Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * This file is part of UBIFS.
   4 *
   5 * Copyright (C) 2006-2008 Nokia Corporation
   6 *
 
 
 
 
 
 
 
 
 
 
 
 
 
   7 * Authors: Artem Bityutskiy (Битюцкий Артём)
   8 *          Adrian Hunter
   9 */
  10
  11/*
  12 * This file implements most of the debugging stuff which is compiled in only
  13 * when it is enabled. But some debugging check functions are implemented in
  14 * corresponding subsystem, just because they are closely related and utilize
  15 * various local functions of those subsystems.
  16 */
  17
  18#include <linux/module.h>
  19#include <linux/debugfs.h>
  20#include <linux/math64.h>
  21#include <linux/uaccess.h>
  22#include <linux/random.h>
  23#include <linux/ctype.h>
  24#include "ubifs.h"
  25
  26static DEFINE_SPINLOCK(dbg_lock);
  27
  28static const char *get_key_fmt(int fmt)
  29{
  30	switch (fmt) {
  31	case UBIFS_SIMPLE_KEY_FMT:
  32		return "simple";
  33	default:
  34		return "unknown/invalid format";
  35	}
  36}
  37
  38static const char *get_key_hash(int hash)
  39{
  40	switch (hash) {
  41	case UBIFS_KEY_HASH_R5:
  42		return "R5";
  43	case UBIFS_KEY_HASH_TEST:
  44		return "test";
  45	default:
  46		return "unknown/invalid name hash";
  47	}
  48}
  49
  50static const char *get_key_type(int type)
  51{
  52	switch (type) {
  53	case UBIFS_INO_KEY:
  54		return "inode";
  55	case UBIFS_DENT_KEY:
  56		return "direntry";
  57	case UBIFS_XENT_KEY:
  58		return "xentry";
  59	case UBIFS_DATA_KEY:
  60		return "data";
  61	case UBIFS_TRUN_KEY:
  62		return "truncate";
  63	default:
  64		return "unknown/invalid key";
  65	}
  66}
  67
  68static const char *get_dent_type(int type)
  69{
  70	switch (type) {
  71	case UBIFS_ITYPE_REG:
  72		return "file";
  73	case UBIFS_ITYPE_DIR:
  74		return "dir";
  75	case UBIFS_ITYPE_LNK:
  76		return "symlink";
  77	case UBIFS_ITYPE_BLK:
  78		return "blkdev";
  79	case UBIFS_ITYPE_CHR:
  80		return "char dev";
  81	case UBIFS_ITYPE_FIFO:
  82		return "fifo";
  83	case UBIFS_ITYPE_SOCK:
  84		return "socket";
  85	default:
  86		return "unknown/invalid type";
  87	}
  88}
  89
  90const char *dbg_snprintf_key(const struct ubifs_info *c,
  91			     const union ubifs_key *key, char *buffer, int len)
  92{
  93	char *p = buffer;
  94	int type = key_type(c, key);
  95
  96	if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) {
  97		switch (type) {
  98		case UBIFS_INO_KEY:
  99			len -= snprintf(p, len, "(%lu, %s)",
 100					(unsigned long)key_inum(c, key),
 101					get_key_type(type));
 102			break;
 103		case UBIFS_DENT_KEY:
 104		case UBIFS_XENT_KEY:
 105			len -= snprintf(p, len, "(%lu, %s, %#08x)",
 106					(unsigned long)key_inum(c, key),
 107					get_key_type(type), key_hash(c, key));
 108			break;
 109		case UBIFS_DATA_KEY:
 110			len -= snprintf(p, len, "(%lu, %s, %u)",
 111					(unsigned long)key_inum(c, key),
 112					get_key_type(type), key_block(c, key));
 113			break;
 114		case UBIFS_TRUN_KEY:
 115			len -= snprintf(p, len, "(%lu, %s)",
 116					(unsigned long)key_inum(c, key),
 117					get_key_type(type));
 118			break;
 119		default:
 120			len -= snprintf(p, len, "(bad key type: %#08x, %#08x)",
 121					key->u32[0], key->u32[1]);
 122		}
 123	} else
 124		len -= snprintf(p, len, "bad key format %d", c->key_fmt);
 125	ubifs_assert(c, len > 0);
 126	return p;
 127}
 128
 129const char *dbg_ntype(int type)
 130{
 131	switch (type) {
 132	case UBIFS_PAD_NODE:
 133		return "padding node";
 134	case UBIFS_SB_NODE:
 135		return "superblock node";
 136	case UBIFS_MST_NODE:
 137		return "master node";
 138	case UBIFS_REF_NODE:
 139		return "reference node";
 140	case UBIFS_INO_NODE:
 141		return "inode node";
 142	case UBIFS_DENT_NODE:
 143		return "direntry node";
 144	case UBIFS_XENT_NODE:
 145		return "xentry node";
 146	case UBIFS_DATA_NODE:
 147		return "data node";
 148	case UBIFS_TRUN_NODE:
 149		return "truncate node";
 150	case UBIFS_IDX_NODE:
 151		return "indexing node";
 152	case UBIFS_CS_NODE:
 153		return "commit start node";
 154	case UBIFS_ORPH_NODE:
 155		return "orphan node";
 156	case UBIFS_AUTH_NODE:
 157		return "auth node";
 158	default:
 159		return "unknown node";
 160	}
 161}
 162
 163static const char *dbg_gtype(int type)
 164{
 165	switch (type) {
 166	case UBIFS_NO_NODE_GROUP:
 167		return "no node group";
 168	case UBIFS_IN_NODE_GROUP:
 169		return "in node group";
 170	case UBIFS_LAST_OF_NODE_GROUP:
 171		return "last of node group";
 172	default:
 173		return "unknown";
 174	}
 175}
 176
 177const char *dbg_cstate(int cmt_state)
 178{
 179	switch (cmt_state) {
 180	case COMMIT_RESTING:
 181		return "commit resting";
 182	case COMMIT_BACKGROUND:
 183		return "background commit requested";
 184	case COMMIT_REQUIRED:
 185		return "commit required";
 186	case COMMIT_RUNNING_BACKGROUND:
 187		return "BACKGROUND commit running";
 188	case COMMIT_RUNNING_REQUIRED:
 189		return "commit running and required";
 190	case COMMIT_BROKEN:
 191		return "broken commit";
 192	default:
 193		return "unknown commit state";
 194	}
 195}
 196
 197const char *dbg_jhead(int jhead)
 198{
 199	switch (jhead) {
 200	case GCHD:
 201		return "0 (GC)";
 202	case BASEHD:
 203		return "1 (base)";
 204	case DATAHD:
 205		return "2 (data)";
 206	default:
 207		return "unknown journal head";
 208	}
 209}
 210
 211static void dump_ch(const struct ubifs_ch *ch)
 212{
 213	pr_err("\tmagic          %#x\n", le32_to_cpu(ch->magic));
 214	pr_err("\tcrc            %#x\n", le32_to_cpu(ch->crc));
 215	pr_err("\tnode_type      %d (%s)\n", ch->node_type,
 216	       dbg_ntype(ch->node_type));
 217	pr_err("\tgroup_type     %d (%s)\n", ch->group_type,
 218	       dbg_gtype(ch->group_type));
 219	pr_err("\tsqnum          %llu\n",
 220	       (unsigned long long)le64_to_cpu(ch->sqnum));
 221	pr_err("\tlen            %u\n", le32_to_cpu(ch->len));
 222}
 223
 224void ubifs_dump_inode(struct ubifs_info *c, const struct inode *inode)
 225{
 226	const struct ubifs_inode *ui = ubifs_inode(inode);
 227	struct fscrypt_name nm = {0};
 228	union ubifs_key key;
 229	struct ubifs_dent_node *dent, *pdent = NULL;
 230	int count = 2;
 231
 232	pr_err("Dump in-memory inode:");
 233	pr_err("\tinode          %lu\n", inode->i_ino);
 234	pr_err("\tsize           %llu\n",
 235	       (unsigned long long)i_size_read(inode));
 236	pr_err("\tnlink          %u\n", inode->i_nlink);
 237	pr_err("\tuid            %u\n", (unsigned int)i_uid_read(inode));
 238	pr_err("\tgid            %u\n", (unsigned int)i_gid_read(inode));
 239	pr_err("\tatime          %u.%u\n",
 240	       (unsigned int)inode->i_atime.tv_sec,
 241	       (unsigned int)inode->i_atime.tv_nsec);
 242	pr_err("\tmtime          %u.%u\n",
 243	       (unsigned int)inode->i_mtime.tv_sec,
 244	       (unsigned int)inode->i_mtime.tv_nsec);
 245	pr_err("\tctime          %u.%u\n",
 246	       (unsigned int)inode->i_ctime.tv_sec,
 247	       (unsigned int)inode->i_ctime.tv_nsec);
 248	pr_err("\tcreat_sqnum    %llu\n", ui->creat_sqnum);
 249	pr_err("\txattr_size     %u\n", ui->xattr_size);
 250	pr_err("\txattr_cnt      %u\n", ui->xattr_cnt);
 251	pr_err("\txattr_names    %u\n", ui->xattr_names);
 252	pr_err("\tdirty          %u\n", ui->dirty);
 253	pr_err("\txattr          %u\n", ui->xattr);
 254	pr_err("\tbulk_read      %u\n", ui->bulk_read);
 255	pr_err("\tsynced_i_size  %llu\n",
 256	       (unsigned long long)ui->synced_i_size);
 257	pr_err("\tui_size        %llu\n",
 258	       (unsigned long long)ui->ui_size);
 259	pr_err("\tflags          %d\n", ui->flags);
 260	pr_err("\tcompr_type     %d\n", ui->compr_type);
 261	pr_err("\tlast_page_read %lu\n", ui->last_page_read);
 262	pr_err("\tread_in_a_row  %lu\n", ui->read_in_a_row);
 263	pr_err("\tdata_len       %d\n", ui->data_len);
 264
 265	if (!S_ISDIR(inode->i_mode))
 266		return;
 267
 268	pr_err("List of directory entries:\n");
 269	ubifs_assert(c, !mutex_is_locked(&c->tnc_mutex));
 270
 271	lowest_dent_key(c, &key, inode->i_ino);
 272	while (1) {
 273		dent = ubifs_tnc_next_ent(c, &key, &nm);
 274		if (IS_ERR(dent)) {
 275			if (PTR_ERR(dent) != -ENOENT)
 276				pr_err("error %ld\n", PTR_ERR(dent));
 277			break;
 278		}
 279
 280		pr_err("\t%d: inode %llu, type %s, len %d\n",
 281		       count++, (unsigned long long) le64_to_cpu(dent->inum),
 282		       get_dent_type(dent->type),
 283		       le16_to_cpu(dent->nlen));
 284
 285		fname_name(&nm) = dent->name;
 286		fname_len(&nm) = le16_to_cpu(dent->nlen);
 287		kfree(pdent);
 288		pdent = dent;
 289		key_read(c, &dent->key, &key);
 290	}
 291	kfree(pdent);
 292}
 293
 294void ubifs_dump_node(const struct ubifs_info *c, const void *node)
 295{
 296	int i, n;
 297	union ubifs_key key;
 298	const struct ubifs_ch *ch = node;
 299	char key_buf[DBG_KEY_BUF_LEN];
 300
 
 
 
 301	/* If the magic is incorrect, just hexdump the first bytes */
 302	if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) {
 303		pr_err("Not a node, first %zu bytes:", UBIFS_CH_SZ);
 304		print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 32, 1,
 305			       (void *)node, UBIFS_CH_SZ, 1);
 306		return;
 307	}
 308
 309	spin_lock(&dbg_lock);
 310	dump_ch(node);
 311
 312	switch (ch->node_type) {
 313	case UBIFS_PAD_NODE:
 314	{
 315		const struct ubifs_pad_node *pad = node;
 316
 317		pr_err("\tpad_len        %u\n", le32_to_cpu(pad->pad_len));
 
 318		break;
 319	}
 320	case UBIFS_SB_NODE:
 321	{
 322		const struct ubifs_sb_node *sup = node;
 323		unsigned int sup_flags = le32_to_cpu(sup->flags);
 324
 325		pr_err("\tkey_hash       %d (%s)\n",
 326		       (int)sup->key_hash, get_key_hash(sup->key_hash));
 327		pr_err("\tkey_fmt        %d (%s)\n",
 328		       (int)sup->key_fmt, get_key_fmt(sup->key_fmt));
 329		pr_err("\tflags          %#x\n", sup_flags);
 330		pr_err("\tbig_lpt        %u\n",
 331		       !!(sup_flags & UBIFS_FLG_BIGLPT));
 332		pr_err("\tspace_fixup    %u\n",
 333		       !!(sup_flags & UBIFS_FLG_SPACE_FIXUP));
 334		pr_err("\tmin_io_size    %u\n", le32_to_cpu(sup->min_io_size));
 335		pr_err("\tleb_size       %u\n", le32_to_cpu(sup->leb_size));
 336		pr_err("\tleb_cnt        %u\n", le32_to_cpu(sup->leb_cnt));
 337		pr_err("\tmax_leb_cnt    %u\n", le32_to_cpu(sup->max_leb_cnt));
 338		pr_err("\tmax_bud_bytes  %llu\n",
 
 
 
 
 339		       (unsigned long long)le64_to_cpu(sup->max_bud_bytes));
 340		pr_err("\tlog_lebs       %u\n", le32_to_cpu(sup->log_lebs));
 341		pr_err("\tlpt_lebs       %u\n", le32_to_cpu(sup->lpt_lebs));
 342		pr_err("\torph_lebs      %u\n", le32_to_cpu(sup->orph_lebs));
 343		pr_err("\tjhead_cnt      %u\n", le32_to_cpu(sup->jhead_cnt));
 344		pr_err("\tfanout         %u\n", le32_to_cpu(sup->fanout));
 345		pr_err("\tlsave_cnt      %u\n", le32_to_cpu(sup->lsave_cnt));
 346		pr_err("\tdefault_compr  %u\n",
 
 
 
 
 
 
 347		       (int)le16_to_cpu(sup->default_compr));
 348		pr_err("\trp_size        %llu\n",
 349		       (unsigned long long)le64_to_cpu(sup->rp_size));
 350		pr_err("\trp_uid         %u\n", le32_to_cpu(sup->rp_uid));
 351		pr_err("\trp_gid         %u\n", le32_to_cpu(sup->rp_gid));
 352		pr_err("\tfmt_version    %u\n", le32_to_cpu(sup->fmt_version));
 353		pr_err("\ttime_gran      %u\n", le32_to_cpu(sup->time_gran));
 354		pr_err("\tUUID           %pUB\n", sup->uuid);
 
 
 
 
 
 355		break;
 356	}
 357	case UBIFS_MST_NODE:
 358	{
 359		const struct ubifs_mst_node *mst = node;
 360
 361		pr_err("\thighest_inum   %llu\n",
 362		       (unsigned long long)le64_to_cpu(mst->highest_inum));
 363		pr_err("\tcommit number  %llu\n",
 364		       (unsigned long long)le64_to_cpu(mst->cmt_no));
 365		pr_err("\tflags          %#x\n", le32_to_cpu(mst->flags));
 366		pr_err("\tlog_lnum       %u\n", le32_to_cpu(mst->log_lnum));
 367		pr_err("\troot_lnum      %u\n", le32_to_cpu(mst->root_lnum));
 368		pr_err("\troot_offs      %u\n", le32_to_cpu(mst->root_offs));
 369		pr_err("\troot_len       %u\n", le32_to_cpu(mst->root_len));
 370		pr_err("\tgc_lnum        %u\n", le32_to_cpu(mst->gc_lnum));
 371		pr_err("\tihead_lnum     %u\n", le32_to_cpu(mst->ihead_lnum));
 372		pr_err("\tihead_offs     %u\n", le32_to_cpu(mst->ihead_offs));
 373		pr_err("\tindex_size     %llu\n",
 
 
 
 
 
 
 
 
 374		       (unsigned long long)le64_to_cpu(mst->index_size));
 375		pr_err("\tlpt_lnum       %u\n", le32_to_cpu(mst->lpt_lnum));
 376		pr_err("\tlpt_offs       %u\n", le32_to_cpu(mst->lpt_offs));
 377		pr_err("\tnhead_lnum     %u\n", le32_to_cpu(mst->nhead_lnum));
 378		pr_err("\tnhead_offs     %u\n", le32_to_cpu(mst->nhead_offs));
 379		pr_err("\tltab_lnum      %u\n", le32_to_cpu(mst->ltab_lnum));
 380		pr_err("\tltab_offs      %u\n", le32_to_cpu(mst->ltab_offs));
 381		pr_err("\tlsave_lnum     %u\n", le32_to_cpu(mst->lsave_lnum));
 382		pr_err("\tlsave_offs     %u\n", le32_to_cpu(mst->lsave_offs));
 383		pr_err("\tlscan_lnum     %u\n", le32_to_cpu(mst->lscan_lnum));
 384		pr_err("\tleb_cnt        %u\n", le32_to_cpu(mst->leb_cnt));
 385		pr_err("\tempty_lebs     %u\n", le32_to_cpu(mst->empty_lebs));
 386		pr_err("\tidx_lebs       %u\n", le32_to_cpu(mst->idx_lebs));
 387		pr_err("\ttotal_free     %llu\n",
 
 
 
 
 
 
 
 
 
 
 
 
 388		       (unsigned long long)le64_to_cpu(mst->total_free));
 389		pr_err("\ttotal_dirty    %llu\n",
 390		       (unsigned long long)le64_to_cpu(mst->total_dirty));
 391		pr_err("\ttotal_used     %llu\n",
 392		       (unsigned long long)le64_to_cpu(mst->total_used));
 393		pr_err("\ttotal_dead     %llu\n",
 394		       (unsigned long long)le64_to_cpu(mst->total_dead));
 395		pr_err("\ttotal_dark     %llu\n",
 396		       (unsigned long long)le64_to_cpu(mst->total_dark));
 397		break;
 398	}
 399	case UBIFS_REF_NODE:
 400	{
 401		const struct ubifs_ref_node *ref = node;
 402
 403		pr_err("\tlnum           %u\n", le32_to_cpu(ref->lnum));
 404		pr_err("\toffs           %u\n", le32_to_cpu(ref->offs));
 405		pr_err("\tjhead          %u\n", le32_to_cpu(ref->jhead));
 
 
 
 406		break;
 407	}
 408	case UBIFS_INO_NODE:
 409	{
 410		const struct ubifs_ino_node *ino = node;
 411
 412		key_read(c, &ino->key, &key);
 413		pr_err("\tkey            %s\n",
 414		       dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
 415		pr_err("\tcreat_sqnum    %llu\n",
 416		       (unsigned long long)le64_to_cpu(ino->creat_sqnum));
 417		pr_err("\tsize           %llu\n",
 418		       (unsigned long long)le64_to_cpu(ino->size));
 419		pr_err("\tnlink          %u\n", le32_to_cpu(ino->nlink));
 420		pr_err("\tatime          %lld.%u\n",
 
 421		       (long long)le64_to_cpu(ino->atime_sec),
 422		       le32_to_cpu(ino->atime_nsec));
 423		pr_err("\tmtime          %lld.%u\n",
 424		       (long long)le64_to_cpu(ino->mtime_sec),
 425		       le32_to_cpu(ino->mtime_nsec));
 426		pr_err("\tctime          %lld.%u\n",
 427		       (long long)le64_to_cpu(ino->ctime_sec),
 428		       le32_to_cpu(ino->ctime_nsec));
 429		pr_err("\tuid            %u\n", le32_to_cpu(ino->uid));
 430		pr_err("\tgid            %u\n", le32_to_cpu(ino->gid));
 431		pr_err("\tmode           %u\n", le32_to_cpu(ino->mode));
 432		pr_err("\tflags          %#x\n", le32_to_cpu(ino->flags));
 433		pr_err("\txattr_cnt      %u\n", le32_to_cpu(ino->xattr_cnt));
 434		pr_err("\txattr_size     %u\n", le32_to_cpu(ino->xattr_size));
 435		pr_err("\txattr_names    %u\n", le32_to_cpu(ino->xattr_names));
 436		pr_err("\tcompr_type     %#x\n",
 
 
 
 
 
 
 
 437		       (int)le16_to_cpu(ino->compr_type));
 438		pr_err("\tdata len       %u\n", le32_to_cpu(ino->data_len));
 
 439		break;
 440	}
 441	case UBIFS_DENT_NODE:
 442	case UBIFS_XENT_NODE:
 443	{
 444		const struct ubifs_dent_node *dent = node;
 445		int nlen = le16_to_cpu(dent->nlen);
 446
 447		key_read(c, &dent->key, &key);
 448		pr_err("\tkey            %s\n",
 449		       dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
 450		pr_err("\tinum           %llu\n",
 451		       (unsigned long long)le64_to_cpu(dent->inum));
 452		pr_err("\ttype           %d\n", (int)dent->type);
 453		pr_err("\tnlen           %d\n", nlen);
 454		pr_err("\tname           ");
 455
 456		if (nlen > UBIFS_MAX_NLEN)
 457			pr_err("(bad name length, not printing, bad or corrupted node)");
 
 458		else {
 459			for (i = 0; i < nlen && dent->name[i]; i++)
 460				pr_cont("%c", isprint(dent->name[i]) ?
 461					dent->name[i] : '?');
 462		}
 463		pr_cont("\n");
 464
 465		break;
 466	}
 467	case UBIFS_DATA_NODE:
 468	{
 469		const struct ubifs_data_node *dn = node;
 470		int dlen = le32_to_cpu(ch->len) - UBIFS_DATA_NODE_SZ;
 471
 472		key_read(c, &dn->key, &key);
 473		pr_err("\tkey            %s\n",
 474		       dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
 475		pr_err("\tsize           %u\n", le32_to_cpu(dn->size));
 476		pr_err("\tcompr_typ      %d\n",
 
 477		       (int)le16_to_cpu(dn->compr_type));
 478		pr_err("\tdata size      %d\n", dlen);
 479		pr_err("\tdata:\n");
 
 480		print_hex_dump(KERN_ERR, "\t", DUMP_PREFIX_OFFSET, 32, 1,
 481			       (void *)&dn->data, dlen, 0);
 482		break;
 483	}
 484	case UBIFS_TRUN_NODE:
 485	{
 486		const struct ubifs_trun_node *trun = node;
 487
 488		pr_err("\tinum           %u\n", le32_to_cpu(trun->inum));
 489		pr_err("\told_size       %llu\n",
 
 490		       (unsigned long long)le64_to_cpu(trun->old_size));
 491		pr_err("\tnew_size       %llu\n",
 492		       (unsigned long long)le64_to_cpu(trun->new_size));
 493		break;
 494	}
 495	case UBIFS_IDX_NODE:
 496	{
 497		const struct ubifs_idx_node *idx = node;
 498
 499		n = le16_to_cpu(idx->child_cnt);
 500		pr_err("\tchild_cnt      %d\n", n);
 501		pr_err("\tlevel          %d\n", (int)le16_to_cpu(idx->level));
 502		pr_err("\tBranches:\n");
 
 503
 504		for (i = 0; i < n && i < c->fanout - 1; i++) {
 505			const struct ubifs_branch *br;
 506
 507			br = ubifs_idx_branch(c, idx, i);
 508			key_read(c, &br->key, &key);
 509			pr_err("\t%d: LEB %d:%d len %d key %s\n",
 510			       i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs),
 511			       le32_to_cpu(br->len),
 512			       dbg_snprintf_key(c, &key, key_buf,
 513						DBG_KEY_BUF_LEN));
 514		}
 515		break;
 516	}
 517	case UBIFS_CS_NODE:
 518		break;
 519	case UBIFS_ORPH_NODE:
 520	{
 521		const struct ubifs_orph_node *orph = node;
 522
 523		pr_err("\tcommit number  %llu\n",
 524		       (unsigned long long)
 525				le64_to_cpu(orph->cmt_no) & LLONG_MAX);
 526		pr_err("\tlast node flag %llu\n",
 527		       (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63);
 528		n = (le32_to_cpu(ch->len) - UBIFS_ORPH_NODE_SZ) >> 3;
 529		pr_err("\t%d orphan inode numbers:\n", n);
 530		for (i = 0; i < n; i++)
 531			pr_err("\t  ino %llu\n",
 532			       (unsigned long long)le64_to_cpu(orph->inos[i]));
 533		break;
 534	}
 535	case UBIFS_AUTH_NODE:
 536	{
 537		break;
 538	}
 539	default:
 540		pr_err("node type %d was not recognized\n",
 541		       (int)ch->node_type);
 542	}
 543	spin_unlock(&dbg_lock);
 544}
 545
 546void ubifs_dump_budget_req(const struct ubifs_budget_req *req)
 547{
 548	spin_lock(&dbg_lock);
 549	pr_err("Budgeting request: new_ino %d, dirtied_ino %d\n",
 550	       req->new_ino, req->dirtied_ino);
 551	pr_err("\tnew_ino_d   %d, dirtied_ino_d %d\n",
 552	       req->new_ino_d, req->dirtied_ino_d);
 553	pr_err("\tnew_page    %d, dirtied_page %d\n",
 554	       req->new_page, req->dirtied_page);
 555	pr_err("\tnew_dent    %d, mod_dent     %d\n",
 556	       req->new_dent, req->mod_dent);
 557	pr_err("\tidx_growth  %d\n", req->idx_growth);
 558	pr_err("\tdata_growth %d dd_growth     %d\n",
 559	       req->data_growth, req->dd_growth);
 560	spin_unlock(&dbg_lock);
 561}
 562
 563void ubifs_dump_lstats(const struct ubifs_lp_stats *lst)
 564{
 565	spin_lock(&dbg_lock);
 566	pr_err("(pid %d) Lprops statistics: empty_lebs %d, idx_lebs  %d\n",
 567	       current->pid, lst->empty_lebs, lst->idx_lebs);
 568	pr_err("\ttaken_empty_lebs %d, total_free %lld, total_dirty %lld\n",
 569	       lst->taken_empty_lebs, lst->total_free, lst->total_dirty);
 570	pr_err("\ttotal_used %lld, total_dark %lld, total_dead %lld\n",
 571	       lst->total_used, lst->total_dark, lst->total_dead);
 
 
 572	spin_unlock(&dbg_lock);
 573}
 574
 575void ubifs_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi)
 576{
 577	int i;
 578	struct rb_node *rb;
 579	struct ubifs_bud *bud;
 580	struct ubifs_gced_idx_leb *idx_gc;
 581	long long available, outstanding, free;
 582
 583	spin_lock(&c->space_lock);
 584	spin_lock(&dbg_lock);
 585	pr_err("(pid %d) Budgeting info: data budget sum %lld, total budget sum %lld\n",
 586	       current->pid, bi->data_growth + bi->dd_growth,
 
 587	       bi->data_growth + bi->dd_growth + bi->idx_growth);
 588	pr_err("\tbudg_data_growth %lld, budg_dd_growth %lld, budg_idx_growth %lld\n",
 589	       bi->data_growth, bi->dd_growth, bi->idx_growth);
 590	pr_err("\tmin_idx_lebs %d, old_idx_sz %llu, uncommitted_idx %lld\n",
 591	       bi->min_idx_lebs, bi->old_idx_sz, bi->uncommitted_idx);
 592	pr_err("\tpage_budget %d, inode_budget %d, dent_budget %d\n",
 
 
 593	       bi->page_budget, bi->inode_budget, bi->dent_budget);
 594	pr_err("\tnospace %u, nospace_rp %u\n", bi->nospace, bi->nospace_rp);
 595	pr_err("\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n",
 
 596	       c->dark_wm, c->dead_wm, c->max_idx_node_sz);
 597
 598	if (bi != &c->bi)
 599		/*
 600		 * If we are dumping saved budgeting data, do not print
 601		 * additional information which is about the current state, not
 602		 * the old one which corresponded to the saved budgeting data.
 603		 */
 604		goto out_unlock;
 605
 606	pr_err("\tfreeable_cnt %d, calc_idx_sz %lld, idx_gc_cnt %d\n",
 607	       c->freeable_cnt, c->calc_idx_sz, c->idx_gc_cnt);
 608	pr_err("\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, clean_zn_cnt %ld\n",
 609	       atomic_long_read(&c->dirty_pg_cnt),
 610	       atomic_long_read(&c->dirty_zn_cnt),
 611	       atomic_long_read(&c->clean_zn_cnt));
 612	pr_err("\tgc_lnum %d, ihead_lnum %d\n", c->gc_lnum, c->ihead_lnum);
 
 613
 614	/* If we are in R/O mode, journal heads do not exist */
 615	if (c->jheads)
 616		for (i = 0; i < c->jhead_cnt; i++)
 617			pr_err("\tjhead %s\t LEB %d\n",
 618			       dbg_jhead(c->jheads[i].wbuf.jhead),
 619			       c->jheads[i].wbuf.lnum);
 620	for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) {
 621		bud = rb_entry(rb, struct ubifs_bud, rb);
 622		pr_err("\tbud LEB %d\n", bud->lnum);
 623	}
 624	list_for_each_entry(bud, &c->old_buds, list)
 625		pr_err("\told bud LEB %d\n", bud->lnum);
 626	list_for_each_entry(idx_gc, &c->idx_gc, list)
 627		pr_err("\tGC'ed idx LEB %d unmap %d\n",
 628		       idx_gc->lnum, idx_gc->unmap);
 629	pr_err("\tcommit state %d\n", c->cmt_state);
 630
 631	/* Print budgeting predictions */
 632	available = ubifs_calc_available(c, c->bi.min_idx_lebs);
 633	outstanding = c->bi.data_growth + c->bi.dd_growth;
 634	free = ubifs_get_free_space_nolock(c);
 635	pr_err("Budgeting predictions:\n");
 636	pr_err("\tavailable: %lld, outstanding %lld, free %lld\n",
 637	       available, outstanding, free);
 638out_unlock:
 639	spin_unlock(&dbg_lock);
 640	spin_unlock(&c->space_lock);
 641}
 642
 643void ubifs_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp)
 644{
 645	int i, spc, dark = 0, dead = 0;
 646	struct rb_node *rb;
 647	struct ubifs_bud *bud;
 648
 649	spc = lp->free + lp->dirty;
 650	if (spc < c->dead_wm)
 651		dead = spc;
 652	else
 653		dark = ubifs_calc_dark(c, spc);
 654
 655	if (lp->flags & LPROPS_INDEX)
 656		pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d flags %#x (",
 657		       lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc,
 658		       lp->flags);
 659	else
 660		pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d flags %#-4x (",
 661		       lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc,
 662		       dark, dead, (int)(spc / UBIFS_MAX_NODE_SZ), lp->flags);
 
