Loading...
Note: File does not exist in v3.5.6.
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef BLK_MQ_H
3#define BLK_MQ_H
4
5#include <linux/blkdev.h>
6#include <linux/sbitmap.h>
7#include <linux/srcu.h>
8
9struct blk_mq_tags;
10struct blk_flush_queue;
11
12/**
13 * struct blk_mq_hw_ctx - State for a hardware queue facing the hardware
14 * block device
15 */
16struct blk_mq_hw_ctx {
17 struct {
18 /** @lock: Protects the dispatch list. */
19 spinlock_t lock;
20 /**
21 * @dispatch: Used for requests that are ready to be
22 * dispatched to the hardware but for some reason (e.g. lack of
23 * resources) could not be sent to the hardware. As soon as the
24 * driver can send new requests, requests at this list will
25 * be sent first for a fairer dispatch.
26 */
27 struct list_head dispatch;
28 /**
29 * @state: BLK_MQ_S_* flags. Defines the state of the hw
30 * queue (active, scheduled to restart, stopped).
31 */
32 unsigned long state;
33 } ____cacheline_aligned_in_smp;
34
35 /**
36 * @run_work: Used for scheduling a hardware queue run at a later time.
37 */
38 struct delayed_work run_work;
39 /** @cpumask: Map of available CPUs where this hctx can run. */
40 cpumask_var_t cpumask;
41 /**
42 * @next_cpu: Used by blk_mq_hctx_next_cpu() for round-robin CPU
43 * selection from @cpumask.
44 */
45 int next_cpu;
46 /**
47 * @next_cpu_batch: Counter of how many works left in the batch before
48 * changing to the next CPU.
49 */
50 int next_cpu_batch;
51
52 /** @flags: BLK_MQ_F_* flags. Defines the behaviour of the queue. */
53 unsigned long flags;
54
55 /**
56 * @sched_data: Pointer owned by the IO scheduler attached to a request
57 * queue. It's up to the IO scheduler how to use this pointer.
58 */
59 void *sched_data;
60 /**
61 * @queue: Pointer to the request queue that owns this hardware context.
62 */
63 struct request_queue *queue;
64 /** @fq: Queue of requests that need to perform a flush operation. */
65 struct blk_flush_queue *fq;
66
67 /**
68 * @driver_data: Pointer to data owned by the block driver that created
69 * this hctx
70 */
71 void *driver_data;
72
73 /**
74 * @ctx_map: Bitmap for each software queue. If bit is on, there is a
75 * pending request in that software queue.
76 */
77 struct sbitmap ctx_map;
78
79 /**
80 * @dispatch_from: Software queue to be used when no scheduler was
81 * selected.
82 */
83 struct blk_mq_ctx *dispatch_from;
84 /**
85 * @dispatch_busy: Number used by blk_mq_update_dispatch_busy() to
86 * decide if the hw_queue is busy using Exponential Weighted Moving
87 * Average algorithm.
88 */
89 unsigned int dispatch_busy;
90
91 /** @type: HCTX_TYPE_* flags. Type of hardware queue. */
92 unsigned short type;
93 /** @nr_ctx: Number of software queues. */
94 unsigned short nr_ctx;
95 /** @ctxs: Array of software queues. */
96 struct blk_mq_ctx **ctxs;
97
98 /** @dispatch_wait_lock: Lock for dispatch_wait queue. */
99 spinlock_t dispatch_wait_lock;
100 /**
101 * @dispatch_wait: Waitqueue to put requests when there is no tag
102 * available at the moment, to wait for another try in the future.
103 */
104 wait_queue_entry_t dispatch_wait;
105
106 /**
107 * @wait_index: Index of next available dispatch_wait queue to insert
108 * requests.
109 */
110 atomic_t wait_index;
111
112 /**
113 * @tags: Tags owned by the block driver. A tag at this set is only
114 * assigned when a request is dispatched from a hardware queue.
115 */
116 struct blk_mq_tags *tags;
117 /**
118 * @sched_tags: Tags owned by I/O scheduler. If there is an I/O
119 * scheduler associated with a request queue, a tag is assigned when
120 * that request is allocated. Else, this member is not used.
