrt->mroute_reg_vif_num, IGMPMSG_WHOLEPKT);
513 read_unlock(&mrt_lock);
514 kfree_skb(skb);
515 return NETDEV_TX_OK;
516}
517
518static int reg_vif_get_iflink(const struct net_device *dev)
519{
520 return 0;
521}
522
523static const struct net_device_ops reg_vif_netdev_ops = {
524 .ndo_start_xmit = reg_vif_xmit,
525 .ndo_get_iflink = reg_vif_get_iflink,
526};
527
528static void reg_vif_setup(struct net_device *dev)
529{
530 dev->type = ARPHRD_PIMREG;
531 dev->mtu = ETH_DATA_LEN - sizeof(struct iphdr) - 8;
532 dev->flags = IFF_NOARP;
533 dev->netdev_ops = ®_vif_netdev_ops;
534 dev->needs_free_netdev = true;
535 dev->features |= NETIF_F_NETNS_LOCAL;
536}
537
538static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
539{
540 struct net_device *dev;
541 char name[IFNAMSIZ];
542
543 if (mrt->id == RT_TABLE_DEFAULT)
544 sprintf(name, "pimreg");
545 else
546 sprintf(name, "pimreg%u", mrt->id);
547
548 dev = alloc_netdev(0, name, NET_NAME_UNKNOWN, reg_vif_setup);
549
550 if (!dev)
551 return NULL;
552
553 dev_net_set(dev, net);
554
555 if (register_netdevice(dev)) {
556 free_netdev(dev);
557 return NULL;
558 }
559
560 if (!ipmr_init_vif_indev(dev))
561 goto failure;
562 if (dev_open(dev, NULL))
563 goto failure;
564
565 dev_hold(dev);
566
567 return dev;
568
569failure:
570 unregister_netdevice(dev);
571 return NULL;
572}
573
574/* called with rcu_read_lock() */
575static int __pim_rcv(struct mr_table *mrt, struct sk_buff *skb,
576 unsigned int pimlen)
577{
578 struct net_device *reg_dev = NULL;
579 struct iphdr *encap;
580
581 encap = (struct iphdr *)(skb_transport_header(skb) + pimlen);
582 /* Check that:
583 * a. packet is really sent to a multicast group
584 * b. packet is not a NULL-REGISTER
585 * c. packet is not truncated
586 */
587 if (!ipv4_is_multicast(encap->daddr) ||
588 encap->tot_len == 0 ||
589 ntohs(encap->tot_len) + pimlen > skb->len)
590 return 1;
591
592 read_lock(&mrt_lock);
593 if (mrt->mroute_reg_vif_num >= 0)
594 reg_dev = mrt->vif_table[mrt->mroute_reg_vif_num].dev;
595 read_unlock(&mrt_lock);
596
597 if (!reg_dev)
598 return 1;
599
600 skb->mac_header = skb->network_header;
601 skb_pull(skb, (u8 *)encap - skb->data);
602 skb_reset_network_header(skb);
603 skb->protocol = htons(ETH_P_IP);
604 skb->ip_summed = CHECKSUM_NONE;
605
606 skb_tunnel_rx(skb, reg_dev, dev_net(reg_dev));
607
608 netif_rx(skb);
609
610 return NET_RX_SUCCESS;
611}
612#else
613static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
614{
615 return NULL;
616}
617#endif
618
619static int call_ipmr_vif_entry_notifiers(struct net *net,
620 enum fib_event_type event_type,
621 struct vif_device *vif,
622 vifi_t vif_index, u32 tb_id)
623{
624 return mr_call_vif_notifiers(net, RTNL_FAMILY_IPMR, event_type,
625 vif, vif_index, tb_id,
626 &net->ipv4.ipmr_seq);
627}
628
629static int call_ipmr_mfc_entry_notifiers(struct net *net,
630 enum fib_event_type event_type,
631 struct mfc_cache *mfc, u32 tb_id)
632{
633 return mr_call_mfc_notifiers(net, RTNL_FAMILY_IPMR, event_type,
634 &mfc->_c, tb_id, &net->ipv4.ipmr_seq);
635}
636
637/**
638 * vif_delete - Delete a VIF entry
639 * @mrt: Table to delete from
640 * @vifi: VIF identifier to delete
641 * @notify: Set to 1, if the caller is a notifier_call
642 * @head: if unregistering the VIF, place it on this queue
643 */
644static int vif_delete(struct mr_table *mrt, int vifi, int notify,
645 struct list_head *head)
646{
647 struct net *net = read_pnet(&mrt->net);
648 struct vif_device *v;
649 struct net_device *dev;
650 struct in_device *in_dev;
651
652 if (vifi < 0 || vifi >= mrt->maxvif)
653 return -EADDRNOTAVAIL;
654
655 v = &mrt->vif_table[vifi];
656
657 if (VIF_EXISTS(mrt, vifi))
658 call_ipmr_vif_entry_notifiers(net, FIB_EVENT_VIF_DEL, v, vifi,
659 mrt->id);
660
661 write_lock_bh(&mrt_lock);
662 dev = v->dev;
663 v->dev = NULL;
664
665 if (!dev) {
666 write_unlock_bh(&mrt_lock);
667 return -EADDRNOTAVAIL;
668 }
669
670 if (vifi == mrt->mroute_reg_vif_num)
671 mrt->mroute_reg_vif_num = -1;
672
673 if (vifi + 1 == mrt->maxvif) {
674 int tmp;
675
676 for (tmp = vifi - 1; tmp >= 0; tmp--) {
677 if (VIF_EXISTS(mrt, tmp))
678 break;
679 }
680 mrt->maxvif = tmp+1;
681 }
682
683 write_unlock_bh(&mrt_lock);
684
685 dev_set_allmulti(dev, -1);
686
687 in_dev = __in_dev_get_rtnl(dev);
688 if (in_dev) {
689 IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)--;
690 inet_netconf_notify_devconf(dev_net(dev), RTM_NEWNETCONF,
691 NETCONFA_MC_FORWARDING,
692 dev->ifindex, &in_dev->cnf);
693 ip_rt_multicast_event(in_dev);
694 }
695
696 if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER) && !notify)
697 unregister_netdevice_queue(dev, head);
698
699 dev_put(dev);
700 return 0;
701}
702
703static void ipmr_cache_free_rcu(struct rcu_head *head)
704{
705 struct mr_mfc *c = container_of(head, struct mr_mfc, rcu);
706
707 kmem_cache_free(mrt_cachep, (struct mfc_cache *)c);
708}
709
710static void ipmr_cache_free(struct mfc_cache *c)
711{
712 call_rcu(&c->_c.rcu, ipmr_cache_free_rcu);
713}
714
715/* Destroy an unresolved cache entry, killing queued skbs
716 * and reporting error to netlink readers.
717 */
718static void ipmr_destroy_unres(struct mr_table *mrt, struct mfc_cache *c)
719{
720 struct net *net = read_pnet(&mrt->net);
721 struct sk_buff *skb;
722 struct nlmsgerr *e;
723
724 atomic_dec(&mrt->cache_resolve_queue_len);
725
726 while ((skb = skb_dequeue(&c->_c.mfc_un.unres.unresolved))) {
727 if (ip_hdr(skb)->version == 0) {
728 struct nlmsghdr *nlh = skb_pull(skb,
729 sizeof(struct iphdr));
730 nlh->nlmsg_type = NLMSG_ERROR;
731 nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
732 skb_trim(skb, nlh->nlmsg_len);
733 e = nlmsg_data(nlh);
734 e->error = -ETIMEDOUT;
735 memset(&e->msg, 0, sizeof(e->msg));
736
737 rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
738 } else {
739 kfree_skb(skb);
740 }
741 }
742
743 ipmr_cache_free(c);
744}
745
746/* Timer process for the unresolved queue. */
747static void ipmr_expire_process(struct timer_list *t)
748{
749 struct mr_table *mrt = from_timer(mrt, t, ipmr_expire_timer);
750 struct mr_mfc *c, *next;
751 unsigned long expires;
752 unsigned long now;
753
754 if (!spin_trylock(&mfc_unres_lock)) {
755 mod_timer(&mrt->ipmr_expire_timer, jiffies+HZ/10);
756 return;
757 }
758
759 if (list_empty(&mrt->mfc_unres_queue))
760 goto out;
761
762 now = jiffies;
763 expires = 10*HZ;
764
765 list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
766 if (time_after(c->mfc_un.unres.expires, now)) {
767 unsigned long interval = c->mfc_un.unres.expires - now;
768 if (interval < expires)
769 expires = interval;
770 continue;
771 }
772
773 list_del(&c->list);
774 mroute_netlink_event(mrt, (struct mfc_cache *)c, RTM_DELROUTE);
775 ipmr_destroy_unres(mrt, (struct mfc_cache *)c);
776 }
777
778 if (!list_empty(&mrt->mfc_unres_queue))
779 mod_timer(&mrt->ipmr_expire_timer, jiffies + expires);
780
781out:
782 spin_unlock(&mfc_unres_lock);
783}
784
785/* Fill oifs list. It is called under write locked mrt_lock. */
786static void ipmr_update_thresholds(struct mr_table *mrt, struct mr_mfc *cache,
787 unsigned char *ttls)
788{
789 int vifi;
790
791 cache->mfc_un.res.minvif = MAXVIFS;
792 cache->mfc_un.res.maxvif = 0;
793 memset(cache->mfc_un.res.ttls, 255, MAXVIFS);
794
795 for (vifi = 0; vifi < mrt->maxvif; vifi++) {
796 if (VIF_EXISTS(mrt, vifi) &&
797 ttls[vifi] && ttls[vifi] < 255) {
798 cache->mfc_un.res.ttls[vifi] = ttls[vifi];
799 if (cache->mfc_un.res.minvif > vifi)
800 cache->mfc_un.res.minvif = vifi;
801 if (cache->mfc_un.res.maxvif <= vifi)
802 cache->mfc_un.res.maxvif = vifi + 1;
803 }
804 }
805 cache->mfc_un.res.lastuse = jiffies;
806}
807
808static int vif_add(struct net *net, struct mr_table *mrt,
809 struct vifctl *vifc, int mrtsock)
810{
811 struct netdev_phys_item_id ppid = { };
812 int vifi = vifc->vifc_vifi;
813 struct vif_device *v = &mrt->vif_table[vifi];
814 struct net_device *dev;
815 struct in_device *in_dev;
816 int err;
817
818 /* Is vif busy ? */
819 if (VIF_EXISTS(mrt, vifi))
820 return -EADDRINUSE;
821
822 switch (vifc->vifc_flags) {
823 case VIFF_REGISTER:
824 if (!ipmr_pimsm_enabled())
825 return -EINVAL;
826 /* Special Purpose VIF in PIM
827 * All the packets will be sent to the daemon
828 */
829 if (mrt->mroute_reg_vif_num >= 0)
830 return -EADDRINUSE;
831 dev = ipmr_reg_vif(net, mrt);
832 if (!dev)
833 return -ENOBUFS;
834 err = dev_set_allmulti(dev, 1);
835 if (err) {
836 unregister_netdevice(dev);
837 dev_put(dev);
838 return err;
839 }
840 break;
841 case VIFF_TUNNEL:
842 dev = ipmr_new_tunnel(net, vifc);
843 if (IS_ERR(dev))
844 return PTR_ERR(dev);
845 break;
846 case VIFF_USE_IFINDEX:
847 case 0:
848 if (vifc->vifc_flags == VIFF_USE_IFINDEX) {
849 dev = dev_get_by_index(net, vifc->vifc_lcl_ifindex);
850 if (dev && !__in_dev_get_rtnl(dev)) {
851 dev_put(dev);
852 return -EADDRNOTAVAIL;
853 }
854 } else {
855 dev = ip_dev_find(net, vifc->vifc_lcl_addr.s_addr);
856 }
857 if (!dev)
858 return -EADDRNOTAVAIL;
859 err = dev_set_allmulti(dev, 1);
860 if (err) {
861 dev_put(dev);
862 return err;
863 }
864 break;
865 default:
866 return -EINVAL;
867 }
868
869 in_dev = __in_dev_get_rtnl(dev);
870 if (!in_dev) {
871 dev_put(dev);
872 return -EADDRNOTAVAIL;
873 }
874 IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)++;
875 inet_netconf_notify_devconf(net, RTM_NEWNETCONF, NETCONFA_MC_FORWARDING,
876 dev->ifindex, &in_dev->cnf);
877 ip_rt_multicast_event(in_dev);
878
879 /* Fill in the VIF structures */
880 vif_device_init(v, dev, vifc->vifc_rate_limit,
881 vifc->vifc_threshold,
882 vifc->vifc_flags | (!mrtsock ? VIFF_STATIC : 0),
883 (VIFF_TUNNEL | VIFF_REGISTER));
884
885 err = dev_get_port_parent_id(dev, &ppid, true);
886 if (err == 0) {
887 memcpy(v->dev_parent_id.id, ppid.id, ppid.id_len);
888 v->dev_parent_id.id_len = ppid.id_len;
889 } else {
890 v->dev_parent_id.id_len = 0;
891 }
892
893 v->local = vifc->vifc_lcl_addr.s_addr;
894 v->remote = vifc->vifc_rmt_addr.s_addr;
895
896 /* And finish update writing critical data */
897 write_lock_bh(&mrt_lock);
898 v->dev = dev;
899 if (v->flags & VIFF_REGISTER)
900 mrt->mroute_reg_vif_num = vifi;
901 if (vifi+1 > mrt->maxvif)
902 mrt->maxvif = vifi+1;
903 write_unlock_bh(&mrt_lock);
904 call_ipmr_vif_entry_notifiers(net, FIB_EVENT_VIF_ADD, v, vifi, mrt->id);
905 return 0;
906}
907
908/* called with rcu_read_lock() */
909static struct mfc_cache *ipmr_cache_find(struct mr_table *mrt,
910 __be32 origin,
911 __be32 mcastgrp)
912{
913 struct mfc_cache_cmp_arg arg = {
914 .mfc_mcastgrp = mcastgrp,
915 .mfc_origin = origin
916 };
917
918 return mr_mfc_find(mrt, &arg);
919}
920
921/* Look for a (*,G) entry */
922static struct mfc_cache *ipmr_cache_find_any(struct mr_table *mrt,
923 __be32 mcastgrp, int vifi)
924{
925 struct mfc_cache_cmp_arg arg = {
926 .mfc_mcastgrp = mcastgrp,
927 .mfc_origin = htonl(INADDR_ANY)
928 };
929
930 if (mcastgrp == htonl(INADDR_ANY))
931 return mr_mfc_find_any_parent(mrt, vifi);
932 return mr_mfc_find_any(mrt, vifi, &arg);
933}
934
935/* Look for a (S,G,iif) entry if parent != -1 */
936static struct mfc_cache *ipmr_cache_find_parent(struct mr_table *mrt,
937 __be32 origin, __be32 mcastgrp,
938 int parent)
939{
940 struct mfc_cache_cmp_arg arg = {
941 .mfc_mcastgrp = mcastgrp,
942 .mfc_origin = origin,
943 };
944
945 return mr_mfc_find_parent(mrt, &arg, parent);
946}
947
948/* Allocate a multicast cache entry */
949static struct mfc_cache *ipmr_cache_alloc(void)
950{
951 struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_KERNEL);
952
953 if (c) {
954 c->_c.mfc_un.res.last_assert = jiffies - MFC_ASSERT_THRESH - 1;
955 c->_c.mfc_un.res.minvif = MAXVIFS;
956 c->_c.free = ipmr_cache_free_rcu;
957 refcount_set(&c->_c.mfc_un.res.refcount, 1);
958 }
959 return c;
960}
961
962static struct mfc_cache *ipmr_cache_alloc_unres(void)
963{
964 struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC);
965
966 if (c) {
967 skb_queue_head_init(&c->_c.mfc_un.unres.unresolved);
968 c->_c.mfc_un.unres.expires = jiffies + 10 * HZ;
969 }
970 return c;
971}
972
973/* A cache entry has gone into a resolved state from queued */
974static void ipmr_cache_resolve(struct net *net, struct mr_table *mrt,
975 struct mfc_cache *uc, struct mfc_cache *c)
976{
977 struct sk_buff *skb;
978 struct nlmsgerr *e;
979
980 /* Play the pending entries through our router */
981 while ((skb = __skb_dequeue(&uc->_c.mfc_un.unres.unresolved))) {
982 if (ip_hdr(skb)->version == 0) {
983 struct nlmsghdr *nlh = skb_pull(skb,
984 sizeof(struct iphdr));
985
986 if (mr_fill_mroute(mrt, skb, &c->_c,
987 nlmsg_data(nlh)) > 0) {
988 nlh->nlmsg_len = skb_tail_pointer(skb) -
989 (u8 *)nlh;
990 } else {
991 nlh->nlmsg_type = NLMSG_ERROR;
992 nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
993 skb_trim(skb, nlh->nlmsg_len);
994 e = nlmsg_data(nlh);
995 e->error = -EMSGSIZE;
996 memset(&e->msg, 0, sizeof(e->msg));
997 }
998
999 rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
1000 } else {
1001 ip_mr_forward(net, mrt, skb->dev, skb, c, 0);
1002 }
1003 }
1004}
1005
1006/* Bounce a cache query up to mrouted and netlink.
1007 *
1008 * Called under mrt_lock.
1009 */
1010static int ipmr_cache_report(struct mr_table *mrt,
1011 struct sk_buff *pkt, vifi_t vifi, int assert)
1012{
1013 const int ihl = ip_hdrlen(pkt);
1014 struct sock *mroute_sk;
1015 struct igmphdr *igmp;
1016 struct igmpmsg *msg;
1017 struct sk_buff *skb;
1018 int ret;
1019
1020 if (assert == IGMPMSG_WHOLEPKT || assert == IGMPMSG_WRVIFWHOLE)
1021 skb = skb_realloc_headroom(pkt, sizeof(struct iphdr));
1022 else
1023 skb = alloc_skb(128, GFP_ATOMIC);
1024
1025 if (!skb)
1026 return -ENOBUFS;
1027
1028 if (assert == IGMPMSG_WHOLEPKT || assert == IGMPMSG_WRVIFWHOLE) {
1029 /* Ugly, but we have no choice with this interface.
1030 * Duplicate old header, fix ihl, length etc.
1031 * And all this only to mangle msg->im_msgtype and
1032 * to set msg->im_mbz to "mbz" :-)
1033 */
1034 skb_push(skb, sizeof(struct iphdr));
1035 skb_reset_network_header(skb);
1036 skb_reset_transport_header(skb);
1037 msg = (struct igmpmsg *)skb_network_header(skb);
1038 memcpy(msg, skb_network_header(pkt), sizeof(struct iphdr));
1039 msg->im_msgtype = assert;
1040 msg->im_mbz = 0;
1041 if (assert == IGMPMSG_WRVIFWHOLE)
1042 msg->im_vif = vifi;
1043 else
1044 msg->im_vif = mrt->mroute_reg_vif_num;
1045 ip_hdr(skb)->ihl = sizeof(struct iphdr) >> 2;
1046 ip_hdr(skb)->tot_len = htons(ntohs(ip_hdr(pkt)->tot_len) +
1047 sizeof(struct iphdr));
1048 } else {
1049 /* Copy the IP header */
1050 skb_set_network_header(skb, skb->len);
1051 skb_put(skb, ihl);
1052 skb_copy_to_linear_data(skb, pkt->data, ihl);
1053 /* Flag to the kernel this is a route add */
1054 ip_hdr(skb)->protocol = 0;
1055 msg = (struct igmpmsg *)skb_network_header(skb);
1056 msg->im_vif = vifi;
1057 skb_dst_set(skb, dst_clone(skb_dst(pkt)));
1058 /* Add our header */
1059 igmp = skb_put(skb, sizeof(struct igmphdr));
1060 igmp->type = assert;
1061 msg->im_msgtype = assert;
1062 igmp->code = 0;
1063 ip_hdr(skb)->tot_len = htons(skb->len); /* Fix the length */
1064 skb->transport_header = skb->network_header;
1065 }
1066
1067 rcu_read_lock();
1068 mroute_sk = rcu_dereference(mrt->mroute_sk);
1069 if (!mroute_sk) {
1070 rcu_read_unlock();
1071 kfree_skb(skb);
1072 return -EINVAL;
1073 }
1074
1075 igmpmsg_netlink_event(mrt, skb);
1076
1077 /* Deliver to mrouted */
1078 ret = sock_queue_rcv_skb(mroute_sk, skb);
1079 rcu_read_unlock();
1080 if (ret < 0) {
1081 net_warn_ratelimited("mroute: pending queue full, dropping entries\n");
1082 kfree_skb(skb);
1083 }
1084
1085 return ret;
1086}
1087
1088/* Queue a packet for resolution. It gets locked cache entry! */
1089static int ipmr_cache_unresolved(struct mr_table *mrt, vifi_t vifi,
1090 struct sk_buff *skb, struct net_device *dev)
1091{
1092 const struct iphdr *iph = ip_hdr(skb);
1093 struct mfc_cache *c;
1094 bool found = false;
1095 int err;
1096
1097 spin_lock_bh(&mfc_unres_lock);
1098 list_for_each_entry(c, &mrt->mfc_unres_queue, _c.list) {
1099 if (c->mfc_mcastgrp == iph->daddr &&
1100 c->mfc_origin == iph->saddr) {
1101 found = true;
1102 break;
1103 }
1104 }
1105
1106 if (!found) {
1107 /* Create a new entry if allowable */
1108 c = ipmr_cache_alloc_unres();
1109 if (!c) {
1110 spin_unlock_bh(&mfc_unres_lock);
1111
1112 kfree_skb(skb);
1113 return -ENOBUFS;
1114 }
1115
1116 /* Fill in the new cache entry */
1117 c->_c.mfc_parent = -1;
1118 c->mfc_origin = iph->saddr;
1119 c->mfc_mcastgrp = iph->daddr;
1120
1121 /* Reflect first query at mrouted. */
1122 err = ipmr_cache_report(mrt, skb, vifi, IGMPMSG_NOCACHE);
1123
1124 if (err < 0) {
1125 /* If the report failed throw the cache entry
1126 out - Brad Parker
1127 */
1128 spin_unlock_bh(&mfc_unres_lock);
1129
1130 ipmr_cache_free(c);
1131 kfree_skb(skb);
1132 return err;
1133 }
1134
1135 atomic_inc(&mrt->cache_resolve_queue_len);
1136 list_add(&c->_c.list, &mrt->mfc_unres_queue);
1137 mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1138
1139 if (atomic_read(&mrt->cache_resolve_queue_len) == 1)
1140 mod_timer(&mrt->ipmr_expire_timer,
1141 c->_c.mfc_un.unres.expires);
1142 }
1143
1144 /* See if we can append the packet */
1145 if (c->_c.mfc_un.unres.unresolved.qlen > 3) {
1146 kfree_skb(skb);
1147 err = -ENOBUFS;
1148 } else {
1149 if (dev) {
1150 skb->dev = dev;
1151 skb->skb_iif = dev->ifindex;
1152 }
1153 skb_queue_tail(&c->_c.mfc_un.unres.unresolved, skb);
1154 err = 0;
1155 }
1156
1157 spin_unlock_bh(&mfc_unres_lock);
1158 return err;
1159}
1160
1161/* MFC cache manipulation by user space mroute daemon */
1162
1163static int ipmr_mfc_delete(struct mr_table *mrt, struct mfcctl *mfc, int parent)
1164{
1165 struct net *net = read_pnet(&mrt->net);
1166 struct mfc_cache *c;
1167
1168 /* The entries are added/deleted only under RTNL */
1169 rcu_read_lock();
1170 c = ipmr_cache_find_parent(mrt, mfc->mfcc_origin.s_addr,
1171 mfc->mfcc_mcastgrp.s_addr, parent);
1172 rcu_read_unlock();
1173 if (!c)
1174 return -ENOENT;
1175 rhltable_remove(&mrt->mfc_hash, &c->_c.mnode, ipmr_rht_params);
1176 list_del_rcu(&c->_c.list);
1177 call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, c, mrt->id);
1178 mroute_netlink_event(mrt, c, RTM_DELROUTE);
1179 mr_cache_put(&c->_c);
1180
1181 return 0;
1182}
1183
1184static int ipmr_mfc_add(struct net *net, struct mr_table *mrt,
1185 struct mfcctl *mfc, int mrtsock, int parent)
1186{
1187 struct mfc_cache *uc, *c;
1188 struct mr_mfc *_uc;
1189 bool found;
1190 int ret;
1191
1192 if (mfc->mfcc_parent >= MAXVIFS)
1193 return -ENFILE;
1194
1195 /* The entries are added/deleted only under RTNL */
1196 rcu_read_lock();
1197 c = ipmr_cache_find_parent(mrt, mfc->mfcc_origin.s_addr,
1198 mfc->mfcc_mcastgrp.s_addr, parent);
1199 rcu_read_unlock();
1200 if (c) {
1201 write_lock_bh(&mrt_lock);
1202 c->_c.mfc_parent = mfc->mfcc_parent;
1203 ipmr_update_thresholds(mrt, &c->_c, mfc->mfcc_ttls);
1204 if (!mrtsock)
1205 c->_c.mfc_flags |= MFC_STATIC;
1206 write_unlock_bh(&mrt_lock);
1207 call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_REPLACE, c,
1208 mrt->id);
1209 mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1210 return 0;
1211 }
1212
1213 if (mfc->mfcc_mcastgrp.s_addr != htonl(INADDR_ANY) &&
1214 !ipv4_is_multicast(mfc->mfcc_mcastgrp.s_addr))
1215 return -EINVAL;
1216
1217 c = ipmr_cache_alloc();
1218 if (!c)
1219 return -ENOMEM;
1220
1221 c->mfc_origin = mfc->mfcc_origin.s_addr;
1222 c->mfc_mcastgrp = mfc->mfcc_mcastgrp.s_addr;
1223 c->_c.mfc_parent = mfc->mfcc_parent;
1224 ipmr_update_thresholds(mrt, &c->_c, mfc->mfcc_ttls);
1225 if (!mrtsock)
1226 c->_c.mfc_flags |= MFC_STATIC;
1227
1228 ret = rhltable_insert_key(&mrt->mfc_hash, &c->cmparg, &c->_c.mnode,
1229 ipmr_rht_params);
1230 if (ret) {
1231 pr_err("ipmr: rhtable insert error %d\n", ret);
1232 ipmr_cache_free(c);
1233 return ret;
1234 }
1235 list_add_tail_rcu(&c->_c.list, &mrt->mfc_cache_list);
1236 /* Check to see if we resolved a queued list. If so we
1237 * need to send on the frames and tidy up.
