Linux Audio

Check our new training course

Loading...
v5.9
  1/* SPDX-License-Identifier: GPL-2.0 */
  2#ifndef __LINUX_PERCPU_H
  3#define __LINUX_PERCPU_H
  4
  5#include <linux/mmdebug.h>
  6#include <linux/preempt.h>
  7#include <linux/smp.h>
  8#include <linux/cpumask.h>
  9#include <linux/printk.h>
 10#include <linux/pfn.h>
 11#include <linux/init.h>
 12
 13#include <asm/percpu.h>
 14
 15/* enough to cover all DEFINE_PER_CPUs in modules */
 16#ifdef CONFIG_MODULES
 17#define PERCPU_MODULE_RESERVE		(8 << 10)
 18#else
 19#define PERCPU_MODULE_RESERVE		0
 20#endif
 21
 22/* minimum unit size, also is the maximum supported allocation size */
 23#define PCPU_MIN_UNIT_SIZE		PFN_ALIGN(32 << 10)
 
 
 
 24
 25/* minimum allocation size and shift in bytes */
 26#define PCPU_MIN_ALLOC_SHIFT		2
 27#define PCPU_MIN_ALLOC_SIZE		(1 << PCPU_MIN_ALLOC_SHIFT)
 
 
 
 
 28
 29/*
 30 * The PCPU_BITMAP_BLOCK_SIZE must be the same size as PAGE_SIZE as the
 31 * updating of hints is used to manage the nr_empty_pop_pages in both
 32 * the chunk and globally.
 33 */
 34#define PCPU_BITMAP_BLOCK_SIZE		PAGE_SIZE
 35#define PCPU_BITMAP_BLOCK_BITS		(PCPU_BITMAP_BLOCK_SIZE >>	\
 36					 PCPU_MIN_ALLOC_SHIFT)
 
 
 
 
 
 
 
 
 
 
 
 
 37
 38/*
 39 * Percpu allocator can serve percpu allocations before slab is
 40 * initialized which allows slab to depend on the percpu allocator.
 41 * The following two parameters decide how much resource to
 42 * preallocate for this.  Keep PERCPU_DYNAMIC_RESERVE equal to or
 43 * larger than PERCPU_DYNAMIC_EARLY_SIZE.
 44 */
 45#define PERCPU_DYNAMIC_EARLY_SLOTS	128
 46#define PERCPU_DYNAMIC_EARLY_SIZE	(12 << 10)
 47
 48/*
 49 * PERCPU_DYNAMIC_RESERVE indicates the amount of free area to piggy
 50 * back on the first chunk for dynamic percpu allocation if arch is
 51 * manually allocating and mapping it for faster access (as a part of
 52 * large page mapping for example).
 53 *
 54 * The following values give between one and two pages of free space
 55 * after typical minimal boot (2-way SMP, single disk and NIC) with
 56 * both defconfig and a distro config on x86_64 and 32.  More
 57 * intelligent way to determine this would be nice.
 58 */
 59#if BITS_PER_LONG > 32
 60#define PERCPU_DYNAMIC_RESERVE		(28 << 10)
 61#else
 62#define PERCPU_DYNAMIC_RESERVE		(20 << 10)
 
 
 63#endif
 64
 65extern void *pcpu_base_addr;
 66extern const unsigned long *pcpu_unit_offsets;
 67
 68struct pcpu_group_info {
 69	int			nr_units;	/* aligned # of units */
 70	unsigned long		base_offset;	/* base address offset */
 71	unsigned int		*cpu_map;	/* unit->cpu map, empty
 72						 * entries contain NR_CPUS */
 73};
 74
 75struct pcpu_alloc_info {
 76	size_t			static_size;
 77	size_t			reserved_size;
 78	size_t			dyn_size;
 79	size_t			unit_size;
 80	size_t			atom_size;
 81	size_t			alloc_size;
 82	size_t			__ai_size;	/* internal, don't use */
 83	int			nr_groups;	/* 0 if grouping unnecessary */
 84	struct pcpu_group_info	groups[];
 85};
 86
 87enum pcpu_fc {
 88	PCPU_FC_AUTO,
 89	PCPU_FC_EMBED,
 90	PCPU_FC_PAGE,
 91
 92	PCPU_FC_NR,
 93};
 94extern const char * const pcpu_fc_names[PCPU_FC_NR];
 95
 96extern enum pcpu_fc pcpu_chosen_fc;
 97
 98typedef void * (*pcpu_fc_alloc_fn_t)(unsigned int cpu, size_t size,
 99				     size_t align);
100typedef void (*pcpu_fc_free_fn_t)(void *ptr, size_t size);
101typedef void (*pcpu_fc_populate_pte_fn_t)(unsigned long addr);
102typedef int (pcpu_fc_cpu_distance_fn_t)(unsigned int from, unsigned int to);
103
104extern struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
105							     int nr_units);
106extern void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai);
107
108extern void __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
109					 void *base_addr);
110
111#ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
112extern int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
113				size_t atom_size,
114				pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
115				pcpu_fc_alloc_fn_t alloc_fn,
116				pcpu_fc_free_fn_t free_fn);
117#endif
118
119#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
120extern int __init pcpu_page_first_chunk(size_t reserved_size,
121				pcpu_fc_alloc_fn_t alloc_fn,
122				pcpu_fc_free_fn_t free_fn,
123				pcpu_fc_populate_pte_fn_t populate_pte_fn);
124#endif
125
 