 
 663
 664	if (lp->flags & LPROPS_TAKEN) {
 665		if (lp->flags & LPROPS_INDEX)
 666			pr_cont("index, taken");
 667		else
 668			pr_cont("taken");
 669	} else {
 670		const char *s;
 671
 672		if (lp->flags & LPROPS_INDEX) {
 673			switch (lp->flags & LPROPS_CAT_MASK) {
 674			case LPROPS_DIRTY_IDX:
 675				s = "dirty index";
 676				break;
 677			case LPROPS_FRDI_IDX:
 678				s = "freeable index";
 679				break;
 680			default:
 681				s = "index";
 682			}
 683		} else {
 684			switch (lp->flags & LPROPS_CAT_MASK) {
 685			case LPROPS_UNCAT:
 686				s = "not categorized";
 687				break;
 688			case LPROPS_DIRTY:
 689				s = "dirty";
 690				break;
 691			case LPROPS_FREE:
 692				s = "free";
 693				break;
 694			case LPROPS_EMPTY:
 695				s = "empty";
 696				break;
 697			case LPROPS_FREEABLE:
 698				s = "freeable";
 699				break;
 700			default:
 701				s = NULL;
 702				break;
 703			}
 704		}
 705		pr_cont("%s", s);
 706	}
 707
 708	for (rb = rb_first((struct rb_root *)&c->buds); rb; rb = rb_next(rb)) {
 709		bud = rb_entry(rb, struct ubifs_bud, rb);
 710		if (bud->lnum == lp->lnum) {
 711			int head = 0;
 712			for (i = 0; i < c->jhead_cnt; i++) {
 713				/*
 714				 * Note, if we are in R/O mode or in the middle
 715				 * of mounting/re-mounting, the write-buffers do
 716				 * not exist.
 717				 */
 718				if (c->jheads &&
 719				    lp->lnum == c->jheads[i].wbuf.lnum) {
 720					pr_cont(", jhead %s", dbg_jhead(i));
 
 721					head = 1;
 722				}
 723			}
 724			if (!head)
 725				pr_cont(", bud of jhead %s",
 726				       dbg_jhead(bud->jhead));
 727		}
 728	}
 729	if (lp->lnum == c->gc_lnum)
 730		pr_cont(", GC LEB");
 731	pr_cont(")\n");
 732}
 733
 734void ubifs_dump_lprops(struct ubifs_info *c)
 735{
 736	int lnum, err;
 737	struct ubifs_lprops lp;
 738	struct ubifs_lp_stats lst;
 739
 740	pr_err("(pid %d) start dumping LEB properties\n", current->pid);
 
 741	ubifs_get_lp_stats(c, &lst);
 742	ubifs_dump_lstats(&lst);
 743
 744	for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
 745		err = ubifs_read_one_lp(c, lnum, &lp);
 746		if (err) {
 747			ubifs_err(c, "cannot read lprops for LEB %d", lnum);
 748			continue;
 749		}
 750
 751		ubifs_dump_lprop(c, &lp);
 752	}
 753	pr_err("(pid %d) finish dumping LEB properties\n", current->pid);
 
 754}
 755
 756void ubifs_dump_lpt_info(struct ubifs_info *c)
 757{
 758	int i;
 759
 760	spin_lock(&dbg_lock);
 761	pr_err("(pid %d) dumping LPT information\n", current->pid);
 762	pr_err("\tlpt_sz:        %lld\n", c->lpt_sz);
 763	pr_err("\tpnode_sz:      %d\n", c->pnode_sz);
 764	pr_err("\tnnode_sz:      %d\n", c->nnode_sz);
 765	pr_err("\tltab_sz:       %d\n", c->ltab_sz);
 766	pr_err("\tlsave_sz:      %d\n", c->lsave_sz);
 767	pr_err("\tbig_lpt:       %d\n", c->big_lpt);
 768	pr_err("\tlpt_hght:      %d\n", c->lpt_hght);
 769	pr_err("\tpnode_cnt:     %d\n", c->pnode_cnt);
 770	pr_err("\tnnode_cnt:     %d\n", c->nnode_cnt);
 771	pr_err("\tdirty_pn_cnt:  %d\n", c->dirty_pn_cnt);
 772	pr_err("\tdirty_nn_cnt:  %d\n", c->dirty_nn_cnt);
 773	pr_err("\tlsave_cnt:     %d\n", c->lsave_cnt);
 774	pr_err("\tspace_bits:    %d\n", c->space_bits);
 775	pr_err("\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits);
 776	pr_err("\tlpt_offs_bits: %d\n", c->lpt_offs_bits);
 777	pr_err("\tlpt_spc_bits:  %d\n", c->lpt_spc_bits);
 778	pr_err("\tpcnt_bits:     %d\n", c->pcnt_bits);
 779	pr_err("\tlnum_bits:     %d\n", c->lnum_bits);
 780	pr_err("\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs);
 781	pr_err("\tLPT head is at %d:%d\n",
 782	       c->nhead_lnum, c->nhead_offs);
 783	pr_err("\tLPT ltab is at %d:%d\n", c->ltab_lnum, c->ltab_offs);
 
 784	if (c->big_lpt)
 785		pr_err("\tLPT lsave is at %d:%d\n",
 786		       c->lsave_lnum, c->lsave_offs);
 787	for (i = 0; i < c->lpt_lebs; i++)
 788		pr_err("\tLPT LEB %d free %d dirty %d tgc %d cmt %d\n",
 789		       i + c->lpt_first, c->ltab[i].free, c->ltab[i].dirty,
 790		       c->ltab[i].tgc, c->ltab[i].cmt);
 791	spin_unlock(&dbg_lock);
 792}
 793
 794void ubifs_dump_sleb(const struct ubifs_info *c,
 795		     const struct ubifs_scan_leb *sleb, int offs)
 796{
 797	struct ubifs_scan_node *snod;
 798
 799	pr_err("(pid %d) start dumping scanned data from LEB %d:%d\n",
 800	       current->pid, sleb->lnum, offs);
 801
 802	list_for_each_entry(snod, &sleb->nodes, list) {
 803		cond_resched();
 804		pr_err("Dumping node at LEB %d:%d len %d\n",
 805		       sleb->lnum, snod->offs, snod->len);
 806		ubifs_dump_node(c, snod->node);
 807	}
 808}
 809
 810void ubifs_dump_leb(const struct ubifs_info *c, int lnum)
 811{
 812	struct ubifs_scan_leb *sleb;
 813	struct ubifs_scan_node *snod;
 814	void *buf;
 815
 816	pr_err("(pid %d) start dumping LEB %d\n", current->pid, lnum);
 
 
 
 
 817
 818	buf = __vmalloc(c->leb_size, GFP_NOFS);
 819	if (!buf) {
 820		ubifs_err(c, "cannot allocate memory for dumping LEB %d", lnum);
 821		return;
 822	}
 823
 824	sleb = ubifs_scan(c, lnum, 0, buf, 0);
 825	if (IS_ERR(sleb)) {
 826		ubifs_err(c, "scan error %d", (int)PTR_ERR(sleb));
 827		goto out;
 828	}
 829
 830	pr_err("LEB %d has %d nodes ending at %d\n", lnum,
 831	       sleb->nodes_cnt, sleb->endpt);
 832
 833	list_for_each_entry(snod, &sleb->nodes, list) {
 834		cond_resched();
 835		pr_err("Dumping node at LEB %d:%d len %d\n", lnum,
 836		       snod->offs, snod->len);
 837		ubifs_dump_node(c, snod->node);
 838	}
 839
 840	pr_err("(pid %d) finish dumping LEB %d\n", current->pid, lnum);
 
 841	ubifs_scan_destroy(sleb);
 842
 843out:
 844	vfree(buf);
 845	return;
 846}
 847
 848void ubifs_dump_znode(const struct ubifs_info *c,
 849		      const struct ubifs_znode *znode)
 850{
 851	int n;
 852	const struct ubifs_zbranch *zbr;
 853	char key_buf[DBG_KEY_BUF_LEN];
 854
 855	spin_lock(&dbg_lock);
 856	if (znode->parent)
 857		zbr = &znode->parent->zbranch[znode->iip];
 858	else
 859		zbr = &c->zroot;
 860
 861	pr_err("znode %p, LEB %d:%d len %d parent %p iip %d level %d child_cnt %d flags %lx\n",
 862	       znode, zbr->lnum, zbr->offs, zbr->len, znode->parent, znode->iip,
 863	       znode->level, znode->child_cnt, znode->flags);
 
 864
 865	if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
 866		spin_unlock(&dbg_lock);
 867		return;
 868	}
 869
 870	pr_err("zbranches:\n");
 871	for (n = 0; n < znode->child_cnt; n++) {
 872		zbr = &znode->zbranch[n];
 873		if (znode->level > 0)
 874			pr_err("\t%d: znode %p LEB %d:%d len %d key %s\n",
 875			       n, zbr->znode, zbr->lnum, zbr->offs, zbr->len,
 876			       dbg_snprintf_key(c, &zbr->key, key_buf,
 877						DBG_KEY_BUF_LEN));
 
 
 878		else
 879			pr_err("\t%d: LNC %p LEB %d:%d len %d key %s\n",
 880			       n, zbr->znode, zbr->lnum, zbr->offs, zbr->len,
 881			       dbg_snprintf_key(c, &zbr->key, key_buf,
 882						DBG_KEY_BUF_LEN));
 
 
 883	}
 884	spin_unlock(&dbg_lock);
 885}
 886
 887void ubifs_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat)
 888{
 889	int i;
 890
 891	pr_err("(pid %d) start dumping heap cat %d (%d elements)\n",
 892	       current->pid, cat, heap->cnt);
 893	for (i = 0; i < heap->cnt; i++) {
 894		struct ubifs_lprops *lprops = heap->arr[i];
 895
 896		pr_err("\t%d. LEB %d hpos %d free %d dirty %d flags %d\n",
 897		       i, lprops->lnum, lprops->hpos, lprops->free,
 898		       lprops->dirty, lprops->flags);
 899	}
 900	pr_err("(pid %d) finish dumping heap\n", current->pid);
 901}
 902
 903void ubifs_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
 904		      struct ubifs_nnode *parent, int iip)
 905{
 906	int i;
 907
 908	pr_err("(pid %d) dumping pnode:\n", current->pid);
 909	pr_err("\taddress %zx parent %zx cnext %zx\n",
 910	       (size_t)pnode, (size_t)parent, (size_t)pnode->cnext);
 911	pr_err("\tflags %lu iip %d level %d num %d\n",
 912	       pnode->flags, iip, pnode->level, pnode->num);
 913	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
 914		struct ubifs_lprops *lp = &pnode->lprops[i];
 915
 916		pr_err("\t%d: free %d dirty %d flags %d lnum %d\n",
 917		       i, lp->free, lp->dirty, lp->flags, lp->lnum);
 918	}
 919}
 920
 921void ubifs_dump_tnc(struct ubifs_info *c)
 922{
 923	struct ubifs_znode *znode;
 924	int level;
 925
 926	pr_err("\n");
 927	pr_err("(pid %d) start dumping TNC tree\n", current->pid);
 928	znode = ubifs_tnc_levelorder_next(c, c->zroot.znode, NULL);
 929	level = znode->level;
 930	pr_err("== Level %d ==\n", level);
 931	while (znode) {
 932		if (level != znode->level) {
 933			level = znode->level;
 934			pr_err("== Level %d ==\n", level);
 935		}
 936		ubifs_dump_znode(c, znode);
 937		znode = ubifs_tnc_levelorder_next(c, c->zroot.znode, znode);
 938	}
 939	pr_err("(pid %d) finish dumping TNC tree\n", current->pid);
 940}
 941
 942static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode,
 943		      void *priv)
 944{
 945	ubifs_dump_znode(c, znode);
 946	return 0;
 947}
 948
 949/**
 950 * ubifs_dump_index - dump the on-flash index.
 951 * @c: UBIFS file-system description object
 952 *
 953 * This function dumps whole UBIFS indexing B-tree, unlike 'ubifs_dump_tnc()'
 954 * which dumps only in-memory znodes and does not read znodes which from flash.
 955 */
 956void ubifs_dump_index(struct ubifs_info *c)
 957{
 958	dbg_walk_index(c, NULL, dump_znode, NULL);
 959}
 960
 961/**
 962 * dbg_save_space_info - save information about flash space.
 963 * @c: UBIFS file-system description object
 964 *
 965 * This function saves information about UBIFS free space, dirty space, etc, in
 966 * order to check it later.
 967 */
 968void dbg_save_space_info(struct ubifs_info *c)
 969{
 970	struct ubifs_debug_info *d = c->dbg;
 971	int freeable_cnt;
 972
 973	spin_lock(&c->space_lock);
 974	memcpy(&d->saved_lst, &c->lst, sizeof(struct ubifs_lp_stats));
 975	memcpy(&d->saved_bi, &c->bi, sizeof(struct ubifs_budg_info));
 976	d->saved_idx_gc_cnt = c->idx_gc_cnt;
 977
 978	/*
 979	 * We use a dirty hack here and zero out @c->freeable_cnt, because it
 980	 * affects the free space calculations, and UBIFS might not know about
 981	 * all freeable eraseblocks. Indeed, we know about freeable eraseblocks
 982	 * only when we read their lprops, and we do this only lazily, upon the
 983	 * need. So at any given point of time @c->freeable_cnt might be not
 984	 * exactly accurate.
 985	 *
 986	 * Just one example about the issue we hit when we did not zero
 987	 * @c->freeable_cnt.
 988	 * 1. The file-system is mounted R/O, c->freeable_cnt is %0. We save the
 989	 *    amount of free space in @d->saved_free
 990	 * 2. We re-mount R/W, which makes UBIFS to read the "lsave"
 991	 *    information from flash, where we cache LEBs from various
 992	 *    categories ('ubifs_remount_fs()' -> 'ubifs_lpt_init()'
 993	 *    -> 'lpt_init_wr()' -> 'read_lsave()' -> 'ubifs_lpt_lookup()'
 994	 *    -> 'ubifs_get_pnode()' -> 'update_cats()'
 995	 *    -> 'ubifs_add_to_cat()').
 996	 * 3. Lsave contains a freeable eraseblock, and @c->freeable_cnt
 997	 *    becomes %1.
 998	 * 4. We calculate the amount of free space when the re-mount is
 999	 *    finished in 'dbg_check_space_info()' and it does not match
1000	 *    @d->saved_free.
1001	 */
1002	freeable_cnt = c->freeable_cnt;
1003	c->freeable_cnt = 0;
1004	d->saved_free = ubifs_get_free_space_nolock(c);
1005	c->freeable_cnt = freeable_cnt;
1006	spin_unlock(&c->space_lock);
1007}
1008
1009/**
1010 * dbg_check_space_info - check flash space information.
1011 * @c: UBIFS file-system description object
1012 *
1013 * This function compares current flash space information with the information
1014 * which was saved when the 'dbg_save_space_info()' function was called.
1015 * Returns zero if the information has not changed, and %-EINVAL it it has
1016 * changed.
1017 */
1018int dbg_check_space_info(struct ubifs_info *c)
1019{
1020	struct ubifs_debug_info *d = c->dbg;
1021	struct ubifs_lp_stats lst;
1022	long long free;
1023	int freeable_cnt;
1024
1025	spin_lock(&c->space_lock);
1026	freeable_cnt = c->freeable_cnt;
1027	c->freeable_cnt = 0;
1028	free = ubifs_get_free_space_nolock(c);
1029	c->freeable_cnt = freeable_cnt;
1030	spin_unlock(&c->space_lock);
1031
1032	if (free != d->saved_free) {
1033		ubifs_err(c, "free space changed from %lld to %lld",
1034			  d->saved_free, free);
1035		goto out;
1036	}
1037
1038	return 0;
1039
1040out:
1041	ubifs_msg(c, "saved lprops statistics dump");
1042	ubifs_dump_lstats(&d->saved_lst);
1043	ubifs_msg(c, "saved budgeting info dump");
1044	ubifs_dump_budg(c, &d->saved_bi);
1045	ubifs_msg(c, "saved idx_gc_cnt %d", d->saved_idx_gc_cnt);
1046	ubifs_msg(c, "current lprops statistics dump");
1047	ubifs_get_lp_stats(c, &lst);
1048	ubifs_dump_lstats(&lst);
1049	ubifs_msg(c, "current budgeting info dump");
1050	ubifs_dump_budg(c, &c->bi);
1051	dump_stack();
1052	return -EINVAL;
1053}
1054
1055/**
1056 * dbg_check_synced_i_size - check synchronized inode size.
1057 * @c: UBIFS file-system description object
1058 * @inode: inode to check
1059 *
1060 * If inode is clean, synchronized inode size has to be equivalent to current
1061 * inode size. This function has to be called only for locked inodes (@i_mutex
1062 * has to be locked). Returns %0 if synchronized inode size if correct, and
1063 * %-EINVAL if not.
1064 */
1065int dbg_check_synced_i_size(const struct ubifs_info *c, struct inode *inode)
1066{
1067	int err = 0;
1068	struct ubifs_inode *ui = ubifs_inode(inode);
1069
1070	if (!dbg_is_chk_gen(c))
1071		return 0;
1072	if (!S_ISREG(inode->i_mode))
1073		return 0;
1074
1075	mutex_lock(&ui->ui_mutex);
1076	spin_lock(&ui->ui_lock);
1077	if (ui->ui_size != ui->synced_i_size && !ui->dirty) {
1078		ubifs_err(c, "ui_size is %lld, synced_i_size is %lld, but inode is clean",
1079			  ui->ui_size, ui->synced_i_size);
1080		ubifs_err(c, "i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino,
1081			  inode->i_mode, i_size_read(inode));
1082		dump_stack();
1083		err = -EINVAL;
1084	}
1085	spin_unlock(&ui->ui_lock);
1086	mutex_unlock(&ui->ui_mutex);
1087	return err;
1088}
1089
1090/*
1091 * dbg_check_dir - check directory inode size and link count.
1092 * @c: UBIFS file-system description object
1093 * @dir: the directory to calculate size for
1094 * @size: the result is returned here
1095 *
1096 * This function makes sure that directory size and link count are correct.
1097 * Returns zero in case of success and a negative error code in case of
1098 * failure.
1099 *
1100 * Note, it is good idea to make sure the @dir->i_mutex is locked before
1101 * calling this function.
1102 */
1103int dbg_check_dir(struct ubifs_info *c, const struct inode *dir)
1104{
1105	unsigned int nlink = 2;
1106	union ubifs_key key;
1107	struct ubifs_dent_node *dent, *pdent = NULL;
1108	struct fscrypt_name nm = {0};
1109	loff_t size = UBIFS_INO_NODE_SZ;
1110
1111	if (!dbg_is_chk_gen(c))
1112		return 0;
1113
1114	if (!S_ISDIR(dir->i_mode))
1115		return 0;
1116
1117	lowest_dent_key(c, &key, dir->i_ino);
1118	while (1) {
1119		int err;
1120
1121		dent = ubifs_tnc_next_ent(c, &key, &nm);
1122		if (IS_ERR(dent)) {
1123			err = PTR_ERR(dent);
1124			if (err == -ENOENT)
1125				break;
1126			return err;
1127		}
1128
1129		fname_name(&nm) = dent->name;
1130		fname_len(&nm) = le16_to_cpu(dent->nlen);
1131		size += CALC_DENT_SIZE(fname_len(&nm));
1132		if (dent->type == UBIFS_ITYPE_DIR)
1133			nlink += 1;
1134		kfree(pdent);
1135		pdent = dent;
1136		key_read(c, &dent->key, &key);
1137	}
1138	kfree(pdent);
1139
1140	if (i_size_read(dir) != size) {
1141		ubifs_err(c, "directory inode %lu has size %llu, but calculated size is %llu",
1142			  dir->i_ino, (unsigned long long)i_size_read(dir),
 
1143			  (unsigned long long)size);
1144		ubifs_dump_inode(c, dir);
1145		dump_stack();
1146		return -EINVAL;
1147	}
1148	if (dir->i_nlink != nlink) {
1149		ubifs_err(c, "directory inode %lu has nlink %u, but calculated nlink is %u",
1150			  dir->i_ino, dir->i_nlink, nlink);
1151		ubifs_dump_inode(c, dir);
1152		dump_stack();
1153		return -EINVAL;
1154	}
1155
1156	return 0;
1157}
1158
1159/**
1160 * dbg_check_key_order - make sure that colliding keys are properly ordered.
1161 * @c: UBIFS file-system description object
1162 * @zbr1: first zbranch
1163 * @zbr2: following zbranch
1164 *
1165 * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of
1166 * names of the direntries/xentries which are referred by the keys. This
1167 * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes
1168 * sure the name of direntry/xentry referred by @zbr1 is less than
1169 * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not,
1170 * and a negative error code in case of failure.
1171 */
1172static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1,
1173			       struct ubifs_zbranch *zbr2)
1174{
1175	int err, nlen1, nlen2, cmp;
1176	struct ubifs_dent_node *dent1, *dent2;
1177	union ubifs_key key;
1178	char key_buf[DBG_KEY_BUF_LEN];
1179
1180	ubifs_assert(c, !keys_cmp(c, &zbr1->key, &zbr2->key));
1181	dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1182	if (!dent1)
1183		return -ENOMEM;
1184	dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1185	if (!dent2) {
1186		err = -ENOMEM;
1187		goto out_free;
1188	}
1189
1190	err = ubifs_tnc_read_node(c, zbr1, dent1);
1191	if (err)
1192		goto out_free;
1193	err = ubifs_validate_entry(c, dent1);
1194	if (err)
1195		goto out_free;
1196
1197	err = ubifs_tnc_read_node(c, zbr2, dent2);
1198	if (err)
1199		goto out_free;
1200	err = ubifs_validate_entry(c, dent2);
1201	if (err)
1202		goto out_free;
1203
1204	/* Make sure node keys are the same as in zbranch */
1205	err = 1;
1206	key_read(c, &dent1->key, &key);
1207	if (keys_cmp(c, &zbr1->key, &key)) {
1208		ubifs_err(c, "1st entry at %d:%d has key %s", zbr1->lnum,
1209			  zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1210						       DBG_KEY_BUF_LEN));
1211		ubifs_err(c, "but it should have key %s according to tnc",
1212			  dbg_snprintf_key(c, &zbr1->key, key_buf,
1213					   DBG_KEY_BUF_LEN));
1214		ubifs_dump_node(c, dent1);
1215		goto out_free;
1216	}
1217
1218	key_read(c, &dent2->key, &key);
1219	if (keys_cmp(c, &zbr2->key, &key)) {
1220		ubifs_err(c, "2nd entry at %d:%d has key %s", zbr1->lnum,
1221			  zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1222						       DBG_KEY_BUF_LEN));
1223		ubifs_err(c, "but it should have key %s according to tnc",
1224			  dbg_snprintf_key(c, &zbr2->key, key_buf,
1225					   DBG_KEY_BUF_LEN));
1226		ubifs_dump_node(c, dent2);
1227		goto out_free;
1228	}
1229
1230	nlen1 = le16_to_cpu(dent1->nlen);
1231	nlen2 = le16_to_cpu(dent2->nlen);
1232
1233	cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2));
1234	if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) {
1235		err = 0;
1236		goto out_free;
1237	}
1238	if (cmp == 0 && nlen1 == nlen2)
1239		ubifs_err(c, "2 xent/dent nodes with the same name");
1240	else
1241		ubifs_err(c, "bad order of colliding key %s",
1242			  dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
1243
1244	ubifs_msg(c, "first node at %d:%d\n", zbr1->lnum, zbr1->offs);
1245	ubifs_dump_node(c, dent1);
1246	ubifs_msg(c, "second node at %d:%d\n", zbr2->lnum, zbr2->offs);
1247	ubifs_dump_node(c, dent2);
1248
1249out_free:
1250	kfree(dent2);
1251	kfree(dent1);
1252	return err;
1253}
1254
1255/**
1256 * dbg_check_znode - check if znode is all right.
1257 * @c: UBIFS file-system description object
1258 * @zbr: zbranch which points to this znode
1259 *
1260 * This function makes sure that znode referred to by @zbr is all right.
1261 * Returns zero if it is, and %-EINVAL if it is not.
1262 */
1263static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr)
1264{
1265	struct ubifs_znode *znode = zbr->znode;
1266	struct ubifs_znode *zp = znode->parent;
1267	int n, err, cmp;
1268
1269	if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
1270		err = 1;
1271		goto out;
1272	}
1273	if (znode->level < 0) {
1274		err = 2;
1275		goto out;
1276	}
1277	if (znode->iip < 0 || znode->iip >= c->fanout) {
1278		err = 3;
1279		goto out;
1280	}
1281
1282	if (zbr->len == 0)
1283		/* Only dirty zbranch may have no on-flash nodes */
1284		if (!ubifs_zn_dirty(znode)) {
1285			err = 4;
1286			goto out;
1287		}
1288
1289	if (ubifs_zn_dirty(znode)) {
1290		/*
1291		 * If znode is dirty, its parent has to be dirty as well. The
1292		 * order of the operation is important, so we have to have
1293		 * memory barriers.
1294		 */
1295		smp_mb();
1296		if (zp && !ubifs_zn_dirty(zp)) {
1297			/*
1298			 * The dirty flag is atomic and is cleared outside the
1299			 * TNC mutex, so znode's dirty flag may now have
1300			 * been cleared. The child is always cleared before the
1301			 * parent, so we just need to check again.
1302			 */
1303			smp_mb();
1304			if (ubifs_zn_dirty(znode)) {
1305				err = 5;
1306				goto out;
1307			}
1308		}
1309	}
1310
1311	if (zp) {
1312		const union ubifs_key *min, *max;
1313
1314		if (znode->level != zp->level - 1) {
1315			err = 6;
1316			goto out;
1317		}
1318
1319		/* Make sure the 'parent' pointer in our znode is correct */
1320		err = ubifs_search_zbranch(c, zp, &zbr->key, &n);
1321		if (!err) {
1322			/* This zbranch does not exist in the parent */
1323			err = 7;
1324			goto out;
1325		}
1326
1327		if (znode->iip >= zp->child_cnt) {
1328			err = 8;
1329			goto out;
1330		}
1331
1332		if (znode->iip != n) {
1333			/* This may happen only in case of collisions */
1334			if (keys_cmp(c, &zp->zbranch[n].key,
1335				     &zp->zbranch[znode->iip].key)) {
1336				err = 9;
1337				goto out;
1338			}
1339			n = znode->iip;
1340		}
1341
1342		/*
1343		 * Make sure that the first key in our znode is greater than or
1344		 * equal to the key in the pointing zbranch.
1345		 */
1346		min = &zbr->key;
1347		cmp = keys_cmp(c, min, &znode->zbranch[0].key);
1348		if (cmp == 1) {
1349			err = 10;
1350			goto out;
1351		}
1352
1353		if (n + 1 < zp->child_cnt) {
1354			max = &zp->zbranch[n + 1].key;
1355
1356			/*
1357			 * Make sure the last key in our znode is less or
1358			 * equivalent than the key in the zbranch which goes
1359			 * after our pointing zbranch.
1360			 */
1361			cmp = keys_cmp(c, max,
1362				&znode->zbranch[znode->child_cnt - 1].key);
1363			if (cmp == -1) {
1364				err = 11;
1365				goto out;
1366			}
1367		}
1368	} else {
1369		/* This may only be root znode */
1370		if (zbr != &c->zroot) {
1371			err = 12;
1372			goto out;
1373		}
1374	}
1375
1376	/*
1377	 * Make sure that next key is greater or equivalent then the previous
1378	 * one.
1379	 */
1380	for (n = 1; n < znode->child_cnt; n++) {
1381		cmp = keys_cmp(c, &znode->zbranch[n - 1].key,
1382			       &znode->zbranch[n].key);
1383		if (cmp > 0) {
1384			err = 13;
1385			goto out;
1386		}
1387		if (cmp == 0) {
1388			/* This can only be keys with colliding hash */
1389			if (!is_hash_key(c, &znode->zbranch[n].key)) {
1390				err = 14;
1391				goto out;
1392			}
1393
1394			if (znode->level != 0 || c->replaying)
1395				continue;
1396
1397			/*
1398			 * Colliding keys should follow binary order of
1399			 * corresponding xentry/dentry names.
1400			 */
1401			err = dbg_check_key_order(c, &znode->zbranch[n - 1],
1402						  &znode->zbranch[n]);
1403			if (err < 0)
1404				return err;
1405			if (err) {
1406				err = 15;
1407				goto out;
1408			}
1409		}
1410	}
1411
1412	for (n = 0; n < znode->child_cnt; n++) {
1413		if (!znode->zbranch[n].znode &&
1414		    (znode->zbranch[n].lnum == 0 ||
1415		     znode->zbranch[n].len == 0)) {
1416			err = 16;
1417			goto out;
1418		}
1419
1420		if (znode->zbranch[n].lnum != 0 &&
1421		    znode->zbranch[n].len == 0) {
1422			err = 17;
1423			goto out;
1424		}
1425
1426		if (znode->zbranch[n].lnum == 0 &&
1427		    znode->zbranch[n].len != 0) {
1428			err = 18;
1429			goto out;
1430		}
1431
1432		if (znode->zbranch[n].lnum == 0 &&
1433		    znode->zbranch[n].offs != 0) {
1434			err = 19;
1435			goto out;
1436		}
1437
1438		if (znode->level != 0 && znode->zbranch[n].znode)
1439			if (znode->zbranch[n].znode->parent != znode) {
1440				err = 20;
1441				goto out;
1442			}
1443	}
1444
1445	return 0;
1446
1447out:
1448	ubifs_err(c, "failed, error %d", err);
1449	ubifs_msg(c, "dump of the znode");
1450	ubifs_dump_znode(c, znode);
1451	if (zp) {
1452		ubifs_msg(c, "dump of the parent znode");
1453		ubifs_dump_znode(c, zp);
1454	}
1455	dump_stack();
1456	return -EINVAL;
1457}
1458
1459/**
1460 * dbg_check_tnc - check TNC tree.
1461 * @c: UBIFS file-system description object
1462 * @extra: do extra checks that are possible at start commit
1463 *
1464 * This function traverses whole TNC tree and checks every znode. Returns zero
1465 * if everything is all right and %-EINVAL if something is wrong with TNC.
1466 */
1467int dbg_check_tnc(struct ubifs_info *c, int extra)
1468{
1469	struct ubifs_znode *znode;
1470	long clean_cnt = 0, dirty_cnt = 0;
1471	int err, last;
1472
1473	if (!dbg_is_chk_index(c))
1474		return 0;
1475
1476	ubifs_assert(c, mutex_is_locked(&c->tnc_mutex));
1477	if (!c->zroot.znode)
1478		return 0;
1479
1480	znode = ubifs_tnc_postorder_first(c->zroot.znode);
1481	while (1) {
1482		struct ubifs_znode *prev;
1483		struct ubifs_zbranch *zbr;
1484
1485		if (!znode->parent)
1486			zbr = &c->zroot;
1487		else
1488			zbr = &znode->parent->zbranch[znode->iip];
1489
1490		err = dbg_check_znode(c, zbr);
1491		if (err)
1492			return err;
1493
1494		if (extra) {
1495			if (ubifs_zn_dirty(znode))
1496				dirty_cnt += 1;
1497			else
1498				clean_cnt += 1;
1499		}
1500
1501		prev = znode;
1502		znode = ubifs_tnc_postorder_next(c, znode);
1503		if (!znode)
1504			break;
1505
1506		/*
1507		 * If the last key of this znode is equivalent to the first key
1508		 * of the next znode (collision), then check order of the keys.
1509		 */
1510		last = prev->child_cnt - 1;
1511		if (prev->level == 0 && znode->level == 0 && !c->replaying &&
1512		    !keys_cmp(c, &prev->zbranch[last].key,
1513			      &znode->zbranch[0].key)) {
1514			err = dbg_check_key_order(c, &prev->zbranch[last],
1515						  &znode->zbranch[0]);
1516			if (err < 0)
1517				return err;
1518			if (err) {
1519				ubifs_msg(c, "first znode");
1520				ubifs_dump_znode(c, prev);
1521				ubifs_msg(c, "second znode");
1522				ubifs_dump_znode(c, znode);
1523				return -EINVAL;
1524			}
1525		}
1526	}
1527
1528	if (extra) {
1529		if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) {
1530			ubifs_err(c, "incorrect clean_zn_cnt %ld, calculated %ld",
1531				  atomic_long_read(&c->clean_zn_cnt),
1532				  clean_cnt);
1533			return -EINVAL;
1534		}
1535		if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) {
1536			ubifs_err(c, "incorrect dirty_zn_cnt %ld, calculated %ld",
1537				  atomic_long_read(&c->dirty_zn_cnt),
1538				  dirty_cnt);
1539			return -EINVAL;
1540		}
1541	}
1542
1543	return 0;
1544}
1545
1546/**
1547 * dbg_walk_index - walk the on-flash index.
1548 * @c: UBIFS file-system description object
1549 * @leaf_cb: called for each leaf node
1550 * @znode_cb: called for each indexing node
1551 * @priv: private data which is passed to callbacks
1552 *
1553 * This function walks the UBIFS index and calls the @leaf_cb for each leaf
1554 * node and @znode_cb for each indexing node. Returns zero in case of success
1555 * and a negative error code in case of failure.
1556 *
1557 * It would be better if this function removed every znode it pulled to into
1558 * the TNC, so that the behavior more closely matched the non-debugging
1559 * behavior.
1560 */
1561int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb,
1562		   dbg_znode_callback znode_cb, void *priv)
1563{
1564	int err;
1565	struct ubifs_zbranch *zbr;
1566	struct ubifs_znode *znode, *child;
1567
1568	mutex_lock(&c->tnc_mutex);
1569	/* If the root indexing node is not in TNC - pull it */
1570	if (!c->zroot.znode) {
1571		c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1572		if (IS_ERR(c->zroot.znode)) {
1573			err = PTR_ERR(c->zroot.znode);
1574			c->zroot.znode = NULL;
1575			goto out_unlock;
1576		}
1577	}
1578
1579	/*
1580	 * We are going to traverse the indexing tree in the postorder manner.
1581	 * Go down and find the leftmost indexing node where we are going to
1582	 * start from.
1583	 */
1584	znode = c->zroot.znode;
1585	while (znode->level > 0) {
1586		zbr = &znode->zbranch[0];
1587		child = zbr->znode;
1588		if (!child) {
1589			child = ubifs_load_znode(c, zbr, znode, 0);
1590			if (IS_ERR(child)) {
1591				err = PTR_ERR(child);
1592				goto out_unlock;
1593			}
 
