Linux Audio

Check our new training course

Linux kernel drivers training

Mar 31-Apr 9, 2025, special US time zones
Register
Loading...
v5.9
  1/*
  2 * JFFS2 -- Journalling Flash File System, Version 2.
  3 *
  4 * Copyright © 2001-2007 Red Hat, Inc.
  5 *
  6 * Created by David Woodhouse <dwmw2@infradead.org>
  7 *
  8 * For licensing information, see the file 'LICENCE' in this directory.
  9 *
 10 */
 11
 12#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 13
 14#include <linux/kernel.h>
 15#include <linux/mtd/mtd.h>
 16#include <linux/compiler.h>
 17#include <linux/sched/signal.h>
 18#include "nodelist.h"
 19#include "debug.h"
 20
 21/*
 22 * Check whether the user is allowed to write.
 23 */
 24static int jffs2_rp_can_write(struct jffs2_sb_info *c)
 25{
 26	uint32_t avail;
 27	struct jffs2_mount_opts *opts = &c->mount_opts;
 28
 29	avail = c->dirty_size + c->free_size + c->unchecked_size +
 30		c->erasing_size - c->resv_blocks_write * c->sector_size
 31		- c->nospc_dirty_size;
 32
 33	if (avail < 2 * opts->rp_size)
 34		jffs2_dbg(1, "rpsize %u, dirty_size %u, free_size %u, "
 35			  "erasing_size %u, unchecked_size %u, "
 36			  "nr_erasing_blocks %u, avail %u, resrv %u\n",
 37			  opts->rp_size, c->dirty_size, c->free_size,
 38			  c->erasing_size, c->unchecked_size,
 39			  c->nr_erasing_blocks, avail, c->nospc_dirty_size);
 40
 41	if (avail > opts->rp_size)
 42		return 1;
 43
 44	/* Always allow root */
 45	if (capable(CAP_SYS_RESOURCE))
 46		return 1;
 47
 48	jffs2_dbg(1, "forbid writing\n");
 49	return 0;
 50}
 51
 52/**
 53 *	jffs2_reserve_space - request physical space to write nodes to flash
 54 *	@c: superblock info
 55 *	@minsize: Minimum acceptable size of allocation
 56 *	@len: Returned value of allocation length
 57 *	@prio: Allocation type - ALLOC_{NORMAL,DELETION}
 58 *
 59 *	Requests a block of physical space on the flash. Returns zero for success
 60 *	and puts 'len' into the appropriate place, or returns -ENOSPC or other 
 61 *	error if appropriate. Doesn't return len since that's 
 62 *
 63 *	If it returns zero, jffs2_reserve_space() also downs the per-filesystem
 64 *	allocation semaphore, to prevent more than one allocation from being
 65 *	active at any time. The semaphore is later released by jffs2_commit_allocation()
 66 *
 67 *	jffs2_reserve_space() may trigger garbage collection in order to make room
 68 *	for the requested allocation.
 69 */
 70
 71static int jffs2_do_reserve_space(struct jffs2_sb_info *c,  uint32_t minsize,
 72				  uint32_t *len, uint32_t sumsize);
 73
 74int jffs2_reserve_space(struct jffs2_sb_info *c, uint32_t minsize,
 75			uint32_t *len, int prio, uint32_t sumsize)
 76{
 77	int ret = -EAGAIN;
 78	int blocksneeded = c->resv_blocks_write;
 79	/* align it */
 80	minsize = PAD(minsize);
 81
 82	jffs2_dbg(1, "%s(): Requested 0x%x bytes\n", __func__, minsize);
 83	mutex_lock(&c->alloc_sem);
 84
 85	jffs2_dbg(1, "%s(): alloc sem got\n", __func__);
 86
 87	spin_lock(&c->erase_completion_lock);
 88
 89	/*
 90	 * Check if the free space is greater then size of the reserved pool.
 91	 * If not, only allow root to proceed with writing.
 92	 */
 93	if (prio != ALLOC_DELETION && !jffs2_rp_can_write(c)) {
 94		ret = -ENOSPC;
 95		goto out;
 96	}
 97
 98	/* this needs a little more thought (true <tglx> :)) */
 99	while(ret == -EAGAIN) {
100		while(c->nr_free_blocks + c->nr_erasing_blocks < blocksneeded) {
101			uint32_t dirty, avail;
102
103			/* calculate real dirty size
104			 * dirty_size contains blocks on erase_pending_list
105			 * those blocks are counted in c->nr_erasing_blocks.
106			 * If one block is actually erased, it is not longer counted as dirty_space
107			 * but it is counted in c->nr_erasing_blocks, so we add it and subtract it
108			 * with c->nr_erasing_blocks * c->sector_size again.
109			 * Blocks on erasable_list are counted as dirty_size, but not in c->nr_erasing_blocks
110			 * This helps us to force gc and pick eventually a clean block to spread the load.
111			 * We add unchecked_size here, as we hopefully will find some space to use.
112			 * This will affect the sum only once, as gc first finishes checking
113			 * of nodes.
114			 */
115			dirty = c->dirty_size + c->erasing_size - c->nr_erasing_blocks * c->sector_size + c->unchecked_size;
116			if (dirty < c->nospc_dirty_size) {
117				if (prio == ALLOC_DELETION && c->nr_free_blocks + c->nr_erasing_blocks >= c->resv_blocks_deletion) {
118					jffs2_dbg(1, "%s(): Low on dirty space to GC, but it's a deletion. Allowing...\n",
119						  __func__);
120					break;
121				}
122				jffs2_dbg(1, "dirty size 0x%08x + unchecked_size 0x%08x < nospc_dirty_size 0x%08x, returning -ENOSPC\n",
123					  dirty, c->unchecked_size,
124					  c->sector_size);
125
126				spin_unlock(&c->erase_completion_lock);
127				mutex_unlock(&c->alloc_sem);
128				return -ENOSPC;
129			}
130
131			/* Calc possibly available space. Possibly available means that we
132			 * don't know, if unchecked size contains obsoleted nodes, which could give us some
133			 * more usable space. This will affect the sum only once, as gc first finishes checking
134			 * of nodes.
135			 + Return -ENOSPC, if the maximum possibly available space is less or equal than
136			 * blocksneeded * sector_size.
137			 * This blocks endless gc looping on a filesystem, which is nearly full, even if
138			 * the check above passes.
139			 */
140			avail = c->free_size + c->dirty_size + c->erasing_size + c->unchecked_size;
141			if ( (avail / c->sector_size) <= blocksneeded) {
142				if (prio == ALLOC_DELETION && c->nr_free_blocks + c->nr_erasing_blocks >= c->resv_blocks_deletion) {
143					jffs2_dbg(1, "%s(): Low on possibly available space, but it's a deletion. Allowing...\n",
144						  __func__);
145					break;
146				}
147
148				jffs2_dbg(1, "max. available size 0x%08x  < blocksneeded * sector_size 0x%08x, returning -ENOSPC\n",
149					  avail, blocksneeded * c->sector_size);
150				spin_unlock(&c->erase_completion_lock);
151				mutex_unlock(&c->alloc_sem);
152				return -ENOSPC;
153			}
154
155			mutex_unlock(&c->alloc_sem);
156
157			jffs2_dbg(1, "Triggering GC pass. nr_free_blocks %d, nr_erasing_blocks %d, free_size 0x%08x, dirty_size 0x%08x, wasted_size 0x%08x, used_size 0x%08x, erasing_size 0x%08x, bad_size 0x%08x (total 0x%08x of 0x%08x)\n",
158				  c->nr_free_blocks, c->nr_erasing_blocks,
159				  c->free_size, c->dirty_size, c->wasted_size,
160				  c->used_size, c->erasing_size, c->bad_size,
161				  c->free_size + c->dirty_size +
162				  c->wasted_size + c->used_size +
163				  c->erasing_size + c->bad_size,
164				  c->flash_size);
165			spin_unlock(&c->erase_completion_lock);
166
167			ret = jffs2_garbage_collect_pass(c);
168
169			if (ret == -EAGAIN) {
170				spin_lock(&c->erase_completion_lock);
171				if (c->nr_erasing_blocks &&
172				    list_empty(&c->erase_pending_list) &&
173				    list_empty(&c->erase_complete_list)) {
174					DECLARE_WAITQUEUE(wait, current);
175					set_current_state(TASK_UNINTERRUPTIBLE);
176					add_wait_queue(&c->erase_wait, &wait);
177					jffs2_dbg(1, "%s waiting for erase to complete\n",
178						  __func__);
179					spin_unlock(&c->erase_completion_lock);
180
181					schedule();
182					remove_wait_queue(&c->erase_wait, &wait);
183				} else
184					spin_unlock(&c->erase_completion_lock);
185			} else if (ret)
186				return ret;
187
188			cond_resched();
189
190			if (signal_pending(current))
191				return -EINTR;
192
193			mutex_lock(&c->alloc_sem);
194			spin_lock(&c->erase_completion_lock);
195		}
196
197		ret = jffs2_do_reserve_space(c, minsize, len, sumsize);
198		if (ret) {
199			jffs2_dbg(1, "%s(): ret is %d\n", __func__, ret);
200		}
201	}
202
203out:
204	spin_unlock(&c->erase_completion_lock);
205	if (!ret)
206		ret = jffs2_prealloc_raw_node_refs(c, c->nextblock, 1);
207	if (ret)
208		mutex_unlock(&c->alloc_sem);
209	return ret;
210}
211
212int jffs2_reserve_space_gc(struct jffs2_sb_info *c, uint32_t minsize,
213			   uint32_t *len, uint32_t sumsize)
214{
215	int ret;
216	minsize = PAD(minsize);
217
218	jffs2_dbg(1, "%s(): Requested 0x%x bytes\n", __func__, minsize);
219
220	while (true) {
221		spin_lock(&c->erase_completion_lock);
222		ret = jffs2_do_reserve_space(c, minsize, len, sumsize);
223		if (ret) {
224			jffs2_dbg(1, "%s(): looping, ret is %d\n",
225				  __func__, ret);
226		}
