Linux Audio

Check our new training course

Loading...
v5.9
   1/* SPDX-License-Identifier: GPL-2.0 */
   2/*
   3 * Linux Socket Filter Data Structures
   4 */
 
   5#ifndef __LINUX_FILTER_H__
   6#define __LINUX_FILTER_H__
   7
   8#include <stdarg.h>
 
   9
 
  10#include <linux/atomic.h>
  11#include <linux/refcount.h>
  12#include <linux/compat.h>
  13#include <linux/skbuff.h>
  14#include <linux/linkage.h>
  15#include <linux/printk.h>
  16#include <linux/workqueue.h>
  17#include <linux/sched.h>
  18#include <linux/capability.h>
  19#include <linux/set_memory.h>
  20#include <linux/kallsyms.h>
  21#include <linux/if_vlan.h>
  22#include <linux/vmalloc.h>
  23#include <linux/sockptr.h>
  24#include <crypto/sha.h>
  25
  26#include <net/sch_generic.h>
  27
  28#include <asm/byteorder.h>
  29#include <uapi/linux/filter.h>
  30#include <uapi/linux/bpf.h>
  31
  32struct sk_buff;
  33struct sock;
  34struct seccomp_data;
  35struct bpf_prog_aux;
  36struct xdp_rxq_info;
  37struct xdp_buff;
  38struct sock_reuseport;
  39struct ctl_table;
  40struct ctl_table_header;
  41
  42/* ArgX, context and stack frame pointer register positions. Note,
  43 * Arg1, Arg2, Arg3, etc are used as argument mappings of function
  44 * calls in BPF_CALL instruction.
  45 */
  46#define BPF_REG_ARG1	BPF_REG_1
  47#define BPF_REG_ARG2	BPF_REG_2
  48#define BPF_REG_ARG3	BPF_REG_3
  49#define BPF_REG_ARG4	BPF_REG_4
  50#define BPF_REG_ARG5	BPF_REG_5
  51#define BPF_REG_CTX	BPF_REG_6
  52#define BPF_REG_FP	BPF_REG_10
  53
  54/* Additional register mappings for converted user programs. */
  55#define BPF_REG_A	BPF_REG_0
  56#define BPF_REG_X	BPF_REG_7
  57#define BPF_REG_TMP	BPF_REG_2	/* scratch reg */
  58#define BPF_REG_D	BPF_REG_8	/* data, callee-saved */
  59#define BPF_REG_H	BPF_REG_9	/* hlen, callee-saved */
  60
  61/* Kernel hidden auxiliary/helper register. */
  62#define BPF_REG_AX		MAX_BPF_REG
  63#define MAX_BPF_EXT_REG		(MAX_BPF_REG + 1)
  64#define MAX_BPF_JIT_REG		MAX_BPF_EXT_REG
  65
  66/* unused opcode to mark special call to bpf_tail_call() helper */
  67#define BPF_TAIL_CALL	0xf0
  68
  69/* unused opcode to mark special load instruction. Same as BPF_ABS */
  70#define BPF_PROBE_MEM	0x20
  71
  72/* unused opcode to mark call to interpreter with arguments */
  73#define BPF_CALL_ARGS	0xe0
  74
  75/* As per nm, we expose JITed images as text (code) section for
  76 * kallsyms. That way, tools like perf can find it to match
  77 * addresses.
  78 */
  79#define BPF_SYM_ELF_TYPE	't'
  80
  81/* BPF program can access up to 512 bytes of stack space. */
  82#define MAX_BPF_STACK	512
  83
  84/* Helper macros for filter block array initializers. */
  85
  86/* ALU ops on registers, bpf_add|sub|...: dst_reg += src_reg */
  87
  88#define BPF_ALU64_REG(OP, DST, SRC)				\
  89	((struct bpf_insn) {					\
  90		.code  = BPF_ALU64 | BPF_OP(OP) | BPF_X,	\
  91		.dst_reg = DST,					\
  92		.src_reg = SRC,					\
  93		.off   = 0,					\
  94		.imm   = 0 })
  95
  96#define BPF_ALU32_REG(OP, DST, SRC)				\
  97	((struct bpf_insn) {					\
  98		.code  = BPF_ALU | BPF_OP(OP) | BPF_X,		\
  99		.dst_reg = DST,					\
 100		.src_reg = SRC,					\
 101		.off   = 0,					\
 102		.imm   = 0 })
 103
 104/* ALU ops on immediates, bpf_add|sub|...: dst_reg += imm32 */
 105
 106#define BPF_ALU64_IMM(OP, DST, IMM)				\
 107	((struct bpf_insn) {					\
 108		.code  = BPF_ALU64 | BPF_OP(OP) | BPF_K,	\
 109		.dst_reg = DST,					\
 110		.src_reg = 0,					\
 111		.off   = 0,					\
 112		.imm   = IMM })
 113
 114#define BPF_ALU32_IMM(OP, DST, IMM)				\
 115	((struct bpf_insn) {					\
 116		.code  = BPF_ALU | BPF_OP(OP) | BPF_K,		\
 117		.dst_reg = DST,					\
 118		.src_reg = 0,					\
 119		.off   = 0,					\
 120		.imm   = IMM })
 121
 122/* Endianess conversion, cpu_to_{l,b}e(), {l,b}e_to_cpu() */
 123
 124#define BPF_ENDIAN(TYPE, DST, LEN)				\
 125	((struct bpf_insn) {					\
 126		.code  = BPF_ALU | BPF_END | BPF_SRC(TYPE),	\
 127		.dst_reg = DST,					\
 128		.src_reg = 0,					\
 129		.off   = 0,					\
 130		.imm   = LEN })
 131
 132/* Short form of mov, dst_reg = src_reg */
 133
 134#define BPF_MOV64_REG(DST, SRC)					\
 135	((struct bpf_insn) {					\
 136		.code  = BPF_ALU64 | BPF_MOV | BPF_X,		\
 137		.dst_reg = DST,					\
 138		.src_reg = SRC,					\
 139		.off   = 0,					\
 140		.imm   = 0 })
 141
 142#define BPF_MOV32_REG(DST, SRC)					\
 143	((struct bpf_insn) {					\
 144		.code  = BPF_ALU | BPF_MOV | BPF_X,		\
 145		.dst_reg = DST,					\
 146		.src_reg = SRC,					\
 147		.off   = 0,					\
 148		.imm   = 0 })
 149
 150/* Short form of mov, dst_reg = imm32 */
 151
 152#define BPF_MOV64_IMM(DST, IMM)					\
 153	((struct bpf_insn) {					\
 154		.code  = BPF_ALU64 | BPF_MOV | BPF_K,		\
 155		.dst_reg = DST,					\
 156		.src_reg = 0,					\
 157		.off   = 0,					\
 158		.imm   = IMM })
 159
 160#define BPF_MOV32_IMM(DST, IMM)					\
 161	((struct bpf_insn) {					\
 162		.code  = BPF_ALU | BPF_MOV | BPF_K,		\
 163		.dst_reg = DST,					\
 164		.src_reg = 0,					\
 165		.off   = 0,					\
 166		.imm   = IMM })
 167
 168/* Special form of mov32, used for doing explicit zero extension on dst. */
 169#define BPF_ZEXT_REG(DST)					\
 170	((struct bpf_insn) {					\
 171		.code  = BPF_ALU | BPF_MOV | BPF_X,		\
 172		.dst_reg = DST,					\
 173		.src_reg = DST,					\
 174		.off   = 0,					\
 175		.imm   = 1 })
 176
 177static inline bool insn_is_zext(const struct bpf_insn *insn)
 178{
 179	return insn->code == (BPF_ALU | BPF_MOV | BPF_X) && insn->imm == 1;
 180}
 181
 182/* BPF_LD_IMM64 macro encodes single 'load 64-bit immediate' insn */
 183#define BPF_LD_IMM64(DST, IMM)					\
 184	BPF_LD_IMM64_RAW(DST, 0, IMM)
 185
 186#define BPF_LD_IMM64_RAW(DST, SRC, IMM)				\
 187	((struct bpf_insn) {					\
 188		.code  = BPF_LD | BPF_DW | BPF_IMM,		\
 189		.dst_reg = DST,					\
 190		.src_reg = SRC,					\
 191		.off   = 0,					\
 192		.imm   = (__u32) (IMM) }),			\
 193	((struct bpf_insn) {					\
 194		.code  = 0, /* zero is reserved opcode */	\
 195		.dst_reg = 0,					\
 196		.src_reg = 0,					\
 197		.off   = 0,					\
 198		.imm   = ((__u64) (IMM)) >> 32 })
 199