1238 */
1239 found = false;
1240 spin_lock_bh(&mfc_unres_lock);
1241 list_for_each_entry(_uc, &mrt->mfc_unres_queue, list) {
1242 uc = (struct mfc_cache *)_uc;
1243 if (uc->mfc_origin == c->mfc_origin &&
1244 uc->mfc_mcastgrp == c->mfc_mcastgrp) {
1245 list_del(&_uc->list);
1246 atomic_dec(&mrt->cache_resolve_queue_len);
1247 found = true;
1248 break;
1249 }
1250 }
1251 if (list_empty(&mrt->mfc_unres_queue))
1252 del_timer(&mrt->ipmr_expire_timer);
1253 spin_unlock_bh(&mfc_unres_lock);
1254
1255 if (found) {
1256 ipmr_cache_resolve(net, mrt, uc, c);
1257 ipmr_cache_free(uc);
1258 }
1259 call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_ADD, c, mrt->id);
1260 mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1261 return 0;
1262}
1263
1264/* Close the multicast socket, and clear the vif tables etc */
1265static void mroute_clean_tables(struct mr_table *mrt, int flags)
1266{
1267 struct net *net = read_pnet(&mrt->net);
1268 struct mr_mfc *c, *tmp;
1269 struct mfc_cache *cache;
1270 LIST_HEAD(list);
1271 int i;
1272
1273 /* Shut down all active vif entries */
1274 if (flags & (MRT_FLUSH_VIFS | MRT_FLUSH_VIFS_STATIC)) {
1275 for (i = 0; i < mrt->maxvif; i++) {
1276 if (((mrt->vif_table[i].flags & VIFF_STATIC) &&
1277 !(flags & MRT_FLUSH_VIFS_STATIC)) ||
1278 (!(mrt->vif_table[i].flags & VIFF_STATIC) && !(flags & MRT_FLUSH_VIFS)))
1279 continue;
1280 vif_delete(mrt, i, 0, &list);
1281 }
1282 unregister_netdevice_many(&list);
1283 }
1284
1285 /* Wipe the cache */
1286 if (flags & (MRT_FLUSH_MFC | MRT_FLUSH_MFC_STATIC)) {
1287 list_for_each_entry_safe(c, tmp, &mrt->mfc_cache_list, list) {
1288 if (((c->mfc_flags & MFC_STATIC) && !(flags & MRT_FLUSH_MFC_STATIC)) ||
1289 (!(c->mfc_flags & MFC_STATIC) && !(flags & MRT_FLUSH_MFC)))
1290 continue;
1291 rhltable_remove(&mrt->mfc_hash, &c->mnode, ipmr_rht_params);
1292 list_del_rcu(&c->list);
1293 cache = (struct mfc_cache *)c;
1294 call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, cache,
1295 mrt->id);
1296 mroute_netlink_event(mrt, cache, RTM_DELROUTE);
1297 mr_cache_put(c);
1298 }
1299 }
1300
1301 if (flags & MRT_FLUSH_MFC) {
1302 if (atomic_read(&mrt->cache_resolve_queue_len) != 0) {
1303 spin_lock_bh(&mfc_unres_lock);
1304 list_for_each_entry_safe(c, tmp, &mrt->mfc_unres_queue, list) {
1305 list_del(&c->list);
1306 cache = (struct mfc_cache *)c;
1307 mroute_netlink_event(mrt, cache, RTM_DELROUTE);
1308 ipmr_destroy_unres(mrt, cache);
1309 }
1310 spin_unlock_bh(&mfc_unres_lock);
1311 }
1312 }
1313}
1314
1315/* called from ip_ra_control(), before an RCU grace period,
1316 * we dont need to call synchronize_rcu() here
1317 */
1318static void mrtsock_destruct(struct sock *sk)
1319{
1320 struct net *net = sock_net(sk);
1321 struct mr_table *mrt;
1322
1323 rtnl_lock();
1324 ipmr_for_each_table(mrt, net) {
1325 if (sk == rtnl_dereference(mrt->mroute_sk)) {
1326 IPV4_DEVCONF_ALL(net, MC_FORWARDING)--;
1327 inet_netconf_notify_devconf(net, RTM_NEWNETCONF,
1328 NETCONFA_MC_FORWARDING,
1329 NETCONFA_IFINDEX_ALL,
1330 net->ipv4.devconf_all);
1331 RCU_INIT_POINTER(mrt->mroute_sk, NULL);
1332 mroute_clean_tables(mrt, MRT_FLUSH_VIFS | MRT_FLUSH_MFC);
1333 }
1334 }
1335 rtnl_unlock();
1336}
1337
1338/* Socket options and virtual interface manipulation. The whole
1339 * virtual interface system is a complete heap, but unfortunately
1340 * that's how BSD mrouted happens to think. Maybe one day with a proper
1341 * MOSPF/PIM router set up we can clean this up.
1342 */
1343
1344int ip_mroute_setsockopt(struct sock *sk, int optname, sockptr_t optval,
1345 unsigned int optlen)
1346{
1347 struct net *net = sock_net(sk);
1348 int val, ret = 0, parent = 0;
1349 struct mr_table *mrt;
1350 struct vifctl vif;
1351 struct mfcctl mfc;
1352 bool do_wrvifwhole;
1353 u32 uval;
1354
1355 /* There's one exception to the lock - MRT_DONE which needs to unlock */
1356 rtnl_lock();
1357 if (sk->sk_type != SOCK_RAW ||
1358 inet_sk(sk)->inet_num != IPPROTO_IGMP) {
1359 ret = -EOPNOTSUPP;
1360 goto out_unlock;
1361 }
1362
1363 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1364 if (!mrt) {
1365 ret = -ENOENT;
1366 goto out_unlock;
1367 }
1368 if (optname != MRT_INIT) {
1369 if (sk != rcu_access_pointer(mrt->mroute_sk) &&
1370 !ns_capable(net->user_ns, CAP_NET_ADMIN)) {
1371 ret = -EACCES;
1372 goto out_unlock;
1373 }
1374 }
1375
1376 switch (optname) {
1377 case MRT_INIT:
1378 if (optlen != sizeof(int)) {
1379 ret = -EINVAL;
1380 break;
1381 }
1382 if (rtnl_dereference(mrt->mroute_sk)) {
1383 ret = -EADDRINUSE;
1384 break;
1385 }
1386
1387 ret = ip_ra_control(sk, 1, mrtsock_destruct);
1388 if (ret == 0) {
1389 rcu_assign_pointer(mrt->mroute_sk, sk);
1390 IPV4_DEVCONF_ALL(net, MC_FORWARDING)++;
1391 inet_netconf_notify_devconf(net, RTM_NEWNETCONF,
1392 NETCONFA_MC_FORWARDING,
1393 NETCONFA_IFINDEX_ALL,
1394 net->ipv4.devconf_all);
1395 }
1396 break;
1397 case MRT_DONE:
1398 if (sk != rcu_access_pointer(mrt->mroute_sk)) {
1399 ret = -EACCES;
1400 } else {
1401 /* We need to unlock here because mrtsock_destruct takes
1402 * care of rtnl itself and we can't change that due to
1403 * the IP_ROUTER_ALERT setsockopt which runs without it.
1404 */
1405 rtnl_unlock();
1406 ret = ip_ra_control(sk, 0, NULL);
1407 goto out;
1408 }
1409 break;
1410 case MRT_ADD_VIF:
1411 case MRT_DEL_VIF:
1412 if (optlen != sizeof(vif)) {
1413 ret = -EINVAL;
1414 break;
1415 }
1416 if (copy_from_sockptr(&vif, optval, sizeof(vif))) {
1417 ret = -EFAULT;
1418 break;
1419 }
1420 if (vif.vifc_vifi >= MAXVIFS) {
1421 ret = -ENFILE;
1422 break;
1423 }
1424 if (optname == MRT_ADD_VIF) {
1425 ret = vif_add(net, mrt, &vif,
1426 sk == rtnl_dereference(mrt->mroute_sk));
1427 } else {
1428 ret = vif_delete(mrt, vif.vifc_vifi, 0, NULL);
1429 }
1430 break;
1431 /* Manipulate the forwarding caches. These live
1432 * in a sort of kernel/user symbiosis.
1433 */
1434 case MRT_ADD_MFC:
1435 case MRT_DEL_MFC:
1436 parent = -1;
1437 fallthrough;
1438 case MRT_ADD_MFC_PROXY:
1439 case MRT_DEL_MFC_PROXY:
1440 if (optlen != sizeof(mfc)) {
1441 ret = -EINVAL;
1442 break;
1443 }
1444 if (copy_from_sockptr(&mfc, optval, sizeof(mfc))) {
1445 ret = -EFAULT;
1446 break;
1447 }
1448 if (parent == 0)
1449 parent = mfc.mfcc_parent;
1450 if (optname == MRT_DEL_MFC || optname == MRT_DEL_MFC_PROXY)
1451 ret = ipmr_mfc_delete(mrt, &mfc, parent);
1452 else
1453 ret = ipmr_mfc_add(net, mrt, &mfc,
1454 sk == rtnl_dereference(mrt->mroute_sk),
1455 parent);
1456 break;
1457 case MRT_FLUSH:
1458 if (optlen != sizeof(val)) {
1459 ret = -EINVAL;
1460 break;
1461 }
1462 if (copy_from_sockptr(&val, optval, sizeof(val))) {
1463 ret = -EFAULT;
1464 break;
1465 }
1466 mroute_clean_tables(mrt, val);
1467 break;
1468 /* Control PIM assert. */
1469 case MRT_ASSERT:
1470 if (optlen != sizeof(val)) {
1471 ret = -EINVAL;
1472 break;
1473 }
1474 if (copy_from_sockptr(&val, optval, sizeof(val))) {
1475 ret = -EFAULT;
1476 break;
1477 }
1478 mrt->mroute_do_assert = val;
1479 break;
1480 case MRT_PIM:
1481 if (!ipmr_pimsm_enabled()) {
1482 ret = -ENOPROTOOPT;
1483 break;
1484 }
1485 if (optlen != sizeof(val)) {
1486 ret = -EINVAL;
1487 break;
1488 }
1489 if (copy_from_sockptr(&val, optval, sizeof(val))) {
1490 ret = -EFAULT;
1491 break;
1492 }
1493
1494 do_wrvifwhole = (val == IGMPMSG_WRVIFWHOLE);
1495 val = !!val;
1496 if (val != mrt->mroute_do_pim) {
1497 mrt->mroute_do_pim = val;
1498 mrt->mroute_do_assert = val;
1499 mrt->mroute_do_wrvifwhole = do_wrvifwhole;
1500 }
1501 break;
1502 case MRT_TABLE:
1503 if (!IS_BUILTIN(CONFIG_IP_MROUTE_MULTIPLE_TABLES)) {
1504 ret = -ENOPROTOOPT;
1505 break;
1506 }
1507 if (optlen != sizeof(uval)) {
1508 ret = -EINVAL;
1509 break;
1510 }
1511 if (copy_from_sockptr(&uval, optval, sizeof(uval))) {
1512 ret = -EFAULT;
1513 break;
1514 }
1515
1516 if (sk == rtnl_dereference(mrt->mroute_sk)) {
1517 ret = -EBUSY;
1518 } else {
1519 mrt = ipmr_new_table(net, uval);
1520 if (IS_ERR(mrt))
1521 ret = PTR_ERR(mrt);
1522 else
1523 raw_sk(sk)->ipmr_table = uval;
1524 }
1525 break;
1526 /* Spurious command, or MRT_VERSION which you cannot set. */
1527 default:
1528 ret = -ENOPROTOOPT;
1529 }
1530out_unlock:
1531 rtnl_unlock();
1532out:
1533 return ret;
1534}
1535
1536/* Getsock opt support for the multicast routing system. */
1537int ip_mroute_getsockopt(struct sock *sk, int optname, char __user *optval, int __user *optlen)
1538{
1539 int olr;
1540 int val;
1541 struct net *net = sock_net(sk);
1542 struct mr_table *mrt;
1543
1544 if (sk->sk_type != SOCK_RAW ||
1545 inet_sk(sk)->inet_num != IPPROTO_IGMP)
1546 return -EOPNOTSUPP;
1547
1548 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1549 if (!mrt)
1550 return -ENOENT;
1551
1552 switch (optname) {
1553 case MRT_VERSION:
1554 val = 0x0305;
1555 break;
1556 case MRT_PIM:
1557 if (!ipmr_pimsm_enabled())
1558 return -ENOPROTOOPT;
1559 val = mrt->mroute_do_pim;
1560 break;
1561 case MRT_ASSERT:
1562 val = mrt->mroute_do_assert;
1563 break;
1564 default:
1565 return -ENOPROTOOPT;
1566 }
1567
1568 if (get_user(olr, optlen))
1569 return -EFAULT;
1570 olr = min_t(unsigned int, olr, sizeof(int));
1571 if (olr < 0)
1572 return -EINVAL;
1573 if (put_user(olr, optlen))
1574 return -EFAULT;
1575 if (copy_to_user(optval, &val, olr))
1576 return -EFAULT;
1577 return 0;
1578}
1579
1580/* The IP multicast ioctl support routines. */
1581int ipmr_ioctl(struct sock *sk, int cmd, void __user *arg)
1582{
1583 struct sioc_sg_req sr;
1584 struct sioc_vif_req vr;
1585 struct vif_device *vif;
1586 struct mfc_cache *c;
1587 struct net *net = sock_net(sk);
1588 struct mr_table *mrt;
1589
1590 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1591 if (!mrt)
1592 return -ENOENT;
1593
1594 switch (cmd) {
1595 case SIOCGETVIFCNT:
1596 if (copy_from_user(&vr, arg, sizeof(vr)))
1597 return -EFAULT;
1598 if (vr.vifi >= mrt->maxvif)
1599 return -EINVAL;
1600 vr.vifi = array_index_nospec(vr.vifi, mrt->maxvif);
1601 read_lock(&mrt_lock);
1602 vif = &mrt->vif_table[vr.vifi];
1603 if (VIF_EXISTS(mrt, vr.vifi)) {
1604 vr.icount = vif->pkt_in;
1605 vr.ocount = vif->pkt_out;
1606 vr.ibytes = vif->bytes_in;
1607 vr.obytes = vif->bytes_out;
1608 read_unlock(&mrt_lock);
1609
1610 if (copy_to_user(arg, &vr, sizeof(vr)))
1611 return -EFAULT;
1612 return 0;
1613 }
1614 read_unlock(&mrt_lock);
1615 return -EADDRNOTAVAIL;
1616 case SIOCGETSGCNT:
1617 if (copy_from_user(&sr, arg, sizeof(sr)))
1618 return -EFAULT;
1619
1620 rcu_read_lock();
1621 c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1622 if (c) {
1623 sr.pktcnt = c->_c.mfc_un.res.pkt;
1624 sr.bytecnt = c->_c.mfc_un.res.bytes;
1625 sr.wrong_if = c->_c.mfc_un.res.wrong_if;
1626 rcu_read_unlock();
1627
1628 if (copy_to_user(arg, &sr, sizeof(sr)))
1629 return -EFAULT;
1630 return 0;
1631 }
1632 rcu_read_unlock();
1633 return -EADDRNOTAVAIL;
1634 default:
1635 return -ENOIOCTLCMD;
1636 }
1637}
1638
1639#ifdef CONFIG_COMPAT
1640struct compat_sioc_sg_req {
1641 struct in_addr src;
1642 struct in_addr grp;
1643 compat_ulong_t pktcnt;
1644 compat_ulong_t bytecnt;
1645 compat_ulong_t wrong_if;
1646};
1647
1648struct compat_sioc_vif_req {
1649 vifi_t vifi; /* Which iface */
1650 compat_ulong_t icount;
1651 compat_ulong_t ocount;
1652 compat_ulong_t ibytes;
1653 compat_ulong_t obytes;
1654};
1655
1656int ipmr_compat_ioctl(struct sock *sk, unsigned int cmd, void __user *arg)
1657{
1658 struct compat_sioc_sg_req sr;
1659 struct compat_sioc_vif_req vr;
1660 struct vif_device *vif;
1661 struct mfc_cache *c;
1662 struct net *net = sock_net(sk);
1663 struct mr_table *mrt;
1664
1665 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1666 if (!mrt)
1667 return -ENOENT;
1668
1669 switch (cmd) {
1670 case SIOCGETVIFCNT:
1671 if (copy_from_user(&vr, arg, sizeof(vr)))
1672 return -EFAULT;
1673 if (vr.vifi >= mrt->maxvif)
1674 return -EINVAL;
1675 vr.vifi = array_index_nospec(vr.vifi, mrt->maxvif);
1676 read_lock(&mrt_lock);
1677 vif = &mrt->vif_table[vr.vifi];
1678 if (VIF_EXISTS(mrt, vr.vifi)) {
1679 vr.icount = vif->pkt_in;
1680 vr.ocount = vif->pkt_out;
1681 vr.ibytes = vif->bytes_in;
1682 vr.obytes = vif->bytes_out;
1683 read_unlock(&mrt_lock);
1684
1685 if (copy_to_user(arg, &vr, sizeof(vr)))
1686 return -EFAULT;
1687 return 0;
1688 }
1689 read_unlock(&mrt_lock);
1690 return -EADDRNOTAVAIL;
1691 case SIOCGETSGCNT:
1692 if (copy_from_user(&sr, arg, sizeof(sr)))
1693 return -EFAULT;
1694
1695 rcu_read_lock();
1696 c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1697 if (c) {
1698 sr.pktcnt = c->_c.mfc_un.res.pkt;
1699 sr.bytecnt = c->_c.mfc_un.res.bytes;
1700 sr.wrong_if = c->_c.mfc_un.res.wrong_if;
1701 rcu_read_unlock();
1702
1703 if (copy_to_user(arg, &sr, sizeof(sr)))
1704 return -EFAULT;
1705 return 0;
1706 }
1707 rcu_read_unlock();
1708 return -EADDRNOTAVAIL;
1709 default:
1710 return -ENOIOCTLCMD;
1711 }
1712}
1713#endif
1714
1715static int ipmr_device_event(struct notifier_block *this, unsigned long event, void *ptr)
1716{
1717 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1718 struct net *net = dev_net(dev);
1719 struct mr_table *mrt;
1720 struct vif_device *v;
1721 int ct;
1722
1723 if (event != NETDEV_UNREGISTER)
1724 return NOTIFY_DONE;
1725
1726 ipmr_for_each_table(mrt, net) {
1727 v = &mrt->vif_table[0];
1728 for (ct = 0; ct < mrt->maxvif; ct++, v++) {
1729 if (v->dev == dev)
1730 vif_delete(mrt, ct, 1, NULL);
1731 }
1732 }
1733 return NOTIFY_DONE;
1734}
1735
1736static struct notifier_block ip_mr_notifier = {
1737 .notifier_call = ipmr_device_event,
1738};
1739
1740/* Encapsulate a packet by attaching a valid IPIP header to it.
1741 * This avoids tunnel drivers and other mess and gives us the speed so
1742 * important for multicast video.
