Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  linux/fs/proc/base.c
   4 *
   5 *  Copyright (C) 1991, 1992 Linus Torvalds
   6 *
   7 *  proc base directory handling functions
   8 *
   9 *  1999, Al Viro. Rewritten. Now it covers the whole per-process part.
  10 *  Instead of using magical inumbers to determine the kind of object
  11 *  we allocate and fill in-core inodes upon lookup. They don't even
  12 *  go into icache. We cache the reference to task_struct upon lookup too.
  13 *  Eventually it should become a filesystem in its own. We don't use the
  14 *  rest of procfs anymore.
  15 *
  16 *
  17 *  Changelog:
  18 *  17-Jan-2005
  19 *  Allan Bezerra
  20 *  Bruna Moreira <bruna.moreira@indt.org.br>
  21 *  Edjard Mota <edjard.mota@indt.org.br>
  22 *  Ilias Biris <ilias.biris@indt.org.br>
  23 *  Mauricio Lin <mauricio.lin@indt.org.br>
  24 *
  25 *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
  26 *
  27 *  A new process specific entry (smaps) included in /proc. It shows the
  28 *  size of rss for each memory area. The maps entry lacks information
  29 *  about physical memory size (rss) for each mapped file, i.e.,
  30 *  rss information for executables and library files.
  31 *  This additional information is useful for any tools that need to know
  32 *  about physical memory consumption for a process specific library.
  33 *
  34 *  Changelog:
  35 *  21-Feb-2005
  36 *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
  37 *  Pud inclusion in the page table walking.
  38 *
  39 *  ChangeLog:
  40 *  10-Mar-2005
  41 *  10LE Instituto Nokia de Tecnologia - INdT:
  42 *  A better way to walks through the page table as suggested by Hugh Dickins.
  43 *
  44 *  Simo Piiroinen <simo.piiroinen@nokia.com>:
  45 *  Smaps information related to shared, private, clean and dirty pages.
  46 *
  47 *  Paul Mundt <paul.mundt@nokia.com>:
  48 *  Overall revision about smaps.
  49 */
  50
  51#include <linux/uaccess.h>
  52
  53#include <linux/errno.h>
  54#include <linux/time.h>
  55#include <linux/proc_fs.h>
  56#include <linux/stat.h>
  57#include <linux/task_io_accounting_ops.h>
  58#include <linux/init.h>
  59#include <linux/capability.h>
  60#include <linux/file.h>
  61#include <linux/fdtable.h>
  62#include <linux/generic-radix-tree.h>
  63#include <linux/string.h>
  64#include <linux/seq_file.h>
  65#include <linux/namei.h>
  66#include <linux/mnt_namespace.h>
  67#include <linux/mm.h>
  68#include <linux/swap.h>
  69#include <linux/rcupdate.h>
  70#include <linux/kallsyms.h>
  71#include <linux/stacktrace.h>
  72#include <linux/resource.h>
  73#include <linux/module.h>
  74#include <linux/mount.h>
  75#include <linux/security.h>
  76#include <linux/ptrace.h>
  77#include <linux/tracehook.h>
  78#include <linux/printk.h>
  79#include <linux/cache.h>
  80#include <linux/cgroup.h>
  81#include <linux/cpuset.h>
  82#include <linux/audit.h>
  83#include <linux/poll.h>
  84#include <linux/nsproxy.h>
  85#include <linux/oom.h>
  86#include <linux/elf.h>
  87#include <linux/pid_namespace.h>
  88#include <linux/user_namespace.h>
  89#include <linux/fs_struct.h>
  90#include <linux/slab.h>
  91#include <linux/sched/autogroup.h>
  92#include <linux/sched/mm.h>
  93#include <linux/sched/coredump.h>
  94#include <linux/sched/debug.h>
  95#include <linux/sched/stat.h>
  96#include <linux/posix-timers.h>
  97#include <linux/time_namespace.h>
  98#include <linux/resctrl.h>
  99#include <trace/events/oom.h>
 100#include "internal.h"
 101#include "fd.h"
 102
 103#include "../../lib/kstrtox.h"
 104
 105/* NOTE:
 106 *	Implementing inode permission operations in /proc is almost
 107 *	certainly an error.  Permission checks need to happen during
 108 *	each system call not at open time.  The reason is that most of
 109 *	what we wish to check for permissions in /proc varies at runtime.
 110 *
 111 *	The classic example of a problem is opening file descriptors
 112 *	in /proc for a task before it execs a suid executable.
 113 */
 114
 115static u8 nlink_tid __ro_after_init;
 116static u8 nlink_tgid __ro_after_init;
 117
 118struct pid_entry {
 119	const char *name;
 120	unsigned int len;
 121	umode_t mode;
 122	const struct inode_operations *iop;
 123	const struct file_operations *fop;
 124	union proc_op op;
 125};
 126
 127#define NOD(NAME, MODE, IOP, FOP, OP) {			\
 128	.name = (NAME),					\
 129	.len  = sizeof(NAME) - 1,			\
 130	.mode = MODE,					\
 131	.iop  = IOP,					\
 132	.fop  = FOP,					\
 133	.op   = OP,					\
 134}
 135
 136#define DIR(NAME, MODE, iops, fops)	\
 137	NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
 138#define LNK(NAME, get_link)					\
 139	NOD(NAME, (S_IFLNK|S_IRWXUGO),				\
 140		&proc_pid_link_inode_operations, NULL,		\
 141		{ .proc_get_link = get_link } )
 142#define REG(NAME, MODE, fops)				\
 143	NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
 
 
 
 
 144#define ONE(NAME, MODE, show)				\
 145	NOD(NAME, (S_IFREG|(MODE)),			\
 146		NULL, &proc_single_file_operations,	\
 147		{ .proc_show = show } )
 148#define ATTR(LSM, NAME, MODE)				\
 149	NOD(NAME, (S_IFREG|(MODE)),			\
 150		NULL, &proc_pid_attr_operations,	\
 151		{ .lsm = LSM })
 152
 153/*
 154 * Count the number of hardlinks for the pid_entry table, excluding the .
 155 * and .. links.
 156 */
 157static unsigned int __init pid_entry_nlink(const struct pid_entry *entries,
 158	unsigned int n)
 159{
 160	unsigned int i;
 161	unsigned int count;
 162
 163	count = 2;
 164	for (i = 0; i < n; ++i) {
 165		if (S_ISDIR(entries[i].mode))
 166			++count;
 167	}
 168
 169	return count;
 170}
 171
 172static int get_task_root(struct task_struct *task, struct path *root)
 173{
 174	int result = -ENOENT;
 175
 176	task_lock(task);
 177	if (task->fs) {
 178		get_fs_root(task->fs, root);
 179		result = 0;
 180	}
 181	task_unlock(task);
 182	return result;
 183}
 184
 185static int proc_cwd_link(struct dentry *dentry, struct path *path)
 186{
 187	struct task_struct *task = get_proc_task(d_inode(dentry));
 188	int result = -ENOENT;
 189
 190	if (task) {
 191		task_lock(task);
 192		if (task->fs) {
 193			get_fs_pwd(task->fs, path);
 194			result = 0;
 195		}
 196		task_unlock(task);
 197		put_task_struct(task);
 198	}
 199	return result;
 200}
 201
 202static int proc_root_link(struct dentry *dentry, struct path *path)
 203{
 204	struct task_struct *task = get_proc_task(d_inode(dentry));
 205	int result = -ENOENT;
 206
 207	if (task) {
 208		result = get_task_root(task, path);
 209		put_task_struct(task);
 210	}
 211	return result;
 212}
 213
 214/*
 215 * If the user used setproctitle(), we just get the string from
 216 * user space at arg_start, and limit it to a maximum of one page.
 217 */
 218static ssize_t get_mm_proctitle(struct mm_struct *mm, char __user *buf,
 219				size_t count, unsigned long pos,
 220				unsigned long arg_start)
 221{
 222	char *page;
 223	int ret, got;
 224
 225	if (pos >= PAGE_SIZE)
 226		return 0;
 227
 228	page = (char *)__get_free_page(GFP_KERNEL);
 229	if (!page)
 230		return -ENOMEM;
 231
 232	ret = 0;
 233	got = access_remote_vm(mm, arg_start, page, PAGE_SIZE, FOLL_ANON);
 234	if (got > 0) {
 235		int len = strnlen(page, got);
 236
 237		/* Include the NUL character if it was found */
 238		if (len < got)
 239			len++;
 240
 241		if (len > pos) {
 242			len -= pos;
 243			if (len > count)
 244				len = count;
 245			len -= copy_to_user(buf, page+pos, len);
 246			if (!len)
 247				len = -EFAULT;
 248			ret = len;
 249		}
 250	}
 251	free_page((unsigned long)page);
 252	return ret;
 253}
 254
 255static ssize_t get_mm_cmdline(struct mm_struct *mm, char __user *buf,
 256			      size_t count, loff_t *ppos)
 257{
 258	unsigned long arg_start, arg_end, env_start, env_end;
 259	unsigned long pos, len;
 260	char *page, c;
 261
 262	/* Check if process spawned far enough to have cmdline. */
 263	if (!mm->env_end)
 264		return 0;
 265
 266	spin_lock(&mm->arg_lock);
 267	arg_start = mm->arg_start;
 268	arg_end = mm->arg_end;
 269	env_start = mm->env_start;
 270	env_end = mm->env_end;
 271	spin_unlock(&mm->arg_lock);
 272
 273	if (arg_start >= arg_end)
 274		return 0;
 275
 276	/*
 277	 * We allow setproctitle() to overwrite the argument
 278	 * strings, and overflow past the original end. But
 279	 * only when it overflows into the environment area.
 280	 */
 281	if (env_start != arg_end || env_end < env_start)
 282		env_start = env_end = arg_end;
 283	len = env_end - arg_start;
 284
 285	/* We're not going to care if "*ppos" has high bits set */
 286	pos = *ppos;
 287	if (pos >= len)
 288		return 0;
 289	if (count > len - pos)
 290		count = len - pos;
 291	if (!count)
 292		return 0;
 293
 294	/*
 295	 * Magical special case: if the argv[] end byte is not
 296	 * zero, the user has overwritten it with setproctitle(3).
 297	 *
 298	 * Possible future enhancement: do this only once when
 299	 * pos is 0, and set a flag in the 'struct file'.
 300	 */
 301	if (access_remote_vm(mm, arg_end-1, &c, 1, FOLL_ANON) == 1 && c)
 302		return get_mm_proctitle(mm, buf, count, pos, arg_start);
 303
 304	/*
 305	 * For the non-setproctitle() case we limit things strictly
 306	 * to the [arg_start, arg_end[ range.
 307	 */
 308	pos += arg_start;
 309	if (pos < arg_start || pos >= arg_end)
 310		return 0;
 311	if (count > arg_end - pos)
 312		count = arg_end - pos;
 313
 314	page = (char *)__get_free_page(GFP_KERNEL);
 315	if (!page)
 316		return -ENOMEM;
 317
 318	len = 0;
 319	while (count) {
 320		int got;
 321		size_t size = min_t(size_t, PAGE_SIZE, count);
 322
 323		got = access_remote_vm(mm, pos, page, size, FOLL_ANON);
 324		if (got <= 0)
 325			break;
 326		got -= copy_to_user(buf, page, got);
 327		if (unlikely(!got)) {
 328			if (!len)
 329				len = -EFAULT;
 330			break;
 
 
 
 
 
 
 
 
 
 
 
 331		}
 332		pos += got;
 333		buf += got;
 334		len += got;
 335		count -= got;
 336	}
 337
 338	free_page((unsigned long)page);
 339	return len;
 340}
 341
 342static ssize_t get_task_cmdline(struct task_struct *tsk, char __user *buf,
 343				size_t count, loff_t *pos)
 344{
 345	struct mm_struct *mm;
 346	ssize_t ret;
 347
 348	mm = get_task_mm(tsk);
 349	if (!mm)
 350		return 0;
 351
 352	ret = get_mm_cmdline(mm, buf, count, pos);
 353	mmput(mm);
 354	return ret;
 
 355}
 356
 357static ssize_t proc_pid_cmdline_read(struct file *file, char __user *buf,
 358				     size_t count, loff_t *pos)
 359{
 360	struct task_struct *tsk;
 361	ssize_t ret;
 362
 363	BUG_ON(*pos < 0);
 364
 365	tsk = get_proc_task(file_inode(file));
 366	if (!tsk)
 367		return -ESRCH;
 368	ret = get_task_cmdline(tsk, buf, count, pos);
 369	put_task_struct(tsk);
 370	if (ret > 0)
 371		*pos += ret;
 372	return ret;
 
 373}
 374
 375static const struct file_operations proc_pid_cmdline_ops = {
 376	.read	= proc_pid_cmdline_read,
 377	.llseek	= generic_file_llseek,
 378};
 379
 380#ifdef CONFIG_KALLSYMS
 381/*
 382 * Provides a wchan file via kallsyms in a proper one-value-per-file format.
 383 * Returns the resolved symbol.  If that fails, simply return the address.
 384 */
 385static int proc_pid_wchan(struct seq_file *m, struct pid_namespace *ns,
 386			  struct pid *pid, struct task_struct *task)
 387{
 388	unsigned long wchan;
 389	char symname[KSYM_NAME_LEN];
 390
 391	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
 392		goto print0;
 393
 394	wchan = get_wchan(task);
 395	if (wchan && !lookup_symbol_name(wchan, symname)) {
 396		seq_puts(m, symname);
 397		return 0;
 398	}
 399
 400print0:
 401	seq_putc(m, '0');
 402	return 0;
 
 
 
 
 403}
 404#endif /* CONFIG_KALLSYMS */
 405
 406static int lock_trace(struct task_struct *task)
 407{
 408	int err = mutex_lock_killable(&task->signal->exec_update_mutex);
 409	if (err)
 410		return err;
 411	if (!ptrace_may_access(task, PTRACE_MODE_ATTACH_FSCREDS)) {
 412		mutex_unlock(&task->signal->exec_update_mutex);
 413		return -EPERM;
 414	}
 415	return 0;
 416}
 417
 418static void unlock_trace(struct task_struct *task)
 419{
 420	mutex_unlock(&task->signal->exec_update_mutex);
 421}
 422
 423#ifdef CONFIG_STACKTRACE
 424
 425#define MAX_STACK_TRACE_DEPTH	64
 426
 427static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
 428			  struct pid *pid, struct task_struct *task)
 429{
 
 430	unsigned long *entries;
 431	int err;
 
 432
 433	/*
 434	 * The ability to racily run the kernel stack unwinder on a running task
 435	 * and then observe the unwinder output is scary; while it is useful for
 436	 * debugging kernel issues, it can also allow an attacker to leak kernel
 437	 * stack contents.
 438	 * Doing this in a manner that is at least safe from races would require
 439	 * some work to ensure that the remote task can not be scheduled; and
 440	 * even then, this would still expose the unwinder as local attack
 441	 * surface.
 442	 * Therefore, this interface is restricted to root.
 443	 */
 444	if (!file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN))
 445		return -EACCES;
 446
 447	entries = kmalloc_array(MAX_STACK_TRACE_DEPTH, sizeof(*entries),
 448				GFP_KERNEL);
 449	if (!entries)
 450		return -ENOMEM;
 451
 
 
 
 
 
 452	err = lock_trace(task);
 453	if (!err) {
 454		unsigned int i, nr_entries;
 455
 456		nr_entries = stack_trace_save_tsk(task, entries,
 457						  MAX_STACK_TRACE_DEPTH, 0);
 458
 459		for (i = 0; i < nr_entries; i++) {
 460			seq_printf(m, "[<0>] %pB\n", (void *)entries[i]);
 461		}
 462
 463		unlock_trace(task);
 464	}
 465	kfree(entries);
 466
 467	return err;
 468}
 469#endif
 470
 471#ifdef CONFIG_SCHED_INFO
 472/*
 473 * Provides /proc/PID/schedstat
 474 */
 475static int proc_pid_schedstat(struct seq_file *m, struct pid_namespace *ns,
 476			      struct pid *pid, struct task_struct *task)
 477{
 478	if (unlikely(!sched_info_on()))
 479		seq_puts(m, "0 0 0\n");
 480	else
 481		seq_printf(m, "%llu %llu %lu\n",
 482		   (unsigned long long)task->se.sum_exec_runtime,
 483		   (unsigned long long)task->sched_info.run_delay,
 484		   task->sched_info.pcount);
 485
 486	return 0;
 487}
 488#endif
 489
 490#ifdef CONFIG_LATENCYTOP
 491static int lstats_show_proc(struct seq_file *m, void *v)
 492{
 493	int i;
 494	struct inode *inode = m->private;
 495	struct task_struct *task = get_proc_task(inode);
 496
 497	if (!task)
 498		return -ESRCH;
 499	seq_puts(m, "Latency Top version : v0.1\n");
 500	for (i = 0; i < LT_SAVECOUNT; i++) {
 501		struct latency_record *lr = &task->latency_record[i];
 502		if (lr->backtrace[0]) {
 503			int q;
 504			seq_printf(m, "%i %li %li",
 505				   lr->count, lr->time, lr->max);
 506			for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
 507				unsigned long bt = lr->backtrace[q];
 508
 509				if (!bt)
 510					break;
 
 
 511				seq_printf(m, " %ps", (void *)bt);
 512			}
 513			seq_putc(m, '\n');
 514		}
 515
 516	}
 517	put_task_struct(task);
 518	return 0;
 519}
 520
 521static int lstats_open(struct inode *inode, struct file *file)
 522{
 523	return single_open(file, lstats_show_proc, inode);
 524}
 525
 526static ssize_t lstats_write(struct file *file, const char __user *buf,
 527			    size_t count, loff_t *offs)
 528{
 529	struct task_struct *task = get_proc_task(file_inode(file));
 530
 531	if (!task)
 532		return -ESRCH;
 533	clear_tsk_latency_tracing(task);
 534	put_task_struct(task);
 535
 536	return count;
 537}
 538
 539static const struct file_operations proc_lstats_operations = {
 540	.open		= lstats_open,
 541	.read		= seq_read,
 542	.write		= lstats_write,
 543	.llseek		= seq_lseek,
 544	.release	= single_release,
 545};
 546
 547#endif
 548
 549static int proc_oom_score(struct seq_file *m, struct pid_namespace *ns,
 550			  struct pid *pid, struct task_struct *task)
 551{
 552	unsigned long totalpages = totalram_pages() + total_swap_pages;
 553	unsigned long points = 0;
 554	long badness;
 555
 556	badness = oom_badness(task, totalpages);
 557	/*
 558	 * Special case OOM_SCORE_ADJ_MIN for all others scale the
 559	 * badness value into [0, 2000] range which we have been
 560	 * exporting for a long time so userspace might depend on it.
 561	 */
 562	if (badness != LONG_MIN)
 563		points = (1000 + badness * 1000 / (long)totalpages) * 2 / 3;
 564
 565	seq_printf(m, "%lu\n", points);
 566
 567	return 0;
 
 
 
 568}
 569
 570struct limit_names {
 571	const char *name;
 572	const char *unit;
 573};
 574
 575static const struct limit_names lnames[RLIM_NLIMITS] = {
 576	[RLIMIT_CPU] = {"Max cpu time", "seconds"},
 577	[RLIMIT_FSIZE] = {"Max file size", "bytes"},
 578	[RLIMIT_DATA] = {"Max data size", "bytes"},
 579	[RLIMIT_STACK] = {"Max stack size", "bytes"},
 580	[RLIMIT_CORE] = {"Max core file size", "bytes"},
 581	[RLIMIT_RSS] = {"Max resident set", "bytes"},
 582	[RLIMIT_NPROC] = {"Max processes", "processes"},
 583	[RLIMIT_NOFILE] = {"Max open files", "files"},
 584	[RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
 585	[RLIMIT_AS] = {"Max address space", "bytes"},
 586	[RLIMIT_LOCKS] = {"Max file locks", "locks"},
 587	[RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
 588	[RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
 589	[RLIMIT_NICE] = {"Max nice priority", NULL},
 590	[RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
 591	[RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
 592};
 593
 594/* Display limits for a process */
 595static int proc_pid_limits(struct seq_file *m, struct pid_namespace *ns,
 596			   struct pid *pid, struct task_struct *task)
 597{
 598	unsigned int i;
 
 599	unsigned long flags;
 
 600
 601	struct rlimit rlim[RLIM_NLIMITS];
 602
 603	if (!lock_task_sighand(task, &flags))
 604		return 0;
 605	memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
 606	unlock_task_sighand(task, &flags);
 607
 608	/*
 609	 * print the file header
 610	 */
 611	seq_puts(m, "Limit                     "
 612		"Soft Limit           "
 613		"Hard Limit           "
 614		"Units     \n");
 615
 616	for (i = 0; i < RLIM_NLIMITS; i++) {
 617		if (rlim[i].rlim_cur == RLIM_INFINITY)
 618			seq_printf(m, "%-25s %-20s ",
 619				   lnames[i].name, "unlimited");
 620		else
 621			seq_printf(m, "%-25s %-20lu ",
 622				   lnames[i].name, rlim[i].rlim_cur);
 623
 624		if (rlim[i].rlim_max == RLIM_INFINITY)
 625			seq_printf(m, "%-20s ", "unlimited");
 626		else
 627			seq_printf(m, "%-20lu ", rlim[i].rlim_max);
 
 628
 629		if (lnames[i].unit)
 630			seq_printf(m, "%-10s\n", lnames[i].unit);
 
 631		else
 632			seq_putc(m, '\n');
 633	}
 634
 635	return 0;
 636}
 637
 638#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
 639static int proc_pid_syscall(struct seq_file *m, struct pid_namespace *ns,
 640			    struct pid *pid, struct task_struct *task)
 641{
 642	struct syscall_info info;
 643	u64 *args = &info.data.args[0];
 644	int res;
 645
 646	res = lock_trace(task);
 647	if (res)
 648		return res;
 649
 650	if (task_current_syscall(task, &info))
 651		seq_puts(m, "running\n");
 652	else if (info.data.nr < 0)
 653		seq_printf(m, "%d 0x%llx 0x%llx\n",
 654			   info.data.nr, info.sp, info.data.instruction_pointer);
 655	else
 656		seq_printf(m,
 657		       "%d 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx\n",
 658		       info.data.nr,
 659		       args[0], args[1], args[2], args[3], args[4], args[5],
 660		       info.sp, info.data.instruction_pointer);
 661	unlock_trace(task);
 662
 663	return 0;
 664}
 665#endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
 666
 667/************************************************************************/
 668/*                       Here the fs part begins                        */
 669/************************************************************************/
 670
 671/* permission checks */
 672static int proc_fd_access_allowed(struct inode *inode)
 673{
 674	struct task_struct *task;
 675	int allowed = 0;
 676	/* Allow access to a task's file descriptors if it is us or we
 677	 * may use ptrace attach to the process and find out that
 678	 * information.
 679	 */
 680	task = get_proc_task(inode);
 681	if (task) {
 682		allowed = ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
 683		put_task_struct(task);
 684	}
 685	return allowed;
 686}
 687
 688int proc_setattr(struct dentry *dentry, struct iattr *attr)
 689{
 690	int error;
 691	struct inode *inode = d_inode(dentry);
 692
 693	if (attr->ia_valid & ATTR_MODE)
 694		return -EPERM;
 695
 696	error = setattr_prepare(dentry, attr);
 697	if (error)
 698		return error;
 699
 
 
 
 
 
 
 
 700	setattr_copy(inode, attr);
 701	mark_inode_dirty(inode);
 702	return 0;
 703}
 704
 705/*
 706 * May current process learn task's sched/cmdline info (for hide_pid_min=1)
 707 * or euid/egid (for hide_pid_min=2)?
 708 */
 709static bool has_pid_permissions(struct proc_fs_info *fs_info,
 710				 struct task_struct *task,
 711				 enum proc_hidepid hide_pid_min)
 712{
 713	/*
 714	 * If 'hidpid' mount option is set force a ptrace check,
 715	 * we indicate that we are using a filesystem syscall
 716	 * by passing PTRACE_MODE_READ_FSCREDS
 717	 */
 718	if (fs_info->hide_pid == HIDEPID_NOT_PTRACEABLE)
 719		return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
 720
 721	if (fs_info->hide_pid < hide_pid_min)
 722		return true;
 723	if (in_group_p(fs_info->pid_gid))
 724		return true;
 725	return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
 726}
 727
 728
 729static int proc_pid_permission(struct inode *inode, int mask)
 730{
 731	struct proc_fs_info *fs_info = proc_sb_info(inode->i_sb);
 732	struct task_struct *task;
 733	bool has_perms;
 734
 735	task = get_proc_task(inode);
 736	if (!task)
 737		return -ESRCH;
 738	has_perms = has_pid_permissions(fs_info, task, HIDEPID_NO_ACCESS);
 739	put_task_struct(task);
 740
 741	if (!has_perms) {
 742		if (fs_info->hide_pid == HIDEPID_INVISIBLE) {
 743			/*
 744			 * Let's make getdents(), stat(), and open()
 745			 * consistent with each other.  If a process
 746			 * may not stat() a file, it shouldn't be seen
 747			 * in procfs at all.
 748			 */
 749			return -ENOENT;
 750		}
 751
 752		return -EPERM;
 753	}
 754	return generic_permission(inode, mask);
 755}
 756
 757
 758
 759static const struct inode_operations proc_def_inode_operations = {
 760	.setattr	= proc_setattr,
 761};
 762
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 763static int proc_single_show(struct seq_file *m, void *v)
 764{
 765	struct inode *inode = m->private;
 766	struct pid_namespace *ns = proc_pid_ns(inode->i_sb);
 767	struct pid *pid = proc_pid(inode);
 768	struct task_struct *task;
 769	int ret;
 770
 
 
 771	task = get_pid_task(pid, PIDTYPE_PID);
 772	if (!task)
 773		return -ESRCH;
 774
 775	ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
 776
 777	put_task_struct(task);
 778	return ret;
 779}
 780
 781static int proc_single_open(struct inode *inode, struct file *filp)
 782{
 783	return single_open(filp, proc_single_show, inode);
 784}
 785
 786static const struct file_operations proc_single_file_operations = {
 787	.open		= proc_single_open,
 788	.read		= seq_read,
 789	.llseek		= seq_lseek,
 790	.release	= single_release,
 791};
 792
 793
 794struct mm_struct *proc_mem_open(struct inode *inode, unsigned int mode)
 795{
 796	struct task_struct *task = get_proc_task(inode);
 797	struct mm_struct *mm = ERR_PTR(-ESRCH);
 798
 799	if (task) {
 800		mm = mm_access(task, mode | PTRACE_MODE_FSCREDS);
 801		put_task_struct(task);
 802
 803		if (!IS_ERR_OR_NULL(mm)) {
 804			/* ensure this mm_struct can't be freed */
 805			mmgrab(mm);
 806			/* but do not pin its memory */
 807			mmput(mm);
 808		}
 809	}
 810
 811	return mm;
 812}
 813
 814static int __mem_open(struct inode *inode, struct file *file, unsigned int mode)
 815{
 816	struct mm_struct *mm = proc_mem_open(inode, mode);
 817
 818	if (IS_ERR(mm))
 819		return PTR_ERR(mm);
 820
 
 
 
 
 
 
 
 
 
 821	file->private_data = mm;
 
 822	return 0;
 823}
 824
 825static int mem_open(struct inode *inode, struct file *file)
 826{
 827	int ret = __mem_open(inode, file, PTRACE_MODE_ATTACH);
 828
 829	/* OK to pass negative loff_t, we can catch out-of-range */
 830	file->f_mode |= FMODE_UNSIGNED_OFFSET;
 831
 832	return ret;
 833}
 834
 835static ssize_t mem_rw(struct file *file, char __user *buf,
 836			size_t count, loff_t *ppos, int write)
 837{
 838	struct mm_struct *mm = file->private_data;
 839	unsigned long addr = *ppos;
 840	ssize_t copied;
 841	char *page;
 842	unsigned int flags;
 843
 844	if (!mm)
 845		return 0;
 846
 847	page = (char *)__get_free_page(GFP_KERNEL);
 848	if (!page)
 849		return -ENOMEM;
 850
 851	copied = 0;
 852	if (!mmget_not_zero(mm))
 853		goto free;
 854
 855	flags = FOLL_FORCE | (write ? FOLL_WRITE : 0);
 856
 857	while (count > 0) {
 858		int this_len = min_t(int, count, PAGE_SIZE);
 859
 860		if (write && copy_from_user(page, buf, this_len)) {
 861			copied = -EFAULT;
 862			break;
 863		}
 864
 865		this_len = access_remote_vm(mm, addr, page, this_len, flags);
 866		if (!this_len) {
 867			if (!copied)
 868				copied = -EIO;
 869			break;
 870		}
 871
 872		if (!write && copy_to_user(buf, page, this_len)) {
 873			copied = -EFAULT;
 874			break;
 875		}
 876
 877		buf += this_len;
 878		addr += this_len;
 879		copied += this_len;
 880		count -= this_len;
 881	}
 882	*ppos = addr;
 883
 884	mmput(mm);
 885free:
 886	free_page((unsigned long) page);
 887	return copied;
 888}
 889
 890static ssize_t mem_read(struct file *file, char __user *buf,
 891			size_t count, loff_t *ppos)
 892{
 893	return mem_rw(file, buf, count, ppos, 0);
 894}
 895
 896static ssize_t mem_write(struct file *file, const char __user *buf,
 897			 size_t count, loff_t *ppos)
 898{
 899	return mem_rw(file, (char __user*)buf, count, ppos, 1);
 900}
 901
 902loff_t mem_lseek(struct file *file, loff_t offset, int orig)
 903{
 904	switch (orig) {
 905	case 0:
 906		file->f_pos = offset;
 907		break;
 908	case 1:
 909		file->f_pos += offset;
 910		break;
 911	default:
 912		return -EINVAL;
 913	}
 914	force_successful_syscall_return();
 915	return file->f_pos;
 916}
 917
 918static int mem_release(struct inode *inode, struct file *file)
 919{
 920	struct mm_struct *mm = file->private_data;
 921	if (mm)
 922		mmdrop(mm);
 923	return 0;
 924}
 925
 926static const struct file_operations proc_mem_operations = {
 927	.llseek		= mem_lseek,
 928	.read		= mem_read,
 929	.write		= mem_write,
 930	.open		= mem_open,
 931	.release	= mem_release,
 932};
 933
 934static int environ_open(struct inode *inode, struct file *file)
 935{
 936	return __mem_open(inode, file, PTRACE_MODE_READ);
 937}
 938
 939static ssize_t environ_read(struct file *file, char __user *buf,
 940			size_t count, loff_t *ppos)
 941{
 942	char *page;
 943	unsigned long src = *ppos;
 944	int ret = 0;
 945	struct mm_struct *mm = file->private_data;
 946	unsigned long env_start, env_end;
 947
 948	/* Ensure the process spawned far enough to have an environment. */
 949	if (!mm || !mm->env_end)
 950		return 0;
 951
 952	page = (char *)__get_free_page(GFP_KERNEL);
 953	if (!page)
 954		return -ENOMEM;
 955
 956	ret = 0;
 957	if (!mmget_not_zero(mm))
 958		goto free;
 959
 960	spin_lock(&mm->arg_lock);
 961	env_start = mm->env_start;
 962	env_end = mm->env_end;
 963	spin_unlock(&mm->arg_lock);
 964
 965	while (count > 0) {
 966		size_t this_len, max_len;
 967		int retval;
 968
 969		if (src >= (env_end - env_start))
 970			break;
 971
 972		this_len = env_end - (env_start + src);
 