 200/* pseudo BPF_LD_IMM64 insn used to refer to process-local map_fd */
 201#define BPF_LD_MAP_FD(DST, MAP_FD)				\
 202	BPF_LD_IMM64_RAW(DST, BPF_PSEUDO_MAP_FD, MAP_FD)
 203
 204/* Short form of mov based on type, BPF_X: dst_reg = src_reg, BPF_K: dst_reg = imm32 */
 205
 206#define BPF_MOV64_RAW(TYPE, DST, SRC, IMM)			\
 207	((struct bpf_insn) {					\
 208		.code  = BPF_ALU64 | BPF_MOV | BPF_SRC(TYPE),	\
 209		.dst_reg = DST,					\
 210		.src_reg = SRC,					\
 211		.off   = 0,					\
 212		.imm   = IMM })
 213
 214#define BPF_MOV32_RAW(TYPE, DST, SRC, IMM)			\
 215	((struct bpf_insn) {					\
 216		.code  = BPF_ALU | BPF_MOV | BPF_SRC(TYPE),	\
 217		.dst_reg = DST,					\
 218		.src_reg = SRC,					\
 219		.off   = 0,					\
 220		.imm   = IMM })
 221
 222/* Direct packet access, R0 = *(uint *) (skb->data + imm32) */
 223
 224#define BPF_LD_ABS(SIZE, IMM)					\
 225	((struct bpf_insn) {					\
 226		.code  = BPF_LD | BPF_SIZE(SIZE) | BPF_ABS,	\
 227		.dst_reg = 0,					\
 228		.src_reg = 0,					\
 229		.off   = 0,					\
 230		.imm   = IMM })
 231
 232/* Indirect packet access, R0 = *(uint *) (skb->data + src_reg + imm32) */
 233
 234#define BPF_LD_IND(SIZE, SRC, IMM)				\
 235	((struct bpf_insn) {					\
 236		.code  = BPF_LD | BPF_SIZE(SIZE) | BPF_IND,	\
 237		.dst_reg = 0,					\
 238		.src_reg = SRC,					\
 239		.off   = 0,					\
 240		.imm   = IMM })
 241
 242/* Memory load, dst_reg = *(uint *) (src_reg + off16) */
 243
 244#define BPF_LDX_MEM(SIZE, DST, SRC, OFF)			\
 245	((struct bpf_insn) {					\
 246		.code  = BPF_LDX | BPF_SIZE(SIZE) | BPF_MEM,	\
 247		.dst_reg = DST,					\
 248		.src_reg = SRC,					\
 249		.off   = OFF,					\
 250		.imm   = 0 })
 251
 252/* Memory store, *(uint *) (dst_reg + off16) = src_reg */
 253
 254#define BPF_STX_MEM(SIZE, DST, SRC, OFF)			\
 255	((struct bpf_insn) {					\
 256		.code  = BPF_STX | BPF_SIZE(SIZE) | BPF_MEM,	\
 257		.dst_reg = DST,					\
 258		.src_reg = SRC,					\
 259		.off   = OFF,					\
 260		.imm   = 0 })
 261
 262/* Atomic memory add, *(uint *)(dst_reg + off16) += src_reg */
 263
 264#define BPF_STX_XADD(SIZE, DST, SRC, OFF)			\
 265	((struct bpf_insn) {					\
 266		.code  = BPF_STX | BPF_SIZE(SIZE) | BPF_XADD,	\
 267		.dst_reg = DST,					\
 268		.src_reg = SRC,					\
 269		.off   = OFF,					\
 270		.imm   = 0 })
 271
 272/* Memory store, *(uint *) (dst_reg + off16) = imm32 */
 273
 274#define BPF_ST_MEM(SIZE, DST, OFF, IMM)				\
 275	((struct bpf_insn) {					\
 276		.code  = BPF_ST | BPF_SIZE(SIZE) | BPF_MEM,	\
 277		.dst_reg = DST,					\
 278		.src_reg = 0,					\
 279		.off   = OFF,					\
 280		.imm   = IMM })
 281
 282/* Conditional jumps against registers, if (dst_reg 'op' src_reg) goto pc + off16 */
 283
 284#define BPF_JMP_REG(OP, DST, SRC, OFF)				\
 285	((struct bpf_insn) {					\
 286		.code  = BPF_JMP | BPF_OP(OP) | BPF_X,		\
 287		.dst_reg = DST,					\
 288		.src_reg = SRC,					\
 289		.off   = OFF,					\
 290		.imm   = 0 })
 291
 292/* Conditional jumps against immediates, if (dst_reg 'op' imm32) goto pc + off16 */
 293
 294#define BPF_JMP_IMM(OP, DST, IMM, OFF)				\
 295	((struct bpf_insn) {					\
 296		.code  = BPF_JMP | BPF_OP(OP) | BPF_K,		\
 297		.dst_reg = DST,					\
 298		.src_reg = 0,					\
 299		.off   = OFF,					\
 300		.imm   = IMM })
 301
 302/* Like BPF_JMP_REG, but with 32-bit wide operands for comparison. */
 303
 304#define BPF_JMP32_REG(OP, DST, SRC, OFF)			\
 305	((struct bpf_insn) {					\
 306		.code  = BPF_JMP32 | BPF_OP(OP) | BPF_X,	\
 307		.dst_reg = DST,					\
 308		.src_reg = SRC,					\
 309		.off   = OFF,					\
 310		.imm   = 0 })
 311
 312/* Like BPF_JMP_IMM, but with 32-bit wide operands for comparison. */
 313
 314#define BPF_JMP32_IMM(OP, DST, IMM, OFF)			\
 315	((struct bpf_insn) {					\
 316		.code  = BPF_JMP32 | BPF_OP(OP) | BPF_K,	\
 317		.dst_reg = DST,					\
 318		.src_reg = 0,					\
 319		.off   = OFF,					\
 320		.imm   = IMM })
 321
 322/* Unconditional jumps, goto pc + off16 */
 323
 324#define BPF_JMP_A(OFF)						\
 325	((struct bpf_insn) {					\
 326		.code  = BPF_JMP | BPF_JA,			\
 327		.dst_reg = 0,					\
 328		.src_reg = 0,					\
 329		.off   = OFF,					\
 330		.imm   = 0 })
 331
 332/* Relative call */
 333
 334#define BPF_CALL_REL(TGT)					\
 335	((struct bpf_insn) {					\
 336		.code  = BPF_JMP | BPF_CALL,			\
 337		.dst_reg = 0,					\
 338		.src_reg = BPF_PSEUDO_CALL,			\
 339		.off   = 0,					\
 340		.imm   = TGT })
 341
 342/* Function call */
 343
 344#define BPF_CAST_CALL(x)					\
 345		((u64 (*)(u64, u64, u64, u64, u64))(x))
 346
 347#define BPF_EMIT_CALL(FUNC)					\
 348	((struct bpf_insn) {					\
 349		.code  = BPF_JMP | BPF_CALL,			\
 350		.dst_reg = 0,					\
 351		.src_reg = 0,					\
 352		.off   = 0,					\
 353		.imm   = ((FUNC) - __bpf_call_base) })
 354
 355/* Raw code statement block */
 356
 357#define BPF_RAW_INSN(CODE, DST, SRC, OFF, IMM)			\
 358	((struct bpf_insn) {					\
 359		.code  = CODE,					\
 360		.dst_reg = DST,					\
 361		.src_reg = SRC,					\
 362		.off   = OFF,					\
 363		.imm   = IMM })
 364
 365/* Program exit */
 366
 367#define BPF_EXIT_INSN()						\
 368	((struct bpf_insn) {					\
 369		.code  = BPF_JMP | BPF_EXIT,			\
 370		.dst_reg = 0,					\
 371		.src_reg = 0,					\
 372		.off   = 0,					\
 373		.imm   = 0 })
 374
 375/* Internal classic blocks for direct assignment */
 376
 377#define __BPF_STMT(CODE, K)					\
 378	((struct sock_filter) BPF_STMT(CODE, K))
 379
 380#define __BPF_JUMP(CODE, K, JT, JF)				\
 381	((struct sock_filter) BPF_JUMP(CODE, K, JT, JF))
 382
 383#define bytes_to_bpf_size(bytes)				\
 384({								\
 385	int bpf_size = -EINVAL;					\
 386								\
 387	if (bytes == sizeof(u8))				\
 388		bpf_size = BPF_B;				\
 389	else if (bytes == sizeof(u16))				\
 390		bpf_size = BPF_H;				\
 391	else if (bytes == sizeof(u32))				\
 392		bpf_size = BPF_W;				\
 393	else if (bytes == sizeof(u64))				\
 394		bpf_size = BPF_DW;				\
 395								\
 396	bpf_size;						\
 397})
 398
 399#define bpf_size_to_bytes(bpf_size)				\
 400({								\
 401	int bytes = -EINVAL;					\
 402								\
 403	if (bpf_size == BPF_B)					\
 404		bytes = sizeof(u8);				\
 405	else if (bpf_size == BPF_H)				\