1743 */
1744static void ip_encap(struct net *net, struct sk_buff *skb,
1745 __be32 saddr, __be32 daddr)
1746{
1747 struct iphdr *iph;
1748 const struct iphdr *old_iph = ip_hdr(skb);
1749
1750 skb_push(skb, sizeof(struct iphdr));
1751 skb->transport_header = skb->network_header;
1752 skb_reset_network_header(skb);
1753 iph = ip_hdr(skb);
1754
1755 iph->version = 4;
1756 iph->tos = old_iph->tos;
1757 iph->ttl = old_iph->ttl;
1758 iph->frag_off = 0;
1759 iph->daddr = daddr;
1760 iph->saddr = saddr;
1761 iph->protocol = IPPROTO_IPIP;
1762 iph->ihl = 5;
1763 iph->tot_len = htons(skb->len);
1764 ip_select_ident(net, skb, NULL);
1765 ip_send_check(iph);
1766
1767 memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt));
1768 nf_reset_ct(skb);
1769}
1770
1771static inline int ipmr_forward_finish(struct net *net, struct sock *sk,
1772 struct sk_buff *skb)
1773{
1774 struct ip_options *opt = &(IPCB(skb)->opt);
1775
1776 IP_INC_STATS(net, IPSTATS_MIB_OUTFORWDATAGRAMS);
1777 IP_ADD_STATS(net, IPSTATS_MIB_OUTOCTETS, skb->len);
1778
1779 if (unlikely(opt->optlen))
1780 ip_forward_options(skb);
1781
1782 return dst_output(net, sk, skb);
1783}
1784
1785#ifdef CONFIG_NET_SWITCHDEV
1786static bool ipmr_forward_offloaded(struct sk_buff *skb, struct mr_table *mrt,
1787 int in_vifi, int out_vifi)
1788{
1789 struct vif_device *out_vif = &mrt->vif_table[out_vifi];
1790 struct vif_device *in_vif = &mrt->vif_table[in_vifi];
1791
1792 if (!skb->offload_l3_fwd_mark)
1793 return false;
1794 if (!out_vif->dev_parent_id.id_len || !in_vif->dev_parent_id.id_len)
1795 return false;
1796 return netdev_phys_item_id_same(&out_vif->dev_parent_id,
1797 &in_vif->dev_parent_id);
1798}
1799#else
1800static bool ipmr_forward_offloaded(struct sk_buff *skb, struct mr_table *mrt,
1801 int in_vifi, int out_vifi)
1802{
1803 return false;
1804}
1805#endif
1806
1807/* Processing handlers for ipmr_forward */
1808
1809static void ipmr_queue_xmit(struct net *net, struct mr_table *mrt,
1810 int in_vifi, struct sk_buff *skb, int vifi)
1811{
1812 const struct iphdr *iph = ip_hdr(skb);
1813 struct vif_device *vif = &mrt->vif_table[vifi];
1814 struct net_device *dev;
1815 struct rtable *rt;
1816 struct flowi4 fl4;
1817 int encap = 0;
1818
1819 if (!vif->dev)
1820 goto out_free;
1821
1822 if (vif->flags & VIFF_REGISTER) {
1823 vif->pkt_out++;
1824 vif->bytes_out += skb->len;
1825 vif->dev->stats.tx_bytes += skb->len;
1826 vif->dev->stats.tx_packets++;
1827 ipmr_cache_report(mrt, skb, vifi, IGMPMSG_WHOLEPKT);
1828 goto out_free;
1829 }
1830
1831 if (ipmr_forward_offloaded(skb, mrt, in_vifi, vifi))
1832 goto out_free;
1833
1834 if (vif->flags & VIFF_TUNNEL) {
1835 rt = ip_route_output_ports(net, &fl4, NULL,
1836 vif->remote, vif->local,
1837 0, 0,
1838 IPPROTO_IPIP,
1839 RT_TOS(iph->tos), vif->link);
1840 if (IS_ERR(rt))
1841 goto out_free;
1842 encap = sizeof(struct iphdr);
1843 } else {
1844 rt = ip_route_output_ports(net, &fl4, NULL, iph->daddr, 0,
1845 0, 0,
1846 IPPROTO_IPIP,
1847 RT_TOS(iph->tos), vif->link);
1848 if (IS_ERR(rt))
1849 goto out_free;
1850 }
1851
1852 dev = rt->dst.dev;
1853
1854 if (skb->len+encap > dst_mtu(&rt->dst) && (ntohs(iph->frag_off) & IP_DF)) {
1855 /* Do not fragment multicasts. Alas, IPv4 does not
1856 * allow to send ICMP, so that packets will disappear
1857 * to blackhole.
1858 */
1859 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
1860 ip_rt_put(rt);
1861 goto out_free;
1862 }
1863
1864 encap += LL_RESERVED_SPACE(dev) + rt->dst.header_len;
1865
1866 if (skb_cow(skb, encap)) {
1867 ip_rt_put(rt);
1868 goto out_free;
1869 }
1870
1871 vif->pkt_out++;
1872 vif->bytes_out += skb->len;
1873
1874 skb_dst_drop(skb);
1875 skb_dst_set(skb, &rt->dst);
1876 ip_decrease_ttl(ip_hdr(skb));
1877
1878 /* FIXME: forward and output firewalls used to be called here.
1879 * What do we do with netfilter? -- RR
1880 */
1881 if (vif->flags & VIFF_TUNNEL) {
1882 ip_encap(net, skb, vif->local, vif->remote);
1883 /* FIXME: extra output firewall step used to be here. --RR */
1884 vif->dev->stats.tx_packets++;
1885 vif->dev->stats.tx_bytes += skb->len;
1886 }
1887
1888 IPCB(skb)->flags |= IPSKB_FORWARDED;
1889
1890 /* RFC1584 teaches, that DVMRP/PIM router must deliver packets locally
1891 * not only before forwarding, but after forwarding on all output
1892 * interfaces. It is clear, if mrouter runs a multicasting
1893 * program, it should receive packets not depending to what interface
1894 * program is joined.
1895 * If we will not make it, the program will have to join on all
1896 * interfaces. On the other hand, multihoming host (or router, but
1897 * not mrouter) cannot join to more than one interface - it will
1898 * result in receiving multiple packets.
1899 */
1900 NF_HOOK(NFPROTO_IPV4, NF_INET_FORWARD,
1901 net, NULL, skb, skb->dev, dev,
1902 ipmr_forward_finish);
1903 return;
1904
1905out_free:
1906 kfree_skb(skb);
1907}
1908
1909static int ipmr_find_vif(struct mr_table *mrt, struct net_device *dev)
1910{
1911 int ct;
1912
1913 for (ct = mrt->maxvif-1; ct >= 0; ct--) {
1914 if (mrt->vif_table[ct].dev == dev)
1915 break;
1916 }
1917 return ct;
1918}
1919
1920/* "local" means that we should preserve one skb (for local delivery) */
1921static void ip_mr_forward(struct net *net, struct mr_table *mrt,
1922 struct net_device *dev, struct sk_buff *skb,
1923 struct mfc_cache *c, int local)
1924{
1925 int true_vifi = ipmr_find_vif(mrt, dev);
1926 int psend = -1;
1927 int vif, ct;
1928
1929 vif = c->_c.mfc_parent;
1930 c->_c.mfc_un.res.pkt++;
1931 c->_c.mfc_un.res.bytes += skb->len;
1932 c->_c.mfc_un.res.lastuse = jiffies;
1933
1934 if (c->mfc_origin == htonl(INADDR_ANY) && true_vifi >= 0) {
1935 struct mfc_cache *cache_proxy;
1936
1937 /* For an (*,G) entry, we only check that the incomming
1938 * interface is part of the static tree.
1939 */
1940 cache_proxy = mr_mfc_find_any_parent(mrt, vif);
1941 if (cache_proxy &&
1942 cache_proxy->_c.mfc_un.res.ttls[true_vifi] < 255)
1943 goto forward;
1944 }
1945
1946 /* Wrong interface: drop packet and (maybe) send PIM assert. */
1947 if (mrt->vif_table[vif].dev != dev) {
1948 if (rt_is_output_route(skb_rtable(skb))) {
1949 /* It is our own packet, looped back.
1950 * Very complicated situation...
1951 *
1952 * The best workaround until routing daemons will be
1953 * fixed is not to redistribute packet, if it was
1954 * send through wrong interface. It means, that
1955 * multicast applications WILL NOT work for
1956 * (S,G), which have default multicast route pointing
1957 * to wrong oif. In any case, it is not a good
1958 * idea to use multicasting applications on router.
1959 */
1960 goto dont_forward;
1961 }
1962
1963 c->_c.mfc_un.res.wrong_if++;
1964
1965 if (true_vifi >= 0 && mrt->mroute_do_assert &&
1966 /* pimsm uses asserts, when switching from RPT to SPT,
1967 * so that we cannot check that packet arrived on an oif.
1968 * It is bad, but otherwise we would need to move pretty
1969 * large chunk of pimd to kernel. Ough... --ANK
1970 */
1971 (mrt->mroute_do_pim ||
1972 c->_c.mfc_un.res.ttls[true_vifi] < 255) &&
1973 time_after(jiffies,
1974 c->_c.mfc_un.res.last_assert +
1975 MFC_ASSERT_THRESH)) {
1976 c->_c.mfc_un.res.last_assert = jiffies;
1977 ipmr_cache_report(mrt, skb, true_vifi, IGMPMSG_WRONGVIF);
1978 if (mrt->mroute_do_wrvifwhole)
1979 ipmr_cache_report(mrt, skb, true_vifi,
1980 IGMPMSG_WRVIFWHOLE);
1981 }
1982 goto dont_forward;
1983 }
1984
1985forward:
1986 mrt->vif_table[vif].pkt_in++;
1987 mrt->vif_table[vif].bytes_in += skb->len;
1988
1989 /* Forward the frame */
1990 if (c->mfc_origin == htonl(INADDR_ANY) &&
1991 c->mfc_mcastgrp == htonl(INADDR_ANY)) {
1992 if (true_vifi >= 0 &&
1993 true_vifi != c->_c.mfc_parent &&
1994 ip_hdr(skb)->ttl >
1995 c->_c.mfc_un.res.ttls[c->_c.mfc_parent]) {
1996 /* It's an (*,*) entry and the packet is not coming from
1997 * the upstream: forward the packet to the upstream
1998 * only.
1999 */
2000 psend = c->_c.mfc_parent;
2001 goto last_forward;
2002 }
2003 goto dont_forward;
2004 }
2005 for (ct = c->_c.mfc_un.res.maxvif - 1;
2006 ct >= c->_c.mfc_un.res.minvif; ct--) {
2007 /* For (*,G) entry, don't forward to the incoming interface */
2008 if ((c->mfc_origin != htonl(INADDR_ANY) ||
2009 ct != true_vifi) &&
2010 ip_hdr(skb)->ttl > c->_c.mfc_un.res.ttls[ct]) {
2011 if (psend != -1) {
2012 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
2013
2014 if (skb2)
2015 ipmr_queue_xmit(net, mrt, true_vifi,
2016 skb2, psend);
2017 }
2018 psend = ct;
2019 }
2020 }
2021last_forward:
2022 if (psend != -1) {
2023 if (local) {
2024 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
2025
2026 if (skb2)
2027 ipmr_queue_xmit(net, mrt, true_vifi, skb2,
2028 psend);
2029 } else {
2030 ipmr_queue_xmit(net, mrt, true_vifi, skb, psend);
2031 return;
2032 }
2033 }
2034
2035dont_forward:
2036 if (!local)
2037 kfree_skb(skb);
2038}
2039
2040static struct mr_table *ipmr_rt_fib_lookup(struct net *net, struct sk_buff *skb)
2041{
2042 struct rtable *rt = skb_rtable(skb);
2043 struct iphdr *iph = ip_hdr(skb);
2044 struct flowi4 fl4 = {
2045 .daddr = iph->daddr,
2046 .saddr = iph->saddr,
2047 .flowi4_tos = RT_TOS(iph->tos),
2048 .flowi4_oif = (rt_is_output_route(rt) ?
2049 skb->dev->ifindex : 0),
2050 .flowi4_iif = (rt_is_output_route(rt) ?
2051 LOOPBACK_IFINDEX :
2052 skb->dev->ifindex),
2053 .flowi4_mark = skb->mark,
2054 };
2055 struct mr_table *mrt;
2056 int err;
2057
2058 err = ipmr_fib_lookup(net, &fl4, &mrt);
2059 if (err)
2060 return ERR_PTR(err);
2061 return mrt;
2062}
2063
2064/* Multicast packets for forwarding arrive here
2065 * Called with rcu_read_lock();
2066 */
2067int ip_mr_input(struct sk_buff *skb)
2068{
2069 struct mfc_cache *cache;
2070 struct net *net = dev_net(skb->dev);
2071 int local = skb_rtable(skb)->rt_flags & RTCF_LOCAL;
2072 struct mr_table *mrt;
2073 struct net_device *dev;
2074
2075 /* skb->dev passed in is the loX master dev for vrfs.
2076 * As there are no vifs associated with loopback devices,
2077 * get the proper interface that does have a vif associated with it.
2078 */
2079 dev = skb->dev;
2080 if (netif_is_l3_master(skb->dev)) {
2081 dev = dev_get_by_index_rcu(net, IPCB(skb)->iif);
2082 if (!dev) {
2083 kfree_skb(skb);
2084 return -ENODEV;
2085 }
2086 }
2087
2088 /* Packet is looped back after forward, it should not be
2089 * forwarded second time, but still can be delivered locally.
2090 */
2091 if (IPCB(skb)->flags & IPSKB_FORWARDED)
2092 goto dont_forward;
2093
2094 mrt = ipmr_rt_fib_lookup(net, skb);
2095 if (IS_ERR(mrt)) {
2096 kfree_skb(skb);
2097 return PTR_ERR(mrt);
2098 }
2099 if (!local) {
2100 if (IPCB(skb)->opt.router_alert) {
2101 if (ip_call_ra_chain(skb))
2102 return 0;
2103 } else if (ip_hdr(skb)->protocol == IPPROTO_IGMP) {
2104 /* IGMPv1 (and broken IGMPv2 implementations sort of
2105 * Cisco IOS <= 11.2(8)) do not put router alert
2106 * option to IGMP packets destined to routable
2107 * groups. It is very bad, because it means
2108 * that we can forward NO IGMP messages.
2109 */
2110 struct sock *mroute_sk;
2111
2112 mroute_sk = rcu_dereference(mrt->mroute_sk);
2113 if (mroute_sk) {
2114 nf_reset_ct(skb);
2115 raw_rcv(mroute_sk, skb);
2116 return 0;
2117 }
2118 }
2119 }
2120
2121 /* already under rcu_read_lock() */
2122 cache = ipmr_cache_find(mrt, ip_hdr(skb)->saddr, ip_hdr(skb)->daddr);
2123 if (!cache) {
2124 int vif = ipmr_find_vif(mrt, dev);
2125
2126 if (vif >= 0)
2127 cache = ipmr_cache_find_any(mrt, ip_hdr(skb)->daddr,
2128 vif);
2129 }
2130
2131 /* No usable cache entry */
2132 if (!cache) {
2133 int vif;
2134
2135 if (local) {
2136 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
2137 ip_local_deliver(skb);
2138 if (!skb2)
2139 return -ENOBUFS;
2140 skb = skb2;
2141 }
2142
2143 read_lock(&mrt_lock);
2144 vif = ipmr_find_vif(mrt, dev);
2145 if (vif >= 0) {
2146 int err2 = ipmr_cache_unresolved(mrt, vif, skb, dev);
2147 read_unlock(&mrt_lock);
2148
2149 return err2;
2150 }
2151 read_unlock(&mrt_lock);
2152 kfree_skb(skb);
2153 return -ENODEV;
2154 }
2155
2156 read_lock(&mrt_lock);
2157 ip_mr_forward(net, mrt, dev, skb, cache, local);
2158 read_unlock(&mrt_lock);
2159
2160 if (local)
2161 return ip_local_deliver(skb);
2162
2163 return 0;
2164
2165dont_forward:
2166 if (local)
2167 return ip_local_deliver(skb);
2168 kfree_skb(skb);
2169 return 0;
2170}
2171
2172#ifdef CONFIG_IP_PIMSM_V1
2173/* Handle IGMP messages of PIMv1 */
2174int pim_rcv_v1(struct sk_buff *skb)
2175{
2176 struct igmphdr *pim;
2177 struct net *net = dev_net(skb->dev);
2178 struct mr_table *mrt;
2179
2180 if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
2181 goto drop;
2182
2183 pim = igmp_hdr(skb);
2184
2185 mrt = ipmr_rt_fib_lookup(net, skb);
2186 if (IS_ERR(mrt))
2187 goto drop;
2188 if (!mrt->mroute_do_pim ||
2189 pim->group != PIM_V1_VERSION || pim->code != PIM_V1_REGISTER)
2190 goto drop;
2191
2192 if (__pim_rcv(mrt, skb, sizeof(*pim))) {
2193drop:
2194 kfree_skb(skb);
2195 }
2196 return 0;
2197}
2198#endif
2199
2200#ifdef CONFIG_IP_PIMSM_V2
2201static int pim_rcv(struct sk_buff *skb)
2202{
2203 struct pimreghdr *pim;
2204 struct net *net = dev_net(skb->dev);
2205 struct mr_table *mrt;
2206
2207 if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
2208 goto drop;
2209
2210 pim = (struct pimreghdr *)skb_transport_header(skb);
2211 if (pim->type != ((PIM_VERSION << 4) | (PIM_TYPE_REGISTER)) ||
2212 (pim->flags & PIM_NULL_REGISTER) ||
2213 (ip_compute_csum((void *)pim, sizeof(*pim)) != 0 &&
2214 csum_fold(skb_checksum(skb, 0, skb->len, 0))))
2215 goto drop;
2216
2217 mrt = ipmr_rt_fib_lookup(net, skb);
2218 if (IS_ERR(mrt))
2219 goto drop;
2220 if (__pim_rcv(mrt, skb, sizeof(*pim))) {
2221drop:
2222 kfree_skb(skb);
2223 }
2224 return 0;
2225}
2226#endif
2227
2228int ipmr_get_route(struct net *net, struct sk_buff *skb,
2229 __be32 saddr, __be32 daddr,
2230 struct rtmsg *rtm, u32 portid)
2231{
2232 struct mfc_cache *cache;
2233 struct mr_table *mrt;
2234 int err;
2235
2236 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2237 if (!mrt)
2238 return -ENOENT;
2239
2240 rcu_read_lock();
2241 cache = ipmr_cache_find(mrt, saddr, daddr);
2242 if (!cache && skb->dev) {
2243 int vif = ipmr_find_vif(mrt, skb->dev);
2244
2245 if (vif >= 0)
2246 cache = ipmr_cache_find_any(mrt, daddr, vif);
2247 }
2248 if (!cache) {
2249 struct sk_buff *skb2;
2250 struct iphdr *iph;
2251 struct net_device *dev;
2252 int vif = -1;
2253
2254 dev = skb->dev;
2255 read_lock(&mrt_lock);
2256 if (dev)
2257 vif = ipmr_find_vif(mrt, dev);
2258 if (vif < 0) {
2259 read_unlock(&mrt_lock);
2260 rcu_read_unlock();
2261 return -ENODEV;
2262 }
2263
2264 skb2 = skb_realloc_headroom(skb, sizeof(struct iphdr));
2265 if (!skb2) {
2266 read_unlock(&mrt_lock);
2267 rcu_read_unlock();
2268 return -ENOMEM;
2269 }
2270
2271 NETLINK_CB(skb2).portid = portid;
2272 skb_push(skb2, sizeof(struct iphdr));
2273 skb_reset_network_header(skb2);
2274 iph = ip_hdr(skb2);
2275 iph->ihl = sizeof(struct iphdr) >> 2;
2276 iph->saddr = saddr;
2277 iph->daddr = daddr;
2278 iph->version = 0;
2279 err = ipmr_cache_unresolved(mrt, vif, skb2, dev);
2280 read_unlock(&mrt_lock);
2281 rcu_read_unlock();
2282 return err;
2283 }
2284
2285 read_lock(&mrt_lock);
2286 err = mr_fill_mroute(mrt, skb, &cache->_c, rtm);
2287 read_unlock(&mrt_lock);
2288 rcu_read_unlock();
2289 return err;
2290}
2291
2292static int ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2293 u32 portid, u32 seq, struct mfc_cache *c, int cmd,
2294 int flags)
2295{
2296 struct nlmsghdr *nlh;
2297 struct rtmsg *rtm;
2298 int err;
2299
2300 nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rtm), flags);
2301 if (!nlh)
2302 return -EMSGSIZE;
2303
2304 rtm = nlmsg_data(nlh);
2305 rtm->rtm_family = RTNL_FAMILY_IPMR;
2306 rtm->rtm_dst_len = 32;
2307 rtm->rtm_src_len = 32;
2308 rtm->rtm_tos = 0;
2309 rtm->rtm_table = mrt->id;
2310 if (nla_put_u32(skb, RTA_TABLE, mrt->id))
2311 goto nla_put_failure;
2312 rtm->rtm_type = RTN_MULTICAST;
2313 rtm->rtm_scope = RT_SCOPE_UNIVERSE;
2314 if (c->_c.mfc_flags & MFC_STATIC)
2315 rtm->rtm_protocol = RTPROT_STATIC;
2316 else
2317 rtm->rtm_protocol = RTPROT_MROUTED;
2318 rtm->rtm_flags = 0;
2319
2320 if (nla_put_in_addr(skb, RTA_SRC, c->mfc_origin) ||
2321 nla_put_in_addr(skb, RTA_DST, c->mfc_mcastgrp))
2322 goto nla_put_failure;
2323 err = mr_fill_mroute(mrt, skb, &c->_c, rtm);
2324 /* do not break the dump if cache is unresolved */
2325 if (err < 0 && err != -ENOENT)