1594		}
1595
1596		znode = child;
1597	}
1598
1599	/* Iterate over all indexing nodes */
1600	while (1) {
1601		int idx;
1602
1603		cond_resched();
1604
1605		if (znode_cb) {
1606			err = znode_cb(c, znode, priv);
1607			if (err) {
1608				ubifs_err(c, "znode checking function returned error %d",
1609					  err);
1610				ubifs_dump_znode(c, znode);
1611				goto out_dump;
1612			}
1613		}
1614		if (leaf_cb && znode->level == 0) {
1615			for (idx = 0; idx < znode->child_cnt; idx++) {
1616				zbr = &znode->zbranch[idx];
1617				err = leaf_cb(c, zbr, priv);
1618				if (err) {
1619					ubifs_err(c, "leaf checking function returned error %d, for leaf at LEB %d:%d",
 
 
1620						  err, zbr->lnum, zbr->offs);
1621					goto out_dump;
1622				}
1623			}
1624		}
1625
1626		if (!znode->parent)
1627			break;
1628
1629		idx = znode->iip + 1;
1630		znode = znode->parent;
1631		if (idx < znode->child_cnt) {
1632			/* Switch to the next index in the parent */
1633			zbr = &znode->zbranch[idx];
1634			child = zbr->znode;
1635			if (!child) {
1636				child = ubifs_load_znode(c, zbr, znode, idx);
1637				if (IS_ERR(child)) {
1638					err = PTR_ERR(child);
1639					goto out_unlock;
1640				}
1641				zbr->znode = child;
1642			}
1643			znode = child;
1644		} else
1645			/*
1646			 * This is the last child, switch to the parent and
1647			 * continue.
1648			 */
1649			continue;
1650
1651		/* Go to the lowest leftmost znode in the new sub-tree */
1652		while (znode->level > 0) {
1653			zbr = &znode->zbranch[0];
1654			child = zbr->znode;
1655			if (!child) {
1656				child = ubifs_load_znode(c, zbr, znode, 0);
1657				if (IS_ERR(child)) {
1658					err = PTR_ERR(child);
1659					goto out_unlock;
1660				}
1661				zbr->znode = child;
1662			}
1663			znode = child;
1664		}
1665	}
1666
1667	mutex_unlock(&c->tnc_mutex);
1668	return 0;
1669
1670out_dump:
1671	if (znode->parent)
1672		zbr = &znode->parent->zbranch[znode->iip];
1673	else
1674		zbr = &c->zroot;
1675	ubifs_msg(c, "dump of znode at LEB %d:%d", zbr->lnum, zbr->offs);
1676	ubifs_dump_znode(c, znode);
1677out_unlock:
1678	mutex_unlock(&c->tnc_mutex);
1679	return err;
1680}
1681
1682/**
1683 * add_size - add znode size to partially calculated index size.
1684 * @c: UBIFS file-system description object
1685 * @znode: znode to add size for
1686 * @priv: partially calculated index size
1687 *
1688 * This is a helper function for 'dbg_check_idx_size()' which is called for
1689 * every indexing node and adds its size to the 'long long' variable pointed to
1690 * by @priv.
1691 */
1692static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv)
1693{
1694	long long *idx_size = priv;
1695	int add;
1696
1697	add = ubifs_idx_node_sz(c, znode->child_cnt);
1698	add = ALIGN(add, 8);
1699	*idx_size += add;
1700	return 0;
1701}
1702
1703/**
1704 * dbg_check_idx_size - check index size.
1705 * @c: UBIFS file-system description object
1706 * @idx_size: size to check
1707 *
1708 * This function walks the UBIFS index, calculates its size and checks that the
1709 * size is equivalent to @idx_size. Returns zero in case of success and a
1710 * negative error code in case of failure.
1711 */
1712int dbg_check_idx_size(struct ubifs_info *c, long long idx_size)
1713{
1714	int err;
1715	long long calc = 0;
1716
1717	if (!dbg_is_chk_index(c))
1718		return 0;
1719
1720	err = dbg_walk_index(c, NULL, add_size, &calc);
1721	if (err) {
1722		ubifs_err(c, "error %d while walking the index", err);
1723		return err;
1724	}
1725
1726	if (calc != idx_size) {
1727		ubifs_err(c, "index size check failed: calculated size is %lld, should be %lld",
1728			  calc, idx_size);
1729		dump_stack();
1730		return -EINVAL;
1731	}
1732
1733	return 0;
1734}
1735
1736/**
1737 * struct fsck_inode - information about an inode used when checking the file-system.
1738 * @rb: link in the RB-tree of inodes
1739 * @inum: inode number
1740 * @mode: inode type, permissions, etc
1741 * @nlink: inode link count
1742 * @xattr_cnt: count of extended attributes
1743 * @references: how many directory/xattr entries refer this inode (calculated
1744 *              while walking the index)
1745 * @calc_cnt: for directory inode count of child directories
1746 * @size: inode size (read from on-flash inode)
1747 * @xattr_sz: summary size of all extended attributes (read from on-flash
1748 *            inode)
1749 * @calc_sz: for directories calculated directory size
1750 * @calc_xcnt: count of extended attributes
1751 * @calc_xsz: calculated summary size of all extended attributes
1752 * @xattr_nms: sum of lengths of all extended attribute names belonging to this
1753 *             inode (read from on-flash inode)
1754 * @calc_xnms: calculated sum of lengths of all extended attribute names
1755 */
1756struct fsck_inode {
1757	struct rb_node rb;
1758	ino_t inum;
1759	umode_t mode;
1760	unsigned int nlink;
1761	unsigned int xattr_cnt;
1762	int references;
1763	int calc_cnt;
1764	long long size;
1765	unsigned int xattr_sz;
1766	long long calc_sz;
1767	long long calc_xcnt;
1768	long long calc_xsz;
1769	unsigned int xattr_nms;
1770	long long calc_xnms;
1771};
1772
1773/**
1774 * struct fsck_data - private FS checking information.
1775 * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects)
1776 */
1777struct fsck_data {
1778	struct rb_root inodes;
1779};
1780
1781/**
1782 * add_inode - add inode information to RB-tree of inodes.
1783 * @c: UBIFS file-system description object
1784 * @fsckd: FS checking information
1785 * @ino: raw UBIFS inode to add
1786 *
1787 * This is a helper function for 'check_leaf()' which adds information about
1788 * inode @ino to the RB-tree of inodes. Returns inode information pointer in
1789 * case of success and a negative error code in case of failure.
1790 */
1791static struct fsck_inode *add_inode(struct ubifs_info *c,
1792				    struct fsck_data *fsckd,
1793				    struct ubifs_ino_node *ino)
1794{
1795	struct rb_node **p, *parent = NULL;
1796	struct fsck_inode *fscki;
1797	ino_t inum = key_inum_flash(c, &ino->key);
1798	struct inode *inode;
1799	struct ubifs_inode *ui;
1800
1801	p = &fsckd->inodes.rb_node;
1802	while (*p) {
1803		parent = *p;
1804		fscki = rb_entry(parent, struct fsck_inode, rb);
1805		if (inum < fscki->inum)
1806			p = &(*p)->rb_left;
1807		else if (inum > fscki->inum)
1808			p = &(*p)->rb_right;
1809		else
1810			return fscki;
1811	}
1812
1813	if (inum > c->highest_inum) {
1814		ubifs_err(c, "too high inode number, max. is %lu",
1815			  (unsigned long)c->highest_inum);
1816		return ERR_PTR(-EINVAL);
1817	}
1818
1819	fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS);
1820	if (!fscki)
1821		return ERR_PTR(-ENOMEM);
1822
1823	inode = ilookup(c->vfs_sb, inum);
1824
1825	fscki->inum = inum;
1826	/*
1827	 * If the inode is present in the VFS inode cache, use it instead of
1828	 * the on-flash inode which might be out-of-date. E.g., the size might
1829	 * be out-of-date. If we do not do this, the following may happen, for
1830	 * example:
1831	 *   1. A power cut happens
1832	 *   2. We mount the file-system R/O, the replay process fixes up the
1833	 *      inode size in the VFS cache, but on on-flash.
1834	 *   3. 'check_leaf()' fails because it hits a data node beyond inode
1835	 *      size.
1836	 */
1837	if (!inode) {
1838		fscki->nlink = le32_to_cpu(ino->nlink);
1839		fscki->size = le64_to_cpu(ino->size);
1840		fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
1841		fscki->xattr_sz = le32_to_cpu(ino->xattr_size);
1842		fscki->xattr_nms = le32_to_cpu(ino->xattr_names);
1843		fscki->mode = le32_to_cpu(ino->mode);
1844	} else {
1845		ui = ubifs_inode(inode);
1846		fscki->nlink = inode->i_nlink;
1847		fscki->size = inode->i_size;
1848		fscki->xattr_cnt = ui->xattr_cnt;
1849		fscki->xattr_sz = ui->xattr_size;
1850		fscki->xattr_nms = ui->xattr_names;
1851		fscki->mode = inode->i_mode;
1852		iput(inode);
1853	}
1854
1855	if (S_ISDIR(fscki->mode)) {
1856		fscki->calc_sz = UBIFS_INO_NODE_SZ;
1857		fscki->calc_cnt = 2;
1858	}
1859
1860	rb_link_node(&fscki->rb, parent, p);
1861	rb_insert_color(&fscki->rb, &fsckd->inodes);
1862
1863	return fscki;
1864}
1865
1866/**
1867 * search_inode - search inode in the RB-tree of inodes.
1868 * @fsckd: FS checking information
1869 * @inum: inode number to search
1870 *
1871 * This is a helper function for 'check_leaf()' which searches inode @inum in
1872 * the RB-tree of inodes and returns an inode information pointer or %NULL if
1873 * the inode was not found.
1874 */
1875static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum)
1876{
1877	struct rb_node *p;
1878	struct fsck_inode *fscki;
1879
1880	p = fsckd->inodes.rb_node;
1881	while (p) {
1882		fscki = rb_entry(p, struct fsck_inode, rb);
1883		if (inum < fscki->inum)
1884			p = p->rb_left;
1885		else if (inum > fscki->inum)
1886			p = p->rb_right;
1887		else
1888			return fscki;
1889	}
1890	return NULL;
1891}
1892
1893/**
1894 * read_add_inode - read inode node and add it to RB-tree of inodes.
1895 * @c: UBIFS file-system description object
1896 * @fsckd: FS checking information
1897 * @inum: inode number to read
1898 *
1899 * This is a helper function for 'check_leaf()' which finds inode node @inum in
1900 * the index, reads it, and adds it to the RB-tree of inodes. Returns inode
1901 * information pointer in case of success and a negative error code in case of
1902 * failure.
1903 */
1904static struct fsck_inode *read_add_inode(struct ubifs_info *c,
1905					 struct fsck_data *fsckd, ino_t inum)
1906{
1907	int n, err;
1908	union ubifs_key key;
1909	struct ubifs_znode *znode;
1910	struct ubifs_zbranch *zbr;
1911	struct ubifs_ino_node *ino;
1912	struct fsck_inode *fscki;
1913
1914	fscki = search_inode(fsckd, inum);
1915	if (fscki)
1916		return fscki;
1917
1918	ino_key_init(c, &key, inum);
1919	err = ubifs_lookup_level0(c, &key, &znode, &n);
1920	if (!err) {
1921		ubifs_err(c, "inode %lu not found in index", (unsigned long)inum);
1922		return ERR_PTR(-ENOENT);
1923	} else if (err < 0) {
1924		ubifs_err(c, "error %d while looking up inode %lu",
1925			  err, (unsigned long)inum);
1926		return ERR_PTR(err);
1927	}
1928
1929	zbr = &znode->zbranch[n];
1930	if (zbr->len < UBIFS_INO_NODE_SZ) {
1931		ubifs_err(c, "bad node %lu node length %d",
1932			  (unsigned long)inum, zbr->len);
1933		return ERR_PTR(-EINVAL);
1934	}
1935
1936	ino = kmalloc(zbr->len, GFP_NOFS);
1937	if (!ino)
1938		return ERR_PTR(-ENOMEM);
1939
1940	err = ubifs_tnc_read_node(c, zbr, ino);
1941	if (err) {
1942		ubifs_err(c, "cannot read inode node at LEB %d:%d, error %d",
1943			  zbr->lnum, zbr->offs, err);
1944		kfree(ino);
1945		return ERR_PTR(err);
1946	}
1947
1948	fscki = add_inode(c, fsckd, ino);
1949	kfree(ino);
1950	if (IS_ERR(fscki)) {
1951		ubifs_err(c, "error %ld while adding inode %lu node",
1952			  PTR_ERR(fscki), (unsigned long)inum);
1953		return fscki;
1954	}
1955
1956	return fscki;
1957}
1958
1959/**
1960 * check_leaf - check leaf node.
1961 * @c: UBIFS file-system description object
1962 * @zbr: zbranch of the leaf node to check
1963 * @priv: FS checking information
1964 *
1965 * This is a helper function for 'dbg_check_filesystem()' which is called for
1966 * every single leaf node while walking the indexing tree. It checks that the
1967 * leaf node referred from the indexing tree exists, has correct CRC, and does
1968 * some other basic validation. This function is also responsible for building
1969 * an RB-tree of inodes - it adds all inodes into the RB-tree. It also
1970 * calculates reference count, size, etc for each inode in order to later
1971 * compare them to the information stored inside the inodes and detect possible
1972 * inconsistencies. Returns zero in case of success and a negative error code
1973 * in case of failure.
1974 */
1975static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr,
1976		      void *priv)
1977{
1978	ino_t inum;
1979	void *node;
1980	struct ubifs_ch *ch;
1981	int err, type = key_type(c, &zbr->key);
1982	struct fsck_inode *fscki;
1983
1984	if (zbr->len < UBIFS_CH_SZ) {
1985		ubifs_err(c, "bad leaf length %d (LEB %d:%d)",
1986			  zbr->len, zbr->lnum, zbr->offs);
1987		return -EINVAL;
1988	}
1989
1990	node = kmalloc(zbr->len, GFP_NOFS);
1991	if (!node)
1992		return -ENOMEM;
1993
1994	err = ubifs_tnc_read_node(c, zbr, node);
1995	if (err) {
1996		ubifs_err(c, "cannot read leaf node at LEB %d:%d, error %d",
1997			  zbr->lnum, zbr->offs, err);
1998		goto out_free;
1999	}
2000
2001	/* If this is an inode node, add it to RB-tree of inodes */
2002	if (type == UBIFS_INO_KEY) {
2003		fscki = add_inode(c, priv, node);
2004		if (IS_ERR(fscki)) {
2005			err = PTR_ERR(fscki);
2006			ubifs_err(c, "error %d while adding inode node", err);
2007			goto out_dump;
2008		}
2009		goto out;
2010	}
2011
2012	if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY &&
2013	    type != UBIFS_DATA_KEY) {
2014		ubifs_err(c, "unexpected node type %d at LEB %d:%d",
2015			  type, zbr->lnum, zbr->offs);
2016		err = -EINVAL;
2017		goto out_free;
2018	}
2019
2020	ch = node;
2021	if (le64_to_cpu(ch->sqnum) > c->max_sqnum) {
2022		ubifs_err(c, "too high sequence number, max. is %llu",
2023			  c->max_sqnum);
2024		err = -EINVAL;
2025		goto out_dump;
2026	}
2027
2028	if (type == UBIFS_DATA_KEY) {
2029		long long blk_offs;
2030		struct ubifs_data_node *dn = node;
2031
2032		ubifs_assert(c, zbr->len >= UBIFS_DATA_NODE_SZ);
2033
2034		/*
2035		 * Search the inode node this data node belongs to and insert
2036		 * it to the RB-tree of inodes.
2037		 */
2038		inum = key_inum_flash(c, &dn->key);
2039		fscki = read_add_inode(c, priv, inum);
2040		if (IS_ERR(fscki)) {
2041			err = PTR_ERR(fscki);
2042			ubifs_err(c, "error %d while processing data node and trying to find inode node %lu",
 
2043				  err, (unsigned long)inum);
2044			goto out_dump;
2045		}
2046
2047		/* Make sure the data node is within inode size */
2048		blk_offs = key_block_flash(c, &dn->key);
2049		blk_offs <<= UBIFS_BLOCK_SHIFT;
2050		blk_offs += le32_to_cpu(dn->size);
2051		if (blk_offs > fscki->size) {
2052			ubifs_err(c, "data node at LEB %d:%d is not within inode size %lld",
2053				  zbr->lnum, zbr->offs, fscki->size);
 
2054			err = -EINVAL;
2055			goto out_dump;
2056		}
2057	} else {
2058		int nlen;
2059		struct ubifs_dent_node *dent = node;
2060		struct fsck_inode *fscki1;
2061
2062		ubifs_assert(c, zbr->len >= UBIFS_DENT_NODE_SZ);
2063
2064		err = ubifs_validate_entry(c, dent);
2065		if (err)
2066			goto out_dump;
2067
2068		/*
2069		 * Search the inode node this entry refers to and the parent
2070		 * inode node and insert them to the RB-tree of inodes.
2071		 */
2072		inum = le64_to_cpu(dent->inum);
2073		fscki = read_add_inode(c, priv, inum);
2074		if (IS_ERR(fscki)) {
2075			err = PTR_ERR(fscki);
2076			ubifs_err(c, "error %d while processing entry node and trying to find inode node %lu",
 
2077				  err, (unsigned long)inum);
2078			goto out_dump;
2079		}
2080
2081		/* Count how many direntries or xentries refers this inode */
2082		fscki->references += 1;
2083
2084		inum = key_inum_flash(c, &dent->key);
2085		fscki1 = read_add_inode(c, priv, inum);
2086		if (IS_ERR(fscki1)) {
2087			err = PTR_ERR(fscki1);
2088			ubifs_err(c, "error %d while processing entry node and trying to find parent inode node %lu",
 
2089				  err, (unsigned long)inum);
2090			goto out_dump;
2091		}
2092
2093		nlen = le16_to_cpu(dent->nlen);
2094		if (type == UBIFS_XENT_KEY) {
2095			fscki1->calc_xcnt += 1;
2096			fscki1->calc_xsz += CALC_DENT_SIZE(nlen);
2097			fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size);
2098			fscki1->calc_xnms += nlen;
2099		} else {
2100			fscki1->calc_sz += CALC_DENT_SIZE(nlen);
2101			if (dent->type == UBIFS_ITYPE_DIR)
2102				fscki1->calc_cnt += 1;
2103		}
2104	}
2105
2106out:
2107	kfree(node);
2108	return 0;
2109
2110out_dump:
2111	ubifs_msg(c, "dump of node at LEB %d:%d", zbr->lnum, zbr->offs);
2112	ubifs_dump_node(c, node);
2113out_free:
2114	kfree(node);
2115	return err;
2116}
2117
2118/**
2119 * free_inodes - free RB-tree of inodes.
2120 * @fsckd: FS checking information
2121 */
2122static void free_inodes(struct fsck_data *fsckd)
2123{
2124	struct fsck_inode *fscki, *n;
 
2125
2126	rbtree_postorder_for_each_entry_safe(fscki, n, &fsckd->inodes, rb)
2127		kfree(fscki);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2128}
2129
2130/**
2131 * check_inodes - checks all inodes.
2132 * @c: UBIFS file-system description object
2133 * @fsckd: FS checking information
2134 *
2135 * This is a helper function for 'dbg_check_filesystem()' which walks the
2136 * RB-tree of inodes after the index scan has been finished, and checks that
2137 * inode nlink, size, etc are correct. Returns zero if inodes are fine,
2138 * %-EINVAL if not, and a negative error code in case of failure.
2139 */
2140static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd)
2141{
2142	int n, err;
2143	union ubifs_key key;
2144	struct ubifs_znode *znode;
2145	struct ubifs_zbranch *zbr;
2146	struct ubifs_ino_node *ino;
2147	struct fsck_inode *fscki;
2148	struct rb_node *this = rb_first(&fsckd->inodes);
2149
2150	while (this) {
2151		fscki = rb_entry(this, struct fsck_inode, rb);
2152		this = rb_next(this);
2153
2154		if (S_ISDIR(fscki->mode)) {
2155			/*
2156			 * Directories have to have exactly one reference (they
2157			 * cannot have hardlinks), although root inode is an
2158			 * exception.
2159			 */
2160			if (fscki->inum != UBIFS_ROOT_INO &&
2161			    fscki->references != 1) {
2162				ubifs_err(c, "directory inode %lu has %d direntries which refer it, but should be 1",
 
 
2163					  (unsigned long)fscki->inum,
2164					  fscki->references);
2165				goto out_dump;
2166			}
2167			if (fscki->inum == UBIFS_ROOT_INO &&
2168			    fscki->references != 0) {
2169				ubifs_err(c, "root inode %lu has non-zero (%d) direntries which refer it",
 
2170					  (unsigned long)fscki->inum,
2171					  fscki->references);
2172				goto out_dump;
2173			}
2174			if (fscki->calc_sz != fscki->size) {
2175				ubifs_err(c, "directory inode %lu size is %lld, but calculated size is %lld",
 
2176					  (unsigned long)fscki->inum,
2177					  fscki->size, fscki->calc_sz);
2178				goto out_dump;
2179			}
2180			if (fscki->calc_cnt != fscki->nlink) {
2181				ubifs_err(c, "directory inode %lu nlink is %d, but calculated nlink is %d",
 
2182					  (unsigned long)fscki->inum,
2183					  fscki->nlink, fscki->calc_cnt);
2184				goto out_dump;
2185			}
2186		} else {
2187			if (fscki->references != fscki->nlink) {
2188				ubifs_err(c, "inode %lu nlink is %d, but calculated nlink is %d",
 
2189					  (unsigned long)fscki->inum,
2190					  fscki->nlink, fscki->references);
2191				goto out_dump;
2192			}
2193		}
2194		if (fscki->xattr_sz != fscki->calc_xsz) {
2195			ubifs_err(c, "inode %lu has xattr size %u, but calculated size is %lld",
 
2196				  (unsigned long)fscki->inum, fscki->xattr_sz,
2197				  fscki->calc_xsz);
2198			goto out_dump;
2199		}
2200		if (fscki->xattr_cnt != fscki->calc_xcnt) {
2201			ubifs_err(c, "inode %lu has %u xattrs, but calculated count is %lld",
 
2202				  (unsigned long)fscki->inum,
2203				  fscki->xattr_cnt, fscki->calc_xcnt);
2204			goto out_dump;
2205		}
2206		if (fscki->xattr_nms != fscki->calc_xnms) {
2207			ubifs_err(c, "inode %lu has xattr names' size %u, but calculated names' size is %lld",
 