227		spin_unlock(&c->erase_completion_lock);
228
229		if (ret == -EAGAIN)
230			cond_resched();
231		else
232			break;
233	}
 
234	if (!ret)
235		ret = jffs2_prealloc_raw_node_refs(c, c->nextblock, 1);
236
237	return ret;
238}
239
240
241/* Classify nextblock (clean, dirty of verydirty) and force to select an other one */
242
243static void jffs2_close_nextblock(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb)
244{
245
246	if (c->nextblock == NULL) {
247		jffs2_dbg(1, "%s(): Erase block at 0x%08x has already been placed in a list\n",
248			  __func__, jeb->offset);
249		return;
250	}
251	/* Check, if we have a dirty block now, or if it was dirty already */
252	if (ISDIRTY (jeb->wasted_size + jeb->dirty_size)) {
253		c->dirty_size += jeb->wasted_size;
254		c->wasted_size -= jeb->wasted_size;
255		jeb->dirty_size += jeb->wasted_size;
256		jeb->wasted_size = 0;
257		if (VERYDIRTY(c, jeb->dirty_size)) {
258			jffs2_dbg(1, "Adding full erase block at 0x%08x to very_dirty_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n",
259				  jeb->offset, jeb->free_size, jeb->dirty_size,
260				  jeb->used_size);
261			list_add_tail(&jeb->list, &c->very_dirty_list);
262		} else {
263			jffs2_dbg(1, "Adding full erase block at 0x%08x to dirty_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n",
264				  jeb->offset, jeb->free_size, jeb->dirty_size,
265				  jeb->used_size);
266			list_add_tail(&jeb->list, &c->dirty_list);
267		}
268	} else {
269		jffs2_dbg(1, "Adding full erase block at 0x%08x to clean_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n",
270			  jeb->offset, jeb->free_size, jeb->dirty_size,
271			  jeb->used_size);
272		list_add_tail(&jeb->list, &c->clean_list);
273	}
274	c->nextblock = NULL;
275
276}
277
278/* Select a new jeb for nextblock */
279
280static int jffs2_find_nextblock(struct jffs2_sb_info *c)
281{
282	struct list_head *next;
283
284	/* Take the next block off the 'free' list */
285
286	if (list_empty(&c->free_list)) {
287
288		if (!c->nr_erasing_blocks &&
289			!list_empty(&c->erasable_list)) {
290			struct jffs2_eraseblock *ejeb;
291
292			ejeb = list_entry(c->erasable_list.next, struct jffs2_eraseblock, list);
293			list_move_tail(&ejeb->list, &c->erase_pending_list);
294			c->nr_erasing_blocks++;
295			jffs2_garbage_collect_trigger(c);
296			jffs2_dbg(1, "%s(): Triggering erase of erasable block at 0x%08x\n",
297				  __func__, ejeb->offset);
298		}
299
300		if (!c->nr_erasing_blocks &&
301			!list_empty(&c->erasable_pending_wbuf_list)) {
302			jffs2_dbg(1, "%s(): Flushing write buffer\n",
303				  __func__);
304			/* c->nextblock is NULL, no update to c->nextblock allowed */
305			spin_unlock(&c->erase_completion_lock);
306			jffs2_flush_wbuf_pad(c);
307			spin_lock(&c->erase_completion_lock);
308			/* Have another go. It'll be on the erasable_list now */
309			return -EAGAIN;
310		}
311
312		if (!c->nr_erasing_blocks) {
313			/* Ouch. We're in GC, or we wouldn't have got here.
314			   And there's no space left. At all. */
315			pr_crit("Argh. No free space left for GC. nr_erasing_blocks is %d. nr_free_blocks is %d. (erasableempty: %s, erasingempty: %s, erasependingempty: %s)\n",
316				c->nr_erasing_blocks, c->nr_free_blocks,
317				list_empty(&c->erasable_list) ? "yes" : "no",
318				list_empty(&c->erasing_list) ? "yes" : "no",
319				list_empty(&c->erase_pending_list) ? "yes" : "no");
320			return -ENOSPC;
321		}
322
323		spin_unlock(&c->erase_completion_lock);
324		/* Don't wait for it; just erase one right now */
325		jffs2_erase_pending_blocks(c, 1);
326		spin_lock(&c->erase_completion_lock);
327
328		/* An erase may have failed, decreasing the
329		   amount of free space available. So we must
330		   restart from the beginning */
331		return -EAGAIN;
332	}
333
334	next = c->free_list.next;
335	list_del(next);
336	c->nextblock = list_entry(next, struct jffs2_eraseblock, list);
337	c->nr_free_blocks--;
338
339	jffs2_sum_reset_collected(c->summary); /* reset collected summary */
340
341#ifdef CONFIG_JFFS2_FS_WRITEBUFFER
342	/* adjust write buffer offset, else we get a non contiguous write bug */
343	if (!(c->wbuf_ofs % c->sector_size) && !c->wbuf_len)
344		c->wbuf_ofs = 0xffffffff;
345#endif
346
347	jffs2_dbg(1, "%s(): new nextblock = 0x%08x\n",
348		  __func__, c->nextblock->offset);
349
350	return 0;
351}
352
353/* Called with alloc sem _and_ erase_completion_lock */
354static int jffs2_do_reserve_space(struct jffs2_sb_info *c, uint32_t minsize,
355				  uint32_t *len, uint32_t sumsize)
356{
357	struct jffs2_eraseblock *jeb = c->nextblock;
358	uint32_t reserved_size;				/* for summary information at the end of the jeb */
359	int ret;
360
361 restart:
362	reserved_size = 0;
363
364	if (jffs2_sum_active() && (sumsize != JFFS2_SUMMARY_NOSUM_SIZE)) {
365							/* NOSUM_SIZE means not to generate summary */
366
367		if (jeb) {
368			reserved_size = PAD(sumsize + c->summary->sum_size + JFFS2_SUMMARY_FRAME_SIZE);
369			dbg_summary("minsize=%d , jeb->free=%d ,"
370						"summary->size=%d , sumsize=%d\n",
371						minsize, jeb->free_size,
372						c->summary->sum_size, sumsize);
373		}
374
375		/* Is there enough space for writing out the current node, or we have to
376		   write out summary information now, close this jeb and select new nextblock? */
377		if (jeb && (PAD(minsize) + PAD(c->summary->sum_size + sumsize +
378					JFFS2_SUMMARY_FRAME_SIZE) > jeb->free_size)) {
379
380			/* Has summary been disabled for this jeb? */
381			if (jffs2_sum_is_disabled(c->summary)) {
382				sumsize = JFFS2_SUMMARY_NOSUM_SIZE;
383				goto restart;
384			}
385
386			/* Writing out the collected summary information */
387			dbg_summary("generating summary for 0x%08x.\n", jeb->offset);
388			ret = jffs2_sum_write_sumnode(c);
389
390			if (ret)
391				return ret;
392
393			if (jffs2_sum_is_disabled(c->summary)) {
394				/* jffs2_write_sumnode() couldn't write out the summary information
395				   diabling summary for this jeb and free the collected information
396				 */
397				sumsize = JFFS2_SUMMARY_NOSUM_SIZE;
398				goto restart;
399			}
400
401			jffs2_close_nextblock(c, jeb);
402			jeb = NULL;
403			/* keep always valid value in reserved_size */
404			reserved_size = PAD(sumsize + c->summary->sum_size + JFFS2_SUMMARY_FRAME_SIZE);
405		}
406	} else {
407		if (jeb && minsize > jeb->free_size) {
408			uint32_t waste;
409
410			/* Skip the end of this block and file it as having some dirty space */
411			/* If there's a pending write to it, flush now */
412
413			if (jffs2_wbuf_dirty(c)) {
414				spin_unlock(&c->erase_completion_lock);
415				jffs2_dbg(1, "%s(): Flushing write buffer\n",
416					  __func__);
417				jffs2_flush_wbuf_pad(c);
418				spin_lock(&c->erase_completion_lock);
419				jeb = c->nextblock;
420				goto restart;
421			}
422
423			spin_unlock(&c->erase_completion_lock);
424
425			ret = jffs2_prealloc_raw_node_refs(c, jeb, 1);
426
 
427			/* Just lock it again and continue. Nothing much can change because
428			   we hold c->alloc_sem anyway. In fact, it's not entirely clear why
429			   we hold c->erase_completion_lock in the majority of this function...
430			   but that's a question for another (more caffeine-rich) day. */
431			spin_lock(&c->erase_completion_lock);
432
433			if (ret)
434				return ret;
435
436			waste = jeb->free_size;
437			jffs2_link_node_ref(c, jeb,
438					    (jeb->offset + c->sector_size - waste) | REF_OBSOLETE,
439					    waste, NULL);
440			/* FIXME: that made it count as dirty. Convert to wasted */
441			jeb->dirty_size -= waste;
442			c->dirty_size -= waste;
443			jeb->wasted_size += waste;
444			c->wasted_size += waste;
445
446			jffs2_close_nextblock(c, jeb);
447			jeb = NULL;
448		}
449	}
450
451	if (!jeb) {
452
453		ret = jffs2_find_nextblock(c);
454		if (ret)
455			return ret;
456
457		jeb = c->nextblock;
458
459		if (jeb->free_size != c->sector_size - c->cleanmarker_size) {
460			pr_warn("Eep. Block 0x%08x taken from free_list had free_size of 0x%08x!!\n",
461				jeb->offset, jeb->free_size);
462			goto restart;
463		}
464	}
465	/* OK, jeb (==c->nextblock) is now pointing at a block which definitely has
466	   enough space */
467	*len = jeb->free_size - reserved_size;
468
469	if (c->cleanmarker_size && jeb->used_size == c->cleanmarker_size &&
470	    !jeb->first_node->next_in_ino) {
471		/* Only node in it beforehand was a CLEANMARKER node (we think).
