Loading...
1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * (C) Copyright Linus Torvalds 1999
4 * (C) Copyright Johannes Erdfelt 1999-2001
5 * (C) Copyright Andreas Gal 1999
6 * (C) Copyright Gregory P. Smith 1999
7 * (C) Copyright Deti Fliegl 1999
8 * (C) Copyright Randy Dunlap 2000
9 * (C) Copyright David Brownell 2000-2002
10 */
11
12#include <linux/bcd.h>
13#include <linux/module.h>
14#include <linux/version.h>
15#include <linux/kernel.h>
16#include <linux/sched/task_stack.h>
17#include <linux/slab.h>
18#include <linux/completion.h>
19#include <linux/utsname.h>
20#include <linux/mm.h>
21#include <asm/io.h>
22#include <linux/device.h>
23#include <linux/dma-mapping.h>
24#include <linux/mutex.h>
25#include <asm/irq.h>
26#include <asm/byteorder.h>
27#include <asm/unaligned.h>
28#include <linux/platform_device.h>
29#include <linux/workqueue.h>
30#include <linux/pm_runtime.h>
31#include <linux/types.h>
32#include <linux/genalloc.h>
33#include <linux/io.h>
34#include <linux/kcov.h>
35
36#include <linux/phy/phy.h>
37#include <linux/usb.h>
38#include <linux/usb/hcd.h>
39#include <linux/usb/otg.h>
40
41#include "usb.h"
42#include "phy.h"
43
44
45/*-------------------------------------------------------------------------*/
46
47/*
48 * USB Host Controller Driver framework
49 *
50 * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
51 * HCD-specific behaviors/bugs.
52 *
53 * This does error checks, tracks devices and urbs, and delegates to a
54 * "hc_driver" only for code (and data) that really needs to know about
55 * hardware differences. That includes root hub registers, i/o queues,
56 * and so on ... but as little else as possible.
57 *
58 * Shared code includes most of the "root hub" code (these are emulated,
59 * though each HC's hardware works differently) and PCI glue, plus request
60 * tracking overhead. The HCD code should only block on spinlocks or on
61 * hardware handshaking; blocking on software events (such as other kernel
62 * threads releasing resources, or completing actions) is all generic.
63 *
64 * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
65 * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
66 * only by the hub driver ... and that neither should be seen or used by
67 * usb client device drivers.
68 *
69 * Contributors of ideas or unattributed patches include: David Brownell,
70 * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
71 *
72 * HISTORY:
73 * 2002-02-21 Pull in most of the usb_bus support from usb.c; some
74 * associated cleanup. "usb_hcd" still != "usb_bus".
75 * 2001-12-12 Initial patch version for Linux 2.5.1 kernel.
76 */
77
78/*-------------------------------------------------------------------------*/
79
80/* Keep track of which host controller drivers are loaded */
81unsigned long usb_hcds_loaded;
82EXPORT_SYMBOL_GPL(usb_hcds_loaded);
83
84/* host controllers we manage */
85DEFINE_IDR (usb_bus_idr);
86EXPORT_SYMBOL_GPL (usb_bus_idr);
87
88/* used when allocating bus numbers */
89#define USB_MAXBUS 64
90
91/* used when updating list of hcds */
92DEFINE_MUTEX(usb_bus_idr_lock); /* exported only for usbfs */
93EXPORT_SYMBOL_GPL (usb_bus_idr_lock);
94
95/* used for controlling access to virtual root hubs */
96static DEFINE_SPINLOCK(hcd_root_hub_lock);
97
98/* used when updating an endpoint's URB list */
99static DEFINE_SPINLOCK(hcd_urb_list_lock);
100
101/* used to protect against unlinking URBs after the device is gone */
102static DEFINE_SPINLOCK(hcd_urb_unlink_lock);
103
104/* wait queue for synchronous unlinks */
105DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
106
107/*-------------------------------------------------------------------------*/
108
109/*
110 * Sharable chunks of root hub code.