 406		bytes = sizeof(u16);				\
 407	else if (bpf_size == BPF_W)				\
 408		bytes = sizeof(u32);				\
 409	else if (bpf_size == BPF_DW)				\
 410		bytes = sizeof(u64);				\
 411								\
 412	bytes;							\
 413})
 414
 415#define BPF_SIZEOF(type)					\
 416	({							\
 417		const int __size = bytes_to_bpf_size(sizeof(type)); \
 418		BUILD_BUG_ON(__size < 0);			\
 419		__size;						\
 420	})
 421
 422#define BPF_FIELD_SIZEOF(type, field)				\
 423	({							\
 424		const int __size = bytes_to_bpf_size(sizeof_field(type, field)); \
 425		BUILD_BUG_ON(__size < 0);			\
 426		__size;						\
 427	})
 428
 429#define BPF_LDST_BYTES(insn)					\
 430	({							\
 431		const int __size = bpf_size_to_bytes(BPF_SIZE((insn)->code)); \
 432		WARN_ON(__size < 0);				\
 433		__size;						\
 434	})
 435
 436#define __BPF_MAP_0(m, v, ...) v
 437#define __BPF_MAP_1(m, v, t, a, ...) m(t, a)
 438#define __BPF_MAP_2(m, v, t, a, ...) m(t, a), __BPF_MAP_1(m, v, __VA_ARGS__)
 439#define __BPF_MAP_3(m, v, t, a, ...) m(t, a), __BPF_MAP_2(m, v, __VA_ARGS__)
 440#define __BPF_MAP_4(m, v, t, a, ...) m(t, a), __BPF_MAP_3(m, v, __VA_ARGS__)
 441#define __BPF_MAP_5(m, v, t, a, ...) m(t, a), __BPF_MAP_4(m, v, __VA_ARGS__)
 442
 443#define __BPF_REG_0(...) __BPF_PAD(5)
 444#define __BPF_REG_1(...) __BPF_MAP(1, __VA_ARGS__), __BPF_PAD(4)
 445#define __BPF_REG_2(...) __BPF_MAP(2, __VA_ARGS__), __BPF_PAD(3)
 446#define __BPF_REG_3(...) __BPF_MAP(3, __VA_ARGS__), __BPF_PAD(2)
 447#define __BPF_REG_4(...) __BPF_MAP(4, __VA_ARGS__), __BPF_PAD(1)
 448#define __BPF_REG_5(...) __BPF_MAP(5, __VA_ARGS__)
 449
 450#define __BPF_MAP(n, ...) __BPF_MAP_##n(__VA_ARGS__)
 451#define __BPF_REG(n, ...) __BPF_REG_##n(__VA_ARGS__)
 452
 453#define __BPF_CAST(t, a)						       \
 454	(__force t)							       \
 455	(__force							       \
 456	 typeof(__builtin_choose_expr(sizeof(t) == sizeof(unsigned long),      \
 457				      (unsigned long)0, (t)0))) a
 458#define __BPF_V void
 459#define __BPF_N
 460
 461#define __BPF_DECL_ARGS(t, a) t   a
 462#define __BPF_DECL_REGS(t, a) u64 a
 463
 464#define __BPF_PAD(n)							       \
 465	__BPF_MAP(n, __BPF_DECL_ARGS, __BPF_N, u64, __ur_1, u64, __ur_2,       \
 466		  u64, __ur_3, u64, __ur_4, u64, __ur_5)
 467
 468#define BPF_CALL_x(x, name, ...)					       \
 469	static __always_inline						       \
 470	u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__));   \
 471	typedef u64 (*btf_##name)(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)); \
 472	u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__));	       \
 473	u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__))	       \
 474	{								       \
 475		return ((btf_##name)____##name)(__BPF_MAP(x,__BPF_CAST,__BPF_N,__VA_ARGS__));\
 476	}								       \
 477	static __always_inline						       \
 478	u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__))
 479
 480#define BPF_CALL_0(name, ...)	BPF_CALL_x(0, name, __VA_ARGS__)
 481#define BPF_CALL_1(name, ...)	BPF_CALL_x(1, name, __VA_ARGS__)
 482#define BPF_CALL_2(name, ...)	BPF_CALL_x(2, name, __VA_ARGS__)
 483#define BPF_CALL_3(name, ...)	BPF_CALL_x(3, name, __VA_ARGS__)
 484#define BPF_CALL_4(name, ...)	BPF_CALL_x(4, name, __VA_ARGS__)
 485#define BPF_CALL_5(name, ...)	BPF_CALL_x(5, name, __VA_ARGS__)
 486
 487#define bpf_ctx_range(TYPE, MEMBER)						\
 488	offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1
 489#define bpf_ctx_range_till(TYPE, MEMBER1, MEMBER2)				\
 490	offsetof(TYPE, MEMBER1) ... offsetofend(TYPE, MEMBER2) - 1
 491#if BITS_PER_LONG == 64
 492# define bpf_ctx_range_ptr(TYPE, MEMBER)					\
 493	offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1
 494#else
 495# define bpf_ctx_range_ptr(TYPE, MEMBER)					\
 496	offsetof(TYPE, MEMBER) ... offsetof(TYPE, MEMBER) + 8 - 1
 497#endif /* BITS_PER_LONG == 64 */
 498
 499#define bpf_target_off(TYPE, MEMBER, SIZE, PTR_SIZE)				\
 500	({									\
 501		BUILD_BUG_ON(sizeof_field(TYPE, MEMBER) != (SIZE));		\
 502		*(PTR_SIZE) = (SIZE);						\
 503		offsetof(TYPE, MEMBER);						\
 504	})
 505
 506/* A struct sock_filter is architecture independent. */
 507struct compat_sock_fprog {
 508	u16		len;
 509	compat_uptr_t	filter;	/* struct sock_filter * */
 510};
 511
 512struct sock_fprog_kern {
 513	u16			len;
 514	struct sock_filter	*filter;
 515};
 516
 517/* Some arches need doubleword alignment for their instructions and/or data */
 518#define BPF_IMAGE_ALIGNMENT 8
 519
 520struct bpf_binary_header {
 521	u32 pages;
 522	u8 image[] __aligned(BPF_IMAGE_ALIGNMENT);
 523};
 524
 525struct bpf_prog {
 526	u16			pages;		/* Number of allocated pages */
 527	u16			jited:1,	/* Is our filter JIT'ed? */
 528				jit_requested:1,/* archs need to JIT the prog */
 529				gpl_compatible:1, /* Is filter GPL compatible? */
 530				cb_access:1,	/* Is control block accessed? */
 531				dst_needed:1,	/* Do we need dst entry? */
 532				blinded:1,	/* Was blinded */
 533				is_func:1,	/* program is a bpf function */
 534				kprobe_override:1, /* Do we override a kprobe? */
 535				has_callchain_buf:1, /* callchain buffer allocated? */
 536				enforce_expected_attach_type:1, /* Enforce expected_attach_type checking at attach time */
 537				call_get_stack:1; /* Do we call bpf_get_stack() or bpf_get_stackid() */
 538	enum bpf_prog_type	type;		/* Type of BPF program */
 539	enum bpf_attach_type	expected_attach_type; /* For some prog types */
 540	u32			len;		/* Number of filter blocks */
 541	u32			jited_len;	/* Size of jited insns in bytes */
 542	u8			tag[BPF_TAG_SIZE];
 543	struct bpf_prog_aux	*aux;		/* Auxiliary fields */
 544	struct sock_fprog_kern	*orig_prog;	/* Original BPF program */
 545	unsigned int		(*bpf_func)(const void *ctx,
 546					    const struct bpf_insn *insn);
 547	/* Instructions for interpreter */
 548	struct sock_filter	insns[0];
 549	struct bpf_insn		insnsi[];
 550};
 551
 552struct sk_filter {
 553	refcount_t	refcnt;
 554	struct rcu_head	rcu;
 555	struct bpf_prog	*prog;
 556};
 557
 558DECLARE_STATIC_KEY_FALSE(bpf_stats_enabled_key);
 559
 560#define __BPF_PROG_RUN(prog, ctx, dfunc)	({			\
 561	u32 ret;							\
 562	cant_migrate();							\