2208				  (unsigned long)fscki->inum, fscki->xattr_nms,
2209				  fscki->calc_xnms);
2210			goto out_dump;
2211		}
2212	}
2213
2214	return 0;
2215
2216out_dump:
2217	/* Read the bad inode and dump it */
2218	ino_key_init(c, &key, fscki->inum);
2219	err = ubifs_lookup_level0(c, &key, &znode, &n);
2220	if (!err) {
2221		ubifs_err(c, "inode %lu not found in index",
2222			  (unsigned long)fscki->inum);
2223		return -ENOENT;
2224	} else if (err < 0) {
2225		ubifs_err(c, "error %d while looking up inode %lu",
2226			  err, (unsigned long)fscki->inum);
2227		return err;
2228	}
2229
2230	zbr = &znode->zbranch[n];
2231	ino = kmalloc(zbr->len, GFP_NOFS);
2232	if (!ino)
2233		return -ENOMEM;
2234
2235	err = ubifs_tnc_read_node(c, zbr, ino);
2236	if (err) {
2237		ubifs_err(c, "cannot read inode node at LEB %d:%d, error %d",
2238			  zbr->lnum, zbr->offs, err);
2239		kfree(ino);
2240		return err;
2241	}
2242
2243	ubifs_msg(c, "dump of the inode %lu sitting in LEB %d:%d",
2244		  (unsigned long)fscki->inum, zbr->lnum, zbr->offs);
2245	ubifs_dump_node(c, ino);
2246	kfree(ino);
2247	return -EINVAL;
2248}
2249
2250/**
2251 * dbg_check_filesystem - check the file-system.
2252 * @c: UBIFS file-system description object
2253 *
2254 * This function checks the file system, namely:
2255 * o makes sure that all leaf nodes exist and their CRCs are correct;
2256 * o makes sure inode nlink, size, xattr size/count are correct (for all
2257 *   inodes).
2258 *
2259 * The function reads whole indexing tree and all nodes, so it is pretty
2260 * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if
2261 * not, and a negative error code in case of failure.
2262 */
2263int dbg_check_filesystem(struct ubifs_info *c)
2264{
2265	int err;
2266	struct fsck_data fsckd;
2267
2268	if (!dbg_is_chk_fs(c))
2269		return 0;
2270
2271	fsckd.inodes = RB_ROOT;
2272	err = dbg_walk_index(c, check_leaf, NULL, &fsckd);
2273	if (err)
2274		goto out_free;
2275
2276	err = check_inodes(c, &fsckd);
2277	if (err)
2278		goto out_free;
2279
2280	free_inodes(&fsckd);
2281	return 0;
2282
2283out_free:
2284	ubifs_err(c, "file-system check failed with error %d", err);
2285	dump_stack();
2286	free_inodes(&fsckd);
2287	return err;
2288}
2289
2290/**
2291 * dbg_check_data_nodes_order - check that list of data nodes is sorted.
2292 * @c: UBIFS file-system description object
2293 * @head: the list of nodes ('struct ubifs_scan_node' objects)
2294 *
2295 * This function returns zero if the list of data nodes is sorted correctly,
2296 * and %-EINVAL if not.
2297 */
2298int dbg_check_data_nodes_order(struct ubifs_info *c, struct list_head *head)
2299{
2300	struct list_head *cur;
2301	struct ubifs_scan_node *sa, *sb;
2302
2303	if (!dbg_is_chk_gen(c))
2304		return 0;
2305
2306	for (cur = head->next; cur->next != head; cur = cur->next) {
2307		ino_t inuma, inumb;
2308		uint32_t blka, blkb;
2309
2310		cond_resched();
2311		sa = container_of(cur, struct ubifs_scan_node, list);
2312		sb = container_of(cur->next, struct ubifs_scan_node, list);
2313
2314		if (sa->type != UBIFS_DATA_NODE) {
2315			ubifs_err(c, "bad node type %d", sa->type);
2316			ubifs_dump_node(c, sa->node);
2317			return -EINVAL;
2318		}
2319		if (sb->type != UBIFS_DATA_NODE) {
2320			ubifs_err(c, "bad node type %d", sb->type);
2321			ubifs_dump_node(c, sb->node);
2322			return -EINVAL;
2323		}
2324
2325		inuma = key_inum(c, &sa->key);
2326		inumb = key_inum(c, &sb->key);
2327
2328		if (inuma < inumb)
2329			continue;
2330		if (inuma > inumb) {
2331			ubifs_err(c, "larger inum %lu goes before inum %lu",
2332				  (unsigned long)inuma, (unsigned long)inumb);
2333			goto error_dump;
2334		}
2335
2336		blka = key_block(c, &sa->key);
2337		blkb = key_block(c, &sb->key);
2338
2339		if (blka > blkb) {
2340			ubifs_err(c, "larger block %u goes before %u", blka, blkb);
2341			goto error_dump;
2342		}
2343		if (blka == blkb) {
2344			ubifs_err(c, "two data nodes for the same block");
2345			goto error_dump;
2346		}
2347	}
2348
2349	return 0;
2350
2351error_dump:
2352	ubifs_dump_node(c, sa->node);
2353	ubifs_dump_node(c, sb->node);
2354	return -EINVAL;
2355}
2356
2357/**
2358 * dbg_check_nondata_nodes_order - check that list of data nodes is sorted.
2359 * @c: UBIFS file-system description object
2360 * @head: the list of nodes ('struct ubifs_scan_node' objects)
2361 *
2362 * This function returns zero if the list of non-data nodes is sorted correctly,
2363 * and %-EINVAL if not.
2364 */
2365int dbg_check_nondata_nodes_order(struct ubifs_info *c, struct list_head *head)
2366{
2367	struct list_head *cur;
2368	struct ubifs_scan_node *sa, *sb;
2369
2370	if (!dbg_is_chk_gen(c))
2371		return 0;
2372
2373	for (cur = head->next; cur->next != head; cur = cur->next) {
2374		ino_t inuma, inumb;
2375		uint32_t hasha, hashb;
2376
2377		cond_resched();
2378		sa = container_of(cur, struct ubifs_scan_node, list);
2379		sb = container_of(cur->next, struct ubifs_scan_node, list);
2380
2381		if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2382		    sa->type != UBIFS_XENT_NODE) {
2383			ubifs_err(c, "bad node type %d", sa->type);
2384			ubifs_dump_node(c, sa->node);
2385			return -EINVAL;
2386		}
2387		if (sb->type != UBIFS_INO_NODE && sb->type != UBIFS_DENT_NODE &&
2388		    sb->type != UBIFS_XENT_NODE) {
2389			ubifs_err(c, "bad node type %d", sb->type);
2390			ubifs_dump_node(c, sb->node);
2391			return -EINVAL;
2392		}
2393
2394		if (sa->type != UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2395			ubifs_err(c, "non-inode node goes before inode node");
2396			goto error_dump;
2397		}
2398
2399		if (sa->type == UBIFS_INO_NODE && sb->type != UBIFS_INO_NODE)
2400			continue;
2401
2402		if (sa->type == UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2403			/* Inode nodes are sorted in descending size order */
2404			if (sa->len < sb->len) {
2405				ubifs_err(c, "smaller inode node goes first");
2406				goto error_dump;
2407			}
2408			continue;
2409		}
2410
2411		/*
2412		 * This is either a dentry or xentry, which should be sorted in
2413		 * ascending (parent ino, hash) order.
2414		 */
2415		inuma = key_inum(c, &sa->key);
2416		inumb = key_inum(c, &sb->key);
2417
2418		if (inuma < inumb)
2419			continue;
2420		if (inuma > inumb) {
2421			ubifs_err(c, "larger inum %lu goes before inum %lu",
2422				  (unsigned long)inuma, (unsigned long)inumb);
2423			goto error_dump;
2424		}
2425
2426		hasha = key_block(c, &sa->key);
2427		hashb = key_block(c, &sb->key);
2428
2429		if (hasha > hashb) {
2430			ubifs_err(c, "larger hash %u goes before %u",
2431				  hasha, hashb);
2432			goto error_dump;
2433		}
2434	}
2435
2436	return 0;
2437
2438error_dump:
2439	ubifs_msg(c, "dumping first node");
2440	ubifs_dump_node(c, sa->node);
2441	ubifs_msg(c, "dumping second node");
2442	ubifs_dump_node(c, sb->node);
2443	return -EINVAL;
2444	return 0;
2445}
2446
2447static inline int chance(unsigned int n, unsigned int out_of)
2448{
2449	return !!((prandom_u32() % out_of) + 1 <= n);
2450
2451}
2452
2453static int power_cut_emulated(struct ubifs_info *c, int lnum, int write)
2454{
2455	struct ubifs_debug_info *d = c->dbg;
2456
2457	ubifs_assert(c, dbg_is_tst_rcvry(c));
2458
2459	if (!d->pc_cnt) {
2460		/* First call - decide delay to the power cut */
2461		if (chance(1, 2)) {
2462			unsigned long delay;
2463
2464			if (chance(1, 2)) {
2465				d->pc_delay = 1;
2466				/* Fail within 1 minute */
2467				delay = prandom_u32() % 60000;
2468				d->pc_timeout = jiffies;
2469				d->pc_timeout += msecs_to_jiffies(delay);
2470				ubifs_warn(c, "failing after %lums", delay);
2471			} else {
2472				d->pc_delay = 2;
2473				delay = prandom_u32() % 10000;
2474				/* Fail within 10000 operations */
2475				d->pc_cnt_max = delay;
2476				ubifs_warn(c, "failing after %lu calls", delay);
2477			}
2478		}
2479
2480		d->pc_cnt += 1;
2481	}
2482
2483	/* Determine if failure delay has expired */
2484	if (d->pc_delay == 1 && time_before(jiffies, d->pc_timeout))
2485			return 0;
2486	if (d->pc_delay == 2 && d->pc_cnt++ < d->pc_cnt_max)
2487			return 0;
2488
2489	if (lnum == UBIFS_SB_LNUM) {
2490		if (write && chance(1, 2))
2491			return 0;
2492		if (chance(19, 20))
2493			return 0;
2494		ubifs_warn(c, "failing in super block LEB %d", lnum);
2495	} else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) {
2496		if (chance(19, 20))
2497			return 0;
2498		ubifs_warn(c, "failing in master LEB %d", lnum);
2499	} else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) {
2500		if (write && chance(99, 100))
2501			return 0;
2502		if (chance(399, 400))
2503			return 0;
2504		ubifs_warn(c, "failing in log LEB %d", lnum);
2505	} else if (lnum >= c->lpt_first && lnum <= c->lpt_last) {
2506		if (write && chance(7, 8))
2507			return 0;
2508		if (chance(19, 20))
2509			return 0;
2510		ubifs_warn(c, "failing in LPT LEB %d", lnum);
2511	} else if (lnum >= c->orph_first && lnum <= c->orph_last) {
2512		if (write && chance(1, 2))
2513			return 0;
2514		if (chance(9, 10))
2515			return 0;
2516		ubifs_warn(c, "failing in orphan LEB %d", lnum);
2517	} else if (lnum == c->ihead_lnum) {
2518		if (chance(99, 100))
2519			return 0;
2520		ubifs_warn(c, "failing in index head LEB %d", lnum);
2521	} else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) {
2522		if (chance(9, 10))
2523			return 0;
2524		ubifs_warn(c, "failing in GC head LEB %d", lnum);
2525	} else if (write && !RB_EMPTY_ROOT(&c->buds) &&
2526		   !ubifs_search_bud(c, lnum)) {
2527		if (chance(19, 20))
2528			return 0;
2529		ubifs_warn(c, "failing in non-bud LEB %d", lnum);
2530	} else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND ||
2531		   c->cmt_state == COMMIT_RUNNING_REQUIRED) {
2532		if (chance(999, 1000))
2533			return 0;
2534		ubifs_warn(c, "failing in bud LEB %d commit running", lnum);
2535	} else {
2536		if (chance(9999, 10000))
2537			return 0;
2538		ubifs_warn(c, "failing in bud LEB %d commit not running", lnum);
2539	}
2540
2541	d->pc_happened = 1;
2542	ubifs_warn(c, "========== Power cut emulated ==========");
2543	dump_stack();
2544	return 1;
2545}
2546
2547static int corrupt_data(const struct ubifs_info *c, const void *buf,
2548			unsigned int len)
2549{
2550	unsigned int from, to, ffs = chance(1, 2);
2551	unsigned char *p = (void *)buf;
2552
2553	from = prandom_u32() % len;
2554	/* Corruption span max to end of write unit */
2555	to = min(len, ALIGN(from + 1, c->max_write_size));
 
 
2556
2557	ubifs_warn(c, "filled bytes %u-%u with %s", from, to - 1,
2558		   ffs ? "0xFFs" : "random data");
 
2559
2560	if (ffs)
2561		memset(p + from, 0xFF, to - from);
 
2562	else
2563		prandom_bytes(p + from, to - from);
2564
2565	return to;
2566}
2567
2568int dbg_leb_write(struct ubifs_info *c, int lnum, const void *buf,
2569		  int offs, int len)
2570{
2571	int err, failing;
2572
2573	if (dbg_is_power_cut(c))
2574		return -EROFS;
2575
2576	failing = power_cut_emulated(c, lnum, 1);
2577	if (failing) {
2578		len = corrupt_data(c, buf, len);
2579		ubifs_warn(c, "actually write %d bytes to LEB %d:%d (the buffer was corrupted)",
2580			   len, lnum, offs);
2581	}
2582	err = ubi_leb_write(c->ubi, lnum, buf, offs, len);
2583	if (err)
2584		return err;
2585	if (failing)
2586		return -EROFS;
2587	return 0;
2588}
2589
2590int dbg_leb_change(struct ubifs_info *c, int lnum, const void *buf,
2591		   int len)
2592{
2593	int err;
2594
2595	if (dbg_is_power_cut(c))
2596		return -EROFS;
2597	if (power_cut_emulated(c, lnum, 1))
2598		return -EROFS;
2599	err = ubi_leb_change(c->ubi, lnum, buf, len);
2600	if (err)
2601		return err;
2602	if (power_cut_emulated(c, lnum, 1))
2603		return -EROFS;
2604	return 0;
2605}
2606
2607int dbg_leb_unmap(struct ubifs_info *c, int lnum)
2608{
2609	int err;
2610
2611	if (dbg_is_power_cut(c))
2612		return -EROFS;
2613	if (power_cut_emulated(c, lnum, 0))
2614		return -EROFS;
2615	err = ubi_leb_unmap(c->ubi, lnum);
2616	if (err)
2617		return err;
2618	if (power_cut_emulated(c, lnum, 0))
2619		return -EROFS;
2620	return 0;
2621}
2622
2623int dbg_leb_map(struct ubifs_info *c, int lnum)
2624{
2625	int err;
2626
2627	if (dbg_is_power_cut(c))
2628		return -EROFS;
2629	if (power_cut_emulated(c, lnum, 0))
2630		return -EROFS;
2631	err = ubi_leb_map(c->ubi, lnum);
2632	if (err)
2633		return err;
2634	if (power_cut_emulated(c, lnum, 0))
2635		return -EROFS;
2636	return 0;
2637}
2638
2639/*
2640 * Root directory for UBIFS stuff in debugfs. Contains sub-directories which
2641 * contain the stuff specific to particular file-system mounts.
2642 */
2643static struct dentry *dfs_rootdir;
2644
2645static int dfs_file_open(struct inode *inode, struct file *file)
2646{
2647	file->private_data = inode->i_private;
2648	return nonseekable_open(inode, file);
2649}
2650
2651/**
2652 * provide_user_output - provide output to the user reading a debugfs file.
2653 * @val: boolean value for the answer
2654 * @u: the buffer to store the answer at
2655 * @count: size of the buffer
2656 * @ppos: position in the @u output buffer
2657 *
2658 * This is a simple helper function which stores @val boolean value in the user
2659 * buffer when the user reads one of UBIFS debugfs files. Returns amount of
2660 * bytes written to @u in case of success and a negative error code in case of
2661 * failure.
2662 */
2663static int provide_user_output(int val, char __user *u, size_t count,
2664			       loff_t *ppos)
2665{
2666	char buf[3];
2667
2668	if (val)
2669		buf[0] = '1';
2670	else
2671		buf[0] = '0';
2672	buf[1] = '\n';
2673	buf[2] = 0x00;
2674
2675	return simple_read_from_buffer(u, count, ppos, buf, 2);
2676}
2677
2678static ssize_t dfs_file_read(struct file *file, char __user *u, size_t count,
2679			     loff_t *ppos)
2680{
2681	struct dentry *dent = file->f_path.dentry;
2682	struct ubifs_info *c = file->private_data;
2683	struct ubifs_debug_info *d = c->dbg;
2684	int val;
2685
2686	if (dent == d->dfs_chk_gen)
2687		val = d->chk_gen;
2688	else if (dent == d->dfs_chk_index)
2689		val = d->chk_index;
2690	else if (dent == d->dfs_chk_orph)
2691		val = d->chk_orph;
2692	else if (dent == d->dfs_chk_lprops)
2693		val = d->chk_lprops;
2694	else if (dent == d->dfs_chk_fs)
2695		val = d->chk_fs;
2696	else if (dent == d->dfs_tst_rcvry)
2697		val = d->tst_rcvry;
2698	else if (dent == d->dfs_ro_error)
2699		val = c->ro_error;
2700	else
2701		return -EINVAL;
2702
2703	return provide_user_output(val, u, count, ppos);
2704}
2705
2706/**
2707 * interpret_user_input - interpret user debugfs file input.
2708 * @u: user-provided buffer with the input
2709 * @count: buffer size
2710 *
2711 * This is a helper function which interpret user input to a boolean UBIFS
2712 * debugfs file. Returns %0 or %1 in case of success and a negative error code
2713 * in case of failure.
2714 */
2715static int interpret_user_input(const char __user *u, size_t count)
2716{
2717	size_t buf_size;
2718	char buf[8];
2719
2720	buf_size = min_t(size_t, count, (sizeof(buf) - 1));
2721	if (copy_from_user(buf, u, buf_size))
2722		return -EFAULT;
2723
2724	if (buf[0] == '1')
2725		return 1;
2726	else if (buf[0] == '0')
2727		return 0;
2728
2729	return -EINVAL;
2730}
2731
2732static ssize_t dfs_file_write(struct file *file, const char __user *u,
2733			      size_t count, loff_t *ppos)
2734{
2735	struct ubifs_info *c = file->private_data;
2736	struct ubifs_debug_info *d = c->dbg;
2737	struct dentry *dent = file->f_path.dentry;
2738	int val;
2739
 
 
 
 
 
 
 
 
 
 
 
 
2740	if (file->f_path.dentry == d->dfs_dump_lprops) {
2741		ubifs_dump_lprops(c);
2742		return count;
2743	}
2744	if (file->f_path.dentry == d->dfs_dump_budg) {
2745		ubifs_dump_budg(c, &c->bi);
2746		return count;
2747	}
2748	if (file->f_path.dentry == d->dfs_dump_tnc) {
2749		mutex_lock(&c->tnc_mutex);
2750		ubifs_dump_tnc(c);
2751		mutex_unlock(&c->tnc_mutex);
2752		return count;
2753	}
2754
2755	val = interpret_user_input(u, count);
2756	if (val < 0)
2757		return val;
2758
2759	if (dent == d->dfs_chk_gen)
2760		d->chk_gen = val;
2761	else if (dent == d->dfs_chk_index)
2762		d->chk_index = val;
2763	else if (dent == d->dfs_chk_orph)
2764		d->chk_orph = val;
2765	else if (dent == d->dfs_chk_lprops)
2766		d->chk_lprops = val;
2767	else if (dent == d->dfs_chk_fs)
2768		d->chk_fs = val;
2769	else if (dent == d->dfs_tst_rcvry)
2770		d->tst_rcvry = val;
2771	else if (dent == d->dfs_ro_error)
2772		c->ro_error = !!val;
2773	else
2774		return -EINVAL;
2775
2776	return count;
2777}
2778
2779static const struct file_operations dfs_fops = {
2780	.open = dfs_file_open,
2781	.read = dfs_file_read,
2782	.write = dfs_file_write,
2783	.owner = THIS_MODULE,
2784	.llseek = no_llseek,
2785};
2786
2787/**
2788 * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance.
2789 * @c: UBIFS file-system description object
2790 *
2791 * This function creates all debugfs files for this instance of UBIFS.
 
2792 *
2793 * Note, the only reason we have not merged this function with the
2794 * 'ubifs_debugging_init()' function is because it is better to initialize
2795 * debugfs interfaces at the very end of the mount process, and remove them at
2796 * the very beginning of the mount process.
2797 */
2798void dbg_debugfs_init_fs(struct ubifs_info *c)
2799{
2800	int n;
2801	const char *fname;
 
2802	struct ubifs_debug_info *d = c->dbg;
2803
 
 
 
2804	n = snprintf(d->dfs_dir_name, UBIFS_DFS_DIR_LEN + 1, UBIFS_DFS_DIR_NAME,
2805		     c->vi.ubi_num, c->vi.vol_id);
2806	if (n == UBIFS_DFS_DIR_LEN) {
2807		/* The array size is too small */
2808		return;
 
 
2809	}
2810
2811	fname = d->dfs_dir_name;
2812	d->dfs_dir = debugfs_create_dir(fname, dfs_rootdir);
 
 
 
2813
2814	fname = "dump_lprops";
2815	d->dfs_dump_lprops = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c,
2816						 &dfs_fops);
 
 
2817
2818	fname = "dump_budg";
2819	d->dfs_dump_budg = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c,
2820					       &dfs_fops);
 
 
2821
2822	fname = "dump_tnc";
2823	d->dfs_dump_tnc = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c,
2824					      &dfs_fops);
 
 
2825
2826	fname = "chk_general";
2827	d->dfs_chk_gen = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2828					     d->dfs_dir, c, &dfs_fops);
 
 
 
2829
2830	fname = "chk_index";
2831	d->dfs_chk_index = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2832					       d->dfs_dir, c, &dfs_fops);
 
 
 
2833
2834	fname = "chk_orphans";
2835	d->dfs_chk_orph = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2836					      d->dfs_dir, c, &dfs_fops);
 
 
 
2837
2838	fname = "chk_lprops";
2839	d->dfs_chk_lprops = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2840						d->dfs_dir, c, &dfs_fops);
 
 
 
2841
2842	fname = "chk_fs";
2843	d->dfs_chk_fs = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2844					    d->dfs_dir, c, &dfs_fops);
 
 
 
2845
2846	fname = "tst_recovery";
2847	d->dfs_tst_rcvry = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2848					       d->dfs_dir, c, &dfs_fops);
 
 
 
2849
2850	fname = "ro_error";
2851	d->dfs_ro_error = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2852					      d->dfs_dir, c, &dfs_fops);
 
 
 
 
 
 
2853}
2854
2855/**
2856 * dbg_debugfs_exit_fs - remove all debugfs files.
2857 * @c: UBIFS file-system description object
2858 */
2859void dbg_debugfs_exit_fs(struct ubifs_info *c)
2860{
2861	debugfs_remove_recursive(c->dbg->dfs_dir);
 
2862}
2863
2864struct ubifs_global_debug_info ubifs_dbg;
2865
2866static struct dentry *dfs_chk_gen;
2867static struct dentry *dfs_chk_index;
2868static struct dentry *dfs_chk_orph;
2869static struct dentry *dfs_chk_lprops;
2870static struct dentry *dfs_chk_fs;
2871static struct dentry *dfs_tst_rcvry;
2872
2873static ssize_t dfs_global_file_read(struct file *file, char __user *u,
2874				    size_t count, loff_t *ppos)
2875{
2876	struct dentry *dent = file->f_path.dentry;
2877	int val;
2878
2879	if (dent == dfs_chk_gen)
2880		val = ubifs_dbg.chk_gen;
2881	else if (dent == dfs_chk_index)
2882		val = ubifs_dbg.chk_index;
2883	else if (dent == dfs_chk_orph)
2884		val = ubifs_dbg.chk_orph;
2885	else if (dent == dfs_chk_lprops)
2886		val = ubifs_dbg.chk_lprops;
2887	else if (dent == dfs_chk_fs)
2888		val = ubifs_dbg.chk_fs;
2889	else if (dent == dfs_tst_rcvry)
2890		val = ubifs_dbg.tst_rcvry;
2891	else
2892		return -EINVAL;
2893
2894	return provide_user_output(val, u, count, ppos);
2895}
2896
2897static ssize_t dfs_global_file_write(struct file *file, const char __user *u,
2898				     size_t count, loff_t *ppos)
2899{
2900	struct dentry *dent = file->f_path.dentry;
2901	int val;
2902
2903	val = interpret_user_input(u, count);
2904	if (val < 0)
2905		return val;
2906
2907	if (dent == dfs_chk_gen)
2908		ubifs_dbg.chk_gen = val;
2909	else if (dent == dfs_chk_index)
2910		ubifs_dbg.chk_index = val;
2911	else if (dent == dfs_chk_orph)
2912		ubifs_dbg.chk_orph = val;
2913	else if (dent == dfs_chk_lprops)
2914		ubifs_dbg.chk_lprops = val;
2915	else if (dent == dfs_chk_fs)
2916		ubifs_dbg.chk_fs = val;
2917	else if (dent == dfs_tst_rcvry)
2918		ubifs_dbg.tst_rcvry = val;
2919	else
2920		return -EINVAL;
2921
2922	return count;
2923}
2924
2925static const struct file_operations dfs_global_fops = {
2926	.read = dfs_global_file_read,
2927	.write = dfs_global_file_write,
2928	.owner = THIS_MODULE,
2929	.llseek = no_llseek,
2930};
2931
2932/**
2933 * dbg_debugfs_init - initialize debugfs file-system.
2934 *
2935 * UBIFS uses debugfs file-system to expose various debugging knobs to
2936 * user-space. This function creates "ubifs" directory in the debugfs
2937 * file-system.
 
2938 */
2939void dbg_debugfs_init(void)
2940{
 
2941	const char *fname;
 
 
 
 
2942
2943	fname = "ubifs";
2944	dfs_rootdir = debugfs_create_dir(fname, NULL);
 
 
 
2945
2946	fname = "chk_general";
2947	dfs_chk_gen = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir,
2948					  NULL, &dfs_global_fops);
 
 
 
2949
2950	fname = "chk_index";
2951	dfs_chk_index = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2952					    dfs_rootdir, NULL, &dfs_global_fops);
 
 
 
2953
2954	fname = "chk_orphans";
2955	dfs_chk_orph = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2956					   dfs_rootdir, NULL, &dfs_global_fops);
 
 
 
2957
2958	fname = "chk_lprops";
2959	dfs_chk_lprops = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2960					     dfs_rootdir, NULL, &dfs_global_fops);
 
 
 
2961
2962	fname = "chk_fs";
2963	dfs_chk_fs = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir,
2964					 NULL, &dfs_global_fops);
 
 
 
2965
2966	fname = "tst_recovery";
2967	dfs_tst_rcvry = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2968					    dfs_rootdir, NULL, &dfs_global_fops);
 
 
 
 
 
 
 
 
 
 
 
 
 
2969}
2970
2971/**
2972 * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system.
2973 */
2974void dbg_debugfs_exit(void)
2975{
2976	debugfs_remove_recursive(dfs_rootdir);
2977}
2978
2979void ubifs_assert_failed(struct ubifs_info *c, const char *expr,
2980			 const char *file, int line)
2981{
2982	ubifs_err(c, "UBIFS assert failed: %s, in %s:%u", expr, file, line);
2983
2984	switch (c->assert_action) {
2985		case ASSACT_PANIC:
2986		BUG();
2987		break;
2988
2989		case ASSACT_RO:
2990		ubifs_ro_mode(c, -EINVAL);
2991		break;
2992
2993		case ASSACT_REPORT:
2994		default:
2995		dump_stack();
2996		break;
2997
2998	}
2999}
3000
3001/**
3002 * ubifs_debugging_init - initialize UBIFS debugging.
3003 * @c: UBIFS file-system description object
3004 *
3005 * This function initializes debugging-related data for the file system.
3006 * Returns zero in case of success and a negative error code in case of
3007 * failure.
3008 */
3009int ubifs_debugging_init(struct ubifs_info *c)
3010{
3011	c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL);
3012	if (!c->dbg)
3013		return -ENOMEM;
3014
3015	return 0;
3016}
3017
3018/**
3019 * ubifs_debugging_exit - free debugging data.
3020 * @c: UBIFS file-system description object
3021 */
3022void ubifs_debugging_exit(struct ubifs_info *c)
3023{
3024	kfree(c->dbg);
3025}
v3.5.6
 
   1/*
   2 * This file is part of UBIFS.
   3 *
   4 * Copyright (C) 2006-2008 Nokia Corporation
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms of the GNU General Public License version 2 as published by
   8 * the Free Software Foundation.
   9 *
  10 * This program is distributed in the hope that it will be useful, but WITHOUT
  11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13 * more details.
  14 *
  15 * You should have received a copy of the GNU General Public License along with
  16 * this program; if not, write to the Free Software Foundation, Inc., 51
  17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  18 *
  19 * Authors: Artem Bityutskiy (Битюцкий Артём)
  20 *          Adrian Hunter
  21 */
  22
  23/*
  24 * This file implements most of the debugging stuff which is compiled in only
  25 * when it is enabled. But some debugging check functions are implemented in
  26 * corresponding subsystem, just because they are closely related and utilize
  27 * various local functions of those subsystems.
  28 */
  29
  30#include <linux/module.h>
  31#include <linux/debugfs.h>
  32#include <linux/math64.h>
  33#include <linux/uaccess.h>
  34#include <linux/random.h>
 