111 */
112
113/*-------------------------------------------------------------------------*/
114#define KERNEL_REL bin2bcd(((LINUX_VERSION_CODE >> 16) & 0x0ff))
115#define KERNEL_VER bin2bcd(((LINUX_VERSION_CODE >> 8) & 0x0ff))
116
117/* usb 3.1 root hub device descriptor */
118static const u8 usb31_rh_dev_descriptor[18] = {
119 0x12, /* __u8 bLength; */
120 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
121 0x10, 0x03, /* __le16 bcdUSB; v3.1 */
122
123 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
124 0x00, /* __u8 bDeviceSubClass; */
125 0x03, /* __u8 bDeviceProtocol; USB 3 hub */
126 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */
127
128 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
129 0x03, 0x00, /* __le16 idProduct; device 0x0003 */
130 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
131
132 0x03, /* __u8 iManufacturer; */
133 0x02, /* __u8 iProduct; */
134 0x01, /* __u8 iSerialNumber; */
135 0x01 /* __u8 bNumConfigurations; */
136};
137
138/* usb 3.0 root hub device descriptor */
139static const u8 usb3_rh_dev_descriptor[18] = {
140 0x12, /* __u8 bLength; */
141 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
142 0x00, 0x03, /* __le16 bcdUSB; v3.0 */
143
144 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
145 0x00, /* __u8 bDeviceSubClass; */
146 0x03, /* __u8 bDeviceProtocol; USB 3.0 hub */
147 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */
148
149 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
150 0x03, 0x00, /* __le16 idProduct; device 0x0003 */
151 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
152
153 0x03, /* __u8 iManufacturer; */
154 0x02, /* __u8 iProduct; */
155 0x01, /* __u8 iSerialNumber; */
156 0x01 /* __u8 bNumConfigurations; */
157};
158
159/* usb 2.5 (wireless USB 1.0) root hub device descriptor */
160static const u8 usb25_rh_dev_descriptor[18] = {
161 0x12, /* __u8 bLength; */
162 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
163 0x50, 0x02, /* __le16 bcdUSB; v2.5 */
164
165 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
166 0x00, /* __u8 bDeviceSubClass; */
167 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */
168 0xFF, /* __u8 bMaxPacketSize0; always 0xFF (WUSB Spec 7.4.1). */
169
170 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
171 0x02, 0x00, /* __le16 idProduct; device 0x0002 */
172 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
173
174 0x03, /* __u8 iManufacturer; */
175 0x02, /* __u8 iProduct; */
176 0x01, /* __u8 iSerialNumber; */
177 0x01 /* __u8 bNumConfigurations; */
178};
179
180/* usb 2.0 root hub device descriptor */
181static const u8 usb2_rh_dev_descriptor[18] = {
182 0x12, /* __u8 bLength; */
183 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
184 0x00, 0x02, /* __le16 bcdUSB; v2.0 */
185
186 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
187 0x00, /* __u8 bDeviceSubClass; */
188 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */
189 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
190
191 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
192 0x02, 0x00, /* __le16 idProduct; device 0x0002 */
193 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
194
195 0x03, /* __u8 iManufacturer; */
196 0x02, /* __u8 iProduct; */
197 0x01, /* __u8 iSerialNumber; */
198 0x01 /* __u8 bNumConfigurations; */
199};
200
201/* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
202
203/* usb 1.1 root hub device descriptor */
204static const u8 usb11_rh_dev_descriptor[18] = {
205 0x12, /* __u8 bLength; */
206 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
207 0x10, 0x01, /* __le16 bcdUSB; v1.1 */
208
209 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
210 0x00, /* __u8 bDeviceSubClass; */
211 0x00, /* __u8 bDeviceProtocol; [ low/full speeds only ] */
212 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
213
214 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
215 0x01, 0x00, /* __le16 idProduct; device 0x0001 */
216 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
217
218 0x03, /* __u8 iManufacturer; */
219 0x02, /* __u8 iProduct; */
220 0x01, /* __u8 iSerialNumber; */
221 0x01 /* __u8 bNumConfigurations; */
222};
223
224
225/*-------------------------------------------------------------------------*/
226
227/* Configuration descriptors for our root hubs */
228
229static const u8 fs_rh_config_descriptor[] = {
230
231 /* one configuration */
232 0x09, /* __u8 bLength; */
233 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
234 0x19, 0x00, /* __le16 wTotalLength; */
235 0x01, /* __u8 bNumInterfaces; (1) */
236 0x01, /* __u8 bConfigurationValue; */
237 0x00, /* __u8 iConfiguration; */
238 0xc0, /* __u8 bmAttributes;
239 Bit 7: must be set,
240 6: Self-powered,
241 5: Remote wakeup,
242 4..0: resvd */
243 0x00, /* __u8 MaxPower; */
244
245 /* USB 1.1:
246 * USB 2.0, single TT organization (mandatory):
247 * one interface, protocol 0
248 *
249 * USB 2.0, multiple TT organization (optional):
250 * two interfaces, protocols 1 (like single TT)
251 * and 2 (multiple TT mode) ... config is
252 * sometimes settable
253 * NOT IMPLEMENTED
254 */
255
256 /* one interface */
257 0x09, /* __u8 if_bLength; */
258 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
259 0x00, /* __u8 if_bInterfaceNumber; */