 563	if (static_branch_unlikely(&bpf_stats_enabled_key)) {		\
 564		struct bpf_prog_stats *stats;				\
 565		u64 start = sched_clock();				\
 566		ret = dfunc(ctx, (prog)->insnsi, (prog)->bpf_func);	\
 567		stats = this_cpu_ptr(prog->aux->stats);			\
 568		u64_stats_update_begin(&stats->syncp);			\
 569		stats->cnt++;						\
 570		stats->nsecs += sched_clock() - start;			\
 571		u64_stats_update_end(&stats->syncp);			\
 572	} else {							\
 573		ret = dfunc(ctx, (prog)->insnsi, (prog)->bpf_func);	\
 574	}								\
 575	ret; })
 576
 577#define BPF_PROG_RUN(prog, ctx)						\
 578	__BPF_PROG_RUN(prog, ctx, bpf_dispatcher_nop_func)
 579
 580/*
 581 * Use in preemptible and therefore migratable context to make sure that
 582 * the execution of the BPF program runs on one CPU.
 583 *
 584 * This uses migrate_disable/enable() explicitly to document that the
 585 * invocation of a BPF program does not require reentrancy protection
 586 * against a BPF program which is invoked from a preempting task.
 587 *
 588 * For non RT enabled kernels migrate_disable/enable() maps to
 589 * preempt_disable/enable(), i.e. it disables also preemption.
 590 */
 591static inline u32 bpf_prog_run_pin_on_cpu(const struct bpf_prog *prog,
 592					  const void *ctx)
 593{
 594	u32 ret;
 595
 596	migrate_disable();
 597	ret = __BPF_PROG_RUN(prog, ctx, bpf_dispatcher_nop_func);
 598	migrate_enable();
 599	return ret;
 600}
 601
 602#define BPF_SKB_CB_LEN QDISC_CB_PRIV_LEN
 603
 604struct bpf_skb_data_end {
 605	struct qdisc_skb_cb qdisc_cb;
 606	void *data_meta;
 607	void *data_end;
 608};
 609
 610struct bpf_redirect_info {
 611	u32 flags;
 612	u32 tgt_index;
 613	void *tgt_value;
 614	struct bpf_map *map;
 615	u32 kern_flags;
 616};
 617
 618DECLARE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info);
 619
 620/* flags for bpf_redirect_info kern_flags */
 621#define BPF_RI_F_RF_NO_DIRECT	BIT(0)	/* no napi_direct on return_frame */
 622
 623/* Compute the linear packet data range [data, data_end) which
 624 * will be accessed by various program types (cls_bpf, act_bpf,
 625 * lwt, ...). Subsystems allowing direct data access must (!)
 626 * ensure that cb[] area can be written to when BPF program is
 627 * invoked (otherwise cb[] save/restore is necessary).
 628 */
 629static inline void bpf_compute_data_pointers(struct sk_buff *skb)
 630{
 631	struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
 632
 633	BUILD_BUG_ON(sizeof(*cb) > sizeof_field(struct sk_buff, cb));
 634	cb->data_meta = skb->data - skb_metadata_len(skb);
 635	cb->data_end  = skb->data + skb_headlen(skb);
 636}
 637
 638/* Similar to bpf_compute_data_pointers(), except that save orginal
 639 * data in cb->data and cb->meta_data for restore.
 640 */
 641static inline void bpf_compute_and_save_data_end(
 642	struct sk_buff *skb, void **saved_data_end)
 643{
 644	struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
 645
 646	*saved_data_end = cb->data_end;
 647	cb->data_end  = skb->data + skb_headlen(skb);
 648}
 649
 650/* Restore data saved by bpf_compute_data_pointers(). */
 651static inline void bpf_restore_data_end(
 652	struct sk_buff *skb, void *saved_data_end)
 653{
 654	struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
 655
 656	cb->data_end = saved_data_end;
 657}
 658
 659static inline u8 *bpf_skb_cb(struct sk_buff *skb)
 660{
 661	/* eBPF programs may read/write skb->cb[] area to transfer meta
 662	 * data between tail calls. Since this also needs to work with
 663	 * tc, that scratch memory is mapped to qdisc_skb_cb's data area.
 664	 *
 665	 * In some socket filter cases, the cb unfortunately needs to be
 666	 * saved/restored so that protocol specific skb->cb[] data won't
 667	 * be lost. In any case, due to unpriviledged eBPF programs
 668	 * attached to sockets, we need to clear the bpf_skb_cb() area
 669	 * to not leak previous contents to user space.
 670	 */
 671	BUILD_BUG_ON(sizeof_field(struct __sk_buff, cb) != BPF_SKB_CB_LEN);
 672	BUILD_BUG_ON(sizeof_field(struct __sk_buff, cb) !=
 673		     sizeof_field(struct qdisc_skb_cb, data));
 674
 675	return qdisc_skb_cb(skb)->data;
 676}
 677
 678/* Must be invoked with migration disabled */
 679static inline u32 __bpf_prog_run_save_cb(const struct bpf_prog *prog,
 680					 struct sk_buff *skb)
 681{
 682	u8 *cb_data = bpf_skb_cb(skb);
 683	u8 cb_saved[BPF_SKB_CB_LEN];
 684	u32 res;
 685
 686	if (unlikely(prog->cb_access)) {
 687		memcpy(cb_saved, cb_data, sizeof(cb_saved));
 688		memset(cb_data, 0, sizeof(cb_saved));
 689	}
 690
 691	res = BPF_PROG_RUN(prog, skb);
 692
 693	if (unlikely(prog->cb_access))
 694		memcpy(cb_data, cb_saved, sizeof(cb_saved));
 695
 696	return res;
 697}
 698
 699static inline u32 bpf_prog_run_save_cb(const struct bpf_prog *prog,
 700				       struct sk_buff *skb)
 701{
 702	u32 res;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 703
 704	migrate_disable();
 705	res = __bpf_prog_run_save_cb(prog, skb);
 706	migrate_enable();
 707	return res;
 708}
 709
 710static inline u32 bpf_prog_run_clear_cb(const struct bpf_prog *prog,
 711					struct sk_buff *skb)
 712{
 713	u8 *cb_data = bpf_skb_cb(skb);
 714	u32 res;
 715
 716	if (unlikely(prog->cb_access))
 717		memset(cb_data, 0, BPF_SKB_CB_LEN);
 718
 719	res = bpf_prog_run_pin_on_cpu(prog, skb);
 720	return res;
 721}
 722
 723DECLARE_BPF_DISPATCHER(xdp)
 724
 725static __always_inline u32 bpf_prog_run_xdp(const struct bpf_prog *prog,
 726					    struct xdp_buff *xdp)
 727{
 728	/* Caller needs to hold rcu_read_lock() (!), otherwise program
 729	 * can be released while still running, or map elements could be
 730	 * freed early while still having concurrent users. XDP fastpath
 731	 * already takes rcu_read_lock() when fetching the program, so
 732	 * it's not necessary here anymore.
 733	 */
 734	return __BPF_PROG_RUN(prog, xdp, BPF_DISPATCHER_FUNC(xdp));
 735}
 736
 737void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog);
 738
 739static inline u32 bpf_prog_insn_size(const struct bpf_prog *prog)
 740{
 741	return prog->len * sizeof(struct bpf_insn);
 742}
 743