 
 
 
 
 
 
 
 
 
 
126extern void __percpu *__alloc_reserved_percpu(size_t size, size_t align);
127extern bool __is_kernel_percpu_address(unsigned long addr, unsigned long *can_addr);
128extern bool is_kernel_percpu_address(unsigned long addr);
129
130#if !defined(CONFIG_SMP) || !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
131extern void __init setup_per_cpu_areas(void);
132#endif
 
133
134extern void __percpu *__alloc_percpu_gfp(size_t size, size_t align, gfp_t gfp);
135extern void __percpu *__alloc_percpu(size_t size, size_t align);
136extern void free_percpu(void __percpu *__pdata);
137extern phys_addr_t per_cpu_ptr_to_phys(void *addr);
138
139#define alloc_percpu_gfp(type, gfp)					\
140	(typeof(type) __percpu *)__alloc_percpu_gfp(sizeof(type),	\
141						__alignof__(type), gfp)
142#define alloc_percpu(type)						\
143	(typeof(type) __percpu *)__alloc_percpu(sizeof(type),		\
144						__alignof__(type))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
145
146extern unsigned long pcpu_nr_pages(void);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
147
148#endif /* __LINUX_PERCPU_H */
v3.5.6
 
  1#ifndef __LINUX_PERCPU_H
  2#define __LINUX_PERCPU_H
  3
 
  4#include <linux/preempt.h>
  5#include <linux/smp.h>
  6#include <linux/cpumask.h>
 
  7#include <linux/pfn.h>
  8#include <linux/init.h>
  9
 10#include <asm/percpu.h>
 11
 12/* enough to cover all DEFINE_PER_CPUs in modules */
 13#ifdef CONFIG_MODULES
 14#define PERCPU_MODULE_RESERVE		(8 << 10)
 15#else
 16#define PERCPU_MODULE_RESERVE		0
 17#endif
 18
 19#ifndef PERCPU_ENOUGH_ROOM
 20#define PERCPU_ENOUGH_ROOM						\
 21	(ALIGN(__per_cpu_end - __per_cpu_start, SMP_CACHE_BYTES) +	\
 22	 PERCPU_MODULE_RESERVE)
 23#endif
 24
 25/*
 26 * Must be an lvalue. Since @var must be a simple identifier,
 27 * we force a syntax error here if it isn't.
 28 */
 29#define get_cpu_var(var) (*({				\
 30	preempt_disable();				\
 31	&__get_cpu_var(var); }))
 32
 33/*
 34 * The weird & is necessary because sparse considers (void)(var) to be
 35 * a direct dereference of percpu variable (var).
 36 */
 37#define put_cpu_var(var) do {				\
 38	(void)&(var);					\
 39	preempt_enable();				\
 40} while (0)
 41
 42#define get_cpu_ptr(var) ({				\
 43	preempt_disable();				\
 44	this_cpu_ptr(var); })
 45
 46#define put_cpu_ptr(var) do {				\
 47	(void)(var);					\
 48	preempt_enable();				\
 49} while (0)
 50
 51/* minimum unit size, also is the maximum supported allocation size */
 52#define PCPU_MIN_UNIT_SIZE		PFN_ALIGN(32 << 10)
 53
 54/*
 55 * Percpu allocator can serve percpu allocations before slab is
 56 * initialized which allows slab to depend on the percpu allocator.
 57 * The following two parameters decide how much resource to
 58 * preallocate for this.  Keep PERCPU_DYNAMIC_RESERVE equal to or
 59 * larger than PERCPU_DYNAMIC_EARLY_SIZE.
 60 */
 61#define PERCPU_DYNAMIC_EARLY_SLOTS	128
 62#define PERCPU_DYNAMIC_EARLY_SIZE	(12 << 10)
 63
 64/*
 65 * PERCPU_DYNAMIC_RESERVE indicates the amount of free area to piggy
 66 * back on the first chunk for dynamic percpu allocation if arch is
 67 * manually allocating and mapping it for faster access (as a part of
 68 * large page mapping for example).
 69 *
 70 * The following values give between one and two pages of free space
 71 * after typical minimal boot (2-way SMP, single disk and NIC) with
 72 * both defconfig and a distro config on x86_64 and 32.  More
 73 * intelligent way to determine this would be nice.
 74 */
 75#if BITS_PER_LONG > 32
 