260 0x00, /* __u8 if_bAlternateSetting; */
261 0x01, /* __u8 if_bNumEndpoints; */
262 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
263 0x00, /* __u8 if_bInterfaceSubClass; */
264 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
265 0x00, /* __u8 if_iInterface; */
266
267 /* one endpoint (status change endpoint) */
268 0x07, /* __u8 ep_bLength; */
269 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
270 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
271 0x03, /* __u8 ep_bmAttributes; Interrupt */
272 0x02, 0x00, /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
273 0xff /* __u8 ep_bInterval; (255ms -- usb 2.0 spec) */
274};
275
276static const u8 hs_rh_config_descriptor[] = {
277
278 /* one configuration */
279 0x09, /* __u8 bLength; */
280 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
281 0x19, 0x00, /* __le16 wTotalLength; */
282 0x01, /* __u8 bNumInterfaces; (1) */
283 0x01, /* __u8 bConfigurationValue; */
284 0x00, /* __u8 iConfiguration; */
285 0xc0, /* __u8 bmAttributes;
286 Bit 7: must be set,
287 6: Self-powered,
288 5: Remote wakeup,
289 4..0: resvd */
290 0x00, /* __u8 MaxPower; */
291
292 /* USB 1.1:
293 * USB 2.0, single TT organization (mandatory):
294 * one interface, protocol 0
295 *
296 * USB 2.0, multiple TT organization (optional):
297 * two interfaces, protocols 1 (like single TT)
298 * and 2 (multiple TT mode) ... config is
299 * sometimes settable
300 * NOT IMPLEMENTED
301 */
302
303 /* one interface */
304 0x09, /* __u8 if_bLength; */
305 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
306 0x00, /* __u8 if_bInterfaceNumber; */
307 0x00, /* __u8 if_bAlternateSetting; */
308 0x01, /* __u8 if_bNumEndpoints; */
309 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
310 0x00, /* __u8 if_bInterfaceSubClass; */
311 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
312 0x00, /* __u8 if_iInterface; */
313
314 /* one endpoint (status change endpoint) */
315 0x07, /* __u8 ep_bLength; */
316 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
317 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
318 0x03, /* __u8 ep_bmAttributes; Interrupt */
319 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
320 * see hub.c:hub_configure() for details. */
321 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
322 0x0c /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */
323};
324
325static const u8 ss_rh_config_descriptor[] = {
326 /* one configuration */
327 0x09, /* __u8 bLength; */
328 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
329 0x1f, 0x00, /* __le16 wTotalLength; */
330 0x01, /* __u8 bNumInterfaces; (1) */
331 0x01, /* __u8 bConfigurationValue; */
332 0x00, /* __u8 iConfiguration; */
333 0xc0, /* __u8 bmAttributes;
334 Bit 7: must be set,
335 6: Self-powered,
336 5: Remote wakeup,
337 4..0: resvd */
338 0x00, /* __u8 MaxPower; */
339
340 /* one interface */
341 0x09, /* __u8 if_bLength; */
342 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
343 0x00, /* __u8 if_bInterfaceNumber; */
344 0x00, /* __u8 if_bAlternateSetting; */
345 0x01, /* __u8 if_bNumEndpoints; */
346 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
347 0x00, /* __u8 if_bInterfaceSubClass; */
348 0x00, /* __u8 if_bInterfaceProtocol; */
349 0x00, /* __u8 if_iInterface; */
350
351 /* one endpoint (status change endpoint) */
352 0x07, /* __u8 ep_bLength; */
353 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
354 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
355 0x03, /* __u8 ep_bmAttributes; Interrupt */
356 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
357 * see hub.c:hub_configure() for details. */
358 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
359 0x0c, /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */
360
361 /* one SuperSpeed endpoint companion descriptor */
362 0x06, /* __u8 ss_bLength */
363 USB_DT_SS_ENDPOINT_COMP, /* __u8 ss_bDescriptorType; SuperSpeed EP */
364 /* Companion */
365 0x00, /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */
366 0x00, /* __u8 ss_bmAttributes; 1 packet per service interval */
367 0x02, 0x00 /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */
368};
369
370/* authorized_default behaviour:
371 * -1 is authorized for all devices except wireless (old behaviour)
372 * 0 is unauthorized for all devices
373 * 1 is authorized for all devices
374 * 2 is authorized for internal devices
375 */
376#define USB_AUTHORIZE_WIRED -1
377#define USB_AUTHORIZE_NONE 0
378#define USB_AUTHORIZE_ALL 1
379#define USB_AUTHORIZE_INTERNAL 2
380
381static int authorized_default = USB_AUTHORIZE_WIRED;
382module_param(authorized_default, int, S_IRUGO|S_IWUSR);
383MODULE_PARM_DESC(authorized_default,
384 "Default USB device authorization: 0 is not authorized, 1 is "
385 "authorized, 2 is authorized for internal devices, -1 is "
386 "authorized except for wireless USB (default, old behaviour)");
387/*-------------------------------------------------------------------------*/
388
389/**
390 * ascii2desc() - Helper routine for producing UTF-16LE string descriptors
391 * @s: Null-terminated ASCII (actually ISO-8859-1) string
392 * @buf: Buffer for USB string descriptor (header + UTF-16LE)
393 * @len: Length (in bytes; may be odd) of descriptor buffer.