 744static inline u32 bpf_prog_tag_scratch_size(const struct bpf_prog *prog)
 745{
 746	return round_up(bpf_prog_insn_size(prog) +
 747			sizeof(__be64) + 1, SHA1_BLOCK_SIZE);
 748}
 749
 750static inline unsigned int bpf_prog_size(unsigned int proglen)
 751{
 752	return max(sizeof(struct bpf_prog),
 753		   offsetof(struct bpf_prog, insns[proglen]));
 754}
 755
 756static inline bool bpf_prog_was_classic(const struct bpf_prog *prog)
 757{
 758	/* When classic BPF programs have been loaded and the arch
 759	 * does not have a classic BPF JIT (anymore), they have been
 760	 * converted via bpf_migrate_filter() to eBPF and thus always
 761	 * have an unspec program type.
 762	 */
 763	return prog->type == BPF_PROG_TYPE_UNSPEC;
 764}
 765
 766static inline u32 bpf_ctx_off_adjust_machine(u32 size)
 767{
 768	const u32 size_machine = sizeof(unsigned long);
 769
 770	if (size > size_machine && size % size_machine == 0)
 771		size = size_machine;
 772
 773	return size;
 774}
 775
 776static inline bool
 777bpf_ctx_narrow_access_ok(u32 off, u32 size, u32 size_default)
 778{
 779	return size <= size_default && (size & (size - 1)) == 0;
 780}
 781
 782static inline u8
 783bpf_ctx_narrow_access_offset(u32 off, u32 size, u32 size_default)
 784{
 785	u8 access_off = off & (size_default - 1);
 786
 787#ifdef __LITTLE_ENDIAN
 788	return access_off;
 789#else
 790	return size_default - (access_off + size);
 791#endif
 792}
 793
 794#define bpf_ctx_wide_access_ok(off, size, type, field)			\
 795	(size == sizeof(__u64) &&					\
 796	off >= offsetof(type, field) &&					\
 797	off + sizeof(__u64) <= offsetofend(type, field) &&		\
 798	off % sizeof(__u64) == 0)
 799
 800#define bpf_classic_proglen(fprog) (fprog->len * sizeof(fprog->filter[0]))
 801
 802static inline void bpf_prog_lock_ro(struct bpf_prog *fp)
 803{
 804#ifndef CONFIG_BPF_JIT_ALWAYS_ON
 805	if (!fp->jited) {
 806		set_vm_flush_reset_perms(fp);
 807		set_memory_ro((unsigned long)fp, fp->pages);
 808	}
 809#endif
 810}
 811
 812static inline void bpf_jit_binary_lock_ro(struct bpf_binary_header *hdr)
 813{
 814	set_vm_flush_reset_perms(hdr);
 815	set_memory_ro((unsigned long)hdr, hdr->pages);
 816	set_memory_x((unsigned long)hdr, hdr->pages);
 817}
 818
 819static inline struct bpf_binary_header *
 820bpf_jit_binary_hdr(const struct bpf_prog *fp)
 821{
 822	unsigned long real_start = (unsigned long)fp->bpf_func;
 823	unsigned long addr = real_start & PAGE_MASK;
 824
 825	return (void *)addr;
 826}
 827
 828int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap);
 829static inline int sk_filter(struct sock *sk, struct sk_buff *skb)
 830{
 831	return sk_filter_trim_cap(sk, skb, 1);
 832}
 833
 834struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err);
 835void bpf_prog_free(struct bpf_prog *fp);
 836
 837bool bpf_opcode_in_insntable(u8 code);
 838
 839void bpf_prog_free_linfo(struct bpf_prog *prog);
 840void bpf_prog_fill_jited_linfo(struct bpf_prog *prog,
 841			       const u32 *insn_to_jit_off);
 842int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog);
 843void bpf_prog_free_jited_linfo(struct bpf_prog *prog);
 844void bpf_prog_free_unused_jited_linfo(struct bpf_prog *prog);
 845
 846struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags);
 847struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags);
 848struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
 849				  gfp_t gfp_extra_flags);
 850void __bpf_prog_free(struct bpf_prog *fp);
 851
 852static inline void bpf_prog_unlock_free(struct bpf_prog *fp)
 853{
 854	__bpf_prog_free(fp);
 855}
 856
 857typedef int (*bpf_aux_classic_check_t)(struct sock_filter *filter,
 858				       unsigned int flen);
 859
 860int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog);
 861int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
 862			      bpf_aux_classic_check_t trans, bool save_orig);
 863void bpf_prog_destroy(struct bpf_prog *fp);
 864
 865int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk);
 866int sk_attach_bpf(u32 ufd, struct sock *sk);
 867int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk);
 868int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk);
 869void sk_reuseport_prog_free(struct bpf_prog *prog);
 870int sk_detach_filter(struct sock *sk);
 871int sk_get_filter(struct sock *sk, struct sock_filter __user *filter,
 872		  unsigned int len);
 873
 874bool sk_filter_charge(struct sock *sk, struct sk_filter *fp);
 875void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp);
 876
 877u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
 878#define __bpf_call_base_args \
 879	((u64 (*)(u64, u64, u64, u64, u64, const struct bpf_insn *)) \
 880	 __bpf_call_base)
 881
 882struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog);
 883void bpf_jit_compile(struct bpf_prog *prog);
 884bool bpf_jit_needs_zext(void);
 885bool bpf_helper_changes_pkt_data(void *func);
 886
 887static inline bool bpf_dump_raw_ok(const struct cred *cred)
 888{
 889	/* Reconstruction of call-sites is dependent on kallsyms,
 890	 * thus make dump the same restriction.
 891	 */
 892	return kallsyms_show_value(cred);
 893}
 894
 895struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
 896				       const struct bpf_insn *patch, u32 len);
 897int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt);
 898
 899void bpf_clear_redirect_map(struct bpf_map *map);
 900
 901static inline bool xdp_return_frame_no_direct(void)
 902{
 903	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
 904
 905	return ri->kern_flags & BPF_RI_F_RF_NO_DIRECT;
 906}
 907
 908static inline void xdp_set_return_frame_no_direct(void)
 909{
 910	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
 911
 912	ri->kern_flags |= BPF_RI_F_RF_NO_DIRECT;
 913}
 914
 915static inline void xdp_clear_return_frame_no_direct(void)
 916{
 917	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
 918
 919	ri->kern_flags &= ~BPF_RI_F_RF_NO_DIRECT;
 920}
 921
 922static inline int xdp_ok_fwd_dev(const struct net_device *fwd,
 923				 unsigned int pktlen)
 924{
 925	unsigned int len;
 926
 927	if (unlikely(!(fwd->flags & IFF_UP)))
 928		return -ENETDOWN;
 