  35#include "ubifs.h"
  36
  37static DEFINE_SPINLOCK(dbg_lock);
  38
  39static const char *get_key_fmt(int fmt)
  40{
  41	switch (fmt) {
  42	case UBIFS_SIMPLE_KEY_FMT:
  43		return "simple";
  44	default:
  45		return "unknown/invalid format";
  46	}
  47}
  48
  49static const char *get_key_hash(int hash)
  50{
  51	switch (hash) {
  52	case UBIFS_KEY_HASH_R5:
  53		return "R5";
  54	case UBIFS_KEY_HASH_TEST:
  55		return "test";
  56	default:
  57		return "unknown/invalid name hash";
  58	}
  59}
  60
  61static const char *get_key_type(int type)
  62{
  63	switch (type) {
  64	case UBIFS_INO_KEY:
  65		return "inode";
  66	case UBIFS_DENT_KEY:
  67		return "direntry";
  68	case UBIFS_XENT_KEY:
  69		return "xentry";
  70	case UBIFS_DATA_KEY:
  71		return "data";
  72	case UBIFS_TRUN_KEY:
  73		return "truncate";
  74	default:
  75		return "unknown/invalid key";
  76	}
  77}
  78
  79static const char *get_dent_type(int type)
  80{
  81	switch (type) {
  82	case UBIFS_ITYPE_REG:
  83		return "file";
  84	case UBIFS_ITYPE_DIR:
  85		return "dir";
  86	case UBIFS_ITYPE_LNK:
  87		return "symlink";
  88	case UBIFS_ITYPE_BLK:
  89		return "blkdev";
  90	case UBIFS_ITYPE_CHR:
  91		return "char dev";
  92	case UBIFS_ITYPE_FIFO:
  93		return "fifo";
  94	case UBIFS_ITYPE_SOCK:
  95		return "socket";
  96	default:
  97		return "unknown/invalid type";
  98	}
  99}
 100
 101const char *dbg_snprintf_key(const struct ubifs_info *c,
 102			     const union ubifs_key *key, char *buffer, int len)
 103{
 104	char *p = buffer;
 105	int type = key_type(c, key);
 106
 107	if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) {
 108		switch (type) {
 109		case UBIFS_INO_KEY:
 110			len -= snprintf(p, len, "(%lu, %s)",
 111					(unsigned long)key_inum(c, key),
 112					get_key_type(type));
 113			break;
 114		case UBIFS_DENT_KEY:
 115		case UBIFS_XENT_KEY:
 116			len -= snprintf(p, len, "(%lu, %s, %#08x)",
 117					(unsigned long)key_inum(c, key),
 118					get_key_type(type), key_hash(c, key));
 119			break;
 120		case UBIFS_DATA_KEY:
 121			len -= snprintf(p, len, "(%lu, %s, %u)",
 122					(unsigned long)key_inum(c, key),
 123					get_key_type(type), key_block(c, key));
 124			break;
 125		case UBIFS_TRUN_KEY:
 126			len -= snprintf(p, len, "(%lu, %s)",
 127					(unsigned long)key_inum(c, key),
 128					get_key_type(type));
 129			break;
 130		default:
 131			len -= snprintf(p, len, "(bad key type: %#08x, %#08x)",
 132					key->u32[0], key->u32[1]);
 133		}
 134	} else
 135		len -= snprintf(p, len, "bad key format %d", c->key_fmt);
 136	ubifs_assert(len > 0);
 137	return p;
 138}
 139
 140const char *dbg_ntype(int type)
 141{
 142	switch (type) {
 143	case UBIFS_PAD_NODE:
 144		return "padding node";
 145	case UBIFS_SB_NODE:
 146		return "superblock node";
 147	case UBIFS_MST_NODE:
 148		return "master node";
 149	case UBIFS_REF_NODE:
 150		return "reference node";
 151	case UBIFS_INO_NODE:
 152		return "inode node";
 153	case UBIFS_DENT_NODE:
 154		return "direntry node";
 155	case UBIFS_XENT_NODE:
 156		return "xentry node";
 157	case UBIFS_DATA_NODE:
 158		return "data node";
 159	case UBIFS_TRUN_NODE:
 160		return "truncate node";
 161	case UBIFS_IDX_NODE:
 162		return "indexing node";
 163	case UBIFS_CS_NODE:
 164		return "commit start node";
 165	case UBIFS_ORPH_NODE:
 166		return "orphan node";
 
 
 167	default:
 168		return "unknown node";
 169	}
 170}
 171
 172static const char *dbg_gtype(int type)
 173{
 174	switch (type) {
 175	case UBIFS_NO_NODE_GROUP:
 176		return "no node group";
 177	case UBIFS_IN_NODE_GROUP:
 178		return "in node group";
 179	case UBIFS_LAST_OF_NODE_GROUP:
 180		return "last of node group";
 181	default:
 182		return "unknown";
 183	}
 184}
 185
 186const char *dbg_cstate(int cmt_state)
 187{
 188	switch (cmt_state) {
 189	case COMMIT_RESTING:
 190		return "commit resting";
 191	case COMMIT_BACKGROUND:
 192		return "background commit requested";
 193	case COMMIT_REQUIRED:
 194		return "commit required";
 195	case COMMIT_RUNNING_BACKGROUND:
 196		return "BACKGROUND commit running";
 197	case COMMIT_RUNNING_REQUIRED:
 198		return "commit running and required";
 199	case COMMIT_BROKEN:
 200		return "broken commit";
 201	default:
 202		return "unknown commit state";
 203	}
 204}
 205
 206const char *dbg_jhead(int jhead)
 207{
 208	switch (jhead) {
 209	case GCHD:
 210		return "0 (GC)";
 211	case BASEHD:
 212		return "1 (base)";
 213	case DATAHD:
 214		return "2 (data)";
 215	default:
 216		return "unknown journal head";
 217	}
 218}
 219
 220static void dump_ch(const struct ubifs_ch *ch)
 221{
 222	printk(KERN_ERR "\tmagic          %#x\n", le32_to_cpu(ch->magic));
 223	printk(KERN_ERR "\tcrc            %#x\n", le32_to_cpu(ch->crc));
 224	printk(KERN_ERR "\tnode_type      %d (%s)\n", ch->node_type,
 225	       dbg_ntype(ch->node_type));
 226	printk(KERN_ERR "\tgroup_type     %d (%s)\n", ch->group_type,
 227	       dbg_gtype(ch->group_type));
 228	printk(KERN_ERR "\tsqnum          %llu\n",
 229	       (unsigned long long)le64_to_cpu(ch->sqnum));
 230	printk(KERN_ERR "\tlen            %u\n", le32_to_cpu(ch->len));
 231}
 232
 233void ubifs_dump_inode(struct ubifs_info *c, const struct inode *inode)
 234{
 235	const struct ubifs_inode *ui = ubifs_inode(inode);
 236	struct qstr nm = { .name = NULL };
 237	union ubifs_key key;
 238	struct ubifs_dent_node *dent, *pdent = NULL;
 239	int count = 2;
 240
 241	printk(KERN_ERR "Dump in-memory inode:");
 242	printk(KERN_ERR "\tinode          %lu\n", inode->i_ino);
 243	printk(KERN_ERR "\tsize           %llu\n",
 244	       (unsigned long long)i_size_read(inode));
 245	printk(KERN_ERR "\tnlink          %u\n", inode->i_nlink);
 246	printk(KERN_ERR "\tuid            %u\n", (unsigned int)inode->i_uid);
 247	printk(KERN_ERR "\tgid            %u\n", (unsigned int)inode->i_gid);
 248	printk(KERN_ERR "\tatime          %u.%u\n",
 249	       (unsigned int)inode->i_atime.tv_sec,
 250	       (unsigned int)inode->i_atime.tv_nsec);
 251	printk(KERN_ERR "\tmtime          %u.%u\n",
 252	       (unsigned int)inode->i_mtime.tv_sec,
 253	       (unsigned int)inode->i_mtime.tv_nsec);
 254	printk(KERN_ERR "\tctime          %u.%u\n",
 255	       (unsigned int)inode->i_ctime.tv_sec,
 256	       (unsigned int)inode->i_ctime.tv_nsec);
 257	printk(KERN_ERR "\tcreat_sqnum    %llu\n", ui->creat_sqnum);
 258	printk(KERN_ERR "\txattr_size     %u\n", ui->xattr_size);
 259	printk(KERN_ERR "\txattr_cnt      %u\n", ui->xattr_cnt);
 260	printk(KERN_ERR "\txattr_names    %u\n", ui->xattr_names);
 261	printk(KERN_ERR "\tdirty          %u\n", ui->dirty);
 262	printk(KERN_ERR "\txattr          %u\n", ui->xattr);
 263	printk(KERN_ERR "\tbulk_read      %u\n", ui->xattr);
 264	printk(KERN_ERR "\tsynced_i_size  %llu\n",
 265	       (unsigned long long)ui->synced_i_size);
 266	printk(KERN_ERR "\tui_size        %llu\n",
 267	       (unsigned long long)ui->ui_size);
 268	printk(KERN_ERR "\tflags          %d\n", ui->flags);
 269	printk(KERN_ERR "\tcompr_type     %d\n", ui->compr_type);
 270	printk(KERN_ERR "\tlast_page_read %lu\n", ui->last_page_read);
 271	printk(KERN_ERR "\tread_in_a_row  %lu\n", ui->read_in_a_row);
 272	printk(KERN_ERR "\tdata_len       %d\n", ui->data_len);
 273
 274	if (!S_ISDIR(inode->i_mode))
 275		return;
 276
 277	printk(KERN_ERR "List of directory entries:\n");
 278	ubifs_assert(!mutex_is_locked(&c->tnc_mutex));
 279
 280	lowest_dent_key(c, &key, inode->i_ino);
 281	while (1) {
 282		dent = ubifs_tnc_next_ent(c, &key, &nm);
 283		if (IS_ERR(dent)) {
 284			if (PTR_ERR(dent) != -ENOENT)
 285				printk(KERN_ERR "error %ld\n", PTR_ERR(dent));
 286			break;
 287		}
 288
 289		printk(KERN_ERR "\t%d: %s (%s)\n",
 290		       count++, dent->name, get_dent_type(dent->type));
 
 
 291
 292		nm.name = dent->name;
 293		nm.len = le16_to_cpu(dent->nlen);
 294		kfree(pdent);
 295		pdent = dent;
 296		key_read(c, &dent->key, &key);
 297	}
 298	kfree(pdent);
 299}
 300
 301void ubifs_dump_node(const struct ubifs_info *c, const void *node)
 302{
 303	int i, n;
 304	union ubifs_key key;
 305	const struct ubifs_ch *ch = node;
 306	char key_buf[DBG_KEY_BUF_LEN];
 307
 308	if (dbg_is_tst_rcvry(c))
 309		return;
 310
 311	/* If the magic is incorrect, just hexdump the first bytes */
 312	if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) {
 313		printk(KERN_ERR "Not a node, first %zu bytes:", UBIFS_CH_SZ);
 314		print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 32, 1,
 315			       (void *)node, UBIFS_CH_SZ, 1);
 316		return;
 317	}
 318
 319	spin_lock(&dbg_lock);
 320	dump_ch(node);
 321
 322	switch (ch->node_type) {
 323	case UBIFS_PAD_NODE:
 324	{
 325		const struct ubifs_pad_node *pad = node;
 326
 327		printk(KERN_ERR "\tpad_len        %u\n",
 328		       le32_to_cpu(pad->pad_len));
 329		break;
 330	}
 331	case UBIFS_SB_NODE:
 332	{
 333		const struct ubifs_sb_node *sup = node;
 334		unsigned int sup_flags = le32_to_cpu(sup->flags);
 335
 336		printk(KERN_ERR "\tkey_hash       %d (%s)\n",
 337		       (int)sup->key_hash, get_key_hash(sup->key_hash));
 338		printk(KERN_ERR "\tkey_fmt        %d (%s)\n",
 339		       (int)sup->key_fmt, get_key_fmt(sup->key_fmt));
 340		printk(KERN_ERR "\tflags          %#x\n", sup_flags);
 341		printk(KERN_ERR "\t  big_lpt      %u\n",
 342		       !!(sup_flags & UBIFS_FLG_BIGLPT));
 343		printk(KERN_ERR "\t  space_fixup  %u\n",
 344		       !!(sup_flags & UBIFS_FLG_SPACE_FIXUP));
 345		printk(KERN_ERR "\tmin_io_size    %u\n",
 346		       le32_to_cpu(sup->min_io_size));
 347		printk(KERN_ERR "\tleb_size       %u\n",
 348		       le32_to_cpu(sup->leb_size));
 349		printk(KERN_ERR "\tleb_cnt        %u\n",
 350		       le32_to_cpu(sup->leb_cnt));
 351		printk(KERN_ERR "\tmax_leb_cnt    %u\n",
 352		       le32_to_cpu(sup->max_leb_cnt));
 353		printk(KERN_ERR "\tmax_bud_bytes  %llu\n",
 354		       (unsigned long long)le64_to_cpu(sup->max_bud_bytes));
 355		printk(KERN_ERR "\tlog_lebs       %u\n",
 356		       le32_to_cpu(sup->log_lebs));
 357		printk(KERN_ERR "\tlpt_lebs       %u\n",
 358		       le32_to_cpu(sup->lpt_lebs));
 359		printk(KERN_ERR "\torph_lebs      %u\n",
 360		       le32_to_cpu(sup->orph_lebs));
 361		printk(KERN_ERR "\tjhead_cnt      %u\n",
 362		       le32_to_cpu(sup->jhead_cnt));
 363		printk(KERN_ERR "\tfanout         %u\n",
 364		       le32_to_cpu(sup->fanout));
 365		printk(KERN_ERR "\tlsave_cnt      %u\n",
 366		       le32_to_cpu(sup->lsave_cnt));
 367		printk(KERN_ERR "\tdefault_compr  %u\n",
 368		       (int)le16_to_cpu(sup->default_compr));
 369		printk(KERN_ERR "\trp_size        %llu\n",
 370		       (unsigned long long)le64_to_cpu(sup->rp_size));
 371		printk(KERN_ERR "\trp_uid         %u\n",
 372		       le32_to_cpu(sup->rp_uid));
 373		printk(KERN_ERR "\trp_gid         %u\n",
 374		       le32_to_cpu(sup->rp_gid));
 375		printk(KERN_ERR "\tfmt_version    %u\n",
 376		       le32_to_cpu(sup->fmt_version));
 377		printk(KERN_ERR "\ttime_gran      %u\n",
 378		       le32_to_cpu(sup->time_gran));
 379		printk(KERN_ERR "\tUUID           %pUB\n",
 380		       sup->uuid);
 381		break;
 382	}
 383	case UBIFS_MST_NODE:
 384	{
 385		const struct ubifs_mst_node *mst = node;
 386
 387		printk(KERN_ERR "\thighest_inum   %llu\n",
 388		       (unsigned long long)le64_to_cpu(mst->highest_inum));
 389		printk(KERN_ERR "\tcommit number  %llu\n",
 390		       (unsigned long long)le64_to_cpu(mst->cmt_no));
 391		printk(KERN_ERR "\tflags          %#x\n",
 392		       le32_to_cpu(mst->flags));
 393		printk(KERN_ERR "\tlog_lnum       %u\n",
 394		       le32_to_cpu(mst->log_lnum));
 395		printk(KERN_ERR "\troot_lnum      %u\n",
 396		       le32_to_cpu(mst->root_lnum));
 397		printk(KERN_ERR "\troot_offs      %u\n",
 398		       le32_to_cpu(mst->root_offs));
 399		printk(KERN_ERR "\troot_len       %u\n",
 400		       le32_to_cpu(mst->root_len));
 401		printk(KERN_ERR "\tgc_lnum        %u\n",
 402		       le32_to_cpu(mst->gc_lnum));
 403		printk(KERN_ERR "\tihead_lnum     %u\n",
 404		       le32_to_cpu(mst->ihead_lnum));
 405		printk(KERN_ERR "\tihead_offs     %u\n",
 406		       le32_to_cpu(mst->ihead_offs));
 407		printk(KERN_ERR "\tindex_size     %llu\n",
 408		       (unsigned long long)le64_to_cpu(mst->index_size));
 409		printk(KERN_ERR "\tlpt_lnum       %u\n",
 410		       le32_to_cpu(mst->lpt_lnum));
 411		printk(KERN_ERR "\tlpt_offs       %u\n",
 412		       le32_to_cpu(mst->lpt_offs));
 413		printk(KERN_ERR "\tnhead_lnum     %u\n",
 414		       le32_to_cpu(mst->nhead_lnum));
 415		printk(KERN_ERR "\tnhead_offs     %u\n",
 416		       le32_to_cpu(mst->nhead_offs));
 417		printk(KERN_ERR "\tltab_lnum      %u\n",
 418		       le32_to_cpu(mst->ltab_lnum));
 419		printk(KERN_ERR "\tltab_offs      %u\n",
 420		       le32_to_cpu(mst->ltab_offs));
 421		printk(KERN_ERR "\tlsave_lnum     %u\n",
 422		       le32_to_cpu(mst->lsave_lnum));
 423		printk(KERN_ERR "\tlsave_offs     %u\n",
 424		       le32_to_cpu(mst->lsave_offs));
 425		printk(KERN_ERR "\tlscan_lnum     %u\n",
 426		       le32_to_cpu(mst->lscan_lnum));
 427		printk(KERN_ERR "\tleb_cnt        %u\n",
 428		       le32_to_cpu(mst->leb_cnt));
 429		printk(KERN_ERR "\tempty_lebs     %u\n",
 430		       le32_to_cpu(mst->empty_lebs));
 431		printk(KERN_ERR "\tidx_lebs       %u\n",
 432		       le32_to_cpu(mst->idx_lebs));
 433		printk(KERN_ERR "\ttotal_free     %llu\n",
 434		       (unsigned long long)le64_to_cpu(mst->total_free));
 435		printk(KERN_ERR "\ttotal_dirty    %llu\n",
 436		       (unsigned long long)le64_to_cpu(mst->total_dirty));
 437		printk(KERN_ERR "\ttotal_used     %llu\n",
 438		       (unsigned long long)le64_to_cpu(mst->total_used));
 439		printk(KERN_ERR "\ttotal_dead     %llu\n",
 440		       (unsigned long long)le64_to_cpu(mst->total_dead));
 441		printk(KERN_ERR "\ttotal_dark     %llu\n",
 442		       (unsigned long long)le64_to_cpu(mst->total_dark));
 443		break;
 444	}
 445	case UBIFS_REF_NODE:
 446	{
 447		const struct ubifs_ref_node *ref = node;
 448
 449		printk(KERN_ERR "\tlnum           %u\n",
 450		       le32_to_cpu(ref->lnum));
 451		printk(KERN_ERR "\toffs           %u\n",
 452		       le32_to_cpu(ref->offs));
 453		printk(KERN_ERR "\tjhead          %u\n",
 454		       le32_to_cpu(ref->jhead));
 455		break;
 456	}
 457	case UBIFS_INO_NODE:
 458	{
 459		const struct ubifs_ino_node *ino = node;
 460
 461		key_read(c, &ino->key, &key);
 462		printk(KERN_ERR "\tkey            %s\n",
 463		       dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
 464		printk(KERN_ERR "\tcreat_sqnum    %llu\n",
 465		       (unsigned long long)le64_to_cpu(ino->creat_sqnum));
 466		printk(KERN_ERR "\tsize           %llu\n",
 467		       (unsigned long long)le64_to_cpu(ino->size));
 468		printk(KERN_ERR "\tnlink          %u\n",
 469		       le32_to_cpu(ino->nlink));
 470		printk(KERN_ERR "\tatime          %lld.%u\n",
 471		       (long long)le64_to_cpu(ino->atime_sec),
 472		       le32_to_cpu(ino->atime_nsec));
 473		printk(KERN_ERR "\tmtime          %lld.%u\n",
 474		       (long long)le64_to_cpu(ino->mtime_sec),
 475		       le32_to_cpu(ino->mtime_nsec));
 476		printk(KERN_ERR "\tctime          %lld.%u\n",
 477		       (long long)le64_to_cpu(ino->ctime_sec),
 478		       le32_to_cpu(ino->ctime_nsec));
 479		printk(KERN_ERR "\tuid            %u\n",
 480		       le32_to_cpu(ino->uid));
 481		printk(KERN_ERR "\tgid            %u\n",
 482		       le32_to_cpu(ino->gid));
 483		printk(KERN_ERR "\tmode           %u\n",
 484		       le32_to_cpu(ino->mode));
 485		printk(KERN_ERR "\tflags          %#x\n",
 486		       le32_to_cpu(ino->flags));
 487		printk(KERN_ERR "\txattr_cnt      %u\n",
 488		       le32_to_cpu(ino->xattr_cnt));
 489		printk(KERN_ERR "\txattr_size     %u\n",
 490		       le32_to_cpu(ino->xattr_size));
 491		printk(KERN_ERR "\txattr_names    %u\n",
 492		       le32_to_cpu(ino->xattr_names));
 493		printk(KERN_ERR "\tcompr_type     %#x\n",
 494		       (int)le16_to_cpu(ino->compr_type));
 495		printk(KERN_ERR "\tdata len       %u\n",
 496		       le32_to_cpu(ino->data_len));
 497		break;
 498	}
 499	case UBIFS_DENT_NODE:
 500	case UBIFS_XENT_NODE:
 501	{
 502		const struct ubifs_dent_node *dent = node;
 503		int nlen = le16_to_cpu(dent->nlen);
 504
 505		key_read(c, &dent->key, &key);
 506		printk(KERN_ERR "\tkey            %s\n",
 507		       dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
 508		printk(KERN_ERR "\tinum           %llu\n",
 509		       (unsigned long long)le64_to_cpu(dent->inum));
 510		printk(KERN_ERR "\ttype           %d\n", (int)dent->type);
 511		printk(KERN_ERR "\tnlen           %d\n", nlen);
 512		printk(KERN_ERR "\tname           ");
 513
 514		if (nlen > UBIFS_MAX_NLEN)
 515			printk(KERN_ERR "(bad name length, not printing, "
 516					  "bad or corrupted node)");
 517		else {
 518			for (i = 0; i < nlen && dent->name[i]; i++)
 519				printk(KERN_CONT "%c", dent->name[i]);
 
 520		}
 521		printk(KERN_CONT "\n");
 522
 523		break;
 524	}
 525	case UBIFS_DATA_NODE:
 526	{
 527		const struct ubifs_data_node *dn = node;
 528		int dlen = le32_to_cpu(ch->len) - UBIFS_DATA_NODE_SZ;
 529
 530		key_read(c, &dn->key, &key);
 531		printk(KERN_ERR "\tkey            %s\n",
 532		       dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
 533		printk(KERN_ERR "\tsize           %u\n",
 534		       le32_to_cpu(dn->size));
 535		printk(KERN_ERR "\tcompr_typ      %d\n",
 536		       (int)le16_to_cpu(dn->compr_type));
 537		printk(KERN_ERR "\tdata size      %d\n",
 538		       dlen);
 539		printk(KERN_ERR "\tdata:\n");
 540		print_hex_dump(KERN_ERR, "\t", DUMP_PREFIX_OFFSET, 32, 1,
 541			       (void *)&dn->data, dlen, 0);
 542		break;
 543	}
 544	case UBIFS_TRUN_NODE:
 545	{
 546		const struct ubifs_trun_node *trun = node;
 547
 548		printk(KERN_ERR "\tinum           %u\n",
 549		       le32_to_cpu(trun->inum));
 550		printk(KERN_ERR "\told_size       %llu\n",
 551		       (unsigned long long)le64_to_cpu(trun->old_size));
 552		printk(KERN_ERR "\tnew_size       %llu\n",
 553		       (unsigned long long)le64_to_cpu(trun->new_size));
 554		break;
 555	}
 556	case UBIFS_IDX_NODE:
 557	{
 558		const struct ubifs_idx_node *idx = node;
 559
 560		n = le16_to_cpu(idx->child_cnt);
 561		printk(KERN_ERR "\tchild_cnt      %d\n", n);
 562		printk(KERN_ERR "\tlevel          %d\n",
 563		       (int)le16_to_cpu(idx->level));
 564		printk(KERN_ERR "\tBranches:\n");
 565
 566		for (i = 0; i < n && i < c->fanout - 1; i++) {
 567			const struct ubifs_branch *br;
 568
 569			br = ubifs_idx_branch(c, idx, i);
 570			key_read(c, &br->key, &key);
 571			printk(KERN_ERR "\t%d: LEB %d:%d len %d key %s\n",
 572			       i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs),
 573			       le32_to_cpu(br->len),
 574			       dbg_snprintf_key(c, &key, key_buf,
 575						DBG_KEY_BUF_LEN));
 576		}
 577		break;
 578	}
 579	case UBIFS_CS_NODE:
 580		break;
 581	case UBIFS_ORPH_NODE:
 582	{
 583		const struct ubifs_orph_node *orph = node;
 584
 585		printk(KERN_ERR "\tcommit number  %llu\n",
 586		       (unsigned long long)
 587				le64_to_cpu(orph->cmt_no) & LLONG_MAX);
 588		printk(KERN_ERR "\tlast node flag %llu\n",
 589		       (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63);
 590		n = (le32_to_cpu(ch->len) - UBIFS_ORPH_NODE_SZ) >> 3;
 591		printk(KERN_ERR "\t%d orphan inode numbers:\n", n);
 592		for (i = 0; i < n; i++)
 593			printk(KERN_ERR "\t  ino %llu\n",
 594			       (unsigned long long)le64_to_cpu(orph->inos[i]));
 595		break;
 596	}
 
 
 
 
 597	default:
 598		printk(KERN_ERR "node type %d was not recognized\n",
 599		       (int)ch->node_type);
 600	}
 601	spin_unlock(&dbg_lock);
 602}
 603
 604void ubifs_dump_budget_req(const struct ubifs_budget_req *req)
 605{
 606	spin_lock(&dbg_lock);
 607	printk(KERN_ERR "Budgeting request: new_ino %d, dirtied_ino %d\n",
 608	       req->new_ino, req->dirtied_ino);
 609	printk(KERN_ERR "\tnew_ino_d   %d, dirtied_ino_d %d\n",
 610	       req->new_ino_d, req->dirtied_ino_d);
 611	printk(KERN_ERR "\tnew_page    %d, dirtied_page %d\n",
 612	       req->new_page, req->dirtied_page);
 613	printk(KERN_ERR "\tnew_dent    %d, mod_dent     %d\n",
 614	       req->new_dent, req->mod_dent);
 615	printk(KERN_ERR "\tidx_growth  %d\n", req->idx_growth);
 616	printk(KERN_ERR "\tdata_growth %d dd_growth     %d\n",
 617	       req->data_growth, req->dd_growth);
 618	spin_unlock(&dbg_lock);
 619}
 620
 621void ubifs_dump_lstats(const struct ubifs_lp_stats *lst)
 622{
 623	spin_lock(&dbg_lock);
 624	printk(KERN_ERR "(pid %d) Lprops statistics: empty_lebs %d, "
 625	       "idx_lebs  %d\n", current->pid, lst->empty_lebs, lst->idx_lebs);
 626	printk(KERN_ERR "\ttaken_empty_lebs %d, total_free %lld, "
 627	       "total_dirty %lld\n", lst->taken_empty_lebs, lst->total_free,
 628	       lst->total_dirty);
 629	printk(KERN_ERR "\ttotal_used %lld, total_dark %lld, "
 630	       "total_dead %lld\n", lst->total_used, lst->total_dark,
 631	       lst->total_dead);
 632	spin_unlock(&dbg_lock);
 633}
 634
 635void ubifs_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi)
 636{
 637	int i;
 638	struct rb_node *rb;
 639	struct ubifs_bud *bud;
 640	struct ubifs_gced_idx_leb *idx_gc;
 641	long long available, outstanding, free;
 642
 643	spin_lock(&c->space_lock);
 644	spin_lock(&dbg_lock);
 645	printk(KERN_ERR "(pid %d) Budgeting info: data budget sum %lld, "
 646	       "total budget sum %lld\n", current->pid,
 647	       bi->data_growth + bi->dd_growth,
 648	       bi->data_growth + bi->dd_growth + bi->idx_growth);
 649	printk(KERN_ERR "\tbudg_data_growth %lld, budg_dd_growth %lld, "
 650	       "budg_idx_growth %lld\n", bi->data_growth, bi->dd_growth,
 651	       bi->idx_growth);
 652	printk(KERN_ERR "\tmin_idx_lebs %d, old_idx_sz %llu, "
 653	       "uncommitted_idx %lld\n", bi->min_idx_lebs, bi->old_idx_sz,
 654	       bi->uncommitted_idx);
 655	printk(KERN_ERR "\tpage_budget %d, inode_budget %d, dent_budget %d\n",
 656	       bi->page_budget, bi->inode_budget, bi->dent_budget);
 657	printk(KERN_ERR "\tnospace %u, nospace_rp %u\n",
 658	       bi->nospace, bi->nospace_rp);
 659	printk(KERN_ERR "\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n",
 660	       c->dark_wm, c->dead_wm, c->max_idx_node_sz);
 661
 662	if (bi != &c->bi)
 663		/*
 664		 * If we are dumping saved budgeting data, do not print
 665		 * additional information which is about the current state, not
 666		 * the old one which corresponded to the saved budgeting data.
 667		 */
 668		goto out_unlock;
 669
 670	printk(KERN_ERR "\tfreeable_cnt %d, calc_idx_sz %lld, idx_gc_cnt %d\n",
 671	       c->freeable_cnt, c->calc_idx_sz, c->idx_gc_cnt);
 672	printk(KERN_ERR "\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, "
 673	       "clean_zn_cnt %ld\n", atomic_long_read(&c->dirty_pg_cnt),
 674	       atomic_long_read(&c->dirty_zn_cnt),
 675	       atomic_long_read(&c->clean_zn_cnt));
 676	printk(KERN_ERR "\tgc_lnum %d, ihead_lnum %d\n",
 677	       c->gc_lnum, c->ihead_lnum);
 678
 679	/* If we are in R/O mode, journal heads do not exist */
 680	if (c->jheads)
 681		for (i = 0; i < c->jhead_cnt; i++)
 682			printk(KERN_ERR "\tjhead %s\t LEB %d\n",
 683			       dbg_jhead(c->jheads[i].wbuf.jhead),
 684			       c->jheads[i].wbuf.lnum);
 685	for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) {
 686		bud = rb_entry(rb, struct ubifs_bud, rb);
 687		printk(KERN_ERR "\tbud LEB %d\n", bud->lnum);
 688	}
 689	list_for_each_entry(bud, &c->old_buds, list)
 690		printk(KERN_ERR "\told bud LEB %d\n", bud->lnum);
 691	list_for_each_entry(idx_gc, &c->idx_gc, list)
 692		printk(KERN_ERR "\tGC'ed idx LEB %d unmap %d\n",
 693		       idx_gc->lnum, idx_gc->unmap);
 694	printk(KERN_ERR "\tcommit state %d\n", c->cmt_state);
 695
 696	/* Print budgeting predictions */
 697	available = ubifs_calc_available(c, c->bi.min_idx_lebs);
 698	outstanding = c->bi.data_growth + c->bi.dd_growth;
 699	free = ubifs_get_free_space_nolock(c);
 700	printk(KERN_ERR "Budgeting predictions:\n");
 701	printk(KERN_ERR "\tavailable: %lld, outstanding %lld, free %lld\n",
 702	       available, outstanding, free);
 703out_unlock:
 704	spin_unlock(&dbg_lock);
 705	spin_unlock(&c->space_lock);
 706}
 707
 708void ubifs_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp)
 709{
 710	int i, spc, dark = 0, dead = 0;
 711	struct rb_node *rb;
 712	struct ubifs_bud *bud;
 713
 714	spc = lp->free + lp->dirty;
 715	if (spc < c->dead_wm)
 716		dead = spc;
 717	else
 718		dark = ubifs_calc_dark(c, spc);
 719
 720	if (lp->flags & LPROPS_INDEX)
 721		printk(KERN_ERR "LEB %-7d free %-8d dirty %-8d used %-8d "
 722		       "free + dirty %-8d flags %#x (", lp->lnum, lp->free,
 723		       lp->dirty, c->leb_size - spc, spc, lp->flags);
 724	else
 725		printk(KERN_ERR "LEB %-7d free %-8d dirty %-8d used %-8d "
 726		       "free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d "
 727		       "flags %#-4x (", lp->lnum, lp->free, lp->dirty,
 728		       c->leb_size - spc, spc, dark, dead,
 729		       (int)(spc / UBIFS_MAX_NODE_SZ), lp->flags);
 730
 731	if (lp->flags & LPROPS_TAKEN) {
 732		if (lp->flags & LPROPS_INDEX)
 733			printk(KERN_CONT "index, taken");
 734		else
 735			printk(KERN_CONT "taken");
 736	} else {
 737		const char *s;
 738
 739		if (lp->flags & LPROPS_INDEX) {
 740			switch (lp->flags & LPROPS_CAT_MASK) {
 741			case LPROPS_DIRTY_IDX:
 742				s = "dirty index";
 743				break;
 744			case LPROPS_FRDI_IDX:
 745				s = "freeable index";
 746				break;
 747			default:
 748				s = "index";
 749			}
 750		} else {
 751			switch (lp->flags & LPROPS_CAT_MASK) {
 752			case LPROPS_UNCAT:
 753				s = "not categorized";
 754				break;
 755			case LPROPS_DIRTY:
 756				s = "dirty";
 757				break;
 758			case LPROPS_FREE:
 759				s = "free";
 760				break;
 761			case LPROPS_EMPTY:
 762				s = "empty";
 763				break;
 764			case LPROPS_FREEABLE:
 765				s = "freeable";
 766				break;
 767			default:
 768				s = NULL;
 769				break;
 770			}
 771		}
 772		printk(KERN_CONT "%s", s);
 773	}
 774
 775	for (rb = rb_first((struct rb_root *)&c->buds); rb; rb = rb_next(rb)) {
 776		bud = rb_entry(rb, struct ubifs_bud, rb);
 777		if (bud->lnum == lp->lnum) {
 778			int head = 0;
 779			for (i = 0; i < c->jhead_cnt; i++) {
 780				/*
 781				 * Note, if we are in R/O mode or in the middle
 782				 * of mounting/re-mounting, the write-buffers do
 783				 * not exist.
 784				 */
 785				if (c->jheads &&
 786				    lp->lnum == c->jheads[i].wbuf.lnum) {
 787					printk(KERN_CONT ", jhead %s",
 788					       dbg_jhead(i));
 789					head = 1;
 790				}
 791			}
 792			if (!head)
 793				printk(KERN_CONT ", bud of jhead %s",
 794				       dbg_jhead(bud->jhead));
 795		}
 796	}
 797	if (lp->lnum == c->gc_lnum)
 798		printk(KERN_CONT ", GC LEB");
 799	printk(KERN_CONT ")\n");
 800}
 801
 802void ubifs_dump_lprops(struct ubifs_info *c)
 803{
 804	int lnum, err;
 805	struct ubifs_lprops lp;
 806	struct ubifs_lp_stats lst;
 807
 808	printk(KERN_ERR "(pid %d) start dumping LEB properties\n",
 809	       current->pid);
 810	ubifs_get_lp_stats(c, &lst);
 811	ubifs_dump_lstats(&lst);
 812
 813	for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
 814		err = ubifs_read_one_lp(c, lnum, &lp);
 815		if (err)
 816			ubifs_err("cannot read lprops for LEB %d", lnum);
 