 973
 974		max_len = min_t(size_t, PAGE_SIZE, count);
 975		this_len = min(max_len, this_len);
 976
 977		retval = access_remote_vm(mm, (env_start + src), page, this_len, FOLL_ANON);
 
 978
 979		if (retval <= 0) {
 980			ret = retval;
 981			break;
 982		}
 983
 984		if (copy_to_user(buf, page, retval)) {
 985			ret = -EFAULT;
 986			break;
 987		}
 988
 989		ret += retval;
 990		src += retval;
 991		buf += retval;
 992		count -= retval;
 993	}
 994	*ppos = src;
 995	mmput(mm);
 996
 997free:
 998	free_page((unsigned long) page);
 999	return ret;
1000}
1001
1002static const struct file_operations proc_environ_operations = {
1003	.open		= environ_open,
1004	.read		= environ_read,
1005	.llseek		= generic_file_llseek,
1006	.release	= mem_release,
1007};
1008
1009static int auxv_open(struct inode *inode, struct file *file)
1010{
1011	return __mem_open(inode, file, PTRACE_MODE_READ_FSCREDS);
1012}
1013
1014static ssize_t auxv_read(struct file *file, char __user *buf,
1015			size_t count, loff_t *ppos)
1016{
1017	struct mm_struct *mm = file->private_data;
1018	unsigned int nwords = 0;
1019
1020	if (!mm)
1021		return 0;
1022	do {
1023		nwords += 2;
1024	} while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
1025	return simple_read_from_buffer(buf, count, ppos, mm->saved_auxv,
1026				       nwords * sizeof(mm->saved_auxv[0]));
1027}
1028
1029static const struct file_operations proc_auxv_operations = {
1030	.open		= auxv_open,
1031	.read		= auxv_read,
1032	.llseek		= generic_file_llseek,
1033	.release	= mem_release,
1034};
1035
1036static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count,
1037			    loff_t *ppos)
1038{
1039	struct task_struct *task = get_proc_task(file_inode(file));
1040	char buffer[PROC_NUMBUF];
1041	int oom_adj = OOM_ADJUST_MIN;
1042	size_t len;
 
 
1043
1044	if (!task)
1045		return -ESRCH;
1046	if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX)
1047		oom_adj = OOM_ADJUST_MAX;
1048	else
1049		oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) /
1050			  OOM_SCORE_ADJ_MAX;
1051	put_task_struct(task);
1052	len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj);
1053	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1054}
1055
1056static int __set_oom_adj(struct file *file, int oom_adj, bool legacy)
1057{
1058	static DEFINE_MUTEX(oom_adj_mutex);
1059	struct mm_struct *mm = NULL;
1060	struct task_struct *task;
1061	int err = 0;
1062
1063	task = get_proc_task(file_inode(file));
1064	if (!task)
1065		return -ESRCH;
1066
1067	mutex_lock(&oom_adj_mutex);
1068	if (legacy) {
1069		if (oom_adj < task->signal->oom_score_adj &&
1070				!capable(CAP_SYS_RESOURCE)) {
1071			err = -EACCES;
1072			goto err_unlock;
1073		}
1074		/*
1075		 * /proc/pid/oom_adj is provided for legacy purposes, ask users to use
1076		 * /proc/pid/oom_score_adj instead.
1077		 */
1078		pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
1079			  current->comm, task_pid_nr(current), task_pid_nr(task),
1080			  task_pid_nr(task));
1081	} else {
1082		if ((short)oom_adj < task->signal->oom_score_adj_min &&
1083				!capable(CAP_SYS_RESOURCE)) {
1084			err = -EACCES;
1085			goto err_unlock;
1086		}
1087	}
1088
1089	/*
1090	 * Make sure we will check other processes sharing the mm if this is
1091	 * not vfrok which wants its own oom_score_adj.
1092	 * pin the mm so it doesn't go away and get reused after task_unlock
1093	 */
1094	if (!task->vfork_done) {
1095		struct task_struct *p = find_lock_task_mm(task);
1096
1097		if (p) {
1098			if (atomic_read(&p->mm->mm_users) > 1) {
1099				mm = p->mm;
1100				mmgrab(mm);
1101			}
1102			task_unlock(p);
1103		}
1104	}
1105
1106	task->signal->oom_score_adj = oom_adj;
1107	if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1108		task->signal->oom_score_adj_min = (short)oom_adj;
1109	trace_oom_score_adj_update(task);
1110
1111	if (mm) {
1112		struct task_struct *p;
1113
1114		rcu_read_lock();
1115		for_each_process(p) {
1116			if (same_thread_group(task, p))
1117				continue;
1118
1119			/* do not touch kernel threads or the global init */
1120			if (p->flags & PF_KTHREAD || is_global_init(p))
1121				continue;
1122
1123			task_lock(p);
1124			if (!p->vfork_done && process_shares_mm(p, mm)) {
1125				p->signal->oom_score_adj = oom_adj;
1126				if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1127					p->signal->oom_score_adj_min = (short)oom_adj;
1128			}
1129			task_unlock(p);
1130		}
1131		rcu_read_unlock();
1132		mmdrop(mm);
1133	}
1134err_unlock:
1135	mutex_unlock(&oom_adj_mutex);
1136	put_task_struct(task);
1137	return err;
1138}
1139
1140/*
1141 * /proc/pid/oom_adj exists solely for backwards compatibility with previous
1142 * kernels.  The effective policy is defined by oom_score_adj, which has a
1143 * different scale: oom_adj grew exponentially and oom_score_adj grows linearly.
1144 * Values written to oom_adj are simply mapped linearly to oom_score_adj.
1145 * Processes that become oom disabled via oom_adj will still be oom disabled
1146 * with this implementation.
1147 *
1148 * oom_adj cannot be removed since existing userspace binaries use it.
1149 */
1150static ssize_t oom_adj_write(struct file *file, const char __user *buf,
1151			     size_t count, loff_t *ppos)
1152{
 
1153	char buffer[PROC_NUMBUF];
1154	int oom_adj;
 
1155	int err;
1156
1157	memset(buffer, 0, sizeof(buffer));
1158	if (count > sizeof(buffer) - 1)
1159		count = sizeof(buffer) - 1;
1160	if (copy_from_user(buffer, buf, count)) {
1161		err = -EFAULT;
1162		goto out;
1163	}
1164
1165	err = kstrtoint(strstrip(buffer), 0, &oom_adj);
1166	if (err)
1167		goto out;
1168	if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) &&
1169	     oom_adj != OOM_DISABLE) {
1170		err = -EINVAL;
1171		goto out;
1172	}
1173
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1174	/*
1175	 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
1176	 * value is always attainable.
1177	 */
1178	if (oom_adj == OOM_ADJUST_MAX)
1179		oom_adj = OOM_SCORE_ADJ_MAX;
1180	else
1181		oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE;
1182
1183	err = __set_oom_adj(file, oom_adj, true);
 
 
 
 
 
1184out:
1185	return err < 0 ? err : count;
1186}
1187
1188static const struct file_operations proc_oom_adj_operations = {
1189	.read		= oom_adj_read,
1190	.write		= oom_adj_write,
1191	.llseek		= generic_file_llseek,
1192};
1193
1194static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
1195					size_t count, loff_t *ppos)
1196{
1197	struct task_struct *task = get_proc_task(file_inode(file));
1198	char buffer[PROC_NUMBUF];
1199	short oom_score_adj = OOM_SCORE_ADJ_MIN;
 
1200	size_t len;
1201
1202	if (!task)
1203		return -ESRCH;
1204	oom_score_adj = task->signal->oom_score_adj;
 
 
 
1205	put_task_struct(task);
1206	len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj);
1207	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1208}
1209
1210static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
1211					size_t count, loff_t *ppos)
1212{
 
1213	char buffer[PROC_NUMBUF];
 
1214	int oom_score_adj;
1215	int err;
1216
1217	memset(buffer, 0, sizeof(buffer));
1218	if (count > sizeof(buffer) - 1)
1219		count = sizeof(buffer) - 1;
1220	if (copy_from_user(buffer, buf, count)) {
1221		err = -EFAULT;
1222		goto out;
1223	}
1224
1225	err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1226	if (err)
1227		goto out;
1228	if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1229			oom_score_adj > OOM_SCORE_ADJ_MAX) {
1230		err = -EINVAL;
1231		goto out;
1232	}
1233
1234	err = __set_oom_adj(file, oom_score_adj, false);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1235out:
1236	return err < 0 ? err : count;
1237}
1238
1239static const struct file_operations proc_oom_score_adj_operations = {
1240	.read		= oom_score_adj_read,
1241	.write		= oom_score_adj_write,
1242	.llseek		= default_llseek,
1243};
1244
1245#ifdef CONFIG_AUDIT
1246#define TMPBUFLEN 11
1247static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1248				  size_t count, loff_t *ppos)
1249{
1250	struct inode * inode = file_inode(file);
1251	struct task_struct *task = get_proc_task(inode);
1252	ssize_t length;
1253	char tmpbuf[TMPBUFLEN];
1254
1255	if (!task)
1256		return -ESRCH;
1257	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1258			   from_kuid(file->f_cred->user_ns,
1259				     audit_get_loginuid(task)));
1260	put_task_struct(task);
1261	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1262}
1263
1264static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1265				   size_t count, loff_t *ppos)
1266{
1267	struct inode * inode = file_inode(file);
 
 
1268	uid_t loginuid;
1269	kuid_t kloginuid;
1270	int rv;
1271
1272	rcu_read_lock();
1273	if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1274		rcu_read_unlock();
1275		return -EPERM;
1276	}
1277	rcu_read_unlock();
1278
 
 
 
1279	if (*ppos != 0) {
1280		/* No partial writes. */
1281		return -EINVAL;
1282	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1283
1284	rv = kstrtou32_from_user(buf, count, 10, &loginuid);
1285	if (rv < 0)
1286		return rv;
1287
1288	/* is userspace tring to explicitly UNSET the loginuid? */
1289	if (loginuid == AUDIT_UID_UNSET) {
1290		kloginuid = INVALID_UID;
1291	} else {
1292		kloginuid = make_kuid(file->f_cred->user_ns, loginuid);
1293		if (!uid_valid(kloginuid))
1294			return -EINVAL;
1295	}
1296
1297	rv = audit_set_loginuid(kloginuid);
1298	if (rv < 0)
1299		return rv;
1300	return count;
1301}
1302
1303static const struct file_operations proc_loginuid_operations = {
1304	.read		= proc_loginuid_read,
1305	.write		= proc_loginuid_write,
1306	.llseek		= generic_file_llseek,
1307};
1308
1309static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1310				  size_t count, loff_t *ppos)
1311{
1312	struct inode * inode = file_inode(file);
1313	struct task_struct *task = get_proc_task(inode);
1314	ssize_t length;
1315	char tmpbuf[TMPBUFLEN];
1316
1317	if (!task)
1318		return -ESRCH;
1319	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1320				audit_get_sessionid(task));
1321	put_task_struct(task);
1322	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1323}
1324
1325static const struct file_operations proc_sessionid_operations = {
1326	.read		= proc_sessionid_read,
1327	.llseek		= generic_file_llseek,
1328};
1329#endif
1330
1331#ifdef CONFIG_FAULT_INJECTION
1332static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1333				      size_t count, loff_t *ppos)
1334{
1335	struct task_struct *task = get_proc_task(file_inode(file));
1336	char buffer[PROC_NUMBUF];
1337	size_t len;
1338	int make_it_fail;
1339
1340	if (!task)
1341		return -ESRCH;
1342	make_it_fail = task->make_it_fail;
1343	put_task_struct(task);
1344
1345	len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1346
1347	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1348}
1349
1350static ssize_t proc_fault_inject_write(struct file * file,
1351			const char __user * buf, size_t count, loff_t *ppos)
1352{
1353	struct task_struct *task;
1354	char buffer[PROC_NUMBUF];
1355	int make_it_fail;
1356	int rv;
1357
1358	if (!capable(CAP_SYS_RESOURCE))
1359		return -EPERM;
1360	memset(buffer, 0, sizeof(buffer));
1361	if (count > sizeof(buffer) - 1)
1362		count = sizeof(buffer) - 1;
1363	if (copy_from_user(buffer, buf, count))
1364		return -EFAULT;
1365	rv = kstrtoint(strstrip(buffer), 0, &make_it_fail);
1366	if (rv < 0)
1367		return rv;
1368	if (make_it_fail < 0 || make_it_fail > 1)
1369		return -EINVAL;
1370
1371	task = get_proc_task(file_inode(file));
1372	if (!task)
1373		return -ESRCH;
1374	task->make_it_fail = make_it_fail;
1375	put_task_struct(task);
1376
1377	return count;
1378}
1379
1380static const struct file_operations proc_fault_inject_operations = {
1381	.read		= proc_fault_inject_read,
1382	.write		= proc_fault_inject_write,
1383	.llseek		= generic_file_llseek,
1384};
1385
1386static ssize_t proc_fail_nth_write(struct file *file, const char __user *buf,
1387				   size_t count, loff_t *ppos)
1388{
1389	struct task_struct *task;
1390	int err;
1391	unsigned int n;
1392
1393	err = kstrtouint_from_user(buf, count, 0, &n);
1394	if (err)
1395		return err;
1396
1397	task = get_proc_task(file_inode(file));
1398	if (!task)
1399		return -ESRCH;
1400	task->fail_nth = n;
1401	put_task_struct(task);
1402
1403	return count;
1404}
1405
1406static ssize_t proc_fail_nth_read(struct file *file, char __user *buf,
1407				  size_t count, loff_t *ppos)
1408{
1409	struct task_struct *task;
1410	char numbuf[PROC_NUMBUF];
1411	ssize_t len;
1412
1413	task = get_proc_task(file_inode(file));
1414	if (!task)
1415		return -ESRCH;
1416	len = snprintf(numbuf, sizeof(numbuf), "%u\n", task->fail_nth);
1417	put_task_struct(task);
1418	return simple_read_from_buffer(buf, count, ppos, numbuf, len);
1419}
1420
1421static const struct file_operations proc_fail_nth_operations = {
1422	.read		= proc_fail_nth_read,
1423	.write		= proc_fail_nth_write,
1424};
1425#endif
1426
1427
1428#ifdef CONFIG_SCHED_DEBUG
1429/*
1430 * Print out various scheduling related per-task fields:
1431 */
1432static int sched_show(struct seq_file *m, void *v)
1433{
1434	struct inode *inode = m->private;
1435	struct pid_namespace *ns = proc_pid_ns(inode->i_sb);
1436	struct task_struct *p;
1437
1438	p = get_proc_task(inode);
1439	if (!p)
1440		return -ESRCH;
1441	proc_sched_show_task(p, ns, m);
1442
1443	put_task_struct(p);
1444
1445	return 0;
1446}
1447
1448static ssize_t
1449sched_write(struct file *file, const char __user *buf,
1450	    size_t count, loff_t *offset)
1451{
1452	struct inode *inode = file_inode(file);
1453	struct task_struct *p;
1454
1455	p = get_proc_task(inode);
1456	if (!p)
1457		return -ESRCH;
1458	proc_sched_set_task(p);
1459
1460	put_task_struct(p);
1461
1462	return count;
1463}
1464
1465static int sched_open(struct inode *inode, struct file *filp)
1466{
1467	return single_open(filp, sched_show, inode);
1468}
1469
1470static const struct file_operations proc_pid_sched_operations = {
1471	.open		= sched_open,
1472	.read		= seq_read,
1473	.write		= sched_write,
1474	.llseek		= seq_lseek,
1475	.release	= single_release,
1476};
1477
1478#endif
1479
1480#ifdef CONFIG_SCHED_AUTOGROUP
1481/*
1482 * Print out autogroup related information:
1483 */
1484static int sched_autogroup_show(struct seq_file *m, void *v)
1485{
1486	struct inode *inode = m->private;
1487	struct task_struct *p;
1488
1489	p = get_proc_task(inode);
1490	if (!p)
1491		return -ESRCH;
1492	proc_sched_autogroup_show_task(p, m);
1493
1494	put_task_struct(p);
1495
1496	return 0;
1497}
1498
1499static ssize_t
1500sched_autogroup_write(struct file *file, const char __user *buf,
1501	    size_t count, loff_t *offset)
1502{
1503	struct inode *inode = file_inode(file);
1504	struct task_struct *p;
1505	char buffer[PROC_NUMBUF];
1506	int nice;
1507	int err;
1508
1509	memset(buffer, 0, sizeof(buffer));
1510	if (count > sizeof(buffer) - 1)
1511		count = sizeof(buffer) - 1;
1512	if (copy_from_user(buffer, buf, count))
1513		return -EFAULT;
1514
1515	err = kstrtoint(strstrip(buffer), 0, &nice);
1516	if (err < 0)
1517		return err;
1518
1519	p = get_proc_task(inode);
1520	if (!p)
1521		return -ESRCH;
1522
1523	err = proc_sched_autogroup_set_nice(p, nice);
1524	if (err)
1525		count = err;
1526
1527	put_task_struct(p);
1528
1529	return count;
1530}
1531
1532static int sched_autogroup_open(struct inode *inode, struct file *filp)
1533{
1534	int ret;
1535
1536	ret = single_open(filp, sched_autogroup_show, NULL);
1537	if (!ret) {
1538		struct seq_file *m = filp->private_data;
1539
1540		m->private = inode;
1541	}
1542	return ret;
1543}
1544
1545static const struct file_operations proc_pid_sched_autogroup_operations = {
1546	.open		= sched_autogroup_open,
1547	.read		= seq_read,
1548	.write		= sched_autogroup_write,
1549	.llseek		= seq_lseek,
1550	.release	= single_release,
1551};
1552
1553#endif /* CONFIG_SCHED_AUTOGROUP */
1554
1555#ifdef CONFIG_TIME_NS
1556static int timens_offsets_show(struct seq_file *m, void *v)
1557{
1558	struct task_struct *p;
1559
1560	p = get_proc_task(file_inode(m->file));
1561	if (!p)
1562		return -ESRCH;
1563	proc_timens_show_offsets(p, m);
1564
1565	put_task_struct(p);
1566
1567	return 0;
1568}
1569
1570static ssize_t timens_offsets_write(struct file *file, const char __user *buf,
1571				    size_t count, loff_t *ppos)
1572{
1573	struct inode *inode = file_inode(file);
1574	struct proc_timens_offset offsets[2];
1575	char *kbuf = NULL, *pos, *next_line;
1576	struct task_struct *p;
1577	int ret, noffsets;
1578
1579	/* Only allow < page size writes at the beginning of the file */
1580	if ((*ppos != 0) || (count >= PAGE_SIZE))
1581		return -EINVAL;
1582
1583	/* Slurp in the user data */
1584	kbuf = memdup_user_nul(buf, count);
1585	if (IS_ERR(kbuf))
1586		return PTR_ERR(kbuf);
1587
1588	/* Parse the user data */
1589	ret = -EINVAL;
1590	noffsets = 0;
1591	for (pos = kbuf; pos; pos = next_line) {
1592		struct proc_timens_offset *off = &offsets[noffsets];
1593		char clock[10];
1594		int err;
1595
1596		/* Find the end of line and ensure we don't look past it */
1597		next_line = strchr(pos, '\n');
1598		if (next_line) {
1599			*next_line = '\0';
1600			next_line++;
1601			if (*next_line == '\0')
1602				next_line = NULL;
1603		}
1604
1605		err = sscanf(pos, "%9s %lld %lu", clock,
1606				&off->val.tv_sec, &off->val.tv_nsec);
1607		if (err != 3 || off->val.tv_nsec >= NSEC_PER_SEC)
1608			goto out;
1609
1610		clock[sizeof(clock) - 1] = 0;
1611		if (strcmp(clock, "monotonic") == 0 ||
1612		    strcmp(clock, __stringify(CLOCK_MONOTONIC)) == 0)
1613			off->clockid = CLOCK_MONOTONIC;
1614		else if (strcmp(clock, "boottime") == 0 ||
1615			 strcmp(clock, __stringify(CLOCK_BOOTTIME)) == 0)
1616			off->clockid = CLOCK_BOOTTIME;
1617		else
1618			goto out;
1619
1620		noffsets++;
1621		if (noffsets == ARRAY_SIZE(offsets)) {
1622			if (next_line)
1623				count = next_line - kbuf;
1624			break;
1625		}
1626	}
1627
1628	ret = -ESRCH;
1629	p = get_proc_task(inode);
1630	if (!p)
1631		goto out;
1632	ret = proc_timens_set_offset(file, p, offsets, noffsets);
1633	put_task_struct(p);
1634	if (ret)
1635		goto out;
1636
1637	ret = count;
1638out:
1639	kfree(kbuf);
1640	return ret;
1641}
1642
1643static int timens_offsets_open(struct inode *inode, struct file *filp)
1644{
1645	return single_open(filp, timens_offsets_show, inode);
1646}
1647
1648static const struct file_operations proc_timens_offsets_operations = {
1649	.open		= timens_offsets_open,
1650	.read		= seq_read,
1651	.write		= timens_offsets_write,
1652	.llseek		= seq_lseek,
1653	.release	= single_release,
1654};
1655#endif /* CONFIG_TIME_NS */
1656
1657static ssize_t comm_write(struct file *file, const char __user *buf,
1658				size_t count, loff_t *offset)
1659{
1660	struct inode *inode = file_inode(file);
1661	struct task_struct *p;
1662	char buffer[TASK_COMM_LEN];
1663	const size_t maxlen = sizeof(buffer) - 1;
1664
1665	memset(buffer, 0, sizeof(buffer));
1666	if (copy_from_user(buffer, buf, count > maxlen ? maxlen : count))
 
 
1667		return -EFAULT;
1668
1669	p = get_proc_task(inode);
1670	if (!p)
1671		return -ESRCH;
1672
1673	if (same_thread_group(current, p))
1674		set_task_comm(p, buffer);
1675	else
1676		count = -EINVAL;
1677
1678	put_task_struct(p);
1679
1680	return count;
1681}
1682
1683static int comm_show(struct seq_file *m, void *v)
1684{
1685	struct inode *inode = m->private;
1686	struct task_struct *p;
1687
1688	p = get_proc_task(inode);
1689	if (!p)
1690		return -ESRCH;
1691
1692	proc_task_name(m, p, false);
1693	seq_putc(m, '\n');
 
1694
1695	put_task_struct(p);
1696
1697	return 0;
1698}
1699
1700static int comm_open(struct inode *inode, struct file *filp)
1701{
1702	return single_open(filp, comm_show, inode);
1703}
1704
1705static const struct file_operations proc_pid_set_comm_operations = {
1706	.open		= comm_open,
1707	.read		= seq_read,
1708	.write		= comm_write,
1709	.llseek		= seq_lseek,
1710	.release	= single_release,
1711};
1712
1713static int proc_exe_link(struct dentry *dentry, struct path *exe_path)
1714{
1715	struct task_struct *task;
 
1716	struct file *exe_file;
1717
1718	task = get_proc_task(d_inode(dentry));
1719	if (!task)
1720		return -ENOENT;
1721	exe_file = get_task_exe_file(task);
1722	put_task_struct(task);
 
 
 
 
1723	if (exe_file) {
1724		*exe_path = exe_file->f_path;
1725		path_get(&exe_file->f_path);
1726		fput(exe_file);
1727		return 0;
1728	} else
1729		return -ENOENT;
1730}
1731
1732static const char *proc_pid_get_link(struct dentry *dentry,
1733				     struct inode *inode,
1734				     struct delayed_call *done)
1735{
1736	struct path path;
1737	int error = -EACCES;
1738
1739	if (!dentry)
1740		return ERR_PTR(-ECHILD);
1741
1742	/* Are we allowed to snoop on the tasks file descriptors? */
1743	if (!proc_fd_access_allowed(inode))
1744		goto out;
1745
1746	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1747	if (error)
1748		goto out;
1749
1750	error = nd_jump_link(&path);
1751out:
1752	return ERR_PTR(error);
1753}
1754
1755static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1756{
1757	char *tmp = (char *)__get_free_page(GFP_KERNEL);
1758	char *pathname;
1759	int len;
1760
1761	if (!tmp)
1762		return -ENOMEM;
1763
1764	pathname = d_path(path, tmp, PAGE_SIZE);
1765	len = PTR_ERR(pathname);
1766	if (IS_ERR(pathname))
1767		goto out;
1768	len = tmp + PAGE_SIZE - 1 - pathname;
1769
1770	if (len > buflen)
1771		len = buflen;
1772	if (copy_to_user(buffer, pathname, len))
1773		len = -EFAULT;
1774 out:
1775	free_page((unsigned long)tmp);
1776	return len;
1777}
1778
1779static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1780{
1781	int error = -EACCES;
1782	struct inode *inode = d_inode(dentry);
1783	struct path path;
1784
1785	/* Are we allowed to snoop on the tasks file descriptors? */
1786	if (!proc_fd_access_allowed(inode))
1787		goto out;
1788
1789	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1790	if (error)
1791		goto out;
1792
1793	error = do_proc_readlink(&path, buffer, buflen);
1794	path_put(&path);
1795out:
1796	return error;
1797}
1798
1799const struct inode_operations proc_pid_link_inode_operations = {
1800	.readlink	= proc_pid_readlink,
1801	.get_link	= proc_pid_get_link,
1802	.setattr	= proc_setattr,
1803};
1804
1805
1806/* building an inode */
1807
1808void task_dump_owner(struct task_struct *task, umode_t mode,
1809		     kuid_t *ruid, kgid_t *rgid)
1810{
1811	/* Depending on the state of dumpable compute who should own a
1812	 * proc file for a task.
1813	 */
1814	const struct cred *cred;
1815	kuid_t uid;
1816	kgid_t gid;
1817
1818	if (unlikely(task->flags & PF_KTHREAD)) {
1819		*ruid = GLOBAL_ROOT_UID;
1820		*rgid = GLOBAL_ROOT_GID;
1821		return;
1822	}
1823
1824	/* Default to the tasks effective ownership */
1825	rcu_read_lock();
1826	cred = __task_cred(task);
1827	uid = cred->euid;
1828	gid = cred->egid;
1829	rcu_read_unlock();
1830
1831	/*
1832	 * Before the /proc/pid/status file was created the only way to read
1833	 * the effective uid of a /process was to stat /proc/pid.  Reading
1834	 * /proc/pid/status is slow enough that procps and other packages
1835	 * kept stating /proc/pid.  To keep the rules in /proc simple I have
1836	 * made this apply to all per process world readable and executable
1837	 * directories.
1838	 */
1839	if (mode != (S_IFDIR|S_IRUGO|S_IXUGO)) {
1840		struct mm_struct *mm;
1841		task_lock(task);
1842		mm = task->mm;
1843		/* Make non-dumpable tasks owned by some root */
1844		if (mm) {
1845			if (get_dumpable(mm) != SUID_DUMP_USER) {
1846				struct user_namespace *user_ns = mm->user_ns;
1847
1848				uid = make_kuid(user_ns, 0);
1849				if (!uid_valid(uid))
1850					uid = GLOBAL_ROOT_UID;
1851
1852				gid = make_kgid(user_ns, 0);
1853				if (!gid_valid(gid))
1854					gid = GLOBAL_ROOT_GID;
1855			}
1856		} else {
1857			uid = GLOBAL_ROOT_UID;
1858			gid = GLOBAL_ROOT_GID;
1859		}
1860		task_unlock(task);
1861	}
1862	*ruid = uid;
1863	*rgid = gid;
1864}
1865
1866void proc_pid_evict_inode(struct proc_inode *ei)
1867{
1868	struct pid *pid = ei->pid;
1869
1870	if (S_ISDIR(ei->vfs_inode.i_mode)) {
1871		spin_lock(&pid->lock);
1872		hlist_del_init_rcu(&ei->sibling_inodes);
1873		spin_unlock(&pid->lock);
1874	}
1875
1876	put_pid(pid);
 
 
 
 
 
 
 
1877}
1878
1879struct inode *proc_pid_make_inode(struct super_block * sb,
1880				  struct task_struct *task, umode_t mode)
1881{
1882	struct inode * inode;
1883	struct proc_inode *ei;
1884	struct pid *pid;
1885
1886	/* We need a new inode */
1887
1888	inode = new_inode(sb);
1889	if (!inode)
1890		goto out;
1891
1892	/* Common stuff */
1893	ei = PROC_I(inode);
1894	inode->i_mode = mode;
1895	inode->i_ino = get_next_ino();
1896	inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode);
1897	inode->i_op = &proc_def_inode_operations;
1898
1899	/*
1900	 * grab the reference to task.
1901	 */
1902	pid = get_task_pid(task, PIDTYPE_PID);
1903	if (!pid)
1904		goto out_unlock;
1905
1906	/* Let the pid remember us for quick removal */
1907	ei->pid = pid;
1908	if (S_ISDIR(mode)) {
1909		spin_lock(&pid->lock);
1910		hlist_add_head_rcu(&ei->sibling_inodes, &pid->inodes);
1911		spin_unlock(&pid->lock);
1912	}
1913
1914	task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
1915	security_task_to_inode(task, inode);
1916
1917out:
1918	return inode;
1919
1920out_unlock:
1921	iput(inode);
1922	return NULL;
1923}
1924
1925int pid_getattr(const struct path *path, struct kstat *stat,
1926		u32 request_mask, unsigned int query_flags)
1927{
1928	struct inode *inode = d_inode(path->dentry);
1929	struct proc_fs_info *fs_info = proc_sb_info(inode->i_sb);
1930	struct task_struct *task;
 
 
1931
1932	generic_fillattr(inode, stat);
1933
 
1934	stat->uid = GLOBAL_ROOT_UID;
1935	stat->gid = GLOBAL_ROOT_GID;
1936	rcu_read_lock();
1937	task = pid_task(proc_pid(inode), PIDTYPE_PID);
1938	if (task) {
1939		if (!has_pid_permissions(fs_info, task, HIDEPID_INVISIBLE)) {
1940			rcu_read_unlock();
1941			/*
1942			 * This doesn't prevent learning whether PID exists,
1943			 * it only makes getattr() consistent with readdir().
1944			 */
1945			return -ENOENT;
1946		}
1947		task_dump_owner(task, inode->i_mode, &stat->uid, &stat->gid);
 
 
 
 
 