 
 929
 930	len = fwd->mtu + fwd->hard_header_len + VLAN_HLEN;
 931	if (pktlen > len)
 932		return -EMSGSIZE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 933
 934	return 0;
 935}
 936
 937/* The pair of xdp_do_redirect and xdp_do_flush MUST be called in the
 938 * same cpu context. Further for best results no more than a single map
 939 * for the do_redirect/do_flush pair should be used. This limitation is
 940 * because we only track one map and force a flush when the map changes.
 941 * This does not appear to be a real limitation for existing software.
 942 */
 943int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
 944			    struct xdp_buff *xdp, struct bpf_prog *prog);
 945int xdp_do_redirect(struct net_device *dev,
 946		    struct xdp_buff *xdp,
 947		    struct bpf_prog *prog);
 948void xdp_do_flush(void);
 949
 950/* The xdp_do_flush_map() helper has been renamed to drop the _map suffix, as
 951 * it is no longer only flushing maps. Keep this define for compatibility
 952 * until all drivers are updated - do not use xdp_do_flush_map() in new code!
 953 */
 954#define xdp_do_flush_map xdp_do_flush
 955
 956void bpf_warn_invalid_xdp_action(u32 act);
 957
 958#ifdef CONFIG_INET
 959struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
 960				  struct bpf_prog *prog, struct sk_buff *skb,
 961				  u32 hash);
 962#else
 963static inline struct sock *
 964bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
 965		     struct bpf_prog *prog, struct sk_buff *skb,
 966		     u32 hash)
 967{
 968	return NULL;
 969}
 970#endif
 971
 972#ifdef CONFIG_BPF_JIT
 973extern int bpf_jit_enable;
 974extern int bpf_jit_harden;
 975extern int bpf_jit_kallsyms;
 976extern long bpf_jit_limit;
 977
 978typedef void (*bpf_jit_fill_hole_t)(void *area, unsigned int size);
 979
 980struct bpf_binary_header *
 981bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
 982		     unsigned int alignment,
 983		     bpf_jit_fill_hole_t bpf_fill_ill_insns);
 984void bpf_jit_binary_free(struct bpf_binary_header *hdr);
 985u64 bpf_jit_alloc_exec_limit(void);
 986void *bpf_jit_alloc_exec(unsigned long size);
 987void bpf_jit_free_exec(void *addr);
 988void bpf_jit_free(struct bpf_prog *fp);
 989
 990int bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
 991				struct bpf_jit_poke_descriptor *poke);
 992
 993int bpf_jit_get_func_addr(const struct bpf_prog *prog,
 994			  const struct bpf_insn *insn, bool extra_pass,
 995			  u64 *func_addr, bool *func_addr_fixed);
 996
 997struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *fp);
 998void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other);
 999
1000static inline void bpf_jit_dump(unsigned int flen, unsigned int proglen,
1001				u32 pass, void *image)
1002{
1003	pr_err("flen=%u proglen=%u pass=%u image=%pK from=%s pid=%d\n", flen,
1004	       proglen, pass, image, current->comm, task_pid_nr(current));
1005
1006	if (image)
1007		print_hex_dump(KERN_ERR, "JIT code: ", DUMP_PREFIX_OFFSET,
1008			       16, 1, image, proglen, false);
1009}
1010
1011static inline bool bpf_jit_is_ebpf(void)
1012{
1013# ifdef CONFIG_HAVE_EBPF_JIT
1014	return true;
1015# else
1016	return false;
1017# endif
1018}
1019
1020static inline bool ebpf_jit_enabled(void)
1021{
1022	return bpf_jit_enable && bpf_jit_is_ebpf();
1023}
1024
1025static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp)
1026{
1027	return fp->jited && bpf_jit_is_ebpf();
1028}
1029
1030static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog)
1031{
1032	/* These are the prerequisites, should someone ever have the
1033	 * idea to call blinding outside of them, we make sure to
1034	 * bail out.
1035	 */
1036	if (!bpf_jit_is_ebpf())
1037		return false;
1038	if (!prog->jit_requested)
1039		return false;
1040	if (!bpf_jit_harden)
1041		return false;
1042	if (bpf_jit_harden == 1 && capable(CAP_SYS_ADMIN))
1043		return false;
1044
1045	return true;
1046}
1047
1048static inline bool bpf_jit_kallsyms_enabled(void)
1049{
1050	/* There are a couple of corner cases where kallsyms should
1051	 * not be enabled f.e. on hardening.
1052	 */
1053	if (bpf_jit_harden)
1054		return false;
1055	if (!bpf_jit_kallsyms)
1056		return false;
1057	if (bpf_jit_kallsyms == 1)
1058		return true;
1059
1060	return false;
1061}
1062
1063const char *__bpf_address_lookup(unsigned long addr, unsigned long *size,
1064				 unsigned long *off, char *sym);
1065bool is_bpf_text_address(unsigned long addr);
1066int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
1067		    char *sym);
1068
1069static inline const char *
1070bpf_address_lookup(unsigned long addr, unsigned long *size,
1071		   unsigned long *off, char **modname, char *sym)
1072{
1073	const char *ret = __bpf_address_lookup(addr, size, off, sym);
1074
1075	if (ret && modname)
1076		*modname = NULL;
1077	return ret;
1078}
1079
1080void bpf_prog_kallsyms_add(struct bpf_prog *fp);
1081void bpf_prog_kallsyms_del(struct bpf_prog *fp);
1082
1083#else /* CONFIG_BPF_JIT */
1084
1085static inline bool ebpf_jit_enabled(void)
1086{
1087	return false;
1088}
1089
1090static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog)
1091{
1092	return false;
1093}
1094
1095static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp)
1096{
1097	return false;
1098}
1099
1100static inline int
1101bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
1102			    struct bpf_jit_poke_descriptor *poke)
1103{
1104	return -ENOTSUPP;
1105}
1106
1107static inline void bpf_jit_free(struct bpf_prog *fp)
1108{
1109	bpf_prog_unlock_free(fp);
1110}
1111
1112static inline bool bpf_jit_kallsyms_enabled(void)
1113{
1114	return false;
1115}
1116
1117static inline const char *
1118__bpf_address_lookup(unsigned long addr, unsigned long *size,
1119		     unsigned long *off, char *sym)
1120{
1121	return NULL;
1122}
1123
1124static inline bool is_bpf_text_address(unsigned long addr)
1125{
1126	return false;
1127}
1128
1129static inline int bpf_get_kallsym(unsigned int symnum, unsigned long *value,
1130				  char *type, char *sym)
1131{
1132	return -ERANGE;
1133}
1134
1135static inline const char *
1136bpf_address_lookup(unsigned long addr, unsigned long *size,
1137		   unsigned long *off, char **modname, char *sym)
1138{
1139	return NULL;
1140}
1141
1142static inline void bpf_prog_kallsyms_add(struct bpf_prog *fp)
1143{
1144}
1145
1146static inline void bpf_prog_kallsyms_del(struct bpf_prog *fp)
1147{
1148}
1149
1150#endif /* CONFIG_BPF_JIT */
1151
1152void bpf_prog_kallsyms_del_all(struct bpf_prog *fp);
1153
1154#define BPF_ANC		BIT(15)
1155
1156static inline bool bpf_needs_clear_a(const struct sock_filter *first)
1157{
1158	switch (first->code) {
1159	case BPF_RET | BPF_K:
1160	case BPF_LD | BPF_W | BPF_LEN:
1161		return false;
1162
1163	case BPF_LD | BPF_W | BPF_ABS:
1164	case BPF_LD | BPF_H | BPF_ABS:
1165	case BPF_LD | BPF_B | BPF_ABS:
1166		if (first->k == SKF_AD_OFF + SKF_AD_ALU_XOR_X)
1167			return true;
1168		return false;
1169
1170	default:
1171		return true;
1172	}
1173}
1174
1175static inline u16 bpf_anc_helper(const struct sock_filter *ftest)
1176{
1177	BUG_ON(ftest->code & BPF_ANC);
1178
1179	switch (ftest->code) {
1180	case BPF_LD | BPF_W | BPF_ABS:
1181	case BPF_LD | BPF_H | BPF_ABS:
1182	case BPF_LD | BPF_B | BPF_ABS:
1183#define BPF_ANCILLARY(CODE)	case SKF_AD_OFF + SKF_AD_##CODE:	\
1184				return BPF_ANC | SKF_AD_##CODE
1185		switch (ftest->k) {
1186		BPF_ANCILLARY(PROTOCOL);
1187		BPF_ANCILLARY(PKTTYPE);
1188		BPF_ANCILLARY(IFINDEX);
1189		BPF_ANCILLARY(NLATTR);
1190		BPF_ANCILLARY(NLATTR_NEST);
1191		BPF_ANCILLARY(MARK);
1192		BPF_ANCILLARY(QUEUE);
1193		BPF_ANCILLARY(HATYPE);
1194		BPF_ANCILLARY(RXHASH);
1195		BPF_ANCILLARY(CPU);
1196		BPF_ANCILLARY(ALU_XOR_X);
1197		BPF_ANCILLARY(VLAN_TAG);
1198		BPF_ANCILLARY(VLAN_TAG_PRESENT);
1199		BPF_ANCILLARY(PAY_OFFSET);
1200		BPF_ANCILLARY(RANDOM);
1201		BPF_ANCILLARY(VLAN_TPID);
1202		}
1203		fallthrough;
1204	default:
1205		return ftest->code;
1206	}
1207}
1208
1209void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb,
1210					   int k, unsigned int size);
1211
1212static inline void *bpf_load_pointer(const struct sk_buff *skb, int k,
1213				     unsigned int size, void *buffer)
 