472		   So mark it obsolete now that there's going to be another node
473		   in the block. This will reduce used_size to zero but We've
474		   already set c->nextblock so that jffs2_mark_node_obsolete()
475		   won't try to refile it to the dirty_list.
476		*/
477		spin_unlock(&c->erase_completion_lock);
478		jffs2_mark_node_obsolete(c, jeb->first_node);
479		spin_lock(&c->erase_completion_lock);
480	}
481
482	jffs2_dbg(1, "%s(): Giving 0x%x bytes at 0x%x\n",
483		  __func__,
484		  *len, jeb->offset + (c->sector_size - jeb->free_size));
485	return 0;
486}
487
488/**
489 *	jffs2_add_physical_node_ref - add a physical node reference to the list
490 *	@c: superblock info
491 *	@new: new node reference to add
492 *	@len: length of this physical node
493 *
494 *	Should only be used to report nodes for which space has been allocated
495 *	by jffs2_reserve_space.
496 *
497 *	Must be called with the alloc_sem held.
498 */
499
500struct jffs2_raw_node_ref *jffs2_add_physical_node_ref(struct jffs2_sb_info *c,
501						       uint32_t ofs, uint32_t len,
502						       struct jffs2_inode_cache *ic)
503{
504	struct jffs2_eraseblock *jeb;
505	struct jffs2_raw_node_ref *new;
506
507	jeb = &c->blocks[ofs / c->sector_size];
508
509	jffs2_dbg(1, "%s(): Node at 0x%x(%d), size 0x%x\n",
510		  __func__, ofs & ~3, ofs & 3, len);
511#if 1
512	/* Allow non-obsolete nodes only to be added at the end of c->nextblock, 
513	   if c->nextblock is set. Note that wbuf.c will file obsolete nodes
514	   even after refiling c->nextblock */
515	if ((c->nextblock || ((ofs & 3) != REF_OBSOLETE))
516	    && (jeb != c->nextblock || (ofs & ~3) != jeb->offset + (c->sector_size - jeb->free_size))) {
517		pr_warn("argh. node added in wrong place at 0x%08x(%d)\n",
518			ofs & ~3, ofs & 3);
519		if (c->nextblock)
520			pr_warn("nextblock 0x%08x", c->nextblock->offset);
521		else
522			pr_warn("No nextblock");
523		pr_cont(", expected at %08x\n",
524			jeb->offset + (c->sector_size - jeb->free_size));
525		return ERR_PTR(-EINVAL);
526	}
527#endif
528	spin_lock(&c->erase_completion_lock);
529
530	new = jffs2_link_node_ref(c, jeb, ofs, len, ic);
531
532	if (!jeb->free_size && !jeb->dirty_size && !ISDIRTY(jeb->wasted_size)) {
533		/* If it lives on the dirty_list, jffs2_reserve_space will put it there */
534		jffs2_dbg(1, "Adding full erase block at 0x%08x to clean_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n",
535			  jeb->offset, jeb->free_size, jeb->dirty_size,
536			  jeb->used_size);
537		if (jffs2_wbuf_dirty(c)) {
538			/* Flush the last write in the block if it's outstanding */
539			spin_unlock(&c->erase_completion_lock);
540			jffs2_flush_wbuf_pad(c);
541			spin_lock(&c->erase_completion_lock);
542		}
543
544		list_add_tail(&jeb->list, &c->clean_list);
545		c->nextblock = NULL;
546	}
547	jffs2_dbg_acct_sanity_check_nolock(c,jeb);
548	jffs2_dbg_acct_paranoia_check_nolock(c, jeb);
549
550	spin_unlock(&c->erase_completion_lock);
551
552	return new;
553}
554
555
556void jffs2_complete_reservation(struct jffs2_sb_info *c)
557{
558	jffs2_dbg(1, "jffs2_complete_reservation()\n");
559	spin_lock(&c->erase_completion_lock);
560	jffs2_garbage_collect_trigger(c);
561	spin_unlock(&c->erase_completion_lock);
562	mutex_unlock(&c->alloc_sem);
563}
564
565static inline int on_list(struct list_head *obj, struct list_head *head)
566{
567	struct list_head *this;
568
569	list_for_each(this, head) {
570		if (this == obj) {
571			jffs2_dbg(1, "%p is on list at %p\n", obj, head);
572			return 1;
573
574		}
575	}
576	return 0;
577}
578
579void jffs2_mark_node_obsolete(struct jffs2_sb_info *c, struct jffs2_raw_node_ref *ref)
580{
581	struct jffs2_eraseblock *jeb;
582	int blocknr;
583	struct jffs2_unknown_node n;
584	int ret, addedsize;
585	size_t retlen;
586	uint32_t freed_len;
587
588	if(unlikely(!ref)) {
589		pr_notice("EEEEEK. jffs2_mark_node_obsolete called with NULL node\n");
590		return;
591	}
592	if (ref_obsolete(ref)) {
593		jffs2_dbg(1, "%s(): called with already obsolete node at 0x%08x\n",
594			  __func__, ref_offset(ref));
595		return;
596	}
597	blocknr = ref->flash_offset / c->sector_size;
598	if (blocknr >= c->nr_blocks) {
599		pr_notice("raw node at 0x%08x is off the end of device!\n",
600			  ref->flash_offset);
601		BUG();
602	}
603	jeb = &c->blocks[blocknr];
604
605	if (jffs2_can_mark_obsolete(c) && !jffs2_is_readonly(c) &&
606	    !(c->flags & (JFFS2_SB_FLAG_SCANNING | JFFS2_SB_FLAG_BUILDING))) {
607		/* Hm. This may confuse static lock analysis. If any of the above
608		   three conditions is false, we're going to return from this
609		   function without actually obliterating any nodes or freeing
610		   any jffs2_raw_node_refs. So we don't need to stop erases from
611		   happening, or protect against people holding an obsolete
612		   jffs2_raw_node_ref without the erase_completion_lock. */
613		mutex_lock(&c->erase_free_sem);
614	}
615
616	spin_lock(&c->erase_completion_lock);
617
618	freed_len = ref_totlen(c, jeb, ref);
619
620	if (ref_flags(ref) == REF_UNCHECKED) {
621		D1(if (unlikely(jeb->unchecked_size < freed_len)) {
622				pr_notice("raw unchecked node of size 0x%08x freed from erase block %d at 0x%08x, but unchecked_size was already 0x%08x\n",
623					  freed_len, blocknr,
624					  ref->flash_offset, jeb->used_size);
625			BUG();
626		})
627			jffs2_dbg(1, "Obsoleting previously unchecked node at 0x%08x of len %x\n",
628				  ref_offset(ref), freed_len);
629		jeb->unchecked_size -= freed_len;
630		c->unchecked_size -= freed_len;
631	} else {
632		D1(if (unlikely(jeb->used_size < freed_len)) {
633				pr_notice("raw node of size 0x%08x freed from erase block %d at 0x%08x, but used_size was already 0x%08x\n",
634					  freed_len, blocknr,
635					  ref->flash_offset, jeb->used_size);
636			BUG();
637		})
638			jffs2_dbg(1, "Obsoleting node at 0x%08x of len %#x: ",
639				  ref_offset(ref), freed_len);
640		jeb->used_size -= freed_len;
641		c->used_size -= freed_len;
642	}
643
644	// Take care, that wasted size is taken into concern
645	if ((jeb->dirty_size || ISDIRTY(jeb->wasted_size + freed_len)) && jeb != c->nextblock) {
646		jffs2_dbg(1, "Dirtying\n");
647		addedsize = freed_len;
648		jeb->dirty_size += freed_len;
649		c->dirty_size += freed_len;
650
651		/* Convert wasted space to dirty, if not a bad block */
652		if (jeb->wasted_size) {
653			if (on_list(&jeb->list, &c->bad_used_list)) {
654				jffs2_dbg(1, "Leaving block at %08x on the bad_used_list\n",
655					  jeb->offset);
656				addedsize = 0; /* To fool the refiling code later */
657			} else {
658				jffs2_dbg(1, "Converting %d bytes of wasted space to dirty in block at %08x\n",
659					  jeb->wasted_size, jeb->offset);
660				addedsize += jeb->wasted_size;
661				jeb->dirty_size += jeb->wasted_size;
662				c->dirty_size += jeb->wasted_size;
663				c->wasted_size -= jeb->wasted_size;
664				jeb->wasted_size = 0;
665			}
666		}
667	} else {
668		jffs2_dbg(1, "Wasting\n");
669		addedsize = 0;
670		jeb->wasted_size += freed_len;
671		c->wasted_size += freed_len;
672	}
673	ref->flash_offset = ref_offset(ref) | REF_OBSOLETE;
674
675	jffs2_dbg_acct_sanity_check_nolock(c, jeb);
676	jffs2_dbg_acct_paranoia_check_nolock(c, jeb);
677
678	if (c->flags & JFFS2_SB_FLAG_SCANNING) {
679		/* Flash scanning is in progress. Don't muck about with the block
680		   lists because they're not ready yet, and don't actually
681		   obliterate nodes that look obsolete. If they weren't
682		   marked obsolete on the flash at the time they _became_
683		   obsolete, there was probably a reason for that. */
684		spin_unlock(&c->erase_completion_lock);