1948	}
1949	rcu_read_unlock();
1950	return 0;
1951}
1952
1953/* dentry stuff */
1954
1955/*
1956 * Set <pid>/... inode ownership (can change due to setuid(), etc.)
1957 */
1958void pid_update_inode(struct task_struct *task, struct inode *inode)
1959{
1960	task_dump_owner(task, inode->i_mode, &inode->i_uid, &inode->i_gid);
1961
1962	inode->i_mode &= ~(S_ISUID | S_ISGID);
1963	security_task_to_inode(task, inode);
1964}
1965
1966/*
1967 * Rewrite the inode's ownerships here because the owning task may have
1968 * performed a setuid(), etc.
1969 *
 
 
 
 
 
 
1970 */
1971static int pid_revalidate(struct dentry *dentry, unsigned int flags)
1972{
1973	struct inode *inode;
1974	struct task_struct *task;
 
1975
1976	if (flags & LOOKUP_RCU)
1977		return -ECHILD;
1978
1979	inode = d_inode(dentry);
1980	task = get_proc_task(inode);
1981
1982	if (task) {
1983		pid_update_inode(task, inode);
 
 
 
 
 
 
 
 
 
 
 
 
1984		put_task_struct(task);
1985		return 1;
1986	}
 
1987	return 0;
1988}
1989
1990static inline bool proc_inode_is_dead(struct inode *inode)
1991{
1992	return !proc_pid(inode)->tasks[PIDTYPE_PID].first;
1993}
1994
1995int pid_delete_dentry(const struct dentry *dentry)
1996{
1997	/* Is the task we represent dead?
1998	 * If so, then don't put the dentry on the lru list,
1999	 * kill it immediately.
2000	 */
2001	return proc_inode_is_dead(d_inode(dentry));
2002}
2003
2004const struct dentry_operations pid_dentry_operations =
2005{
2006	.d_revalidate	= pid_revalidate,
2007	.d_delete	= pid_delete_dentry,
2008};
2009
2010/* Lookups */
2011
2012/*
2013 * Fill a directory entry.
2014 *
2015 * If possible create the dcache entry and derive our inode number and
2016 * file type from dcache entry.
2017 *
2018 * Since all of the proc inode numbers are dynamically generated, the inode
2019 * numbers do not exist until the inode is cache.  This means creating the
2020 * the dcache entry in readdir is necessary to keep the inode numbers
2021 * reported by readdir in sync with the inode numbers reported
2022 * by stat.
2023 */
2024bool proc_fill_cache(struct file *file, struct dir_context *ctx,
2025	const char *name, unsigned int len,
2026	instantiate_t instantiate, struct task_struct *task, const void *ptr)
2027{
2028	struct dentry *child, *dir = file->f_path.dentry;
2029	struct qstr qname = QSTR_INIT(name, len);
2030	struct inode *inode;
 
 
2031	unsigned type = DT_UNKNOWN;
2032	ino_t ino = 1;
2033
2034	child = d_hash_and_lookup(dir, &qname);
 
 
 
 
2035	if (!child) {
2036		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
2037		child = d_alloc_parallel(dir, &qname, &wq);
2038		if (IS_ERR(child))
2039			goto end_instantiate;
2040		if (d_in_lookup(child)) {
2041			struct dentry *res;
2042			res = instantiate(child, task, ptr);
2043			d_lookup_done(child);
2044			if (unlikely(res)) {
2045				dput(child);
2046				child = res;
2047				if (IS_ERR(child))
2048					goto end_instantiate;
2049			}
2050		}
 
2051	}
2052	inode = d_inode(child);
2053	ino = inode->i_ino;
2054	type = inode->i_mode >> 12;
2055	dput(child);
2056end_instantiate:
2057	return dir_emit(ctx, name, len, ino, type);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2058}
2059
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2060/*
2061 * dname_to_vma_addr - maps a dentry name into two unsigned longs
2062 * which represent vma start and end addresses.
2063 */
2064static int dname_to_vma_addr(struct dentry *dentry,
2065			     unsigned long *start, unsigned long *end)
2066{
2067	const char *str = dentry->d_name.name;
2068	unsigned long long sval, eval;
2069	unsigned int len;
2070
2071	if (str[0] == '0' && str[1] != '-')
2072		return -EINVAL;
2073	len = _parse_integer(str, 16, &sval);
2074	if (len & KSTRTOX_OVERFLOW)
2075		return -EINVAL;
2076	if (sval != (unsigned long)sval)
2077		return -EINVAL;
2078	str += len;
2079
2080	if (*str != '-')
2081		return -EINVAL;
2082	str++;
2083
2084	if (str[0] == '0' && str[1])
2085		return -EINVAL;
2086	len = _parse_integer(str, 16, &eval);
2087	if (len & KSTRTOX_OVERFLOW)
2088		return -EINVAL;
2089	if (eval != (unsigned long)eval)
2090		return -EINVAL;
2091	str += len;
2092
2093	if (*str != '\0')
2094		return -EINVAL;
2095
2096	*start = sval;
2097	*end = eval;
2098
2099	return 0;
2100}
2101
2102static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags)
2103{
2104	unsigned long vm_start, vm_end;
2105	bool exact_vma_exists = false;
2106	struct mm_struct *mm = NULL;
2107	struct task_struct *task;
 
2108	struct inode *inode;
2109	int status = 0;
2110
2111	if (flags & LOOKUP_RCU)
2112		return -ECHILD;
2113
2114	inode = d_inode(dentry);
 
 
 
 
 
2115	task = get_proc_task(inode);
2116	if (!task)
2117		goto out_notask;
2118
2119	mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
2120	if (IS_ERR_OR_NULL(mm))
2121		goto out;
2122
2123	if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) {
2124		status = mmap_read_lock_killable(mm);
2125		if (!status) {
2126			exact_vma_exists = !!find_exact_vma(mm, vm_start,
2127							    vm_end);
2128			mmap_read_unlock(mm);
2129		}
2130	}
2131
2132	mmput(mm);
2133
2134	if (exact_vma_exists) {
2135		task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
2136
 
 
 
 
 
 
 
 
2137		security_task_to_inode(task, inode);
2138		status = 1;
2139	}
2140
2141out:
2142	put_task_struct(task);
2143
2144out_notask:
 
 
 
2145	return status;
2146}
2147
2148static const struct dentry_operations tid_map_files_dentry_operations = {
2149	.d_revalidate	= map_files_d_revalidate,
2150	.d_delete	= pid_delete_dentry,
2151};
2152
2153static int map_files_get_link(struct dentry *dentry, struct path *path)
2154{
2155	unsigned long vm_start, vm_end;
2156	struct vm_area_struct *vma;
2157	struct task_struct *task;
2158	struct mm_struct *mm;
2159	int rc;
2160
2161	rc = -ENOENT;
2162	task = get_proc_task(d_inode(dentry));
2163	if (!task)
2164		goto out;
2165
2166	mm = get_task_mm(task);
2167	put_task_struct(task);
2168	if (!mm)
2169		goto out;
2170
2171	rc = dname_to_vma_addr(dentry, &vm_start, &vm_end);
2172	if (rc)
2173		goto out_mmput;
2174
2175	rc = mmap_read_lock_killable(mm);
2176	if (rc)
2177		goto out_mmput;
2178
2179	rc = -ENOENT;
2180	vma = find_exact_vma(mm, vm_start, vm_end);
2181	if (vma && vma->vm_file) {
2182		*path = vma->vm_file->f_path;
2183		path_get(path);
2184		rc = 0;
2185	}
2186	mmap_read_unlock(mm);
2187
2188out_mmput:
2189	mmput(mm);
2190out:
2191	return rc;
2192}
2193
2194struct map_files_info {
2195	unsigned long	start;
2196	unsigned long	end;
2197	fmode_t		mode;
2198};
2199
2200/*
2201 * Only allow CAP_SYS_ADMIN and CAP_CHECKPOINT_RESTORE to follow the links, due
2202 * to concerns about how the symlinks may be used to bypass permissions on
2203 * ancestor directories in the path to the file in question.
2204 */
2205static const char *
2206proc_map_files_get_link(struct dentry *dentry,
2207			struct inode *inode,
2208		        struct delayed_call *done)
2209{
2210	if (!checkpoint_restore_ns_capable(&init_user_ns))
2211		return ERR_PTR(-EPERM);
2212
2213	return proc_pid_get_link(dentry, inode, done);
2214}
2215
2216/*
2217 * Identical to proc_pid_link_inode_operations except for get_link()
2218 */
2219static const struct inode_operations proc_map_files_link_inode_operations = {
2220	.readlink	= proc_pid_readlink,
2221	.get_link	= proc_map_files_get_link,
2222	.setattr	= proc_setattr,
2223};
2224
2225static struct dentry *
2226proc_map_files_instantiate(struct dentry *dentry,
2227			   struct task_struct *task, const void *ptr)
2228{
2229	fmode_t mode = (fmode_t)(unsigned long)ptr;
2230	struct proc_inode *ei;
2231	struct inode *inode;
2232
2233	inode = proc_pid_make_inode(dentry->d_sb, task, S_IFLNK |
2234				    ((mode & FMODE_READ ) ? S_IRUSR : 0) |
2235				    ((mode & FMODE_WRITE) ? S_IWUSR : 0));
 
2236	if (!inode)
2237		return ERR_PTR(-ENOENT);
2238
2239	ei = PROC_I(inode);
2240	ei->op.proc_get_link = map_files_get_link;
2241
2242	inode->i_op = &proc_map_files_link_inode_operations;
2243	inode->i_size = 64;
 
 
 
 
 
 
2244
2245	d_set_d_op(dentry, &tid_map_files_dentry_operations);
2246	return d_splice_alias(inode, dentry);
 
 
2247}
2248
2249static struct dentry *proc_map_files_lookup(struct inode *dir,
2250		struct dentry *dentry, unsigned int flags)
2251{
2252	unsigned long vm_start, vm_end;
2253	struct vm_area_struct *vma;
2254	struct task_struct *task;
2255	struct dentry *result;
2256	struct mm_struct *mm;
2257
 
 
 
 
2258	result = ERR_PTR(-ENOENT);
2259	task = get_proc_task(dir);
2260	if (!task)
2261		goto out;
2262
2263	result = ERR_PTR(-EACCES);
2264	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2265		goto out_put_task;
2266
2267	result = ERR_PTR(-ENOENT);
2268	if (dname_to_vma_addr(dentry, &vm_start, &vm_end))
2269		goto out_put_task;
2270
2271	mm = get_task_mm(task);
2272	if (!mm)
2273		goto out_put_task;
2274
2275	result = ERR_PTR(-EINTR);
2276	if (mmap_read_lock_killable(mm))
2277		goto out_put_mm;
2278
2279	result = ERR_PTR(-ENOENT);
2280	vma = find_exact_vma(mm, vm_start, vm_end);
2281	if (!vma)
2282		goto out_no_vma;
2283
2284	if (vma->vm_file)
2285		result = proc_map_files_instantiate(dentry, task,
2286				(void *)(unsigned long)vma->vm_file->f_mode);
2287
2288out_no_vma:
2289	mmap_read_unlock(mm);
2290out_put_mm:
2291	mmput(mm);
2292out_put_task:
2293	put_task_struct(task);
2294out:
2295	return result;
2296}
2297
2298static const struct inode_operations proc_map_files_inode_operations = {
2299	.lookup		= proc_map_files_lookup,
2300	.permission	= proc_fd_permission,
2301	.setattr	= proc_setattr,
2302};
2303
2304static int
2305proc_map_files_readdir(struct file *file, struct dir_context *ctx)
2306{
 
 
2307	struct vm_area_struct *vma;
2308	struct task_struct *task;
2309	struct mm_struct *mm;
2310	unsigned long nr_files, pos, i;
2311	GENRADIX(struct map_files_info) fa;
2312	struct map_files_info *p;
2313	int ret;
2314
2315	genradix_init(&fa);
 
 
2316
2317	ret = -ENOENT;
2318	task = get_proc_task(file_inode(file));
2319	if (!task)
2320		goto out;
2321
2322	ret = -EACCES;
2323	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2324		goto out_put_task;
2325
2326	ret = 0;
2327	if (!dir_emit_dots(file, ctx))
2328		goto out_put_task;
2329
2330	mm = get_task_mm(task);
2331	if (!mm)
2332		goto out_put_task;
2333
2334	ret = mmap_read_lock_killable(mm);
2335	if (ret) {
2336		mmput(mm);
2337		goto out_put_task;
2338	}
 
 
 
 
 
2339
2340	nr_files = 0;
 
 
 
2341
2342	/*
2343	 * We need two passes here:
2344	 *
2345	 *  1) Collect vmas of mapped files with mmap_lock taken
2346	 *  2) Release mmap_lock and instantiate entries
2347	 *
2348	 * otherwise we get lockdep complained, since filldir()
2349	 * routine might require mmap_lock taken in might_fault().
2350	 */
2351
2352	for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) {
2353		if (!vma->vm_file)
2354			continue;
2355		if (++pos <= ctx->pos)
2356			continue;
 
 
 
 
2357
2358		p = genradix_ptr_alloc(&fa, nr_files++, GFP_KERNEL);
2359		if (!p) {
2360			ret = -ENOMEM;
2361			mmap_read_unlock(mm);
2362			mmput(mm);
2363			goto out_put_task;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2364		}
 
2365
2366		p->start = vma->vm_start;
2367		p->end = vma->vm_end;
2368		p->mode = vma->vm_file->f_mode;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2369	}
2370	mmap_read_unlock(mm);
2371	mmput(mm);
2372
2373	for (i = 0; i < nr_files; i++) {
2374		char buf[4 * sizeof(long) + 2];	/* max: %lx-%lx\0 */
2375		unsigned int len;
2376
2377		p = genradix_ptr(&fa, i);
2378		len = snprintf(buf, sizeof(buf), "%lx-%lx", p->start, p->end);
2379		if (!proc_fill_cache(file, ctx,
2380				      buf, len,
2381				      proc_map_files_instantiate,
2382				      task,
2383				      (void *)(unsigned long)p->mode))
2384			break;
2385		ctx->pos++;
2386	}
2387
2388out_put_task:
2389	put_task_struct(task);
2390out:
2391	genradix_free(&fa);
2392	return ret;
2393}
2394
2395static const struct file_operations proc_map_files_operations = {
2396	.read		= generic_read_dir,
2397	.iterate_shared	= proc_map_files_readdir,
2398	.llseek		= generic_file_llseek,
2399};
2400
2401#if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
2402struct timers_private {
2403	struct pid *pid;
2404	struct task_struct *task;
2405	struct sighand_struct *sighand;
2406	struct pid_namespace *ns;
2407	unsigned long flags;
2408};
2409
2410static void *timers_start(struct seq_file *m, loff_t *pos)
2411{
2412	struct timers_private *tp = m->private;
2413
2414	tp->task = get_pid_task(tp->pid, PIDTYPE_PID);
2415	if (!tp->task)
2416		return ERR_PTR(-ESRCH);
2417
2418	tp->sighand = lock_task_sighand(tp->task, &tp->flags);
2419	if (!tp->sighand)
2420		return ERR_PTR(-ESRCH);
2421
2422	return seq_list_start(&tp->task->signal->posix_timers, *pos);
2423}
2424
2425static void *timers_next(struct seq_file *m, void *v, loff_t *pos)
2426{
2427	struct timers_private *tp = m->private;
2428	return seq_list_next(v, &tp->task->signal->posix_timers, pos);
2429}
2430
2431static void timers_stop(struct seq_file *m, void *v)
2432{
2433	struct timers_private *tp = m->private;
2434
2435	if (tp->sighand) {
2436		unlock_task_sighand(tp->task, &tp->flags);
2437		tp->sighand = NULL;
2438	}
2439
2440	if (tp->task) {
2441		put_task_struct(tp->task);
2442		tp->task = NULL;
2443	}
2444}
2445
2446static int show_timer(struct seq_file *m, void *v)
2447{
2448	struct k_itimer *timer;
2449	struct timers_private *tp = m->private;
2450	int notify;
2451	static const char * const nstr[] = {
2452		[SIGEV_SIGNAL] = "signal",
2453		[SIGEV_NONE] = "none",
2454		[SIGEV_THREAD] = "thread",
2455	};
2456
2457	timer = list_entry((struct list_head *)v, struct k_itimer, list);
2458	notify = timer->it_sigev_notify;
2459
2460	seq_printf(m, "ID: %d\n", timer->it_id);
2461	seq_printf(m, "signal: %d/%px\n",
2462		   timer->sigq->info.si_signo,
2463		   timer->sigq->info.si_value.sival_ptr);
2464	seq_printf(m, "notify: %s/%s.%d\n",
2465		   nstr[notify & ~SIGEV_THREAD_ID],
2466		   (notify & SIGEV_THREAD_ID) ? "tid" : "pid",
2467		   pid_nr_ns(timer->it_pid, tp->ns));
2468	seq_printf(m, "ClockID: %d\n", timer->it_clock);
2469
2470	return 0;
2471}
2472
2473static const struct seq_operations proc_timers_seq_ops = {
2474	.start	= timers_start,
2475	.next	= timers_next,
2476	.stop	= timers_stop,
2477	.show	= show_timer,
 
 
2478};
2479
2480static int proc_timers_open(struct inode *inode, struct file *file)
 
2481{
2482	struct timers_private *tp;
 
 
 
2483
2484	tp = __seq_open_private(file, &proc_timers_seq_ops,
2485			sizeof(struct timers_private));
2486	if (!tp)
2487		return -ENOMEM;
 
 
 
 
 
 
 
 
2488
2489	tp->pid = proc_pid(inode);
2490	tp->ns = proc_pid_ns(inode->i_sb);
2491	return 0;
2492}
2493
2494static const struct file_operations proc_timers_operations = {
2495	.open		= proc_timers_open,
2496	.read		= seq_read,
2497	.llseek		= seq_lseek,
2498	.release	= seq_release_private,
2499};
2500#endif
2501
2502static ssize_t timerslack_ns_write(struct file *file, const char __user *buf,
2503					size_t count, loff_t *offset)
2504{
2505	struct inode *inode = file_inode(file);
2506	struct task_struct *p;
2507	u64 slack_ns;
2508	int err;
2509
2510	err = kstrtoull_from_user(buf, count, 10, &slack_ns);
2511	if (err < 0)
2512		return err;
2513
2514	p = get_proc_task(inode);
2515	if (!p)
2516		return -ESRCH;
2517
2518	if (p != current) {
2519		rcu_read_lock();
2520		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
2521			rcu_read_unlock();
2522			count = -EPERM;
2523			goto out;
2524		}
2525		rcu_read_unlock();
2526
2527		err = security_task_setscheduler(p);
2528		if (err) {
2529			count = err;
2530			goto out;
2531		}
2532	}
2533
2534	task_lock(p);
2535	if (slack_ns == 0)
2536		p->timer_slack_ns = p->default_timer_slack_ns;
2537	else
2538		p->timer_slack_ns = slack_ns;
2539	task_unlock(p);
2540
2541out:
2542	put_task_struct(p);
2543
2544	return count;
2545}
2546
2547static int timerslack_ns_show(struct seq_file *m, void *v)
2548{
2549	struct inode *inode = m->private;
2550	struct task_struct *p;
2551	int err = 0;
2552
2553	p = get_proc_task(inode);
2554	if (!p)
2555		return -ESRCH;
2556
2557	if (p != current) {
2558		rcu_read_lock();
2559		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
2560			rcu_read_unlock();
2561			err = -EPERM;
2562			goto out;
2563		}
2564		rcu_read_unlock();
2565
2566		err = security_task_getscheduler(p);
2567		if (err)
2568			goto out;
2569	}
2570
2571	task_lock(p);
2572	seq_printf(m, "%llu\n", p->timer_slack_ns);
2573	task_unlock(p);
2574
2575out:
2576	put_task_struct(p);
2577
2578	return err;
2579}
2580
2581static int timerslack_ns_open(struct inode *inode, struct file *filp)
2582{
2583	return single_open(filp, timerslack_ns_show, inode);
2584}
 
2585
2586static const struct file_operations proc_pid_set_timerslack_ns_operations = {
2587	.open		= timerslack_ns_open,
2588	.read		= seq_read,
2589	.write		= timerslack_ns_write,
2590	.llseek		= seq_lseek,
2591	.release	= single_release,
2592};
2593
2594static struct dentry *proc_pident_instantiate(struct dentry *dentry,
2595	struct task_struct *task, const void *ptr)
 
2596{
2597	const struct pid_entry *p = ptr;
2598	struct inode *inode;
2599	struct proc_inode *ei;
 
2600
2601	inode = proc_pid_make_inode(dentry->d_sb, task, p->mode);
2602	if (!inode)
2603		return ERR_PTR(-ENOENT);
2604
2605	ei = PROC_I(inode);
 
2606	if (S_ISDIR(inode->i_mode))
2607		set_nlink(inode, 2);	/* Use getattr to fix if necessary */
2608	if (p->iop)
2609		inode->i_op = p->iop;
2610	if (p->fop)
2611		inode->i_fop = p->fop;
2612	ei->op = p->op;
2613	pid_update_inode(task, inode);
2614	d_set_d_op(dentry, &pid_dentry_operations);
2615	return d_splice_alias(inode, dentry);
 
 
 
 
 
2616}
2617
2618static struct dentry *proc_pident_lookup(struct inode *dir, 
2619					 struct dentry *dentry,
2620					 const struct pid_entry *p,
2621					 const struct pid_entry *end)
2622{
 
2623	struct task_struct *task = get_proc_task(dir);
2624	struct dentry *res = ERR_PTR(-ENOENT);
 
 
2625
2626	if (!task)
2627		goto out_no_task;
2628
2629	/*
2630	 * Yes, it does not scale. And it should not. Don't add
2631	 * new entries into /proc/<tgid>/ without very good reasons.
2632	 */
2633	for (; p < end; p++) {
 
2634		if (p->len != dentry->d_name.len)
2635			continue;
2636		if (!memcmp(dentry->d_name.name, p->name, p->len)) {
2637			res = proc_pident_instantiate(dentry, task, p);
2638			break;
2639		}
2640	}
 
 
 
 
 
2641	put_task_struct(task);
2642out_no_task:
2643	return res;
2644}
2645
2646static int proc_pident_readdir(struct file *file, struct dir_context *ctx,
 
 
 
 
 
 
 
 
2647		const struct pid_entry *ents, unsigned int nents)
2648{
2649	struct task_struct *task = get_proc_task(file_inode(file));
2650	const struct pid_entry *p;
 
 
 
 
 
2651
 
2652	if (!task)
2653		return -ENOENT;
2654
2655	if (!dir_emit_dots(file, ctx))
2656		goto out;
2657
2658	if (ctx->pos >= nents + 2)
2659		goto out;
2660
2661	for (p = ents + (ctx->pos - 2); p < ents + nents; p++) {
2662		if (!proc_fill_cache(file, ctx, p->name, p->len,
2663				proc_pident_instantiate, task, p))
2664			break;
2665		ctx->pos++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2666	}
 
 
2667out:
2668	put_task_struct(task);
2669	return 0;
 
2670}
2671
2672#ifdef CONFIG_SECURITY
2673static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2674				  size_t count, loff_t *ppos)
2675{
2676	struct inode * inode = file_inode(file);
2677	char *p = NULL;
2678	ssize_t length;
2679	struct task_struct *task = get_proc_task(inode);
2680
2681	if (!task)
2682		return -ESRCH;
2683
2684	length = security_getprocattr(task, PROC_I(inode)->op.lsm,
2685				      (char*)file->f_path.dentry->d_name.name,
2686				      &p);
2687	put_task_struct(task);
2688	if (length > 0)
2689		length = simple_read_from_buffer(buf, count, ppos, p, length);
2690	kfree(p);
2691	return length;
2692}
2693
2694static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2695				   size_t count, loff_t *ppos)
2696{
2697	struct inode * inode = file_inode(file);
2698	struct task_struct *task;
2699	void *page;
2700	int rv;
2701
2702	rcu_read_lock();
2703	task = pid_task(proc_pid(inode), PIDTYPE_PID);
2704	if (!task) {
2705		rcu_read_unlock();
2706		return -ESRCH;
2707	}
2708	/* A task may only write its own attributes. */
2709	if (current != task) {
2710		rcu_read_unlock();
2711		return -EACCES;
2712	}
2713	/* Prevent changes to overridden credentials. */
2714	if (current_cred() != current_real_cred()) {
2715		rcu_read_unlock();
2716		return -EBUSY;
2717	}
2718	rcu_read_unlock();
2719
 
 
 
2720	if (count > PAGE_SIZE)
2721		count = PAGE_SIZE;
2722
2723	/* No partial writes. */
 
2724	if (*ppos != 0)
2725		return -EINVAL;
2726
2727	page = memdup_user(buf, count);
2728	if (IS_ERR(page)) {
2729		rv = PTR_ERR(page);
2730		goto out;
2731	}
 
 
 
2732
2733	/* Guard against adverse ptrace interaction */
2734	rv = mutex_lock_interruptible(&current->signal->cred_guard_mutex);
2735	if (rv < 0)
2736		goto out_free;
2737
2738	rv = security_setprocattr(PROC_I(inode)->op.lsm,
2739				  file->f_path.dentry->d_name.name, page,
2740				  count);
2741	mutex_unlock(&current->signal->cred_guard_mutex);
2742out_free:
2743	kfree(page);
2744out:
2745	return rv;
 
 
2746}
2747
2748static const struct file_operations proc_pid_attr_operations = {
2749	.read		= proc_pid_attr_read,
2750	.write		= proc_pid_attr_write,
2751	.llseek		= generic_file_llseek,
2752};
2753
2754#define LSM_DIR_OPS(LSM) \
2755static int proc_##LSM##_attr_dir_iterate(struct file *filp, \
2756			     struct dir_context *ctx) \
2757{ \
2758	return proc_pident_readdir(filp, ctx, \
2759				   LSM##_attr_dir_stuff, \
2760				   ARRAY_SIZE(LSM##_attr_dir_stuff)); \
2761} \
2762\
2763static const struct file_operations proc_##LSM##_attr_dir_ops = { \
2764	.read		= generic_read_dir, \
2765	.iterate	= proc_##LSM##_attr_dir_iterate, \
2766	.llseek		= default_llseek, \
2767}; \
2768\
2769static struct dentry *proc_##LSM##_attr_dir_lookup(struct inode *dir, \
2770				struct dentry *dentry, unsigned int flags) \
2771{ \
2772	return proc_pident_lookup(dir, dentry, \
2773				  LSM##_attr_dir_stuff, \
2774				  LSM##_attr_dir_stuff + ARRAY_SIZE(LSM##_attr_dir_stuff)); \
2775} \
2776\
2777static const struct inode_operations proc_##LSM##_attr_dir_inode_ops = { \
2778	.lookup		= proc_##LSM##_attr_dir_lookup, \
2779	.getattr	= pid_getattr, \
2780	.setattr	= proc_setattr, \
2781}
2782
2783#ifdef CONFIG_SECURITY_SMACK
2784static const struct pid_entry smack_attr_dir_stuff[] = {
2785	ATTR("smack", "current",	0666),
2786};
2787LSM_DIR_OPS(smack);
2788#endif
2789
2790#ifdef CONFIG_SECURITY_APPARMOR
2791static const struct pid_entry apparmor_attr_dir_stuff[] = {
2792	ATTR("apparmor", "current",	0666),
2793	ATTR("apparmor", "prev",	0444),
2794	ATTR("apparmor", "exec",	0666),
2795};
2796LSM_DIR_OPS(apparmor);
2797#endif
2798
2799static const struct pid_entry attr_dir_stuff[] = {
2800	ATTR(NULL, "current",		0666),
2801	ATTR(NULL, "prev",		0444),
2802	ATTR(NULL, "exec",		0666),
2803	ATTR(NULL, "fscreate",		0666),
2804	ATTR(NULL, "keycreate",		0666),
2805	ATTR(NULL, "sockcreate",	0666),
2806#ifdef CONFIG_SECURITY_SMACK
2807	DIR("smack",			0555,
2808	    proc_smack_attr_dir_inode_ops, proc_smack_attr_dir_ops),
2809#endif
2810#ifdef CONFIG_SECURITY_APPARMOR
2811	DIR("apparmor",			0555,
2812	    proc_apparmor_attr_dir_inode_ops, proc_apparmor_attr_dir_ops),
2813#endif
2814};
2815
2816static int proc_attr_dir_readdir(struct file *file, struct dir_context *ctx)
 
2817{
2818	return proc_pident_readdir(file, ctx, 
2819				   attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2820}
2821
2822static const struct file_operations proc_attr_dir_operations = {
2823	.read		= generic_read_dir,
2824	.iterate_shared	= proc_attr_dir_readdir,
2825	.llseek		= generic_file_llseek,
2826};
2827
2828static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2829				struct dentry *dentry, unsigned int flags)
2830{
2831	return proc_pident_lookup(dir, dentry,
2832				  attr_dir_stuff,
2833				  attr_dir_stuff + ARRAY_SIZE(attr_dir_stuff));
2834}
2835
2836static const struct inode_operations proc_attr_dir_inode_operations = {
2837	.lookup		= proc_attr_dir_lookup,
2838	.getattr	= pid_getattr,
2839	.setattr	= proc_setattr,
2840};
2841
2842#endif
2843
2844#ifdef CONFIG_ELF_CORE
2845static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2846					 size_t count, loff_t *ppos)
2847{
2848	struct task_struct *task = get_proc_task(file_inode(file));
2849	struct mm_struct *mm;
2850	char buffer[PROC_NUMBUF];
2851	size_t len;
2852	int ret;
2853
2854	if (!task)
2855		return -ESRCH;
2856
2857	ret = 0;
2858	mm = get_task_mm(task);
2859	if (mm) {
2860		len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2861			       ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2862				MMF_DUMP_FILTER_SHIFT));
2863		mmput(mm);
2864		ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2865	}
2866
2867	put_task_struct(task);
2868
2869	return ret;
2870}
2871
2872static ssize_t proc_coredump_filter_write(struct file *file,
2873					  const char __user *buf,
2874					  size_t count,
2875					  loff_t *ppos)
2876{
2877	struct task_struct *task;
2878	struct mm_struct *mm;
 
2879	unsigned int val;
2880	int ret;
2881	int i;
2882	unsigned long mask;
2883
2884	ret = kstrtouint_from_user(buf, count, 0, &val);
2885	if (ret < 0)
2886		return ret;
 
 
 
 
 
 
 
 
 
 
2887
2888	ret = -ESRCH;
2889	task = get_proc_task(file_inode(file));
2890	if (!task)
2891		goto out_no_task;
2892
 