 
 
 
1214{
1215	if (k >= 0)
1216		return skb_header_pointer(skb, k, size, buffer);
1217
1218	return bpf_internal_load_pointer_neg_helper(skb, k, size);
1219}
1220
1221static inline int bpf_tell_extensions(void)
1222{
1223	return SKF_AD_MAX;
1224}
 
 
1225
1226struct bpf_sock_addr_kern {
1227	struct sock *sk;
1228	struct sockaddr *uaddr;
1229	/* Temporary "register" to make indirect stores to nested structures
1230	 * defined above. We need three registers to make such a store, but
1231	 * only two (src and dst) are available at convert_ctx_access time
1232	 */
1233	u64 tmp_reg;
1234	void *t_ctx;	/* Attach type specific context. */
1235};
1236
1237struct bpf_sock_ops_kern {
1238	struct	sock *sk;
1239	u32	op;
1240	union {
1241		u32 args[4];
1242		u32 reply;
1243		u32 replylong[4];
1244	};
1245	u32	is_fullsock;
1246	u64	temp;			/* temp and everything after is not
1247					 * initialized to 0 before calling
1248					 * the BPF program. New fields that
1249					 * should be initialized to 0 should
1250					 * be inserted before temp.
1251					 * temp is scratch storage used by
1252					 * sock_ops_convert_ctx_access
1253					 * as temporary storage of a register.
1254					 */
1255};
1256
1257struct bpf_sysctl_kern {
1258	struct ctl_table_header *head;
1259	struct ctl_table *table;
1260	void *cur_val;
1261	size_t cur_len;
1262	void *new_val;
1263	size_t new_len;
1264	int new_updated;
1265	int write;
1266	loff_t *ppos;
1267	/* Temporary "register" for indirect stores to ppos. */
1268	u64 tmp_reg;
1269};
1270
1271struct bpf_sockopt_kern {
1272	struct sock	*sk;
1273	u8		*optval;
1274	u8		*optval_end;
1275	s32		level;
1276	s32		optname;
1277	s32		optlen;
1278	s32		retval;
1279};
1280
1281int copy_bpf_fprog_from_user(struct sock_fprog *dst, sockptr_t src, int len);
1282
1283struct bpf_sk_lookup_kern {
1284	u16		family;
1285	u16		protocol;
1286	struct {
1287		__be32 saddr;
1288		__be32 daddr;
1289	} v4;
1290	struct {
1291		const struct in6_addr *saddr;
1292		const struct in6_addr *daddr;
1293	} v6;
1294	__be16		sport;
1295	u16		dport;
1296	struct sock	*selected_sk;
1297	bool		no_reuseport;
1298};
1299
1300extern struct static_key_false bpf_sk_lookup_enabled;
1301
1302/* Runners for BPF_SK_LOOKUP programs to invoke on socket lookup.
1303 *
1304 * Allowed return values for a BPF SK_LOOKUP program are SK_PASS and
1305 * SK_DROP. Their meaning is as follows:
1306 *
1307 *  SK_PASS && ctx.selected_sk != NULL: use selected_sk as lookup result
1308 *  SK_PASS && ctx.selected_sk == NULL: continue to htable-based socket lookup
1309 *  SK_DROP                           : terminate lookup with -ECONNREFUSED
1310 *
1311 * This macro aggregates return values and selected sockets from
1312 * multiple BPF programs according to following rules in order:
1313 *
1314 *  1. If any program returned SK_PASS and a non-NULL ctx.selected_sk,
1315 *     macro result is SK_PASS and last ctx.selected_sk is used.
1316 *  2. If any program returned SK_DROP return value,
1317 *     macro result is SK_DROP.
1318 *  3. Otherwise result is SK_PASS and ctx.selected_sk is NULL.
1319 *
1320 * Caller must ensure that the prog array is non-NULL, and that the
1321 * array as well as the programs it contains remain valid.
1322 */
1323#define BPF_PROG_SK_LOOKUP_RUN_ARRAY(array, ctx, func)			\
1324	({								\
1325		struct bpf_sk_lookup_kern *_ctx = &(ctx);		\
1326		struct bpf_prog_array_item *_item;			\
1327		struct sock *_selected_sk = NULL;			\
1328		bool _no_reuseport = false;				\
1329		struct bpf_prog *_prog;					\
1330		bool _all_pass = true;					\
1331		u32 _ret;						\
1332									\
1333		migrate_disable();					\
1334		_item = &(array)->items[0];				\
1335		while ((_prog = READ_ONCE(_item->prog))) {		\
1336			/* restore most recent selection */		\
1337			_ctx->selected_sk = _selected_sk;		\
1338			_ctx->no_reuseport = _no_reuseport;		\
1339									\
1340			_ret = func(_prog, _ctx);			\
1341			if (_ret == SK_PASS && _ctx->selected_sk) {	\
1342				/* remember last non-NULL socket */	\
1343				_selected_sk = _ctx->selected_sk;	\
1344				_no_reuseport = _ctx->no_reuseport;	\
1345			} else if (_ret == SK_DROP && _all_pass) {	\
1346				_all_pass = false;			\
1347			}						\
1348			_item++;					\
1349		}							\
1350		_ctx->selected_sk = _selected_sk;			\
1351		_ctx->no_reuseport = _no_reuseport;			\
1352		migrate_enable();					\
1353		_all_pass || _selected_sk ? SK_PASS : SK_DROP;		\
1354	 })
1355
1356static inline bool bpf_sk_lookup_run_v4(struct net *net, int protocol,
1357					const __be32 saddr, const __be16 sport,
1358					const __be32 daddr, const u16 dport,
1359					struct sock **psk)
1360{
1361	struct bpf_prog_array *run_array;
1362	struct sock *selected_sk = NULL;
1363	bool no_reuseport = false;
1364
1365	rcu_read_lock();
1366	run_array = rcu_dereference(net->bpf.run_array[NETNS_BPF_SK_LOOKUP]);
1367	if (run_array) {
1368		struct bpf_sk_lookup_kern ctx = {
1369			.family		= AF_INET,
1370			.protocol	= protocol,
1371			.v4.saddr	= saddr,
1372			.v4.daddr	= daddr,
1373			.sport		= sport,
1374			.dport		= dport,
1375		};
1376		u32 act;
1377
1378		act = BPF_PROG_SK_LOOKUP_RUN_ARRAY(run_array, ctx, BPF_PROG_RUN);
1379		if (act == SK_PASS) {
1380			selected_sk = ctx.selected_sk;
1381			no_reuseport = ctx.no_reuseport;
1382		} else {
1383			selected_sk = ERR_PTR(-ECONNREFUSED);
1384		}
1385	}
1386	rcu_read_unlock();
1387	*psk = selected_sk;
1388	return no_reuseport;
1389}
1390
1391#if IS_ENABLED(CONFIG_IPV6)
1392static inline bool bpf_sk_lookup_run_v6(struct net *net, int protocol,
1393					const struct in6_addr *saddr,
1394					const __be16 sport,
1395					const struct in6_addr *daddr,
1396					const u16 dport,
1397					struct sock **psk)
1398{
1399	struct bpf_prog_array *run_array;
1400	struct sock *selected_sk = NULL;
1401	bool no_reuseport = false;
1402
1403	rcu_read_lock();
1404	run_array = rcu_dereference(net->bpf.run_array[NETNS_BPF_SK_LOOKUP]);
1405	if (run_array) {
1406		struct bpf_sk_lookup_kern ctx = {
1407			.family		= AF_INET6,
1408			.protocol	= protocol,
1409			.v6.saddr	= saddr,
1410			.v6.daddr	= daddr,
1411			.sport		= sport,
1412			.dport		= dport,
1413		};
1414		u32 act;
1415
1416		act = BPF_PROG_SK_LOOKUP_RUN_ARRAY(run_array, ctx, BPF_PROG_RUN);
1417		if (act == SK_PASS) {
1418			selected_sk = ctx.selected_sk;
1419			no_reuseport = ctx.no_reuseport;
1420		} else {
1421			selected_sk = ERR_PTR(-ECONNREFUSED);
1422		}
1423	}
1424	rcu_read_unlock();
1425	*psk = selected_sk;
1426	return no_reuseport;
1427}
1428#endif /* IS_ENABLED(CONFIG_IPV6) */
1429
1430#endif /* __LINUX_FILTER_H__ */
v3.5.6
 
  1/*
  2 * Linux Socket Filter Data Structures
  3 */
  4
  5#ifndef __LINUX_FILTER_H__
  6#define __LINUX_FILTER_H__
  7
  8#include <linux/compiler.h>
  9#include <linux/types.h>
 10
 11#ifdef __KERNEL__
 12#include <linux/atomic.h>
 
 13#include <linux/compat.h>
 14#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 15
 16/*
 17 * Current version of the filter code architecture.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 18 */
 19#define BPF_MAJOR_VERSION 1
 20#define BPF_MINOR_VERSION 1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 21
 22/*
 23 *	Try and keep these values and structures similar to BSD, especially
 24 *	the BPF code definitions which need to match so you can share filters
 
 
 
 
 
 
 
 25 */
 26 
 27struct sock_filter {	/* Filter block */
 28	__u16	code;   /* Actual filter code */
 29	__u8	jt;	/* Jump true */
 30	__u8	jf;	/* Jump false */
 31	__u32	k;      /* Generic multiuse field */
 
 
 
 
 
 
 
 
 
 
 
 32};
 33
 34struct sock_fprog {	/* Required for SO_ATTACH_FILTER. */
 35	unsigned short		len;	/* Number of filter blocks */
 36	struct sock_filter __user *filter;
 
 
 