685		/* We didn't lock the erase_free_sem */
686		return;
687	}
688
689	if (jeb == c->nextblock) {
690		jffs2_dbg(2, "Not moving nextblock 0x%08x to dirty/erase_pending list\n",
691			  jeb->offset);
692	} else if (!jeb->used_size && !jeb->unchecked_size) {
693		if (jeb == c->gcblock) {
694			jffs2_dbg(1, "gcblock at 0x%08x completely dirtied. Clearing gcblock...\n",
695				  jeb->offset);
696			c->gcblock = NULL;
697		} else {
698			jffs2_dbg(1, "Eraseblock at 0x%08x completely dirtied. Removing from (dirty?) list...\n",
699				  jeb->offset);
700			list_del(&jeb->list);
701		}
702		if (jffs2_wbuf_dirty(c)) {
703			jffs2_dbg(1, "...and adding to erasable_pending_wbuf_list\n");
704			list_add_tail(&jeb->list, &c->erasable_pending_wbuf_list);
705		} else {
706			if (jiffies & 127) {
707				/* Most of the time, we just erase it immediately. Otherwise we
708				   spend ages scanning it on mount, etc. */
709				jffs2_dbg(1, "...and adding to erase_pending_list\n");
710				list_add_tail(&jeb->list, &c->erase_pending_list);
711				c->nr_erasing_blocks++;
712				jffs2_garbage_collect_trigger(c);
713			} else {
714				/* Sometimes, however, we leave it elsewhere so it doesn't get
715				   immediately reused, and we spread the load a bit. */
716				jffs2_dbg(1, "...and adding to erasable_list\n");
717				list_add_tail(&jeb->list, &c->erasable_list);
718			}
719		}
720		jffs2_dbg(1, "Done OK\n");
721	} else if (jeb == c->gcblock) {
722		jffs2_dbg(2, "Not moving gcblock 0x%08x to dirty_list\n",
723			  jeb->offset);
724	} else if (ISDIRTY(jeb->dirty_size) && !ISDIRTY(jeb->dirty_size - addedsize)) {
725		jffs2_dbg(1, "Eraseblock at 0x%08x is freshly dirtied. Removing from clean list...\n",
726			  jeb->offset);
727		list_del(&jeb->list);
728		jffs2_dbg(1, "...and adding to dirty_list\n");
729		list_add_tail(&jeb->list, &c->dirty_list);
730	} else if (VERYDIRTY(c, jeb->dirty_size) &&
731		   !VERYDIRTY(c, jeb->dirty_size - addedsize)) {
732		jffs2_dbg(1, "Eraseblock at 0x%08x is now very dirty. Removing from dirty list...\n",
733			  jeb->offset);
734		list_del(&jeb->list);
735		jffs2_dbg(1, "...and adding to very_dirty_list\n");
736		list_add_tail(&jeb->list, &c->very_dirty_list);
737	} else {
738		jffs2_dbg(1, "Eraseblock at 0x%08x not moved anywhere. (free 0x%08x, dirty 0x%08x, used 0x%08x)\n",
739			  jeb->offset, jeb->free_size, jeb->dirty_size,
740			  jeb->used_size);
741	}
742
743	spin_unlock(&c->erase_completion_lock);
744
745	if (!jffs2_can_mark_obsolete(c) || jffs2_is_readonly(c) ||
746		(c->flags & JFFS2_SB_FLAG_BUILDING)) {
747		/* We didn't lock the erase_free_sem */
748		return;
749	}
750
751	/* The erase_free_sem is locked, and has been since before we marked the node obsolete
752	   and potentially put its eraseblock onto the erase_pending_list. Thus, we know that
753	   the block hasn't _already_ been erased, and that 'ref' itself hasn't been freed yet
754	   by jffs2_free_jeb_node_refs() in erase.c. Which is nice. */
755
756	jffs2_dbg(1, "obliterating obsoleted node at 0x%08x\n",
757		  ref_offset(ref));
758	ret = jffs2_flash_read(c, ref_offset(ref), sizeof(n), &retlen, (char *)&n);
759	if (ret) {
760		pr_warn("Read error reading from obsoleted node at 0x%08x: %d\n",
761			ref_offset(ref), ret);
762		goto out_erase_sem;
763	}
764	if (retlen != sizeof(n)) {
765		pr_warn("Short read from obsoleted node at 0x%08x: %zd\n",
766			ref_offset(ref), retlen);
767		goto out_erase_sem;
768	}
769	if (PAD(je32_to_cpu(n.totlen)) != PAD(freed_len)) {
770		pr_warn("Node totlen on flash (0x%08x) != totlen from node ref (0x%08x)\n",
771			je32_to_cpu(n.totlen), freed_len);
772		goto out_erase_sem;
773	}
774	if (!(je16_to_cpu(n.nodetype) & JFFS2_NODE_ACCURATE)) {
775		jffs2_dbg(1, "Node at 0x%08x was already marked obsolete (nodetype 0x%04x)\n",
776			  ref_offset(ref), je16_to_cpu(n.nodetype));
777		goto out_erase_sem;
778	}
779	/* XXX FIXME: This is ugly now */
780	n.nodetype = cpu_to_je16(je16_to_cpu(n.nodetype) & ~JFFS2_NODE_ACCURATE);
781	ret = jffs2_flash_write(c, ref_offset(ref), sizeof(n), &retlen, (char *)&n);
782	if (ret) {
783		pr_warn("Write error in obliterating obsoleted node at 0x%08x: %d\n",
784			ref_offset(ref), ret);
785		goto out_erase_sem;
786	}
787	if (retlen != sizeof(n)) {
788		pr_warn("Short write in obliterating obsoleted node at 0x%08x: %zd\n",
789			ref_offset(ref), retlen);
790		goto out_erase_sem;
791	}
792
793	/* Nodes which have been marked obsolete no longer need to be
794	   associated with any inode. Remove them from the per-inode list.
795
796	   Note we can't do this for NAND at the moment because we need
797	   obsolete dirent nodes to stay on the lists, because of the
798	   horridness in jffs2_garbage_collect_deletion_dirent(). Also
799	   because we delete the inocache, and on NAND we need that to
800	   stay around until all the nodes are actually erased, in order
801	   to stop us from giving the same inode number to another newly
802	   created inode. */
803	if (ref->next_in_ino) {
804		struct jffs2_inode_cache *ic;
805		struct jffs2_raw_node_ref **p;
806
807		spin_lock(&c->erase_completion_lock);
808
809		ic = jffs2_raw_ref_to_ic(ref);
810		for (p = &ic->nodes; (*p) != ref; p = &((*p)->next_in_ino))
811			;
812
813		*p = ref->next_in_ino;
814		ref->next_in_ino = NULL;
815
816		switch (ic->class) {
817#ifdef CONFIG_JFFS2_FS_XATTR
818			case RAWNODE_CLASS_XATTR_DATUM:
819				jffs2_release_xattr_datum(c, (struct jffs2_xattr_datum *)ic);
820				break;
821			case RAWNODE_CLASS_XATTR_REF:
822				jffs2_release_xattr_ref(c, (struct jffs2_xattr_ref *)ic);
823				break;
824#endif
825			default:
826				if (ic->nodes == (void *)ic && ic->pino_nlink == 0)
827					jffs2_del_ino_cache(c, ic);
828				break;
829		}
830		spin_unlock(&c->erase_completion_lock);
831	}
832
833 out_erase_sem:
834	mutex_unlock(&c->erase_free_sem);
835}
836
837int jffs2_thread_should_wake(struct jffs2_sb_info *c)
838{
839	int ret = 0;
840	uint32_t dirty;
841	int nr_very_dirty = 0;
842	struct jffs2_eraseblock *jeb;
843
844	if (!list_empty(&c->erase_complete_list) ||
845	    !list_empty(&c->erase_pending_list))
846		return 1;
847
848	if (c->unchecked_size) {
849		jffs2_dbg(1, "jffs2_thread_should_wake(): unchecked_size %d, check_ino #%d\n",
850			  c->unchecked_size, c->check_ino);
851		return 1;
852	}
853
854	/* dirty_size contains blocks on erase_pending_list
855	 * those blocks are counted in c->nr_erasing_blocks.
856	 * If one block is actually erased, it is not longer counted as dirty_space
857	 * but it is counted in c->nr_erasing_blocks, so we add it and subtract it
858	 * with c->nr_erasing_blocks * c->sector_size again.
859	 * Blocks on erasable_list are counted as dirty_size, but not in c->nr_erasing_blocks
860	 * This helps us to force gc and pick eventually a clean block to spread the load.
861	 */
862	dirty = c->dirty_size + c->erasing_size - c->nr_erasing_blocks * c->sector_size;
863
864	if (c->nr_free_blocks + c->nr_erasing_blocks < c->resv_blocks_gctrigger &&
865			(dirty > c->nospc_dirty_size))
866		ret = 1;
867
868	list_for_each_entry(jeb, &c->very_dirty_list, list) {
869		nr_very_dirty++;
870		if (nr_very_dirty == c->vdirty_blocks_gctrigger) {
871			ret = 1;
872			/* In debug mode, actually go through and count them all */
873			D1(continue);
874			break;
875		}
876	}
877
878	jffs2_dbg(1, "%s(): nr_free_blocks %d, nr_erasing_blocks %d, dirty_size 0x%x, vdirty_blocks %d: %s\n",
879		  __func__, c->nr_free_blocks, c->nr_erasing_blocks,
880		  c->dirty_size, nr_very_dirty, ret ? "yes" : "no");
881
882	return ret;
883}
v3.5.6
  1/*
  2 * JFFS2 -- Journalling Flash File System, Version 2.