2893	mm = get_task_mm(task);
2894	if (!mm)
2895		goto out_no_mm;
2896	ret = 0;
2897
2898	for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2899		if (val & mask)
2900			set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2901		else
2902			clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2903	}
2904
2905	mmput(mm);
2906 out_no_mm:
2907	put_task_struct(task);
2908 out_no_task:
2909	if (ret < 0)
2910		return ret;
2911	return count;
2912}
2913
2914static const struct file_operations proc_coredump_filter_operations = {
2915	.read		= proc_coredump_filter_read,
2916	.write		= proc_coredump_filter_write,
2917	.llseek		= generic_file_llseek,
2918};
2919#endif
2920
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2921#ifdef CONFIG_TASK_IO_ACCOUNTING
2922static int do_io_accounting(struct task_struct *task, struct seq_file *m, int whole)
2923{
2924	struct task_io_accounting acct = task->ioac;
2925	unsigned long flags;
2926	int result;
2927
2928	result = mutex_lock_killable(&task->signal->exec_update_mutex);
2929	if (result)
2930		return result;
2931
2932	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) {
2933		result = -EACCES;
2934		goto out_unlock;
2935	}
2936
2937	if (whole && lock_task_sighand(task, &flags)) {
2938		struct task_struct *t = task;
2939
2940		task_io_accounting_add(&acct, &task->signal->ioac);
2941		while_each_thread(task, t)
2942			task_io_accounting_add(&acct, &t->ioac);
2943
2944		unlock_task_sighand(task, &flags);
2945	}
2946	seq_printf(m,
2947		   "rchar: %llu\n"
2948		   "wchar: %llu\n"
2949		   "syscr: %llu\n"
2950		   "syscw: %llu\n"
2951		   "read_bytes: %llu\n"
2952		   "write_bytes: %llu\n"
2953		   "cancelled_write_bytes: %llu\n",
2954		   (unsigned long long)acct.rchar,
2955		   (unsigned long long)acct.wchar,
2956		   (unsigned long long)acct.syscr,
2957		   (unsigned long long)acct.syscw,
2958		   (unsigned long long)acct.read_bytes,
2959		   (unsigned long long)acct.write_bytes,
2960		   (unsigned long long)acct.cancelled_write_bytes);
2961	result = 0;
2962
2963out_unlock:
2964	mutex_unlock(&task->signal->exec_update_mutex);
2965	return result;
2966}
2967
2968static int proc_tid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2969				  struct pid *pid, struct task_struct *task)
2970{
2971	return do_io_accounting(task, m, 0);
2972}
2973
2974static int proc_tgid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2975				   struct pid *pid, struct task_struct *task)
2976{
2977	return do_io_accounting(task, m, 1);
2978}
2979#endif /* CONFIG_TASK_IO_ACCOUNTING */
2980
2981#ifdef CONFIG_USER_NS
2982static int proc_id_map_open(struct inode *inode, struct file *file,
2983	const struct seq_operations *seq_ops)
2984{
2985	struct user_namespace *ns = NULL;
2986	struct task_struct *task;
2987	struct seq_file *seq;
2988	int ret = -EINVAL;
2989
2990	task = get_proc_task(inode);
2991	if (task) {
2992		rcu_read_lock();
2993		ns = get_user_ns(task_cred_xxx(task, user_ns));
2994		rcu_read_unlock();
2995		put_task_struct(task);
2996	}
2997	if (!ns)
2998		goto err;
2999
3000	ret = seq_open(file, seq_ops);
3001	if (ret)
3002		goto err_put_ns;
3003
3004	seq = file->private_data;
3005	seq->private = ns;
3006
3007	return 0;
3008err_put_ns:
3009	put_user_ns(ns);
3010err:
3011	return ret;
3012}
3013
3014static int proc_id_map_release(struct inode *inode, struct file *file)
3015{
3016	struct seq_file *seq = file->private_data;
3017	struct user_namespace *ns = seq->private;
3018	put_user_ns(ns);
3019	return seq_release(inode, file);
3020}
3021
3022static int proc_uid_map_open(struct inode *inode, struct file *file)
3023{
3024	return proc_id_map_open(inode, file, &proc_uid_seq_operations);
3025}
3026
3027static int proc_gid_map_open(struct inode *inode, struct file *file)
3028{
3029	return proc_id_map_open(inode, file, &proc_gid_seq_operations);
3030}
3031
3032static int proc_projid_map_open(struct inode *inode, struct file *file)
3033{
3034	return proc_id_map_open(inode, file, &proc_projid_seq_operations);
3035}
3036
3037static const struct file_operations proc_uid_map_operations = {
3038	.open		= proc_uid_map_open,
3039	.write		= proc_uid_map_write,
3040	.read		= seq_read,
3041	.llseek		= seq_lseek,
3042	.release	= proc_id_map_release,
3043};
3044
3045static const struct file_operations proc_gid_map_operations = {
3046	.open		= proc_gid_map_open,
3047	.write		= proc_gid_map_write,
3048	.read		= seq_read,
3049	.llseek		= seq_lseek,
3050	.release	= proc_id_map_release,
3051};
3052
3053static const struct file_operations proc_projid_map_operations = {
3054	.open		= proc_projid_map_open,
3055	.write		= proc_projid_map_write,
3056	.read		= seq_read,
3057	.llseek		= seq_lseek,
3058	.release	= proc_id_map_release,
3059};
3060
3061static int proc_setgroups_open(struct inode *inode, struct file *file)
3062{
3063	struct user_namespace *ns = NULL;
3064	struct task_struct *task;
3065	int ret;
3066
3067	ret = -ESRCH;
3068	task = get_proc_task(inode);
3069	if (task) {
3070		rcu_read_lock();
3071		ns = get_user_ns(task_cred_xxx(task, user_ns));
3072		rcu_read_unlock();
3073		put_task_struct(task);
3074	}
3075	if (!ns)
3076		goto err;
3077
3078	if (file->f_mode & FMODE_WRITE) {
3079		ret = -EACCES;
3080		if (!ns_capable(ns, CAP_SYS_ADMIN))
3081			goto err_put_ns;
3082	}
3083
3084	ret = single_open(file, &proc_setgroups_show, ns);
3085	if (ret)
3086		goto err_put_ns;
3087
3088	return 0;
3089err_put_ns:
3090	put_user_ns(ns);
3091err:
3092	return ret;
3093}
3094
3095static int proc_setgroups_release(struct inode *inode, struct file *file)
3096{
3097	struct seq_file *seq = file->private_data;
3098	struct user_namespace *ns = seq->private;
3099	int ret = single_release(inode, file);
3100	put_user_ns(ns);
3101	return ret;
3102}
3103
3104static const struct file_operations proc_setgroups_operations = {
3105	.open		= proc_setgroups_open,
3106	.write		= proc_setgroups_write,
3107	.read		= seq_read,
3108	.llseek		= seq_lseek,
3109	.release	= proc_setgroups_release,
3110};
3111#endif /* CONFIG_USER_NS */
3112
3113static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
3114				struct pid *pid, struct task_struct *task)
3115{
3116	int err = lock_trace(task);
3117	if (!err) {
3118		seq_printf(m, "%08x\n", task->personality);
3119		unlock_trace(task);
3120	}
3121	return err;
3122}
3123
3124#ifdef CONFIG_LIVEPATCH
3125static int proc_pid_patch_state(struct seq_file *m, struct pid_namespace *ns,
3126				struct pid *pid, struct task_struct *task)
3127{
3128	seq_printf(m, "%d\n", task->patch_state);
3129	return 0;
3130}
3131#endif /* CONFIG_LIVEPATCH */
3132
3133#ifdef CONFIG_STACKLEAK_METRICS
3134static int proc_stack_depth(struct seq_file *m, struct pid_namespace *ns,
3135				struct pid *pid, struct task_struct *task)
3136{
3137	unsigned long prev_depth = THREAD_SIZE -
3138				(task->prev_lowest_stack & (THREAD_SIZE - 1));
3139	unsigned long depth = THREAD_SIZE -
3140				(task->lowest_stack & (THREAD_SIZE - 1));
3141
3142	seq_printf(m, "previous stack depth: %lu\nstack depth: %lu\n",
3143							prev_depth, depth);
3144	return 0;
3145}
3146#endif /* CONFIG_STACKLEAK_METRICS */
3147
3148/*
3149 * Thread groups
3150 */
3151static const struct file_operations proc_task_operations;
3152static const struct inode_operations proc_task_inode_operations;
3153
3154static const struct pid_entry tgid_base_stuff[] = {
3155	DIR("task",       S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
3156	DIR("fd",         S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
 
3157	DIR("map_files",  S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations),
 
3158	DIR("fdinfo",     S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3159	DIR("ns",	  S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3160#ifdef CONFIG_NET
3161	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3162#endif
3163	REG("environ",    S_IRUSR, proc_environ_operations),
3164	REG("auxv",       S_IRUSR, proc_auxv_operations),
3165	ONE("status",     S_IRUGO, proc_pid_status),
3166	ONE("personality", S_IRUSR, proc_pid_personality),
3167	ONE("limits",	  S_IRUGO, proc_pid_limits),
3168#ifdef CONFIG_SCHED_DEBUG
3169	REG("sched",      S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3170#endif
3171#ifdef CONFIG_SCHED_AUTOGROUP
3172	REG("autogroup",  S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
3173#endif
3174#ifdef CONFIG_TIME_NS
3175	REG("timens_offsets",  S_IRUGO|S_IWUSR, proc_timens_offsets_operations),
3176#endif
3177	REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
3178#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3179	ONE("syscall",    S_IRUSR, proc_pid_syscall),
3180#endif
3181	REG("cmdline",    S_IRUGO, proc_pid_cmdline_ops),
3182	ONE("stat",       S_IRUGO, proc_tgid_stat),
3183	ONE("statm",      S_IRUGO, proc_pid_statm),
3184	REG("maps",       S_IRUGO, proc_pid_maps_operations),
3185#ifdef CONFIG_NUMA
3186	REG("numa_maps",  S_IRUGO, proc_pid_numa_maps_operations),
3187#endif
3188	REG("mem",        S_IRUSR|S_IWUSR, proc_mem_operations),
3189	LNK("cwd",        proc_cwd_link),
3190	LNK("root",       proc_root_link),
3191	LNK("exe",        proc_exe_link),
3192	REG("mounts",     S_IRUGO, proc_mounts_operations),
3193	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
3194	REG("mountstats", S_IRUSR, proc_mountstats_operations),
3195#ifdef CONFIG_PROC_PAGE_MONITOR
3196	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3197	REG("smaps",      S_IRUGO, proc_pid_smaps_operations),
3198	REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
3199	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
3200#endif
3201#ifdef CONFIG_SECURITY
3202	DIR("attr",       S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3203#endif
3204#ifdef CONFIG_KALLSYMS
3205	ONE("wchan",      S_IRUGO, proc_pid_wchan),
3206#endif
3207#ifdef CONFIG_STACKTRACE
3208	ONE("stack",      S_IRUSR, proc_pid_stack),
3209#endif
3210#ifdef CONFIG_SCHED_INFO
3211	ONE("schedstat",  S_IRUGO, proc_pid_schedstat),
3212#endif
3213#ifdef CONFIG_LATENCYTOP
3214	REG("latency",  S_IRUGO, proc_lstats_operations),
3215#endif
3216#ifdef CONFIG_PROC_PID_CPUSET
3217	ONE("cpuset",     S_IRUGO, proc_cpuset_show),
3218#endif
3219#ifdef CONFIG_CGROUPS
3220	ONE("cgroup",  S_IRUGO, proc_cgroup_show),
3221#endif
3222#ifdef CONFIG_PROC_CPU_RESCTRL
3223	ONE("cpu_resctrl_groups", S_IRUGO, proc_resctrl_show),
3224#endif
3225	ONE("oom_score",  S_IRUGO, proc_oom_score),
3226	REG("oom_adj",    S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3227	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3228#ifdef CONFIG_AUDIT
3229	REG("loginuid",   S_IWUSR|S_IRUGO, proc_loginuid_operations),
3230	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
3231#endif
3232#ifdef CONFIG_FAULT_INJECTION
3233	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3234	REG("fail-nth", 0644, proc_fail_nth_operations),
3235#endif
3236#ifdef CONFIG_ELF_CORE
3237	REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
3238#endif
3239#ifdef CONFIG_TASK_IO_ACCOUNTING
3240	ONE("io",	S_IRUSR, proc_tgid_io_accounting),
 
 
 
3241#endif
3242#ifdef CONFIG_USER_NS
3243	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
3244	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
3245	REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3246	REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
3247#endif
3248#if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
3249	REG("timers",	  S_IRUGO, proc_timers_operations),
3250#endif
3251	REG("timerslack_ns", S_IRUGO|S_IWUGO, proc_pid_set_timerslack_ns_operations),
3252#ifdef CONFIG_LIVEPATCH
3253	ONE("patch_state",  S_IRUSR, proc_pid_patch_state),
3254#endif
3255#ifdef CONFIG_STACKLEAK_METRICS
3256	ONE("stack_depth", S_IRUGO, proc_stack_depth),
3257#endif
3258#ifdef CONFIG_PROC_PID_ARCH_STATUS
3259	ONE("arch_status", S_IRUGO, proc_pid_arch_status),
3260#endif
3261};
3262
3263static int proc_tgid_base_readdir(struct file *file, struct dir_context *ctx)
 
3264{
3265	return proc_pident_readdir(file, ctx,
3266				   tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3267}
3268
3269static const struct file_operations proc_tgid_base_operations = {
3270	.read		= generic_read_dir,
3271	.iterate_shared	= proc_tgid_base_readdir,
3272	.llseek		= generic_file_llseek,
3273};
3274
3275struct pid *tgid_pidfd_to_pid(const struct file *file)
3276{
3277	if (file->f_op != &proc_tgid_base_operations)
3278		return ERR_PTR(-EBADF);
3279
3280	return proc_pid(file_inode(file));
3281}
3282
3283static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3284{
3285	return proc_pident_lookup(dir, dentry,
3286				  tgid_base_stuff,
3287				  tgid_base_stuff + ARRAY_SIZE(tgid_base_stuff));
3288}
3289
3290static const struct inode_operations proc_tgid_base_inode_operations = {
3291	.lookup		= proc_tgid_base_lookup,
3292	.getattr	= pid_getattr,
3293	.setattr	= proc_setattr,
3294	.permission	= proc_pid_permission,
3295};
3296
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3297/**
3298 * proc_flush_pid -  Remove dcache entries for @pid from the /proc dcache.
3299 * @pid: pid that should be flushed.
3300 *
3301 * This function walks a list of inodes (that belong to any proc
3302 * filesystem) that are attached to the pid and flushes them from
3303 * the dentry cache.
 
 
 
 
 
 
3304 *
3305 * It is safe and reasonable to cache /proc entries for a task until
3306 * that task exits.  After that they just clog up the dcache with
3307 * useless entries, possibly causing useful dcache entries to be
3308 * flushed instead.  This routine is provided to flush those useless
3309 * dcache entries when a process is reaped.
3310 *
3311 * NOTE: This routine is just an optimization so it does not guarantee
3312 *       that no dcache entries will exist after a process is reaped
3313 *       it just makes it very unlikely that any will persist.
3314 */
3315
3316void proc_flush_pid(struct pid *pid)
3317{
3318	proc_invalidate_siblings_dcache(&pid->inodes, &pid->lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3319}
3320
3321static struct dentry *proc_pid_instantiate(struct dentry * dentry,
3322				   struct task_struct *task, const void *ptr)
 
3323{
 
3324	struct inode *inode;
3325
3326	inode = proc_pid_make_inode(dentry->d_sb, task, S_IFDIR | S_IRUGO | S_IXUGO);
3327	if (!inode)
3328		return ERR_PTR(-ENOENT);
3329
 
3330	inode->i_op = &proc_tgid_base_inode_operations;
3331	inode->i_fop = &proc_tgid_base_operations;
3332	inode->i_flags|=S_IMMUTABLE;
3333
3334	set_nlink(inode, nlink_tgid);
3335	pid_update_inode(task, inode);
3336
3337	d_set_d_op(dentry, &pid_dentry_operations);
3338	return d_splice_alias(inode, dentry);
 
 
 
 
 
 
3339}
3340
3341struct dentry *proc_pid_lookup(struct dentry *dentry, unsigned int flags)
3342{
 
3343	struct task_struct *task;
3344	unsigned tgid;
3345	struct proc_fs_info *fs_info;
3346	struct pid_namespace *ns;
3347	struct dentry *result = ERR_PTR(-ENOENT);
3348
3349	tgid = name_to_int(&dentry->d_name);
 
 
 
 
3350	if (tgid == ~0U)
3351		goto out;
3352
3353	fs_info = proc_sb_info(dentry->d_sb);
3354	ns = fs_info->pid_ns;
3355	rcu_read_lock();
3356	task = find_task_by_pid_ns(tgid, ns);
3357	if (task)
3358		get_task_struct(task);
3359	rcu_read_unlock();
3360	if (!task)
3361		goto out;
3362
3363	/* Limit procfs to only ptraceable tasks */
3364	if (fs_info->hide_pid == HIDEPID_NOT_PTRACEABLE) {
3365		if (!has_pid_permissions(fs_info, task, HIDEPID_NO_ACCESS))
3366			goto out_put_task;
3367	}
3368
3369	result = proc_pid_instantiate(dentry, task, NULL);
3370out_put_task:
3371	put_task_struct(task);
3372out:
3373	return result;
3374}
3375
3376/*
3377 * Find the first task with tgid >= tgid
3378 *
3379 */
3380struct tgid_iter {
3381	unsigned int tgid;
3382	struct task_struct *task;
3383};
3384static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
3385{
3386	struct pid *pid;
3387
3388	if (iter.task)
3389		put_task_struct(iter.task);
3390	rcu_read_lock();
3391retry:
3392	iter.task = NULL;
3393	pid = find_ge_pid(iter.tgid, ns);
3394	if (pid) {
3395		iter.tgid = pid_nr_ns(pid, ns);
3396		iter.task = pid_task(pid, PIDTYPE_TGID);
3397		if (!iter.task) {
 
 
 
 
 
 
 
 
 
 
 
 
3398			iter.tgid += 1;
3399			goto retry;
3400		}
3401		get_task_struct(iter.task);
3402	}
3403	rcu_read_unlock();
3404	return iter;
3405}
3406
3407#define TGID_OFFSET (FIRST_PROCESS_ENTRY + 2)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3408
3409/* for the /proc/ directory itself, after non-process stuff has been done */
3410int proc_pid_readdir(struct file *file, struct dir_context *ctx)
3411{
 
 
3412	struct tgid_iter iter;
3413	struct proc_fs_info *fs_info = proc_sb_info(file_inode(file)->i_sb);
3414	struct pid_namespace *ns = proc_pid_ns(file_inode(file)->i_sb);
3415	loff_t pos = ctx->pos;
3416
3417	if (pos >= PID_MAX_LIMIT + TGID_OFFSET)
3418		return 0;
 
3419
3420	if (pos == TGID_OFFSET - 2) {
3421		struct inode *inode = d_inode(fs_info->proc_self);
3422		if (!dir_emit(ctx, "self", 4, inode->i_ino, DT_LNK))
3423			return 0;
3424		ctx->pos = pos = pos + 1;
3425	}
3426	if (pos == TGID_OFFSET - 1) {
3427		struct inode *inode = d_inode(fs_info->proc_thread_self);
3428		if (!dir_emit(ctx, "thread-self", 11, inode->i_ino, DT_LNK))
3429			return 0;
3430		ctx->pos = pos = pos + 1;
3431	}
3432	iter.tgid = pos - TGID_OFFSET;
 
3433	iter.task = NULL;
 
3434	for (iter = next_tgid(ns, iter);
3435	     iter.task;
3436	     iter.tgid += 1, iter = next_tgid(ns, iter)) {
3437		char name[10 + 1];
3438		unsigned int len;
3439
3440		cond_resched();
3441		if (!has_pid_permissions(fs_info, iter.task, HIDEPID_INVISIBLE))
3442			continue;
3443
3444		len = snprintf(name, sizeof(name), "%u", iter.tgid);
3445		ctx->pos = iter.tgid + TGID_OFFSET;
3446		if (!proc_fill_cache(file, ctx, name, len,
3447				     proc_pid_instantiate, iter.task, NULL)) {
3448			put_task_struct(iter.task);
3449			return 0;
3450		}
3451	}
3452	ctx->pos = PID_MAX_LIMIT + TGID_OFFSET;
 
 
 
3453	return 0;
3454}
3455
3456/*
3457 * proc_tid_comm_permission is a special permission function exclusively
3458 * used for the node /proc/<pid>/task/<tid>/comm.
3459 * It bypasses generic permission checks in the case where a task of the same
3460 * task group attempts to access the node.
3461 * The rationale behind this is that glibc and bionic access this node for
3462 * cross thread naming (pthread_set/getname_np(!self)). However, if
3463 * PR_SET_DUMPABLE gets set to 0 this node among others becomes uid=0 gid=0,
3464 * which locks out the cross thread naming implementation.
3465 * This function makes sure that the node is always accessible for members of
3466 * same thread group.
3467 */
3468static int proc_tid_comm_permission(struct inode *inode, int mask)
3469{
3470	bool is_same_tgroup;
3471	struct task_struct *task;
3472
3473	task = get_proc_task(inode);
3474	if (!task)
3475		return -ESRCH;
3476	is_same_tgroup = same_thread_group(current, task);
3477	put_task_struct(task);
3478
3479	if (likely(is_same_tgroup && !(mask & MAY_EXEC))) {
3480		/* This file (/proc/<pid>/task/<tid>/comm) can always be
3481		 * read or written by the members of the corresponding
3482		 * thread group.
3483		 */
3484		return 0;
3485	}
3486
3487	return generic_permission(inode, mask);
3488}
3489
3490static const struct inode_operations proc_tid_comm_inode_operations = {
3491		.permission = proc_tid_comm_permission,
3492};
3493
3494/*
3495 * Tasks
3496 */
3497static const struct pid_entry tid_base_stuff[] = {
3498	DIR("fd",        S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3499	DIR("fdinfo",    S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3500	DIR("ns",	 S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3501#ifdef CONFIG_NET
3502	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3503#endif
3504	REG("environ",   S_IRUSR, proc_environ_operations),
3505	REG("auxv",      S_IRUSR, proc_auxv_operations),
3506	ONE("status",    S_IRUGO, proc_pid_status),
3507	ONE("personality", S_IRUSR, proc_pid_personality),
3508	ONE("limits",	 S_IRUGO, proc_pid_limits),
3509#ifdef CONFIG_SCHED_DEBUG
3510	REG("sched",     S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3511#endif
3512	NOD("comm",      S_IFREG|S_IRUGO|S_IWUSR,
3513			 &proc_tid_comm_inode_operations,
3514			 &proc_pid_set_comm_operations, {}),
3515#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3516	ONE("syscall",   S_IRUSR, proc_pid_syscall),
3517#endif
3518	REG("cmdline",   S_IRUGO, proc_pid_cmdline_ops),
3519	ONE("stat",      S_IRUGO, proc_tid_stat),
3520	ONE("statm",     S_IRUGO, proc_pid_statm),
3521	REG("maps",      S_IRUGO, proc_pid_maps_operations),
3522#ifdef CONFIG_PROC_CHILDREN
3523	REG("children",  S_IRUGO, proc_tid_children_operations),
3524#endif
3525#ifdef CONFIG_NUMA
3526	REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations),
3527#endif
3528	REG("mem",       S_IRUSR|S_IWUSR, proc_mem_operations),
3529	LNK("cwd",       proc_cwd_link),
3530	LNK("root",      proc_root_link),
3531	LNK("exe",       proc_exe_link),
3532	REG("mounts",    S_IRUGO, proc_mounts_operations),
3533	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
3534#ifdef CONFIG_PROC_PAGE_MONITOR
3535	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3536	REG("smaps",     S_IRUGO, proc_pid_smaps_operations),
3537	REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
3538	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
3539#endif
3540#ifdef CONFIG_SECURITY
3541	DIR("attr",      S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3542#endif
3543#ifdef CONFIG_KALLSYMS
3544	ONE("wchan",     S_IRUGO, proc_pid_wchan),
3545#endif
3546#ifdef CONFIG_STACKTRACE
3547	ONE("stack",      S_IRUSR, proc_pid_stack),
3548#endif
3549#ifdef CONFIG_SCHED_INFO
3550	ONE("schedstat", S_IRUGO, proc_pid_schedstat),
3551#endif
3552#ifdef CONFIG_LATENCYTOP
3553	REG("latency",  S_IRUGO, proc_lstats_operations),
3554#endif
3555#ifdef CONFIG_PROC_PID_CPUSET
3556	ONE("cpuset",    S_IRUGO, proc_cpuset_show),
3557#endif
3558#ifdef CONFIG_CGROUPS
3559	ONE("cgroup",  S_IRUGO, proc_cgroup_show),
3560#endif
3561#ifdef CONFIG_PROC_CPU_RESCTRL
3562	ONE("cpu_resctrl_groups", S_IRUGO, proc_resctrl_show),
3563#endif
3564	ONE("oom_score", S_IRUGO, proc_oom_score),
3565	REG("oom_adj",   S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3566	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3567#ifdef CONFIG_AUDIT
3568	REG("loginuid",  S_IWUSR|S_IRUGO, proc_loginuid_operations),
3569	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
3570#endif
3571#ifdef CONFIG_FAULT_INJECTION
3572	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3573	REG("fail-nth", 0644, proc_fail_nth_operations),
3574#endif
3575#ifdef CONFIG_TASK_IO_ACCOUNTING
3576	ONE("io",	S_IRUSR, proc_tid_io_accounting),
 
 
 
3577#endif
3578#ifdef CONFIG_USER_NS
3579	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
3580	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
3581	REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3582	REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
3583#endif
3584#ifdef CONFIG_LIVEPATCH
3585	ONE("patch_state",  S_IRUSR, proc_pid_patch_state),
3586#endif
3587#ifdef CONFIG_PROC_PID_ARCH_STATUS
3588	ONE("arch_status", S_IRUGO, proc_pid_arch_status),
3589#endif
3590};
3591
3592static int proc_tid_base_readdir(struct file *file, struct dir_context *ctx)
 
3593{
3594	return proc_pident_readdir(file, ctx,
3595				   tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3596}
3597
3598static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3599{
3600	return proc_pident_lookup(dir, dentry,
3601				  tid_base_stuff,
3602				  tid_base_stuff + ARRAY_SIZE(tid_base_stuff));
3603}
3604
3605static const struct file_operations proc_tid_base_operations = {
3606	.read		= generic_read_dir,
3607	.iterate_shared	= proc_tid_base_readdir,
3608	.llseek		= generic_file_llseek,
3609};
3610
3611static const struct inode_operations proc_tid_base_inode_operations = {
3612	.lookup		= proc_tid_base_lookup,
3613	.getattr	= pid_getattr,
3614	.setattr	= proc_setattr,
3615};
3616
3617static struct dentry *proc_task_instantiate(struct dentry *dentry,
3618	struct task_struct *task, const void *ptr)
3619{
 
3620	struct inode *inode;
3621	inode = proc_pid_make_inode(dentry->d_sb, task, S_IFDIR | S_IRUGO | S_IXUGO);
3622	if (!inode)
3623		return ERR_PTR(-ENOENT);
3624
 
 
 
3625	inode->i_op = &proc_tid_base_inode_operations;
3626	inode->i_fop = &proc_tid_base_operations;
3627	inode->i_flags |= S_IMMUTABLE;
3628
3629	set_nlink(inode, nlink_tid);
3630	pid_update_inode(task, inode);
3631
3632	d_set_d_op(dentry, &pid_dentry_operations);
3633	return d_splice_alias(inode, dentry);
 
 
 
 
 
 
3634}
3635
3636static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3637{
 
3638	struct task_struct *task;
3639	struct task_struct *leader = get_proc_task(dir);
3640	unsigned tid;
3641	struct proc_fs_info *fs_info;
3642	struct pid_namespace *ns;
3643	struct dentry *result = ERR_PTR(-ENOENT);
3644
3645	if (!leader)
3646		goto out_no_task;
3647
3648	tid = name_to_int(&dentry->d_name);
3649	if (tid == ~0U)
3650		goto out;
3651
3652	fs_info = proc_sb_info(dentry->d_sb);
3653	ns = fs_info->pid_ns;
3654	rcu_read_lock();
3655	task = find_task_by_pid_ns(tid, ns);
3656	if (task)
3657		get_task_struct(task);
3658	rcu_read_unlock();
3659	if (!task)
3660		goto out;
3661	if (!same_thread_group(leader, task))
3662		goto out_drop_task;
3663
3664	result = proc_task_instantiate(dentry, task, NULL);
3665out_drop_task:
3666	put_task_struct(task);
3667out:
3668	put_task_struct(leader);
3669out_no_task:
3670	return result;
3671}
3672
3673/*
3674 * Find the first tid of a thread group to return to user space.
3675 *
3676 * Usually this is just the thread group leader, but if the users
3677 * buffer was too small or there was a seek into the middle of the
3678 * directory we have more work todo.
3679 *
3680 * In the case of a short read we start with find_task_by_pid.
3681 *
3682 * In the case of a seek we start with the leader and walk nr
3683 * threads past it.
3684 */
3685static struct task_struct *first_tid(struct pid *pid, int tid, loff_t f_pos,
3686					struct pid_namespace *ns)
3687{
3688	struct task_struct *pos, *task;
3689	unsigned long nr = f_pos;
3690
3691	if (nr != f_pos)	/* 32bit overflow? */
3692		return NULL;
3693
3694	rcu_read_lock();
3695	task = pid_task(pid, PIDTYPE_PID);
3696	if (!task)
3697		goto fail;
3698
3699	/* Attempt to start with the tid of a thread */
3700	if (tid && nr) {
3701		pos = find_task_by_pid_ns(tid, ns);
3702		if (pos && same_thread_group(pos, task))
3703			goto found;
3704	}
3705
3706	/* If nr exceeds the number of threads there is nothing todo */
3707	if (nr >= get_nr_threads(task))
3708		goto fail;
 
3709
3710	/* If we haven't found our starting place yet start
3711	 * with the leader and walk nr threads forward.
3712	 */
3713	pos = task = task->group_leader;
3714	do {
3715		if (!nr--)
3716			goto found;
3717	} while_each_thread(task, pos);
3718fail:
3719	pos = NULL;
3720	goto out;
3721found:
3722	get_task_struct(pos);
3723out:
3724	rcu_read_unlock();
3725	return pos;
3726}
3727
3728/*
3729 * Find the next thread in the thread list.
3730 * Return NULL if there is an error or no next thread.
3731 *
3732 * The reference to the input task_struct is released.
3733 */
3734static struct task_struct *next_tid(struct task_struct *start)
3735{
3736	struct task_struct *pos = NULL;
3737	rcu_read_lock();
3738	if (pid_alive(start)) {
3739		pos = next_thread(start);
3740		if (thread_group_leader(pos))
3741			pos = NULL;
3742		else
3743			get_task_struct(pos);
3744	}
3745	rcu_read_unlock();
3746	put_task_struct(start);
3747	return pos;
3748}
3749
 
 
 
 
 
 
 
 
 
3750/* for the /proc/TGID/task/ directories */
3751static int proc_task_readdir(struct file *file, struct dir_context *ctx)
3752{
3753	struct inode *inode = file_inode(file);
 
 
3754	struct task_struct *task;
3755	struct pid_namespace *ns;
 
3756	int tid;
 
3757
3758	if (proc_inode_is_dead(inode))
3759		return -ENOENT;
 