 
 76#define PERCPU_DYNAMIC_RESERVE		(20 << 10)
 77#else
 78#define PERCPU_DYNAMIC_RESERVE		(12 << 10)
 79#endif
 80
 81extern void *pcpu_base_addr;
 82extern const unsigned long *pcpu_unit_offsets;
 83
 84struct pcpu_group_info {
 85	int			nr_units;	/* aligned # of units */
 86	unsigned long		base_offset;	/* base address offset */
 87	unsigned int		*cpu_map;	/* unit->cpu map, empty
 88						 * entries contain NR_CPUS */
 89};
 90
 91struct pcpu_alloc_info {
 92	size_t			static_size;
 93	size_t			reserved_size;
 94	size_t			dyn_size;
 95	size_t			unit_size;
 96	size_t			atom_size;
 97	size_t			alloc_size;
 98	size_t			__ai_size;	/* internal, don't use */
 99	int			nr_groups;	/* 0 if grouping unnecessary */
100	struct pcpu_group_info	groups[];
101};
102
103enum pcpu_fc {
104	PCPU_FC_AUTO,
105	PCPU_FC_EMBED,
106	PCPU_FC_PAGE,
107
108	PCPU_FC_NR,
109};
110extern const char *pcpu_fc_names[PCPU_FC_NR];
111
112extern enum pcpu_fc pcpu_chosen_fc;
113
114typedef void * (*pcpu_fc_alloc_fn_t)(unsigned int cpu, size_t size,
115				     size_t align);
116typedef void (*pcpu_fc_free_fn_t)(void *ptr, size_t size);
117typedef void (*pcpu_fc_populate_pte_fn_t)(unsigned long addr);
118typedef int (pcpu_fc_cpu_distance_fn_t)(unsigned int from, unsigned int to);
119
120extern struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
121							     int nr_units);
122extern void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai);
123
124extern int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
125					 void *base_addr);
126
127#ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
128extern int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
129				size_t atom_size,
130				pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
131				pcpu_fc_alloc_fn_t alloc_fn,
132				pcpu_fc_free_fn_t free_fn);
133#endif
134
135#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
136extern int __init pcpu_page_first_chunk(size_t reserved_size,
137				pcpu_fc_alloc_fn_t alloc_fn,
138				pcpu_fc_free_fn_t free_fn,
139				pcpu_fc_populate_pte_fn_t populate_pte_fn);
140#endif
141
142/*
143 * Use this to get to a cpu's version of the per-cpu object
144 * dynamically allocated. Non-atomic access to the current CPU's
145 * version should probably be combined with get_cpu()/put_cpu().
146 */
147#ifdef CONFIG_SMP
148#define per_cpu_ptr(ptr, cpu)	SHIFT_PERCPU_PTR((ptr), per_cpu_offset((cpu)))
149#else
150#define per_cpu_ptr(ptr, cpu)	({ (void)(cpu); VERIFY_PERCPU_PTR((ptr)); })
151#endif
152
153extern void __percpu *__alloc_reserved_percpu(size_t size, size_t align);
 
154extern bool is_kernel_percpu_address(unsigned long addr);
155
156#if !defined(CONFIG_SMP) || !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
157extern void __init setup_per_cpu_areas(void);
158#endif
159extern void __init percpu_init_late(void);
160
 