  3 *
  4 * Copyright © 2001-2007 Red Hat, Inc.
  5 *
  6 * Created by David Woodhouse <dwmw2@infradead.org>
  7 *
  8 * For licensing information, see the file 'LICENCE' in this directory.
  9 *
 10 */
 11
 12#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 13
 14#include <linux/kernel.h>
 15#include <linux/mtd/mtd.h>
 16#include <linux/compiler.h>
 17#include <linux/sched.h> /* For cond_resched() */
 18#include "nodelist.h"
 19#include "debug.h"
 20
 21/*
 22 * Check whether the user is allowed to write.
 23 */
 24static int jffs2_rp_can_write(struct jffs2_sb_info *c)
 25{
 26	uint32_t avail;
 27	struct jffs2_mount_opts *opts = &c->mount_opts;
 28
 29	avail = c->dirty_size + c->free_size + c->unchecked_size +
 30		c->erasing_size - c->resv_blocks_write * c->sector_size
 31		- c->nospc_dirty_size;
 32
 33	if (avail < 2 * opts->rp_size)
 34		jffs2_dbg(1, "rpsize %u, dirty_size %u, free_size %u, "
 35			  "erasing_size %u, unchecked_size %u, "
 36			  "nr_erasing_blocks %u, avail %u, resrv %u\n",
 37			  opts->rp_size, c->dirty_size, c->free_size,
 38			  c->erasing_size, c->unchecked_size,
 39			  c->nr_erasing_blocks, avail, c->nospc_dirty_size);
 40
 41	if (avail > opts->rp_size)
 42		return 1;
 43
 44	/* Always allow root */
 45	if (capable(CAP_SYS_RESOURCE))
 46		return 1;
 47
 48	jffs2_dbg(1, "forbid writing\n");
 49	return 0;
 50}
 51
 52/**
 53 *	jffs2_reserve_space - request physical space to write nodes to flash
 54 *	@c: superblock info
 55 *	@minsize: Minimum acceptable size of allocation
 56 *	@len: Returned value of allocation length
 57 *	@prio: Allocation type - ALLOC_{NORMAL,DELETION}
 58 *
 59 *	Requests a block of physical space on the flash. Returns zero for success
 60 *	and puts 'len' into the appropriate place, or returns -ENOSPC or other 
 61 *	error if appropriate. Doesn't return len since that's 
 62 *
 63 *	If it returns zero, jffs2_reserve_space() also downs the per-filesystem
 64 *	allocation semaphore, to prevent more than one allocation from being
 65 *	active at any time. The semaphore is later released by jffs2_commit_allocation()
 66 *
 67 *	jffs2_reserve_space() may trigger garbage collection in order to make room
 68 *	for the requested allocation.
 69 */
 70
 71static int jffs2_do_reserve_space(struct jffs2_sb_info *c,  uint32_t minsize,
 72				  uint32_t *len, uint32_t sumsize);
 73
 74int jffs2_reserve_space(struct jffs2_sb_info *c, uint32_t minsize,
 75			uint32_t *len, int prio, uint32_t sumsize)
 76{
 77	int ret = -EAGAIN;
 78	int blocksneeded = c->resv_blocks_write;
 79	/* align it */
 80	minsize = PAD(minsize);
 81
 82	jffs2_dbg(1, "%s(): Requested 0x%x bytes\n", __func__, minsize);
 83	mutex_lock(&c->alloc_sem);
 84
 85	jffs2_dbg(1, "%s(): alloc sem got\n", __func__);
 86
 87	spin_lock(&c->erase_completion_lock);
 88
 89	/*
 90	 * Check if the free space is greater then size of the reserved pool.
 91	 * If not, only allow root to proceed with writing.
 92	 */
 93	if (prio != ALLOC_DELETION && !jffs2_rp_can_write(c)) {
 94		ret = -ENOSPC;
 95		goto out;
 96	}
 97
 98	/* this needs a little more thought (true <tglx> :)) */
 99	while(ret == -EAGAIN) {
100		while(c->nr_free_blocks + c->nr_erasing_blocks < blocksneeded) {
101			uint32_t dirty, avail;
102
103			/* calculate real dirty size
104			 * dirty_size contains blocks on erase_pending_list
105			 * those blocks are counted in c->nr_erasing_blocks.
106			 * If one block is actually erased, it is not longer counted as dirty_space
107			 * but it is counted in c->nr_erasing_blocks, so we add it and subtract it
108			 * with c->nr_erasing_blocks * c->sector_size again.
109			 * Blocks on erasable_list are counted as dirty_size, but not in c->nr_erasing_blocks
110			 * This helps us to force gc and pick eventually a clean block to spread the load.
111			 * We add unchecked_size here, as we hopefully will find some space to use.
112			 * This will affect the sum only once, as gc first finishes checking
113			 * of nodes.
114			 */
115			dirty = c->dirty_size + c->erasing_size - c->nr_erasing_blocks * c->sector_size + c->unchecked_size;
116			if (dirty < c->nospc_dirty_size) {
117				if (prio == ALLOC_DELETION && c->nr_free_blocks + c->nr_erasing_blocks >= c->resv_blocks_deletion) {
118					jffs2_dbg(1, "%s(): Low on dirty space to GC, but it's a deletion. Allowing...\n",
119						  __func__);
120					break;
121				}
122				jffs2_dbg(1, "dirty size 0x%08x + unchecked_size 0x%08x < nospc_dirty_size 0x%08x, returning -ENOSPC\n",
123					  dirty, c->unchecked_size,
124					  c->sector_size);
125
126				spin_unlock(&c->erase_completion_lock);
127				mutex_unlock(&c->alloc_sem);
128				return -ENOSPC;
129			}
130
131			/* Calc possibly available space. Possibly available means that we
132			 * don't know, if unchecked size contains obsoleted nodes, which could give us some
133			 * more usable space. This will affect the sum only once, as gc first finishes checking
134			 * of nodes.
135			 + Return -ENOSPC, if the maximum possibly available space is less or equal than
136			 * blocksneeded * sector_size.
137			 * This blocks endless gc looping on a filesystem, which is nearly full, even if
138			 * the check above passes.
139			 */
140			avail = c->free_size + c->dirty_size + c->erasing_size + c->unchecked_size;
141			if ( (avail / c->sector_size) <= blocksneeded) {
142				if (prio == ALLOC_DELETION && c->nr_free_blocks + c->nr_erasing_blocks >= c->resv_blocks_deletion) {
143					jffs2_dbg(1, "%s(): Low on possibly available space, but it's a deletion. Allowing...\n",
144						  __func__);
145					break;
146				}
147
148				jffs2_dbg(1, "max. available size 0x%08x  < blocksneeded * sector_size 0x%08x, returning -ENOSPC\n",
149					  avail, blocksneeded * c->sector_size);
150				spin_unlock(&c->erase_completion_lock);
151				mutex_unlock(&c->alloc_sem);
152				return -ENOSPC;
153			}
154
155			mutex_unlock(&c->alloc_sem);
156
157			jffs2_dbg(1, "Triggering GC pass. nr_free_blocks %d, nr_erasing_blocks %d, free_size 0x%08x, dirty_size 0x%08x, wasted_size 0x%08x, used_size 0x%08x, erasing_size 0x%08x, bad_size 0x%08x (total 0x%08x of 0x%08x)\n",
158				  c->nr_free_blocks, c->nr_erasing_blocks,
159				  c->free_size, c->dirty_size, c->wasted_size,
160				  c->used_size, c->erasing_size, c->bad_size,
161				  c->free_size + c->dirty_size +
162				  c->wasted_size + c->used_size +
163				  c->erasing_size + c->bad_size,
164				  c->flash_size);
165			spin_unlock(&c->erase_completion_lock);
166
167			ret = jffs2_garbage_collect_pass(c);
168
169			if (ret == -EAGAIN) {
170				spin_lock(&c->erase_completion_lock);
171				if (c->nr_erasing_blocks &&
172				    list_empty(&c->erase_pending_list) &&
173				    list_empty(&c->erase_complete_list)) {
174					DECLARE_WAITQUEUE(wait, current);
175					set_current_state(TASK_UNINTERRUPTIBLE);
176					add_wait_queue(&c->erase_wait, &wait);
177					jffs2_dbg(1, "%s waiting for erase to complete\n",
178						  __func__);
179					spin_unlock(&c->erase_completion_lock);
180
181					schedule();
 
182				} else
183					spin_unlock(&c->erase_completion_lock);
184			} else if (ret)
185				return ret;
186
187			cond_resched();
188
189			if (signal_pending(current))
190				return -EINTR;
191
192			mutex_lock(&c->alloc_sem);
193			spin_lock(&c->erase_completion_lock);
194		}
195
196		ret = jffs2_do_reserve_space(c, minsize, len, sumsize);
197		if (ret) {
198			jffs2_dbg(1, "%s(): ret is %d\n", __func__, ret);
199		}
200	}
201
202out:
203	spin_unlock(&c->erase_completion_lock);
204	if (!ret)
205		ret = jffs2_prealloc_raw_node_refs(c, c->nextblock, 1);
206	if (ret)
207		mutex_unlock(&c->alloc_sem);
208	return ret;
209}
210
211int jffs2_reserve_space_gc(struct jffs2_sb_info *c, uint32_t minsize,
212			   uint32_t *len, uint32_t sumsize)
213{
214	int ret = -EAGAIN;
215	minsize = PAD(minsize);
216
217	jffs2_dbg(1, "%s(): Requested 0x%x bytes\n", __func__, minsize);
218
219	spin_lock(&c->erase_completion_lock);
220	while(ret == -EAGAIN) {
221		ret = jffs2_do_reserve_space(c, minsize, len, sumsize);
222		if (ret) {
223			jffs2_dbg(1, "%s(): looping, ret is %d\n",
224				  __func__, ret);
225		}
 
 
 
 
 
 
226	}
227	spin_unlock(&c->erase_completion_lock);
228	if (!ret)