 
 
 
 
 
 
 
 
 
 
3760
3761	if (!dir_emit_dots(file, ctx))
3762		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
3763
3764	/* f_version caches the tgid value that the last readdir call couldn't
3765	 * return. lseek aka telldir automagically resets f_version to 0.
3766	 */
3767	ns = proc_pid_ns(inode->i_sb);
3768	tid = (int)file->f_version;
3769	file->f_version = 0;
3770	for (task = first_tid(proc_pid(inode), tid, ctx->pos - 2, ns);
3771	     task;
3772	     task = next_tid(task), ctx->pos++) {
3773		char name[10 + 1];
3774		unsigned int len;
3775		tid = task_pid_nr_ns(task, ns);
3776		len = snprintf(name, sizeof(name), "%u", tid);
3777		if (!proc_fill_cache(file, ctx, name, len,
3778				proc_task_instantiate, task, NULL)) {
3779			/* returning this tgid failed, save it as the first
3780			 * pid for the next readir call */
3781			file->f_version = (u64)tid;
3782			put_task_struct(task);
3783			break;
3784		}
3785	}
3786
3787	return 0;
 
 
3788}
3789
3790static int proc_task_getattr(const struct path *path, struct kstat *stat,
3791			     u32 request_mask, unsigned int query_flags)
3792{
3793	struct inode *inode = d_inode(path->dentry);
3794	struct task_struct *p = get_proc_task(inode);
3795	generic_fillattr(inode, stat);
3796
3797	if (p) {
3798		stat->nlink += get_nr_threads(p);
3799		put_task_struct(p);
3800	}
3801
3802	return 0;
3803}
3804
3805static const struct inode_operations proc_task_inode_operations = {
3806	.lookup		= proc_task_lookup,
3807	.getattr	= proc_task_getattr,
3808	.setattr	= proc_setattr,
3809	.permission	= proc_pid_permission,
3810};
3811
3812static const struct file_operations proc_task_operations = {
3813	.read		= generic_read_dir,
3814	.iterate_shared	= proc_task_readdir,
3815	.llseek		= generic_file_llseek,
3816};
3817
3818void __init set_proc_pid_nlink(void)
3819{
3820	nlink_tid = pid_entry_nlink(tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3821	nlink_tgid = pid_entry_nlink(tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3822}
v3.5.6
 
   1/*
   2 *  linux/fs/proc/base.c
   3 *
   4 *  Copyright (C) 1991, 1992 Linus Torvalds
   5 *
   6 *  proc base directory handling functions
   7 *
   8 *  1999, Al Viro. Rewritten. Now it covers the whole per-process part.
   9 *  Instead of using magical inumbers to determine the kind of object
  10 *  we allocate and fill in-core inodes upon lookup. They don't even
  11 *  go into icache. We cache the reference to task_struct upon lookup too.
  12 *  Eventually it should become a filesystem in its own. We don't use the
  13 *  rest of procfs anymore.
  14 *
  15 *
  16 *  Changelog:
  17 *  17-Jan-2005
  18 *  Allan Bezerra
  19 *  Bruna Moreira <bruna.moreira@indt.org.br>
  20 *  Edjard Mota <edjard.mota@indt.org.br>
  21 *  Ilias Biris <ilias.biris@indt.org.br>
  22 *  Mauricio Lin <mauricio.lin@indt.org.br>
  23 *
  24 *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
  25 *
  26 *  A new process specific entry (smaps) included in /proc. It shows the
  27 *  size of rss for each memory area. The maps entry lacks information
  28 *  about physical memory size (rss) for each mapped file, i.e.,
  29 *  rss information for executables and library files.
  30 *  This additional information is useful for any tools that need to know
  31 *  about physical memory consumption for a process specific library.
  32 *
  33 *  Changelog:
  34 *  21-Feb-2005
  35 *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
  36 *  Pud inclusion in the page table walking.
  37 *
  38 *  ChangeLog:
  39 *  10-Mar-2005
  40 *  10LE Instituto Nokia de Tecnologia - INdT:
  41 *  A better way to walks through the page table as suggested by Hugh Dickins.
  42 *
  43 *  Simo Piiroinen <simo.piiroinen@nokia.com>:
  44 *  Smaps information related to shared, private, clean and dirty pages.
  45 *
  46 *  Paul Mundt <paul.mundt@nokia.com>:
  47 *  Overall revision about smaps.
  48 */
  49
  50#include <asm/uaccess.h>
  51
  52#include <linux/errno.h>
  53#include <linux/time.h>
  54#include <linux/proc_fs.h>
  55#include <linux/stat.h>
  56#include <linux/task_io_accounting_ops.h>
  57#include <linux/init.h>
  58#include <linux/capability.h>
  59#include <linux/file.h>
  60#include <linux/fdtable.h>
 
  61#include <linux/string.h>
  62#include <linux/seq_file.h>
  63#include <linux/namei.h>
  64#include <linux/mnt_namespace.h>
  65#include <linux/mm.h>
  66#include <linux/swap.h>
  67#include <linux/rcupdate.h>
  68#include <linux/kallsyms.h>
  69#include <linux/stacktrace.h>
  70#include <linux/resource.h>
  71#include <linux/module.h>
  72#include <linux/mount.h>
  73#include <linux/security.h>
  74#include <linux/ptrace.h>
  75#include <linux/tracehook.h>
 
 
  76#include <linux/cgroup.h>
  77#include <linux/cpuset.h>
  78#include <linux/audit.h>
  79#include <linux/poll.h>
  80#include <linux/nsproxy.h>
  81#include <linux/oom.h>
  82#include <linux/elf.h>
  83#include <linux/pid_namespace.h>
  84#include <linux/user_namespace.h>
  85#include <linux/fs_struct.h>
  86#include <linux/slab.h>
  87#include <linux/flex_array.h>
  88#ifdef CONFIG_HARDWALL
  89#include <asm/hardwall.h>
  90#endif
 
 
 
 
  91#include <trace/events/oom.h>
  92#include "internal.h"
 
 
 
  93
  94/* NOTE:
  95 *	Implementing inode permission operations in /proc is almost
  96 *	certainly an error.  Permission checks need to happen during
  97 *	each system call not at open time.  The reason is that most of
  98 *	what we wish to check for permissions in /proc varies at runtime.
  99 *
 100 *	The classic example of a problem is opening file descriptors
 101 *	in /proc for a task before it execs a suid executable.
 102 */
 103
 
 
 
 104struct pid_entry {
 105	char *name;
 106	int len;
 107	umode_t mode;
 108	const struct inode_operations *iop;
 109	const struct file_operations *fop;
 110	union proc_op op;
 111};
 112
 113#define NOD(NAME, MODE, IOP, FOP, OP) {			\
 114	.name = (NAME),					\
 115	.len  = sizeof(NAME) - 1,			\
 116	.mode = MODE,					\
 117	.iop  = IOP,					\
 118	.fop  = FOP,					\
 119	.op   = OP,					\
 120}
 121
 122#define DIR(NAME, MODE, iops, fops)	\
 123	NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
 124#define LNK(NAME, get_link)					\
 125	NOD(NAME, (S_IFLNK|S_IRWXUGO),				\
 126		&proc_pid_link_inode_operations, NULL,		\
 127		{ .proc_get_link = get_link } )
 128#define REG(NAME, MODE, fops)				\
 129	NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
 130#define INF(NAME, MODE, read)				\
 131	NOD(NAME, (S_IFREG|(MODE)), 			\
 132		NULL, &proc_info_file_operations,	\
 133		{ .proc_read = read } )
 134#define ONE(NAME, MODE, show)				\
 135	NOD(NAME, (S_IFREG|(MODE)), 			\
 136		NULL, &proc_single_file_operations,	\
 137		{ .proc_show = show } )
 138
 139static int proc_fd_permission(struct inode *inode, int mask);
 
 
 140
 141/*
 142 * Count the number of hardlinks for the pid_entry table, excluding the .
 143 * and .. links.
 144 */
 145static unsigned int pid_entry_count_dirs(const struct pid_entry *entries,
 146	unsigned int n)
 147{
 148	unsigned int i;
 149	unsigned int count;
 150
 151	count = 0;
 152	for (i = 0; i < n; ++i) {
 153		if (S_ISDIR(entries[i].mode))
 154			++count;
 155	}
 156
 157	return count;
 158}
 159
 160static int get_task_root(struct task_struct *task, struct path *root)
 161{
 162	int result = -ENOENT;
 163
 164	task_lock(task);
 165	if (task->fs) {
 166		get_fs_root(task->fs, root);
 167		result = 0;
 168	}
 169	task_unlock(task);
 170	return result;
 171}
 172
 173static int proc_cwd_link(struct dentry *dentry, struct path *path)
 174{
 175	struct task_struct *task = get_proc_task(dentry->d_inode);
 176	int result = -ENOENT;
 177
 178	if (task) {
 179		task_lock(task);
 180		if (task->fs) {
 181			get_fs_pwd(task->fs, path);
 182			result = 0;
 183		}
 184		task_unlock(task);
 185		put_task_struct(task);
 186	}
 187	return result;
 188}
 189
 190static int proc_root_link(struct dentry *dentry, struct path *path)
 191{
 192	struct task_struct *task = get_proc_task(dentry->d_inode);
 193	int result = -ENOENT;
 194
 195	if (task) {
 196		result = get_task_root(task, path);
 197		put_task_struct(task);
 198	}
 199	return result;
 200}
 201
 202static int proc_pid_cmdline(struct task_struct *task, char * buffer)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 203{
 204	int res = 0;
 205	unsigned int len;
 206	struct mm_struct *mm = get_task_mm(task);
 207	if (!mm)
 208		goto out;
 209	if (!mm->arg_end)
 210		goto out_mm;	/* Shh! No looking before we're done */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 211
 212 	len = mm->arg_end - mm->arg_start;
 213 
 214	if (len > PAGE_SIZE)
 215		len = PAGE_SIZE;
 216 
 217	res = access_process_vm(task, mm->arg_start, buffer, len, 0);
 218
 219	// If the nul at the end of args has been overwritten, then
 220	// assume application is using setproctitle(3).
 221	if (res > 0 && buffer[res-1] != '\0' && len < PAGE_SIZE) {
 222		len = strnlen(buffer, res);
 223		if (len < res) {
 224		    res = len;
 225		} else {
 226			len = mm->env_end - mm->env_start;
 227			if (len > PAGE_SIZE - res)
 228				len = PAGE_SIZE - res;
 229			res += access_process_vm(task, mm->env_start, buffer+res, len, 0);
 230			res = strnlen(buffer, res);
 231		}
 
 
 
 
 232	}
 233out_mm:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 234	mmput(mm);
 235out:
 236	return res;
 237}
 238
 239static int proc_pid_auxv(struct task_struct *task, char *buffer)
 
 240{
 241	struct mm_struct *mm = mm_access(task, PTRACE_MODE_READ);
 242	int res = PTR_ERR(mm);
 243	if (mm && !IS_ERR(mm)) {
 244		unsigned int nwords = 0;
 245		do {
 246			nwords += 2;
 247		} while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
 248		res = nwords * sizeof(mm->saved_auxv[0]);
 249		if (res > PAGE_SIZE)
 250			res = PAGE_SIZE;
 251		memcpy(buffer, mm->saved_auxv, res);
 252		mmput(mm);
 253	}
 254	return res;
 255}
 256
 
 
 
 
 257
 258#ifdef CONFIG_KALLSYMS
 259/*
 260 * Provides a wchan file via kallsyms in a proper one-value-per-file format.
 261 * Returns the resolved symbol.  If that fails, simply return the address.
 262 */
 263static int proc_pid_wchan(struct task_struct *task, char *buffer)
 
 264{
 265	unsigned long wchan;
 266	char symname[KSYM_NAME_LEN];
 267
 
 
 
 268	wchan = get_wchan(task);
 
 
 
 
 269
 270	if (lookup_symbol_name(wchan, symname) < 0)
 271		if (!ptrace_may_access(task, PTRACE_MODE_READ))
 272			return 0;
 273		else
 274			return sprintf(buffer, "%lu", wchan);
 275	else
 276		return sprintf(buffer, "%s", symname);
 277}
 278#endif /* CONFIG_KALLSYMS */
 279
 280static int lock_trace(struct task_struct *task)
 281{
 282	int err = mutex_lock_killable(&task->signal->cred_guard_mutex);
 283	if (err)
 284		return err;
 285	if (!ptrace_may_access(task, PTRACE_MODE_ATTACH)) {
 286		mutex_unlock(&task->signal->cred_guard_mutex);
 287		return -EPERM;
 288	}
 289	return 0;
 290}
 291
 292static void unlock_trace(struct task_struct *task)
 293{
 294	mutex_unlock(&task->signal->cred_guard_mutex);
 295}
 296
 297#ifdef CONFIG_STACKTRACE
 298
 299#define MAX_STACK_TRACE_DEPTH	64
 300
 301static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
 302			  struct pid *pid, struct task_struct *task)
 303{
 304	struct stack_trace trace;
 305	unsigned long *entries;
 306	int err;
 307	int i;
 308
 309	entries = kmalloc(MAX_STACK_TRACE_DEPTH * sizeof(*entries), GFP_KERNEL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 310	if (!entries)
 311		return -ENOMEM;
 312
 313	trace.nr_entries	= 0;
 314	trace.max_entries	= MAX_STACK_TRACE_DEPTH;
 315	trace.entries		= entries;
 316	trace.skip		= 0;
 317
 318	err = lock_trace(task);
 319	if (!err) {
 320		save_stack_trace_tsk(task, &trace);
 321
 322		for (i = 0; i < trace.nr_entries; i++) {
 323			seq_printf(m, "[<%pK>] %pS\n",
 324				   (void *)entries[i], (void *)entries[i]);
 
 
 325		}
 
 326		unlock_trace(task);
 327	}
 328	kfree(entries);
 329
 330	return err;
 331}
 332#endif
 333
 334#ifdef CONFIG_SCHEDSTATS
 335/*
 336 * Provides /proc/PID/schedstat
 337 */
 338static int proc_pid_schedstat(struct task_struct *task, char *buffer)
 
 339{
 340	return sprintf(buffer, "%llu %llu %lu\n",
 341			(unsigned long long)task->se.sum_exec_runtime,
 342			(unsigned long long)task->sched_info.run_delay,
 343			task->sched_info.pcount);
 
 
 
 
 
 344}
 345#endif
 346
 347#ifdef CONFIG_LATENCYTOP
 348static int lstats_show_proc(struct seq_file *m, void *v)
 349{
 350	int i;
 351	struct inode *inode = m->private;
 352	struct task_struct *task = get_proc_task(inode);
 353
 354	if (!task)
 355		return -ESRCH;
 356	seq_puts(m, "Latency Top version : v0.1\n");
 357	for (i = 0; i < 32; i++) {
 358		struct latency_record *lr = &task->latency_record[i];
 359		if (lr->backtrace[0]) {
 360			int q;
 361			seq_printf(m, "%i %li %li",
 362				   lr->count, lr->time, lr->max);
 363			for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
 364				unsigned long bt = lr->backtrace[q];
 
 365				if (!bt)
 366					break;
 367				if (bt == ULONG_MAX)
 368					break;
 369				seq_printf(m, " %ps", (void *)bt);
 370			}
 371			seq_putc(m, '\n');
 372		}
 373
 374	}
 375	put_task_struct(task);
 376	return 0;
 377}
 378
 379static int lstats_open(struct inode *inode, struct file *file)
 380{
 381	return single_open(file, lstats_show_proc, inode);
 382}
 383
 384static ssize_t lstats_write(struct file *file, const char __user *buf,
 385			    size_t count, loff_t *offs)
 386{
 387	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
 388
 389	if (!task)
 390		return -ESRCH;
 391	clear_all_latency_tracing(task);
 392	put_task_struct(task);
 393
 394	return count;
 395}
 396
 397static const struct file_operations proc_lstats_operations = {
 398	.open		= lstats_open,
 399	.read		= seq_read,
 400	.write		= lstats_write,
 401	.llseek		= seq_lseek,
 402	.release	= single_release,
 403};
 404
 405#endif
 406
 407static int proc_oom_score(struct task_struct *task, char *buffer)
 
 408{
 409	unsigned long totalpages = totalram_pages + total_swap_pages;
 410	unsigned long points = 0;
 
 
 
 
 
 
 
 
 
 
 411
 412	read_lock(&tasklist_lock);
 413	if (pid_alive(task))
 414		points = oom_badness(task, NULL, NULL, totalpages) *
 415						1000 / totalpages;
 416	read_unlock(&tasklist_lock);
 417	return sprintf(buffer, "%lu\n", points);
 418}
 419
 420struct limit_names {
 421	char *name;
 422	char *unit;
 423};
 424
 425static const struct limit_names lnames[RLIM_NLIMITS] = {
 426	[RLIMIT_CPU] = {"Max cpu time", "seconds"},
 427	[RLIMIT_FSIZE] = {"Max file size", "bytes"},
 428	[RLIMIT_DATA] = {"Max data size", "bytes"},
 429	[RLIMIT_STACK] = {"Max stack size", "bytes"},
 430	[RLIMIT_CORE] = {"Max core file size", "bytes"},
 431	[RLIMIT_RSS] = {"Max resident set", "bytes"},
 432	[RLIMIT_NPROC] = {"Max processes", "processes"},
 433	[RLIMIT_NOFILE] = {"Max open files", "files"},
 434	[RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
 435	[RLIMIT_AS] = {"Max address space", "bytes"},
 436	[RLIMIT_LOCKS] = {"Max file locks", "locks"},
 437	[RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
 438	[RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
 439	[RLIMIT_NICE] = {"Max nice priority", NULL},
 440	[RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
 441	[RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
 442};
 443
 444/* Display limits for a process */
 445static int proc_pid_limits(struct task_struct *task, char *buffer)
 
 446{
 447	unsigned int i;
 448	int count = 0;
 449	unsigned long flags;
 450	char *bufptr = buffer;
 451
 452	struct rlimit rlim[RLIM_NLIMITS];
 453
 454	if (!lock_task_sighand(task, &flags))
 455		return 0;
 456	memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
 457	unlock_task_sighand(task, &flags);
 458
 459	/*
 460	 * print the file header
 461	 */
 462	count += sprintf(&bufptr[count], "%-25s %-20s %-20s %-10s\n",
 463			"Limit", "Soft Limit", "Hard Limit", "Units");
 
 
 464
 465	for (i = 0; i < RLIM_NLIMITS; i++) {
 466		if (rlim[i].rlim_cur == RLIM_INFINITY)
 467			count += sprintf(&bufptr[count], "%-25s %-20s ",
 468					 lnames[i].name, "unlimited");
 469		else
 470			count += sprintf(&bufptr[count], "%-25s %-20lu ",
 471					 lnames[i].name, rlim[i].rlim_cur);
 472
 473		if (rlim[i].rlim_max == RLIM_INFINITY)
 474			count += sprintf(&bufptr[count], "%-20s ", "unlimited");
 475		else
 476			count += sprintf(&bufptr[count], "%-20lu ",
 477					 rlim[i].rlim_max);
 478
 479		if (lnames[i].unit)
 480			count += sprintf(&bufptr[count], "%-10s\n",
 481					 lnames[i].unit);
 482		else
 483			count += sprintf(&bufptr[count], "\n");
 484	}
 485
 486	return count;
 487}
 488
 489#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
 490static int proc_pid_syscall(struct task_struct *task, char *buffer)
 
 491{
 492	long nr;
 493	unsigned long args[6], sp, pc;
 494	int res = lock_trace(task);
 
 
 495	if (res)
 496		return res;
 497
 498	if (task_current_syscall(task, &nr, args, 6, &sp, &pc))
 499		res = sprintf(buffer, "running\n");
 500	else if (nr < 0)
 501		res = sprintf(buffer, "%ld 0x%lx 0x%lx\n", nr, sp, pc);
 
 502	else
 503		res = sprintf(buffer,
 504		       "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n",
 505		       nr,
 506		       args[0], args[1], args[2], args[3], args[4], args[5],
 507		       sp, pc);
 508	unlock_trace(task);
 509	return res;
 
 510}
 511#endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
 512
 513/************************************************************************/
 514/*                       Here the fs part begins                        */
 515/************************************************************************/
 516
 517/* permission checks */
 518static int proc_fd_access_allowed(struct inode *inode)
 519{
 520	struct task_struct *task;
 521	int allowed = 0;
 522	/* Allow access to a task's file descriptors if it is us or we
 523	 * may use ptrace attach to the process and find out that
 524	 * information.
 525	 */
 526	task = get_proc_task(inode);
 527	if (task) {
 528		allowed = ptrace_may_access(task, PTRACE_MODE_READ);
 529		put_task_struct(task);
 530	}
 531	return allowed;
 532}
 533
 534int proc_setattr(struct dentry *dentry, struct iattr *attr)
 535{
 536	int error;
 537	struct inode *inode = dentry->d_inode;
 538
 539	if (attr->ia_valid & ATTR_MODE)
 540		return -EPERM;
 541
 542	error = inode_change_ok(inode, attr);
 543	if (error)
 544		return error;
 545
 546	if ((attr->ia_valid & ATTR_SIZE) &&
 547	    attr->ia_size != i_size_read(inode)) {
 548		error = vmtruncate(inode, attr->ia_size);
 549		if (error)
 550			return error;
 551	}
 552
 553	setattr_copy(inode, attr);
 554	mark_inode_dirty(inode);
 555	return 0;
 556}
 557
 558/*
 559 * May current process learn task's sched/cmdline info (for hide_pid_min=1)
 560 * or euid/egid (for hide_pid_min=2)?
 561 */
 562static bool has_pid_permissions(struct pid_namespace *pid,
 563				 struct task_struct *task,
 564				 int hide_pid_min)
 565{
 566	if (pid->hide_pid < hide_pid_min)
 
 
 
 
 
 
 
 
 567		return true;
 568	if (in_group_p(pid->pid_gid))
 569		return true;
 570	return ptrace_may_access(task, PTRACE_MODE_READ);
 571}
 572
 573
 574static int proc_pid_permission(struct inode *inode, int mask)
 575{
 576	struct pid_namespace *pid = inode->i_sb->s_fs_info;
 577	struct task_struct *task;
 578	bool has_perms;
 579
 580	task = get_proc_task(inode);
 581	if (!task)
 582		return -ESRCH;
 583	has_perms = has_pid_permissions(pid, task, 1);
 584	put_task_struct(task);
 585
 586	if (!has_perms) {
 587		if (pid->hide_pid == 2) {
 588			/*
 589			 * Let's make getdents(), stat(), and open()
 590			 * consistent with each other.  If a process
 591			 * may not stat() a file, it shouldn't be seen
 592			 * in procfs at all.
 593			 */
 594			return -ENOENT;
 595		}
 596
 597		return -EPERM;
 598	}
 599	return generic_permission(inode, mask);
 600}
 601
 602
 603
 604static const struct inode_operations proc_def_inode_operations = {
 605	.setattr	= proc_setattr,
 606};
 607
 608#define PROC_BLOCK_SIZE	(3*1024)		/* 4K page size but our output routines use some slack for overruns */
 609
 610static ssize_t proc_info_read(struct file * file, char __user * buf,
 611			  size_t count, loff_t *ppos)
 612{
 613	struct inode * inode = file->f_path.dentry->d_inode;
 614	unsigned long page;
 615	ssize_t length;
 616	struct task_struct *task = get_proc_task(inode);
 617
 618	length = -ESRCH;
 619	if (!task)
 620		goto out_no_task;
 621
 622	if (count > PROC_BLOCK_SIZE)
 623		count = PROC_BLOCK_SIZE;
 624
 625	length = -ENOMEM;
 626	if (!(page = __get_free_page(GFP_TEMPORARY)))
 627		goto out;
 628
 629	length = PROC_I(inode)->op.proc_read(task, (char*)page);
 630
 631	if (length >= 0)
 632		length = simple_read_from_buffer(buf, count, ppos, (char *)page, length);
 633	free_page(page);
 634out:
 635	put_task_struct(task);
 636out_no_task:
 637	return length;
 638}
 639
 640static const struct file_operations proc_info_file_operations = {
 641	.read		= proc_info_read,
 642	.llseek		= generic_file_llseek,
 643};
 644
 645static int proc_single_show(struct seq_file *m, void *v)
 646{
 647	struct inode *inode = m->private;
 648	struct pid_namespace *ns;
 649	struct pid *pid;
 650	struct task_struct *task;
 651	int ret;
 652
 653	ns = inode->i_sb->s_fs_info;
 654	pid = proc_pid(inode);
 655	task = get_pid_task(pid, PIDTYPE_PID);
 656	if (!task)
 657		return -ESRCH;
 658
 659	ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
 660
 661	put_task_struct(task);
 662	return ret;
 663}
 664
 665static int proc_single_open(struct inode *inode, struct file *filp)
 666{
 667	return single_open(filp, proc_single_show, inode);
 668}
 669
 670static const struct file_operations proc_single_file_operations = {
 671	.open		= proc_single_open,
 672	.read		= seq_read,
 673	.llseek		= seq_lseek,
 674	.release	= single_release,
 675};
 676
 677static int __mem_open(struct inode *inode, struct file *file, unsigned int mode)
 
 678{
 679	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
 680	struct mm_struct *mm;
 
 
 
 
 
 
 
 
 
 
 
 
 681
 682	if (!task)
 683		return -ESRCH;
 684
 685	mm = mm_access(task, mode);
 686	put_task_struct(task);
 
 687
 688	if (IS_ERR(mm))
 689		return PTR_ERR(mm);
 690
 691	if (mm) {
 692		/* ensure this mm_struct can't be freed */
 693		atomic_inc(&mm->mm_count);
 694		/* but do not pin its memory */
 695		mmput(mm);
 696	}
 697
 698	/* OK to pass negative loff_t, we can catch out-of-range */
 699	file->f_mode |= FMODE_UNSIGNED_OFFSET;
 700	file->private_data = mm;
 701
 702	return 0;
 703}
 704
 705static int mem_open(struct inode *inode, struct file *file)
 706{
 707	return __mem_open(inode, file, PTRACE_MODE_ATTACH);
 
 
 
 
 
 708}
 709
 710static ssize_t mem_rw(struct file *file, char __user *buf,
 711			size_t count, loff_t *ppos, int write)
 712{
 713	struct mm_struct *mm = file->private_data;
 714	unsigned long addr = *ppos;
 715	ssize_t copied;
 716	char *page;
 
 717
 718	if (!mm)
 719		return 0;
 720
 721	page = (char *)__get_free_page(GFP_TEMPORARY);
 722	if (!page)
 723		return -ENOMEM;
 724
 725	copied = 0;
 726	if (!atomic_inc_not_zero(&mm->mm_users))
 727		goto free;
 728
 
 
 729	while (count > 0) {
 730		int this_len = min_t(int, count, PAGE_SIZE);
 731
 732		if (write && copy_from_user(page, buf, this_len)) {
 733			copied = -EFAULT;
 734			break;
 735		}
 736
 737		this_len = access_remote_vm(mm, addr, page, this_len, write);
 738		if (!this_len) {
 739			if (!copied)
 740				copied = -EIO;
 741			break;
 742		}
 743
 744		if (!write && copy_to_user(buf, page, this_len)) {
 745			copied = -EFAULT;
 746			break;
 747		}
 748
 749		buf += this_len;
 750		addr += this_len;
 751		copied += this_len;
 752		count -= this_len;
 753	}
 754	*ppos = addr;
 755
 756	mmput(mm);
 757free:
 758	free_page((unsigned long) page);
 759	return copied;
 760}
 761
 762static ssize_t mem_read(struct file *file, char __user *buf,
 763			size_t count, loff_t *ppos)
 764{
 765	return mem_rw(file, buf, count, ppos, 0);
 766}
 767
 768static ssize_t mem_write(struct file *file, const char __user *buf,
 769			 size_t count, loff_t *ppos)
 770{
 771	return mem_rw(file, (char __user*)buf, count, ppos, 1);
 772}
 773
 774loff_t mem_lseek(struct file *file, loff_t offset, int orig)
 775{
 776	switch (orig) {
 777	case 0:
 778		file->f_pos = offset;
 779		break;
 780	case 1:
 781		file->f_pos += offset;
 782		break;
 783	default:
 784		return -EINVAL;
 785	}
 786	force_successful_syscall_return();
 787	return file->f_pos;
 788}
 789
 790static int mem_release(struct inode *inode, struct file *file)
 791{
 792	struct mm_struct *mm = file->private_data;
 793	if (mm)
 794		mmdrop(mm);
 795	return 0;
 796}
 797
 798static const struct file_operations proc_mem_operations = {
 799	.llseek		= mem_lseek,
 800	.read		= mem_read,
 801	.write		= mem_write,
 802	.open		= mem_open,
 803	.release	= mem_release,
 804};
 805
 806static int environ_open(struct inode *inode, struct file *file)
 807{
 808	return __mem_open(inode, file, PTRACE_MODE_READ);
 809}
 810
 811static ssize_t environ_read(struct file *file, char __user *buf,
 812			size_t count, loff_t *ppos)
 813{
 814	char *page;
 815	unsigned long src = *ppos;
 816	int ret = 0;
 817	struct mm_struct *mm = file->private_data;
 
 818
 819	if (!mm)
 
 820		return 0;
 821
 822	page = (char *)__get_free_page(GFP_TEMPORARY);
 823	if (!page)
 824		return -ENOMEM;
 825
 826	ret = 0;
 827	if (!atomic_inc_not_zero(&mm->mm_users))
 828		goto free;
 
 
 
 
 
 
 829	while (count > 0) {
 830		int this_len, retval, max_len;
 
 831
 832		this_len = mm->env_end - (mm->env_start + src);
 
 833
 834		if (this_len <= 0)
 835			break;
 836
 837		max_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
 838		this_len = (this_len > max_len) ? max_len : this_len;
 839
 840		retval = access_remote_vm(mm, (mm->env_start + src),
 841			page, this_len, 0);
 842
 843		if (retval <= 0) {
 844			ret = retval;
 845			break;
 846		}
 847
 848		if (copy_to_user(buf, page, retval)) {
 849			ret = -EFAULT;
 850			break;
 851		}
 852
 853		ret += retval;
 854		src += retval;
 855		buf += retval;
 856		count -= retval;
 857	}
 858	*ppos = src;
 859	mmput(mm);
 860
 861free:
 862	free_page((unsigned long) page);
 863	return ret;
 864}
 865
 866static const struct file_operations proc_environ_operations = {
 867	.open		= environ_open,
 868	.read		= environ_read,
 869	.llseek		= generic_file_llseek,
 870	.release	= mem_release,
 871};
 872
 873static ssize_t oom_adjust_read(struct file *file, char __user *buf,
 874				size_t count, loff_t *ppos)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 875{
 876	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
 877	char buffer[PROC_NUMBUF];
 