161extern void __percpu *__alloc_percpu(size_t size, size_t align);
162extern void free_percpu(void __percpu *__pdata);
163extern phys_addr_t per_cpu_ptr_to_phys(void *addr);
164
165#define alloc_percpu(type)	\
166	(typeof(type) __percpu *)__alloc_percpu(sizeof(type), __alignof__(type))
167
168/*
169 * Branching function to split up a function into a set of functions that
170 * are called for different scalar sizes of the objects handled.
171 */
172
173extern void __bad_size_call_parameter(void);
174
175#define __pcpu_size_call_return(stem, variable)				\
176({	typeof(variable) pscr_ret__;					\
177	__verify_pcpu_ptr(&(variable));					\
178	switch(sizeof(variable)) {					\
179	case 1: pscr_ret__ = stem##1(variable);break;			\
180	case 2: pscr_ret__ = stem##2(variable);break;			\
181	case 4: pscr_ret__ = stem##4(variable);break;			\
182	case 8: pscr_ret__ = stem##8(variable);break;			\
183	default:							\
184		__bad_size_call_parameter();break;			\
185	}								\
186	pscr_ret__;							\
187})
188
189#define __pcpu_size_call_return2(stem, variable, ...)			\
190({									\
191	typeof(variable) pscr2_ret__;					\
192	__verify_pcpu_ptr(&(variable));					\
193	switch(sizeof(variable)) {					\
194	case 1: pscr2_ret__ = stem##1(variable, __VA_ARGS__); break;	\
195	case 2: pscr2_ret__ = stem##2(variable, __VA_ARGS__); break;	\
196	case 4: pscr2_ret__ = stem##4(variable, __VA_ARGS__); break;	\
197	case 8: pscr2_ret__ = stem##8(variable, __VA_ARGS__); break;	\
198	default:							\
199		__bad_size_call_parameter(); break;			\
200	}								\
201	pscr2_ret__;							\
202})
203
204/*
205 * Special handling for cmpxchg_double.  cmpxchg_double is passed two
206 * percpu variables.  The first has to be aligned to a double word
207 * boundary and the second has to follow directly thereafter.
208 * We enforce this on all architectures even if they don't support
209 * a double cmpxchg instruction, since it's a cheap requirement, and it
210 * avoids breaking the requirement for architectures with the instruction.
211 */
212#define __pcpu_double_call_return_bool(stem, pcp1, pcp2, ...)		\
213({									\
214	bool pdcrb_ret__;						\
215	__verify_pcpu_ptr(&pcp1);					\
216	BUILD_BUG_ON(sizeof(pcp1) != sizeof(pcp2));			\
217	VM_BUG_ON((unsigned long)(&pcp1) % (2 * sizeof(pcp1)));		\
218	VM_BUG_ON((unsigned long)(&pcp2) !=				\
219		  (unsigned long)(&pcp1) + sizeof(pcp1));		\
220	switch(sizeof(pcp1)) {						\
221	case 1: pdcrb_ret__ = stem##1(pcp1, pcp2, __VA_ARGS__); break;	\
222	case 2: pdcrb_ret__ = stem##2(pcp1, pcp2, __VA_ARGS__); break;	\
223	case 4: pdcrb_ret__ = stem##4(pcp1, pcp2, __VA_ARGS__); break;	\
224	case 8: pdcrb_ret__ = stem##8(pcp1, pcp2, __VA_ARGS__); break;	\
225	default:							\
226		__bad_size_call_parameter(); break;			\
227	}								\
228	pdcrb_ret__;							\
229})
230
231#define __pcpu_size_call(stem, variable, ...)				\
232do {									\
233	__verify_pcpu_ptr(&(variable));					\
234	switch(sizeof(variable)) {					\
235		case 1: stem##1(variable, __VA_ARGS__);break;		\
236		case 2: stem##2(variable, __VA_ARGS__);break;		\
237		case 4: stem##4(variable, __VA_ARGS__);break;		\
238		case 8: stem##8(variable, __VA_ARGS__);break;		\
239		default: 						\
240			__bad_size_call_parameter();break;		\
241	}								\
242} while (0)
243
244/*
245 * Optimized manipulation for memory allocated through the per cpu
246 * allocator or for addresses of per cpu variables.
247 *
248 * These operation guarantee exclusivity of access for other operations
249 * on the *same* processor. The assumption is that per cpu data is only
250 * accessed by a single processor instance (the current one).
251 *
252 * The first group is used for accesses that must be done in a
253 * preemption safe way since we know that the context is not preempt
254 * safe. Interrupts may occur. If the interrupt modifies the variable
255 * too then RMW actions will not be reliable.
256 *
257 * The arch code can provide optimized functions in two ways:
258 *
259 * 1. Override the function completely. F.e. define this_cpu_add().
260 *    The arch must then ensure that the various scalar format passed
261 *    are handled correctly.
262 *
263 * 2. Provide functions for certain scalar sizes. F.e. provide
264 *    this_cpu_add_2() to provide per cpu atomic operations for 2 byte
265 *    sized RMW actions. If arch code does not provide operations for
266 *    a scalar size then the fallback in the generic code will be
267 *    used.
268 */
269
270#define _this_cpu_generic_read(pcp)					\