121 */
122 struct blk_mq_tags *sched_tags;
123
124 /** @queued: Number of queued requests. */
125 unsigned long queued;
126 /** @run: Number of dispatched requests. */
127 unsigned long run;
128#define BLK_MQ_MAX_DISPATCH_ORDER 7
129 /** @dispatched: Number of dispatch requests by queue. */
130 unsigned long dispatched[BLK_MQ_MAX_DISPATCH_ORDER];
131
132 /** @numa_node: NUMA node the storage adapter has been connected to. */
133 unsigned int numa_node;
134 /** @queue_num: Index of this hardware queue. */
135 unsigned int queue_num;
136
137 /**
138 * @nr_active: Number of active requests. Only used when a tag set is
139 * shared across request queues.
140 */
141 atomic_t nr_active;
142
143 /** @cpuhp_online: List to store request if CPU is going to die */
144 struct hlist_node cpuhp_online;
145 /** @cpuhp_dead: List to store request if some CPU die. */
146 struct hlist_node cpuhp_dead;
147 /** @kobj: Kernel object for sysfs. */
148 struct kobject kobj;
149
150 /** @poll_considered: Count times blk_poll() was called. */
151 unsigned long poll_considered;
152 /** @poll_invoked: Count how many requests blk_poll() polled. */
153 unsigned long poll_invoked;
154 /** @poll_success: Count how many polled requests were completed. */
155 unsigned long poll_success;
156
157#ifdef CONFIG_BLK_DEBUG_FS
158 /**
159 * @debugfs_dir: debugfs directory for this hardware queue. Named
160 * as cpu<cpu_number>.
161 */
162 struct dentry *debugfs_dir;
163 /** @sched_debugfs_dir: debugfs directory for the scheduler. */
164 struct dentry *sched_debugfs_dir;
165#endif
166
167 /**
168 * @hctx_list: if this hctx is not in use, this is an entry in
169 * q->unused_hctx_list.
170 */
171 struct list_head hctx_list;
172
173 /**
174 * @srcu: Sleepable RCU. Use as lock when type of the hardware queue is
175 * blocking (BLK_MQ_F_BLOCKING). Must be the last member - see also
176 * blk_mq_hw_ctx_size().
177 */
178 struct srcu_struct srcu[];
179};
180
181/**
182 * struct blk_mq_queue_map - Map software queues to hardware queues
183 * @mq_map: CPU ID to hardware queue index map. This is an array
184 * with nr_cpu_ids elements. Each element has a value in the range
185 * [@queue_offset, @queue_offset + @nr_queues).
186 * @nr_queues: Number of hardware queues to map CPU IDs onto.
187 * @queue_offset: First hardware queue to map onto. Used by the PCIe NVMe
188 * driver to map each hardware queue type (enum hctx_type) onto a distinct
189 * set of hardware queues.
190 */
191struct blk_mq_queue_map {
192 unsigned int *mq_map;
193 unsigned int nr_queues;
194 unsigned int queue_offset;
195};
196
197/**
198 * enum hctx_type - Type of hardware queue
199 * @HCTX_TYPE_DEFAULT: All I/O not otherwise accounted for.
200 * @HCTX_TYPE_READ: Just for READ I/O.
201 * @HCTX_TYPE_POLL: Polled I/O of any kind.
202 * @HCTX_MAX_TYPES: Number of types of hctx.
203 */
204enum hctx_type {
205 HCTX_TYPE_DEFAULT,
206 HCTX_TYPE_READ,
207 HCTX_TYPE_POLL,
208
209 HCTX_MAX_TYPES,
210};
211
212/**
213 * struct blk_mq_tag_set - tag set that can be shared between request queues
214 * @map: One or more ctx -> hctx mappings. One map exists for each
215 * hardware queue type (enum hctx_type) that the driver wishes
216 * to support. There are no restrictions on maps being of the
217 * same size, and it's perfectly legal to share maps between
218 * types.
219 * @nr_maps: Number of elements in the @map array. A number in the range
220 * [1, HCTX_MAX_TYPES].
221 * @ops: Pointers to functions that implement block driver behavior.
222 * @nr_hw_queues: Number of hardware queues supported by the block driver that
223 * owns this data structure.
224 * @queue_depth: Number of tags per hardware queue, reserved tags included.
225 * @reserved_tags: Number of tags to set aside for BLK_MQ_REQ_RESERVED tag
226 * allocations.
227 * @cmd_size: Number of additional bytes to allocate per request. The block
228 * driver owns these additional bytes.
229 * @numa_node: NUMA node the storage adapter has been connected to.
230 * @timeout: Request processing timeout in jiffies.
231 * @flags: Zero or more BLK_MQ_F_* flags.
232 * @driver_data: Pointer to data owned by the block driver that created this
233 * tag set.