 
 817
 818		ubifs_dump_lprop(c, &lp);
 819	}
 820	printk(KERN_ERR "(pid %d) finish dumping LEB properties\n",
 821	       current->pid);
 822}
 823
 824void ubifs_dump_lpt_info(struct ubifs_info *c)
 825{
 826	int i;
 827
 828	spin_lock(&dbg_lock);
 829	printk(KERN_ERR "(pid %d) dumping LPT information\n", current->pid);
 830	printk(KERN_ERR "\tlpt_sz:        %lld\n", c->lpt_sz);
 831	printk(KERN_ERR "\tpnode_sz:      %d\n", c->pnode_sz);
 832	printk(KERN_ERR "\tnnode_sz:      %d\n", c->nnode_sz);
 833	printk(KERN_ERR "\tltab_sz:       %d\n", c->ltab_sz);
 834	printk(KERN_ERR "\tlsave_sz:      %d\n", c->lsave_sz);
 835	printk(KERN_ERR "\tbig_lpt:       %d\n", c->big_lpt);
 836	printk(KERN_ERR "\tlpt_hght:      %d\n", c->lpt_hght);
 837	printk(KERN_ERR "\tpnode_cnt:     %d\n", c->pnode_cnt);
 838	printk(KERN_ERR "\tnnode_cnt:     %d\n", c->nnode_cnt);
 839	printk(KERN_ERR "\tdirty_pn_cnt:  %d\n", c->dirty_pn_cnt);
 840	printk(KERN_ERR "\tdirty_nn_cnt:  %d\n", c->dirty_nn_cnt);
 841	printk(KERN_ERR "\tlsave_cnt:     %d\n", c->lsave_cnt);
 842	printk(KERN_ERR "\tspace_bits:    %d\n", c->space_bits);
 843	printk(KERN_ERR "\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits);
 844	printk(KERN_ERR "\tlpt_offs_bits: %d\n", c->lpt_offs_bits);
 845	printk(KERN_ERR "\tlpt_spc_bits:  %d\n", c->lpt_spc_bits);
 846	printk(KERN_ERR "\tpcnt_bits:     %d\n", c->pcnt_bits);
 847	printk(KERN_ERR "\tlnum_bits:     %d\n", c->lnum_bits);
 848	printk(KERN_ERR "\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs);
 849	printk(KERN_ERR "\tLPT head is at %d:%d\n",
 850	       c->nhead_lnum, c->nhead_offs);
 851	printk(KERN_ERR "\tLPT ltab is at %d:%d\n",
 852	       c->ltab_lnum, c->ltab_offs);
 853	if (c->big_lpt)
 854		printk(KERN_ERR "\tLPT lsave is at %d:%d\n",
 855		       c->lsave_lnum, c->lsave_offs);
 856	for (i = 0; i < c->lpt_lebs; i++)
 857		printk(KERN_ERR "\tLPT LEB %d free %d dirty %d tgc %d "
 858		       "cmt %d\n", i + c->lpt_first, c->ltab[i].free,
 859		       c->ltab[i].dirty, c->ltab[i].tgc, c->ltab[i].cmt);
 860	spin_unlock(&dbg_lock);
 861}
 862
 863void ubifs_dump_sleb(const struct ubifs_info *c,
 864		     const struct ubifs_scan_leb *sleb, int offs)
 865{
 866	struct ubifs_scan_node *snod;
 867
 868	printk(KERN_ERR "(pid %d) start dumping scanned data from LEB %d:%d\n",
 869	       current->pid, sleb->lnum, offs);
 870
 871	list_for_each_entry(snod, &sleb->nodes, list) {
 872		cond_resched();
 873		printk(KERN_ERR "Dumping node at LEB %d:%d len %d\n", sleb->lnum,
 874		       snod->offs, snod->len);
 875		ubifs_dump_node(c, snod->node);
 876	}
 877}
 878
 879void ubifs_dump_leb(const struct ubifs_info *c, int lnum)
 880{
 881	struct ubifs_scan_leb *sleb;
 882	struct ubifs_scan_node *snod;
 883	void *buf;
 884
 885	if (dbg_is_tst_rcvry(c))
 886		return;
 887
 888	printk(KERN_ERR "(pid %d) start dumping LEB %d\n",
 889	       current->pid, lnum);
 890
 891	buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
 892	if (!buf) {
 893		ubifs_err("cannot allocate memory for dumping LEB %d", lnum);
 894		return;
 895	}
 896
 897	sleb = ubifs_scan(c, lnum, 0, buf, 0);
 898	if (IS_ERR(sleb)) {
 899		ubifs_err("scan error %d", (int)PTR_ERR(sleb));
 900		goto out;
 901	}
 902
 903	printk(KERN_ERR "LEB %d has %d nodes ending at %d\n", lnum,
 904	       sleb->nodes_cnt, sleb->endpt);
 905
 906	list_for_each_entry(snod, &sleb->nodes, list) {
 907		cond_resched();
 908		printk(KERN_ERR "Dumping node at LEB %d:%d len %d\n", lnum,
 909		       snod->offs, snod->len);
 910		ubifs_dump_node(c, snod->node);
 911	}
 912
 913	printk(KERN_ERR "(pid %d) finish dumping LEB %d\n",
 914	       current->pid, lnum);
 915	ubifs_scan_destroy(sleb);
 916
 917out:
 918	vfree(buf);
 919	return;
 920}
 921
 922void ubifs_dump_znode(const struct ubifs_info *c,
 923		      const struct ubifs_znode *znode)
 924{
 925	int n;
 926	const struct ubifs_zbranch *zbr;
 927	char key_buf[DBG_KEY_BUF_LEN];
 928
 929	spin_lock(&dbg_lock);
 930	if (znode->parent)
 931		zbr = &znode->parent->zbranch[znode->iip];
 932	else
 933		zbr = &c->zroot;
 934
 935	printk(KERN_ERR "znode %p, LEB %d:%d len %d parent %p iip %d level %d"
 936	       " child_cnt %d flags %lx\n", znode, zbr->lnum, zbr->offs,
 937	       zbr->len, znode->parent, znode->iip, znode->level,
 938	       znode->child_cnt, znode->flags);
 939
 940	if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
 941		spin_unlock(&dbg_lock);
 942		return;
 943	}
 944
 945	printk(KERN_ERR "zbranches:\n");
 946	for (n = 0; n < znode->child_cnt; n++) {
 947		zbr = &znode->zbranch[n];
 948		if (znode->level > 0)
 949			printk(KERN_ERR "\t%d: znode %p LEB %d:%d len %d key "
 950					  "%s\n", n, zbr->znode, zbr->lnum,
 951					  zbr->offs, zbr->len,
 952					  dbg_snprintf_key(c, &zbr->key,
 953							   key_buf,
 954							   DBG_KEY_BUF_LEN));
 955		else
 956			printk(KERN_ERR "\t%d: LNC %p LEB %d:%d len %d key "
 957					  "%s\n", n, zbr->znode, zbr->lnum,
 958					  zbr->offs, zbr->len,
 959					  dbg_snprintf_key(c, &zbr->key,
 960							   key_buf,
 961							   DBG_KEY_BUF_LEN));
 962	}
 963	spin_unlock(&dbg_lock);
 964}
 965
 966void ubifs_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat)
 967{
 968	int i;
 969
 970	printk(KERN_ERR "(pid %d) start dumping heap cat %d (%d elements)\n",
 971	       current->pid, cat, heap->cnt);
 972	for (i = 0; i < heap->cnt; i++) {
 973		struct ubifs_lprops *lprops = heap->arr[i];
 974
 975		printk(KERN_ERR "\t%d. LEB %d hpos %d free %d dirty %d "
 976		       "flags %d\n", i, lprops->lnum, lprops->hpos,
 977		       lprops->free, lprops->dirty, lprops->flags);
 978	}
 979	printk(KERN_ERR "(pid %d) finish dumping heap\n", current->pid);
 980}
 981
 982void ubifs_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
 983		      struct ubifs_nnode *parent, int iip)
 984{
 985	int i;
 986
 987	printk(KERN_ERR "(pid %d) dumping pnode:\n", current->pid);
 988	printk(KERN_ERR "\taddress %zx parent %zx cnext %zx\n",
 989	       (size_t)pnode, (size_t)parent, (size_t)pnode->cnext);
 990	printk(KERN_ERR "\tflags %lu iip %d level %d num %d\n",
 991	       pnode->flags, iip, pnode->level, pnode->num);
 992	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
 993		struct ubifs_lprops *lp = &pnode->lprops[i];
 994
 995		printk(KERN_ERR "\t%d: free %d dirty %d flags %d lnum %d\n",
 996		       i, lp->free, lp->dirty, lp->flags, lp->lnum);
 997	}
 998}
 999
1000void ubifs_dump_tnc(struct ubifs_info *c)
1001{
1002	struct ubifs_znode *znode;
1003	int level;
1004
1005	printk(KERN_ERR "\n");
1006	printk(KERN_ERR "(pid %d) start dumping TNC tree\n", current->pid);
1007	znode = ubifs_tnc_levelorder_next(c->zroot.znode, NULL);
1008	level = znode->level;
1009	printk(KERN_ERR "== Level %d ==\n", level);
1010	while (znode) {
1011		if (level != znode->level) {
1012			level = znode->level;
1013			printk(KERN_ERR "== Level %d ==\n", level);
1014		}
1015		ubifs_dump_znode(c, znode);
1016		znode = ubifs_tnc_levelorder_next(c->zroot.znode, znode);
1017	}
1018	printk(KERN_ERR "(pid %d) finish dumping TNC tree\n", current->pid);
1019}
1020
1021static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode,
1022		      void *priv)
1023{
1024	ubifs_dump_znode(c, znode);
1025	return 0;
1026}
1027
1028/**
1029 * ubifs_dump_index - dump the on-flash index.
1030 * @c: UBIFS file-system description object
1031 *
1032 * This function dumps whole UBIFS indexing B-tree, unlike 'ubifs_dump_tnc()'
1033 * which dumps only in-memory znodes and does not read znodes which from flash.
1034 */
1035void ubifs_dump_index(struct ubifs_info *c)
1036{
1037	dbg_walk_index(c, NULL, dump_znode, NULL);
1038}
1039
1040/**
1041 * dbg_save_space_info - save information about flash space.
1042 * @c: UBIFS file-system description object
1043 *
1044 * This function saves information about UBIFS free space, dirty space, etc, in
1045 * order to check it later.
1046 */
1047void dbg_save_space_info(struct ubifs_info *c)
1048{
1049	struct ubifs_debug_info *d = c->dbg;
1050	int freeable_cnt;
1051
1052	spin_lock(&c->space_lock);
1053	memcpy(&d->saved_lst, &c->lst, sizeof(struct ubifs_lp_stats));
1054	memcpy(&d->saved_bi, &c->bi, sizeof(struct ubifs_budg_info));
1055	d->saved_idx_gc_cnt = c->idx_gc_cnt;
1056
1057	/*
1058	 * We use a dirty hack here and zero out @c->freeable_cnt, because it
1059	 * affects the free space calculations, and UBIFS might not know about
1060	 * all freeable eraseblocks. Indeed, we know about freeable eraseblocks
1061	 * only when we read their lprops, and we do this only lazily, upon the
1062	 * need. So at any given point of time @c->freeable_cnt might be not
1063	 * exactly accurate.
1064	 *
1065	 * Just one example about the issue we hit when we did not zero
1066	 * @c->freeable_cnt.
1067	 * 1. The file-system is mounted R/O, c->freeable_cnt is %0. We save the
1068	 *    amount of free space in @d->saved_free
1069	 * 2. We re-mount R/W, which makes UBIFS to read the "lsave"
1070	 *    information from flash, where we cache LEBs from various
1071	 *    categories ('ubifs_remount_fs()' -> 'ubifs_lpt_init()'
1072	 *    -> 'lpt_init_wr()' -> 'read_lsave()' -> 'ubifs_lpt_lookup()'
1073	 *    -> 'ubifs_get_pnode()' -> 'update_cats()'
1074	 *    -> 'ubifs_add_to_cat()').
1075	 * 3. Lsave contains a freeable eraseblock, and @c->freeable_cnt
1076	 *    becomes %1.
1077	 * 4. We calculate the amount of free space when the re-mount is
1078	 *    finished in 'dbg_check_space_info()' and it does not match
1079	 *    @d->saved_free.
1080	 */
1081	freeable_cnt = c->freeable_cnt;
1082	c->freeable_cnt = 0;
1083	d->saved_free = ubifs_get_free_space_nolock(c);
1084	c->freeable_cnt = freeable_cnt;
1085	spin_unlock(&c->space_lock);
1086}
1087
1088/**
1089 * dbg_check_space_info - check flash space information.
1090 * @c: UBIFS file-system description object
1091 *
1092 * This function compares current flash space information with the information
1093 * which was saved when the 'dbg_save_space_info()' function was called.
1094 * Returns zero if the information has not changed, and %-EINVAL it it has
1095 * changed.
1096 */
1097int dbg_check_space_info(struct ubifs_info *c)
1098{
1099	struct ubifs_debug_info *d = c->dbg;
1100	struct ubifs_lp_stats lst;
1101	long long free;
1102	int freeable_cnt;
1103
1104	spin_lock(&c->space_lock);
1105	freeable_cnt = c->freeable_cnt;
1106	c->freeable_cnt = 0;
1107	free = ubifs_get_free_space_nolock(c);
1108	c->freeable_cnt = freeable_cnt;
1109	spin_unlock(&c->space_lock);
1110
1111	if (free != d->saved_free) {
1112		ubifs_err("free space changed from %lld to %lld",
1113			  d->saved_free, free);
1114		goto out;
1115	}
1116
1117	return 0;
1118
1119out:
1120	ubifs_msg("saved lprops statistics dump");
1121	ubifs_dump_lstats(&d->saved_lst);
1122	ubifs_msg("saved budgeting info dump");
1123	ubifs_dump_budg(c, &d->saved_bi);
1124	ubifs_msg("saved idx_gc_cnt %d", d->saved_idx_gc_cnt);
1125	ubifs_msg("current lprops statistics dump");
1126	ubifs_get_lp_stats(c, &lst);
1127	ubifs_dump_lstats(&lst);
1128	ubifs_msg("current budgeting info dump");
1129	ubifs_dump_budg(c, &c->bi);
1130	dump_stack();
1131	return -EINVAL;
1132}
1133
1134/**
1135 * dbg_check_synced_i_size - check synchronized inode size.
1136 * @c: UBIFS file-system description object
1137 * @inode: inode to check
1138 *
1139 * If inode is clean, synchronized inode size has to be equivalent to current
1140 * inode size. This function has to be called only for locked inodes (@i_mutex
1141 * has to be locked). Returns %0 if synchronized inode size if correct, and
1142 * %-EINVAL if not.
1143 */
1144int dbg_check_synced_i_size(const struct ubifs_info *c, struct inode *inode)
1145{
1146	int err = 0;
1147	struct ubifs_inode *ui = ubifs_inode(inode);
1148
1149	if (!dbg_is_chk_gen(c))
1150		return 0;
1151	if (!S_ISREG(inode->i_mode))
1152		return 0;
1153
1154	mutex_lock(&ui->ui_mutex);
1155	spin_lock(&ui->ui_lock);
1156	if (ui->ui_size != ui->synced_i_size && !ui->dirty) {
1157		ubifs_err("ui_size is %lld, synced_i_size is %lld, but inode "
1158			  "is clean", ui->ui_size, ui->synced_i_size);
1159		ubifs_err("i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino,
1160			  inode->i_mode, i_size_read(inode));
1161		dump_stack();
1162		err = -EINVAL;
1163	}
1164	spin_unlock(&ui->ui_lock);
1165	mutex_unlock(&ui->ui_mutex);
1166	return err;
1167}
1168
1169/*
1170 * dbg_check_dir - check directory inode size and link count.
1171 * @c: UBIFS file-system description object
1172 * @dir: the directory to calculate size for
1173 * @size: the result is returned here
1174 *
1175 * This function makes sure that directory size and link count are correct.
1176 * Returns zero in case of success and a negative error code in case of
1177 * failure.
1178 *
1179 * Note, it is good idea to make sure the @dir->i_mutex is locked before
1180 * calling this function.
1181 */
1182int dbg_check_dir(struct ubifs_info *c, const struct inode *dir)
1183{
1184	unsigned int nlink = 2;
1185	union ubifs_key key;
1186	struct ubifs_dent_node *dent, *pdent = NULL;
1187	struct qstr nm = { .name = NULL };
1188	loff_t size = UBIFS_INO_NODE_SZ;
1189
1190	if (!dbg_is_chk_gen(c))
1191		return 0;
1192
1193	if (!S_ISDIR(dir->i_mode))
1194		return 0;
1195
1196	lowest_dent_key(c, &key, dir->i_ino);
1197	while (1) {
1198		int err;
1199
1200		dent = ubifs_tnc_next_ent(c, &key, &nm);
1201		if (IS_ERR(dent)) {
1202			err = PTR_ERR(dent);
1203			if (err == -ENOENT)
1204				break;
1205			return err;
1206		}
1207
1208		nm.name = dent->name;
1209		nm.len = le16_to_cpu(dent->nlen);
1210		size += CALC_DENT_SIZE(nm.len);
1211		if (dent->type == UBIFS_ITYPE_DIR)
1212			nlink += 1;
1213		kfree(pdent);
1214		pdent = dent;
1215		key_read(c, &dent->key, &key);
1216	}
1217	kfree(pdent);
1218
1219	if (i_size_read(dir) != size) {
1220		ubifs_err("directory inode %lu has size %llu, "
1221			  "but calculated size is %llu", dir->i_ino,
1222			  (unsigned long long)i_size_read(dir),
1223			  (unsigned long long)size);
1224		ubifs_dump_inode(c, dir);
1225		dump_stack();
1226		return -EINVAL;
1227	}
1228	if (dir->i_nlink != nlink) {
1229		ubifs_err("directory inode %lu has nlink %u, but calculated "
1230			  "nlink is %u", dir->i_ino, dir->i_nlink, nlink);
1231		ubifs_dump_inode(c, dir);
1232		dump_stack();
1233		return -EINVAL;
1234	}
1235
1236	return 0;
1237}
1238
1239/**
1240 * dbg_check_key_order - make sure that colliding keys are properly ordered.
1241 * @c: UBIFS file-system description object
1242 * @zbr1: first zbranch
1243 * @zbr2: following zbranch
1244 *
1245 * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of
1246 * names of the direntries/xentries which are referred by the keys. This
1247 * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes
1248 * sure the name of direntry/xentry referred by @zbr1 is less than
1249 * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not,
1250 * and a negative error code in case of failure.
1251 */
1252static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1,
1253			       struct ubifs_zbranch *zbr2)
1254{
1255	int err, nlen1, nlen2, cmp;
1256	struct ubifs_dent_node *dent1, *dent2;
1257	union ubifs_key key;
1258	char key_buf[DBG_KEY_BUF_LEN];
1259
1260	ubifs_assert(!keys_cmp(c, &zbr1->key, &zbr2->key));
1261	dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1262	if (!dent1)
1263		return -ENOMEM;
1264	dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1265	if (!dent2) {
1266		err = -ENOMEM;
1267		goto out_free;
1268	}
1269
1270	err = ubifs_tnc_read_node(c, zbr1, dent1);
1271	if (err)
1272		goto out_free;
1273	err = ubifs_validate_entry(c, dent1);
1274	if (err)
1275		goto out_free;
1276
1277	err = ubifs_tnc_read_node(c, zbr2, dent2);
1278	if (err)
1279		goto out_free;
1280	err = ubifs_validate_entry(c, dent2);
1281	if (err)
1282		goto out_free;
1283
1284	/* Make sure node keys are the same as in zbranch */
1285	err = 1;
1286	key_read(c, &dent1->key, &key);
1287	if (keys_cmp(c, &zbr1->key, &key)) {
1288		ubifs_err("1st entry at %d:%d has key %s", zbr1->lnum,
1289			  zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1290						       DBG_KEY_BUF_LEN));
1291		ubifs_err("but it should have key %s according to tnc",
1292			  dbg_snprintf_key(c, &zbr1->key, key_buf,
1293					   DBG_KEY_BUF_LEN));
1294		ubifs_dump_node(c, dent1);
1295		goto out_free;
1296	}
1297
1298	key_read(c, &dent2->key, &key);
1299	if (keys_cmp(c, &zbr2->key, &key)) {
1300		ubifs_err("2nd entry at %d:%d has key %s", zbr1->lnum,
1301			  zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1302						       DBG_KEY_BUF_LEN));
1303		ubifs_err("but it should have key %s according to tnc",
1304			  dbg_snprintf_key(c, &zbr2->key, key_buf,
1305					   DBG_KEY_BUF_LEN));
1306		ubifs_dump_node(c, dent2);
1307		goto out_free;
1308	}
1309
1310	nlen1 = le16_to_cpu(dent1->nlen);
1311	nlen2 = le16_to_cpu(dent2->nlen);
1312
1313	cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2));
1314	if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) {
1315		err = 0;
1316		goto out_free;
1317	}
1318	if (cmp == 0 && nlen1 == nlen2)
1319		ubifs_err("2 xent/dent nodes with the same name");
1320	else
1321		ubifs_err("bad order of colliding key %s",
1322			  dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
1323
1324	ubifs_msg("first node at %d:%d\n", zbr1->lnum, zbr1->offs);
1325	ubifs_dump_node(c, dent1);
1326	ubifs_msg("second node at %d:%d\n", zbr2->lnum, zbr2->offs);
1327	ubifs_dump_node(c, dent2);
1328
1329out_free:
1330	kfree(dent2);
1331	kfree(dent1);
1332	return err;
1333}
1334
1335/**
1336 * dbg_check_znode - check if znode is all right.
1337 * @c: UBIFS file-system description object
1338 * @zbr: zbranch which points to this znode
1339 *
1340 * This function makes sure that znode referred to by @zbr is all right.
1341 * Returns zero if it is, and %-EINVAL if it is not.
1342 */
1343static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr)
1344{
1345	struct ubifs_znode *znode = zbr->znode;
1346	struct ubifs_znode *zp = znode->parent;
1347	int n, err, cmp;
1348
1349	if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
1350		err = 1;
1351		goto out;
1352	}
1353	if (znode->level < 0) {
1354		err = 2;
1355		goto out;
1356	}
1357	if (znode->iip < 0 || znode->iip >= c->fanout) {
1358		err = 3;
1359		goto out;
1360	}
1361
1362	if (zbr->len == 0)
1363		/* Only dirty zbranch may have no on-flash nodes */
1364		if (!ubifs_zn_dirty(znode)) {
1365			err = 4;
1366			goto out;
1367		}
1368
1369	if (ubifs_zn_dirty(znode)) {
1370		/*
1371		 * If znode is dirty, its parent has to be dirty as well. The
1372		 * order of the operation is important, so we have to have
1373		 * memory barriers.
1374		 */
1375		smp_mb();
1376		if (zp && !ubifs_zn_dirty(zp)) {
1377			/*
1378			 * The dirty flag is atomic and is cleared outside the
1379			 * TNC mutex, so znode's dirty flag may now have
1380			 * been cleared. The child is always cleared before the
1381			 * parent, so we just need to check again.
1382			 */
1383			smp_mb();
1384			if (ubifs_zn_dirty(znode)) {
1385				err = 5;
1386				goto out;
1387			}
1388		}
1389	}
1390
1391	if (zp) {
1392		const union ubifs_key *min, *max;
1393
1394		if (znode->level != zp->level - 1) {
1395			err = 6;
1396			goto out;
1397		}
1398
1399		/* Make sure the 'parent' pointer in our znode is correct */
1400		err = ubifs_search_zbranch(c, zp, &zbr->key, &n);
1401		if (!err) {
1402			/* This zbranch does not exist in the parent */
1403			err = 7;
1404			goto out;
1405		}
1406
1407		if (znode->iip >= zp->child_cnt) {
1408			err = 8;
1409			goto out;
1410		}
1411
1412		if (znode->iip != n) {
1413			/* This may happen only in case of collisions */
1414			if (keys_cmp(c, &zp->zbranch[n].key,
1415				     &zp->zbranch[znode->iip].key)) {
1416				err = 9;
1417				goto out;
1418			}
1419			n = znode->iip;
1420		}
1421
1422		/*
1423		 * Make sure that the first key in our znode is greater than or
1424		 * equal to the key in the pointing zbranch.
1425		 */
1426		min = &zbr->key;