 878	size_t len;
 879	int oom_adjust = OOM_DISABLE;
 880	unsigned long flags;
 881
 882	if (!task)
 883		return -ESRCH;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 884
 885	if (lock_task_sighand(task, &flags)) {
 886		oom_adjust = task->signal->oom_adj;
 887		unlock_task_sighand(task, &flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 888	}
 889
 890	put_task_struct(task);
 
 
 
 891
 892	len = snprintf(buffer, sizeof(buffer), "%i\n", oom_adjust);
 
 893
 894	return simple_read_from_buffer(buf, count, ppos, buffer, len);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 895}
 896
 897static ssize_t oom_adjust_write(struct file *file, const char __user *buf,
 898				size_t count, loff_t *ppos)
 
 
 
 
 
 
 
 
 
 
 899{
 900	struct task_struct *task;
 901	char buffer[PROC_NUMBUF];
 902	int oom_adjust;
 903	unsigned long flags;
 904	int err;
 905
 906	memset(buffer, 0, sizeof(buffer));
 907	if (count > sizeof(buffer) - 1)
 908		count = sizeof(buffer) - 1;
 909	if (copy_from_user(buffer, buf, count)) {
 910		err = -EFAULT;
 911		goto out;
 912	}
 913
 914	err = kstrtoint(strstrip(buffer), 0, &oom_adjust);
 915	if (err)
 916		goto out;
 917	if ((oom_adjust < OOM_ADJUST_MIN || oom_adjust > OOM_ADJUST_MAX) &&
 918	     oom_adjust != OOM_DISABLE) {
 919		err = -EINVAL;
 920		goto out;
 921	}
 922
 923	task = get_proc_task(file->f_path.dentry->d_inode);
 924	if (!task) {
 925		err = -ESRCH;
 926		goto out;
 927	}
 928
 929	task_lock(task);
 930	if (!task->mm) {
 931		err = -EINVAL;
 932		goto err_task_lock;
 933	}
 934
 935	if (!lock_task_sighand(task, &flags)) {
 936		err = -ESRCH;
 937		goto err_task_lock;
 938	}
 939
 940	if (oom_adjust < task->signal->oom_adj && !capable(CAP_SYS_RESOURCE)) {
 941		err = -EACCES;
 942		goto err_sighand;
 943	}
 944
 945	/*
 946	 * Warn that /proc/pid/oom_adj is deprecated, see
 947	 * Documentation/feature-removal-schedule.txt.
 948	 */
 949	printk_once(KERN_WARNING "%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
 950		  current->comm, task_pid_nr(current), task_pid_nr(task),
 951		  task_pid_nr(task));
 952	task->signal->oom_adj = oom_adjust;
 953	/*
 954	 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
 955	 * value is always attainable.
 956	 */
 957	if (task->signal->oom_adj == OOM_ADJUST_MAX)
 958		task->signal->oom_score_adj = OOM_SCORE_ADJ_MAX;
 959	else
 960		task->signal->oom_score_adj = (oom_adjust * OOM_SCORE_ADJ_MAX) /
 961								-OOM_DISABLE;
 962	trace_oom_score_adj_update(task);
 963err_sighand:
 964	unlock_task_sighand(task, &flags);
 965err_task_lock:
 966	task_unlock(task);
 967	put_task_struct(task);
 968out:
 969	return err < 0 ? err : count;
 970}
 971
 972static const struct file_operations proc_oom_adjust_operations = {
 973	.read		= oom_adjust_read,
 974	.write		= oom_adjust_write,
 975	.llseek		= generic_file_llseek,
 976};
 977
 978static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
 979					size_t count, loff_t *ppos)
 980{
 981	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
 982	char buffer[PROC_NUMBUF];
 983	int oom_score_adj = OOM_SCORE_ADJ_MIN;
 984	unsigned long flags;
 985	size_t len;
 986
 987	if (!task)
 988		return -ESRCH;
 989	if (lock_task_sighand(task, &flags)) {
 990		oom_score_adj = task->signal->oom_score_adj;
 991		unlock_task_sighand(task, &flags);
 992	}
 993	put_task_struct(task);
 994	len = snprintf(buffer, sizeof(buffer), "%d\n", oom_score_adj);
 995	return simple_read_from_buffer(buf, count, ppos, buffer, len);
 996}
 997
 998static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
 999					size_t count, loff_t *ppos)
1000{
1001	struct task_struct *task;
1002	char buffer[PROC_NUMBUF];
1003	unsigned long flags;
1004	int oom_score_adj;
1005	int err;
1006
1007	memset(buffer, 0, sizeof(buffer));
1008	if (count > sizeof(buffer) - 1)
1009		count = sizeof(buffer) - 1;
1010	if (copy_from_user(buffer, buf, count)) {
1011		err = -EFAULT;
1012		goto out;
1013	}
1014
1015	err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1016	if (err)
1017		goto out;
1018	if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1019			oom_score_adj > OOM_SCORE_ADJ_MAX) {
1020		err = -EINVAL;
1021		goto out;
1022	}
1023
1024	task = get_proc_task(file->f_path.dentry->d_inode);
1025	if (!task) {
1026		err = -ESRCH;
1027		goto out;
1028	}
1029
1030	task_lock(task);
1031	if (!task->mm) {
1032		err = -EINVAL;
1033		goto err_task_lock;
1034	}
1035
1036	if (!lock_task_sighand(task, &flags)) {
1037		err = -ESRCH;
1038		goto err_task_lock;
1039	}
1040
1041	if (oom_score_adj < task->signal->oom_score_adj_min &&
1042			!capable(CAP_SYS_RESOURCE)) {
1043		err = -EACCES;
1044		goto err_sighand;
1045	}
1046
1047	task->signal->oom_score_adj = oom_score_adj;
1048	if (has_capability_noaudit(current, CAP_SYS_RESOURCE))
1049		task->signal->oom_score_adj_min = oom_score_adj;
1050	trace_oom_score_adj_update(task);
1051	/*
1052	 * Scale /proc/pid/oom_adj appropriately ensuring that OOM_DISABLE is
1053	 * always attainable.
1054	 */
1055	if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
1056		task->signal->oom_adj = OOM_DISABLE;
1057	else
1058		task->signal->oom_adj = (oom_score_adj * OOM_ADJUST_MAX) /
1059							OOM_SCORE_ADJ_MAX;
1060err_sighand:
1061	unlock_task_sighand(task, &flags);
1062err_task_lock:
1063	task_unlock(task);
1064	put_task_struct(task);
1065out:
1066	return err < 0 ? err : count;
1067}
1068
1069static const struct file_operations proc_oom_score_adj_operations = {
1070	.read		= oom_score_adj_read,
1071	.write		= oom_score_adj_write,
1072	.llseek		= default_llseek,
1073};
1074
1075#ifdef CONFIG_AUDITSYSCALL
1076#define TMPBUFLEN 21
1077static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1078				  size_t count, loff_t *ppos)
1079{
1080	struct inode * inode = file->f_path.dentry->d_inode;
1081	struct task_struct *task = get_proc_task(inode);
1082	ssize_t length;
1083	char tmpbuf[TMPBUFLEN];
1084
1085	if (!task)
1086		return -ESRCH;
1087	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1088				audit_get_loginuid(task));
 
1089	put_task_struct(task);
1090	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1091}
1092
1093static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1094				   size_t count, loff_t *ppos)
1095{
1096	struct inode * inode = file->f_path.dentry->d_inode;
1097	char *page, *tmp;
1098	ssize_t length;
1099	uid_t loginuid;
 
 
1100
1101	rcu_read_lock();
1102	if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1103		rcu_read_unlock();
1104		return -EPERM;
1105	}
1106	rcu_read_unlock();
1107
1108	if (count >= PAGE_SIZE)
1109		count = PAGE_SIZE - 1;
1110
1111	if (*ppos != 0) {
1112		/* No partial writes. */
1113		return -EINVAL;
1114	}
1115	page = (char*)__get_free_page(GFP_TEMPORARY);
1116	if (!page)
1117		return -ENOMEM;
1118	length = -EFAULT;
1119	if (copy_from_user(page, buf, count))
1120		goto out_free_page;
1121
1122	page[count] = '\0';
1123	loginuid = simple_strtoul(page, &tmp, 10);
1124	if (tmp == page) {
1125		length = -EINVAL;
1126		goto out_free_page;
1127
1128	}
1129	length = audit_set_loginuid(loginuid);
1130	if (likely(length == 0))
1131		length = count;
1132
1133out_free_page:
1134	free_page((unsigned long) page);
1135	return length;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1136}
1137
1138static const struct file_operations proc_loginuid_operations = {
1139	.read		= proc_loginuid_read,
1140	.write		= proc_loginuid_write,
1141	.llseek		= generic_file_llseek,
1142};
1143
1144static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1145				  size_t count, loff_t *ppos)
1146{
1147	struct inode * inode = file->f_path.dentry->d_inode;
1148	struct task_struct *task = get_proc_task(inode);
1149	ssize_t length;
1150	char tmpbuf[TMPBUFLEN];
1151
1152	if (!task)
1153		return -ESRCH;
1154	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1155				audit_get_sessionid(task));
1156	put_task_struct(task);
1157	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1158}
1159
1160static const struct file_operations proc_sessionid_operations = {
1161	.read		= proc_sessionid_read,
1162	.llseek		= generic_file_llseek,
1163};
1164#endif
1165
1166#ifdef CONFIG_FAULT_INJECTION
1167static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1168				      size_t count, loff_t *ppos)
1169{
1170	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
1171	char buffer[PROC_NUMBUF];
1172	size_t len;
1173	int make_it_fail;
1174
1175	if (!task)
1176		return -ESRCH;
1177	make_it_fail = task->make_it_fail;
1178	put_task_struct(task);
1179
1180	len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1181
1182	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1183}
1184
1185static ssize_t proc_fault_inject_write(struct file * file,
1186			const char __user * buf, size_t count, loff_t *ppos)
1187{
1188	struct task_struct *task;
1189	char buffer[PROC_NUMBUF], *end;
1190	int make_it_fail;
 
1191
1192	if (!capable(CAP_SYS_RESOURCE))
1193		return -EPERM;
1194	memset(buffer, 0, sizeof(buffer));
1195	if (count > sizeof(buffer) - 1)
1196		count = sizeof(buffer) - 1;
1197	if (copy_from_user(buffer, buf, count))
1198		return -EFAULT;
1199	make_it_fail = simple_strtol(strstrip(buffer), &end, 0);
1200	if (*end)
 
 
1201		return -EINVAL;
1202	task = get_proc_task(file->f_dentry->d_inode);
 
1203	if (!task)
1204		return -ESRCH;
1205	task->make_it_fail = make_it_fail;
1206	put_task_struct(task);
1207
1208	return count;
1209}
1210
1211static const struct file_operations proc_fault_inject_operations = {
1212	.read		= proc_fault_inject_read,
1213	.write		= proc_fault_inject_write,
1214	.llseek		= generic_file_llseek,
1215};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1216#endif
1217
1218
1219#ifdef CONFIG_SCHED_DEBUG
1220/*
1221 * Print out various scheduling related per-task fields:
1222 */
1223static int sched_show(struct seq_file *m, void *v)
1224{
1225	struct inode *inode = m->private;
 
1226	struct task_struct *p;
1227
1228	p = get_proc_task(inode);
1229	if (!p)
1230		return -ESRCH;
1231	proc_sched_show_task(p, m);
1232
1233	put_task_struct(p);
1234
1235	return 0;
1236}
1237
1238static ssize_t
1239sched_write(struct file *file, const char __user *buf,
1240	    size_t count, loff_t *offset)
1241{
1242	struct inode *inode = file->f_path.dentry->d_inode;
1243	struct task_struct *p;
1244
1245	p = get_proc_task(inode);
1246	if (!p)
1247		return -ESRCH;
1248	proc_sched_set_task(p);
1249
1250	put_task_struct(p);
1251
1252	return count;
1253}
1254
1255static int sched_open(struct inode *inode, struct file *filp)
1256{
1257	return single_open(filp, sched_show, inode);
1258}
1259
1260static const struct file_operations proc_pid_sched_operations = {
1261	.open		= sched_open,
1262	.read		= seq_read,
1263	.write		= sched_write,
1264	.llseek		= seq_lseek,
1265	.release	= single_release,
1266};
1267
1268#endif
1269
1270#ifdef CONFIG_SCHED_AUTOGROUP
1271/*
1272 * Print out autogroup related information:
1273 */
1274static int sched_autogroup_show(struct seq_file *m, void *v)
1275{
1276	struct inode *inode = m->private;
1277	struct task_struct *p;
1278
1279	p = get_proc_task(inode);
1280	if (!p)
1281		return -ESRCH;
1282	proc_sched_autogroup_show_task(p, m);
1283
1284	put_task_struct(p);
1285
1286	return 0;
1287}
1288
1289static ssize_t
1290sched_autogroup_write(struct file *file, const char __user *buf,
1291	    size_t count, loff_t *offset)
1292{
1293	struct inode *inode = file->f_path.dentry->d_inode;
1294	struct task_struct *p;
1295	char buffer[PROC_NUMBUF];
1296	int nice;
1297	int err;
1298
1299	memset(buffer, 0, sizeof(buffer));
1300	if (count > sizeof(buffer) - 1)
1301		count = sizeof(buffer) - 1;
1302	if (copy_from_user(buffer, buf, count))
1303		return -EFAULT;
1304
1305	err = kstrtoint(strstrip(buffer), 0, &nice);
1306	if (err < 0)
1307		return err;
1308
1309	p = get_proc_task(inode);
1310	if (!p)
1311		return -ESRCH;
1312
1313	err = proc_sched_autogroup_set_nice(p, nice);
1314	if (err)
1315		count = err;
1316
1317	put_task_struct(p);
1318
1319	return count;
1320}
1321
1322static int sched_autogroup_open(struct inode *inode, struct file *filp)
1323{
1324	int ret;
1325
1326	ret = single_open(filp, sched_autogroup_show, NULL);
1327	if (!ret) {
1328		struct seq_file *m = filp->private_data;
1329
1330		m->private = inode;
1331	}
1332	return ret;
1333}
1334
1335static const struct file_operations proc_pid_sched_autogroup_operations = {
1336	.open		= sched_autogroup_open,
1337	.read		= seq_read,
1338	.write		= sched_autogroup_write,
1339	.llseek		= seq_lseek,
1340	.release	= single_release,
1341};
1342
1343#endif /* CONFIG_SCHED_AUTOGROUP */
1344
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1345static ssize_t comm_write(struct file *file, const char __user *buf,
1346				size_t count, loff_t *offset)
1347{
1348	struct inode *inode = file->f_path.dentry->d_inode;
1349	struct task_struct *p;
1350	char buffer[TASK_COMM_LEN];
 
1351
1352	memset(buffer, 0, sizeof(buffer));
1353	if (count > sizeof(buffer) - 1)
1354		count = sizeof(buffer) - 1;
1355	if (copy_from_user(buffer, buf, count))
1356		return -EFAULT;
1357
1358	p = get_proc_task(inode);
1359	if (!p)
1360		return -ESRCH;
1361
1362	if (same_thread_group(current, p))
1363		set_task_comm(p, buffer);
1364	else
1365		count = -EINVAL;
1366
1367	put_task_struct(p);
1368
1369	return count;
1370}
1371
1372static int comm_show(struct seq_file *m, void *v)
1373{
1374	struct inode *inode = m->private;
1375	struct task_struct *p;
1376
1377	p = get_proc_task(inode);
1378	if (!p)
1379		return -ESRCH;
1380
1381	task_lock(p);
1382	seq_printf(m, "%s\n", p->comm);
1383	task_unlock(p);
1384
1385	put_task_struct(p);
1386
1387	return 0;
1388}
1389
1390static int comm_open(struct inode *inode, struct file *filp)
1391{
1392	return single_open(filp, comm_show, inode);
1393}
1394
1395static const struct file_operations proc_pid_set_comm_operations = {
1396	.open		= comm_open,
1397	.read		= seq_read,
1398	.write		= comm_write,
1399	.llseek		= seq_lseek,
1400	.release	= single_release,
1401};
1402
1403static int proc_exe_link(struct dentry *dentry, struct path *exe_path)
1404{
1405	struct task_struct *task;
1406	struct mm_struct *mm;
1407	struct file *exe_file;
1408
1409	task = get_proc_task(dentry->d_inode);
1410	if (!task)
1411		return -ENOENT;
1412	mm = get_task_mm(task);
1413	put_task_struct(task);
1414	if (!mm)
1415		return -ENOENT;
1416	exe_file = get_mm_exe_file(mm);
1417	mmput(mm);
1418	if (exe_file) {
1419		*exe_path = exe_file->f_path;
1420		path_get(&exe_file->f_path);
1421		fput(exe_file);
1422		return 0;
1423	} else
1424		return -ENOENT;
1425}
1426
1427static void *proc_pid_follow_link(struct dentry *dentry, struct nameidata *nd)
 
 
1428{
1429	struct inode *inode = dentry->d_inode;
1430	int error = -EACCES;
1431
1432	/* We don't need a base pointer in the /proc filesystem */
1433	path_put(&nd->path);
1434
1435	/* Are we allowed to snoop on the tasks file descriptors? */
1436	if (!proc_fd_access_allowed(inode))
1437		goto out;
1438
1439	error = PROC_I(inode)->op.proc_get_link(dentry, &nd->path);
 
 
 
 
1440out:
1441	return ERR_PTR(error);
1442}
1443
1444static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1445{
1446	char *tmp = (char*)__get_free_page(GFP_TEMPORARY);
1447	char *pathname;
1448	int len;
1449
1450	if (!tmp)
1451		return -ENOMEM;
1452
1453	pathname = d_path(path, tmp, PAGE_SIZE);
1454	len = PTR_ERR(pathname);
1455	if (IS_ERR(pathname))
1456		goto out;
1457	len = tmp + PAGE_SIZE - 1 - pathname;
1458
1459	if (len > buflen)
1460		len = buflen;
1461	if (copy_to_user(buffer, pathname, len))
1462		len = -EFAULT;
1463 out:
1464	free_page((unsigned long)tmp);
1465	return len;
1466}
1467
1468static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1469{
1470	int error = -EACCES;
1471	struct inode *inode = dentry->d_inode;
1472	struct path path;
1473
1474	/* Are we allowed to snoop on the tasks file descriptors? */
1475	if (!proc_fd_access_allowed(inode))
1476		goto out;
1477
1478	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1479	if (error)
1480		goto out;
1481
1482	error = do_proc_readlink(&path, buffer, buflen);
1483	path_put(&path);
1484out:
1485	return error;
1486}
1487
1488static const struct inode_operations proc_pid_link_inode_operations = {
1489	.readlink	= proc_pid_readlink,
1490	.follow_link	= proc_pid_follow_link,
1491	.setattr	= proc_setattr,
1492};
1493
1494
1495/* building an inode */
1496
1497static int task_dumpable(struct task_struct *task)
 
1498{
1499	int dumpable = 0;
1500	struct mm_struct *mm;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1501
1502	task_lock(task);
1503	mm = task->mm;
1504	if (mm)
1505		dumpable = get_dumpable(mm);
1506	task_unlock(task);
1507	if(dumpable == 1)
1508		return 1;
1509	return 0;
1510}
1511
1512struct inode *proc_pid_make_inode(struct super_block * sb, struct task_struct *task)
 
1513{
1514	struct inode * inode;
1515	struct proc_inode *ei;
1516	const struct cred *cred;
1517
1518	/* We need a new inode */
1519
1520	inode = new_inode(sb);
1521	if (!inode)
1522		goto out;
1523
1524	/* Common stuff */
1525	ei = PROC_I(inode);
 
1526	inode->i_ino = get_next_ino();
1527	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
1528	inode->i_op = &proc_def_inode_operations;
1529
1530	/*
1531	 * grab the reference to task.
1532	 */
1533	ei->pid = get_task_pid(task, PIDTYPE_PID);
1534	if (!ei->pid)
1535		goto out_unlock;
1536
1537	if (task_dumpable(task)) {
1538		rcu_read_lock();
1539		cred = __task_cred(task);
1540		inode->i_uid = cred->euid;
1541		inode->i_gid = cred->egid;
1542		rcu_read_unlock();
1543	}
 
 
1544	security_task_to_inode(task, inode);
1545
1546out:
1547	return inode;
1548
1549out_unlock:
1550	iput(inode);
1551	return NULL;
1552}
1553
1554int pid_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
 
1555{
1556	struct inode *inode = dentry->d_inode;
 
1557	struct task_struct *task;
1558	const struct cred *cred;
1559	struct pid_namespace *pid = dentry->d_sb->s_fs_info;
1560
1561	generic_fillattr(inode, stat);
1562
1563	rcu_read_lock();
1564	stat->uid = GLOBAL_ROOT_UID;
1565	stat->gid = GLOBAL_ROOT_GID;
 
1566	task = pid_task(proc_pid(inode), PIDTYPE_PID);
1567	if (task) {
1568		if (!has_pid_permissions(pid, task, 2)) {
1569			rcu_read_unlock();
1570			/*
1571			 * This doesn't prevent learning whether PID exists,
1572			 * it only makes getattr() consistent with readdir().
1573			 */
1574			return -ENOENT;
1575		}
1576		if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1577		    task_dumpable(task)) {
1578			cred = __task_cred(task);
1579			stat->uid = cred->euid;
1580			stat->gid = cred->egid;
1581		}
1582	}
1583	rcu_read_unlock();
1584	return 0;
1585}
1586
1587/* dentry stuff */
1588
1589/*
1590 *	Exceptional case: normally we are not allowed to unhash a busy
1591 * directory. In this case, however, we can do it - no aliasing problems
1592 * due to the way we treat inodes.
1593 *
 
 
 
 
 
 
 
1594 * Rewrite the inode's ownerships here because the owning task may have
1595 * performed a setuid(), etc.
1596 *
1597 * Before the /proc/pid/status file was created the only way to read
1598 * the effective uid of a /process was to stat /proc/pid.  Reading
1599 * /proc/pid/status is slow enough that procps and other packages
1600 * kept stating /proc/pid.  To keep the rules in /proc simple I have
1601 * made this apply to all per process world readable and executable
1602 * directories.
1603 */
1604int pid_revalidate(struct dentry *dentry, struct nameidata *nd)
1605{
1606	struct inode *inode;
1607	struct task_struct *task;
1608	const struct cred *cred;
1609
1610	if (nd && nd->flags & LOOKUP_RCU)
1611		return -ECHILD;
1612
1613	inode = dentry->d_inode;
1614	task = get_proc_task(inode);
1615
1616	if (task) {
1617		if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1618		    task_dumpable(task)) {
1619			rcu_read_lock();
1620			cred = __task_cred(task);
1621			inode->i_uid = cred->euid;
1622			inode->i_gid = cred->egid;
1623			rcu_read_unlock();
1624		} else {
1625			inode->i_uid = GLOBAL_ROOT_UID;
1626			inode->i_gid = GLOBAL_ROOT_GID;
1627		}
1628		inode->i_mode &= ~(S_ISUID | S_ISGID);
1629		security_task_to_inode(task, inode);
1630		put_task_struct(task);
1631		return 1;
1632	}
1633	d_drop(dentry);
1634	return 0;
1635}
1636
1637static int pid_delete_dentry(const struct dentry * dentry)
 
 
 
 
 
1638{
1639	/* Is the task we represent dead?
1640	 * If so, then don't put the dentry on the lru list,
1641	 * kill it immediately.
1642	 */
1643	return !proc_pid(dentry->d_inode)->tasks[PIDTYPE_PID].first;
1644}
1645
1646const struct dentry_operations pid_dentry_operations =
1647{
1648	.d_revalidate	= pid_revalidate,
1649	.d_delete	= pid_delete_dentry,
1650};
1651
1652/* Lookups */
1653
1654/*
1655 * Fill a directory entry.
1656 *
1657 * If possible create the dcache entry and derive our inode number and
1658 * file type from dcache entry.
1659 *
1660 * Since all of the proc inode numbers are dynamically generated, the inode
1661 * numbers do not exist until the inode is cache.  This means creating the
1662 * the dcache entry in readdir is necessary to keep the inode numbers
1663 * reported by readdir in sync with the inode numbers reported
1664 * by stat.
1665 */
1666int proc_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
1667	const char *name, int len,
1668	instantiate_t instantiate, struct task_struct *task, const void *ptr)
1669{
1670	struct dentry *child, *dir = filp->f_path.dentry;
 
1671	struct inode *inode;
1672	struct qstr qname;
1673	ino_t ino = 0;
1674	unsigned type = DT_UNKNOWN;
 
1675
1676	qname.name = name;
1677	qname.len  = len;
1678	qname.hash = full_name_hash(name, len);
1679
1680	child = d_lookup(dir, &qname);
1681	if (!child) {
1682		struct dentry *new;
1683		new = d_alloc(dir, &qname);
1684		if (new) {
1685			child = instantiate(dir->d_inode, new, task, ptr);
1686			if (child)
1687				dput(new);
1688			else
1689				child = new;
1690		}
1691	}
1692	if (!child || IS_ERR(child) || !child->d_inode)
1693		goto end_instantiate;
1694	inode = child->d_inode;
1695	if (inode) {
1696		ino = inode->i_ino;
1697		type = inode->i_mode >> 12;
1698	}
 
 
 
1699	dput(child);
1700end_instantiate:
1701	if (!ino)
1702		ino = find_inode_number(dir, &qname);
1703	if (!ino)
1704		ino = 1;
1705	return filldir(dirent, name, len, filp->f_pos, ino, type);
1706}
1707
1708static unsigned name_to_int(struct dentry *dentry)
1709{
1710	const char *name = dentry->d_name.name;
1711	int len = dentry->d_name.len;
1712	unsigned n = 0;
1713
1714	if (len > 1 && *name == '0')
1715		goto out;
1716	while (len-- > 0) {
1717		unsigned c = *name++ - '0';
1718		if (c > 9)
1719			goto out;
1720		if (n >= (~0U-9)/10)
1721			goto out;
1722		n *= 10;
1723		n += c;
1724	}
1725	return n;
1726out:
1727	return ~0U;
1728}
1729
1730#define PROC_FDINFO_MAX 64
1731
1732static int proc_fd_info(struct inode *inode, struct path *path, char *info)
1733{
1734	struct task_struct *task = get_proc_task(inode);
1735	struct files_struct *files = NULL;
1736	struct file *file;
1737	int fd = proc_fd(inode);
1738
1739	if (task) {
1740		files = get_files_struct(task);
1741		put_task_struct(task);
1742	}
1743	if (files) {
1744		/*
1745		 * We are not taking a ref to the file structure, so we must
1746		 * hold ->file_lock.
1747		 */
1748		spin_lock(&files->file_lock);
1749		file = fcheck_files(files, fd);
1750		if (file) {
1751			unsigned int f_flags;
1752			struct fdtable *fdt;
1753
1754			fdt = files_fdtable(files);
1755			f_flags = file->f_flags & ~O_CLOEXEC;
1756			if (close_on_exec(fd, fdt))
1757				f_flags |= O_CLOEXEC;
1758
1759			if (path) {
1760				*path = file->f_path;
1761				path_get(&file->f_path);
1762			}
1763			if (info)
1764				snprintf(info, PROC_FDINFO_MAX,
1765					 "pos:\t%lli\n"
1766					 "flags:\t0%o\n",
1767					 (long long) file->f_pos,
1768					 f_flags);
1769			spin_unlock(&files->file_lock);
1770			put_files_struct(files);
1771			return 0;
1772		}
1773		spin_unlock(&files->file_lock);
1774		put_files_struct(files);
1775	}
1776	return -ENOENT;
1777}
1778
1779static int proc_fd_link(struct dentry *dentry, struct path *path)
1780{
1781	return proc_fd_info(dentry->d_inode, path, NULL);
1782}
1783
1784static int tid_fd_revalidate(struct dentry *dentry, struct nameidata *nd)
1785{
1786	struct inode *inode;
1787	struct task_struct *task;
1788	int fd;
1789	struct files_struct *files;
1790	const struct cred *cred;
1791
1792	if (nd && nd->flags & LOOKUP_RCU)
1793		return -ECHILD;
1794
1795	inode = dentry->d_inode;
1796	task = get_proc_task(inode);
1797	fd = proc_fd(inode);
1798
1799	if (task) {
1800		files = get_files_struct(task);
1801		if (files) {
1802			struct file *file;
1803			rcu_read_lock();
1804			file = fcheck_files(files, fd);
1805			if (file) {
1806				unsigned f_mode = file->f_mode;
1807
1808				rcu_read_unlock();
1809				put_files_struct(files);
1810
1811				if (task_dumpable(task)) {
1812					rcu_read_lock();
1813					cred = __task_cred(task);
1814					inode->i_uid = cred->euid;
1815					inode->i_gid = cred->egid;
1816					rcu_read_unlock();
1817				} else {
1818					inode->i_uid = GLOBAL_ROOT_UID;
1819					inode->i_gid = GLOBAL_ROOT_GID;
1820				}
1821
1822				if (S_ISLNK(inode->i_mode)) {
1823					unsigned i_mode = S_IFLNK;
1824					if (f_mode & FMODE_READ)
1825						i_mode |= S_IRUSR | S_IXUSR;
1826					if (f_mode & FMODE_WRITE)
1827						i_mode |= S_IWUSR | S_IXUSR;
1828					inode->i_mode = i_mode;
1829				}
1830
1831				security_task_to_inode(task, inode);
1832				put_task_struct(task);
1833				return 1;
1834			}
1835			rcu_read_unlock();
1836			put_files_struct(files);
1837		}
1838		put_task_struct(task);
1839	}
1840	d_drop(dentry);
1841	return 0;
1842}
1843
1844static const struct dentry_operations tid_fd_dentry_operations =
1845{
1846	.d_revalidate	= tid_fd_revalidate,
1847	.d_delete	= pid_delete_dentry,
1848};
1849
1850static struct dentry *proc_fd_instantiate(struct inode *dir,
1851	struct dentry *dentry, struct task_struct *task, const void *ptr)
1852{
1853	unsigned fd = (unsigned long)ptr;
1854 	struct inode *inode;
1855 	struct proc_inode *ei;
1856	struct dentry *error = ERR_PTR(-ENOENT);
1857
1858	inode = proc_pid_make_inode(dir->i_sb, task);
1859	if (!inode)
1860		goto out;
1861	ei = PROC_I(inode);
1862	ei->fd = fd;
1863
1864	inode->i_mode = S_IFLNK;
1865	inode->i_op = &proc_pid_link_inode_operations;
1866	inode->i_size = 64;
1867	ei->op.proc_get_link = proc_fd_link;
1868	d_set_d_op(dentry, &tid_fd_dentry_operations);
1869	d_add(dentry, inode);
1870	/* Close the race of the process dying before we return the dentry */
1871	if (tid_fd_revalidate(dentry, NULL))
1872		error = NULL;
1873
1874 out:
1875	return error;
1876}
1877
1878static struct dentry *proc_lookupfd_common(struct inode *dir,
1879					   struct dentry *dentry,
1880					   instantiate_t instantiate)
1881{
1882	struct task_struct *task = get_proc_task(dir);
1883	unsigned fd = name_to_int(dentry);
1884	struct dentry *result = ERR_PTR(-ENOENT);
1885
1886	if (!task)
1887		goto out_no_task;
1888	if (fd == ~0U)
1889		goto out;
1890
1891	result = instantiate(dir, dentry, task, (void *)(unsigned long)fd);
1892out:
1893	put_task_struct(task);
1894out_no_task:
1895	return result;
1896}
1897
1898static int proc_readfd_common(struct file * filp, void * dirent,
1899			      filldir_t filldir, instantiate_t instantiate)
1900{
1901	struct dentry *dentry = filp->f_path.dentry;
1902	struct inode *inode = dentry->d_inode;
1903	struct task_struct *p = get_proc_task(inode);
1904	unsigned int fd, ino;
1905	int retval;
1906	struct files_struct * files;
1907
1908	retval = -ENOENT;
1909	if (!p)
1910		goto out_no_task;
1911	retval = 0;
1912
1913	fd = filp->f_pos;
1914	switch (fd) {
1915		case 0:
1916			if (filldir(dirent, ".", 1, 0, inode->i_ino, DT_DIR) < 0)
1917				goto out;
1918			filp->f_pos++;
1919		case 1:
1920			ino = parent_ino(dentry);
1921			if (filldir(dirent, "..", 2, 1, ino, DT_DIR) < 0)
1922				goto out;
1923			filp->f_pos++;
1924		default:
1925			files = get_files_struct(p);
1926			if (!files)
1927				goto out;
1928			rcu_read_lock();
1929			for (fd = filp->f_pos-2;
1930			     fd < files_fdtable(files)->max_fds;
1931			     fd++, filp->f_pos++) {
1932				char name[PROC_NUMBUF];
1933				int len;
1934				int rv;
1935
1936				if (!fcheck_files(files, fd))
1937					continue;
1938				rcu_read_unlock();
1939
1940				len = snprintf(name, sizeof(name), "%d", fd);
1941				rv = proc_fill_cache(filp, dirent, filldir,
1942						     name, len, instantiate, p,
1943						     (void *)(unsigned long)fd);
1944				if (rv < 0)
1945					goto out_fd_loop;
1946				rcu_read_lock();
1947			}
1948			rcu_read_unlock();
1949out_fd_loop:
1950			put_files_struct(files);
1951	}
1952out:
1953	put_task_struct(p);
1954out_no_task:
1955	return retval;
1956}
1957
1958static struct dentry *proc_lookupfd(struct inode *dir, struct dentry *dentry,
1959				    struct nameidata *nd)
1960{
1961	return proc_lookupfd_common(dir, dentry, proc_fd_instantiate);
1962}
1963
1964static int proc_readfd(struct file *filp, void *dirent, filldir_t filldir)
1965{
1966	return proc_readfd_common(filp, dirent, filldir, proc_fd_instantiate);
1967}
1968
1969static ssize_t proc_fdinfo_read(struct file *file, char __user *buf,
1970				      size_t len, loff_t *ppos)
1971{
1972	char tmp[PROC_FDINFO_MAX];
1973	int err = proc_fd_info(file->f_path.dentry->d_inode, NULL, tmp);
1974	if (!err)
1975		err = simple_read_from_buffer(buf, len, ppos, tmp, strlen(tmp));
1976	return err;
1977}
1978
1979static const struct file_operations proc_fdinfo_file_operations = {
1980	.open           = nonseekable_open,
1981	.read		= proc_fdinfo_read,
1982	.llseek		= no_llseek,
1983};
1984
1985static const struct file_operations proc_fd_operations = {
1986	.read		= generic_read_dir,
1987	.readdir	= proc_readfd,
1988	.llseek		= default_llseek,
1989};
1990
1991#ifdef CONFIG_CHECKPOINT_RESTORE
1992
1993/*
1994 * dname_to_vma_addr - maps a dentry name into two unsigned longs
1995 * which represent vma start and end addresses.
1996 */
1997static int dname_to_vma_addr(struct dentry *dentry,
1998			     unsigned long *start, unsigned long *end)
1999{
2000	if (sscanf(dentry->d_name.name, "%lx-%lx", start, end) != 2)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2001		return -EINVAL;
 