2326 goto nla_put_failure;
2327
2328 nlmsg_end(skb, nlh);
2329 return 0;
2330
2331nla_put_failure:
2332 nlmsg_cancel(skb, nlh);
2333 return -EMSGSIZE;
2334}
2335
2336static int _ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2337 u32 portid, u32 seq, struct mr_mfc *c, int cmd,
2338 int flags)
2339{
2340 return ipmr_fill_mroute(mrt, skb, portid, seq, (struct mfc_cache *)c,
2341 cmd, flags);
2342}
2343
2344static size_t mroute_msgsize(bool unresolved, int maxvif)
2345{
2346 size_t len =
2347 NLMSG_ALIGN(sizeof(struct rtmsg))
2348 + nla_total_size(4) /* RTA_TABLE */
2349 + nla_total_size(4) /* RTA_SRC */
2350 + nla_total_size(4) /* RTA_DST */
2351 ;
2352
2353 if (!unresolved)
2354 len = len
2355 + nla_total_size(4) /* RTA_IIF */
2356 + nla_total_size(0) /* RTA_MULTIPATH */
2357 + maxvif * NLA_ALIGN(sizeof(struct rtnexthop))
2358 /* RTA_MFC_STATS */
2359 + nla_total_size_64bit(sizeof(struct rta_mfc_stats))
2360 ;
2361
2362 return len;
2363}
2364
2365static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
2366 int cmd)
2367{
2368 struct net *net = read_pnet(&mrt->net);
2369 struct sk_buff *skb;
2370 int err = -ENOBUFS;
2371
2372 skb = nlmsg_new(mroute_msgsize(mfc->_c.mfc_parent >= MAXVIFS,
2373 mrt->maxvif),
2374 GFP_ATOMIC);
2375 if (!skb)
2376 goto errout;
2377
2378 err = ipmr_fill_mroute(mrt, skb, 0, 0, mfc, cmd, 0);
2379 if (err < 0)
2380 goto errout;
2381
2382 rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE, NULL, GFP_ATOMIC);
2383 return;
2384
2385errout:
2386 kfree_skb(skb);
2387 if (err < 0)
2388 rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE, err);
2389}
2390
2391static size_t igmpmsg_netlink_msgsize(size_t payloadlen)
2392{
2393 size_t len =
2394 NLMSG_ALIGN(sizeof(struct rtgenmsg))
2395 + nla_total_size(1) /* IPMRA_CREPORT_MSGTYPE */
2396 + nla_total_size(4) /* IPMRA_CREPORT_VIF_ID */
2397 + nla_total_size(4) /* IPMRA_CREPORT_SRC_ADDR */
2398 + nla_total_size(4) /* IPMRA_CREPORT_DST_ADDR */
2399 /* IPMRA_CREPORT_PKT */
2400 + nla_total_size(payloadlen)
2401 ;
2402
2403 return len;
2404}
2405
2406static void igmpmsg_netlink_event(struct mr_table *mrt, struct sk_buff *pkt)
2407{
2408 struct net *net = read_pnet(&mrt->net);
2409 struct nlmsghdr *nlh;
2410 struct rtgenmsg *rtgenm;
2411 struct igmpmsg *msg;
2412 struct sk_buff *skb;
2413 struct nlattr *nla;
2414 int payloadlen;
2415
2416 payloadlen = pkt->len - sizeof(struct igmpmsg);
2417 msg = (struct igmpmsg *)skb_network_header(pkt);
2418
2419 skb = nlmsg_new(igmpmsg_netlink_msgsize(payloadlen), GFP_ATOMIC);
2420 if (!skb)
2421 goto errout;
2422
2423 nlh = nlmsg_put(skb, 0, 0, RTM_NEWCACHEREPORT,
2424 sizeof(struct rtgenmsg), 0);
2425 if (!nlh)
2426 goto errout;
2427 rtgenm = nlmsg_data(nlh);
2428 rtgenm->rtgen_family = RTNL_FAMILY_IPMR;
2429 if (nla_put_u8(skb, IPMRA_CREPORT_MSGTYPE, msg->im_msgtype) ||
2430 nla_put_u32(skb, IPMRA_CREPORT_VIF_ID, msg->im_vif) ||
2431 nla_put_in_addr(skb, IPMRA_CREPORT_SRC_ADDR,
2432 msg->im_src.s_addr) ||
2433 nla_put_in_addr(skb, IPMRA_CREPORT_DST_ADDR,
2434 msg->im_dst.s_addr))
2435 goto nla_put_failure;
2436
2437 nla = nla_reserve(skb, IPMRA_CREPORT_PKT, payloadlen);
2438 if (!nla || skb_copy_bits(pkt, sizeof(struct igmpmsg),
2439 nla_data(nla), payloadlen))
2440 goto nla_put_failure;
2441
2442 nlmsg_end(skb, nlh);
2443
2444 rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE_R, NULL, GFP_ATOMIC);
2445 return;
2446
2447nla_put_failure:
2448 nlmsg_cancel(skb, nlh);
2449errout:
2450 kfree_skb(skb);
2451 rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE_R, -ENOBUFS);
2452}
2453
2454static int ipmr_rtm_valid_getroute_req(struct sk_buff *skb,
2455 const struct nlmsghdr *nlh,
2456 struct nlattr **tb,
2457 struct netlink_ext_ack *extack)
2458{
2459 struct rtmsg *rtm;
2460 int i, err;
2461
2462 if (nlh->nlmsg_len < nlmsg_msg_size(sizeof(*rtm))) {
2463 NL_SET_ERR_MSG(extack, "ipv4: Invalid header for multicast route get request");
2464 return -EINVAL;
2465 }
2466
2467 if (!netlink_strict_get_check(skb))
2468 return nlmsg_parse_deprecated(nlh, sizeof(*rtm), tb, RTA_MAX,
2469 rtm_ipv4_policy, extack);
2470
2471 rtm = nlmsg_data(nlh);
2472 if ((rtm->rtm_src_len && rtm->rtm_src_len != 32) ||
2473 (rtm->rtm_dst_len && rtm->rtm_dst_len != 32) ||
2474 rtm->rtm_tos || rtm->rtm_table || rtm->rtm_protocol ||
2475 rtm->rtm_scope || rtm->rtm_type || rtm->rtm_flags) {
2476 NL_SET_ERR_MSG(extack, "ipv4: Invalid values in header for multicast route get request");
2477 return -EINVAL;
2478 }
2479
2480 err = nlmsg_parse_deprecated_strict(nlh, sizeof(*rtm), tb, RTA_MAX,
2481 rtm_ipv4_policy, extack);
2482 if (err)
2483 return err;
2484
2485 if ((tb[RTA_SRC] && !rtm->rtm_src_len) ||
2486 (tb[RTA_DST] && !rtm->rtm_dst_len)) {
2487 NL_SET_ERR_MSG(extack, "ipv4: rtm_src_len and rtm_dst_len must be 32 for IPv4");
2488 return -EINVAL;
2489 }
2490
2491 for (i = 0; i <= RTA_MAX; i++) {
2492 if (!tb[i])
2493 continue;
2494
2495 switch (i) {
2496 case RTA_SRC:
2497 case RTA_DST:
2498 case RTA_TABLE:
2499 break;
2500 default:
2501 NL_SET_ERR_MSG(extack, "ipv4: Unsupported attribute in multicast route get request");
2502 return -EINVAL;
2503 }
2504 }
2505
2506 return 0;
2507}
2508
2509static int ipmr_rtm_getroute(struct sk_buff *in_skb, struct nlmsghdr *nlh,
2510 struct netlink_ext_ack *extack)
2511{
2512 struct net *net = sock_net(in_skb->sk);
2513 struct nlattr *tb[RTA_MAX + 1];
2514 struct sk_buff *skb = NULL;
2515 struct mfc_cache *cache;
2516 struct mr_table *mrt;
2517 __be32 src, grp;
2518 u32 tableid;
2519 int err;
2520
2521 err = ipmr_rtm_valid_getroute_req(in_skb, nlh, tb, extack);
2522 if (err < 0)
2523 goto errout;
2524
2525 src = tb[RTA_SRC] ? nla_get_in_addr(tb[RTA_SRC]) : 0;
2526 grp = tb[RTA_DST] ? nla_get_in_addr(tb[RTA_DST]) : 0;
2527 tableid = tb[RTA_TABLE] ? nla_get_u32(tb[RTA_TABLE]) : 0;
2528
2529 mrt = ipmr_get_table(net, tableid ? tableid : RT_TABLE_DEFAULT);
2530 if (!mrt) {
2531 err = -ENOENT;
2532 goto errout_free;
2533 }
2534
2535 /* entries are added/deleted only under RTNL */
2536 rcu_read_lock();
2537 cache = ipmr_cache_find(mrt, src, grp);
2538 rcu_read_unlock();
2539 if (!cache) {
2540 err = -ENOENT;
2541 goto errout_free;
2542 }
2543
2544 skb = nlmsg_new(mroute_msgsize(false, mrt->maxvif), GFP_KERNEL);
2545 if (!skb) {
2546 err = -ENOBUFS;
2547 goto errout_free;
2548 }
2549
2550 err = ipmr_fill_mroute(mrt, skb, NETLINK_CB(in_skb).portid,
2551 nlh->nlmsg_seq, cache,
2552 RTM_NEWROUTE, 0);
2553 if (err < 0)
2554 goto errout_free;
2555
2556 err = rtnl_unicast(skb, net, NETLINK_CB(in_skb).portid);
2557
2558errout:
2559 return err;
2560
2561errout_free:
2562 kfree_skb(skb);
2563 goto errout;
2564}
2565
2566static int ipmr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb)
2567{
2568 struct fib_dump_filter filter = {};
2569 int err;
2570
2571 if (cb->strict_check) {
2572 err = ip_valid_fib_dump_req(sock_net(skb->sk), cb->nlh,
2573 &filter, cb);
2574 if (err < 0)
2575 return err;
2576 }
2577
2578 if (filter.table_id) {
2579 struct mr_table *mrt;
2580
2581 mrt = ipmr_get_table(sock_net(skb->sk), filter.table_id);
2582 if (!mrt) {
2583 if (rtnl_msg_family(cb->nlh) != RTNL_FAMILY_IPMR)
2584 return skb->len;
2585
2586 NL_SET_ERR_MSG(cb->extack, "ipv4: MR table does not exist");
2587 return -ENOENT;
2588 }
2589 err = mr_table_dump(mrt, skb, cb, _ipmr_fill_mroute,
2590 &mfc_unres_lock, &filter);
2591 return skb->len ? : err;
2592 }
2593
2594 return mr_rtm_dumproute(skb, cb, ipmr_mr_table_iter,
2595 _ipmr_fill_mroute, &mfc_unres_lock, &filter);
2596}
2597
2598static const struct nla_policy rtm_ipmr_policy[RTA_MAX + 1] = {
2599 [RTA_SRC] = { .type = NLA_U32 },
2600 [RTA_DST] = { .type = NLA_U32 },
2601 [RTA_IIF] = { .type = NLA_U32 },
2602 [RTA_TABLE] = { .type = NLA_U32 },
2603 [RTA_MULTIPATH] = { .len = sizeof(struct rtnexthop) },
2604};
2605
2606static bool ipmr_rtm_validate_proto(unsigned char rtm_protocol)
2607{
2608 switch (rtm_protocol) {
2609 case RTPROT_STATIC:
2610 case RTPROT_MROUTED:
2611 return true;
2612 }
2613 return false;
2614}
2615
2616static int ipmr_nla_get_ttls(const struct nlattr *nla, struct mfcctl *mfcc)
2617{
2618 struct rtnexthop *rtnh = nla_data(nla);
2619 int remaining = nla_len(nla), vifi = 0;
2620
2621 while (rtnh_ok(rtnh, remaining)) {
2622 mfcc->mfcc_ttls[vifi] = rtnh->rtnh_hops;
2623 if (++vifi == MAXVIFS)
2624 break;
2625 rtnh = rtnh_next(rtnh, &remaining);
2626 }
2627
2628 return remaining > 0 ? -EINVAL : vifi;
2629}
2630
2631/* returns < 0 on error, 0 for ADD_MFC and 1 for ADD_MFC_PROXY */
2632static int rtm_to_ipmr_mfcc(struct net *net, struct nlmsghdr *nlh,
2633 struct mfcctl *mfcc, int *mrtsock,
2634 struct mr_table **mrtret,
2635 struct netlink_ext_ack *extack)
2636{
2637 struct net_device *dev = NULL;
2638 u32 tblid = RT_TABLE_DEFAULT;
2639 struct mr_table *mrt;
2640 struct nlattr *attr;
2641 struct rtmsg *rtm;
2642 int ret, rem;
2643
2644 ret = nlmsg_validate_deprecated(nlh, sizeof(*rtm), RTA_MAX,
2645 rtm_ipmr_policy, extack);
2646 if (ret < 0)
2647 goto out;
2648 rtm = nlmsg_data(nlh);
2649
2650 ret = -EINVAL;
2651 if (rtm->rtm_family != RTNL_FAMILY_IPMR || rtm->rtm_dst_len != 32 ||
2652 rtm->rtm_type != RTN_MULTICAST ||
2653 rtm->rtm_scope != RT_SCOPE_UNIVERSE ||
2654 !ipmr_rtm_validate_proto(rtm->rtm_protocol))
2655 goto out;
2656
2657 memset(mfcc, 0, sizeof(*mfcc));
2658 mfcc->mfcc_parent = -1;
2659 ret = 0;
2660 nlmsg_for_each_attr(attr, nlh, sizeof(struct rtmsg), rem) {
2661 switch (nla_type(attr)) {
2662 case RTA_SRC:
2663 mfcc->mfcc_origin.s_addr = nla_get_be32(attr);
2664 break;
2665 case RTA_DST:
2666 mfcc->mfcc_mcastgrp.s_addr = nla_get_be32(attr);
2667 break;
2668 case RTA_IIF:
2669 dev = __dev_get_by_index(net, nla_get_u32(attr));
2670 if (!dev) {
2671 ret = -ENODEV;
2672 goto out;
2673 }
2674 break;
2675 case RTA_MULTIPATH:
2676 if (ipmr_nla_get_ttls(attr, mfcc) < 0) {
2677 ret = -EINVAL;
2678 goto out;
2679 }
2680 break;
2681 case RTA_PREFSRC:
2682 ret = 1;
2683 break;
2684 case RTA_TABLE:
2685 tblid = nla_get_u32(attr);
2686 break;
2687 }
2688 }
2689 mrt = ipmr_get_table(net, tblid);
2690 if (!mrt) {
2691 ret = -ENOENT;
2692 goto out;
2693 }
2694 *mrtret = mrt;
2695 *mrtsock = rtm->rtm_protocol == RTPROT_MROUTED ? 1 : 0;
2696 if (dev)
2697 mfcc->mfcc_parent = ipmr_find_vif(mrt, dev);
2698
2699out:
2700 return ret;
2701}
2702
2703/* takes care of both newroute and delroute */
2704static int ipmr_rtm_route(struct sk_buff *skb, struct nlmsghdr *nlh,
2705 struct netlink_ext_ack *extack)
2706{
2707 struct net *net = sock_net(skb->sk);
2708 int ret, mrtsock, parent;
2709 struct mr_table *tbl;
2710 struct mfcctl mfcc;
2711
2712 mrtsock = 0;
2713 tbl = NULL;
2714 ret = rtm_to_ipmr_mfcc(net, nlh, &mfcc, &mrtsock, &tbl, extack);
2715 if (ret < 0)
2716 return ret;
2717
2718 parent = ret ? mfcc.mfcc_parent : -1;
2719 if (nlh->nlmsg_type == RTM_NEWROUTE)
2720 return ipmr_mfc_add(net, tbl, &mfcc, mrtsock, parent);
2721 else
2722 return ipmr_mfc_delete(tbl, &mfcc, parent);
2723}
2724
2725static bool ipmr_fill_table(struct mr_table *mrt, struct sk_buff *skb)
2726{
2727 u32 queue_len = atomic_read(&mrt->cache_resolve_queue_len);
2728
2729 if (nla_put_u32(skb, IPMRA_TABLE_ID, mrt->id) ||
2730 nla_put_u32(skb, IPMRA_TABLE_CACHE_RES_QUEUE_LEN, queue_len) ||
2731 nla_put_s32(skb, IPMRA_TABLE_MROUTE_REG_VIF_NUM,
2732 mrt->mroute_reg_vif_num) ||
2733 nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_ASSERT,
2734 mrt->mroute_do_assert) ||
2735 nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_PIM, mrt->mroute_do_pim) ||
2736 nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_WRVIFWHOLE,
2737 mrt->mroute_do_wrvifwhole))
2738 return false;
2739
2740 return true;
2741}
2742
2743static bool ipmr_fill_vif(struct mr_table *mrt, u32 vifid, struct sk_buff *skb)
2744{
2745 struct nlattr *vif_nest;
2746 struct vif_device *vif;
2747
2748 /* if the VIF doesn't exist just continue */
2749 if (!VIF_EXISTS(mrt, vifid))
2750 return true;
2751
2752 vif = &mrt->vif_table[vifid];
2753 vif_nest = nla_nest_start_noflag(skb, IPMRA_VIF);
2754 if (!vif_nest)
2755 return false;
2756 if (nla_put_u32(skb, IPMRA_VIFA_IFINDEX, vif->dev->ifindex) ||
2757 nla_put_u32(skb, IPMRA_VIFA_VIF_ID, vifid) ||
2758 nla_put_u16(skb, IPMRA_VIFA_FLAGS, vif->flags) ||
2759 nla_put_u64_64bit(skb, IPMRA_VIFA_BYTES_IN, vif->bytes_in,
2760 IPMRA_VIFA_PAD) ||
2761 nla_put_u64_64bit(skb, IPMRA_VIFA_BYTES_OUT, vif->bytes_out,
2762 IPMRA_VIFA_PAD) ||
2763 nla_put_u64_64bit(skb, IPMRA_VIFA_PACKETS_IN, vif->pkt_in,
2764 IPMRA_VIFA_PAD) ||
2765 nla_put_u64_64bit(skb, IPMRA_VIFA_PACKETS_OUT, vif->pkt_out,
2766 IPMRA_VIFA_PAD) ||
2767 nla_put_be32(skb, IPMRA_VIFA_LOCAL_ADDR, vif->local) ||
2768 nla_put_be32(skb, IPMRA_VIFA_REMOTE_ADDR, vif->remote)) {
2769 nla_nest_cancel(skb, vif_nest);
2770 return false;
2771 }
2772 nla_nest_end(skb, vif_nest);
2773
2774 return true;
2775}
2776
2777static int ipmr_valid_dumplink(const struct nlmsghdr *nlh,
2778 struct netlink_ext_ack *extack)
2779{
2780 struct ifinfomsg *ifm;
2781
2782 if (nlh->nlmsg_len < nlmsg_msg_size(sizeof(*ifm))) {
2783 NL_SET_ERR_MSG(extack, "ipv4: Invalid header for ipmr link dump");
2784 return -EINVAL;
2785 }
2786
2787 if (nlmsg_attrlen(nlh, sizeof(*ifm))) {
2788 NL_SET_ERR_MSG(extack, "Invalid data after header in ipmr link dump");
2789 return -EINVAL;
2790 }
2791
2792 ifm = nlmsg_data(nlh);
2793 if (ifm->__ifi_pad || ifm->ifi_type || ifm->ifi_flags ||
2794 ifm->ifi_change || ifm->ifi_index) {
2795 NL_SET_ERR_MSG(extack, "Invalid values in header for ipmr link dump request");
2796 return -EINVAL;
2797 }
2798
2799 return 0;
2800}
2801
2802static int ipmr_rtm_dumplink(struct sk_buff *skb, struct netlink_callback *cb)
2803{
2804 struct net *net = sock_net(skb->sk);
2805 struct nlmsghdr *nlh = NULL;
2806 unsigned int t = 0, s_t;
2807 unsigned int e = 0, s_e;
2808 struct mr_table *mrt;
2809
2810 if (cb->strict_check) {
2811 int err = ipmr_valid_dumplink(cb->nlh, cb->extack);
2812
2813 if (err < 0)
2814 return err;
2815 }
2816
2817 s_t = cb->args[0];
2818 s_e = cb->args[1];
2819
2820 ipmr_for_each_table(mrt, net) {
2821 struct nlattr *vifs, *af;
2822 struct ifinfomsg *hdr;
2823 u32 i;
2824
2825 if (t < s_t)
2826 goto skip_table;
2827 nlh = nlmsg_put(skb, NETLINK_CB(cb->skb).portid,
2828 cb->nlh->nlmsg_seq, RTM_NEWLINK,
2829 sizeof(*hdr), NLM_F_MULTI);
2830 if (!nlh)
2831 break;
2832
2833 hdr = nlmsg_data(nlh);
2834 memset(hdr, 0, sizeof(*hdr));
2835 hdr->ifi_family = RTNL_FAMILY_IPMR;
2836
2837 af = nla_nest_start_noflag(skb, IFLA_AF_SPEC);
2838 if (!af) {
2839 nlmsg_cancel(skb, nlh);
2840 goto out;
2841 }
2842
2843 if (!ipmr_fill_table(mrt, skb)) {
2844 nlmsg_cancel(skb, nlh);
2845 goto out;
2846 }
2847
2848 vifs = nla_nest_start_noflag(skb, IPMRA_TABLE_VIFS);
2849 if (!vifs) {
2850 nla_nest_end(skb, af);
2851 nlmsg_end(skb, nlh);
2852 goto out;
2853 }
2854 for (i = 0; i < mrt->maxvif; i++) {
2855 if (e < s_e)
2856 goto skip_entry;
2857 if (!ipmr_fill_vif(mrt, i, skb)) {
2858 nla_nest_end(skb, vifs);
2859 nla_nest_end(skb, af);
2860 nlmsg_end(skb, nlh);
2861 goto out;
2862 }
2863skip_entry:
2864 e++;
2865 }
2866 s_e = 0;
2867 e = 0;
2868 nla_nest_end(skb, vifs);
2869 nla_nest_end(skb, af);
2870 nlmsg_end(skb, nlh);
2871skip_table:
2872 t++;
2873 }
2874
2875out:
2876 cb->args[1] = e;
2877 cb->args[0] = t;
2878
2879 return skb->len;
2880}
2881
2882#ifdef CONFIG_PROC_FS
2883/* The /proc interfaces to multicast routing :
2884 * /proc/net/ip_mr_cache & /proc/net/ip_mr_vif
2885 */
2886
2887static void *ipmr_vif_seq_start(struct seq_file *seq, loff_t *pos)
2888 __acquires(mrt_lock)
2889{
2890 struct mr_vif_iter *iter = seq->private;
2891 struct net *net = seq_file_net(seq);
2892 struct mr_table *mrt;
2893
2894 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2895 if (!mrt)
2896 return ERR_PTR(-ENOENT);
2897
2898 iter->mrt = mrt;
2899
2900 read_lock(&mrt_lock);
2901 return mr_vif_seq_start(seq, pos);
2902}
2903
2904static void ipmr_vif_seq_stop(struct seq_file *seq, void *v)
2905 __releases(mrt_lock)
2906{
2907 read_unlock(&mrt_lock);
2908}
2909
2910static int ipmr_vif_seq_show(struct seq_file *seq, void *v)
2911{
2912 struct mr_vif_iter *iter = seq->private;
2913 struct mr_table *mrt = iter->mrt;
2914
2915 if (v == SEQ_START_TOKEN) {
2916 seq_puts(seq,
2917 "Interface BytesIn PktsIn BytesOut PktsOut Flags Local Remote\n");
2918 } else {
2919 const struct vif_device *vif = v;
2920 const char *name = vif->dev ?