234 * @tags: Tag sets. One tag set per hardware queue. Has @nr_hw_queues
235 * elements.
236 * @tag_list_lock: Serializes tag_list accesses.
237 * @tag_list: List of the request queues that use this tag set. See also
238 * request_queue.tag_set_list.
239 */
240struct blk_mq_tag_set {
241 struct blk_mq_queue_map map[HCTX_MAX_TYPES];
242 unsigned int nr_maps;
243 const struct blk_mq_ops *ops;
244 unsigned int nr_hw_queues;
245 unsigned int queue_depth;
246 unsigned int reserved_tags;
247 unsigned int cmd_size;
248 int numa_node;
249 unsigned int timeout;
250 unsigned int flags;
251 void *driver_data;
252
253 struct blk_mq_tags **tags;
254
255 struct mutex tag_list_lock;
256 struct list_head tag_list;
257};
258
259/**
260 * struct blk_mq_queue_data - Data about a request inserted in a queue
261 *
262 * @rq: Request pointer.
263 * @last: If it is the last request in the queue.
264 */
265struct blk_mq_queue_data {
266 struct request *rq;
267 bool last;
268};
269
270typedef bool (busy_iter_fn)(struct blk_mq_hw_ctx *, struct request *, void *,
271 bool);
272typedef bool (busy_tag_iter_fn)(struct request *, void *, bool);
273
274/**
275 * struct blk_mq_ops - Callback functions that implements block driver
276 * behaviour.
277 */
278struct blk_mq_ops {
279 /**
280 * @queue_rq: Queue a new request from block IO.
281 */
282 blk_status_t (*queue_rq)(struct blk_mq_hw_ctx *,
283 const struct blk_mq_queue_data *);
284
285 /**
286 * @commit_rqs: If a driver uses bd->last to judge when to submit
287 * requests to hardware, it must define this function. In case of errors
288 * that make us stop issuing further requests, this hook serves the
289 * purpose of kicking the hardware (which the last request otherwise
290 * would have done).
291 */
292 void (*commit_rqs)(struct blk_mq_hw_ctx *);
293
294 /**
295 * @get_budget: Reserve budget before queue request, once .queue_rq is
296 * run, it is driver's responsibility to release the
297 * reserved budget. Also we have to handle failure case
298 * of .get_budget for avoiding I/O deadlock.
299 */
300 bool (*get_budget)(struct request_queue *);
301
302 /**
303 * @put_budget: Release the reserved budget.
304 */
305 void (*put_budget)(struct request_queue *);
306
307 /**
308 * @timeout: Called on request timeout.
309 */
310 enum blk_eh_timer_return (*timeout)(struct request *, bool);
311
312 /**
313 * @poll: Called to poll for completion of a specific tag.
314 */
315 int (*poll)(struct blk_mq_hw_ctx *);
316
317 /**
318 * @complete: Mark the request as complete.
319 */
320 void (*complete)(struct request *);
321
322 /**
323 * @init_hctx: Called when the block layer side of a hardware queue has
324 * been set up, allowing the driver to allocate/init matching
325 * structures.
326 */
327 int (*init_hctx)(struct blk_mq_hw_ctx *, void *, unsigned int);
328 /**
329 * @exit_hctx: Ditto for exit/teardown.
330 */
331 void (*exit_hctx)(struct blk_mq_hw_ctx *, unsigned int);
332
333 /**
334 * @init_request: Called for every command allocated by the block layer
335 * to allow the driver to set up driver specific data.
336 *
337 * Tag greater than or equal to queue_depth is for setting up
338 * flush request.
339 */
340 int (*init_request)(struct blk_mq_tag_set *set, struct request *,
341 unsigned int, unsigned int);
342 /**
343 * @exit_request: Ditto for exit/teardown.
344 */
345 void (*exit_request)(struct blk_mq_tag_set *set, struct request *,
346 unsigned int);
347
348 /**
349 * @initialize_rq_fn: Called from inside blk_get_request().
350 */
351 void (*initialize_rq_fn)(struct request *rq);
352
353 /**
354 * @cleanup_rq: Called before freeing one request which isn't completed
355 * yet, and usually for freeing the driver private data.
356 */
357 void (*cleanup_rq)(struct request *);
358
359 /**
360 * @busy: If set, returns whether or not this queue currently is busy.
361 */
362 bool (*busy)(struct request_queue *);
363
364 /**
365 * @map_queues: This allows drivers specify their own queue mapping by
366 * overriding the setup-time function that builds the mq_map.