 
 
 
 
 
 
 
 
2002
2003	return 0;
2004}
2005
2006static int map_files_d_revalidate(struct dentry *dentry, struct nameidata *nd)
2007{
2008	unsigned long vm_start, vm_end;
2009	bool exact_vma_exists = false;
2010	struct mm_struct *mm = NULL;
2011	struct task_struct *task;
2012	const struct cred *cred;
2013	struct inode *inode;
2014	int status = 0;
2015
2016	if (nd && nd->flags & LOOKUP_RCU)
2017		return -ECHILD;
2018
2019	if (!capable(CAP_SYS_ADMIN)) {
2020		status = -EACCES;
2021		goto out_notask;
2022	}
2023
2024	inode = dentry->d_inode;
2025	task = get_proc_task(inode);
2026	if (!task)
2027		goto out_notask;
2028
2029	mm = mm_access(task, PTRACE_MODE_READ);
2030	if (IS_ERR_OR_NULL(mm))
2031		goto out;
2032
2033	if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) {
2034		down_read(&mm->mmap_sem);
2035		exact_vma_exists = !!find_exact_vma(mm, vm_start, vm_end);
2036		up_read(&mm->mmap_sem);
 
 
 
2037	}
2038
2039	mmput(mm);
2040
2041	if (exact_vma_exists) {
2042		if (task_dumpable(task)) {
2043			rcu_read_lock();
2044			cred = __task_cred(task);
2045			inode->i_uid = cred->euid;
2046			inode->i_gid = cred->egid;
2047			rcu_read_unlock();
2048		} else {
2049			inode->i_uid = GLOBAL_ROOT_UID;
2050			inode->i_gid = GLOBAL_ROOT_GID;
2051		}
2052		security_task_to_inode(task, inode);
2053		status = 1;
2054	}
2055
2056out:
2057	put_task_struct(task);
2058
2059out_notask:
2060	if (status <= 0)
2061		d_drop(dentry);
2062
2063	return status;
2064}
2065
2066static const struct dentry_operations tid_map_files_dentry_operations = {
2067	.d_revalidate	= map_files_d_revalidate,
2068	.d_delete	= pid_delete_dentry,
2069};
2070
2071static int proc_map_files_get_link(struct dentry *dentry, struct path *path)
2072{
2073	unsigned long vm_start, vm_end;
2074	struct vm_area_struct *vma;
2075	struct task_struct *task;
2076	struct mm_struct *mm;
2077	int rc;
2078
2079	rc = -ENOENT;
2080	task = get_proc_task(dentry->d_inode);
2081	if (!task)
2082		goto out;
2083
2084	mm = get_task_mm(task);
2085	put_task_struct(task);
2086	if (!mm)
2087		goto out;
2088
2089	rc = dname_to_vma_addr(dentry, &vm_start, &vm_end);
2090	if (rc)
2091		goto out_mmput;
2092
2093	down_read(&mm->mmap_sem);
 
 
 
 
2094	vma = find_exact_vma(mm, vm_start, vm_end);
2095	if (vma && vma->vm_file) {
2096		*path = vma->vm_file->f_path;
2097		path_get(path);
2098		rc = 0;
2099	}
2100	up_read(&mm->mmap_sem);
2101
2102out_mmput:
2103	mmput(mm);
2104out:
2105	return rc;
2106}
2107
2108struct map_files_info {
2109	struct file	*file;
2110	unsigned long	len;
2111	unsigned char	name[4*sizeof(long)+2]; /* max: %lx-%lx\0 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2112};
2113
2114static struct dentry *
2115proc_map_files_instantiate(struct inode *dir, struct dentry *dentry,
2116			   struct task_struct *task, const void *ptr)
2117{
2118	const struct file *file = ptr;
2119	struct proc_inode *ei;
2120	struct inode *inode;
2121
2122	if (!file)
2123		return ERR_PTR(-ENOENT);
2124
2125	inode = proc_pid_make_inode(dir->i_sb, task);
2126	if (!inode)
2127		return ERR_PTR(-ENOENT);
2128
2129	ei = PROC_I(inode);
2130	ei->op.proc_get_link = proc_map_files_get_link;
2131
2132	inode->i_op = &proc_pid_link_inode_operations;
2133	inode->i_size = 64;
2134	inode->i_mode = S_IFLNK;
2135
2136	if (file->f_mode & FMODE_READ)
2137		inode->i_mode |= S_IRUSR;
2138	if (file->f_mode & FMODE_WRITE)
2139		inode->i_mode |= S_IWUSR;
2140
2141	d_set_d_op(dentry, &tid_map_files_dentry_operations);
2142	d_add(dentry, inode);
2143
2144	return NULL;
2145}
2146
2147static struct dentry *proc_map_files_lookup(struct inode *dir,
2148		struct dentry *dentry, struct nameidata *nd)
2149{
2150	unsigned long vm_start, vm_end;
2151	struct vm_area_struct *vma;
2152	struct task_struct *task;
2153	struct dentry *result;
2154	struct mm_struct *mm;
2155
2156	result = ERR_PTR(-EACCES);
2157	if (!capable(CAP_SYS_ADMIN))
2158		goto out;
2159
2160	result = ERR_PTR(-ENOENT);
2161	task = get_proc_task(dir);
2162	if (!task)
2163		goto out;
2164
2165	result = ERR_PTR(-EACCES);
2166	if (!ptrace_may_access(task, PTRACE_MODE_READ))
2167		goto out_put_task;
2168
2169	result = ERR_PTR(-ENOENT);
2170	if (dname_to_vma_addr(dentry, &vm_start, &vm_end))
2171		goto out_put_task;
2172
2173	mm = get_task_mm(task);
2174	if (!mm)
2175		goto out_put_task;
2176
2177	down_read(&mm->mmap_sem);
 
 
 
 
2178	vma = find_exact_vma(mm, vm_start, vm_end);
2179	if (!vma)
2180		goto out_no_vma;
2181
2182	result = proc_map_files_instantiate(dir, dentry, task, vma->vm_file);
 
 
2183
2184out_no_vma:
2185	up_read(&mm->mmap_sem);
 
2186	mmput(mm);
2187out_put_task:
2188	put_task_struct(task);
2189out:
2190	return result;
2191}
2192
2193static const struct inode_operations proc_map_files_inode_operations = {
2194	.lookup		= proc_map_files_lookup,
2195	.permission	= proc_fd_permission,
2196	.setattr	= proc_setattr,
2197};
2198
2199static int
2200proc_map_files_readdir(struct file *filp, void *dirent, filldir_t filldir)
2201{
2202	struct dentry *dentry = filp->f_path.dentry;
2203	struct inode *inode = dentry->d_inode;
2204	struct vm_area_struct *vma;
2205	struct task_struct *task;
2206	struct mm_struct *mm;
2207	ino_t ino;
 
 
2208	int ret;
2209
2210	ret = -EACCES;
2211	if (!capable(CAP_SYS_ADMIN))
2212		goto out;
2213
2214	ret = -ENOENT;
2215	task = get_proc_task(inode);
2216	if (!task)
2217		goto out;
2218
2219	ret = -EACCES;
2220	if (!ptrace_may_access(task, PTRACE_MODE_READ))
2221		goto out_put_task;
2222
2223	ret = 0;
2224	switch (filp->f_pos) {
2225	case 0:
2226		ino = inode->i_ino;
2227		if (filldir(dirent, ".", 1, 0, ino, DT_DIR) < 0)
2228			goto out_put_task;
2229		filp->f_pos++;
2230	case 1:
2231		ino = parent_ino(dentry);
2232		if (filldir(dirent, "..", 2, 1, ino, DT_DIR) < 0)
2233			goto out_put_task;
2234		filp->f_pos++;
2235	default:
2236	{
2237		unsigned long nr_files, pos, i;
2238		struct flex_array *fa = NULL;
2239		struct map_files_info info;
2240		struct map_files_info *p;
2241
2242		mm = get_task_mm(task);
2243		if (!mm)
2244			goto out_put_task;
2245		down_read(&mm->mmap_sem);
2246
2247		nr_files = 0;
 
 
 
 
 
 
 
 
2248
2249		/*
2250		 * We need two passes here:
2251		 *
2252		 *  1) Collect vmas of mapped files with mmap_sem taken
2253		 *  2) Release mmap_sem and instantiate entries
2254		 *
2255		 * otherwise we get lockdep complained, since filldir()
2256		 * routine might require mmap_sem taken in might_fault().
2257		 */
2258
2259		for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) {
2260			if (vma->vm_file && ++pos > filp->f_pos)
2261				nr_files++;
2262		}
2263
2264		if (nr_files) {
2265			fa = flex_array_alloc(sizeof(info), nr_files,
2266						GFP_KERNEL);
2267			if (!fa || flex_array_prealloc(fa, 0, nr_files,
2268							GFP_KERNEL)) {
2269				ret = -ENOMEM;
2270				if (fa)
2271					flex_array_free(fa);
2272				up_read(&mm->mmap_sem);
2273				mmput(mm);
2274				goto out_put_task;
2275			}
2276			for (i = 0, vma = mm->mmap, pos = 2; vma;
2277					vma = vma->vm_next) {
2278				if (!vma->vm_file)
2279					continue;
2280				if (++pos <= filp->f_pos)
2281					continue;
2282
2283				get_file(vma->vm_file);
2284				info.file = vma->vm_file;
2285				info.len = snprintf(info.name,
2286						sizeof(info.name), "%lx-%lx",
2287						vma->vm_start, vma->vm_end);
2288				if (flex_array_put(fa, i++, &info, GFP_KERNEL))
2289					BUG();
2290			}
2291		}
2292		up_read(&mm->mmap_sem);
2293
2294		for (i = 0; i < nr_files; i++) {
2295			p = flex_array_get(fa, i);
2296			ret = proc_fill_cache(filp, dirent, filldir,
2297					      p->name, p->len,
2298					      proc_map_files_instantiate,
2299					      task, p->file);
2300			if (ret)
2301				break;
2302			filp->f_pos++;
2303			fput(p->file);
2304		}
2305		for (; i < nr_files; i++) {
2306			/*
2307			 * In case of error don't forget
2308			 * to put rest of file refs.
2309			 */
2310			p = flex_array_get(fa, i);
2311			fput(p->file);
2312		}
2313		if (fa)
2314			flex_array_free(fa);
2315		mmput(mm);
2316	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2317	}
2318
2319out_put_task:
2320	put_task_struct(task);
2321out:
 
2322	return ret;
2323}
2324
2325static const struct file_operations proc_map_files_operations = {
2326	.read		= generic_read_dir,
2327	.readdir	= proc_map_files_readdir,
2328	.llseek		= default_llseek,
 
 
 
 
 
 
 
 
 
2329};
2330
2331#endif /* CONFIG_CHECKPOINT_RESTORE */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2332
2333/*
2334 * /proc/pid/fd needs a special permission handler so that a process can still
2335 * access /proc/self/fd after it has executed a setuid().
2336 */
2337static int proc_fd_permission(struct inode *inode, int mask)
 
 
2338{
2339	int rv = generic_permission(inode, mask);
2340	if (rv == 0)
2341		return 0;
2342	if (task_pid(current) == proc_pid(inode))
2343		rv = 0;
2344	return rv;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2345}
2346
2347/*
2348 * proc directories can do almost nothing..
2349 */
2350static const struct inode_operations proc_fd_inode_operations = {
2351	.lookup		= proc_lookupfd,
2352	.permission	= proc_fd_permission,
2353	.setattr	= proc_setattr,
2354};
2355
2356static struct dentry *proc_fdinfo_instantiate(struct inode *dir,
2357	struct dentry *dentry, struct task_struct *task, const void *ptr)
2358{
2359	unsigned fd = (unsigned long)ptr;
2360 	struct inode *inode;
2361 	struct proc_inode *ei;
2362	struct dentry *error = ERR_PTR(-ENOENT);
2363
2364	inode = proc_pid_make_inode(dir->i_sb, task);
2365	if (!inode)
2366		goto out;
2367	ei = PROC_I(inode);
2368	ei->fd = fd;
2369	inode->i_mode = S_IFREG | S_IRUSR;
2370	inode->i_fop = &proc_fdinfo_file_operations;
2371	d_set_d_op(dentry, &tid_fd_dentry_operations);
2372	d_add(dentry, inode);
2373	/* Close the race of the process dying before we return the dentry */
2374	if (tid_fd_revalidate(dentry, NULL))
2375		error = NULL;
2376
2377 out:
2378	return error;
 
2379}
2380
2381static struct dentry *proc_lookupfdinfo(struct inode *dir,
2382					struct dentry *dentry,
2383					struct nameidata *nd)
 
 
 
 
 
 
 
2384{
2385	return proc_lookupfd_common(dir, dentry, proc_fdinfo_instantiate);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2386}
2387
2388static int proc_readfdinfo(struct file *filp, void *dirent, filldir_t filldir)
2389{
2390	return proc_readfd_common(filp, dirent, filldir,
2391				  proc_fdinfo_instantiate);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2392}
2393
2394static const struct file_operations proc_fdinfo_operations = {
2395	.read		= generic_read_dir,
2396	.readdir	= proc_readfdinfo,
2397	.llseek		= default_llseek,
2398};
2399
2400/*
2401 * proc directories can do almost nothing..
2402 */
2403static const struct inode_operations proc_fdinfo_inode_operations = {
2404	.lookup		= proc_lookupfdinfo,
2405	.setattr	= proc_setattr,
2406};
2407
2408
2409static struct dentry *proc_pident_instantiate(struct inode *dir,
2410	struct dentry *dentry, struct task_struct *task, const void *ptr)
2411{
2412	const struct pid_entry *p = ptr;
2413	struct inode *inode;
2414	struct proc_inode *ei;
2415	struct dentry *error = ERR_PTR(-ENOENT);
2416
2417	inode = proc_pid_make_inode(dir->i_sb, task);
2418	if (!inode)
2419		goto out;
2420
2421	ei = PROC_I(inode);
2422	inode->i_mode = p->mode;
2423	if (S_ISDIR(inode->i_mode))
2424		set_nlink(inode, 2);	/* Use getattr to fix if necessary */
2425	if (p->iop)
2426		inode->i_op = p->iop;
2427	if (p->fop)
2428		inode->i_fop = p->fop;
2429	ei->op = p->op;
 
2430	d_set_d_op(dentry, &pid_dentry_operations);
2431	d_add(dentry, inode);
2432	/* Close the race of the process dying before we return the dentry */
2433	if (pid_revalidate(dentry, NULL))
2434		error = NULL;
2435out:
2436	return error;
2437}
2438
2439static struct dentry *proc_pident_lookup(struct inode *dir, 
2440					 struct dentry *dentry,
2441					 const struct pid_entry *ents,
2442					 unsigned int nents)
2443{
2444	struct dentry *error;
2445	struct task_struct *task = get_proc_task(dir);
2446	const struct pid_entry *p, *last;
2447
2448	error = ERR_PTR(-ENOENT);
2449
2450	if (!task)
2451		goto out_no_task;
2452
2453	/*
2454	 * Yes, it does not scale. And it should not. Don't add
2455	 * new entries into /proc/<tgid>/ without very good reasons.
2456	 */
2457	last = &ents[nents - 1];
2458	for (p = ents; p <= last; p++) {
2459		if (p->len != dentry->d_name.len)
2460			continue;
2461		if (!memcmp(dentry->d_name.name, p->name, p->len))
 
2462			break;
 
2463	}
2464	if (p > last)
2465		goto out;
2466
2467	error = proc_pident_instantiate(dir, dentry, task, p);
2468out:
2469	put_task_struct(task);
2470out_no_task:
2471	return error;
2472}
2473
2474static int proc_pident_fill_cache(struct file *filp, void *dirent,
2475	filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2476{
2477	return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2478				proc_pident_instantiate, task, p);
2479}
2480
2481static int proc_pident_readdir(struct file *filp,
2482		void *dirent, filldir_t filldir,
2483		const struct pid_entry *ents, unsigned int nents)
2484{
2485	int i;
2486	struct dentry *dentry = filp->f_path.dentry;
2487	struct inode *inode = dentry->d_inode;
2488	struct task_struct *task = get_proc_task(inode);
2489	const struct pid_entry *p, *last;
2490	ino_t ino;
2491	int ret;
2492
2493	ret = -ENOENT;
2494	if (!task)
2495		goto out_no_task;
 
 
 
 
 
 
2496
2497	ret = 0;
2498	i = filp->f_pos;
2499	switch (i) {
2500	case 0:
2501		ino = inode->i_ino;
2502		if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0)
2503			goto out;
2504		i++;
2505		filp->f_pos++;
2506		/* fall through */
2507	case 1:
2508		ino = parent_ino(dentry);
2509		if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0)
2510			goto out;
2511		i++;
2512		filp->f_pos++;
2513		/* fall through */
2514	default:
2515		i -= 2;
2516		if (i >= nents) {
2517			ret = 1;
2518			goto out;
2519		}
2520		p = ents + i;
2521		last = &ents[nents - 1];
2522		while (p <= last) {
2523			if (proc_pident_fill_cache(filp, dirent, filldir, task, p) < 0)
2524				goto out;
2525			filp->f_pos++;
2526			p++;
2527		}
2528	}
2529
2530	ret = 1;
2531out:
2532	put_task_struct(task);
2533out_no_task:
2534	return ret;
2535}
2536
2537#ifdef CONFIG_SECURITY
2538static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2539				  size_t count, loff_t *ppos)
2540{
2541	struct inode * inode = file->f_path.dentry->d_inode;
2542	char *p = NULL;
2543	ssize_t length;
2544	struct task_struct *task = get_proc_task(inode);
2545
2546	if (!task)
2547		return -ESRCH;
2548
2549	length = security_getprocattr(task,
2550				      (char*)file->f_path.dentry->d_name.name,
2551				      &p);
2552	put_task_struct(task);
2553	if (length > 0)
2554		length = simple_read_from_buffer(buf, count, ppos, p, length);
2555	kfree(p);
2556	return length;
2557}
2558
2559static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2560				   size_t count, loff_t *ppos)
2561{
2562	struct inode * inode = file->f_path.dentry->d_inode;
2563	char *page;
2564	ssize_t length;
2565	struct task_struct *task = get_proc_task(inode);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2566
2567	length = -ESRCH;
2568	if (!task)
2569		goto out_no_task;
2570	if (count > PAGE_SIZE)
2571		count = PAGE_SIZE;
2572
2573	/* No partial writes. */
2574	length = -EINVAL;
2575	if (*ppos != 0)
2576		goto out;
2577
2578	length = -ENOMEM;
2579	page = (char*)__get_free_page(GFP_TEMPORARY);
2580	if (!page)
2581		goto out;
2582
2583	length = -EFAULT;
2584	if (copy_from_user(page, buf, count))
2585		goto out_free;
2586
2587	/* Guard against adverse ptrace interaction */
2588	length = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
2589	if (length < 0)
2590		goto out_free;
2591
2592	length = security_setprocattr(task,
2593				      (char*)file->f_path.dentry->d_name.name,
2594				      (void*)page, count);
2595	mutex_unlock(&task->signal->cred_guard_mutex);
2596out_free:
2597	free_page((unsigned long) page);
2598out:
2599	put_task_struct(task);
2600out_no_task:
2601	return length;
2602}
2603
2604static const struct file_operations proc_pid_attr_operations = {
2605	.read		= proc_pid_attr_read,
2606	.write		= proc_pid_attr_write,
2607	.llseek		= generic_file_llseek,
2608};
2609
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2610static const struct pid_entry attr_dir_stuff[] = {
2611	REG("current",    S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2612	REG("prev",       S_IRUGO,	   proc_pid_attr_operations),
2613	REG("exec",       S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2614	REG("fscreate",   S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2615	REG("keycreate",  S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2616	REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
 
 
 
 
 
 
 
 
2617};
2618
2619static int proc_attr_dir_readdir(struct file * filp,
2620			     void * dirent, filldir_t filldir)
2621{
2622	return proc_pident_readdir(filp,dirent,filldir,
2623				   attr_dir_stuff,ARRAY_SIZE(attr_dir_stuff));
2624}
2625
2626static const struct file_operations proc_attr_dir_operations = {
2627	.read		= generic_read_dir,
2628	.readdir	= proc_attr_dir_readdir,
2629	.llseek		= default_llseek,
2630};
2631
2632static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2633				struct dentry *dentry, struct nameidata *nd)
2634{
2635	return proc_pident_lookup(dir, dentry,
2636				  attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
 
2637}
2638
2639static const struct inode_operations proc_attr_dir_inode_operations = {
2640	.lookup		= proc_attr_dir_lookup,
2641	.getattr	= pid_getattr,
2642	.setattr	= proc_setattr,
2643};
2644
2645#endif
2646
2647#ifdef CONFIG_ELF_CORE
2648static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2649					 size_t count, loff_t *ppos)
2650{
2651	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
2652	struct mm_struct *mm;
2653	char buffer[PROC_NUMBUF];
2654	size_t len;
2655	int ret;
2656
2657	if (!task)
2658		return -ESRCH;
2659
2660	ret = 0;
2661	mm = get_task_mm(task);
2662	if (mm) {
2663		len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2664			       ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2665				MMF_DUMP_FILTER_SHIFT));
2666		mmput(mm);
2667		ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2668	}
2669
2670	put_task_struct(task);
2671
2672	return ret;
2673}
2674
2675static ssize_t proc_coredump_filter_write(struct file *file,
2676					  const char __user *buf,
2677					  size_t count,
2678					  loff_t *ppos)
2679{
2680	struct task_struct *task;
2681	struct mm_struct *mm;
2682	char buffer[PROC_NUMBUF], *end;
2683	unsigned int val;
2684	int ret;
2685	int i;
2686	unsigned long mask;
2687
2688	ret = -EFAULT;
2689	memset(buffer, 0, sizeof(buffer));
2690	if (count > sizeof(buffer) - 1)
2691		count = sizeof(buffer) - 1;
2692	if (copy_from_user(buffer, buf, count))
2693		goto out_no_task;
2694
2695	ret = -EINVAL;
2696	val = (unsigned int)simple_strtoul(buffer, &end, 0);
2697	if (*end == '\n')
2698		end++;
2699	if (end - buffer == 0)
2700		goto out_no_task;
2701
2702	ret = -ESRCH;
2703	task = get_proc_task(file->f_dentry->d_inode);
2704	if (!task)
2705		goto out_no_task;
2706
2707	ret = end - buffer;
2708	mm = get_task_mm(task);
2709	if (!mm)
2710		goto out_no_mm;
 
2711
2712	for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2713		if (val & mask)
2714			set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2715		else
2716			clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2717	}
2718
2719	mmput(mm);
2720 out_no_mm:
2721	put_task_struct(task);
2722 out_no_task:
2723	return ret;
 
 
2724}
2725
2726static const struct file_operations proc_coredump_filter_operations = {
2727	.read		= proc_coredump_filter_read,
2728	.write		= proc_coredump_filter_write,
2729	.llseek		= generic_file_llseek,
2730};
2731#endif
2732
2733/*
2734 * /proc/self:
2735 */
2736static int proc_self_readlink(struct dentry *dentry, char __user *buffer,
2737			      int buflen)
2738{
2739	struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2740	pid_t tgid = task_tgid_nr_ns(current, ns);
2741	char tmp[PROC_NUMBUF];
2742	if (!tgid)
2743		return -ENOENT;
2744	sprintf(tmp, "%d", tgid);
2745	return vfs_readlink(dentry,buffer,buflen,tmp);
2746}
2747
2748static void *proc_self_follow_link(struct dentry *dentry, struct nameidata *nd)
2749{
2750	struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2751	pid_t tgid = task_tgid_nr_ns(current, ns);
2752	char *name = ERR_PTR(-ENOENT);
2753	if (tgid) {
2754		name = __getname();
2755		if (!name)
2756			name = ERR_PTR(-ENOMEM);
2757		else
2758			sprintf(name, "%d", tgid);
2759	}
2760	nd_set_link(nd, name);
2761	return NULL;
2762}
2763
2764static void proc_self_put_link(struct dentry *dentry, struct nameidata *nd,
2765				void *cookie)
2766{
2767	char *s = nd_get_link(nd);
2768	if (!IS_ERR(s))
2769		__putname(s);
2770}
2771
2772static const struct inode_operations proc_self_inode_operations = {
2773	.readlink	= proc_self_readlink,
2774	.follow_link	= proc_self_follow_link,
2775	.put_link	= proc_self_put_link,
2776};
2777
2778/*
2779 * proc base
2780 *
2781 * These are the directory entries in the root directory of /proc
2782 * that properly belong to the /proc filesystem, as they describe
2783 * describe something that is process related.
2784 */
2785static const struct pid_entry proc_base_stuff[] = {
2786	NOD("self", S_IFLNK|S_IRWXUGO,
2787		&proc_self_inode_operations, NULL, {}),
2788};
2789
2790static struct dentry *proc_base_instantiate(struct inode *dir,
2791	struct dentry *dentry, struct task_struct *task, const void *ptr)
2792{
2793	const struct pid_entry *p = ptr;
2794	struct inode *inode;
2795	struct proc_inode *ei;
2796	struct dentry *error;
2797
2798	/* Allocate the inode */
2799	error = ERR_PTR(-ENOMEM);
2800	inode = new_inode(dir->i_sb);
2801	if (!inode)
2802		goto out;
2803
2804	/* Initialize the inode */
2805	ei = PROC_I(inode);
2806	inode->i_ino = get_next_ino();
2807	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
2808
2809	/*
2810	 * grab the reference to the task.
2811	 */
2812	ei->pid = get_task_pid(task, PIDTYPE_PID);
2813	if (!ei->pid)
2814		goto out_iput;
2815
2816	inode->i_mode = p->mode;
2817	if (S_ISDIR(inode->i_mode))
2818		set_nlink(inode, 2);
2819	if (S_ISLNK(inode->i_mode))
2820		inode->i_size = 64;
2821	if (p->iop)
2822		inode->i_op = p->iop;
2823	if (p->fop)
2824		inode->i_fop = p->fop;
2825	ei->op = p->op;
2826	d_add(dentry, inode);
2827	error = NULL;
2828out:
2829	return error;
2830out_iput:
2831	iput(inode);
2832	goto out;
2833}
2834
2835static struct dentry *proc_base_lookup(struct inode *dir, struct dentry *dentry)
2836{
2837	struct dentry *error;
2838	struct task_struct *task = get_proc_task(dir);
2839	const struct pid_entry *p, *last;
2840
2841	error = ERR_PTR(-ENOENT);
2842
2843	if (!task)
2844		goto out_no_task;
2845
2846	/* Lookup the directory entry */
2847	last = &proc_base_stuff[ARRAY_SIZE(proc_base_stuff) - 1];
2848	for (p = proc_base_stuff; p <= last; p++) {
2849		if (p->len != dentry->d_name.len)
2850			continue;
2851		if (!memcmp(dentry->d_name.name, p->name, p->len))
2852			break;
2853	}
2854	if (p > last)
2855		goto out;
2856
2857	error = proc_base_instantiate(dir, dentry, task, p);
2858
2859out:
2860	put_task_struct(task);
2861out_no_task:
2862	return error;
2863}
2864
2865static int proc_base_fill_cache(struct file *filp, void *dirent,
2866	filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2867{
2868	return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2869				proc_base_instantiate, task, p);
2870}
2871
2872#ifdef CONFIG_TASK_IO_ACCOUNTING
2873static int do_io_accounting(struct task_struct *task, char *buffer, int whole)
2874{
2875	struct task_io_accounting acct = task->ioac;
2876	unsigned long flags;
2877	int result;
2878
2879	result = mutex_lock_killable(&task->signal->cred_guard_mutex);
2880	if (result)
2881		return result;
2882
2883	if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
2884		result = -EACCES;
2885		goto out_unlock;
2886	}
2887
2888	if (whole && lock_task_sighand(task, &flags)) {
2889		struct task_struct *t = task;
2890
2891		task_io_accounting_add(&acct, &task->signal->ioac);
2892		while_each_thread(task, t)
2893			task_io_accounting_add(&acct, &t->ioac);
2894
2895		unlock_task_sighand(task, &flags);
2896	}
2897	result = sprintf(buffer,
2898			"rchar: %llu\n"
2899			"wchar: %llu\n"
2900			"syscr: %llu\n"
2901			"syscw: %llu\n"
2902			"read_bytes: %llu\n"
2903			"write_bytes: %llu\n"
2904			"cancelled_write_bytes: %llu\n",
2905			(unsigned long long)acct.rchar,
2906			(unsigned long long)acct.wchar,
2907			(unsigned long long)acct.syscr,
2908			(unsigned long long)acct.syscw,
2909			(unsigned long long)acct.read_bytes,
2910			(unsigned long long)acct.write_bytes,
2911			(unsigned long long)acct.cancelled_write_bytes);
 