2921 vif->dev->name : "none";
2922
2923 seq_printf(seq,
2924 "%2td %-10s %8ld %7ld %8ld %7ld %05X %08X %08X\n",
2925 vif - mrt->vif_table,
2926 name, vif->bytes_in, vif->pkt_in,
2927 vif->bytes_out, vif->pkt_out,
2928 vif->flags, vif->local, vif->remote);
2929 }
2930 return 0;
2931}
2932
2933static const struct seq_operations ipmr_vif_seq_ops = {
2934 .start = ipmr_vif_seq_start,
2935 .next = mr_vif_seq_next,
2936 .stop = ipmr_vif_seq_stop,
2937 .show = ipmr_vif_seq_show,
2938};
2939
2940static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos)
2941{
2942 struct net *net = seq_file_net(seq);
2943 struct mr_table *mrt;
2944
2945 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2946 if (!mrt)
2947 return ERR_PTR(-ENOENT);
2948
2949 return mr_mfc_seq_start(seq, pos, mrt, &mfc_unres_lock);
2950}
2951
2952static int ipmr_mfc_seq_show(struct seq_file *seq, void *v)
2953{
2954 int n;
2955
2956 if (v == SEQ_START_TOKEN) {
2957 seq_puts(seq,
2958 "Group Origin Iif Pkts Bytes Wrong Oifs\n");
2959 } else {
2960 const struct mfc_cache *mfc = v;
2961 const struct mr_mfc_iter *it = seq->private;
2962 const struct mr_table *mrt = it->mrt;
2963
2964 seq_printf(seq, "%08X %08X %-3hd",
2965 (__force u32) mfc->mfc_mcastgrp,
2966 (__force u32) mfc->mfc_origin,
2967 mfc->_c.mfc_parent);
2968
2969 if (it->cache != &mrt->mfc_unres_queue) {
2970 seq_printf(seq, " %8lu %8lu %8lu",
2971 mfc->_c.mfc_un.res.pkt,
2972 mfc->_c.mfc_un.res.bytes,
2973 mfc->_c.mfc_un.res.wrong_if);
2974 for (n = mfc->_c.mfc_un.res.minvif;
2975 n < mfc->_c.mfc_un.res.maxvif; n++) {
2976 if (VIF_EXISTS(mrt, n) &&
2977 mfc->_c.mfc_un.res.ttls[n] < 255)
2978 seq_printf(seq,
2979 " %2d:%-3d",
2980 n, mfc->_c.mfc_un.res.ttls[n]);
2981 }
2982 } else {
2983 /* unresolved mfc_caches don't contain
2984 * pkt, bytes and wrong_if values
2985 */
2986 seq_printf(seq, " %8lu %8lu %8lu", 0ul, 0ul, 0ul);
2987 }
2988 seq_putc(seq, '\n');
2989 }
2990 return 0;
2991}
2992
2993static const struct seq_operations ipmr_mfc_seq_ops = {
2994 .start = ipmr_mfc_seq_start,
2995 .next = mr_mfc_seq_next,
2996 .stop = mr_mfc_seq_stop,
2997 .show = ipmr_mfc_seq_show,
2998};
2999#endif
3000
3001#ifdef CONFIG_IP_PIMSM_V2
3002static const struct net_protocol pim_protocol = {
3003 .handler = pim_rcv,
3004 .netns_ok = 1,
3005};
3006#endif
3007
3008static unsigned int ipmr_seq_read(struct net *net)
3009{
3010 ASSERT_RTNL();
3011
3012 return net->ipv4.ipmr_seq + ipmr_rules_seq_read(net);
3013}
3014
3015static int ipmr_dump(struct net *net, struct notifier_block *nb,
3016 struct netlink_ext_ack *extack)
3017{
3018 return mr_dump(net, nb, RTNL_FAMILY_IPMR, ipmr_rules_dump,
3019 ipmr_mr_table_iter, &mrt_lock, extack);
3020}
3021
3022static const struct fib_notifier_ops ipmr_notifier_ops_template = {
3023 .family = RTNL_FAMILY_IPMR,
3024 .fib_seq_read = ipmr_seq_read,
3025 .fib_dump = ipmr_dump,
3026 .owner = THIS_MODULE,
3027};
3028
3029static int __net_init ipmr_notifier_init(struct net *net)
3030{
3031 struct fib_notifier_ops *ops;
3032
3033 net->ipv4.ipmr_seq = 0;
3034
3035 ops = fib_notifier_ops_register(&ipmr_notifier_ops_template, net);
3036 if (IS_ERR(ops))
3037 return PTR_ERR(ops);
3038 net->ipv4.ipmr_notifier_ops = ops;
3039
3040 return 0;
3041}
3042
3043static void __net_exit ipmr_notifier_exit(struct net *net)
3044{
3045 fib_notifier_ops_unregister(net->ipv4.ipmr_notifier_ops);
3046 net->ipv4.ipmr_notifier_ops = NULL;
3047}
3048
3049/* Setup for IP multicast routing */
3050static int __net_init ipmr_net_init(struct net *net)
3051{
3052 int err;
3053
3054 err = ipmr_notifier_init(net);
3055 if (err)
3056 goto ipmr_notifier_fail;
3057
3058 err = ipmr_rules_init(net);
3059 if (err < 0)
3060 goto ipmr_rules_fail;
3061
3062#ifdef CONFIG_PROC_FS
3063 err = -ENOMEM;
3064 if (!proc_create_net("ip_mr_vif", 0, net->proc_net, &ipmr_vif_seq_ops,
3065 sizeof(struct mr_vif_iter)))
3066 goto proc_vif_fail;
3067 if (!proc_create_net("ip_mr_cache", 0, net->proc_net, &ipmr_mfc_seq_ops,
3068 sizeof(struct mr_mfc_iter)))
3069 goto proc_cache_fail;
3070#endif
3071 return 0;
3072
3073#ifdef CONFIG_PROC_FS
3074proc_cache_fail:
3075 remove_proc_entry("ip_mr_vif", net->proc_net);
3076proc_vif_fail:
3077 ipmr_rules_exit(net);
3078#endif
3079ipmr_rules_fail:
3080 ipmr_notifier_exit(net);
3081ipmr_notifier_fail:
3082 return err;
3083}
3084
3085static void __net_exit ipmr_net_exit(struct net *net)
3086{
3087#ifdef CONFIG_PROC_FS
3088 remove_proc_entry("ip_mr_cache", net->proc_net);
3089 remove_proc_entry("ip_mr_vif", net->proc_net);
3090#endif
3091 ipmr_notifier_exit(net);
3092 ipmr_rules_exit(net);
3093}
3094
3095static struct pernet_operations ipmr_net_ops = {
3096 .init = ipmr_net_init,
3097 .exit = ipmr_net_exit,
3098};
3099
3100int __init ip_mr_init(void)
3101{
3102 int err;
3103
3104 mrt_cachep = kmem_cache_create("ip_mrt_cache",
3105 sizeof(struct mfc_cache),
3106 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC,
3107 NULL);
3108
3109 err = register_pernet_subsys(&ipmr_net_ops);
3110 if (err)
3111 goto reg_pernet_fail;
3112
3113 err = register_netdevice_notifier(&ip_mr_notifier);
3114 if (err)
3115 goto reg_notif_fail;
3116#ifdef CONFIG_IP_PIMSM_V2
3117 if (inet_add_protocol(&pim_protocol, IPPROTO_PIM) < 0) {
3118 pr_err("%s: can't add PIM protocol\n", __func__);
3119 err = -EAGAIN;
3120 goto add_proto_fail;
3121 }
3122#endif
3123 rtnl_register(RTNL_FAMILY_IPMR, RTM_GETROUTE,
3124 ipmr_rtm_getroute, ipmr_rtm_dumproute, 0);
3125 rtnl_register(RTNL_FAMILY_IPMR, RTM_NEWROUTE,
3126 ipmr_rtm_route, NULL, 0);
3127 rtnl_register(RTNL_FAMILY_IPMR, RTM_DELROUTE,
3128 ipmr_rtm_route, NULL, 0);
3129
3130 rtnl_register(RTNL_FAMILY_IPMR, RTM_GETLINK,
3131 NULL, ipmr_rtm_dumplink, 0);
3132 return 0;
3133
3134#ifdef CONFIG_IP_PIMSM_V2
3135add_proto_fail:
3136 unregister_netdevice_notifier(&ip_mr_notifier);
3137#endif
3138reg_notif_fail:
3139 unregister_pernet_subsys(&ipmr_net_ops);
3140reg_pernet_fail:
3141 kmem_cache_destroy(mrt_cachep);
3142 return err;
3143}
1/*
2 * IP multicast routing support for mrouted 3.6/3.8
3 *
4 * (c) 1995 Alan Cox, <alan@lxorguk.ukuu.org.uk>
5 * Linux Consultancy and Custom Driver Development
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
11 *
12 * Fixes:
13 * Michael Chastain : Incorrect size of copying.
14 * Alan Cox : Added the cache manager code
15 * Alan Cox : Fixed the clone/copy bug and device race.
16 * Mike McLagan : Routing by source
17 * Malcolm Beattie : Buffer handling fixes.
18 * Alexey Kuznetsov : Double buffer free and other fixes.
19 * SVR Anand : Fixed several multicast bugs and problems.
20 * Alexey Kuznetsov : Status, optimisations and more.
21 * Brad Parker : Better behaviour on mrouted upcall
22 * overflow.
23 * Carlos Picoto : PIMv1 Support
24 * Pavlin Ivanov Radoslavov: PIMv2 Registers must checksum only PIM header
25 * Relax this requirement to work with older peers.
26 *
27 */
28
29#include <asm/uaccess.h>
30#include <linux/types.h>
31#include <linux/capability.h>
32#include <linux/errno.h>
33#include <linux/timer.h>
34#include <linux/mm.h>
35#include <linux/kernel.h>
36#include <linux/fcntl.h>
37#include <linux/stat.h>
38#include <linux/socket.h>
39#include <linux/in.h>
40#include <linux/inet.h>
41#include <linux/netdevice.h>
42#include <linux/inetdevice.h>
43#include <linux/igmp.h>
44#include <linux/proc_fs.h>
45#include <linux/seq_file.h>
46#include <linux/mroute.h>
47#include <linux/init.h>
48#include <linux/if_ether.h>
49#include <linux/slab.h>
50#include <net/net_namespace.h>
51#include <net/ip.h>
52#include <net/protocol.h>
53#include <linux/skbuff.h>
54#include <net/route.h>
55#include <net/sock.h>
56#include <net/icmp.h>
57#include <net/udp.h>
58#include <net/raw.h>
59#include <linux/notifier.h>
60#include <linux/if_arp.h>
61#include <linux/netfilter_ipv4.h>
62#include <linux/compat.h>
63#include <linux/export.h>
64#include <net/ipip.h>
65#include <net/checksum.h>
66#include <net/netlink.h>
67#include <net/fib_rules.h>
68
69#if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
70#define CONFIG_IP_PIMSM 1
71#endif
72
73struct mr_table {
74 struct list_head list;
75#ifdef CONFIG_NET_NS
76 struct net *net;
77#endif
78 u32 id;
79 struct sock __rcu *mroute_sk;
80 struct timer_list ipmr_expire_timer;
81 struct list_head mfc_unres_queue;
82 struct list_head mfc_cache_array[MFC_LINES];
83 struct vif_device vif_table[MAXVIFS];
84 int maxvif;
85 atomic_t cache_resolve_queue_len;
86 int mroute_do_assert;
87 int mroute_do_pim;
88#if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
89 int mroute_reg_vif_num;
90#endif
91};
92
93struct ipmr_rule {
94 struct fib_rule common;
95};
96
97struct ipmr_result {
98 struct mr_table *mrt;
99};
100
101/* Big lock, protecting vif table, mrt cache and mroute socket state.
102 * Note that the changes are semaphored via rtnl_lock.
103 */
104
105static DEFINE_RWLOCK(mrt_lock);
106
107/*
108 * Multicast router control variables
109 */
110
111#define VIF_EXISTS(_mrt, _idx) ((_mrt)->vif_table[_idx].dev != NULL)
112
113/* Special spinlock for queue of unresolved entries */
114static DEFINE_SPINLOCK(mfc_unres_lock);
115
116/* We return to original Alan's scheme. Hash table of resolved
117 * entries is changed only in process context and protected
118 * with weak lock mrt_lock. Queue of unresolved entries is protected
119 * with strong spinlock mfc_unres_lock.
120 *
121 * In this case data path is free of exclusive locks at all.
122 */
123
124static struct kmem_cache *mrt_cachep __read_mostly;
125
126static struct mr_table *ipmr_new_table(struct net *net, u32 id);
127static void ipmr_free_table(struct mr_table *mrt);
128
129static int ip_mr_forward(struct net *net, struct mr_table *mrt,
130 struct sk_buff *skb, struct mfc_cache *cache,
131 int local);
132static int ipmr_cache_report(struct mr_table *mrt,
133 struct sk_buff *pkt, vifi_t vifi, int assert);
134static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
135 struct mfc_cache *c, struct rtmsg *rtm);
136static void mroute_clean_tables(struct mr_table *mrt);
137static void ipmr_expire_process(unsigned long arg);
138
139#ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
140#define ipmr_for_each_table(mrt, net) \
141 list_for_each_entry_rcu(mrt, &net->ipv4.mr_tables, list)
142
143static struct mr_table *ipmr_get_table(struct net *net, u32 id)
144{
145 struct mr_table *mrt;
146
147 ipmr_for_each_table(mrt, net) {
148 if (mrt->id == id)
149 return mrt;
150 }
151 return NULL;
152}
153
154static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
155 struct mr_table **mrt)
156{
157 struct ipmr_result res;
158 struct fib_lookup_arg arg = { .result = &res, };
159 int err;
160
161 err = fib_rules_lookup(net->ipv4.mr_rules_ops,
162 flowi4_to_flowi(flp4), 0, &arg);
163 if (err < 0)
164 return err;
165 *mrt = res.mrt;
166 return 0;
167}
168
169static int ipmr_rule_action(struct fib_rule *rule, struct flowi *flp,
170 int flags, struct fib_lookup_arg *arg)
171{
172 struct ipmr_result *res = arg->result;
173 struct mr_table *mrt;
174
175 switch (rule->action) {
176 case FR_ACT_TO_TBL:
177 break;
178 case FR_ACT_UNREACHABLE:
179 return -ENETUNREACH;
180 case FR_ACT_PROHIBIT:
181 return -EACCES;
182 case FR_ACT_BLACKHOLE:
183 default:
184 return -EINVAL;
185 }
186
187 mrt = ipmr_get_table(rule->fr_net, rule->table);
188 if (mrt == NULL)
189 return -EAGAIN;
190 res->mrt = mrt;
191 return 0;
192}
193
194static int ipmr_rule_match(struct fib_rule *rule, struct flowi *fl, int flags)
195{
196 return 1;
197}
198
199static const struct nla_policy ipmr_rule_policy[FRA_MAX + 1] = {
200 FRA_GENERIC_POLICY,
201};
202
203static int ipmr_rule_configure(struct fib_rule *rule, struct sk_buff *skb,
204 struct fib_rule_hdr *frh, struct nlattr **tb)
205{
206 return 0;
207}
208
209static int ipmr_rule_compare(struct fib_rule *rule, struct fib_rule_hdr *frh,
210 struct nlattr **tb)
211{
212 return 1;
213}
214
215static int ipmr_rule_fill(struct fib_rule *rule, struct sk_buff *skb,
216 struct fib_rule_hdr *frh)
217{
218 frh->dst_len = 0;
219 frh->src_len = 0;
220 frh->tos = 0;
221 return 0;
222}
223
224static const struct fib_rules_ops __net_initdata ipmr_rules_ops_template = {
225 .family = RTNL_FAMILY_IPMR,
226 .rule_size = sizeof(struct ipmr_rule),
227 .addr_size = sizeof(u32),
228 .action = ipmr_rule_action,
229 .match = ipmr_rule_match,
230 .configure = ipmr_rule_configure,
231 .compare = ipmr_rule_compare,
232 .default_pref = fib_default_rule_pref,
233 .fill = ipmr_rule_fill,
234 .nlgroup = RTNLGRP_IPV4_RULE,
235 .policy = ipmr_rule_policy,
236 .owner = THIS_MODULE,
237};
238
239static int __net_init ipmr_rules_init(struct net *net)
240{
241 struct fib_rules_ops *ops;
242 struct mr_table *mrt;
243 int err;
244
245 ops = fib_rules_register(&ipmr_rules_ops_template, net);
246 if (IS_ERR(ops))
247 return PTR_ERR(ops);
248
249 INIT_LIST_HEAD(&net->ipv4.mr_tables);
250
251 mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
252 if (mrt == NULL) {
253 err = -ENOMEM;
254 goto err1;
255 }
256
257 err = fib_default_rule_add(ops, 0x7fff, RT_TABLE_DEFAULT, 0);
258 if (err < 0)
259 goto err2;
260
261 net->ipv4.mr_rules_ops = ops;
262 return 0;
263
264err2:
265 kfree(mrt);
266err1:
267 fib_rules_unregister(ops);
268 return err;
269}
270
271static void __net_exit ipmr_rules_exit(struct net *net)
272{
273 struct mr_table *mrt, *next;
274
275 list_for_each_entry_safe(mrt, next, &net->ipv4.mr_tables, list) {
276 list_del(&mrt->list);
277 ipmr_free_table(mrt);
278 }
279 fib_rules_unregister(net->ipv4.mr_rules_ops);
280}
281#else
282#define ipmr_for_each_table(mrt, net) \
283 for (mrt = net->ipv4.mrt; mrt; mrt = NULL)
284
285static struct mr_table *ipmr_get_table(struct net *net, u32 id)
286{
287 return net->ipv4.mrt;
288}
289
290static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
291 struct mr_table **mrt)
292{
293 *mrt = net->ipv4.mrt;
294 return 0;
295}
296
297static int __net_init ipmr_rules_init(struct net *net)
298{
299 net->ipv4.mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
300 return net->ipv4.mrt ? 0 : -ENOMEM;
301}
302
303static void __net_exit ipmr_rules_exit(struct net *net)
304{
305 ipmr_free_table(net->ipv4.mrt);
306}
307#endif
308
309static struct mr_table *ipmr_new_table(struct net *net, u32 id)
310{
311 struct mr_table *mrt;
312 unsigned int i;
313
314 mrt = ipmr_get_table(net, id);
315 if (mrt != NULL)
316 return mrt;
317
318 mrt = kzalloc(sizeof(*mrt), GFP_KERNEL);
319 if (mrt == NULL)
320 return NULL;
321 write_pnet(&mrt->net, net);
322 mrt->id = id;
323
324 /* Forwarding cache */
325 for (i = 0; i < MFC_LINES; i++)
326 INIT_LIST_HEAD(&mrt->mfc_cache_array[i]);
327
328 INIT_LIST_HEAD(&mrt->mfc_unres_queue);
329
330 setup_timer(&mrt->ipmr_expire_timer, ipmr_expire_process,
331 (unsigned long)mrt);
332
333#ifdef CONFIG_IP_PIMSM
334 mrt->mroute_reg_vif_num = -1;
335#endif
336#ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
337 list_add_tail_rcu(&mrt->list, &net->ipv4.mr_tables);
338#endif
339 return mrt;
340}
341
342static void ipmr_free_table(struct mr_table *mrt)
343{
344 del_timer_sync(&mrt->ipmr_expire_timer);
345 mroute_clean_tables(mrt);
346 kfree(mrt);
347}
348
349/* Service routines creating virtual interfaces: DVMRP tunnels and PIMREG */
350
351static void ipmr_del_tunnel(struct net_device *dev, struct vifctl *v)
352{
353 struct net *net = dev_net(dev);
354
355 dev_close(dev);
356
357 dev = __dev_get_by_name(net, "tunl0");
358 if (dev) {
359 const struct net_device_ops *ops = dev->netdev_ops;
360 struct ifreq ifr;
361 struct ip_tunnel_parm p;
362
363 memset(&p, 0, sizeof(p));
364 p.iph.daddr = v->vifc_rmt_addr.s_addr;
365 p.iph.saddr = v->vifc_lcl_addr.s_addr;
366 p.iph.version = 4;
367 p.iph.ihl = 5;
368 p.iph.protocol = IPPROTO_IPIP;
369 sprintf(p.name, "dvmrp%d", v->vifc_vifi);
370 ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
371
372 if (ops->ndo_do_ioctl) {
373 mm_segment_t oldfs = get_fs();
374
375 set_fs(KERNEL_DS);
376 ops->ndo_do_ioctl(dev, &ifr, SIOCDELTUNNEL);
377 set_fs(oldfs);
378 }
379 }
380}
381
382static
383struct net_device *ipmr_new_tunnel(struct net *net, struct vifctl *v)
384{
385 struct net_device *dev;
386
387 dev = __dev_get_by_name(net, "tunl0");
388
389 if (dev) {
390 const struct net_device_ops *ops = dev->netdev_ops;
391 int err;
392 struct ifreq ifr;
393 struct ip_tunnel_parm p;
394 struct in_device *in_dev;
395
396 memset(&p, 0, sizeof(p));
397 p.iph.daddr = v->vifc_rmt_addr.s_addr;
398 p.iph.saddr = v->vifc_lcl_addr.s_addr;
399 p.iph.version = 4;
400 p.iph.ihl = 5;
401 p.iph.protocol = IPPROTO_IPIP;
402 sprintf(p.name, "dvmrp%d", v->vifc_vifi);
403 ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
404
405 if (ops->ndo_do_ioctl) {
406 mm_segment_t oldfs = get_fs();
407
408 set_fs(KERNEL_DS);
409 err = ops->ndo_do_ioctl(dev, &ifr, SIOCADDTUNNEL);
410 set_fs(oldfs);
411 } else {
412 err = -EOPNOTSUPP;
413 }
414 dev = NULL;
415
416 if (err == 0 &&
417 (dev = __dev_get_by_name(net, p.name)) != NULL) {
418 dev->flags |= IFF_MULTICAST;
419
420 in_dev = __in_dev_get_rtnl(dev);
421 if (in_dev == NULL)
422 goto failure;
423
424 ipv4_devconf_setall(in_dev);
425 IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
426
427 if (dev_open(dev))
428 goto failure;
429 dev_hold(dev);
430 }
431 }
432 return dev;
433
434failure:
435 /* allow the register to be completed before unregistering. */
436 rtnl_unlock();
437 rtnl_lock();
438
439 unregister_netdevice(dev);
440 return NULL;
441}
442
443#ifdef CONFIG_IP_PIMSM
444
445static netdev_tx_t reg_vif_xmit(struct sk_buff *skb, struct net_device *dev)
446{
447 struct net *net = dev_net(dev);
448 struct mr_table *mrt;
449 struct flowi4 fl4 = {
450 .flowi4_oif = dev->ifindex,
451 .flowi4_iif = skb->skb_iif,
452 .flowi4_mark = skb->mark,
453 };
454 int err;
455
456 err = ipmr_fib_lookup(net, &fl4, &mrt);
457 if (err < 0) {
458 kfree_skb(skb);
459 return err;
460 }
461
462 read_lock(&mrt_lock);
463 dev->stats.tx_bytes += skb->len;
464 dev->stats.tx_packets++;
465 ipmr_cache_report(mrt, skb, mrt->mroute_reg_vif_num, IGMPMSG_WHOLEPKT);
466 read_unlock(&mrt_lock);
467 kfree_skb(skb);
468 return NETDEV_TX_OK;
469}
470
471static const struct net_device_ops reg_vif_netdev_ops = {
472 .ndo_start_xmit = reg_vif_xmit,
473};
474
475static void reg_vif_setup(struct net_device *dev)
476{
477 dev->type = ARPHRD_PIMREG;
478 dev->mtu = ETH_DATA_LEN - sizeof(struct iphdr) - 8;
479 dev->flags = IFF_NOARP;
480 dev->netdev_ops = ®_vif_netdev_ops,
481 dev->destructor = free_netdev;
482 dev->features |= NETIF_F_NETNS_LOCAL;
483}
484
485static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
486{
487 struct net_device *dev;
488 struct in_device *in_dev;
489 char name[IFNAMSIZ];
490
491 if (mrt->id == RT_TABLE_DEFAULT)
492 sprintf(name, "pimreg");
493 else
494 sprintf(name, "pimreg%u", mrt->id);
495
496 dev = alloc_netdev(0, name, reg_vif_setup);
497
498 if (dev == NULL)
499 return NULL;
500
501 dev_net_set(dev, net);
502
503 if (register_netdevice(dev)) {
504 free_netdev(dev);
505 return NULL;
506 }
507 dev->iflink = 0;
508
509 rcu_read_lock();
510 in_dev = __in_dev_get_rcu(dev);
511 if (!in_dev) {
512 rcu_read_unlock();
513 goto failure;
514 }
515
516 ipv4_devconf_setall(in_dev);
517 IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
518 rcu_read_unlock();
519
520 if (dev_open(dev))
521 goto failure;
522
523 dev_hold(dev);
524
525 return dev;
526
527failure:
528 /* allow the register to be completed before unregistering. */
529 rtnl_unlock();
530 rtnl_lock();
531
532 unregister_netdevice(dev);
533 return NULL;
534}
535#endif
536
537/*
538 * Delete a VIF entry
539 * @notify: Set to 1, if the caller is a notifier_call
540 */
541
542static int vif_delete(struct mr_table *mrt, int vifi, int notify,
543 struct list_head *head)
544{
545 struct vif_device *v;
546 struct net_device *dev;
547 struct in_device *in_dev;
548
549 if (vifi < 0 || vifi >= mrt->maxvif)
550 return -EADDRNOTAVAIL;
551
552 v = &mrt->vif_table[vifi];
553
554 write_lock_bh(&mrt_lock);
555 dev = v->dev;
556 v->dev = NULL;
557
558 if (!dev) {
559 write_unlock_bh(&mrt_lock);
560 return -EADDRNOTAVAIL;
561 }
562
563#ifdef CONFIG_IP_PIMSM
564 if (vifi == mrt->mroute_reg_vif_num)
565 mrt->mroute_reg_vif_num = -1;
566#endif
567
568 if (vifi + 1 == mrt->maxvif) {
569 int tmp;
570
571 for (tmp = vifi - 1; tmp >= 0; tmp--) {
572 if (VIF_EXISTS(mrt, tmp))
573 break;
574 }
575 mrt->maxvif = tmp+1;
576 }
577
578 write_unlock_bh(&mrt_lock);
579
580 dev_set_allmulti(dev, -1);
581
582 in_dev = __in_dev_get_rtnl(dev);
583 if (in_dev) {
584 IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)--;
585 ip_rt_multicast_event(in_dev);
586 }
587
588 if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER) && !notify)
589 unregister_netdevice_queue(dev, head);
590
591 dev_put(dev);
592 return 0;
593}
594
595static void ipmr_cache_free_rcu(struct rcu_head *head)
596{
597 struct mfc_cache *c = container_of(head, struct mfc_cache, rcu);
598
599 kmem_cache_free(mrt_cachep, c);
600}
601
602static inline void ipmr_cache_free(struct mfc_cache *c)
603{
604 call_rcu(&c->rcu, ipmr_cache_free_rcu);
605}
606
607/* Destroy an unresolved cache entry, killing queued skbs
608 * and reporting error to netlink readers.