367 */
368 int (*map_queues)(struct blk_mq_tag_set *set);
369
370#ifdef CONFIG_BLK_DEBUG_FS
371 /**
372 * @show_rq: Used by the debugfs implementation to show driver-specific
373 * information about a request.
374 */
375 void (*show_rq)(struct seq_file *m, struct request *rq);
376#endif
377};
378
379enum {
380 BLK_MQ_F_SHOULD_MERGE = 1 << 0,
381 BLK_MQ_F_TAG_SHARED = 1 << 1,
382 /*
383 * Set when this device requires underlying blk-mq device for
384 * completing IO:
385 */
386 BLK_MQ_F_STACKING = 1 << 2,
387 BLK_MQ_F_BLOCKING = 1 << 5,
388 BLK_MQ_F_NO_SCHED = 1 << 6,
389 BLK_MQ_F_ALLOC_POLICY_START_BIT = 8,
390 BLK_MQ_F_ALLOC_POLICY_BITS = 1,
391
392 BLK_MQ_S_STOPPED = 0,
393 BLK_MQ_S_TAG_ACTIVE = 1,
394 BLK_MQ_S_SCHED_RESTART = 2,
395
396 /* hw queue is inactive after all its CPUs become offline */
397 BLK_MQ_S_INACTIVE = 3,
398
399 BLK_MQ_MAX_DEPTH = 10240,
400
401 BLK_MQ_CPU_WORK_BATCH = 8,
402};
403#define BLK_MQ_FLAG_TO_ALLOC_POLICY(flags) \
404 ((flags >> BLK_MQ_F_ALLOC_POLICY_START_BIT) & \
405 ((1 << BLK_MQ_F_ALLOC_POLICY_BITS) - 1))
406#define BLK_ALLOC_POLICY_TO_MQ_FLAG(policy) \
407 ((policy & ((1 << BLK_MQ_F_ALLOC_POLICY_BITS) - 1)) \
408 << BLK_MQ_F_ALLOC_POLICY_START_BIT)
409
410struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *);
411struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
412 void *queuedata);
413struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
414 struct request_queue *q,
415 bool elevator_init);
416struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set,
417 const struct blk_mq_ops *ops,
418 unsigned int queue_depth,
419 unsigned int set_flags);
420void blk_mq_unregister_dev(struct device *, struct request_queue *);
421
422int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set);
423void blk_mq_free_tag_set(struct blk_mq_tag_set *set);
424
425void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule);
426
427void blk_mq_free_request(struct request *rq);
428
429bool blk_mq_queue_inflight(struct request_queue *q);
430
431enum {
432 /* return when out of requests */
433 BLK_MQ_REQ_NOWAIT = (__force blk_mq_req_flags_t)(1 << 0),
434 /* allocate from reserved pool */
435 BLK_MQ_REQ_RESERVED = (__force blk_mq_req_flags_t)(1 << 1),
436 /* set RQF_PREEMPT */
437 BLK_MQ_REQ_PREEMPT = (__force blk_mq_req_flags_t)(1 << 3),
438};
439
440struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
441 blk_mq_req_flags_t flags);
442struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
443 unsigned int op, blk_mq_req_flags_t flags,
444 unsigned int hctx_idx);
445struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag);
446
447enum {
448 BLK_MQ_UNIQUE_TAG_BITS = 16,
449 BLK_MQ_UNIQUE_TAG_MASK = (1 << BLK_MQ_UNIQUE_TAG_BITS) - 1,
450};
451
452u32 blk_mq_unique_tag(struct request *rq);
453
454static inline u16 blk_mq_unique_tag_to_hwq(u32 unique_tag)
455{
456 return unique_tag >> BLK_MQ_UNIQUE_TAG_BITS;
457}
458
459static inline u16 blk_mq_unique_tag_to_tag(u32 unique_tag)
460{
461 return unique_tag & BLK_MQ_UNIQUE_TAG_MASK;
462}
463
464/**
465 * blk_mq_rq_state() - read the current MQ_RQ_* state of a request
466 * @rq: target request.