271({	typeof(pcp) ret__;						\
272	preempt_disable();						\
273	ret__ = *this_cpu_ptr(&(pcp));					\
274	preempt_enable();						\
275	ret__;								\
276})
277
278#ifndef this_cpu_read
279# ifndef this_cpu_read_1
280#  define this_cpu_read_1(pcp)	_this_cpu_generic_read(pcp)
281# endif
282# ifndef this_cpu_read_2
283#  define this_cpu_read_2(pcp)	_this_cpu_generic_read(pcp)
284# endif
285# ifndef this_cpu_read_4
286#  define this_cpu_read_4(pcp)	_this_cpu_generic_read(pcp)
287# endif
288# ifndef this_cpu_read_8
289#  define this_cpu_read_8(pcp)	_this_cpu_generic_read(pcp)
290# endif
291# define this_cpu_read(pcp)	__pcpu_size_call_return(this_cpu_read_, (pcp))
292#endif
293
294#define _this_cpu_generic_to_op(pcp, val, op)				\
295do {									\
296	unsigned long flags;						\
297	raw_local_irq_save(flags);					\
298	*__this_cpu_ptr(&(pcp)) op val;					\
299	raw_local_irq_restore(flags);					\
300} while (0)
301
302#ifndef this_cpu_write
303# ifndef this_cpu_write_1
304#  define this_cpu_write_1(pcp, val)	_this_cpu_generic_to_op((pcp), (val), =)
305# endif
306# ifndef this_cpu_write_2
307#  define this_cpu_write_2(pcp, val)	_this_cpu_generic_to_op((pcp), (val), =)
308# endif
309# ifndef this_cpu_write_4
310#  define this_cpu_write_4(pcp, val)	_this_cpu_generic_to_op((pcp), (val), =)
311# endif
312# ifndef this_cpu_write_8
313#  define this_cpu_write_8(pcp, val)	_this_cpu_generic_to_op((pcp), (val), =)
314# endif
315# define this_cpu_write(pcp, val)	__pcpu_size_call(this_cpu_write_, (pcp), (val))
316#endif
317
318#ifndef this_cpu_add
319# ifndef this_cpu_add_1
320#  define this_cpu_add_1(pcp, val)	_this_cpu_generic_to_op((pcp), (val), +=)
321# endif
322# ifndef this_cpu_add_2
323#  define this_cpu_add_2(pcp, val)	_this_cpu_generic_to_op((pcp), (val), +=)
324# endif
325# ifndef this_cpu_add_4
326#  define this_cpu_add_4(pcp, val)	_this_cpu_generic_to_op((pcp), (val), +=)
327# endif
328# ifndef this_cpu_add_8
329#  define this_cpu_add_8(pcp, val)	_this_cpu_generic_to_op((pcp), (val), +=)
330# endif
331# define this_cpu_add(pcp, val)		__pcpu_size_call(this_cpu_add_, (pcp), (val))
332#endif
333
334#ifndef this_cpu_sub
335# define this_cpu_sub(pcp, val)		this_cpu_add((pcp), -(val))
336#endif
337
338#ifndef this_cpu_inc
339# define this_cpu_inc(pcp)		this_cpu_add((pcp), 1)
340#endif
341
342#ifndef this_cpu_dec
343# define this_cpu_dec(pcp)		this_cpu_sub((pcp), 1)
344#endif
345
346#ifndef this_cpu_and
347# ifndef this_cpu_and_1
348#  define this_cpu_and_1(pcp, val)	_this_cpu_generic_to_op((pcp), (val), &=)
349# endif
350# ifndef this_cpu_and_2
351#  define this_cpu_and_2(pcp, val)	_this_cpu_generic_to_op((pcp), (val), &=)
352# endif
353# ifndef this_cpu_and_4
354#  define this_cpu_and_4(pcp, val)	_this_cpu_generic_to_op((pcp), (val), &=)
355# endif
356# ifndef this_cpu_and_8
357#  define this_cpu_and_8(pcp, val)	_this_cpu_generic_to_op((pcp), (val), &=)
358# endif
359# define this_cpu_and(pcp, val)		__pcpu_size_call(this_cpu_and_, (pcp), (val))
360#endif
361
362#ifndef this_cpu_or
363# ifndef this_cpu_or_1
364#  define this_cpu_or_1(pcp, val)	_this_cpu_generic_to_op((pcp), (val), |=)
365# endif
366# ifndef this_cpu_or_2
367#  define this_cpu_or_2(pcp, val)	_this_cpu_generic_to_op((pcp), (val), |=)
368# endif
369# ifndef this_cpu_or_4
370#  define this_cpu_or_4(pcp, val)	_this_cpu_generic_to_op((pcp), (val), |=)
371# endif
372# ifndef this_cpu_or_8
373#  define this_cpu_or_8(pcp, val)	_this_cpu_generic_to_op((pcp), (val), |=)
374# endif
375# define this_cpu_or(pcp, val)		__pcpu_size_call(this_cpu_or_, (pcp), (val))
376#endif
377
378#ifndef this_cpu_xor
379# ifndef this_cpu_xor_1
380#  define this_cpu_xor_1(pcp, val)	_this_cpu_generic_to_op((pcp), (val), ^=)
381# endif
382# ifndef this_cpu_xor_2
383#  define this_cpu_xor_2(pcp, val)	_this_cpu_generic_to_op((pcp), (val), ^=)
384# endif
385# ifndef this_cpu_xor_4
386#  define this_cpu_xor_4(pcp, val)	_this_cpu_generic_to_op((pcp), (val), ^=)
387# endif
388# ifndef this_cpu_xor_8
389#  define this_cpu_xor_8(pcp, val)	_this_cpu_generic_to_op((pcp), (val), ^=)
390# endif
391# define this_cpu_xor(pcp, val)		__pcpu_size_call(this_cpu_or_, (pcp), (val))
392#endif
393
394#define _this_cpu_generic_add_return(pcp, val)				\
395({									\
396	typeof(pcp) ret__;						\
397	unsigned long flags;						\
398	raw_local_irq_save(flags);					\
399	__this_cpu_add(pcp, val);					\
400	ret__ = __this_cpu_read(pcp);					\
401	raw_local_irq_restore(flags);					\
402	ret__;								\
403})
404
405#ifndef this_cpu_add_return
406# ifndef this_cpu_add_return_1