1427		cmp = keys_cmp(c, min, &znode->zbranch[0].key);
1428		if (cmp == 1) {
1429			err = 10;
1430			goto out;
1431		}
1432
1433		if (n + 1 < zp->child_cnt) {
1434			max = &zp->zbranch[n + 1].key;
1435
1436			/*
1437			 * Make sure the last key in our znode is less or
1438			 * equivalent than the key in the zbranch which goes
1439			 * after our pointing zbranch.
1440			 */
1441			cmp = keys_cmp(c, max,
1442				&znode->zbranch[znode->child_cnt - 1].key);
1443			if (cmp == -1) {
1444				err = 11;
1445				goto out;
1446			}
1447		}
1448	} else {
1449		/* This may only be root znode */
1450		if (zbr != &c->zroot) {
1451			err = 12;
1452			goto out;
1453		}
1454	}
1455
1456	/*
1457	 * Make sure that next key is greater or equivalent then the previous
1458	 * one.
1459	 */
1460	for (n = 1; n < znode->child_cnt; n++) {
1461		cmp = keys_cmp(c, &znode->zbranch[n - 1].key,
1462			       &znode->zbranch[n].key);
1463		if (cmp > 0) {
1464			err = 13;
1465			goto out;
1466		}
1467		if (cmp == 0) {
1468			/* This can only be keys with colliding hash */
1469			if (!is_hash_key(c, &znode->zbranch[n].key)) {
1470				err = 14;
1471				goto out;
1472			}
1473
1474			if (znode->level != 0 || c->replaying)
1475				continue;
1476
1477			/*
1478			 * Colliding keys should follow binary order of
1479			 * corresponding xentry/dentry names.
1480			 */
1481			err = dbg_check_key_order(c, &znode->zbranch[n - 1],
1482						  &znode->zbranch[n]);
1483			if (err < 0)
1484				return err;
1485			if (err) {
1486				err = 15;
1487				goto out;
1488			}
1489		}
1490	}
1491
1492	for (n = 0; n < znode->child_cnt; n++) {
1493		if (!znode->zbranch[n].znode &&
1494		    (znode->zbranch[n].lnum == 0 ||
1495		     znode->zbranch[n].len == 0)) {
1496			err = 16;
1497			goto out;
1498		}
1499
1500		if (znode->zbranch[n].lnum != 0 &&
1501		    znode->zbranch[n].len == 0) {
1502			err = 17;
1503			goto out;
1504		}
1505
1506		if (znode->zbranch[n].lnum == 0 &&
1507		    znode->zbranch[n].len != 0) {
1508			err = 18;
1509			goto out;
1510		}
1511
1512		if (znode->zbranch[n].lnum == 0 &&
1513		    znode->zbranch[n].offs != 0) {
1514			err = 19;
1515			goto out;
1516		}
1517
1518		if (znode->level != 0 && znode->zbranch[n].znode)
1519			if (znode->zbranch[n].znode->parent != znode) {
1520				err = 20;
1521				goto out;
1522			}
1523	}
1524
1525	return 0;
1526
1527out:
1528	ubifs_err("failed, error %d", err);
1529	ubifs_msg("dump of the znode");
1530	ubifs_dump_znode(c, znode);
1531	if (zp) {
1532		ubifs_msg("dump of the parent znode");
1533		ubifs_dump_znode(c, zp);
1534	}
1535	dump_stack();
1536	return -EINVAL;
1537}
1538
1539/**
1540 * dbg_check_tnc - check TNC tree.
1541 * @c: UBIFS file-system description object
1542 * @extra: do extra checks that are possible at start commit
1543 *
1544 * This function traverses whole TNC tree and checks every znode. Returns zero
1545 * if everything is all right and %-EINVAL if something is wrong with TNC.
1546 */
1547int dbg_check_tnc(struct ubifs_info *c, int extra)
1548{
1549	struct ubifs_znode *znode;
1550	long clean_cnt = 0, dirty_cnt = 0;
1551	int err, last;
1552
1553	if (!dbg_is_chk_index(c))
1554		return 0;
1555
1556	ubifs_assert(mutex_is_locked(&c->tnc_mutex));
1557	if (!c->zroot.znode)
1558		return 0;
1559
1560	znode = ubifs_tnc_postorder_first(c->zroot.znode);
1561	while (1) {
1562		struct ubifs_znode *prev;
1563		struct ubifs_zbranch *zbr;
1564
1565		if (!znode->parent)
1566			zbr = &c->zroot;
1567		else
1568			zbr = &znode->parent->zbranch[znode->iip];
1569
1570		err = dbg_check_znode(c, zbr);
1571		if (err)
1572			return err;
1573
1574		if (extra) {
1575			if (ubifs_zn_dirty(znode))
1576				dirty_cnt += 1;
1577			else
1578				clean_cnt += 1;
1579		}
1580
1581		prev = znode;
1582		znode = ubifs_tnc_postorder_next(znode);
1583		if (!znode)
1584			break;
1585
1586		/*
1587		 * If the last key of this znode is equivalent to the first key
1588		 * of the next znode (collision), then check order of the keys.
1589		 */
1590		last = prev->child_cnt - 1;
1591		if (prev->level == 0 && znode->level == 0 && !c->replaying &&
1592		    !keys_cmp(c, &prev->zbranch[last].key,
1593			      &znode->zbranch[0].key)) {
1594			err = dbg_check_key_order(c, &prev->zbranch[last],
1595						  &znode->zbranch[0]);
1596			if (err < 0)
1597				return err;
1598			if (err) {
1599				ubifs_msg("first znode");
1600				ubifs_dump_znode(c, prev);
1601				ubifs_msg("second znode");
1602				ubifs_dump_znode(c, znode);
1603				return -EINVAL;
1604			}
1605		}
1606	}
1607
1608	if (extra) {
1609		if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) {
1610			ubifs_err("incorrect clean_zn_cnt %ld, calculated %ld",
1611				  atomic_long_read(&c->clean_zn_cnt),
1612				  clean_cnt);
1613			return -EINVAL;
1614		}
1615		if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) {
1616			ubifs_err("incorrect dirty_zn_cnt %ld, calculated %ld",
1617				  atomic_long_read(&c->dirty_zn_cnt),
1618				  dirty_cnt);
1619			return -EINVAL;
1620		}
1621	}
1622
1623	return 0;
1624}
1625
1626/**
1627 * dbg_walk_index - walk the on-flash index.
1628 * @c: UBIFS file-system description object
1629 * @leaf_cb: called for each leaf node
1630 * @znode_cb: called for each indexing node
1631 * @priv: private data which is passed to callbacks
1632 *
1633 * This function walks the UBIFS index and calls the @leaf_cb for each leaf
1634 * node and @znode_cb for each indexing node. Returns zero in case of success
1635 * and a negative error code in case of failure.
1636 *
1637 * It would be better if this function removed every znode it pulled to into
1638 * the TNC, so that the behavior more closely matched the non-debugging
1639 * behavior.
1640 */
1641int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb,
1642		   dbg_znode_callback znode_cb, void *priv)
1643{
1644	int err;
1645	struct ubifs_zbranch *zbr;
1646	struct ubifs_znode *znode, *child;
1647
1648	mutex_lock(&c->tnc_mutex);
1649	/* If the root indexing node is not in TNC - pull it */
1650	if (!c->zroot.znode) {
1651		c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1652		if (IS_ERR(c->zroot.znode)) {
1653			err = PTR_ERR(c->zroot.znode);
1654			c->zroot.znode = NULL;
1655			goto out_unlock;
1656		}
1657	}
1658
1659	/*
1660	 * We are going to traverse the indexing tree in the postorder manner.
1661	 * Go down and find the leftmost indexing node where we are going to
1662	 * start from.
1663	 */
1664	znode = c->zroot.znode;
1665	while (znode->level > 0) {
1666		zbr = &znode->zbranch[0];
1667		child = zbr->znode;
1668		if (!child) {
1669			child = ubifs_load_znode(c, zbr, znode, 0);
1670			if (IS_ERR(child)) {
1671				err = PTR_ERR(child);
1672				goto out_unlock;
1673			}
1674			zbr->znode = child;
1675		}
1676
1677		znode = child;
1678	}
1679
1680	/* Iterate over all indexing nodes */
1681	while (1) {
1682		int idx;
1683
1684		cond_resched();
1685
1686		if (znode_cb) {
1687			err = znode_cb(c, znode, priv);
1688			if (err) {
1689				ubifs_err("znode checking function returned "
1690					  "error %d", err);
1691				ubifs_dump_znode(c, znode);
1692				goto out_dump;
1693			}
1694		}
1695		if (leaf_cb && znode->level == 0) {
1696			for (idx = 0; idx < znode->child_cnt; idx++) {
1697				zbr = &znode->zbranch[idx];
1698				err = leaf_cb(c, zbr, priv);
1699				if (err) {
1700					ubifs_err("leaf checking function "
1701						  "returned error %d, for leaf "
1702						  "at LEB %d:%d",
1703						  err, zbr->lnum, zbr->offs);
1704					goto out_dump;
1705				}
1706			}
1707		}
1708
1709		if (!znode->parent)
1710			break;
1711
1712		idx = znode->iip + 1;
1713		znode = znode->parent;
1714		if (idx < znode->child_cnt) {
1715			/* Switch to the next index in the parent */
1716			zbr = &znode->zbranch[idx];
1717			child = zbr->znode;
1718			if (!child) {
1719				child = ubifs_load_znode(c, zbr, znode, idx);
1720				if (IS_ERR(child)) {
1721					err = PTR_ERR(child);
1722					goto out_unlock;
1723				}
1724				zbr->znode = child;
1725			}
1726			znode = child;
1727		} else
1728			/*
1729			 * This is the last child, switch to the parent and
1730			 * continue.
1731			 */
1732			continue;
1733
1734		/* Go to the lowest leftmost znode in the new sub-tree */
1735		while (znode->level > 0) {
1736			zbr = &znode->zbranch[0];
1737			child = zbr->znode;
1738			if (!child) {
1739				child = ubifs_load_znode(c, zbr, znode, 0);
1740				if (IS_ERR(child)) {
1741					err = PTR_ERR(child);
1742					goto out_unlock;
1743				}
1744				zbr->znode = child;
1745			}
1746			znode = child;
1747		}
1748	}
1749
1750	mutex_unlock(&c->tnc_mutex);
1751	return 0;
1752
1753out_dump:
1754	if (znode->parent)
1755		zbr = &znode->parent->zbranch[znode->iip];
1756	else
1757		zbr = &c->zroot;
1758	ubifs_msg("dump of znode at LEB %d:%d", zbr->lnum, zbr->offs);
1759	ubifs_dump_znode(c, znode);
1760out_unlock:
1761	mutex_unlock(&c->tnc_mutex);
1762	return err;
1763}
1764
1765/**
1766 * add_size - add znode size to partially calculated index size.
1767 * @c: UBIFS file-system description object
1768 * @znode: znode to add size for
1769 * @priv: partially calculated index size
1770 *
1771 * This is a helper function for 'dbg_check_idx_size()' which is called for
1772 * every indexing node and adds its size to the 'long long' variable pointed to
1773 * by @priv.
1774 */
1775static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv)
1776{
1777	long long *idx_size = priv;
1778	int add;
1779
1780	add = ubifs_idx_node_sz(c, znode->child_cnt);
1781	add = ALIGN(add, 8);
1782	*idx_size += add;
1783	return 0;
1784}
1785
1786/**
1787 * dbg_check_idx_size - check index size.
1788 * @c: UBIFS file-system description object
1789 * @idx_size: size to check
1790 *
1791 * This function walks the UBIFS index, calculates its size and checks that the
1792 * size is equivalent to @idx_size. Returns zero in case of success and a
1793 * negative error code in case of failure.
1794 */
1795int dbg_check_idx_size(struct ubifs_info *c, long long idx_size)
1796{
1797	int err;
1798	long long calc = 0;
1799
1800	if (!dbg_is_chk_index(c))
1801		return 0;
1802
1803	err = dbg_walk_index(c, NULL, add_size, &calc);
1804	if (err) {
1805		ubifs_err("error %d while walking the index", err);
1806		return err;
1807	}
1808
1809	if (calc != idx_size) {
1810		ubifs_err("index size check failed: calculated size is %lld, "
1811			  "should be %lld", calc, idx_size);
1812		dump_stack();
1813		return -EINVAL;
1814	}
1815
1816	return 0;
1817}
1818
1819/**
1820 * struct fsck_inode - information about an inode used when checking the file-system.
1821 * @rb: link in the RB-tree of inodes
1822 * @inum: inode number
1823 * @mode: inode type, permissions, etc
1824 * @nlink: inode link count
1825 * @xattr_cnt: count of extended attributes
1826 * @references: how many directory/xattr entries refer this inode (calculated
1827 *              while walking the index)
1828 * @calc_cnt: for directory inode count of child directories
1829 * @size: inode size (read from on-flash inode)
1830 * @xattr_sz: summary size of all extended attributes (read from on-flash
1831 *            inode)
1832 * @calc_sz: for directories calculated directory size
1833 * @calc_xcnt: count of extended attributes
1834 * @calc_xsz: calculated summary size of all extended attributes
1835 * @xattr_nms: sum of lengths of all extended attribute names belonging to this
1836 *             inode (read from on-flash inode)
1837 * @calc_xnms: calculated sum of lengths of all extended attribute names
1838 */
1839struct fsck_inode {
1840	struct rb_node rb;
1841	ino_t inum;
1842	umode_t mode;
1843	unsigned int nlink;
1844	unsigned int xattr_cnt;
1845	int references;
1846	int calc_cnt;
1847	long long size;
1848	unsigned int xattr_sz;
1849	long long calc_sz;
1850	long long calc_xcnt;
1851	long long calc_xsz;
1852	unsigned int xattr_nms;
1853	long long calc_xnms;
1854};
1855
1856/**
1857 * struct fsck_data - private FS checking information.
1858 * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects)
1859 */
1860struct fsck_data {
1861	struct rb_root inodes;
1862};
1863
1864/**
1865 * add_inode - add inode information to RB-tree of inodes.
1866 * @c: UBIFS file-system description object
1867 * @fsckd: FS checking information
1868 * @ino: raw UBIFS inode to add
1869 *
1870 * This is a helper function for 'check_leaf()' which adds information about
1871 * inode @ino to the RB-tree of inodes. Returns inode information pointer in
1872 * case of success and a negative error code in case of failure.
1873 */
1874static struct fsck_inode *add_inode(struct ubifs_info *c,
1875				    struct fsck_data *fsckd,
1876				    struct ubifs_ino_node *ino)
1877{
1878	struct rb_node **p, *parent = NULL;
1879	struct fsck_inode *fscki;
1880	ino_t inum = key_inum_flash(c, &ino->key);
1881	struct inode *inode;
1882	struct ubifs_inode *ui;
1883
1884	p = &fsckd->inodes.rb_node;
1885	while (*p) {
1886		parent = *p;
1887		fscki = rb_entry(parent, struct fsck_inode, rb);
1888		if (inum < fscki->inum)
1889			p = &(*p)->rb_left;
1890		else if (inum > fscki->inum)
1891			p = &(*p)->rb_right;
1892		else
1893			return fscki;
1894	}
1895
1896	if (inum > c->highest_inum) {
1897		ubifs_err("too high inode number, max. is %lu",
1898			  (unsigned long)c->highest_inum);
1899		return ERR_PTR(-EINVAL);
1900	}
1901
1902	fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS);
1903	if (!fscki)
1904		return ERR_PTR(-ENOMEM);
1905
1906	inode = ilookup(c->vfs_sb, inum);
1907
1908	fscki->inum = inum;
1909	/*
1910	 * If the inode is present in the VFS inode cache, use it instead of
1911	 * the on-flash inode which might be out-of-date. E.g., the size might
1912	 * be out-of-date. If we do not do this, the following may happen, for
1913	 * example:
1914	 *   1. A power cut happens
1915	 *   2. We mount the file-system R/O, the replay process fixes up the
1916	 *      inode size in the VFS cache, but on on-flash.
1917	 *   3. 'check_leaf()' fails because it hits a data node beyond inode
1918	 *      size.
1919	 */
1920	if (!inode) {
1921		fscki->nlink = le32_to_cpu(ino->nlink);
1922		fscki->size = le64_to_cpu(ino->size);
1923		fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
1924		fscki->xattr_sz = le32_to_cpu(ino->xattr_size);
1925		fscki->xattr_nms = le32_to_cpu(ino->xattr_names);
1926		fscki->mode = le32_to_cpu(ino->mode);
1927	} else {
1928		ui = ubifs_inode(inode);
1929		fscki->nlink = inode->i_nlink;
1930		fscki->size = inode->i_size;
1931		fscki->xattr_cnt = ui->xattr_cnt;
1932		fscki->xattr_sz = ui->xattr_size;
1933		fscki->xattr_nms = ui->xattr_names;
1934		fscki->mode = inode->i_mode;
1935		iput(inode);
1936	}
1937
1938	if (S_ISDIR(fscki->mode)) {
1939		fscki->calc_sz = UBIFS_INO_NODE_SZ;
1940		fscki->calc_cnt = 2;
1941	}
1942
1943	rb_link_node(&fscki->rb, parent, p);
1944	rb_insert_color(&fscki->rb, &fsckd->inodes);
1945
1946	return fscki;
1947}
1948
1949/**
1950 * search_inode - search inode in the RB-tree of inodes.
1951 * @fsckd: FS checking information
1952 * @inum: inode number to search
1953 *
1954 * This is a helper function for 'check_leaf()' which searches inode @inum in
1955 * the RB-tree of inodes and returns an inode information pointer or %NULL if
1956 * the inode was not found.
1957 */
1958static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum)
1959{
1960	struct rb_node *p;
1961	struct fsck_inode *fscki;
1962
1963	p = fsckd->inodes.rb_node;
1964	while (p) {
1965		fscki = rb_entry(p, struct fsck_inode, rb);
1966		if (inum < fscki->inum)
1967			p = p->rb_left;
1968		else if (inum > fscki->inum)
1969			p = p->rb_right;
1970		else
1971			return fscki;
1972	}
1973	return NULL;
1974}
1975
1976/**
1977 * read_add_inode - read inode node and add it to RB-tree of inodes.
1978 * @c: UBIFS file-system description object
1979 * @fsckd: FS checking information
1980 * @inum: inode number to read
1981 *
1982 * This is a helper function for 'check_leaf()' which finds inode node @inum in
1983 * the index, reads it, and adds it to the RB-tree of inodes. Returns inode
1984 * information pointer in case of success and a negative error code in case of
1985 * failure.
1986 */
1987static struct fsck_inode *read_add_inode(struct ubifs_info *c,
1988					 struct fsck_data *fsckd, ino_t inum)
1989{
1990	int n, err;
1991	union ubifs_key key;
1992	struct ubifs_znode *znode;
1993	struct ubifs_zbranch *zbr;
1994	struct ubifs_ino_node *ino;
1995	struct fsck_inode *fscki;
1996
1997	fscki = search_inode(fsckd, inum);
1998	if (fscki)
1999		return fscki;
2000
2001	ino_key_init(c, &key, inum);
2002	err = ubifs_lookup_level0(c, &key, &znode, &n);
2003	if (!err) {
2004		ubifs_err("inode %lu not found in index", (unsigned long)inum);
2005		return ERR_PTR(-ENOENT);
2006	} else if (err < 0) {
2007		ubifs_err("error %d while looking up inode %lu",
2008			  err, (unsigned long)inum);
2009		return ERR_PTR(err);
2010	}
2011
2012	zbr = &znode->zbranch[n];
2013	if (zbr->len < UBIFS_INO_NODE_SZ) {
2014		ubifs_err("bad node %lu node length %d",
2015			  (unsigned long)inum, zbr->len);
2016		return ERR_PTR(-EINVAL);
2017	}
2018
2019	ino = kmalloc(zbr->len, GFP_NOFS);
2020	if (!ino)
2021		return ERR_PTR(-ENOMEM);
2022
2023	err = ubifs_tnc_read_node(c, zbr, ino);
2024	if (err) {
2025		ubifs_err("cannot read inode node at LEB %d:%d, error %d",
2026			  zbr->lnum, zbr->offs, err);
2027		kfree(ino);
2028		return ERR_PTR(err);
2029	}
2030
2031	fscki = add_inode(c, fsckd, ino);
2032	kfree(ino);
2033	if (IS_ERR(fscki)) {
2034		ubifs_err("error %ld while adding inode %lu node",
2035			  PTR_ERR(fscki), (unsigned long)inum);
2036		return fscki;
2037	}
2038
2039	return fscki;
2040}
2041
2042/**
2043 * check_leaf - check leaf node.
2044 * @c: UBIFS file-system description object
2045 * @zbr: zbranch of the leaf node to check
2046 * @priv: FS checking information
2047 *
2048 * This is a helper function for 'dbg_check_filesystem()' which is called for
2049 * every single leaf node while walking the indexing tree. It checks that the
2050 * leaf node referred from the indexing tree exists, has correct CRC, and does
2051 * some other basic validation. This function is also responsible for building
2052 * an RB-tree of inodes - it adds all inodes into the RB-tree. It also
2053 * calculates reference count, size, etc for each inode in order to later
2054 * compare them to the information stored inside the inodes and detect possible
2055 * inconsistencies. Returns zero in case of success and a negative error code
2056 * in case of failure.
2057 */
2058static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr,
2059		      void *priv)
2060{
2061	ino_t inum;
2062	void *node;
2063	struct ubifs_ch *ch;
2064	int err, type = key_type(c, &zbr->key);
2065	struct fsck_inode *fscki;
2066
2067	if (zbr->len < UBIFS_CH_SZ) {
2068		ubifs_err("bad leaf length %d (LEB %d:%d)",
2069			  zbr->len, zbr->lnum, zbr->offs);
2070		return -EINVAL;
2071	}
2072
2073	node = kmalloc(zbr->len, GFP_NOFS);
2074	if (!node)
2075		return -ENOMEM;
2076
2077	err = ubifs_tnc_read_node(c, zbr, node);
2078	if (err) {
2079		ubifs_err("cannot read leaf node at LEB %d:%d, error %d",
2080			  zbr->lnum, zbr->offs, err);
2081		goto out_free;
2082	}
2083
2084	/* If this is an inode node, add it to RB-tree of inodes */
2085	if (type == UBIFS_INO_KEY) {
2086		fscki = add_inode(c, priv, node);
2087		if (IS_ERR(fscki)) {
2088			err = PTR_ERR(fscki);
2089			ubifs_err("error %d while adding inode node", err);
2090			goto out_dump;
2091		}
2092		goto out;
2093	}
2094
2095	if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY &&
2096	    type != UBIFS_DATA_KEY) {
2097		ubifs_err("unexpected node type %d at LEB %d:%d",
2098			  type, zbr->lnum, zbr->offs);
2099		err = -EINVAL;
2100		goto out_free;
2101	}
2102
2103	ch = node;
2104	if (le64_to_cpu(ch->sqnum) > c->max_sqnum) {
2105		ubifs_err("too high sequence number, max. is %llu",
2106			  c->max_sqnum);
2107		err = -EINVAL;
2108		goto out_dump;
2109	}
2110
2111	if (type == UBIFS_DATA_KEY) {
2112		long long blk_offs;
2113		struct ubifs_data_node *dn = node;
2114
 