229		ret = jffs2_prealloc_raw_node_refs(c, c->nextblock, 1);
230
231	return ret;
232}
233
234
235/* Classify nextblock (clean, dirty of verydirty) and force to select an other one */
236
237static void jffs2_close_nextblock(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb)
238{
239
240	if (c->nextblock == NULL) {
241		jffs2_dbg(1, "%s(): Erase block at 0x%08x has already been placed in a list\n",
242			  __func__, jeb->offset);
243		return;
244	}
245	/* Check, if we have a dirty block now, or if it was dirty already */
246	if (ISDIRTY (jeb->wasted_size + jeb->dirty_size)) {
247		c->dirty_size += jeb->wasted_size;
248		c->wasted_size -= jeb->wasted_size;
249		jeb->dirty_size += jeb->wasted_size;
250		jeb->wasted_size = 0;
251		if (VERYDIRTY(c, jeb->dirty_size)) {
252			jffs2_dbg(1, "Adding full erase block at 0x%08x to very_dirty_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n",
253				  jeb->offset, jeb->free_size, jeb->dirty_size,
254				  jeb->used_size);
255			list_add_tail(&jeb->list, &c->very_dirty_list);
256		} else {
257			jffs2_dbg(1, "Adding full erase block at 0x%08x to dirty_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n",
258				  jeb->offset, jeb->free_size, jeb->dirty_size,
259				  jeb->used_size);
260			list_add_tail(&jeb->list, &c->dirty_list);
261		}
262	} else {
263		jffs2_dbg(1, "Adding full erase block at 0x%08x to clean_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n",
264			  jeb->offset, jeb->free_size, jeb->dirty_size,
265			  jeb->used_size);
266		list_add_tail(&jeb->list, &c->clean_list);
267	}
268	c->nextblock = NULL;
269
270}
271
272/* Select a new jeb for nextblock */
273
274static int jffs2_find_nextblock(struct jffs2_sb_info *c)
275{
276	struct list_head *next;
277
278	/* Take the next block off the 'free' list */
279
280	if (list_empty(&c->free_list)) {
281
282		if (!c->nr_erasing_blocks &&
283			!list_empty(&c->erasable_list)) {
284			struct jffs2_eraseblock *ejeb;
285
286			ejeb = list_entry(c->erasable_list.next, struct jffs2_eraseblock, list);
287			list_move_tail(&ejeb->list, &c->erase_pending_list);
288			c->nr_erasing_blocks++;
289			jffs2_garbage_collect_trigger(c);
290			jffs2_dbg(1, "%s(): Triggering erase of erasable block at 0x%08x\n",
291				  __func__, ejeb->offset);
292		}
293
294		if (!c->nr_erasing_blocks &&
295			!list_empty(&c->erasable_pending_wbuf_list)) {
296			jffs2_dbg(1, "%s(): Flushing write buffer\n",
297				  __func__);
298			/* c->nextblock is NULL, no update to c->nextblock allowed */
299			spin_unlock(&c->erase_completion_lock);
300			jffs2_flush_wbuf_pad(c);
301			spin_lock(&c->erase_completion_lock);
302			/* Have another go. It'll be on the erasable_list now */
303			return -EAGAIN;
304		}
305
306		if (!c->nr_erasing_blocks) {
307			/* Ouch. We're in GC, or we wouldn't have got here.
308			   And there's no space left. At all. */
309			pr_crit("Argh. No free space left for GC. nr_erasing_blocks is %d. nr_free_blocks is %d. (erasableempty: %s, erasingempty: %s, erasependingempty: %s)\n",
310				c->nr_erasing_blocks, c->nr_free_blocks,
311				list_empty(&c->erasable_list) ? "yes" : "no",
312				list_empty(&c->erasing_list) ? "yes" : "no",
313				list_empty(&c->erase_pending_list) ? "yes" : "no");
314			return -ENOSPC;
315		}
316
317		spin_unlock(&c->erase_completion_lock);
318		/* Don't wait for it; just erase one right now */
319		jffs2_erase_pending_blocks(c, 1);
320		spin_lock(&c->erase_completion_lock);
321
322		/* An erase may have failed, decreasing the
323		   amount of free space available. So we must
324		   restart from the beginning */
325		return -EAGAIN;
326	}
327
328	next = c->free_list.next;
329	list_del(next);
330	c->nextblock = list_entry(next, struct jffs2_eraseblock, list);
331	c->nr_free_blocks--;
332
333	jffs2_sum_reset_collected(c->summary); /* reset collected summary */
334
335#ifdef CONFIG_JFFS2_FS_WRITEBUFFER
336	/* adjust write buffer offset, else we get a non contiguous write bug */
337	if (!(c->wbuf_ofs % c->sector_size) && !c->wbuf_len)
338		c->wbuf_ofs = 0xffffffff;
339#endif
340
341	jffs2_dbg(1, "%s(): new nextblock = 0x%08x\n",
342		  __func__, c->nextblock->offset);
343
344	return 0;
345}
346
347/* Called with alloc sem _and_ erase_completion_lock */
348static int jffs2_do_reserve_space(struct jffs2_sb_info *c, uint32_t minsize,
349				  uint32_t *len, uint32_t sumsize)
350{
351	struct jffs2_eraseblock *jeb = c->nextblock;
352	uint32_t reserved_size;				/* for summary information at the end of the jeb */
353	int ret;
354
355 restart:
356	reserved_size = 0;
357
358	if (jffs2_sum_active() && (sumsize != JFFS2_SUMMARY_NOSUM_SIZE)) {
359							/* NOSUM_SIZE means not to generate summary */
360
361		if (jeb) {
362			reserved_size = PAD(sumsize + c->summary->sum_size + JFFS2_SUMMARY_FRAME_SIZE);
363			dbg_summary("minsize=%d , jeb->free=%d ,"
364						"summary->size=%d , sumsize=%d\n",
365						minsize, jeb->free_size,
366						c->summary->sum_size, sumsize);
367		}
368
369		/* Is there enough space for writing out the current node, or we have to
370		   write out summary information now, close this jeb and select new nextblock? */
371		if (jeb && (PAD(minsize) + PAD(c->summary->sum_size + sumsize +
372					JFFS2_SUMMARY_FRAME_SIZE) > jeb->free_size)) {
373
374			/* Has summary been disabled for this jeb? */
375			if (jffs2_sum_is_disabled(c->summary)) {
376				sumsize = JFFS2_SUMMARY_NOSUM_SIZE;
377				goto restart;
378			}
379
380			/* Writing out the collected summary information */
381			dbg_summary("generating summary for 0x%08x.\n", jeb->offset);
382			ret = jffs2_sum_write_sumnode(c);
383
384			if (ret)
385				return ret;
386
387			if (jffs2_sum_is_disabled(c->summary)) {
388				/* jffs2_write_sumnode() couldn't write out the summary information
389				   diabling summary for this jeb and free the collected information
390				 */
391				sumsize = JFFS2_SUMMARY_NOSUM_SIZE;
392				goto restart;
393			}
394
395			jffs2_close_nextblock(c, jeb);
396			jeb = NULL;
397			/* keep always valid value in reserved_size */
398			reserved_size = PAD(sumsize + c->summary->sum_size + JFFS2_SUMMARY_FRAME_SIZE);
399		}
400	} else {
401		if (jeb && minsize > jeb->free_size) {
402			uint32_t waste;
403
404			/* Skip the end of this block and file it as having some dirty space */
405			/* If there's a pending write to it, flush now */
406
407			if (jffs2_wbuf_dirty(c)) {
408				spin_unlock(&c->erase_completion_lock);
409				jffs2_dbg(1, "%s(): Flushing write buffer\n",
410					  __func__);
411				jffs2_flush_wbuf_pad(c);
412				spin_lock(&c->erase_completion_lock);
413				jeb = c->nextblock;
414				goto restart;
415			}
416
417			spin_unlock(&c->erase_completion_lock);
418
419			ret = jffs2_prealloc_raw_node_refs(c, jeb, 1);
420			if (ret)
421				return ret;
422			/* Just lock it again and continue. Nothing much can change because
423			   we hold c->alloc_sem anyway. In fact, it's not entirely clear why
424			   we hold c->erase_completion_lock in the majority of this function...
425			   but that's a question for another (more caffeine-rich) day. */
426			spin_lock(&c->erase_completion_lock);
427
 
 
 
428			waste = jeb->free_size;
429			jffs2_link_node_ref(c, jeb,
430					    (jeb->offset + c->sector_size - waste) | REF_OBSOLETE,
431					    waste, NULL);
432			/* FIXME: that made it count as dirty. Convert to wasted */
433			jeb->dirty_size -= waste;
434			c->dirty_size -= waste;
435			jeb->wasted_size += waste;
436			c->wasted_size += waste;
437
438			jffs2_close_nextblock(c, jeb);
439			jeb = NULL;
440		}
441	}
442
443	if (!jeb) {
444
445		ret = jffs2_find_nextblock(c);
446		if (ret)
447			return ret;
448
449		jeb = c->nextblock;
450
451		if (jeb->free_size != c->sector_size - c->cleanmarker_size) {
452			pr_warn("Eep. Block 0x%08x taken from free_list had free_size of 0x%08x!!\n",
453				jeb->offset, jeb->free_size);
454			goto restart;
455		}
456	}
457	/* OK, jeb (==c->nextblock) is now pointing at a block which definitely has
458	   enough space */
459	*len = jeb->free_size - reserved_size;
460
461	if (c->cleanmarker_size && jeb->used_size == c->cleanmarker_size &&
462	    !jeb->first_node->next_in_ino) {
463		/* Only node in it beforehand was a CLEANMARKER node (we think).