407#  define this_cpu_add_return_1(pcp, val)	_this_cpu_generic_add_return(pcp, val)
408# endif
409# ifndef this_cpu_add_return_2
410#  define this_cpu_add_return_2(pcp, val)	_this_cpu_generic_add_return(pcp, val)
411# endif
412# ifndef this_cpu_add_return_4
413#  define this_cpu_add_return_4(pcp, val)	_this_cpu_generic_add_return(pcp, val)
414# endif
415# ifndef this_cpu_add_return_8
416#  define this_cpu_add_return_8(pcp, val)	_this_cpu_generic_add_return(pcp, val)
417# endif
418# define this_cpu_add_return(pcp, val)	__pcpu_size_call_return2(this_cpu_add_return_, pcp, val)
419#endif
420
421#define this_cpu_sub_return(pcp, val)	this_cpu_add_return(pcp, -(val))
422#define this_cpu_inc_return(pcp)	this_cpu_add_return(pcp, 1)
423#define this_cpu_dec_return(pcp)	this_cpu_add_return(pcp, -1)
424
425#define _this_cpu_generic_xchg(pcp, nval)				\
426({	typeof(pcp) ret__;						\
427	unsigned long flags;						\
428	raw_local_irq_save(flags);					\
429	ret__ = __this_cpu_read(pcp);					\
430	__this_cpu_write(pcp, nval);					\
431	raw_local_irq_restore(flags);					\
432	ret__;								\
433})
434
435#ifndef this_cpu_xchg
436# ifndef this_cpu_xchg_1
437#  define this_cpu_xchg_1(pcp, nval)	_this_cpu_generic_xchg(pcp, nval)
438# endif
439# ifndef this_cpu_xchg_2
440#  define this_cpu_xchg_2(pcp, nval)	_this_cpu_generic_xchg(pcp, nval)
441# endif
442# ifndef this_cpu_xchg_4
443#  define this_cpu_xchg_4(pcp, nval)	_this_cpu_generic_xchg(pcp, nval)
444# endif
445# ifndef this_cpu_xchg_8
446#  define this_cpu_xchg_8(pcp, nval)	_this_cpu_generic_xchg(pcp, nval)
447# endif
448# define this_cpu_xchg(pcp, nval)	\
449	__pcpu_size_call_return2(this_cpu_xchg_, (pcp), nval)
450#endif
451
452#define _this_cpu_generic_cmpxchg(pcp, oval, nval)			\
453({									\
454	typeof(pcp) ret__;						\
455	unsigned long flags;						\
456	raw_local_irq_save(flags);					\
457	ret__ = __this_cpu_read(pcp);					\
458	if (ret__ == (oval))						\
459		__this_cpu_write(pcp, nval);				\
460	raw_local_irq_restore(flags);					\
461	ret__;								\
462})
463
464#ifndef this_cpu_cmpxchg
465# ifndef this_cpu_cmpxchg_1
466#  define this_cpu_cmpxchg_1(pcp, oval, nval)	_this_cpu_generic_cmpxchg(pcp, oval, nval)
467# endif
468# ifndef this_cpu_cmpxchg_2
469#  define this_cpu_cmpxchg_2(pcp, oval, nval)	_this_cpu_generic_cmpxchg(pcp, oval, nval)
470# endif
471# ifndef this_cpu_cmpxchg_4
472#  define this_cpu_cmpxchg_4(pcp, oval, nval)	_this_cpu_generic_cmpxchg(pcp, oval, nval)
473# endif
474# ifndef this_cpu_cmpxchg_8
475#  define this_cpu_cmpxchg_8(pcp, oval, nval)	_this_cpu_generic_cmpxchg(pcp, oval, nval)
476# endif
477# define this_cpu_cmpxchg(pcp, oval, nval)	\
478	__pcpu_size_call_return2(this_cpu_cmpxchg_, pcp, oval, nval)
479#endif
480
481/*
482 * cmpxchg_double replaces two adjacent scalars at once.  The first
483 * two parameters are per cpu variables which have to be of the same
484 * size.  A truth value is returned to indicate success or failure
485 * (since a double register result is difficult to handle).  There is
486 * very limited hardware support for these operations, so only certain
487 * sizes may work.
488 */
489#define _this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)	\
490({									\
491	int ret__;							\
492	unsigned long flags;						\
493	raw_local_irq_save(flags);					\
494	ret__ = __this_cpu_generic_cmpxchg_double(pcp1, pcp2,		\
495			oval1, oval2, nval1, nval2);			\
496	raw_local_irq_restore(flags);					\
497	ret__;								\
498})
499
500#ifndef this_cpu_cmpxchg_double
501# ifndef this_cpu_cmpxchg_double_1
502#  define this_cpu_cmpxchg_double_1(pcp1, pcp2, oval1, oval2, nval1, nval2)	\
503	_this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
504# endif
505# ifndef this_cpu_cmpxchg_double_2
506#  define this_cpu_cmpxchg_double_2(pcp1, pcp2, oval1, oval2, nval1, nval2)	\
507	_this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
508# endif
509# ifndef this_cpu_cmpxchg_double_4
510#  define this_cpu_cmpxchg_double_4(pcp1, pcp2, oval1, oval2, nval1, nval2)	\
511	_this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
512# endif
513# ifndef this_cpu_cmpxchg_double_8
514#  define this_cpu_cmpxchg_double_8(pcp1, pcp2, oval1, oval2, nval1, nval2)	\
515	_this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
516# endif
517# define this_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)	\
518	__pcpu_double_call_return_bool(this_cpu_cmpxchg_double_, (pcp1), (pcp2), (oval1), (oval2), (nval1), (nval2))
519#endif
520
521/*