 
2115		/*
2116		 * Search the inode node this data node belongs to and insert
2117		 * it to the RB-tree of inodes.
2118		 */
2119		inum = key_inum_flash(c, &dn->key);
2120		fscki = read_add_inode(c, priv, inum);
2121		if (IS_ERR(fscki)) {
2122			err = PTR_ERR(fscki);
2123			ubifs_err("error %d while processing data node and "
2124				  "trying to find inode node %lu",
2125				  err, (unsigned long)inum);
2126			goto out_dump;
2127		}
2128
2129		/* Make sure the data node is within inode size */
2130		blk_offs = key_block_flash(c, &dn->key);
2131		blk_offs <<= UBIFS_BLOCK_SHIFT;
2132		blk_offs += le32_to_cpu(dn->size);
2133		if (blk_offs > fscki->size) {
2134			ubifs_err("data node at LEB %d:%d is not within inode "
2135				  "size %lld", zbr->lnum, zbr->offs,
2136				  fscki->size);
2137			err = -EINVAL;
2138			goto out_dump;
2139		}
2140	} else {
2141		int nlen;
2142		struct ubifs_dent_node *dent = node;
2143		struct fsck_inode *fscki1;
2144
 
 
2145		err = ubifs_validate_entry(c, dent);
2146		if (err)
2147			goto out_dump;
2148
2149		/*
2150		 * Search the inode node this entry refers to and the parent
2151		 * inode node and insert them to the RB-tree of inodes.
2152		 */
2153		inum = le64_to_cpu(dent->inum);
2154		fscki = read_add_inode(c, priv, inum);
2155		if (IS_ERR(fscki)) {
2156			err = PTR_ERR(fscki);
2157			ubifs_err("error %d while processing entry node and "
2158				  "trying to find inode node %lu",
2159				  err, (unsigned long)inum);
2160			goto out_dump;
2161		}
2162
2163		/* Count how many direntries or xentries refers this inode */
2164		fscki->references += 1;
2165
2166		inum = key_inum_flash(c, &dent->key);
2167		fscki1 = read_add_inode(c, priv, inum);
2168		if (IS_ERR(fscki1)) {
2169			err = PTR_ERR(fscki1);
2170			ubifs_err("error %d while processing entry node and "
2171				  "trying to find parent inode node %lu",
2172				  err, (unsigned long)inum);
2173			goto out_dump;
2174		}
2175
2176		nlen = le16_to_cpu(dent->nlen);
2177		if (type == UBIFS_XENT_KEY) {
2178			fscki1->calc_xcnt += 1;
2179			fscki1->calc_xsz += CALC_DENT_SIZE(nlen);
2180			fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size);
2181			fscki1->calc_xnms += nlen;
2182		} else {
2183			fscki1->calc_sz += CALC_DENT_SIZE(nlen);
2184			if (dent->type == UBIFS_ITYPE_DIR)
2185				fscki1->calc_cnt += 1;
2186		}
2187	}
2188
2189out:
2190	kfree(node);
2191	return 0;
2192
2193out_dump:
2194	ubifs_msg("dump of node at LEB %d:%d", zbr->lnum, zbr->offs);
2195	ubifs_dump_node(c, node);
2196out_free:
2197	kfree(node);
2198	return err;
2199}
2200
2201/**
2202 * free_inodes - free RB-tree of inodes.
2203 * @fsckd: FS checking information
2204 */
2205static void free_inodes(struct fsck_data *fsckd)
2206{
2207	struct rb_node *this = fsckd->inodes.rb_node;
2208	struct fsck_inode *fscki;
2209
2210	while (this) {
2211		if (this->rb_left)
2212			this = this->rb_left;
2213		else if (this->rb_right)
2214			this = this->rb_right;
2215		else {
2216			fscki = rb_entry(this, struct fsck_inode, rb);
2217			this = rb_parent(this);
2218			if (this) {
2219				if (this->rb_left == &fscki->rb)
2220					this->rb_left = NULL;
2221				else
2222					this->rb_right = NULL;
2223			}
2224			kfree(fscki);
2225		}
2226	}
2227}
2228
2229/**
2230 * check_inodes - checks all inodes.
2231 * @c: UBIFS file-system description object
2232 * @fsckd: FS checking information
2233 *
2234 * This is a helper function for 'dbg_check_filesystem()' which walks the
2235 * RB-tree of inodes after the index scan has been finished, and checks that
2236 * inode nlink, size, etc are correct. Returns zero if inodes are fine,
2237 * %-EINVAL if not, and a negative error code in case of failure.
2238 */
2239static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd)
2240{
2241	int n, err;
2242	union ubifs_key key;
2243	struct ubifs_znode *znode;
2244	struct ubifs_zbranch *zbr;
2245	struct ubifs_ino_node *ino;
2246	struct fsck_inode *fscki;
2247	struct rb_node *this = rb_first(&fsckd->inodes);
2248
2249	while (this) {
2250		fscki = rb_entry(this, struct fsck_inode, rb);
2251		this = rb_next(this);
2252
2253		if (S_ISDIR(fscki->mode)) {
2254			/*
2255			 * Directories have to have exactly one reference (they
2256			 * cannot have hardlinks), although root inode is an
2257			 * exception.
2258			 */
2259			if (fscki->inum != UBIFS_ROOT_INO &&
2260			    fscki->references != 1) {
2261				ubifs_err("directory inode %lu has %d "
2262					  "direntries which refer it, but "
2263					  "should be 1",
2264					  (unsigned long)fscki->inum,
2265					  fscki->references);
2266				goto out_dump;
2267			}
2268			if (fscki->inum == UBIFS_ROOT_INO &&
2269			    fscki->references != 0) {
2270				ubifs_err("root inode %lu has non-zero (%d) "
2271					  "direntries which refer it",
2272					  (unsigned long)fscki->inum,
2273					  fscki->references);
2274				goto out_dump;
2275			}
2276			if (fscki->calc_sz != fscki->size) {
2277				ubifs_err("directory inode %lu size is %lld, "
2278					  "but calculated size is %lld",
2279					  (unsigned long)fscki->inum,
2280					  fscki->size, fscki->calc_sz);
2281				goto out_dump;
2282			}
2283			if (fscki->calc_cnt != fscki->nlink) {
2284				ubifs_err("directory inode %lu nlink is %d, "
2285					  "but calculated nlink is %d",
2286					  (unsigned long)fscki->inum,
2287					  fscki->nlink, fscki->calc_cnt);
2288				goto out_dump;
2289			}
2290		} else {
2291			if (fscki->references != fscki->nlink) {
2292				ubifs_err("inode %lu nlink is %d, but "
2293					  "calculated nlink is %d",
2294					  (unsigned long)fscki->inum,
2295					  fscki->nlink, fscki->references);
2296				goto out_dump;
2297			}
2298		}
2299		if (fscki->xattr_sz != fscki->calc_xsz) {
2300			ubifs_err("inode %lu has xattr size %u, but "
2301				  "calculated size is %lld",
2302				  (unsigned long)fscki->inum, fscki->xattr_sz,
2303				  fscki->calc_xsz);
2304			goto out_dump;
2305		}
2306		if (fscki->xattr_cnt != fscki->calc_xcnt) {
2307			ubifs_err("inode %lu has %u xattrs, but "
2308				  "calculated count is %lld",
2309				  (unsigned long)fscki->inum,
2310				  fscki->xattr_cnt, fscki->calc_xcnt);
2311			goto out_dump;
2312		}
2313		if (fscki->xattr_nms != fscki->calc_xnms) {
2314			ubifs_err("inode %lu has xattr names' size %u, but "
2315				  "calculated names' size is %lld",
2316				  (unsigned long)fscki->inum, fscki->xattr_nms,
2317				  fscki->calc_xnms);
2318			goto out_dump;
2319		}
2320	}
2321
2322	return 0;
2323
2324out_dump:
2325	/* Read the bad inode and dump it */
2326	ino_key_init(c, &key, fscki->inum);
2327	err = ubifs_lookup_level0(c, &key, &znode, &n);
2328	if (!err) {
2329		ubifs_err("inode %lu not found in index",
2330			  (unsigned long)fscki->inum);
2331		return -ENOENT;
2332	} else if (err < 0) {
2333		ubifs_err("error %d while looking up inode %lu",
2334			  err, (unsigned long)fscki->inum);
2335		return err;
2336	}
2337
2338	zbr = &znode->zbranch[n];
2339	ino = kmalloc(zbr->len, GFP_NOFS);
2340	if (!ino)
2341		return -ENOMEM;
2342
2343	err = ubifs_tnc_read_node(c, zbr, ino);
2344	if (err) {
2345		ubifs_err("cannot read inode node at LEB %d:%d, error %d",
2346			  zbr->lnum, zbr->offs, err);
2347		kfree(ino);
2348		return err;
2349	}
2350
2351	ubifs_msg("dump of the inode %lu sitting in LEB %d:%d",
2352		  (unsigned long)fscki->inum, zbr->lnum, zbr->offs);
2353	ubifs_dump_node(c, ino);
2354	kfree(ino);
2355	return -EINVAL;
2356}
2357
2358/**
2359 * dbg_check_filesystem - check the file-system.
2360 * @c: UBIFS file-system description object
2361 *
2362 * This function checks the file system, namely:
2363 * o makes sure that all leaf nodes exist and their CRCs are correct;
2364 * o makes sure inode nlink, size, xattr size/count are correct (for all
2365 *   inodes).
2366 *
2367 * The function reads whole indexing tree and all nodes, so it is pretty
2368 * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if
2369 * not, and a negative error code in case of failure.
2370 */
2371int dbg_check_filesystem(struct ubifs_info *c)
2372{
2373	int err;
2374	struct fsck_data fsckd;
2375
2376	if (!dbg_is_chk_fs(c))
2377		return 0;
2378
2379	fsckd.inodes = RB_ROOT;
2380	err = dbg_walk_index(c, check_leaf, NULL, &fsckd);
2381	if (err)
2382		goto out_free;
2383
2384	err = check_inodes(c, &fsckd);
2385	if (err)
2386		goto out_free;
2387
2388	free_inodes(&fsckd);
2389	return 0;
2390
2391out_free:
2392	ubifs_err("file-system check failed with error %d", err);
2393	dump_stack();
2394	free_inodes(&fsckd);
2395	return err;
2396}
2397
2398/**
2399 * dbg_check_data_nodes_order - check that list of data nodes is sorted.
2400 * @c: UBIFS file-system description object
2401 * @head: the list of nodes ('struct ubifs_scan_node' objects)
2402 *
2403 * This function returns zero if the list of data nodes is sorted correctly,
2404 * and %-EINVAL if not.
2405 */
2406int dbg_check_data_nodes_order(struct ubifs_info *c, struct list_head *head)
2407{
2408	struct list_head *cur;
2409	struct ubifs_scan_node *sa, *sb;
2410
2411	if (!dbg_is_chk_gen(c))
2412		return 0;
2413
2414	for (cur = head->next; cur->next != head; cur = cur->next) {
2415		ino_t inuma, inumb;
2416		uint32_t blka, blkb;
2417
2418		cond_resched();
2419		sa = container_of(cur, struct ubifs_scan_node, list);
2420		sb = container_of(cur->next, struct ubifs_scan_node, list);
2421
2422		if (sa->type != UBIFS_DATA_NODE) {
2423			ubifs_err("bad node type %d", sa->type);
2424			ubifs_dump_node(c, sa->node);
2425			return -EINVAL;
2426		}
2427		if (sb->type != UBIFS_DATA_NODE) {
2428			ubifs_err("bad node type %d", sb->type);
2429			ubifs_dump_node(c, sb->node);
2430			return -EINVAL;
2431		}
2432
2433		inuma = key_inum(c, &sa->key);
2434		inumb = key_inum(c, &sb->key);
2435
2436		if (inuma < inumb)
2437			continue;
2438		if (inuma > inumb) {
2439			ubifs_err("larger inum %lu goes before inum %lu",
2440				  (unsigned long)inuma, (unsigned long)inumb);
2441			goto error_dump;
2442		}
2443
2444		blka = key_block(c, &sa->key);
2445		blkb = key_block(c, &sb->key);
2446
2447		if (blka > blkb) {
2448			ubifs_err("larger block %u goes before %u", blka, blkb);
2449			goto error_dump;
2450		}
2451		if (blka == blkb) {
2452			ubifs_err("two data nodes for the same block");
2453			goto error_dump;
2454		}
2455	}
2456
2457	return 0;
2458
2459error_dump:
2460	ubifs_dump_node(c, sa->node);
2461	ubifs_dump_node(c, sb->node);
2462	return -EINVAL;
2463}
2464
2465/**
2466 * dbg_check_nondata_nodes_order - check that list of data nodes is sorted.
2467 * @c: UBIFS file-system description object
2468 * @head: the list of nodes ('struct ubifs_scan_node' objects)
2469 *
2470 * This function returns zero if the list of non-data nodes is sorted correctly,
2471 * and %-EINVAL if not.
2472 */
2473int dbg_check_nondata_nodes_order(struct ubifs_info *c, struct list_head *head)
2474{
2475	struct list_head *cur;
2476	struct ubifs_scan_node *sa, *sb;
2477
2478	if (!dbg_is_chk_gen(c))
2479		return 0;
2480
2481	for (cur = head->next; cur->next != head; cur = cur->next) {
2482		ino_t inuma, inumb;
2483		uint32_t hasha, hashb;
2484
2485		cond_resched();
2486		sa = container_of(cur, struct ubifs_scan_node, list);
2487		sb = container_of(cur->next, struct ubifs_scan_node, list);
2488
2489		if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2490		    sa->type != UBIFS_XENT_NODE) {
2491			ubifs_err("bad node type %d", sa->type);
2492			ubifs_dump_node(c, sa->node);
2493			return -EINVAL;
2494		}
2495		if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2496		    sa->type != UBIFS_XENT_NODE) {
2497			ubifs_err("bad node type %d", sb->type);
2498			ubifs_dump_node(c, sb->node);
2499			return -EINVAL;
2500		}
2501
2502		if (sa->type != UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2503			ubifs_err("non-inode node goes before inode node");
2504			goto error_dump;
2505		}
2506
2507		if (sa->type == UBIFS_INO_NODE && sb->type != UBIFS_INO_NODE)
2508			continue;
2509
2510		if (sa->type == UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2511			/* Inode nodes are sorted in descending size order */
2512			if (sa->len < sb->len) {
2513				ubifs_err("smaller inode node goes first");
2514				goto error_dump;
2515			}
2516			continue;
2517		}
2518
2519		/*
2520		 * This is either a dentry or xentry, which should be sorted in
2521		 * ascending (parent ino, hash) order.
2522		 */
2523		inuma = key_inum(c, &sa->key);
2524		inumb = key_inum(c, &sb->key);
2525
2526		if (inuma < inumb)
2527			continue;
2528		if (inuma > inumb) {
2529			ubifs_err("larger inum %lu goes before inum %lu",
2530				  (unsigned long)inuma, (unsigned long)inumb);
2531			goto error_dump;
2532		}
2533
2534		hasha = key_block(c, &sa->key);
2535		hashb = key_block(c, &sb->key);
2536
2537		if (hasha > hashb) {
2538			ubifs_err("larger hash %u goes before %u",
2539				  hasha, hashb);
2540			goto error_dump;
2541		}
2542	}
2543
2544	return 0;
2545
2546error_dump:
2547	ubifs_msg("dumping first node");
2548	ubifs_dump_node(c, sa->node);
2549	ubifs_msg("dumping second node");
2550	ubifs_dump_node(c, sb->node);
2551	return -EINVAL;
2552	return 0;
2553}
2554
2555static inline int chance(unsigned int n, unsigned int out_of)
2556{
2557	return !!((random32() % out_of) + 1 <= n);
2558
2559}
2560
2561static int power_cut_emulated(struct ubifs_info *c, int lnum, int write)
2562{
2563	struct ubifs_debug_info *d = c->dbg;
2564
2565	ubifs_assert(dbg_is_tst_rcvry(c));
2566
2567	if (!d->pc_cnt) {
2568		/* First call - decide delay to the power cut */
2569		if (chance(1, 2)) {
2570			unsigned long delay;
2571
2572			if (chance(1, 2)) {
2573				d->pc_delay = 1;
2574				/* Fail withing 1 minute */
2575				delay = random32() % 60000;
2576				d->pc_timeout = jiffies;
2577				d->pc_timeout += msecs_to_jiffies(delay);
2578				ubifs_warn("failing after %lums", delay);
2579			} else {
2580				d->pc_delay = 2;
2581				delay = random32() % 10000;
2582				/* Fail within 10000 operations */
2583				d->pc_cnt_max = delay;
2584				ubifs_warn("failing after %lu calls", delay);
2585			}
2586		}
2587
2588		d->pc_cnt += 1;
2589	}
2590
2591	/* Determine if failure delay has expired */
2592	if (d->pc_delay == 1 && time_before(jiffies, d->pc_timeout))
2593			return 0;
2594	if (d->pc_delay == 2 && d->pc_cnt++ < d->pc_cnt_max)
2595			return 0;
2596
2597	if (lnum == UBIFS_SB_LNUM) {
2598		if (write && chance(1, 2))
2599			return 0;
2600		if (chance(19, 20))
2601			return 0;
2602		ubifs_warn("failing in super block LEB %d", lnum);
2603	} else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) {
2604		if (chance(19, 20))
2605			return 0;
2606		ubifs_warn("failing in master LEB %d", lnum);
2607	} else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) {
2608		if (write && chance(99, 100))
2609			return 0;
2610		if (chance(399, 400))
2611			return 0;
2612		ubifs_warn("failing in log LEB %d", lnum);
2613	} else if (lnum >= c->lpt_first && lnum <= c->lpt_last) {
2614		if (write && chance(7, 8))
2615			return 0;
2616		if (chance(19, 20))
2617			return 0;
2618		ubifs_warn("failing in LPT LEB %d", lnum);
2619	} else if (lnum >= c->orph_first && lnum <= c->orph_last) {
2620		if (write && chance(1, 2))
2621			return 0;
2622		if (chance(9, 10))
2623			return 0;
2624		ubifs_warn("failing in orphan LEB %d", lnum);
2625	} else if (lnum == c->ihead_lnum) {
2626		if (chance(99, 100))
2627			return 0;
2628		ubifs_warn("failing in index head LEB %d", lnum);
2629	} else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) {
2630		if (chance(9, 10))
2631			return 0;
2632		ubifs_warn("failing in GC head LEB %d", lnum);
2633	} else if (write && !RB_EMPTY_ROOT(&c->buds) &&
2634		   !ubifs_search_bud(c, lnum)) {
2635		if (chance(19, 20))
2636			return 0;
2637		ubifs_warn("failing in non-bud LEB %d", lnum);
2638	} else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND ||
2639		   c->cmt_state == COMMIT_RUNNING_REQUIRED) {
2640		if (chance(999, 1000))
2641			return 0;
2642		ubifs_warn("failing in bud LEB %d commit running", lnum);
2643	} else {
2644		if (chance(9999, 10000))
2645			return 0;
2646		ubifs_warn("failing in bud LEB %d commit not running", lnum);
2647	}
2648
2649	d->pc_happened = 1;
2650	ubifs_warn("========== Power cut emulated ==========");
2651	dump_stack();
2652	return 1;
2653}
2654
2655static void cut_data(const void *buf, unsigned int len)
 
2656{
2657	unsigned int from, to, i, ffs = chance(1, 2);
2658	unsigned char *p = (void *)buf;
2659
2660	from = random32() % (len + 1);
2661	if (chance(1, 2))
2662		to = random32() % (len - from + 1);
2663	else
2664		to = len;
2665
2666	if (from < to)
2667		ubifs_warn("filled bytes %u-%u with %s", from, to - 1,
2668			   ffs ? "0xFFs" : "random data");
2669
2670	if (ffs)
2671		for (i = from; i < to; i++)
2672			p[i] = 0xFF;
2673	else
2674		for (i = from; i < to; i++)
2675			p[i] = random32() % 0x100;
 
2676}
2677
2678int dbg_leb_write(struct ubifs_info *c, int lnum, const void *buf,
2679		  int offs, int len)
2680{
2681	int err, failing;
2682
2683	if (c->dbg->pc_happened)
2684		return -EROFS;
2685
2686	failing = power_cut_emulated(c, lnum, 1);
2687	if (failing)
2688		cut_data(buf, len);
 
 
 
2689	err = ubi_leb_write(c->ubi, lnum, buf, offs, len);
2690	if (err)
2691		return err;
2692	if (failing)
2693		return -EROFS;
2694	return 0;
2695}
2696
2697int dbg_leb_change(struct ubifs_info *c, int lnum, const void *buf,
2698		   int len)
2699{
2700	int err;
2701
2702	if (c->dbg->pc_happened)
2703		return -EROFS;
2704	if (power_cut_emulated(c, lnum, 1))
2705		return -EROFS;
2706	err = ubi_leb_change(c->ubi, lnum, buf, len);
2707	if (err)
2708		return err;
2709	if (power_cut_emulated(c, lnum, 1))
2710		return -EROFS;
2711	return 0;
2712}
2713
2714int dbg_leb_unmap(struct ubifs_info *c, int lnum)
2715{
2716	int err;
2717
2718	if (c->dbg->pc_happened)
2719		return -EROFS;
2720	if (power_cut_emulated(c, lnum, 0))
2721		return -EROFS;
2722	err = ubi_leb_unmap(c->ubi, lnum);
2723	if (err)
2724		return err;
2725	if (power_cut_emulated(c, lnum, 0))
2726		return -EROFS;
2727	return 0;
2728}
2729
2730int dbg_leb_map(struct ubifs_info *c, int lnum)
2731{
2732	int err;
2733
2734	if (c->dbg->pc_happened)
2735		return -EROFS;
2736	if (power_cut_emulated(c, lnum, 0))
2737		return -EROFS;
2738	err = ubi_leb_map(c->ubi, lnum);
2739	if (err)
2740		return err;
2741	if (power_cut_emulated(c, lnum, 0))
2742		return -EROFS;
2743	return 0;
2744}
2745
2746/*
2747 * Root directory for UBIFS stuff in debugfs. Contains sub-directories which
2748 * contain the stuff specific to particular file-system mounts.
2749 */
2750static struct dentry *dfs_rootdir;
2751
2752static int dfs_file_open(struct inode *inode, struct file *file)
2753{
2754	file->private_data = inode->i_private;
2755	return nonseekable_open(inode, file);
2756}
2757
2758/**
2759 * provide_user_output - provide output to the user reading a debugfs file.
2760 * @val: boolean value for the answer
2761 * @u: the buffer to store the answer at
2762 * @count: size of the buffer
2763 * @ppos: position in the @u output buffer
2764 *
2765 * This is a simple helper function which stores @val boolean value in the user
2766 * buffer when the user reads one of UBIFS debugfs files. Returns amount of
2767 * bytes written to @u in case of success and a negative error code in case of
2768 * failure.
2769 */
2770static int provide_user_output(int val, char __user *u, size_t count,
2771			       loff_t *ppos)
2772{
2773	char buf[3];
2774
2775	if (val)
2776		buf[0] = '1';
2777	else
2778		buf[0] = '0';
2779	buf[1] = '\n';
2780	buf[2] = 0x00;
2781
2782	return simple_read_from_buffer(u, count, ppos, buf, 2);
2783}
2784
2785static ssize_t dfs_file_read(struct file *file, char __user *u, size_t count,
2786			     loff_t *ppos)
2787{
2788	struct dentry *dent = file->f_path.dentry;
2789	struct ubifs_info *c = file->private_data;
2790	struct ubifs_debug_info *d = c->dbg;
2791	int val;
2792
2793	if (dent == d->dfs_chk_gen)
2794		val = d->chk_gen;
2795	else if (dent == d->dfs_chk_index)
2796		val = d->chk_index;
2797	else if (dent == d->dfs_chk_orph)
2798		val = d->chk_orph;
2799	else if (dent == d->dfs_chk_lprops)
2800		val = d->chk_lprops;
2801	else if (dent == d->dfs_chk_fs)
2802		val = d->chk_fs;
2803	else if (dent == d->dfs_tst_rcvry)
2804		val = d->tst_rcvry;
 
 
2805	else
2806		return -EINVAL;
2807
2808	return provide_user_output(val, u, count, ppos);
2809}
2810
2811/**
2812 * interpret_user_input - interpret user debugfs file input.
2813 * @u: user-provided buffer with the input
2814 * @count: buffer size
2815 *
2816 * This is a helper function which interpret user input to a boolean UBIFS
2817 * debugfs file. Returns %0 or %1 in case of success and a negative error code
2818 * in case of failure.
2819 */
2820static int interpret_user_input(const char __user *u, size_t count)
2821{
2822	size_t buf_size;
2823	char buf[8];
2824
2825	buf_size = min_t(size_t, count, (sizeof(buf) - 1));
2826	if (copy_from_user(buf, u, buf_size))
2827		return -EFAULT;
2828
2829	if (buf[0] == '1')
2830		return 1;
2831	else if (buf[0] == '0')
2832		return 0;
2833
2834	return -EINVAL;
2835}
2836
2837static ssize_t dfs_file_write(struct file *file, const char __user *u,
2838			      size_t count, loff_t *ppos)
2839{
2840	struct ubifs_info *c = file->private_data;
2841	struct ubifs_debug_info *d = c->dbg;
2842	struct dentry *dent = file->f_path.dentry;
2843	int val;
2844
2845	/*
2846	 * TODO: this is racy - the file-system might have already been
2847	 * unmounted and we'd oops in this case. The plan is to fix it with
2848	 * help of 'iterate_supers_type()' which we should have in v3.0: when
2849	 * a debugfs opened, we rember FS's UUID in file->private_data. Then
2850	 * whenever we access the FS via a debugfs file, we iterate all UBIFS
2851	 * superblocks and fine the one with the same UUID, and take the
2852	 * locking right.
2853	 *
2854	 * The other way to go suggested by Al Viro is to create a separate
2855	 * 'ubifs-debug' file-system instead.
2856	 */
2857	if (file->f_path.dentry == d->dfs_dump_lprops) {
2858		ubifs_dump_lprops(c);
2859		return count;
2860	}
2861	if (file->f_path.dentry == d->dfs_dump_budg) {
2862		ubifs_dump_budg(c, &c->bi);
2863		return count;
2864	}
2865	if (file->f_path.dentry == d->dfs_dump_tnc) {
2866		mutex_lock(&c->tnc_mutex);
2867		ubifs_dump_tnc(c);
2868		mutex_unlock(&c->tnc_mutex);
2869		return count;
2870	}
2871
2872	val = interpret_user_input(u, count);
2873	if (val < 0)
2874		return val;
2875
2876	if (dent == d->dfs_chk_gen)
2877		d->chk_gen = val;
2878	else if (dent == d->dfs_chk_index)
2879		d->chk_index = val;
2880	else if (dent == d->dfs_chk_orph)
2881		d->chk_orph = val;
2882	else if (dent == d->dfs_chk_lprops)
2883		d->chk_lprops = val;
2884	else if (dent == d->dfs_chk_fs)
2885		d->chk_fs = val;
2886	else if (dent == d->dfs_tst_rcvry)
2887		d->tst_rcvry = val;
 
 
2888	else
2889		return -EINVAL;
2890
2891	return count;
2892}
2893
2894static const struct file_operations dfs_fops = {
2895	.open = dfs_file_open,
2896	.read = dfs_file_read,
2897	.write = dfs_file_write,
2898	.owner = THIS_MODULE,
2899	.llseek = no_llseek,
2900};
2901
2902/**
2903 * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance.
2904 * @c: UBIFS file-system description object
2905 *
2906 * This function creates all debugfs files for this instance of UBIFS. Returns
2907 * zero in case of success and a negative error code in case of failure.
2908 *
2909 * Note, the only reason we have not merged this function with the
2910 * 'ubifs_debugging_init()' function is because it is better to initialize
2911 * debugfs interfaces at the very end of the mount process, and remove them at
2912 * the very beginning of the mount process.
2913 */
2914int dbg_debugfs_init_fs(struct ubifs_info *c)
2915{
2916	int err, n;
2917	const char *fname;
2918	struct dentry *dent;
2919	struct ubifs_debug_info *d = c->dbg;
2920
2921	if (!IS_ENABLED(CONFIG_DEBUG_FS))
2922		return 0;
2923
2924	n = snprintf(d->dfs_dir_name, UBIFS_DFS_DIR_LEN + 1, UBIFS_DFS_DIR_NAME,
2925		     c->vi.ubi_num, c->vi.vol_id);
2926	if (n == UBIFS_DFS_DIR_LEN) {
2927		/* The array size is too small */
2928		fname = UBIFS_DFS_DIR_NAME;
2929		dent = ERR_PTR(-EINVAL);
2930		goto out;
2931	}
2932
2933	fname = d->dfs_dir_name;
2934	dent = debugfs_create_dir(fname, dfs_rootdir);
2935	if (IS_ERR_OR_NULL(dent))
2936		goto out;
2937	d->dfs_dir = dent;
2938
2939	fname = "dump_lprops";
2940	dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2941	if (IS_ERR_OR_NULL(dent))
2942		goto out_remove;
2943	d->dfs_dump_lprops = dent;
2944
2945	fname = "dump_budg";
2946	dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2947	if (IS_ERR_OR_NULL(dent))
2948		goto out_remove;
2949	d->dfs_dump_budg = dent;
2950
2951	fname = "dump_tnc";
2952	dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2953	if (IS_ERR_OR_NULL(dent))
2954		goto out_remove;
2955	d->dfs_dump_tnc = dent;
2956
2957	fname = "chk_general";
2958	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2959				   &dfs_fops);
2960	if (IS_ERR_OR_NULL(dent))
2961		goto out_remove;
2962	d->dfs_chk_gen = dent;
2963
2964	fname = "chk_index";
2965	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2966				   &dfs_fops);
2967	if (IS_ERR_OR_NULL(dent))
2968		goto out_remove;
2969	d->dfs_chk_index = dent;
2970
2971	fname = "chk_orphans";
2972	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2973				   &dfs_fops);
2974	if (IS_ERR_OR_NULL(dent))
2975		goto out_remove;
2976	d->dfs_chk_orph = dent;
2977
2978	fname = "chk_lprops";
2979	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2980				   &dfs_fops);
2981	if (IS_ERR_OR_NULL(dent))
2982		goto out_remove;
2983	d->dfs_chk_lprops = dent;
2984
2985	fname = "chk_fs";
2986	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2987				   &dfs_fops);
2988	if (IS_ERR_OR_NULL(dent))
2989		goto out_remove;
2990	d->dfs_chk_fs = dent;
2991
2992	fname = "tst_recovery";
2993	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2994				   &dfs_fops);
2995	if (IS_ERR_OR_NULL(dent))
2996		goto out_remove;
2997	d->dfs_tst_rcvry = dent;
2998
2999	return 0;
3000
3001out_remove:
3002	debugfs_remove_recursive(d->dfs_dir);
3003out:
3004	err = dent ? PTR_ERR(dent) : -ENODEV;
3005	ubifs_err("cannot create \"%s\" debugfs file or directory, error %d\n",
3006		  fname, err);
3007	return err;
3008}
3009
3010/**
3011 * dbg_debugfs_exit_fs - remove all debugfs files.
3012 * @c: UBIFS file-system description object
3013 */
3014void dbg_debugfs_exit_fs(struct ubifs_info *c)
3015{
3016	if (IS_ENABLED(CONFIG_DEBUG_FS))
3017		debugfs_remove_recursive(c->dbg->dfs_dir);
3018}
3019
3020struct ubifs_global_debug_info ubifs_dbg;
3021
3022static struct dentry *dfs_chk_gen;
3023static struct dentry *dfs_chk_index;
3024static struct dentry *dfs_chk_orph;
3025static struct dentry *dfs_chk_lprops;
3026static struct dentry *dfs_chk_fs;
3027static struct dentry *dfs_tst_rcvry;
3028
3029static ssize_t dfs_global_file_read(struct file *file, char __user *u,
3030				    size_t count, loff_t *ppos)
3031{
3032	struct dentry *dent = file->f_path.dentry;
3033	int val;
3034
3035	if (dent == dfs_chk_gen)
3036		val = ubifs_dbg.chk_gen;
3037	else if (dent == dfs_chk_index)
3038		val = ubifs_dbg.chk_index;
3039	else if (dent == dfs_chk_orph)
3040		val = ubifs_dbg.chk_orph;
3041	else if (dent == dfs_chk_lprops)
3042		val = ubifs_dbg.chk_lprops;
3043	else if (dent == dfs_chk_fs)
3044		val = ubifs_dbg.chk_fs;
3045	else if (dent == dfs_tst_rcvry)
3046		val = ubifs_dbg.tst_rcvry;
3047	else
3048		return -EINVAL;
3049
3050	return provide_user_output(val, u, count, ppos);
3051}
3052
3053static ssize_t dfs_global_file_write(struct file *file, const char __user *u,
3054				     size_t count, loff_t *ppos)
3055{
3056	struct dentry *dent = file->f_path.dentry;
3057	int val;
3058
3059	val = interpret_user_input(u, count);
3060	if (val < 0)
3061		return val;
3062
3063	if (dent == dfs_chk_gen)
3064		ubifs_dbg.chk_gen = val;
3065	else if (dent == dfs_chk_index)
3066		ubifs_dbg.chk_index = val;
3067	else if (dent == dfs_chk_orph)
3068		ubifs_dbg.chk_orph = val;
3069	else if (dent == dfs_chk_lprops)
3070		ubifs_dbg.chk_lprops = val;
3071	else if (dent == dfs_chk_fs)
3072		ubifs_dbg.chk_fs = val;
3073	else if (dent == dfs_tst_rcvry)
3074		ubifs_dbg.tst_rcvry = val;
3075	else
3076		return -EINVAL;
3077
3078	return count;
3079}
3080
3081static const struct file_operations dfs_global_fops = {
3082	.read = dfs_global_file_read,
3083	.write = dfs_global_file_write,
3084	.owner = THIS_MODULE,
3085	.llseek = no_llseek,
3086};
3087
3088/**
3089 * dbg_debugfs_init - initialize debugfs file-system.
3090 *
3091 * UBIFS uses debugfs file-system to expose various debugging knobs to
3092 * user-space. This function creates "ubifs" directory in the debugfs
3093 * file-system. Returns zero in case of success and a negative error code in
3094 * case of failure.
3095 */
3096int dbg_debugfs_init(void)
3097{
3098	int err;
3099	const char *fname;
3100	struct dentry *dent;
3101
3102	if (!IS_ENABLED(CONFIG_DEBUG_FS))
3103		return 0;
3104
3105	fname = "ubifs";
3106	dent = debugfs_create_dir(fname, NULL);
3107	if (IS_ERR_OR_NULL(dent))
3108		goto out;
3109	dfs_rootdir = dent;
3110
3111	fname = "chk_general";
3112	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3113				   &dfs_global_fops);
3114	if (IS_ERR_OR_NULL(dent))
3115		goto out_remove;
3116	dfs_chk_gen = dent;
3117
3118	fname = "chk_index";
3119	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3120				   &dfs_global_fops);
3121	if (IS_ERR_OR_NULL(dent))
3122		goto out_remove;
3123	dfs_chk_index = dent;
3124
3125	fname = "chk_orphans";
3126	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3127				   &dfs_global_fops);
3128	if (IS_ERR_OR_NULL(dent))
3129		goto out_remove;
3130	dfs_chk_orph = dent;
3131
3132	fname = "chk_lprops";
3133	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3134				   &dfs_global_fops);
3135	if (IS_ERR_OR_NULL(dent))
3136		goto out_remove;
3137	dfs_chk_lprops = dent;
3138
3139	fname = "chk_fs";
3140	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3141				   &dfs_global_fops);
3142	if (IS_ERR_OR_NULL(dent))
3143		goto out_remove;
3144	dfs_chk_fs = dent;
3145
3146	fname = "tst_recovery";
3147	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3148				   &dfs_global_fops);
3149	if (IS_ERR_OR_NULL(dent))
3150		goto out_remove;
3151	dfs_tst_rcvry = dent;
3152
3153	return 0;
3154
3155out_remove:
3156	debugfs_remove_recursive(dfs_rootdir);
3157out:
3158	err = dent ? PTR_ERR(dent) : -ENODEV;
3159	ubifs_err("cannot create \"%s\" debugfs file or directory, error %d\n",
3160		  fname, err);
3161	return err;
3162}
3163
3164/**
3165 * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system.
3166 */
3167void dbg_debugfs_exit(void)
3168{
3169	if (IS_ENABLED(CONFIG_DEBUG_FS))
3170		debugfs_remove_recursive(dfs_rootdir);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3171}
3172
3173/**
3174 * ubifs_debugging_init - initialize UBIFS debugging.
3175 * @c: UBIFS file-system description object
3176 *
3177 * This function initializes debugging-related data for the file system.
3178 * Returns zero in case of success and a negative error code in case of
3179 * failure.
3180 */
3181int ubifs_debugging_init(struct ubifs_info *c)
3182{
3183	c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL);
3184	if (!c->dbg)
3185		return -ENOMEM;
3186
3187	return 0;
3188}
3189
3190/**
3191 * ubifs_debugging_exit - free debugging data.
3192 * @c: UBIFS file-system description object
3193 */
3194void ubifs_debugging_exit(struct ubifs_info *c)
3195{
3196	kfree(c->dbg);
3197}