464		   So mark it obsolete now that there's going to be another node
465		   in the block. This will reduce used_size to zero but We've
466		   already set c->nextblock so that jffs2_mark_node_obsolete()
467		   won't try to refile it to the dirty_list.
468		*/
469		spin_unlock(&c->erase_completion_lock);
470		jffs2_mark_node_obsolete(c, jeb->first_node);
471		spin_lock(&c->erase_completion_lock);
472	}
473
474	jffs2_dbg(1, "%s(): Giving 0x%x bytes at 0x%x\n",
475		  __func__,
476		  *len, jeb->offset + (c->sector_size - jeb->free_size));
477	return 0;
478}
479
480/**
481 *	jffs2_add_physical_node_ref - add a physical node reference to the list
482 *	@c: superblock info
483 *	@new: new node reference to add
484 *	@len: length of this physical node
485 *
486 *	Should only be used to report nodes for which space has been allocated
487 *	by jffs2_reserve_space.
488 *
489 *	Must be called with the alloc_sem held.
490 */
491
492struct jffs2_raw_node_ref *jffs2_add_physical_node_ref(struct jffs2_sb_info *c,
493						       uint32_t ofs, uint32_t len,
494						       struct jffs2_inode_cache *ic)
495{
496	struct jffs2_eraseblock *jeb;
497	struct jffs2_raw_node_ref *new;
498
499	jeb = &c->blocks[ofs / c->sector_size];
500
501	jffs2_dbg(1, "%s(): Node at 0x%x(%d), size 0x%x\n",
502		  __func__, ofs & ~3, ofs & 3, len);
503#if 1
504	/* Allow non-obsolete nodes only to be added at the end of c->nextblock, 
505	   if c->nextblock is set. Note that wbuf.c will file obsolete nodes
506	   even after refiling c->nextblock */
507	if ((c->nextblock || ((ofs & 3) != REF_OBSOLETE))
508	    && (jeb != c->nextblock || (ofs & ~3) != jeb->offset + (c->sector_size - jeb->free_size))) {
509		pr_warn("argh. node added in wrong place at 0x%08x(%d)\n",
510			ofs & ~3, ofs & 3);
511		if (c->nextblock)
512			pr_warn("nextblock 0x%08x", c->nextblock->offset);
513		else
514			pr_warn("No nextblock");
515		pr_cont(", expected at %08x\n",
516			jeb->offset + (c->sector_size - jeb->free_size));
517		return ERR_PTR(-EINVAL);
518	}
519#endif
520	spin_lock(&c->erase_completion_lock);
521
522	new = jffs2_link_node_ref(c, jeb, ofs, len, ic);
523
524	if (!jeb->free_size && !jeb->dirty_size && !ISDIRTY(jeb->wasted_size)) {
525		/* If it lives on the dirty_list, jffs2_reserve_space will put it there */
526		jffs2_dbg(1, "Adding full erase block at 0x%08x to clean_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n",
527			  jeb->offset, jeb->free_size, jeb->dirty_size,
528			  jeb->used_size);
529		if (jffs2_wbuf_dirty(c)) {
530			/* Flush the last write in the block if it's outstanding */
531			spin_unlock(&c->erase_completion_lock);
532			jffs2_flush_wbuf_pad(c);
533			spin_lock(&c->erase_completion_lock);
534		}
535
536		list_add_tail(&jeb->list, &c->clean_list);
537		c->nextblock = NULL;
538	}
539	jffs2_dbg_acct_sanity_check_nolock(c,jeb);
540	jffs2_dbg_acct_paranoia_check_nolock(c, jeb);
541
542	spin_unlock(&c->erase_completion_lock);
543
544	return new;
545}
546
547
548void jffs2_complete_reservation(struct jffs2_sb_info *c)
549{
550	jffs2_dbg(1, "jffs2_complete_reservation()\n");
551	spin_lock(&c->erase_completion_lock);
552	jffs2_garbage_collect_trigger(c);
553	spin_unlock(&c->erase_completion_lock);
554	mutex_unlock(&c->alloc_sem);
555}
556
557static inline int on_list(struct list_head *obj, struct list_head *head)
558{
559	struct list_head *this;
560
561	list_for_each(this, head) {
562		if (this == obj) {
563			jffs2_dbg(1, "%p is on list at %p\n", obj, head);
564			return 1;
565
566		}
567	}
568	return 0;
569}
570
571void jffs2_mark_node_obsolete(struct jffs2_sb_info *c, struct jffs2_raw_node_ref *ref)
572{
573	struct jffs2_eraseblock *jeb;
574	int blocknr;
575	struct jffs2_unknown_node n;
576	int ret, addedsize;
577	size_t retlen;
578	uint32_t freed_len;
579
580	if(unlikely(!ref)) {
581		pr_notice("EEEEEK. jffs2_mark_node_obsolete called with NULL node\n");
582		return;
583	}
584	if (ref_obsolete(ref)) {
585		jffs2_dbg(1, "%s(): called with already obsolete node at 0x%08x\n",
586			  __func__, ref_offset(ref));
587		return;
588	}
589	blocknr = ref->flash_offset / c->sector_size;
590	if (blocknr >= c->nr_blocks) {
591		pr_notice("raw node at 0x%08x is off the end of device!\n",
592			  ref->flash_offset);
593		BUG();
594	}
595	jeb = &c->blocks[blocknr];
596
597	if (jffs2_can_mark_obsolete(c) && !jffs2_is_readonly(c) &&
598	    !(c->flags & (JFFS2_SB_FLAG_SCANNING | JFFS2_SB_FLAG_BUILDING))) {
599		/* Hm. This may confuse static lock analysis. If any of the above
600		   three conditions is false, we're going to return from this
601		   function without actually obliterating any nodes or freeing
602		   any jffs2_raw_node_refs. So we don't need to stop erases from
603		   happening, or protect against people holding an obsolete
604		   jffs2_raw_node_ref without the erase_completion_lock. */
605		mutex_lock(&c->erase_free_sem);
606	}
607
608	spin_lock(&c->erase_completion_lock);
609
610	freed_len = ref_totlen(c, jeb, ref);
611
612	if (ref_flags(ref) == REF_UNCHECKED) {
613		D1(if (unlikely(jeb->unchecked_size < freed_len)) {
614				pr_notice("raw unchecked node of size 0x%08x freed from erase block %d at 0x%08x, but unchecked_size was already 0x%08x\n",
615					  freed_len, blocknr,
616					  ref->flash_offset, jeb->used_size);
617			BUG();
618		})
619			jffs2_dbg(1, "Obsoleting previously unchecked node at 0x%08x of len %x\n",
620				  ref_offset(ref), freed_len);
621		jeb->unchecked_size -= freed_len;
622		c->unchecked_size -= freed_len;
623	} else {
624		D1(if (unlikely(jeb->used_size < freed_len)) {
625				pr_notice("raw node of size 0x%08x freed from erase block %d at 0x%08x, but used_size was already 0x%08x\n",
626					  freed_len, blocknr,
627					  ref->flash_offset, jeb->used_size);
628			BUG();
629		})
630			jffs2_dbg(1, "Obsoleting node at 0x%08x of len %#x: ",
631				  ref_offset(ref), freed_len);
632		jeb->used_size -= freed_len;
633		c->used_size -= freed_len;
634	}
635
636	// Take care, that wasted size is taken into concern
637	if ((jeb->dirty_size || ISDIRTY(jeb->wasted_size + freed_len)) && jeb != c->nextblock) {
638		jffs2_dbg(1, "Dirtying\n");
639		addedsize = freed_len;
640		jeb->dirty_size += freed_len;
641		c->dirty_size += freed_len;
642
643		/* Convert wasted space to dirty, if not a bad block */
644		if (jeb->wasted_size) {
645			if (on_list(&jeb->list, &c->bad_used_list)) {
646				jffs2_dbg(1, "Leaving block at %08x on the bad_used_list\n",
647					  jeb->offset);
648				addedsize = 0; /* To fool the refiling code later */
649			} else {
650				jffs2_dbg(1, "Converting %d bytes of wasted space to dirty in block at %08x\n",
651					  jeb->wasted_size, jeb->offset);
652				addedsize += jeb->wasted_size;
653				jeb->dirty_size += jeb->wasted_size;
654				c->dirty_size += jeb->wasted_size;
655				c->wasted_size -= jeb->wasted_size;
656				jeb->wasted_size = 0;
657			}
658		}
659	} else {
660		jffs2_dbg(1, "Wasting\n");
661		addedsize = 0;
662		jeb->wasted_size += freed_len;
663		c->wasted_size += freed_len;
664	}
665	ref->flash_offset = ref_offset(ref) | REF_OBSOLETE;
666
667	jffs2_dbg_acct_sanity_check_nolock(c, jeb);
668	jffs2_dbg_acct_paranoia_check_nolock(c, jeb);
669
670	if (c->flags & JFFS2_SB_FLAG_SCANNING) {
671		/* Flash scanning is in progress. Don't muck about with the block
672		   lists because they're not ready yet, and don't actually
673		   obliterate nodes that look obsolete. If they weren't
674		   marked obsolete on the flash at the time they _became_
675		   obsolete, there was probably a reason for that. */
676		spin_unlock(&c->erase_completion_lock);