467 */
468static inline enum mq_rq_state blk_mq_rq_state(struct request *rq)
469{
470 return READ_ONCE(rq->state);
471}
472
473static inline int blk_mq_request_started(struct request *rq)
474{
475 return blk_mq_rq_state(rq) != MQ_RQ_IDLE;
476}
477
478static inline int blk_mq_request_completed(struct request *rq)
479{
480 return blk_mq_rq_state(rq) == MQ_RQ_COMPLETE;
481}
482
483void blk_mq_start_request(struct request *rq);
484void blk_mq_end_request(struct request *rq, blk_status_t error);
485void __blk_mq_end_request(struct request *rq, blk_status_t error);
486
487void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list);
488void blk_mq_kick_requeue_list(struct request_queue *q);
489void blk_mq_delay_kick_requeue_list(struct request_queue *q, unsigned long msecs);
490void blk_mq_complete_request(struct request *rq);
491bool blk_mq_complete_request_remote(struct request *rq);
492bool blk_mq_bio_list_merge(struct request_queue *q, struct list_head *list,
493 struct bio *bio, unsigned int nr_segs);
494bool blk_mq_queue_stopped(struct request_queue *q);
495void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx);
496void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx);
497void blk_mq_stop_hw_queues(struct request_queue *q);
498void blk_mq_start_hw_queues(struct request_queue *q);
499void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async);
500void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async);
501void blk_mq_quiesce_queue(struct request_queue *q);
502void blk_mq_unquiesce_queue(struct request_queue *q);
503void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs);
504void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async);
505void blk_mq_run_hw_queues(struct request_queue *q, bool async);
506void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs);
507void blk_mq_tagset_busy_iter(struct blk_mq_tag_set *tagset,
508 busy_tag_iter_fn *fn, void *priv);
509void blk_mq_tagset_wait_completed_request(struct blk_mq_tag_set *tagset);
510void blk_mq_freeze_queue(struct request_queue *q);
511void blk_mq_unfreeze_queue(struct request_queue *q);
512void blk_freeze_queue_start(struct request_queue *q);
513void blk_mq_freeze_queue_wait(struct request_queue *q);
514int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
515 unsigned long timeout);
516
517int blk_mq_map_queues(struct blk_mq_queue_map *qmap);
518void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues);
519
520void blk_mq_quiesce_queue_nowait(struct request_queue *q);
521
522unsigned int blk_mq_rq_cpu(struct request *rq);
523
524bool __blk_should_fake_timeout(struct request_queue *q);
525static inline bool blk_should_fake_timeout(struct request_queue *q)
526{
527 if (IS_ENABLED(CONFIG_FAIL_IO_TIMEOUT) &&
528 test_bit(QUEUE_FLAG_FAIL_IO, &q->queue_flags))
529 return __blk_should_fake_timeout(q);
530 return false;
531}
532
533/**
534 * blk_mq_rq_from_pdu - cast a PDU to a request
535 * @pdu: the PDU (Protocol Data Unit) to be casted
536 *
537 * Return: request
538 *
539 * Driver command data is immediately after the request. So subtract request
540 * size to get back to the original request.
541 */
542static inline struct request *blk_mq_rq_from_pdu(void *pdu)
543{
544 return pdu - sizeof(struct request);
545}
546
547/**
548 * blk_mq_rq_to_pdu - cast a request to a PDU
549 * @rq: the request to be casted
550 *
551 * Return: pointer to the PDU
552 *
553 * Driver command data is immediately after the request. So add request to get
554 * the PDU.
555 */
556static inline void *blk_mq_rq_to_pdu(struct request *rq)
557{
558 return rq + 1;
559}
560
561#define queue_for_each_hw_ctx(q, hctx, i) \
562 for ((i) = 0; (i) < (q)->nr_hw_queues && \
563 ({ hctx = (q)->queue_hw_ctx[i]; 1; }); (i)++)
564
565#define hctx_for_each_ctx(hctx, ctx, i) \
566 for ((i) = 0; (i) < (hctx)->nr_ctx && \
567 ({ ctx = (hctx)->ctxs[(i)]; 1; }); (i)++)
568
569static inline blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx,
570 struct request *rq)
571{
572 if (rq->tag != -1)
573 return rq->tag | (hctx->queue_num << BLK_QC_T_SHIFT);
574
575 return rq->internal_tag | (hctx->queue_num << BLK_QC_T_SHIFT) |
576 BLK_QC_T_INTERNAL;
577}
578
579static inline void blk_mq_cleanup_rq(struct request *rq)
580{
581 if (rq->q->mq_ops->cleanup_rq)
582 rq->q->mq_ops->cleanup_rq(rq);
583}
584
585blk_qc_t blk_mq_submit_bio(struct bio *bio);
586
587#endif