522 * Generic percpu operations for context that are safe from preemption/interrupts.
523 * Either we do not care about races or the caller has the
524 * responsibility of handling preemption/interrupt issues. Arch code can still
525 * override these instructions since the arch per cpu code may be more
526 * efficient and may actually get race freeness for free (that is the
527 * case for x86 for example).
528 *
529 * If there is no other protection through preempt disable and/or
530 * disabling interupts then one of these RMW operations can show unexpected
531 * behavior because the execution thread was rescheduled on another processor
532 * or an interrupt occurred and the same percpu variable was modified from
533 * the interrupt context.
534 */
535#ifndef __this_cpu_read
536# ifndef __this_cpu_read_1
537#  define __this_cpu_read_1(pcp)	(*__this_cpu_ptr(&(pcp)))
538# endif
539# ifndef __this_cpu_read_2
540#  define __this_cpu_read_2(pcp)	(*__this_cpu_ptr(&(pcp)))
541# endif
542# ifndef __this_cpu_read_4
543#  define __this_cpu_read_4(pcp)	(*__this_cpu_ptr(&(pcp)))
544# endif
545# ifndef __this_cpu_read_8
546#  define __this_cpu_read_8(pcp)	(*__this_cpu_ptr(&(pcp)))
547# endif
548# define __this_cpu_read(pcp)	__pcpu_size_call_return(__this_cpu_read_, (pcp))
549#endif
550
551#define __this_cpu_generic_to_op(pcp, val, op)				\
552do {									\
553	*__this_cpu_ptr(&(pcp)) op val;					\
554} while (0)
555
556#ifndef __this_cpu_write
557# ifndef __this_cpu_write_1
558#  define __this_cpu_write_1(pcp, val)	__this_cpu_generic_to_op((pcp), (val), =)
559# endif
560# ifndef __this_cpu_write_2
561#  define __this_cpu_write_2(pcp, val)	__this_cpu_generic_to_op((pcp), (val), =)
562# endif
563# ifndef __this_cpu_write_4
564#  define __this_cpu_write_4(pcp, val)	__this_cpu_generic_to_op((pcp), (val), =)
565# endif
566# ifndef __this_cpu_write_8
567#  define __this_cpu_write_8(pcp, val)	__this_cpu_generic_to_op((pcp), (val), =)
568# endif
569# define __this_cpu_write(pcp, val)	__pcpu_size_call(__this_cpu_write_, (pcp), (val))
570#endif
571
572#ifndef __this_cpu_add
573# ifndef __this_cpu_add_1
574#  define __this_cpu_add_1(pcp, val)	__this_cpu_generic_to_op((pcp), (val), +=)
575# endif
576# ifndef __this_cpu_add_2
577#  define __this_cpu_add_2(pcp, val)	__this_cpu_generic_to_op((pcp), (val), +=)
578# endif
579# ifndef __this_cpu_add_4
580#  define __this_cpu_add_4(pcp, val)	__this_cpu_generic_to_op((pcp), (val), +=)
581# endif
582# ifndef __this_cpu_add_8
583#  define __this_cpu_add_8(pcp, val)	__this_cpu_generic_to_op((pcp), (val), +=)
584# endif
585# define __this_cpu_add(pcp, val)	__pcpu_size_call(__this_cpu_add_, (pcp), (val))
586#endif
587
588#ifndef __this_cpu_sub
589# define __this_cpu_sub(pcp, val)	__this_cpu_add((pcp), -(val))
590#endif
591
592#ifndef __this_cpu_inc
593# define __this_cpu_inc(pcp)		__this_cpu_add((pcp), 1)
594#endif
595
596#ifndef __this_cpu_dec
597# define __this_cpu_dec(pcp)		__this_cpu_sub((pcp), 1)
598#endif
599
600#ifndef __this_cpu_and
601# ifndef __this_cpu_and_1
602#  define __this_cpu_and_1(pcp, val)	__this_cpu_generic_to_op((pcp), (val), &=)
603# endif
604# ifndef __this_cpu_and_2
605#  define __this_cpu_and_2(pcp, val)	__this_cpu_generic_to_op((pcp), (val), &=)
606# endif
607# ifndef __this_cpu_and_4
608#  define __this_cpu_and_4(pcp, val)	__this_cpu_generic_to_op((pcp), (val), &=)
609# endif
610# ifndef __this_cpu_and_8
611#  define __this_cpu_and_8(pcp, val)	__this_cpu_generic_to_op((pcp), (val), &=)
612# endif
613# define __this_cpu_and(pcp, val)	__pcpu_size_call(__this_cpu_and_, (pcp), (val))
614#endif
615
616#ifndef __this_cpu_or
617# ifndef __this_cpu_or_1
618#  define __this_cpu_or_1(pcp, val)	__this_cpu_generic_to_op((pcp), (val), |=)
619# endif
620# ifndef __this_cpu_or_2
621#  define __this_cpu_or_2(pcp, val)	__this_cpu_generic_to_op((pcp), (val), |=)
622# endif
623# ifndef __this_cpu_or_4
624#  define __this_cpu_or_4(pcp, val)	__this_cpu_generic_to_op((pcp), (val), |=)
625# endif
626# ifndef __this_cpu_or_8
627#  define __this_cpu_or_8(pcp, val)	__this_cpu_generic_to_op((pcp), (val), |=)
628# endif
629# define __this_cpu_or(pcp, val)	__pcpu_size_call(__this_cpu_or_, (pcp), (val))
630#endif
631
632#ifndef __this_cpu_xor
633# ifndef __this_cpu_xor_1
634#  define __this_cpu_xor_1(pcp, val)	__this_cpu_generic_to_op((pcp), (val), ^=)
635# endif
636# ifndef __this_cpu_xor_2
637#  define __this_cpu_xor_2(pcp, val)	__this_cpu_generic_to_op((pcp), (val), ^=)
638# endif
639# ifndef __this_cpu_xor_4
640#  define __this_cpu_xor_4(pcp, val)	__this_cpu_generic_to_op((pcp), (val), ^=)