677		/* We didn't lock the erase_free_sem */
678		return;
679	}
680
681	if (jeb == c->nextblock) {
682		jffs2_dbg(2, "Not moving nextblock 0x%08x to dirty/erase_pending list\n",
683			  jeb->offset);
684	} else if (!jeb->used_size && !jeb->unchecked_size) {
685		if (jeb == c->gcblock) {
686			jffs2_dbg(1, "gcblock at 0x%08x completely dirtied. Clearing gcblock...\n",
687				  jeb->offset);
688			c->gcblock = NULL;
689		} else {
690			jffs2_dbg(1, "Eraseblock at 0x%08x completely dirtied. Removing from (dirty?) list...\n",
691				  jeb->offset);
692			list_del(&jeb->list);
693		}
694		if (jffs2_wbuf_dirty(c)) {
695			jffs2_dbg(1, "...and adding to erasable_pending_wbuf_list\n");
696			list_add_tail(&jeb->list, &c->erasable_pending_wbuf_list);
697		} else {
698			if (jiffies & 127) {
699				/* Most of the time, we just erase it immediately. Otherwise we
700				   spend ages scanning it on mount, etc. */
701				jffs2_dbg(1, "...and adding to erase_pending_list\n");
702				list_add_tail(&jeb->list, &c->erase_pending_list);
703				c->nr_erasing_blocks++;
704				jffs2_garbage_collect_trigger(c);
705			} else {
706				/* Sometimes, however, we leave it elsewhere so it doesn't get
707				   immediately reused, and we spread the load a bit. */
708				jffs2_dbg(1, "...and adding to erasable_list\n");
709				list_add_tail(&jeb->list, &c->erasable_list);
710			}
711		}
712		jffs2_dbg(1, "Done OK\n");
713	} else if (jeb == c->gcblock) {
714		jffs2_dbg(2, "Not moving gcblock 0x%08x to dirty_list\n",
715			  jeb->offset);
716	} else if (ISDIRTY(jeb->dirty_size) && !ISDIRTY(jeb->dirty_size - addedsize)) {
717		jffs2_dbg(1, "Eraseblock at 0x%08x is freshly dirtied. Removing from clean list...\n",
718			  jeb->offset);
719		list_del(&jeb->list);
720		jffs2_dbg(1, "...and adding to dirty_list\n");
721		list_add_tail(&jeb->list, &c->dirty_list);
722	} else if (VERYDIRTY(c, jeb->dirty_size) &&
723		   !VERYDIRTY(c, jeb->dirty_size - addedsize)) {
724		jffs2_dbg(1, "Eraseblock at 0x%08x is now very dirty. Removing from dirty list...\n",
725			  jeb->offset);
726		list_del(&jeb->list);
727		jffs2_dbg(1, "...and adding to very_dirty_list\n");
728		list_add_tail(&jeb->list, &c->very_dirty_list);
729	} else {
730		jffs2_dbg(1, "Eraseblock at 0x%08x not moved anywhere. (free 0x%08x, dirty 0x%08x, used 0x%08x)\n",
731			  jeb->offset, jeb->free_size, jeb->dirty_size,
732			  jeb->used_size);
733	}
734
735	spin_unlock(&c->erase_completion_lock);
736
737	if (!jffs2_can_mark_obsolete(c) || jffs2_is_readonly(c) ||
738		(c->flags & JFFS2_SB_FLAG_BUILDING)) {
739		/* We didn't lock the erase_free_sem */
740		return;
741	}
742
743	/* The erase_free_sem is locked, and has been since before we marked the node obsolete
744	   and potentially put its eraseblock onto the erase_pending_list. Thus, we know that
745	   the block hasn't _already_ been erased, and that 'ref' itself hasn't been freed yet
746	   by jffs2_free_jeb_node_refs() in erase.c. Which is nice. */
747
748	jffs2_dbg(1, "obliterating obsoleted node at 0x%08x\n",
749		  ref_offset(ref));
750	ret = jffs2_flash_read(c, ref_offset(ref), sizeof(n), &retlen, (char *)&n);
751	if (ret) {
752		pr_warn("Read error reading from obsoleted node at 0x%08x: %d\n",
753			ref_offset(ref), ret);
754		goto out_erase_sem;
755	}
756	if (retlen != sizeof(n)) {
757		pr_warn("Short read from obsoleted node at 0x%08x: %zd\n",
758			ref_offset(ref), retlen);
759		goto out_erase_sem;
760	}
761	if (PAD(je32_to_cpu(n.totlen)) != PAD(freed_len)) {
762		pr_warn("Node totlen on flash (0x%08x) != totlen from node ref (0x%08x)\n",
763			je32_to_cpu(n.totlen), freed_len);
764		goto out_erase_sem;
765	}
766	if (!(je16_to_cpu(n.nodetype) & JFFS2_NODE_ACCURATE)) {
767		jffs2_dbg(1, "Node at 0x%08x was already marked obsolete (nodetype 0x%04x)\n",
768			  ref_offset(ref), je16_to_cpu(n.nodetype));
769		goto out_erase_sem;
770	}
771	/* XXX FIXME: This is ugly now */
772	n.nodetype = cpu_to_je16(je16_to_cpu(n.nodetype) & ~JFFS2_NODE_ACCURATE);
773	ret = jffs2_flash_write(c, ref_offset(ref), sizeof(n), &retlen, (char *)&n);
774	if (ret) {
775		pr_warn("Write error in obliterating obsoleted node at 0x%08x: %d\n",
776			ref_offset(ref), ret);
777		goto out_erase_sem;
778	}
779	if (retlen != sizeof(n)) {
780		pr_warn("Short write in obliterating obsoleted node at 0x%08x: %zd\n",
781			ref_offset(ref), retlen);
782		goto out_erase_sem;
783	}
784
785	/* Nodes which have been marked obsolete no longer need to be
786	   associated with any inode. Remove them from the per-inode list.
787
788	   Note we can't do this for NAND at the moment because we need
789	   obsolete dirent nodes to stay on the lists, because of the
790	   horridness in jffs2_garbage_collect_deletion_dirent(). Also
791	   because we delete the inocache, and on NAND we need that to
792	   stay around until all the nodes are actually erased, in order
793	   to stop us from giving the same inode number to another newly
794	   created inode. */
795	if (ref->next_in_ino) {
796		struct jffs2_inode_cache *ic;
797		struct jffs2_raw_node_ref **p;
798
799		spin_lock(&c->erase_completion_lock);
800
801		ic = jffs2_raw_ref_to_ic(ref);
802		for (p = &ic->nodes; (*p) != ref; p = &((*p)->next_in_ino))
803			;
804
805		*p = ref->next_in_ino;
806		ref->next_in_ino = NULL;
807
808		switch (ic->class) {
809#ifdef CONFIG_JFFS2_FS_XATTR
810			case RAWNODE_CLASS_XATTR_DATUM:
811				jffs2_release_xattr_datum(c, (struct jffs2_xattr_datum *)ic);
812				break;
813			case RAWNODE_CLASS_XATTR_REF:
814				jffs2_release_xattr_ref(c, (struct jffs2_xattr_ref *)ic);
815				break;
816#endif
817			default:
818				if (ic->nodes == (void *)ic && ic->pino_nlink == 0)
819					jffs2_del_ino_cache(c, ic);
820				break;
821		}
822		spin_unlock(&c->erase_completion_lock);
823	}
824
825 out_erase_sem:
826	mutex_unlock(&c->erase_free_sem);
827}
828
829int jffs2_thread_should_wake(struct jffs2_sb_info *c)
830{
831	int ret = 0;
832	uint32_t dirty;
833	int nr_very_dirty = 0;
834	struct jffs2_eraseblock *jeb;
835
836	if (!list_empty(&c->erase_complete_list) ||
837	    !list_empty(&c->erase_pending_list))
838		return 1;
839
840	if (c->unchecked_size) {
841		jffs2_dbg(1, "jffs2_thread_should_wake(): unchecked_size %d, checked_ino #%d\n",
842			  c->unchecked_size, c->checked_ino);
843		return 1;
844	}
845
846	/* dirty_size contains blocks on erase_pending_list
847	 * those blocks are counted in c->nr_erasing_blocks.
848	 * If one block is actually erased, it is not longer counted as dirty_space
849	 * but it is counted in c->nr_erasing_blocks, so we add it and subtract it
850	 * with c->nr_erasing_blocks * c->sector_size again.
851	 * Blocks on erasable_list are counted as dirty_size, but not in c->nr_erasing_blocks
852	 * This helps us to force gc and pick eventually a clean block to spread the load.
853	 */
854	dirty = c->dirty_size + c->erasing_size - c->nr_erasing_blocks * c->sector_size;
855
856	if (c->nr_free_blocks + c->nr_erasing_blocks < c->resv_blocks_gctrigger &&
857			(dirty > c->nospc_dirty_size))
858		ret = 1;
859
860	list_for_each_entry(jeb, &c->very_dirty_list, list) {
861		nr_very_dirty++;
862		if (nr_very_dirty == c->vdirty_blocks_gctrigger) {
863			ret = 1;
864			/* In debug mode, actually go through and count them all */
865			D1(continue);
866			break;
867		}
868	}
869
870	jffs2_dbg(1, "%s(): nr_free_blocks %d, nr_erasing_blocks %d, dirty_size 0x%x, vdirty_blocks %d: %s\n",
871		  __func__, c->nr_free_blocks, c->nr_erasing_blocks,
872		  c->dirty_size, nr_very_dirty, ret ? "yes" : "no");
873
874	return ret;
875}