609 */
610
611static void ipmr_destroy_unres(struct mr_table *mrt, struct mfc_cache *c)
612{
613 struct net *net = read_pnet(&mrt->net);
614 struct sk_buff *skb;
615 struct nlmsgerr *e;
616
617 atomic_dec(&mrt->cache_resolve_queue_len);
618
619 while ((skb = skb_dequeue(&c->mfc_un.unres.unresolved))) {
620 if (ip_hdr(skb)->version == 0) {
621 struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr));
622 nlh->nlmsg_type = NLMSG_ERROR;
623 nlh->nlmsg_len = NLMSG_LENGTH(sizeof(struct nlmsgerr));
624 skb_trim(skb, nlh->nlmsg_len);
625 e = NLMSG_DATA(nlh);
626 e->error = -ETIMEDOUT;
627 memset(&e->msg, 0, sizeof(e->msg));
628
629 rtnl_unicast(skb, net, NETLINK_CB(skb).pid);
630 } else {
631 kfree_skb(skb);
632 }
633 }
634
635 ipmr_cache_free(c);
636}
637
638
639/* Timer process for the unresolved queue. */
640
641static void ipmr_expire_process(unsigned long arg)
642{
643 struct mr_table *mrt = (struct mr_table *)arg;
644 unsigned long now;
645 unsigned long expires;
646 struct mfc_cache *c, *next;
647
648 if (!spin_trylock(&mfc_unres_lock)) {
649 mod_timer(&mrt->ipmr_expire_timer, jiffies+HZ/10);
650 return;
651 }
652
653 if (list_empty(&mrt->mfc_unres_queue))
654 goto out;
655
656 now = jiffies;
657 expires = 10*HZ;
658
659 list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
660 if (time_after(c->mfc_un.unres.expires, now)) {
661 unsigned long interval = c->mfc_un.unres.expires - now;
662 if (interval < expires)
663 expires = interval;
664 continue;
665 }
666
667 list_del(&c->list);
668 ipmr_destroy_unres(mrt, c);
669 }
670
671 if (!list_empty(&mrt->mfc_unres_queue))
672 mod_timer(&mrt->ipmr_expire_timer, jiffies + expires);
673
674out:
675 spin_unlock(&mfc_unres_lock);
676}
677
678/* Fill oifs list. It is called under write locked mrt_lock. */
679
680static void ipmr_update_thresholds(struct mr_table *mrt, struct mfc_cache *cache,
681 unsigned char *ttls)
682{
683 int vifi;
684
685 cache->mfc_un.res.minvif = MAXVIFS;
686 cache->mfc_un.res.maxvif = 0;
687 memset(cache->mfc_un.res.ttls, 255, MAXVIFS);
688
689 for (vifi = 0; vifi < mrt->maxvif; vifi++) {
690 if (VIF_EXISTS(mrt, vifi) &&
691 ttls[vifi] && ttls[vifi] < 255) {
692 cache->mfc_un.res.ttls[vifi] = ttls[vifi];
693 if (cache->mfc_un.res.minvif > vifi)
694 cache->mfc_un.res.minvif = vifi;
695 if (cache->mfc_un.res.maxvif <= vifi)
696 cache->mfc_un.res.maxvif = vifi + 1;
697 }
698 }
699}
700
701static int vif_add(struct net *net, struct mr_table *mrt,
702 struct vifctl *vifc, int mrtsock)
703{
704 int vifi = vifc->vifc_vifi;
705 struct vif_device *v = &mrt->vif_table[vifi];
706 struct net_device *dev;
707 struct in_device *in_dev;
708 int err;
709
710 /* Is vif busy ? */
711 if (VIF_EXISTS(mrt, vifi))
712 return -EADDRINUSE;
713
714 switch (vifc->vifc_flags) {
715#ifdef CONFIG_IP_PIMSM
716 case VIFF_REGISTER:
717 /*
718 * Special Purpose VIF in PIM
719 * All the packets will be sent to the daemon
720 */
721 if (mrt->mroute_reg_vif_num >= 0)
722 return -EADDRINUSE;
723 dev = ipmr_reg_vif(net, mrt);
724 if (!dev)
725 return -ENOBUFS;
726 err = dev_set_allmulti(dev, 1);
727 if (err) {
728 unregister_netdevice(dev);
729 dev_put(dev);
730 return err;
731 }
732 break;
733#endif
734 case VIFF_TUNNEL:
735 dev = ipmr_new_tunnel(net, vifc);
736 if (!dev)
737 return -ENOBUFS;
738 err = dev_set_allmulti(dev, 1);
739 if (err) {
740 ipmr_del_tunnel(dev, vifc);
741 dev_put(dev);
742 return err;
743 }
744 break;
745
746 case VIFF_USE_IFINDEX:
747 case 0:
748 if (vifc->vifc_flags == VIFF_USE_IFINDEX) {
749 dev = dev_get_by_index(net, vifc->vifc_lcl_ifindex);
750 if (dev && __in_dev_get_rtnl(dev) == NULL) {
751 dev_put(dev);
752 return -EADDRNOTAVAIL;
753 }
754 } else {
755 dev = ip_dev_find(net, vifc->vifc_lcl_addr.s_addr);
756 }
757 if (!dev)
758 return -EADDRNOTAVAIL;
759 err = dev_set_allmulti(dev, 1);
760 if (err) {
761 dev_put(dev);
762 return err;
763 }
764 break;
765 default:
766 return -EINVAL;
767 }
768
769 in_dev = __in_dev_get_rtnl(dev);
770 if (!in_dev) {
771 dev_put(dev);
772 return -EADDRNOTAVAIL;
773 }
774 IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)++;
775 ip_rt_multicast_event(in_dev);
776
777 /* Fill in the VIF structures */
778
779 v->rate_limit = vifc->vifc_rate_limit;
780 v->local = vifc->vifc_lcl_addr.s_addr;
781 v->remote = vifc->vifc_rmt_addr.s_addr;
782 v->flags = vifc->vifc_flags;
783 if (!mrtsock)
784 v->flags |= VIFF_STATIC;
785 v->threshold = vifc->vifc_threshold;
786 v->bytes_in = 0;
787 v->bytes_out = 0;
788 v->pkt_in = 0;
789 v->pkt_out = 0;
790 v->link = dev->ifindex;
791 if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER))
792 v->link = dev->iflink;
793
794 /* And finish update writing critical data */
795 write_lock_bh(&mrt_lock);
796 v->dev = dev;
797#ifdef CONFIG_IP_PIMSM
798 if (v->flags & VIFF_REGISTER)
799 mrt->mroute_reg_vif_num = vifi;
800#endif
801 if (vifi+1 > mrt->maxvif)
802 mrt->maxvif = vifi+1;
803 write_unlock_bh(&mrt_lock);
804 return 0;
805}
806
807/* called with rcu_read_lock() */
808static struct mfc_cache *ipmr_cache_find(struct mr_table *mrt,
809 __be32 origin,
810 __be32 mcastgrp)
811{
812 int line = MFC_HASH(mcastgrp, origin);
813 struct mfc_cache *c;
814
815 list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list) {
816 if (c->mfc_origin == origin && c->mfc_mcastgrp == mcastgrp)
817 return c;
818 }
819 return NULL;
820}
821
822/*
823 * Allocate a multicast cache entry
824 */
825static struct mfc_cache *ipmr_cache_alloc(void)
826{
827 struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_KERNEL);
828
829 if (c)
830 c->mfc_un.res.minvif = MAXVIFS;
831 return c;
832}
833
834static struct mfc_cache *ipmr_cache_alloc_unres(void)
835{
836 struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC);
837
838 if (c) {
839 skb_queue_head_init(&c->mfc_un.unres.unresolved);
840 c->mfc_un.unres.expires = jiffies + 10*HZ;
841 }
842 return c;
843}
844
845/*
846 * A cache entry has gone into a resolved state from queued
847 */
848
849static void ipmr_cache_resolve(struct net *net, struct mr_table *mrt,
850 struct mfc_cache *uc, struct mfc_cache *c)
851{
852 struct sk_buff *skb;
853 struct nlmsgerr *e;
854
855 /* Play the pending entries through our router */
856
857 while ((skb = __skb_dequeue(&uc->mfc_un.unres.unresolved))) {
858 if (ip_hdr(skb)->version == 0) {
859 struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr));
860
861 if (__ipmr_fill_mroute(mrt, skb, c, NLMSG_DATA(nlh)) > 0) {
862 nlh->nlmsg_len = skb_tail_pointer(skb) -
863 (u8 *)nlh;
864 } else {
865 nlh->nlmsg_type = NLMSG_ERROR;
866 nlh->nlmsg_len = NLMSG_LENGTH(sizeof(struct nlmsgerr));
867 skb_trim(skb, nlh->nlmsg_len);
868 e = NLMSG_DATA(nlh);
869 e->error = -EMSGSIZE;
870 memset(&e->msg, 0, sizeof(e->msg));
871 }
872
873 rtnl_unicast(skb, net, NETLINK_CB(skb).pid);
874 } else {
875 ip_mr_forward(net, mrt, skb, c, 0);
876 }
877 }
878}
879
880/*
881 * Bounce a cache query up to mrouted. We could use netlink for this but mrouted
882 * expects the following bizarre scheme.
883 *
884 * Called under mrt_lock.
885 */
886
887static int ipmr_cache_report(struct mr_table *mrt,
888 struct sk_buff *pkt, vifi_t vifi, int assert)
889{
890 struct sk_buff *skb;
891 const int ihl = ip_hdrlen(pkt);
892 struct igmphdr *igmp;
893 struct igmpmsg *msg;
894 struct sock *mroute_sk;
895 int ret;
896
897#ifdef CONFIG_IP_PIMSM
898 if (assert == IGMPMSG_WHOLEPKT)
899 skb = skb_realloc_headroom(pkt, sizeof(struct iphdr));
900 else
901#endif
902 skb = alloc_skb(128, GFP_ATOMIC);
903
904 if (!skb)
905 return -ENOBUFS;
906
907#ifdef CONFIG_IP_PIMSM
908 if (assert == IGMPMSG_WHOLEPKT) {
909 /* Ugly, but we have no choice with this interface.
910 * Duplicate old header, fix ihl, length etc.
911 * And all this only to mangle msg->im_msgtype and
912 * to set msg->im_mbz to "mbz" :-)
913 */
914 skb_push(skb, sizeof(struct iphdr));
915 skb_reset_network_header(skb);
916 skb_reset_transport_header(skb);
917 msg = (struct igmpmsg *)skb_network_header(skb);
918 memcpy(msg, skb_network_header(pkt), sizeof(struct iphdr));
919 msg->im_msgtype = IGMPMSG_WHOLEPKT;
920 msg->im_mbz = 0;
921 msg->im_vif = mrt->mroute_reg_vif_num;
922 ip_hdr(skb)->ihl = sizeof(struct iphdr) >> 2;
923 ip_hdr(skb)->tot_len = htons(ntohs(ip_hdr(pkt)->tot_len) +
924 sizeof(struct iphdr));
925 } else
926#endif
927 {
928
929 /* Copy the IP header */
930
931 skb->network_header = skb->tail;
932 skb_put(skb, ihl);
933 skb_copy_to_linear_data(skb, pkt->data, ihl);
934 ip_hdr(skb)->protocol = 0; /* Flag to the kernel this is a route add */
935 msg = (struct igmpmsg *)skb_network_header(skb);
936 msg->im_vif = vifi;
937 skb_dst_set(skb, dst_clone(skb_dst(pkt)));
938
939 /* Add our header */
940
941 igmp = (struct igmphdr *)skb_put(skb, sizeof(struct igmphdr));
942 igmp->type =
943 msg->im_msgtype = assert;
944 igmp->code = 0;
945 ip_hdr(skb)->tot_len = htons(skb->len); /* Fix the length */
946 skb->transport_header = skb->network_header;
947 }
948
949 rcu_read_lock();
950 mroute_sk = rcu_dereference(mrt->mroute_sk);
951 if (mroute_sk == NULL) {
952 rcu_read_unlock();
953 kfree_skb(skb);
954 return -EINVAL;
955 }
956
957 /* Deliver to mrouted */
958
959 ret = sock_queue_rcv_skb(mroute_sk, skb);
960 rcu_read_unlock();
961 if (ret < 0) {
962 net_warn_ratelimited("mroute: pending queue full, dropping entries\n");
963 kfree_skb(skb);
964 }
965
966 return ret;
967}
968
969/*
970 * Queue a packet for resolution. It gets locked cache entry!
971 */
972
973static int
974ipmr_cache_unresolved(struct mr_table *mrt, vifi_t vifi, struct sk_buff *skb)
975{
976 bool found = false;
977 int err;
978 struct mfc_cache *c;
979 const struct iphdr *iph = ip_hdr(skb);
980
981 spin_lock_bh(&mfc_unres_lock);
982 list_for_each_entry(c, &mrt->mfc_unres_queue, list) {
983 if (c->mfc_mcastgrp == iph->daddr &&
984 c->mfc_origin == iph->saddr) {
985 found = true;
986 break;
987 }
988 }
989
990 if (!found) {
991 /* Create a new entry if allowable */
992
993 if (atomic_read(&mrt->cache_resolve_queue_len) >= 10 ||
994 (c = ipmr_cache_alloc_unres()) == NULL) {
995 spin_unlock_bh(&mfc_unres_lock);
996
997 kfree_skb(skb);
998 return -ENOBUFS;
999 }
1000
1001 /* Fill in the new cache entry */
1002
1003 c->mfc_parent = -1;
1004 c->mfc_origin = iph->saddr;
1005 c->mfc_mcastgrp = iph->daddr;
1006
1007 /* Reflect first query at mrouted. */
1008
1009 err = ipmr_cache_report(mrt, skb, vifi, IGMPMSG_NOCACHE);
1010 if (err < 0) {
1011 /* If the report failed throw the cache entry
1012 out - Brad Parker
1013 */
1014 spin_unlock_bh(&mfc_unres_lock);
1015
1016 ipmr_cache_free(c);
1017 kfree_skb(skb);
1018 return err;
1019 }
1020
1021 atomic_inc(&mrt->cache_resolve_queue_len);
1022 list_add(&c->list, &mrt->mfc_unres_queue);
1023
1024 if (atomic_read(&mrt->cache_resolve_queue_len) == 1)
1025 mod_timer(&mrt->ipmr_expire_timer, c->mfc_un.unres.expires);
1026 }
1027
1028 /* See if we can append the packet */
1029
1030 if (c->mfc_un.unres.unresolved.qlen > 3) {
1031 kfree_skb(skb);
1032 err = -ENOBUFS;
1033 } else {
1034 skb_queue_tail(&c->mfc_un.unres.unresolved, skb);
1035 err = 0;
1036 }
1037
1038 spin_unlock_bh(&mfc_unres_lock);
1039 return err;
1040}
1041
1042/*
1043 * MFC cache manipulation by user space mroute daemon
1044 */
1045
1046static int ipmr_mfc_delete(struct mr_table *mrt, struct mfcctl *mfc)
1047{
1048 int line;
1049 struct mfc_cache *c, *next;
1050
1051 line = MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr);
1052
1053 list_for_each_entry_safe(c, next, &mrt->mfc_cache_array[line], list) {
1054 if (c->mfc_origin == mfc->mfcc_origin.s_addr &&
1055 c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr) {
1056 list_del_rcu(&c->list);
1057
1058 ipmr_cache_free(c);
1059 return 0;
1060 }
1061 }
1062 return -ENOENT;
1063}
1064
1065static int ipmr_mfc_add(struct net *net, struct mr_table *mrt,
1066 struct mfcctl *mfc, int mrtsock)
1067{
1068 bool found = false;
1069 int line;
1070 struct mfc_cache *uc, *c;
1071
1072 if (mfc->mfcc_parent >= MAXVIFS)
1073 return -ENFILE;
1074
1075 line = MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr);
1076
1077 list_for_each_entry(c, &mrt->mfc_cache_array[line], list) {
1078 if (c->mfc_origin == mfc->mfcc_origin.s_addr &&
1079 c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr) {
1080 found = true;
1081 break;
1082 }
1083 }
1084
1085 if (found) {
1086 write_lock_bh(&mrt_lock);
1087 c->mfc_parent = mfc->mfcc_parent;
1088 ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls);
1089 if (!mrtsock)
1090 c->mfc_flags |= MFC_STATIC;
1091 write_unlock_bh(&mrt_lock);
1092 return 0;
1093 }
1094
1095 if (!ipv4_is_multicast(mfc->mfcc_mcastgrp.s_addr))
1096 return -EINVAL;
1097
1098 c = ipmr_cache_alloc();
1099 if (c == NULL)
1100 return -ENOMEM;
1101
1102 c->mfc_origin = mfc->mfcc_origin.s_addr;
1103 c->mfc_mcastgrp = mfc->mfcc_mcastgrp.s_addr;
1104 c->mfc_parent = mfc->mfcc_parent;
1105 ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls);
1106 if (!mrtsock)
1107 c->mfc_flags |= MFC_STATIC;
1108
1109 list_add_rcu(&c->list, &mrt->mfc_cache_array[line]);
1110
1111 /*
1112 * Check to see if we resolved a queued list. If so we
1113 * need to send on the frames and tidy up.
1114 */
1115 found = false;
1116 spin_lock_bh(&mfc_unres_lock);
1117 list_for_each_entry(uc, &mrt->mfc_unres_queue, list) {
1118 if (uc->mfc_origin == c->mfc_origin &&
1119 uc->mfc_mcastgrp == c->mfc_mcastgrp) {
1120 list_del(&uc->list);
1121 atomic_dec(&mrt->cache_resolve_queue_len);
1122 found = true;
1123 break;
1124 }
1125 }
1126 if (list_empty(&mrt->mfc_unres_queue))
1127 del_timer(&mrt->ipmr_expire_timer);
1128 spin_unlock_bh(&mfc_unres_lock);
1129
1130 if (found) {
1131 ipmr_cache_resolve(net, mrt, uc, c);
1132 ipmr_cache_free(uc);
1133 }
1134 return 0;
1135}
1136
1137/*
1138 * Close the multicast socket, and clear the vif tables etc
1139 */
1140
1141static void mroute_clean_tables(struct mr_table *mrt)
1142{
1143 int i;
1144 LIST_HEAD(list);
1145 struct mfc_cache *c, *next;
1146
1147 /* Shut down all active vif entries */
1148
1149 for (i = 0; i < mrt->maxvif; i++) {
1150 if (!(mrt->vif_table[i].flags & VIFF_STATIC))
1151 vif_delete(mrt, i, 0, &list);
1152 }
1153 unregister_netdevice_many(&list);
1154
1155 /* Wipe the cache */
1156
1157 for (i = 0; i < MFC_LINES; i++) {
1158 list_for_each_entry_safe(c, next, &mrt->mfc_cache_array[i], list) {
1159 if (c->mfc_flags & MFC_STATIC)
1160 continue;
1161 list_del_rcu(&c->list);
1162 ipmr_cache_free(c);
1163 }
1164 }
1165
1166 if (atomic_read(&mrt->cache_resolve_queue_len) != 0) {
1167 spin_lock_bh(&mfc_unres_lock);
1168 list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
1169 list_del(&c->list);
1170 ipmr_destroy_unres(mrt, c);
1171 }
1172 spin_unlock_bh(&mfc_unres_lock);
1173 }
1174}
1175
1176/* called from ip_ra_control(), before an RCU grace period,
1177 * we dont need to call synchronize_rcu() here
1178 */
1179static void mrtsock_destruct(struct sock *sk)
1180{
1181 struct net *net = sock_net(sk);
1182 struct mr_table *mrt;
1183
1184 rtnl_lock();
1185 ipmr_for_each_table(mrt, net) {
1186 if (sk == rtnl_dereference(mrt->mroute_sk)) {
1187 IPV4_DEVCONF_ALL(net, MC_FORWARDING)--;
1188 RCU_INIT_POINTER(mrt->mroute_sk, NULL);
1189 mroute_clean_tables(mrt);
1190 }
1191 }
1192 rtnl_unlock();
1193}
1194
1195/*
1196 * Socket options and virtual interface manipulation. The whole
1197 * virtual interface system is a complete heap, but unfortunately
1198 * that's how BSD mrouted happens to think. Maybe one day with a proper
1199 * MOSPF/PIM router set up we can clean this up.
1200 */
1201
1202int ip_mroute_setsockopt(struct sock *sk, int optname, char __user *optval, unsigned int optlen)
1203{
1204 int ret;
1205 struct vifctl vif;
1206 struct mfcctl mfc;
1207 struct net *net = sock_net(sk);
1208 struct mr_table *mrt;
1209
1210 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1211 if (mrt == NULL)
1212 return -ENOENT;
1213
1214 if (optname != MRT_INIT) {
1215 if (sk != rcu_access_pointer(mrt->mroute_sk) &&
1216 !capable(CAP_NET_ADMIN))
1217 return -EACCES;
1218 }
1219
1220 switch (optname) {
1221 case MRT_INIT:
1222 if (sk->sk_type != SOCK_RAW ||
1223 inet_sk(sk)->inet_num != IPPROTO_IGMP)
1224 return -EOPNOTSUPP;
1225 if (optlen != sizeof(int))
1226 return -ENOPROTOOPT;
1227
1228 rtnl_lock();
1229 if (rtnl_dereference(mrt->mroute_sk)) {
1230 rtnl_unlock();
1231 return -EADDRINUSE;
1232 }
1233
1234 ret = ip_ra_control(sk, 1, mrtsock_destruct);
1235 if (ret == 0) {
1236 rcu_assign_pointer(mrt->mroute_sk, sk);
1237 IPV4_DEVCONF_ALL(net, MC_FORWARDING)++;
1238 }
1239 rtnl_unlock();
1240 return ret;
1241 case MRT_DONE:
1242 if (sk != rcu_access_pointer(mrt->mroute_sk))
1243 return -EACCES;
1244 return ip_ra_control(sk, 0, NULL);
1245 case MRT_ADD_VIF:
1246 case MRT_DEL_VIF:
1247 if (optlen != sizeof(vif))
1248 return -EINVAL;
1249 if (copy_from_user(&vif, optval, sizeof(vif)))
1250 return -EFAULT;
1251 if (vif.vifc_vifi >= MAXVIFS)
1252 return -ENFILE;
1253 rtnl_lock();
1254 if (optname == MRT_ADD_VIF) {
1255 ret = vif_add(net, mrt, &vif,
1256 sk == rtnl_dereference(mrt->mroute_sk));
1257 } else {
1258 ret = vif_delete(mrt, vif.vifc_vifi, 0, NULL);
1259 }
1260 rtnl_unlock();
1261 return ret;
1262
1263 /*
1264 * Manipulate the forwarding caches. These live
1265 * in a sort of kernel/user symbiosis.