641# endif
642# ifndef __this_cpu_xor_8
643#  define __this_cpu_xor_8(pcp, val)	__this_cpu_generic_to_op((pcp), (val), ^=)
644# endif
645# define __this_cpu_xor(pcp, val)	__pcpu_size_call(__this_cpu_xor_, (pcp), (val))
646#endif
647
648#define __this_cpu_generic_add_return(pcp, val)				\
649({									\
650	__this_cpu_add(pcp, val);					\
651	__this_cpu_read(pcp);						\
652})
653
654#ifndef __this_cpu_add_return
655# ifndef __this_cpu_add_return_1
656#  define __this_cpu_add_return_1(pcp, val)	__this_cpu_generic_add_return(pcp, val)
657# endif
658# ifndef __this_cpu_add_return_2
659#  define __this_cpu_add_return_2(pcp, val)	__this_cpu_generic_add_return(pcp, val)
660# endif
661# ifndef __this_cpu_add_return_4
662#  define __this_cpu_add_return_4(pcp, val)	__this_cpu_generic_add_return(pcp, val)
663# endif
664# ifndef __this_cpu_add_return_8
665#  define __this_cpu_add_return_8(pcp, val)	__this_cpu_generic_add_return(pcp, val)
666# endif
667# define __this_cpu_add_return(pcp, val)	\
668	__pcpu_size_call_return2(__this_cpu_add_return_, pcp, val)
669#endif
670
671#define __this_cpu_sub_return(pcp, val)	__this_cpu_add_return(pcp, -(val))
672#define __this_cpu_inc_return(pcp)	__this_cpu_add_return(pcp, 1)
673#define __this_cpu_dec_return(pcp)	__this_cpu_add_return(pcp, -1)
674
675#define __this_cpu_generic_xchg(pcp, nval)				\
676({	typeof(pcp) ret__;						\
677	ret__ = __this_cpu_read(pcp);					\
678	__this_cpu_write(pcp, nval);					\
679	ret__;								\
680})
681
682#ifndef __this_cpu_xchg
683# ifndef __this_cpu_xchg_1
684#  define __this_cpu_xchg_1(pcp, nval)	__this_cpu_generic_xchg(pcp, nval)
685# endif
686# ifndef __this_cpu_xchg_2
687#  define __this_cpu_xchg_2(pcp, nval)	__this_cpu_generic_xchg(pcp, nval)
688# endif
689# ifndef __this_cpu_xchg_4
690#  define __this_cpu_xchg_4(pcp, nval)	__this_cpu_generic_xchg(pcp, nval)
691# endif
692# ifndef __this_cpu_xchg_8
693#  define __this_cpu_xchg_8(pcp, nval)	__this_cpu_generic_xchg(pcp, nval)
694# endif
695# define __this_cpu_xchg(pcp, nval)	\
696	__pcpu_size_call_return2(__this_cpu_xchg_, (pcp), nval)
697#endif
698
699#define __this_cpu_generic_cmpxchg(pcp, oval, nval)			\
700({									\
701	typeof(pcp) ret__;						\
702	ret__ = __this_cpu_read(pcp);					\
703	if (ret__ == (oval))						\
704		__this_cpu_write(pcp, nval);				\
705	ret__;								\
706})
707
708#ifndef __this_cpu_cmpxchg
709# ifndef __this_cpu_cmpxchg_1
710#  define __this_cpu_cmpxchg_1(pcp, oval, nval)	__this_cpu_generic_cmpxchg(pcp, oval, nval)
711# endif
712# ifndef __this_cpu_cmpxchg_2
713#  define __this_cpu_cmpxchg_2(pcp, oval, nval)	__this_cpu_generic_cmpxchg(pcp, oval, nval)
714# endif
715# ifndef __this_cpu_cmpxchg_4
716#  define __this_cpu_cmpxchg_4(pcp, oval, nval)	__this_cpu_generic_cmpxchg(pcp, oval, nval)
717# endif
718# ifndef __this_cpu_cmpxchg_8
719#  define __this_cpu_cmpxchg_8(pcp, oval, nval)	__this_cpu_generic_cmpxchg(pcp, oval, nval)
720# endif
721# define __this_cpu_cmpxchg(pcp, oval, nval)	\
722	__pcpu_size_call_return2(__this_cpu_cmpxchg_, pcp, oval, nval)
723#endif
724
725#define __this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)	\
726({									\
727	int __ret = 0;							\
728	if (__this_cpu_read(pcp1) == (oval1) &&				\
729			 __this_cpu_read(pcp2)  == (oval2)) {		\
730		__this_cpu_write(pcp1, (nval1));			\
731		__this_cpu_write(pcp2, (nval2));			\
732		__ret = 1;						\
733	}								\
734	(__ret);							\
735})
736
737#ifndef __this_cpu_cmpxchg_double
738# ifndef __this_cpu_cmpxchg_double_1
739#  define __this_cpu_cmpxchg_double_1(pcp1, pcp2, oval1, oval2, nval1, nval2)	\
740	__this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
741# endif
742# ifndef __this_cpu_cmpxchg_double_2
743#  define __this_cpu_cmpxchg_double_2(pcp1, pcp2, oval1, oval2, nval1, nval2)	\
744	__this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
745# endif
746# ifndef __this_cpu_cmpxchg_double_4
747#  define __this_cpu_cmpxchg_double_4(pcp1, pcp2, oval1, oval2, nval1, nval2)	\
748	__this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
749# endif
750# ifndef __this_cpu_cmpxchg_double_8
751#  define __this_cpu_cmpxchg_double_8(pcp1, pcp2, oval1, oval2, nval1, nval2)	\
752	__this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
753# endif
754# define __this_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)	\
755	__pcpu_double_call_return_bool(__this_cpu_cmpxchg_double_, (pcp1), (pcp2), (oval1), (oval2), (nval1), (nval2))
756#endif
757
758#endif /* __LINUX_PERCPU_H */