 
2912out_unlock:
2913	mutex_unlock(&task->signal->cred_guard_mutex);
2914	return result;
2915}
2916
2917static int proc_tid_io_accounting(struct task_struct *task, char *buffer)
 
2918{
2919	return do_io_accounting(task, buffer, 0);
2920}
2921
2922static int proc_tgid_io_accounting(struct task_struct *task, char *buffer)
 
2923{
2924	return do_io_accounting(task, buffer, 1);
2925}
2926#endif /* CONFIG_TASK_IO_ACCOUNTING */
2927
2928#ifdef CONFIG_USER_NS
2929static int proc_id_map_open(struct inode *inode, struct file *file,
2930	struct seq_operations *seq_ops)
2931{
2932	struct user_namespace *ns = NULL;
2933	struct task_struct *task;
2934	struct seq_file *seq;
2935	int ret = -EINVAL;
2936
2937	task = get_proc_task(inode);
2938	if (task) {
2939		rcu_read_lock();
2940		ns = get_user_ns(task_cred_xxx(task, user_ns));
2941		rcu_read_unlock();
2942		put_task_struct(task);
2943	}
2944	if (!ns)
2945		goto err;
2946
2947	ret = seq_open(file, seq_ops);
2948	if (ret)
2949		goto err_put_ns;
2950
2951	seq = file->private_data;
2952	seq->private = ns;
2953
2954	return 0;
2955err_put_ns:
2956	put_user_ns(ns);
2957err:
2958	return ret;
2959}
2960
2961static int proc_id_map_release(struct inode *inode, struct file *file)
2962{
2963	struct seq_file *seq = file->private_data;
2964	struct user_namespace *ns = seq->private;
2965	put_user_ns(ns);
2966	return seq_release(inode, file);
2967}
2968
2969static int proc_uid_map_open(struct inode *inode, struct file *file)
2970{
2971	return proc_id_map_open(inode, file, &proc_uid_seq_operations);
2972}
2973
2974static int proc_gid_map_open(struct inode *inode, struct file *file)
2975{
2976	return proc_id_map_open(inode, file, &proc_gid_seq_operations);
2977}
2978
 
 
 
 
 
2979static const struct file_operations proc_uid_map_operations = {
2980	.open		= proc_uid_map_open,
2981	.write		= proc_uid_map_write,
2982	.read		= seq_read,
2983	.llseek		= seq_lseek,
2984	.release	= proc_id_map_release,
2985};
2986
2987static const struct file_operations proc_gid_map_operations = {
2988	.open		= proc_gid_map_open,
2989	.write		= proc_gid_map_write,
2990	.read		= seq_read,
2991	.llseek		= seq_lseek,
2992	.release	= proc_id_map_release,
2993};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2994#endif /* CONFIG_USER_NS */
2995
2996static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
2997				struct pid *pid, struct task_struct *task)
2998{
2999	int err = lock_trace(task);
3000	if (!err) {
3001		seq_printf(m, "%08x\n", task->personality);
3002		unlock_trace(task);
3003	}
3004	return err;
3005}
3006
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3007/*
3008 * Thread groups
3009 */
3010static const struct file_operations proc_task_operations;
3011static const struct inode_operations proc_task_inode_operations;
3012
3013static const struct pid_entry tgid_base_stuff[] = {
3014	DIR("task",       S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
3015	DIR("fd",         S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3016#ifdef CONFIG_CHECKPOINT_RESTORE
3017	DIR("map_files",  S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations),
3018#endif
3019	DIR("fdinfo",     S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3020	DIR("ns",	  S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3021#ifdef CONFIG_NET
3022	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3023#endif
3024	REG("environ",    S_IRUSR, proc_environ_operations),
3025	INF("auxv",       S_IRUSR, proc_pid_auxv),
3026	ONE("status",     S_IRUGO, proc_pid_status),
3027	ONE("personality", S_IRUGO, proc_pid_personality),
3028	INF("limits",	  S_IRUGO, proc_pid_limits),
3029#ifdef CONFIG_SCHED_DEBUG
3030	REG("sched",      S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3031#endif
3032#ifdef CONFIG_SCHED_AUTOGROUP
3033	REG("autogroup",  S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
3034#endif
 
 
 
3035	REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
3036#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3037	INF("syscall",    S_IRUGO, proc_pid_syscall),
3038#endif
3039	INF("cmdline",    S_IRUGO, proc_pid_cmdline),
3040	ONE("stat",       S_IRUGO, proc_tgid_stat),
3041	ONE("statm",      S_IRUGO, proc_pid_statm),
3042	REG("maps",       S_IRUGO, proc_pid_maps_operations),
3043#ifdef CONFIG_NUMA
3044	REG("numa_maps",  S_IRUGO, proc_pid_numa_maps_operations),
3045#endif
3046	REG("mem",        S_IRUSR|S_IWUSR, proc_mem_operations),
3047	LNK("cwd",        proc_cwd_link),
3048	LNK("root",       proc_root_link),
3049	LNK("exe",        proc_exe_link),
3050	REG("mounts",     S_IRUGO, proc_mounts_operations),
3051	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
3052	REG("mountstats", S_IRUSR, proc_mountstats_operations),
3053#ifdef CONFIG_PROC_PAGE_MONITOR
3054	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3055	REG("smaps",      S_IRUGO, proc_pid_smaps_operations),
3056	REG("pagemap",    S_IRUGO, proc_pagemap_operations),
 
3057#endif
3058#ifdef CONFIG_SECURITY
3059	DIR("attr",       S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3060#endif
3061#ifdef CONFIG_KALLSYMS
3062	INF("wchan",      S_IRUGO, proc_pid_wchan),
3063#endif
3064#ifdef CONFIG_STACKTRACE
3065	ONE("stack",      S_IRUGO, proc_pid_stack),
3066#endif
3067#ifdef CONFIG_SCHEDSTATS
3068	INF("schedstat",  S_IRUGO, proc_pid_schedstat),
3069#endif
3070#ifdef CONFIG_LATENCYTOP
3071	REG("latency",  S_IRUGO, proc_lstats_operations),
3072#endif
3073#ifdef CONFIG_PROC_PID_CPUSET
3074	REG("cpuset",     S_IRUGO, proc_cpuset_operations),
3075#endif
3076#ifdef CONFIG_CGROUPS
3077	REG("cgroup",  S_IRUGO, proc_cgroup_operations),
3078#endif
3079	INF("oom_score",  S_IRUGO, proc_oom_score),
3080	REG("oom_adj",    S_IRUGO|S_IWUSR, proc_oom_adjust_operations),
 
 
 
3081	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3082#ifdef CONFIG_AUDITSYSCALL
3083	REG("loginuid",   S_IWUSR|S_IRUGO, proc_loginuid_operations),
3084	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
3085#endif
3086#ifdef CONFIG_FAULT_INJECTION
3087	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
 
3088#endif
3089#ifdef CONFIG_ELF_CORE
3090	REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
3091#endif
3092#ifdef CONFIG_TASK_IO_ACCOUNTING
3093	INF("io",	S_IRUSR, proc_tgid_io_accounting),
3094#endif
3095#ifdef CONFIG_HARDWALL
3096	INF("hardwall",   S_IRUGO, proc_pid_hardwall),
3097#endif
3098#ifdef CONFIG_USER_NS
3099	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
3100	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3101#endif
3102};
3103
3104static int proc_tgid_base_readdir(struct file * filp,
3105			     void * dirent, filldir_t filldir)
3106{
3107	return proc_pident_readdir(filp,dirent,filldir,
3108				   tgid_base_stuff,ARRAY_SIZE(tgid_base_stuff));
3109}
3110
3111static const struct file_operations proc_tgid_base_operations = {
3112	.read		= generic_read_dir,
3113	.readdir	= proc_tgid_base_readdir,
3114	.llseek		= default_llseek,
3115};
3116
3117static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
 
 
 
 
 
 
 
 
 
3118	return proc_pident_lookup(dir, dentry,
3119				  tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
 
3120}
3121
3122static const struct inode_operations proc_tgid_base_inode_operations = {
3123	.lookup		= proc_tgid_base_lookup,
3124	.getattr	= pid_getattr,
3125	.setattr	= proc_setattr,
3126	.permission	= proc_pid_permission,
3127};
3128
3129static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
3130{
3131	struct dentry *dentry, *leader, *dir;
3132	char buf[PROC_NUMBUF];
3133	struct qstr name;
3134
3135	name.name = buf;
3136	name.len = snprintf(buf, sizeof(buf), "%d", pid);
3137	dentry = d_hash_and_lookup(mnt->mnt_root, &name);
3138	if (dentry) {
3139		shrink_dcache_parent(dentry);
3140		d_drop(dentry);
3141		dput(dentry);
3142	}
3143
3144	name.name = buf;
3145	name.len = snprintf(buf, sizeof(buf), "%d", tgid);
3146	leader = d_hash_and_lookup(mnt->mnt_root, &name);
3147	if (!leader)
3148		goto out;
3149
3150	name.name = "task";
3151	name.len = strlen(name.name);
3152	dir = d_hash_and_lookup(leader, &name);
3153	if (!dir)
3154		goto out_put_leader;
3155
3156	name.name = buf;
3157	name.len = snprintf(buf, sizeof(buf), "%d", pid);
3158	dentry = d_hash_and_lookup(dir, &name);
3159	if (dentry) {
3160		shrink_dcache_parent(dentry);
3161		d_drop(dentry);
3162		dput(dentry);
3163	}
3164
3165	dput(dir);
3166out_put_leader:
3167	dput(leader);
3168out:
3169	return;
3170}
3171
3172/**
3173 * proc_flush_task -  Remove dcache entries for @task from the /proc dcache.
3174 * @task: task that should be flushed.
3175 *
3176 * When flushing dentries from proc, one needs to flush them from global
3177 * proc (proc_mnt) and from all the namespaces' procs this task was seen
3178 * in. This call is supposed to do all of this job.
3179 *
3180 * Looks in the dcache for
3181 * /proc/@pid
3182 * /proc/@tgid/task/@pid
3183 * if either directory is present flushes it and all of it'ts children
3184 * from the dcache.
3185 *
3186 * It is safe and reasonable to cache /proc entries for a task until
3187 * that task exits.  After that they just clog up the dcache with
3188 * useless entries, possibly causing useful dcache entries to be
3189 * flushed instead.  This routine is proved to flush those useless
3190 * dcache entries at process exit time.
3191 *
3192 * NOTE: This routine is just an optimization so it does not guarantee
3193 *       that no dcache entries will exist at process exit time it
3194 *       just makes it very unlikely that any will persist.
3195 */
3196
3197void proc_flush_task(struct task_struct *task)
3198{
3199	int i;
3200	struct pid *pid, *tgid;
3201	struct upid *upid;
3202
3203	pid = task_pid(task);
3204	tgid = task_tgid(task);
3205
3206	for (i = 0; i <= pid->level; i++) {
3207		upid = &pid->numbers[i];
3208		proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
3209					tgid->numbers[i].nr);
3210	}
3211
3212	upid = &pid->numbers[pid->level];
3213	if (upid->nr == 1)
3214		pid_ns_release_proc(upid->ns);
3215}
3216
3217static struct dentry *proc_pid_instantiate(struct inode *dir,
3218					   struct dentry * dentry,
3219					   struct task_struct *task, const void *ptr)
3220{
3221	struct dentry *error = ERR_PTR(-ENOENT);
3222	struct inode *inode;
3223
3224	inode = proc_pid_make_inode(dir->i_sb, task);
3225	if (!inode)
3226		goto out;
3227
3228	inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
3229	inode->i_op = &proc_tgid_base_inode_operations;
3230	inode->i_fop = &proc_tgid_base_operations;
3231	inode->i_flags|=S_IMMUTABLE;
3232
3233	set_nlink(inode, 2 + pid_entry_count_dirs(tgid_base_stuff,
3234						  ARRAY_SIZE(tgid_base_stuff)));
3235
3236	d_set_d_op(dentry, &pid_dentry_operations);
3237
3238	d_add(dentry, inode);
3239	/* Close the race of the process dying before we return the dentry */
3240	if (pid_revalidate(dentry, NULL))
3241		error = NULL;
3242out:
3243	return error;
3244}
3245
3246struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
3247{
3248	struct dentry *result;
3249	struct task_struct *task;
3250	unsigned tgid;
 
3251	struct pid_namespace *ns;
 
3252
3253	result = proc_base_lookup(dir, dentry);
3254	if (!IS_ERR(result) || PTR_ERR(result) != -ENOENT)
3255		goto out;
3256
3257	tgid = name_to_int(dentry);
3258	if (tgid == ~0U)
3259		goto out;
3260
3261	ns = dentry->d_sb->s_fs_info;
 
3262	rcu_read_lock();
3263	task = find_task_by_pid_ns(tgid, ns);
3264	if (task)
3265		get_task_struct(task);
3266	rcu_read_unlock();
3267	if (!task)
3268		goto out;
3269
3270	result = proc_pid_instantiate(dir, dentry, task, NULL);
 
 
 
 
 
 
 
3271	put_task_struct(task);
3272out:
3273	return result;
3274}
3275
3276/*
3277 * Find the first task with tgid >= tgid
3278 *
3279 */
3280struct tgid_iter {
3281	unsigned int tgid;
3282	struct task_struct *task;
3283};
3284static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
3285{
3286	struct pid *pid;
3287
3288	if (iter.task)
3289		put_task_struct(iter.task);
3290	rcu_read_lock();
3291retry:
3292	iter.task = NULL;
3293	pid = find_ge_pid(iter.tgid, ns);
3294	if (pid) {
3295		iter.tgid = pid_nr_ns(pid, ns);
3296		iter.task = pid_task(pid, PIDTYPE_PID);
3297		/* What we to know is if the pid we have find is the
3298		 * pid of a thread_group_leader.  Testing for task
3299		 * being a thread_group_leader is the obvious thing
3300		 * todo but there is a window when it fails, due to
3301		 * the pid transfer logic in de_thread.
3302		 *
3303		 * So we perform the straight forward test of seeing
3304		 * if the pid we have found is the pid of a thread
3305		 * group leader, and don't worry if the task we have
3306		 * found doesn't happen to be a thread group leader.
3307		 * As we don't care in the case of readdir.
3308		 */
3309		if (!iter.task || !has_group_leader_pid(iter.task)) {
3310			iter.tgid += 1;
3311			goto retry;
3312		}
3313		get_task_struct(iter.task);
3314	}
3315	rcu_read_unlock();
3316	return iter;
3317}
3318
3319#define TGID_OFFSET (FIRST_PROCESS_ENTRY + ARRAY_SIZE(proc_base_stuff))
3320
3321static int proc_pid_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
3322	struct tgid_iter iter)
3323{
3324	char name[PROC_NUMBUF];
3325	int len = snprintf(name, sizeof(name), "%d", iter.tgid);
3326	return proc_fill_cache(filp, dirent, filldir, name, len,
3327				proc_pid_instantiate, iter.task, NULL);
3328}
3329
3330static int fake_filldir(void *buf, const char *name, int namelen,
3331			loff_t offset, u64 ino, unsigned d_type)
3332{
3333	return 0;
3334}
3335
3336/* for the /proc/ directory itself, after non-process stuff has been done */
3337int proc_pid_readdir(struct file * filp, void * dirent, filldir_t filldir)
3338{
3339	unsigned int nr;
3340	struct task_struct *reaper;
3341	struct tgid_iter iter;
3342	struct pid_namespace *ns;
3343	filldir_t __filldir;
 
3344
3345	if (filp->f_pos >= PID_MAX_LIMIT + TGID_OFFSET)
3346		goto out_no_task;
3347	nr = filp->f_pos - FIRST_PROCESS_ENTRY;
3348
3349	reaper = get_proc_task(filp->f_path.dentry->d_inode);
3350	if (!reaper)
3351		goto out_no_task;
3352
3353	for (; nr < ARRAY_SIZE(proc_base_stuff); filp->f_pos++, nr++) {
3354		const struct pid_entry *p = &proc_base_stuff[nr];
3355		if (proc_base_fill_cache(filp, dirent, filldir, reaper, p) < 0)
3356			goto out;
 
 
 
3357	}
3358
3359	ns = filp->f_dentry->d_sb->s_fs_info;
3360	iter.task = NULL;
3361	iter.tgid = filp->f_pos - TGID_OFFSET;
3362	for (iter = next_tgid(ns, iter);
3363	     iter.task;
3364	     iter.tgid += 1, iter = next_tgid(ns, iter)) {
3365		if (has_pid_permissions(ns, iter.task, 2))
3366			__filldir = filldir;
3367		else
3368			__filldir = fake_filldir;
 
 
3369
3370		filp->f_pos = iter.tgid + TGID_OFFSET;
3371		if (proc_pid_fill_cache(filp, dirent, __filldir, iter) < 0) {
 
 
3372			put_task_struct(iter.task);
3373			goto out;
3374		}
3375	}
3376	filp->f_pos = PID_MAX_LIMIT + TGID_OFFSET;
3377out:
3378	put_task_struct(reaper);
3379out_no_task:
3380	return 0;
3381}
3382
3383/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3384 * Tasks
3385 */
3386static const struct pid_entry tid_base_stuff[] = {
3387	DIR("fd",        S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3388	DIR("fdinfo",    S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3389	DIR("ns",	 S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
 
 
 
3390	REG("environ",   S_IRUSR, proc_environ_operations),
3391	INF("auxv",      S_IRUSR, proc_pid_auxv),
3392	ONE("status",    S_IRUGO, proc_pid_status),
3393	ONE("personality", S_IRUGO, proc_pid_personality),
3394	INF("limits",	 S_IRUGO, proc_pid_limits),
3395#ifdef CONFIG_SCHED_DEBUG
3396	REG("sched",     S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3397#endif
3398	REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
 
 
3399#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3400	INF("syscall",   S_IRUGO, proc_pid_syscall),
3401#endif
3402	INF("cmdline",   S_IRUGO, proc_pid_cmdline),
3403	ONE("stat",      S_IRUGO, proc_tid_stat),
3404	ONE("statm",     S_IRUGO, proc_pid_statm),
3405	REG("maps",      S_IRUGO, proc_tid_maps_operations),
3406#ifdef CONFIG_CHECKPOINT_RESTORE
3407	REG("children",  S_IRUGO, proc_tid_children_operations),
3408#endif
3409#ifdef CONFIG_NUMA
3410	REG("numa_maps", S_IRUGO, proc_tid_numa_maps_operations),
3411#endif
3412	REG("mem",       S_IRUSR|S_IWUSR, proc_mem_operations),
3413	LNK("cwd",       proc_cwd_link),
3414	LNK("root",      proc_root_link),
3415	LNK("exe",       proc_exe_link),
3416	REG("mounts",    S_IRUGO, proc_mounts_operations),
3417	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
3418#ifdef CONFIG_PROC_PAGE_MONITOR
3419	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3420	REG("smaps",     S_IRUGO, proc_tid_smaps_operations),
3421	REG("pagemap",    S_IRUGO, proc_pagemap_operations),
 
3422#endif
3423#ifdef CONFIG_SECURITY
3424	DIR("attr",      S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3425#endif
3426#ifdef CONFIG_KALLSYMS
3427	INF("wchan",     S_IRUGO, proc_pid_wchan),
3428#endif
3429#ifdef CONFIG_STACKTRACE
3430	ONE("stack",      S_IRUGO, proc_pid_stack),
3431#endif
3432#ifdef CONFIG_SCHEDSTATS
3433	INF("schedstat", S_IRUGO, proc_pid_schedstat),
3434#endif
3435#ifdef CONFIG_LATENCYTOP
3436	REG("latency",  S_IRUGO, proc_lstats_operations),
3437#endif
3438#ifdef CONFIG_PROC_PID_CPUSET
3439	REG("cpuset",    S_IRUGO, proc_cpuset_operations),
3440#endif
3441#ifdef CONFIG_CGROUPS
3442	REG("cgroup",  S_IRUGO, proc_cgroup_operations),
3443#endif
3444	INF("oom_score", S_IRUGO, proc_oom_score),
3445	REG("oom_adj",   S_IRUGO|S_IWUSR, proc_oom_adjust_operations),
 
 
 
3446	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3447#ifdef CONFIG_AUDITSYSCALL
3448	REG("loginuid",  S_IWUSR|S_IRUGO, proc_loginuid_operations),
3449	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
3450#endif
3451#ifdef CONFIG_FAULT_INJECTION
3452	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
 
3453#endif
3454#ifdef CONFIG_TASK_IO_ACCOUNTING
3455	INF("io",	S_IRUSR, proc_tid_io_accounting),
3456#endif
3457#ifdef CONFIG_HARDWALL
3458	INF("hardwall",   S_IRUGO, proc_pid_hardwall),
3459#endif
3460#ifdef CONFIG_USER_NS
3461	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
3462	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
 
 
 
 
 
 
 
 
3463#endif
3464};
3465
3466static int proc_tid_base_readdir(struct file * filp,
3467			     void * dirent, filldir_t filldir)
3468{
3469	return proc_pident_readdir(filp,dirent,filldir,
3470				   tid_base_stuff,ARRAY_SIZE(tid_base_stuff));
3471}
3472
3473static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
 
3474	return proc_pident_lookup(dir, dentry,
3475				  tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
 
3476}
3477
3478static const struct file_operations proc_tid_base_operations = {
3479	.read		= generic_read_dir,
3480	.readdir	= proc_tid_base_readdir,
3481	.llseek		= default_llseek,
3482};
3483
3484static const struct inode_operations proc_tid_base_inode_operations = {
3485	.lookup		= proc_tid_base_lookup,
3486	.getattr	= pid_getattr,
3487	.setattr	= proc_setattr,
3488};
3489
3490static struct dentry *proc_task_instantiate(struct inode *dir,
3491	struct dentry *dentry, struct task_struct *task, const void *ptr)
3492{
3493	struct dentry *error = ERR_PTR(-ENOENT);
3494	struct inode *inode;
3495	inode = proc_pid_make_inode(dir->i_sb, task);
 
 
3496
3497	if (!inode)
3498		goto out;
3499	inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
3500	inode->i_op = &proc_tid_base_inode_operations;
3501	inode->i_fop = &proc_tid_base_operations;
3502	inode->i_flags|=S_IMMUTABLE;
3503
3504	set_nlink(inode, 2 + pid_entry_count_dirs(tid_base_stuff,
3505						  ARRAY_SIZE(tid_base_stuff)));
3506
3507	d_set_d_op(dentry, &pid_dentry_operations);
3508
3509	d_add(dentry, inode);
3510	/* Close the race of the process dying before we return the dentry */
3511	if (pid_revalidate(dentry, NULL))
3512		error = NULL;
3513out:
3514	return error;
3515}
3516
3517static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
3518{
3519	struct dentry *result = ERR_PTR(-ENOENT);
3520	struct task_struct *task;
3521	struct task_struct *leader = get_proc_task(dir);
3522	unsigned tid;
 
3523	struct pid_namespace *ns;
 
3524
3525	if (!leader)
3526		goto out_no_task;
3527
3528	tid = name_to_int(dentry);
3529	if (tid == ~0U)
3530		goto out;
3531
3532	ns = dentry->d_sb->s_fs_info;
 
3533	rcu_read_lock();
3534	task = find_task_by_pid_ns(tid, ns);
3535	if (task)
3536		get_task_struct(task);
3537	rcu_read_unlock();
3538	if (!task)
3539		goto out;
3540	if (!same_thread_group(leader, task))
3541		goto out_drop_task;
3542
3543	result = proc_task_instantiate(dir, dentry, task, NULL);
3544out_drop_task:
3545	put_task_struct(task);
3546out:
3547	put_task_struct(leader);
3548out_no_task:
3549	return result;
3550}
3551
3552/*
3553 * Find the first tid of a thread group to return to user space.
3554 *
3555 * Usually this is just the thread group leader, but if the users
3556 * buffer was too small or there was a seek into the middle of the
3557 * directory we have more work todo.
3558 *
3559 * In the case of a short read we start with find_task_by_pid.
3560 *
3561 * In the case of a seek we start with the leader and walk nr
3562 * threads past it.
3563 */
3564static struct task_struct *first_tid(struct task_struct *leader,
3565		int tid, int nr, struct pid_namespace *ns)
3566{
3567	struct task_struct *pos;
 
 
 
 
3568
3569	rcu_read_lock();
3570	/* Attempt to start with the pid of a thread */
3571	if (tid && (nr > 0)) {
 
 
 
 
3572		pos = find_task_by_pid_ns(tid, ns);
3573		if (pos && (pos->group_leader == leader))
3574			goto found;
3575	}
3576
3577	/* If nr exceeds the number of threads there is nothing todo */
3578	pos = NULL;
3579	if (nr && nr >= get_nr_threads(leader))
3580		goto out;
3581
3582	/* If we haven't found our starting place yet start
3583	 * with the leader and walk nr threads forward.
3584	 */
3585	for (pos = leader; nr > 0; --nr) {
3586		pos = next_thread(pos);
3587		if (pos == leader) {
3588			pos = NULL;
3589			goto out;
3590		}
3591	}
 
3592found:
3593	get_task_struct(pos);
3594out:
3595	rcu_read_unlock();
3596	return pos;
3597}
3598
3599/*
3600 * Find the next thread in the thread list.
3601 * Return NULL if there is an error or no next thread.
3602 *
3603 * The reference to the input task_struct is released.
3604 */
3605static struct task_struct *next_tid(struct task_struct *start)
3606{
3607	struct task_struct *pos = NULL;
3608	rcu_read_lock();
3609	if (pid_alive(start)) {
3610		pos = next_thread(start);
3611		if (thread_group_leader(pos))
3612			pos = NULL;
3613		else
3614			get_task_struct(pos);
3615	}
3616	rcu_read_unlock();
3617	put_task_struct(start);
3618	return pos;
3619}
3620
3621static int proc_task_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
3622	struct task_struct *task, int tid)
3623{
3624	char name[PROC_NUMBUF];
3625	int len = snprintf(name, sizeof(name), "%d", tid);
3626	return proc_fill_cache(filp, dirent, filldir, name, len,
3627				proc_task_instantiate, task, NULL);
3628}
3629
3630/* for the /proc/TGID/task/ directories */
3631static int proc_task_readdir(struct file * filp, void * dirent, filldir_t filldir)
3632{
3633	struct dentry *dentry = filp->f_path.dentry;
3634	struct inode *inode = dentry->d_inode;
3635	struct task_struct *leader = NULL;
3636	struct task_struct *task;
3637	int retval = -ENOENT;
3638	ino_t ino;
3639	int tid;
3640	struct pid_namespace *ns;
3641
3642	task = get_proc_task(inode);
3643	if (!task)
3644		goto out_no_task;
3645	rcu_read_lock();
3646	if (pid_alive(task)) {
3647		leader = task->group_leader;
3648		get_task_struct(leader);
3649	}
3650	rcu_read_unlock();
3651	put_task_struct(task);
3652	if (!leader)
3653		goto out_no_task;
3654	retval = 0;
3655
3656	switch ((unsigned long)filp->f_pos) {
3657	case 0:
3658		ino = inode->i_ino;
3659		if (filldir(dirent, ".", 1, filp->f_pos, ino, DT_DIR) < 0)
3660			goto out;
3661		filp->f_pos++;
3662		/* fall through */
3663	case 1:
3664		ino = parent_ino(dentry);
3665		if (filldir(dirent, "..", 2, filp->f_pos, ino, DT_DIR) < 0)
3666			goto out;
3667		filp->f_pos++;
3668		/* fall through */
3669	}
3670
3671	/* f_version caches the tgid value that the last readdir call couldn't
3672	 * return. lseek aka telldir automagically resets f_version to 0.
3673	 */
3674	ns = filp->f_dentry->d_sb->s_fs_info;
3675	tid = (int)filp->f_version;
3676	filp->f_version = 0;
3677	for (task = first_tid(leader, tid, filp->f_pos - 2, ns);
3678	     task;
3679	     task = next_tid(task), filp->f_pos++) {
 
 
3680		tid = task_pid_nr_ns(task, ns);
3681		if (proc_task_fill_cache(filp, dirent, filldir, task, tid) < 0) {
 
 
3682			/* returning this tgid failed, save it as the first
3683			 * pid for the next readir call */
3684			filp->f_version = (u64)tid;
3685			put_task_struct(task);
3686			break;
3687		}
3688	}
3689out:
3690	put_task_struct(leader);
3691out_no_task:
3692	return retval;
3693}
3694
3695static int proc_task_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
 
3696{
3697	struct inode *inode = dentry->d_inode;
3698	struct task_struct *p = get_proc_task(inode);
3699	generic_fillattr(inode, stat);
3700
3701	if (p) {
3702		stat->nlink += get_nr_threads(p);
3703		put_task_struct(p);
3704	}
3705
3706	return 0;
3707}
3708
3709static const struct inode_operations proc_task_inode_operations = {
3710	.lookup		= proc_task_lookup,
3711	.getattr	= proc_task_getattr,
3712	.setattr	= proc_setattr,
3713	.permission	= proc_pid_permission,
3714};
3715
3716static const struct file_operations proc_task_operations = {
3717	.read		= generic_read_dir,
3718	.readdir	= proc_task_readdir,
3719	.llseek		= default_llseek,
3720};