1266 */
1267 case MRT_ADD_MFC:
1268 case MRT_DEL_MFC:
1269 if (optlen != sizeof(mfc))
1270 return -EINVAL;
1271 if (copy_from_user(&mfc, optval, sizeof(mfc)))
1272 return -EFAULT;
1273 rtnl_lock();
1274 if (optname == MRT_DEL_MFC)
1275 ret = ipmr_mfc_delete(mrt, &mfc);
1276 else
1277 ret = ipmr_mfc_add(net, mrt, &mfc,
1278 sk == rtnl_dereference(mrt->mroute_sk));
1279 rtnl_unlock();
1280 return ret;
1281 /*
1282 * Control PIM assert.
1283 */
1284 case MRT_ASSERT:
1285 {
1286 int v;
1287 if (get_user(v, (int __user *)optval))
1288 return -EFAULT;
1289 mrt->mroute_do_assert = (v) ? 1 : 0;
1290 return 0;
1291 }
1292#ifdef CONFIG_IP_PIMSM
1293 case MRT_PIM:
1294 {
1295 int v;
1296
1297 if (get_user(v, (int __user *)optval))
1298 return -EFAULT;
1299 v = (v) ? 1 : 0;
1300
1301 rtnl_lock();
1302 ret = 0;
1303 if (v != mrt->mroute_do_pim) {
1304 mrt->mroute_do_pim = v;
1305 mrt->mroute_do_assert = v;
1306 }
1307 rtnl_unlock();
1308 return ret;
1309 }
1310#endif
1311#ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
1312 case MRT_TABLE:
1313 {
1314 u32 v;
1315
1316 if (optlen != sizeof(u32))
1317 return -EINVAL;
1318 if (get_user(v, (u32 __user *)optval))
1319 return -EFAULT;
1320
1321 rtnl_lock();
1322 ret = 0;
1323 if (sk == rtnl_dereference(mrt->mroute_sk)) {
1324 ret = -EBUSY;
1325 } else {
1326 if (!ipmr_new_table(net, v))
1327 ret = -ENOMEM;
1328 raw_sk(sk)->ipmr_table = v;
1329 }
1330 rtnl_unlock();
1331 return ret;
1332 }
1333#endif
1334 /*
1335 * Spurious command, or MRT_VERSION which you cannot
1336 * set.
1337 */
1338 default:
1339 return -ENOPROTOOPT;
1340 }
1341}
1342
1343/*
1344 * Getsock opt support for the multicast routing system.
1345 */
1346
1347int ip_mroute_getsockopt(struct sock *sk, int optname, char __user *optval, int __user *optlen)
1348{
1349 int olr;
1350 int val;
1351 struct net *net = sock_net(sk);
1352 struct mr_table *mrt;
1353
1354 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1355 if (mrt == NULL)
1356 return -ENOENT;
1357
1358 if (optname != MRT_VERSION &&
1359#ifdef CONFIG_IP_PIMSM
1360 optname != MRT_PIM &&
1361#endif
1362 optname != MRT_ASSERT)
1363 return -ENOPROTOOPT;
1364
1365 if (get_user(olr, optlen))
1366 return -EFAULT;
1367
1368 olr = min_t(unsigned int, olr, sizeof(int));
1369 if (olr < 0)
1370 return -EINVAL;
1371
1372 if (put_user(olr, optlen))
1373 return -EFAULT;
1374 if (optname == MRT_VERSION)
1375 val = 0x0305;
1376#ifdef CONFIG_IP_PIMSM
1377 else if (optname == MRT_PIM)
1378 val = mrt->mroute_do_pim;
1379#endif
1380 else
1381 val = mrt->mroute_do_assert;
1382 if (copy_to_user(optval, &val, olr))
1383 return -EFAULT;
1384 return 0;
1385}
1386
1387/*
1388 * The IP multicast ioctl support routines.
1389 */
1390
1391int ipmr_ioctl(struct sock *sk, int cmd, void __user *arg)
1392{
1393 struct sioc_sg_req sr;
1394 struct sioc_vif_req vr;
1395 struct vif_device *vif;
1396 struct mfc_cache *c;
1397 struct net *net = sock_net(sk);
1398 struct mr_table *mrt;
1399
1400 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1401 if (mrt == NULL)
1402 return -ENOENT;
1403
1404 switch (cmd) {
1405 case SIOCGETVIFCNT:
1406 if (copy_from_user(&vr, arg, sizeof(vr)))
1407 return -EFAULT;
1408 if (vr.vifi >= mrt->maxvif)
1409 return -EINVAL;
1410 read_lock(&mrt_lock);
1411 vif = &mrt->vif_table[vr.vifi];
1412 if (VIF_EXISTS(mrt, vr.vifi)) {
1413 vr.icount = vif->pkt_in;
1414 vr.ocount = vif->pkt_out;
1415 vr.ibytes = vif->bytes_in;
1416 vr.obytes = vif->bytes_out;
1417 read_unlock(&mrt_lock);
1418
1419 if (copy_to_user(arg, &vr, sizeof(vr)))
1420 return -EFAULT;
1421 return 0;
1422 }
1423 read_unlock(&mrt_lock);
1424 return -EADDRNOTAVAIL;
1425 case SIOCGETSGCNT:
1426 if (copy_from_user(&sr, arg, sizeof(sr)))
1427 return -EFAULT;
1428
1429 rcu_read_lock();
1430 c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1431 if (c) {
1432 sr.pktcnt = c->mfc_un.res.pkt;
1433 sr.bytecnt = c->mfc_un.res.bytes;
1434 sr.wrong_if = c->mfc_un.res.wrong_if;
1435 rcu_read_unlock();
1436
1437 if (copy_to_user(arg, &sr, sizeof(sr)))
1438 return -EFAULT;
1439 return 0;
1440 }
1441 rcu_read_unlock();
1442 return -EADDRNOTAVAIL;
1443 default:
1444 return -ENOIOCTLCMD;
1445 }
1446}
1447
1448#ifdef CONFIG_COMPAT
1449struct compat_sioc_sg_req {
1450 struct in_addr src;
1451 struct in_addr grp;
1452 compat_ulong_t pktcnt;
1453 compat_ulong_t bytecnt;
1454 compat_ulong_t wrong_if;
1455};
1456
1457struct compat_sioc_vif_req {
1458 vifi_t vifi; /* Which iface */
1459 compat_ulong_t icount;
1460 compat_ulong_t ocount;
1461 compat_ulong_t ibytes;
1462 compat_ulong_t obytes;
1463};
1464
1465int ipmr_compat_ioctl(struct sock *sk, unsigned int cmd, void __user *arg)
1466{
1467 struct compat_sioc_sg_req sr;
1468 struct compat_sioc_vif_req vr;
1469 struct vif_device *vif;
1470 struct mfc_cache *c;
1471 struct net *net = sock_net(sk);
1472 struct mr_table *mrt;
1473
1474 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1475 if (mrt == NULL)
1476 return -ENOENT;
1477
1478 switch (cmd) {
1479 case SIOCGETVIFCNT:
1480 if (copy_from_user(&vr, arg, sizeof(vr)))
1481 return -EFAULT;
1482 if (vr.vifi >= mrt->maxvif)
1483 return -EINVAL;
1484 read_lock(&mrt_lock);
1485 vif = &mrt->vif_table[vr.vifi];
1486 if (VIF_EXISTS(mrt, vr.vifi)) {
1487 vr.icount = vif->pkt_in;
1488 vr.ocount = vif->pkt_out;
1489 vr.ibytes = vif->bytes_in;
1490 vr.obytes = vif->bytes_out;
1491 read_unlock(&mrt_lock);
1492
1493 if (copy_to_user(arg, &vr, sizeof(vr)))
1494 return -EFAULT;
1495 return 0;
1496 }
1497 read_unlock(&mrt_lock);
1498 return -EADDRNOTAVAIL;
1499 case SIOCGETSGCNT:
1500 if (copy_from_user(&sr, arg, sizeof(sr)))
1501 return -EFAULT;
1502
1503 rcu_read_lock();
1504 c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1505 if (c) {
1506 sr.pktcnt = c->mfc_un.res.pkt;
1507 sr.bytecnt = c->mfc_un.res.bytes;
1508 sr.wrong_if = c->mfc_un.res.wrong_if;
1509 rcu_read_unlock();
1510
1511 if (copy_to_user(arg, &sr, sizeof(sr)))
1512 return -EFAULT;
1513 return 0;
1514 }
1515 rcu_read_unlock();
1516 return -EADDRNOTAVAIL;
1517 default:
1518 return -ENOIOCTLCMD;
1519 }
1520}
1521#endif
1522
1523
1524static int ipmr_device_event(struct notifier_block *this, unsigned long event, void *ptr)
1525{
1526 struct net_device *dev = ptr;
1527 struct net *net = dev_net(dev);
1528 struct mr_table *mrt;
1529 struct vif_device *v;
1530 int ct;
1531
1532 if (event != NETDEV_UNREGISTER)
1533 return NOTIFY_DONE;
1534
1535 ipmr_for_each_table(mrt, net) {
1536 v = &mrt->vif_table[0];
1537 for (ct = 0; ct < mrt->maxvif; ct++, v++) {
1538 if (v->dev == dev)
1539 vif_delete(mrt, ct, 1, NULL);
1540 }
1541 }
1542 return NOTIFY_DONE;
1543}
1544
1545
1546static struct notifier_block ip_mr_notifier = {
1547 .notifier_call = ipmr_device_event,
1548};
1549
1550/*
1551 * Encapsulate a packet by attaching a valid IPIP header to it.
1552 * This avoids tunnel drivers and other mess and gives us the speed so
1553 * important for multicast video.
1554 */
1555
1556static void ip_encap(struct sk_buff *skb, __be32 saddr, __be32 daddr)
1557{
1558 struct iphdr *iph;
1559 const struct iphdr *old_iph = ip_hdr(skb);
1560
1561 skb_push(skb, sizeof(struct iphdr));
1562 skb->transport_header = skb->network_header;
1563 skb_reset_network_header(skb);
1564 iph = ip_hdr(skb);
1565
1566 iph->version = 4;
1567 iph->tos = old_iph->tos;
1568 iph->ttl = old_iph->ttl;
1569 iph->frag_off = 0;
1570 iph->daddr = daddr;
1571 iph->saddr = saddr;
1572 iph->protocol = IPPROTO_IPIP;
1573 iph->ihl = 5;
1574 iph->tot_len = htons(skb->len);
1575 ip_select_ident(iph, skb_dst(skb), NULL);
1576 ip_send_check(iph);
1577
1578 memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt));
1579 nf_reset(skb);
1580}
1581
1582static inline int ipmr_forward_finish(struct sk_buff *skb)
1583{
1584 struct ip_options *opt = &(IPCB(skb)->opt);
1585
1586 IP_INC_STATS_BH(dev_net(skb_dst(skb)->dev), IPSTATS_MIB_OUTFORWDATAGRAMS);
1587 IP_ADD_STATS_BH(dev_net(skb_dst(skb)->dev), IPSTATS_MIB_OUTOCTETS, skb->len);
1588
1589 if (unlikely(opt->optlen))
1590 ip_forward_options(skb);
1591
1592 return dst_output(skb);
1593}
1594
1595/*
1596 * Processing handlers for ipmr_forward
1597 */
1598
1599static void ipmr_queue_xmit(struct net *net, struct mr_table *mrt,
1600 struct sk_buff *skb, struct mfc_cache *c, int vifi)
1601{
1602 const struct iphdr *iph = ip_hdr(skb);
1603 struct vif_device *vif = &mrt->vif_table[vifi];
1604 struct net_device *dev;
1605 struct rtable *rt;
1606 struct flowi4 fl4;
1607 int encap = 0;
1608
1609 if (vif->dev == NULL)
1610 goto out_free;
1611
1612#ifdef CONFIG_IP_PIMSM
1613 if (vif->flags & VIFF_REGISTER) {
1614 vif->pkt_out++;
1615 vif->bytes_out += skb->len;
1616 vif->dev->stats.tx_bytes += skb->len;
1617 vif->dev->stats.tx_packets++;
1618 ipmr_cache_report(mrt, skb, vifi, IGMPMSG_WHOLEPKT);
1619 goto out_free;
1620 }
1621#endif
1622
1623 if (vif->flags & VIFF_TUNNEL) {
1624 rt = ip_route_output_ports(net, &fl4, NULL,
1625 vif->remote, vif->local,
1626 0, 0,
1627 IPPROTO_IPIP,
1628 RT_TOS(iph->tos), vif->link);
1629 if (IS_ERR(rt))
1630 goto out_free;
1631 encap = sizeof(struct iphdr);
1632 } else {
1633 rt = ip_route_output_ports(net, &fl4, NULL, iph->daddr, 0,
1634 0, 0,
1635 IPPROTO_IPIP,
1636 RT_TOS(iph->tos), vif->link);
1637 if (IS_ERR(rt))
1638 goto out_free;
1639 }
1640
1641 dev = rt->dst.dev;
1642
1643 if (skb->len+encap > dst_mtu(&rt->dst) && (ntohs(iph->frag_off) & IP_DF)) {
1644 /* Do not fragment multicasts. Alas, IPv4 does not
1645 * allow to send ICMP, so that packets will disappear
1646 * to blackhole.
1647 */
1648
1649 IP_INC_STATS_BH(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
1650 ip_rt_put(rt);
1651 goto out_free;
1652 }
1653
1654 encap += LL_RESERVED_SPACE(dev) + rt->dst.header_len;
1655
1656 if (skb_cow(skb, encap)) {
1657 ip_rt_put(rt);
1658 goto out_free;
1659 }
1660
1661 vif->pkt_out++;
1662 vif->bytes_out += skb->len;
1663
1664 skb_dst_drop(skb);
1665 skb_dst_set(skb, &rt->dst);
1666 ip_decrease_ttl(ip_hdr(skb));
1667
1668 /* FIXME: forward and output firewalls used to be called here.
1669 * What do we do with netfilter? -- RR
1670 */
1671 if (vif->flags & VIFF_TUNNEL) {
1672 ip_encap(skb, vif->local, vif->remote);
1673 /* FIXME: extra output firewall step used to be here. --RR */
1674 vif->dev->stats.tx_packets++;
1675 vif->dev->stats.tx_bytes += skb->len;
1676 }
1677
1678 IPCB(skb)->flags |= IPSKB_FORWARDED;
1679
1680 /*
1681 * RFC1584 teaches, that DVMRP/PIM router must deliver packets locally
1682 * not only before forwarding, but after forwarding on all output
1683 * interfaces. It is clear, if mrouter runs a multicasting
1684 * program, it should receive packets not depending to what interface
1685 * program is joined.
1686 * If we will not make it, the program will have to join on all
1687 * interfaces. On the other hand, multihoming host (or router, but
1688 * not mrouter) cannot join to more than one interface - it will
1689 * result in receiving multiple packets.
1690 */
1691 NF_HOOK(NFPROTO_IPV4, NF_INET_FORWARD, skb, skb->dev, dev,
1692 ipmr_forward_finish);
1693 return;
1694
1695out_free:
1696 kfree_skb(skb);
1697}
1698
1699static int ipmr_find_vif(struct mr_table *mrt, struct net_device *dev)
1700{
1701 int ct;
1702
1703 for (ct = mrt->maxvif-1; ct >= 0; ct--) {
1704 if (mrt->vif_table[ct].dev == dev)
1705 break;
1706 }
1707 return ct;
1708}
1709
1710/* "local" means that we should preserve one skb (for local delivery) */
1711
1712static int ip_mr_forward(struct net *net, struct mr_table *mrt,
1713 struct sk_buff *skb, struct mfc_cache *cache,
1714 int local)
1715{
1716 int psend = -1;
1717 int vif, ct;
1718
1719 vif = cache->mfc_parent;
1720 cache->mfc_un.res.pkt++;
1721 cache->mfc_un.res.bytes += skb->len;
1722
1723 /*
1724 * Wrong interface: drop packet and (maybe) send PIM assert.
1725 */
1726 if (mrt->vif_table[vif].dev != skb->dev) {
1727 int true_vifi;
1728
1729 if (rt_is_output_route(skb_rtable(skb))) {
1730 /* It is our own packet, looped back.
1731 * Very complicated situation...
1732 *
1733 * The best workaround until routing daemons will be
1734 * fixed is not to redistribute packet, if it was
1735 * send through wrong interface. It means, that
1736 * multicast applications WILL NOT work for
1737 * (S,G), which have default multicast route pointing
1738 * to wrong oif. In any case, it is not a good
1739 * idea to use multicasting applications on router.
1740 */
1741 goto dont_forward;
1742 }
1743
1744 cache->mfc_un.res.wrong_if++;
1745 true_vifi = ipmr_find_vif(mrt, skb->dev);
1746
1747 if (true_vifi >= 0 && mrt->mroute_do_assert &&
1748 /* pimsm uses asserts, when switching from RPT to SPT,
1749 * so that we cannot check that packet arrived on an oif.
1750 * It is bad, but otherwise we would need to move pretty
1751 * large chunk of pimd to kernel. Ough... --ANK
1752 */
1753 (mrt->mroute_do_pim ||
1754 cache->mfc_un.res.ttls[true_vifi] < 255) &&
1755 time_after(jiffies,
1756 cache->mfc_un.res.last_assert + MFC_ASSERT_THRESH)) {
1757 cache->mfc_un.res.last_assert = jiffies;
1758 ipmr_cache_report(mrt, skb, true_vifi, IGMPMSG_WRONGVIF);
1759 }
1760 goto dont_forward;
1761 }
1762
1763 mrt->vif_table[vif].pkt_in++;
1764 mrt->vif_table[vif].bytes_in += skb->len;
1765
1766 /*
1767 * Forward the frame
1768 */
1769 for (ct = cache->mfc_un.res.maxvif - 1;
1770 ct >= cache->mfc_un.res.minvif; ct--) {
1771 if (ip_hdr(skb)->ttl > cache->mfc_un.res.ttls[ct]) {
1772 if (psend != -1) {
1773 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1774
1775 if (skb2)
1776 ipmr_queue_xmit(net, mrt, skb2, cache,
1777 psend);
1778 }
1779 psend = ct;
1780 }
1781 }
1782 if (psend != -1) {
1783 if (local) {
1784 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1785
1786 if (skb2)
1787 ipmr_queue_xmit(net, mrt, skb2, cache, psend);
1788 } else {
1789 ipmr_queue_xmit(net, mrt, skb, cache, psend);
1790 return 0;
1791 }
1792 }
1793
1794dont_forward:
1795 if (!local)
1796 kfree_skb(skb);
1797 return 0;
1798}
1799
1800static struct mr_table *ipmr_rt_fib_lookup(struct net *net, struct sk_buff *skb)
1801{
1802 struct rtable *rt = skb_rtable(skb);
1803 struct iphdr *iph = ip_hdr(skb);
1804 struct flowi4 fl4 = {
1805 .daddr = iph->daddr,
1806 .saddr = iph->saddr,
1807 .flowi4_tos = RT_TOS(iph->tos),
1808 .flowi4_oif = rt->rt_oif,
1809 .flowi4_iif = rt->rt_iif,
1810 .flowi4_mark = rt->rt_mark,
1811 };
1812 struct mr_table *mrt;
1813 int err;
1814
1815 err = ipmr_fib_lookup(net, &fl4, &mrt);
1816 if (err)
1817 return ERR_PTR(err);
1818 return mrt;
1819}
1820
1821/*
1822 * Multicast packets for forwarding arrive here
1823 * Called with rcu_read_lock();
1824 */
1825
1826int ip_mr_input(struct sk_buff *skb)
1827{
1828 struct mfc_cache *cache;
1829 struct net *net = dev_net(skb->dev);
1830 int local = skb_rtable(skb)->rt_flags & RTCF_LOCAL;
1831 struct mr_table *mrt;
1832
1833 /* Packet is looped back after forward, it should not be
1834 * forwarded second time, but still can be delivered locally.
1835 */
1836 if (IPCB(skb)->flags & IPSKB_FORWARDED)
1837 goto dont_forward;
1838
1839 mrt = ipmr_rt_fib_lookup(net, skb);
1840 if (IS_ERR(mrt)) {
1841 kfree_skb(skb);
1842 return PTR_ERR(mrt);
1843 }
1844 if (!local) {
1845 if (IPCB(skb)->opt.router_alert) {
1846 if (ip_call_ra_chain(skb))
1847 return 0;
1848 } else if (ip_hdr(skb)->protocol == IPPROTO_IGMP) {
1849 /* IGMPv1 (and broken IGMPv2 implementations sort of
1850 * Cisco IOS <= 11.2(8)) do not put router alert
1851 * option to IGMP packets destined to routable
1852 * groups. It is very bad, because it means
1853 * that we can forward NO IGMP messages.