 37};
 38
 39/*
 40 * Instruction classes
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 41 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 42
 43#define BPF_CLASS(code) ((code) & 0x07)
 44#define         BPF_LD          0x00
 45#define         BPF_LDX         0x01
 46#define         BPF_ST          0x02
 47#define         BPF_STX         0x03
 48#define         BPF_ALU         0x04
 49#define         BPF_JMP         0x05
 50#define         BPF_RET         0x06
 51#define         BPF_MISC        0x07
 52
 53/* ld/ldx fields */
 54#define BPF_SIZE(code)  ((code) & 0x18)
 55#define         BPF_W           0x00
 56#define         BPF_H           0x08
 57#define         BPF_B           0x10
 58#define BPF_MODE(code)  ((code) & 0xe0)
 59#define         BPF_IMM         0x00
 60#define         BPF_ABS         0x20
 61#define         BPF_IND         0x40
 62#define         BPF_MEM         0x60
 63#define         BPF_LEN         0x80
 64#define         BPF_MSH         0xa0
 65
 66/* alu/jmp fields */
 67#define BPF_OP(code)    ((code) & 0xf0)
 68#define         BPF_ADD         0x00
 69#define         BPF_SUB         0x10
 70#define         BPF_MUL         0x20
 71#define         BPF_DIV         0x30
 72#define         BPF_OR          0x40
 73#define         BPF_AND         0x50
 74#define         BPF_LSH         0x60
 75#define         BPF_RSH         0x70
 76#define         BPF_NEG         0x80
 77#define         BPF_JA          0x00
 78#define         BPF_JEQ         0x10
 79#define         BPF_JGT         0x20
 80#define         BPF_JGE         0x30
 81#define         BPF_JSET        0x40
 82#define BPF_SRC(code)   ((code) & 0x08)
 83#define         BPF_K           0x00
 84#define         BPF_X           0x08
 85
 86/* ret - BPF_K and BPF_X also apply */
 87#define BPF_RVAL(code)  ((code) & 0x18)
 88#define         BPF_A           0x10
 89
 90/* misc */
 91#define BPF_MISCOP(code) ((code) & 0xf8)
 92#define         BPF_TAX         0x00
 93#define         BPF_TXA         0x80
 94
 95#ifndef BPF_MAXINSNS
 96#define BPF_MAXINSNS 4096
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 97#endif
 
 
 
 
 
 
 
 98
 99/*
100 * Macros for filter block array initializers.
101 */
102#ifndef BPF_STMT
103#define BPF_STMT(code, k) { (unsigned short)(code), 0, 0, k }
104#endif
105#ifndef BPF_JUMP
106#define BPF_JUMP(code, k, jt, jf) { (unsigned short)(code), jt, jf, k }
 
107#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
108
109/*
110 * Number of scratch memory words for: BPF_ST and BPF_STX
111 */
112#define BPF_MEMWORDS 16
113
114/* RATIONALE. Negative offsets are invalid in BPF.
115   We use them to reference ancillary data.
116   Unlike introduction new instructions, it does not break
117   existing compilers/optimizers.
118 */
119#define SKF_AD_OFF    (-0x1000)
120#define SKF_AD_PROTOCOL 0
121#define SKF_AD_PKTTYPE 	4
122#define SKF_AD_IFINDEX 	8
123#define SKF_AD_NLATTR	12
124#define SKF_AD_NLATTR_NEST	16
125#define SKF_AD_MARK 	20
126#define SKF_AD_QUEUE	24
127#define SKF_AD_HATYPE	28
128#define SKF_AD_RXHASH	32
129#define SKF_AD_CPU	36
130#define SKF_AD_ALU_XOR_X	40
131#define SKF_AD_MAX	44
132#define SKF_NET_OFF   (-0x100000)
133#define SKF_LL_OFF    (-0x200000)
134
135#ifdef __KERNEL__
 
136
137#ifdef CONFIG_COMPAT
138/*
139 * A struct sock_filter is architecture independent.
 
 
 
 
 
 
 
 
 
 
 
 
 
140 */
141struct compat_sock_fprog {
142	u16		len;
143	compat_uptr_t	filter;		/* struct sock_filter * */
144};
 
 
 
 
 
 
 
 
 
 
 
 
145#endif
146
147struct sk_buff;
148struct sock;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
149
150struct sk_filter
151{
152	atomic_t		refcnt;
153	unsigned int         	len;	/* Number of filter blocks */
154	unsigned int		(*bpf_func)(const struct sk_buff *skb,
155					    const struct sock_filter *filter);
156	struct rcu_head		rcu;
157	struct sock_filter     	insns[0];
158};
159
160static inline unsigned int sk_filter_len(const struct sk_filter *fp)
161{
162	return fp->len * sizeof(struct sock_filter) + sizeof(*fp);
163}
164
165extern int sk_filter(struct sock *sk, struct sk_buff *skb);
166extern unsigned int sk_run_filter(const struct sk_buff *skb,
167				  const struct sock_filter *filter);
168extern int sk_unattached_filter_create(struct sk_filter **pfp,
169				       struct sock_fprog *fprog);
170extern void sk_unattached_filter_destroy(struct sk_filter *fp);
171extern int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk);
172extern int sk_detach_filter(struct sock *sk);
173extern int sk_chk_filter(struct sock_filter *filter, unsigned int flen);
 
 
 
 
 
 
 
 
 
 
 
 
174
175#ifdef CONFIG_BPF_JIT
176extern void bpf_jit_compile(struct sk_filter *fp);
177extern void bpf_jit_free(struct sk_filter *fp);
178#define SK_RUN_FILTER(FILTER, SKB) (*FILTER->bpf_func)(SKB, FILTER->insns)
179#else
180static inline void bpf_jit_compile(struct sk_filter *fp)
181{
 
 
 
 
182}
183static inline void bpf_jit_free(struct sk_filter *fp)
 
184{
 
185}
186#define SK_RUN_FILTER(FILTER, SKB) sk_run_filter(SKB, FILTER->insns)
187#endif
188
189enum {
190	BPF_S_RET_K = 1,
191	BPF_S_RET_A,
192	BPF_S_ALU_ADD_K,
193	BPF_S_ALU_ADD_X,
194	BPF_S_ALU_SUB_K,
195	BPF_S_ALU_SUB_X,
196	BPF_S_ALU_MUL_K,
197	BPF_S_ALU_MUL_X,
198	BPF_S_ALU_DIV_X,
199	BPF_S_ALU_AND_K,
200	BPF_S_ALU_AND_X,
201	BPF_S_ALU_OR_K,
202	BPF_S_ALU_OR_X,
203	BPF_S_ALU_LSH_K,
204	BPF_S_ALU_LSH_X,
205	BPF_S_ALU_RSH_K,
206	BPF_S_ALU_RSH_X,
207	BPF_S_ALU_NEG,
208	BPF_S_LD_W_ABS,
209	BPF_S_LD_H_ABS,
210	BPF_S_LD_B_ABS,
211	BPF_S_LD_W_LEN,
212	BPF_S_LD_W_IND,
213	BPF_S_LD_H_IND,
214	BPF_S_LD_B_IND,
215	BPF_S_LD_IMM,
216	BPF_S_LDX_W_LEN,
217	BPF_S_LDX_B_MSH,
218	BPF_S_LDX_IMM,
219	BPF_S_MISC_TAX,
220	BPF_S_MISC_TXA,
221	BPF_S_ALU_DIV_K,
222	BPF_S_LD_MEM,
223	BPF_S_LDX_MEM,
224	BPF_S_ST,
225	BPF_S_STX,
226	BPF_S_JMP_JA,
227	BPF_S_JMP_JEQ_K,
228	BPF_S_JMP_JEQ_X,
229	BPF_S_JMP_JGE_K,
230	BPF_S_JMP_JGE_X,
231	BPF_S_JMP_JGT_K,
232	BPF_S_JMP_JGT_X,
233	BPF_S_JMP_JSET_K,
234	BPF_S_JMP_JSET_X,
235	/* Ancillary data */
236	BPF_S_ANC_PROTOCOL,
237	BPF_S_ANC_PKTTYPE,
238	BPF_S_ANC_IFINDEX,
239	BPF_S_ANC_NLATTR,
240	BPF_S_ANC_NLATTR_NEST,
241	BPF_S_ANC_MARK,
242	BPF_S_ANC_QUEUE,
243	BPF_S_ANC_HATYPE,
244	BPF_S_ANC_RXHASH,
245	BPF_S_ANC_CPU,
246	BPF_S_ANC_ALU_XOR_X,
247	BPF_S_ANC_SECCOMP_LD_W,
 
 
 
 
 
 
 
 
 
 
 
 
 
248};
249
250#endif /* __KERNEL__ */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
251
252#endif /* __LINUX_FILTER_H__ */