1854 */
1855 struct sock *mroute_sk;
1856
1857 mroute_sk = rcu_dereference(mrt->mroute_sk);
1858 if (mroute_sk) {
1859 nf_reset(skb);
1860 raw_rcv(mroute_sk, skb);
1861 return 0;
1862 }
1863 }
1864 }
1865
1866 /* already under rcu_read_lock() */
1867 cache = ipmr_cache_find(mrt, ip_hdr(skb)->saddr, ip_hdr(skb)->daddr);
1868
1869 /*
1870 * No usable cache entry
1871 */
1872 if (cache == NULL) {
1873 int vif;
1874
1875 if (local) {
1876 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1877 ip_local_deliver(skb);
1878 if (skb2 == NULL)
1879 return -ENOBUFS;
1880 skb = skb2;
1881 }
1882
1883 read_lock(&mrt_lock);
1884 vif = ipmr_find_vif(mrt, skb->dev);
1885 if (vif >= 0) {
1886 int err2 = ipmr_cache_unresolved(mrt, vif, skb);
1887 read_unlock(&mrt_lock);
1888
1889 return err2;
1890 }
1891 read_unlock(&mrt_lock);
1892 kfree_skb(skb);
1893 return -ENODEV;
1894 }
1895
1896 read_lock(&mrt_lock);
1897 ip_mr_forward(net, mrt, skb, cache, local);
1898 read_unlock(&mrt_lock);
1899
1900 if (local)
1901 return ip_local_deliver(skb);
1902
1903 return 0;
1904
1905dont_forward:
1906 if (local)
1907 return ip_local_deliver(skb);
1908 kfree_skb(skb);
1909 return 0;
1910}
1911
1912#ifdef CONFIG_IP_PIMSM
1913/* called with rcu_read_lock() */
1914static int __pim_rcv(struct mr_table *mrt, struct sk_buff *skb,
1915 unsigned int pimlen)
1916{
1917 struct net_device *reg_dev = NULL;
1918 struct iphdr *encap;
1919
1920 encap = (struct iphdr *)(skb_transport_header(skb) + pimlen);
1921 /*
1922 * Check that:
1923 * a. packet is really sent to a multicast group
1924 * b. packet is not a NULL-REGISTER
1925 * c. packet is not truncated
1926 */
1927 if (!ipv4_is_multicast(encap->daddr) ||
1928 encap->tot_len == 0 ||
1929 ntohs(encap->tot_len) + pimlen > skb->len)
1930 return 1;
1931
1932 read_lock(&mrt_lock);
1933 if (mrt->mroute_reg_vif_num >= 0)
1934 reg_dev = mrt->vif_table[mrt->mroute_reg_vif_num].dev;
1935 read_unlock(&mrt_lock);
1936
1937 if (reg_dev == NULL)
1938 return 1;
1939
1940 skb->mac_header = skb->network_header;
1941 skb_pull(skb, (u8 *)encap - skb->data);
1942 skb_reset_network_header(skb);
1943 skb->protocol = htons(ETH_P_IP);
1944 skb->ip_summed = CHECKSUM_NONE;
1945 skb->pkt_type = PACKET_HOST;
1946
1947 skb_tunnel_rx(skb, reg_dev);
1948
1949 netif_rx(skb);
1950
1951 return NET_RX_SUCCESS;
1952}
1953#endif
1954
1955#ifdef CONFIG_IP_PIMSM_V1
1956/*
1957 * Handle IGMP messages of PIMv1
1958 */
1959
1960int pim_rcv_v1(struct sk_buff *skb)
1961{
1962 struct igmphdr *pim;
1963 struct net *net = dev_net(skb->dev);
1964 struct mr_table *mrt;
1965
1966 if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
1967 goto drop;
1968
1969 pim = igmp_hdr(skb);
1970
1971 mrt = ipmr_rt_fib_lookup(net, skb);
1972 if (IS_ERR(mrt))
1973 goto drop;
1974 if (!mrt->mroute_do_pim ||
1975 pim->group != PIM_V1_VERSION || pim->code != PIM_V1_REGISTER)
1976 goto drop;
1977
1978 if (__pim_rcv(mrt, skb, sizeof(*pim))) {
1979drop:
1980 kfree_skb(skb);
1981 }
1982 return 0;
1983}
1984#endif
1985
1986#ifdef CONFIG_IP_PIMSM_V2
1987static int pim_rcv(struct sk_buff *skb)
1988{
1989 struct pimreghdr *pim;
1990 struct net *net = dev_net(skb->dev);
1991 struct mr_table *mrt;
1992
1993 if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
1994 goto drop;
1995
1996 pim = (struct pimreghdr *)skb_transport_header(skb);
1997 if (pim->type != ((PIM_VERSION << 4) | (PIM_REGISTER)) ||
1998 (pim->flags & PIM_NULL_REGISTER) ||
1999 (ip_compute_csum((void *)pim, sizeof(*pim)) != 0 &&
2000 csum_fold(skb_checksum(skb, 0, skb->len, 0))))
2001 goto drop;
2002
2003 mrt = ipmr_rt_fib_lookup(net, skb);
2004 if (IS_ERR(mrt))
2005 goto drop;
2006 if (__pim_rcv(mrt, skb, sizeof(*pim))) {
2007drop:
2008 kfree_skb(skb);
2009 }
2010 return 0;
2011}
2012#endif
2013
2014static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2015 struct mfc_cache *c, struct rtmsg *rtm)
2016{
2017 int ct;
2018 struct rtnexthop *nhp;
2019 u8 *b = skb_tail_pointer(skb);
2020 struct rtattr *mp_head;
2021
2022 /* If cache is unresolved, don't try to parse IIF and OIF */
2023 if (c->mfc_parent >= MAXVIFS)
2024 return -ENOENT;
2025
2026 if (VIF_EXISTS(mrt, c->mfc_parent))
2027 RTA_PUT(skb, RTA_IIF, 4, &mrt->vif_table[c->mfc_parent].dev->ifindex);
2028
2029 mp_head = (struct rtattr *)skb_put(skb, RTA_LENGTH(0));
2030
2031 for (ct = c->mfc_un.res.minvif; ct < c->mfc_un.res.maxvif; ct++) {
2032 if (VIF_EXISTS(mrt, ct) && c->mfc_un.res.ttls[ct] < 255) {
2033 if (skb_tailroom(skb) < RTA_ALIGN(RTA_ALIGN(sizeof(*nhp)) + 4))
2034 goto rtattr_failure;
2035 nhp = (struct rtnexthop *)skb_put(skb, RTA_ALIGN(sizeof(*nhp)));
2036 nhp->rtnh_flags = 0;
2037 nhp->rtnh_hops = c->mfc_un.res.ttls[ct];
2038 nhp->rtnh_ifindex = mrt->vif_table[ct].dev->ifindex;
2039 nhp->rtnh_len = sizeof(*nhp);
2040 }
2041 }
2042 mp_head->rta_type = RTA_MULTIPATH;
2043 mp_head->rta_len = skb_tail_pointer(skb) - (u8 *)mp_head;
2044 rtm->rtm_type = RTN_MULTICAST;
2045 return 1;
2046
2047rtattr_failure:
2048 nlmsg_trim(skb, b);
2049 return -EMSGSIZE;
2050}
2051
2052int ipmr_get_route(struct net *net, struct sk_buff *skb,
2053 __be32 saddr, __be32 daddr,
2054 struct rtmsg *rtm, int nowait)
2055{
2056 struct mfc_cache *cache;
2057 struct mr_table *mrt;
2058 int err;
2059
2060 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2061 if (mrt == NULL)
2062 return -ENOENT;
2063
2064 rcu_read_lock();
2065 cache = ipmr_cache_find(mrt, saddr, daddr);
2066
2067 if (cache == NULL) {
2068 struct sk_buff *skb2;
2069 struct iphdr *iph;
2070 struct net_device *dev;
2071 int vif = -1;
2072
2073 if (nowait) {
2074 rcu_read_unlock();
2075 return -EAGAIN;
2076 }
2077
2078 dev = skb->dev;
2079 read_lock(&mrt_lock);
2080 if (dev)
2081 vif = ipmr_find_vif(mrt, dev);
2082 if (vif < 0) {
2083 read_unlock(&mrt_lock);
2084 rcu_read_unlock();
2085 return -ENODEV;
2086 }
2087 skb2 = skb_clone(skb, GFP_ATOMIC);
2088 if (!skb2) {
2089 read_unlock(&mrt_lock);
2090 rcu_read_unlock();
2091 return -ENOMEM;
2092 }
2093
2094 skb_push(skb2, sizeof(struct iphdr));
2095 skb_reset_network_header(skb2);
2096 iph = ip_hdr(skb2);
2097 iph->ihl = sizeof(struct iphdr) >> 2;
2098 iph->saddr = saddr;
2099 iph->daddr = daddr;
2100 iph->version = 0;
2101 err = ipmr_cache_unresolved(mrt, vif, skb2);
2102 read_unlock(&mrt_lock);
2103 rcu_read_unlock();
2104 return err;
2105 }
2106
2107 read_lock(&mrt_lock);
2108 if (!nowait && (rtm->rtm_flags & RTM_F_NOTIFY))
2109 cache->mfc_flags |= MFC_NOTIFY;
2110 err = __ipmr_fill_mroute(mrt, skb, cache, rtm);
2111 read_unlock(&mrt_lock);
2112 rcu_read_unlock();
2113 return err;
2114}
2115
2116static int ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2117 u32 pid, u32 seq, struct mfc_cache *c)
2118{
2119 struct nlmsghdr *nlh;
2120 struct rtmsg *rtm;
2121
2122 nlh = nlmsg_put(skb, pid, seq, RTM_NEWROUTE, sizeof(*rtm), NLM_F_MULTI);
2123 if (nlh == NULL)
2124 return -EMSGSIZE;
2125
2126 rtm = nlmsg_data(nlh);
2127 rtm->rtm_family = RTNL_FAMILY_IPMR;
2128 rtm->rtm_dst_len = 32;
2129 rtm->rtm_src_len = 32;
2130 rtm->rtm_tos = 0;
2131 rtm->rtm_table = mrt->id;
2132 if (nla_put_u32(skb, RTA_TABLE, mrt->id))
2133 goto nla_put_failure;
2134 rtm->rtm_type = RTN_MULTICAST;
2135 rtm->rtm_scope = RT_SCOPE_UNIVERSE;
2136 rtm->rtm_protocol = RTPROT_UNSPEC;
2137 rtm->rtm_flags = 0;
2138
2139 if (nla_put_be32(skb, RTA_SRC, c->mfc_origin) ||
2140 nla_put_be32(skb, RTA_DST, c->mfc_mcastgrp))
2141 goto nla_put_failure;
2142 if (__ipmr_fill_mroute(mrt, skb, c, rtm) < 0)
2143 goto nla_put_failure;
2144
2145 return nlmsg_end(skb, nlh);
2146
2147nla_put_failure:
2148 nlmsg_cancel(skb, nlh);
2149 return -EMSGSIZE;
2150}
2151
2152static int ipmr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb)
2153{
2154 struct net *net = sock_net(skb->sk);
2155 struct mr_table *mrt;
2156 struct mfc_cache *mfc;
2157 unsigned int t = 0, s_t;
2158 unsigned int h = 0, s_h;
2159 unsigned int e = 0, s_e;
2160
2161 s_t = cb->args[0];
2162 s_h = cb->args[1];
2163 s_e = cb->args[2];
2164
2165 rcu_read_lock();
2166 ipmr_for_each_table(mrt, net) {
2167 if (t < s_t)
2168 goto next_table;
2169 if (t > s_t)
2170 s_h = 0;
2171 for (h = s_h; h < MFC_LINES; h++) {
2172 list_for_each_entry_rcu(mfc, &mrt->mfc_cache_array[h], list) {
2173 if (e < s_e)
2174 goto next_entry;
2175 if (ipmr_fill_mroute(mrt, skb,
2176 NETLINK_CB(cb->skb).pid,
2177 cb->nlh->nlmsg_seq,
2178 mfc) < 0)
2179 goto done;
2180next_entry:
2181 e++;
2182 }
2183 e = s_e = 0;
2184 }
2185 s_h = 0;
2186next_table:
2187 t++;
2188 }
2189done:
2190 rcu_read_unlock();
2191
2192 cb->args[2] = e;
2193 cb->args[1] = h;
2194 cb->args[0] = t;
2195
2196 return skb->len;
2197}
2198
2199#ifdef CONFIG_PROC_FS
2200/*
2201 * The /proc interfaces to multicast routing :
2202 * /proc/net/ip_mr_cache & /proc/net/ip_mr_vif
2203 */
2204struct ipmr_vif_iter {
2205 struct seq_net_private p;
2206 struct mr_table *mrt;
2207 int ct;
2208};
2209
2210static struct vif_device *ipmr_vif_seq_idx(struct net *net,
2211 struct ipmr_vif_iter *iter,
2212 loff_t pos)
2213{
2214 struct mr_table *mrt = iter->mrt;
2215
2216 for (iter->ct = 0; iter->ct < mrt->maxvif; ++iter->ct) {
2217 if (!VIF_EXISTS(mrt, iter->ct))
2218 continue;
2219 if (pos-- == 0)
2220 return &mrt->vif_table[iter->ct];
2221 }
2222 return NULL;
2223}
2224
2225static void *ipmr_vif_seq_start(struct seq_file *seq, loff_t *pos)
2226 __acquires(mrt_lock)
2227{
2228 struct ipmr_vif_iter *iter = seq->private;
2229 struct net *net = seq_file_net(seq);
2230 struct mr_table *mrt;
2231
2232 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2233 if (mrt == NULL)
2234 return ERR_PTR(-ENOENT);
2235
2236 iter->mrt = mrt;
2237
2238 read_lock(&mrt_lock);
2239 return *pos ? ipmr_vif_seq_idx(net, seq->private, *pos - 1)
2240 : SEQ_START_TOKEN;
2241}
2242
2243static void *ipmr_vif_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2244{
2245 struct ipmr_vif_iter *iter = seq->private;
2246 struct net *net = seq_file_net(seq);
2247 struct mr_table *mrt = iter->mrt;
2248
2249 ++*pos;
2250 if (v == SEQ_START_TOKEN)
2251 return ipmr_vif_seq_idx(net, iter, 0);
2252
2253 while (++iter->ct < mrt->maxvif) {
2254 if (!VIF_EXISTS(mrt, iter->ct))
2255 continue;
2256 return &mrt->vif_table[iter->ct];
2257 }
2258 return NULL;
2259}
2260
2261static void ipmr_vif_seq_stop(struct seq_file *seq, void *v)
2262 __releases(mrt_lock)
2263{
2264 read_unlock(&mrt_lock);
2265}
2266
2267static int ipmr_vif_seq_show(struct seq_file *seq, void *v)
2268{
2269 struct ipmr_vif_iter *iter = seq->private;
2270 struct mr_table *mrt = iter->mrt;
2271
2272 if (v == SEQ_START_TOKEN) {
2273 seq_puts(seq,
2274 "Interface BytesIn PktsIn BytesOut PktsOut Flags Local Remote\n");
2275 } else {
2276 const struct vif_device *vif = v;
2277 const char *name = vif->dev ? vif->dev->name : "none";
2278
2279 seq_printf(seq,
2280 "%2Zd %-10s %8ld %7ld %8ld %7ld %05X %08X %08X\n",
2281 vif - mrt->vif_table,
2282 name, vif->bytes_in, vif->pkt_in,
2283 vif->bytes_out, vif->pkt_out,
2284 vif->flags, vif->local, vif->remote);
2285 }
2286 return 0;
2287}
2288
2289static const struct seq_operations ipmr_vif_seq_ops = {
2290 .start = ipmr_vif_seq_start,
2291 .next = ipmr_vif_seq_next,
2292 .stop = ipmr_vif_seq_stop,
2293 .show = ipmr_vif_seq_show,
2294};
2295
2296static int ipmr_vif_open(struct inode *inode, struct file *file)
2297{
2298 return seq_open_net(inode, file, &ipmr_vif_seq_ops,
2299 sizeof(struct ipmr_vif_iter));
2300}
2301
2302static const struct file_operations ipmr_vif_fops = {
2303 .owner = THIS_MODULE,
2304 .open = ipmr_vif_open,
2305 .read = seq_read,
2306 .llseek = seq_lseek,
2307 .release = seq_release_net,
2308};
2309
2310struct ipmr_mfc_iter {
2311 struct seq_net_private p;
2312 struct mr_table *mrt;
2313 struct list_head *cache;
2314 int ct;
2315};
2316
2317
2318static struct mfc_cache *ipmr_mfc_seq_idx(struct net *net,
2319 struct ipmr_mfc_iter *it, loff_t pos)
2320{
2321 struct mr_table *mrt = it->mrt;
2322 struct mfc_cache *mfc;
2323
2324 rcu_read_lock();
2325 for (it->ct = 0; it->ct < MFC_LINES; it->ct++) {
2326 it->cache = &mrt->mfc_cache_array[it->ct];
2327 list_for_each_entry_rcu(mfc, it->cache, list)
2328 if (pos-- == 0)
2329 return mfc;
2330 }
2331 rcu_read_unlock();
2332
2333 spin_lock_bh(&mfc_unres_lock);
2334 it->cache = &mrt->mfc_unres_queue;
2335 list_for_each_entry(mfc, it->cache, list)
2336 if (pos-- == 0)
2337 return mfc;
2338 spin_unlock_bh(&mfc_unres_lock);
2339
2340 it->cache = NULL;
2341 return NULL;
2342}
2343
2344
2345static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos)
2346{
2347 struct ipmr_mfc_iter *it = seq->private;
2348 struct net *net = seq_file_net(seq);
2349 struct mr_table *mrt;
2350
2351 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2352 if (mrt == NULL)
2353 return ERR_PTR(-ENOENT);
2354
2355 it->mrt = mrt;
2356 it->cache = NULL;
2357 it->ct = 0;
2358 return *pos ? ipmr_mfc_seq_idx(net, seq->private, *pos - 1)
2359 : SEQ_START_TOKEN;
2360}
2361
2362static void *ipmr_mfc_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2363{
2364 struct mfc_cache *mfc = v;
2365 struct ipmr_mfc_iter *it = seq->private;
2366 struct net *net = seq_file_net(seq);
2367 struct mr_table *mrt = it->mrt;
2368
2369 ++*pos;
2370
2371 if (v == SEQ_START_TOKEN)
2372 return ipmr_mfc_seq_idx(net, seq->private, 0);
2373
2374 if (mfc->list.next != it->cache)
2375 return list_entry(mfc->list.next, struct mfc_cache, list);
2376
2377 if (it->cache == &mrt->mfc_unres_queue)
2378 goto end_of_list;
2379
2380 BUG_ON(it->cache != &mrt->mfc_cache_array[it->ct]);
2381
2382 while (++it->ct < MFC_LINES) {
2383 it->cache = &mrt->mfc_cache_array[it->ct];
2384 if (list_empty(it->cache))
2385 continue;
2386 return list_first_entry(it->cache, struct mfc_cache, list);
2387 }
2388
2389 /* exhausted cache_array, show unresolved */
2390 rcu_read_unlock();
2391 it->cache = &mrt->mfc_unres_queue;
2392 it->ct = 0;
2393
2394 spin_lock_bh(&mfc_unres_lock);
2395 if (!list_empty(it->cache))
2396 return list_first_entry(it->cache, struct mfc_cache, list);
2397
2398end_of_list:
2399 spin_unlock_bh(&mfc_unres_lock);
2400 it->cache = NULL;
2401
2402 return NULL;
2403}
2404
2405static void ipmr_mfc_seq_stop(struct seq_file *seq, void *v)
2406{
2407 struct ipmr_mfc_iter *it = seq->private;
2408 struct mr_table *mrt = it->mrt;
2409
2410 if (it->cache == &mrt->mfc_unres_queue)
2411 spin_unlock_bh(&mfc_unres_lock);
2412 else if (it->cache == &mrt->mfc_cache_array[it->ct])
2413 rcu_read_unlock();
2414}
2415
2416static int ipmr_mfc_seq_show(struct seq_file *seq, void *v)
2417{
2418 int n;
2419
2420 if (v == SEQ_START_TOKEN) {
2421 seq_puts(seq,
2422 "Group Origin Iif Pkts Bytes Wrong Oifs\n");
2423 } else {
2424 const struct mfc_cache *mfc = v;
2425 const struct ipmr_mfc_iter *it = seq->private;
2426 const struct mr_table *mrt = it->mrt;
2427
2428 seq_printf(seq, "%08X %08X %-3hd",
2429 (__force u32) mfc->mfc_mcastgrp,
2430 (__force u32) mfc->mfc_origin,
2431 mfc->mfc_parent);
2432
2433 if (it->cache != &mrt->mfc_unres_queue) {
2434 seq_printf(seq, " %8lu %8lu %8lu",
2435 mfc->mfc_un.res.pkt,
2436 mfc->mfc_un.res.bytes,
2437 mfc->mfc_un.res.wrong_if);
2438 for (n = mfc->mfc_un.res.minvif;
2439 n < mfc->mfc_un.res.maxvif; n++) {
2440 if (VIF_EXISTS(mrt, n) &&
2441 mfc->mfc_un.res.ttls[n] < 255)
2442 seq_printf(seq,
2443 " %2d:%-3d",
2444 n, mfc->mfc_un.res.ttls[n]);
2445 }
2446 } else {
2447 /* unresolved mfc_caches don't contain
2448 * pkt, bytes and wrong_if values
2449 */
2450 seq_printf(seq, " %8lu %8lu %8lu", 0ul, 0ul, 0ul);
2451 }
2452 seq_putc(seq, '\n');
2453 }
2454 return 0;
2455}
2456
2457static const struct seq_operations ipmr_mfc_seq_ops = {
2458 .start = ipmr_mfc_seq_start,
2459 .next = ipmr_mfc_seq_next,
2460 .stop = ipmr_mfc_seq_stop,
2461 .show = ipmr_mfc_seq_show,
2462};
2463
2464static int ipmr_mfc_open(struct inode *inode, struct file *file)
2465{
2466 return seq_open_net(inode, file, &ipmr_mfc_seq_ops,
2467 sizeof(struct ipmr_mfc_iter));
2468}
2469
2470static const struct file_operations ipmr_mfc_fops = {
2471 .owner = THIS_MODULE,
2472 .open = ipmr_mfc_open,
2473 .read = seq_read,
2474 .llseek = seq_lseek,
2475 .release = seq_release_net,
2476};
2477#endif
2478
2479#ifdef CONFIG_IP_PIMSM_V2
2480static const struct net_protocol pim_protocol = {
2481 .handler = pim_rcv,
2482 .netns_ok = 1,
2483};
2484#endif
2485
2486
2487/*
2488 * Setup for IP multicast routing
2489 */
2490static int __net_init ipmr_net_init(struct net *net)
2491{
2492 int err;
2493
2494 err = ipmr_rules_init(net);
2495 if (err < 0)
2496 goto fail;
2497
2498#ifdef CONFIG_PROC_FS
2499 err = -ENOMEM;
2500 if (!proc_net_fops_create(net, "ip_mr_vif", 0, &ipmr_vif_fops))
2501 goto proc_vif_fail;
2502 if (!proc_net_fops_create(net, "ip_mr_cache", 0, &ipmr_mfc_fops))
2503 goto proc_cache_fail;
2504#endif
2505 return 0;
2506
2507#ifdef CONFIG_PROC_FS
2508proc_cache_fail:
2509 proc_net_remove(net, "ip_mr_vif");
2510proc_vif_fail:
2511 ipmr_rules_exit(net);
2512#endif
2513fail:
2514 return err;
2515}
2516
2517static void __net_exit ipmr_net_exit(struct net *net)
2518{
2519#ifdef CONFIG_PROC_FS
2520 proc_net_remove(net, "ip_mr_cache");
2521 proc_net_remove(net, "ip_mr_vif");
2522#endif
2523 ipmr_rules_exit(net);
2524}
2525
2526static struct pernet_operations ipmr_net_ops = {
2527 .init = ipmr_net_init,
2528 .exit = ipmr_net_exit,
2529};
2530
2531int __init ip_mr_init(void)
2532{
2533 int err;
2534
2535 mrt_cachep = kmem_cache_create("ip_mrt_cache",
2536 sizeof(struct mfc_cache),
2537 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC,
2538 NULL);
2539 if (!mrt_cachep)
2540 return -ENOMEM;
2541
2542 err = register_pernet_subsys(&ipmr_net_ops);
2543 if (err)
2544 goto reg_pernet_fail;
2545
2546 err = register_netdevice_notifier(&ip_mr_notifier);
2547 if (err)
2548 goto reg_notif_fail;
2549#ifdef CONFIG_IP_PIMSM_V2
2550 if (inet_add_protocol(&pim_protocol, IPPROTO_PIM) < 0) {
2551 pr_err("%s: can't add PIM protocol\n", __func__);
2552 err = -EAGAIN;
2553 goto add_proto_fail;
2554 }
2555#endif
2556 rtnl_register(RTNL_FAMILY_IPMR, RTM_GETROUTE,
2557 NULL, ipmr_rtm_dumproute, NULL);
2558 return 0;
2559
2560#ifdef CONFIG_IP_PIMSM_V2
2561add_proto_fail:
2562 unregister_netdevice_notifier(&ip_mr_notifier);
2563#endif
2564reg_notif_fail:
2565 unregister_pernet_subsys(&ipmr_net_ops);
2566reg_pernet_fail:
2567 kmem_cache_destroy(mrt_cachep);
2568 return err;
2569}