394 *
395 * Return: The number of bytes filled in: 2 + 2*strlen(s) or @len,
396 * whichever is less.
397 *
398 * Note:
399 * USB String descriptors can contain at most 126 characters; input
400 * strings longer than that are truncated.
401 */
402static unsigned
403ascii2desc(char const *s, u8 *buf, unsigned len)
404{
405 unsigned n, t = 2 + 2*strlen(s);
406
407 if (t > 254)
408 t = 254; /* Longest possible UTF string descriptor */
409 if (len > t)
410 len = t;
411
412 t += USB_DT_STRING << 8; /* Now t is first 16 bits to store */
413
414 n = len;
415 while (n--) {
416 *buf++ = t;
417 if (!n--)
418 break;
419 *buf++ = t >> 8;
420 t = (unsigned char)*s++;
421 }
422 return len;
423}
424
425/**
426 * rh_string() - provides string descriptors for root hub
427 * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor)
428 * @hcd: the host controller for this root hub
429 * @data: buffer for output packet
430 * @len: length of the provided buffer
431 *
432 * Produces either a manufacturer, product or serial number string for the
433 * virtual root hub device.
434 *
435 * Return: The number of bytes filled in: the length of the descriptor or
436 * of the provided buffer, whichever is less.
437 */
438static unsigned
439rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len)
440{
441 char buf[100];
442 char const *s;
443 static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04};
444
445 /* language ids */
446 switch (id) {
447 case 0:
448 /* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */
449 /* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */
450 if (len > 4)
451 len = 4;
452 memcpy(data, langids, len);
453 return len;
454 case 1:
455 /* Serial number */
456 s = hcd->self.bus_name;
457 break;
458 case 2:
459 /* Product name */
460 s = hcd->product_desc;
461 break;
462 case 3:
463 /* Manufacturer */
464 snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
465 init_utsname()->release, hcd->driver->description);
466 s = buf;
467 break;
468 default:
469 /* Can't happen; caller guarantees it */
470 return 0;
471 }
472
473 return ascii2desc(s, data, len);
474}
475
476
477/* Root hub control transfers execute synchronously */
478static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
479{
480 struct usb_ctrlrequest *cmd;
481 u16 typeReq, wValue, wIndex, wLength;
482 u8 *ubuf = urb->transfer_buffer;
483 unsigned len = 0;
484 int status;
485 u8 patch_wakeup = 0;
486 u8 patch_protocol = 0;
487 u16 tbuf_size;
488 u8 *tbuf = NULL;
489 const u8 *bufp;
490
491 might_sleep();
492
493 spin_lock_irq(&hcd_root_hub_lock);
494 status = usb_hcd_link_urb_to_ep(hcd, urb);
495 spin_unlock_irq(&hcd_root_hub_lock);
496 if (status)
497 return status;
498 urb->hcpriv = hcd; /* Indicate it's queued */
499
500 cmd = (struct usb_ctrlrequest *) urb->setup_packet;
501 typeReq = (cmd->bRequestType << 8) | cmd->bRequest;
502 wValue = le16_to_cpu (cmd->wValue);
503 wIndex = le16_to_cpu (cmd->wIndex);
504 wLength = le16_to_cpu (cmd->wLength);
505
506 if (wLength > urb->transfer_buffer_length)
507 goto error;
508
509 /*
510 * tbuf should be at least as big as the
511 * USB hub descriptor.
512 */
513 tbuf_size = max_t(u16, sizeof(struct usb_hub_descriptor), wLength);
514 tbuf = kzalloc(tbuf_size, GFP_KERNEL);
515 if (!tbuf) {
516 status = -ENOMEM;
517 goto err_alloc;
518 }
519
520 bufp = tbuf;
521
522
523 urb->actual_length = 0;
524 switch (typeReq) {
525
526 /* DEVICE REQUESTS */
527
528 /* The root hub's remote wakeup enable bit is implemented using
529 * driver model wakeup flags. If this system supports wakeup
530 * through USB, userspace may change the default "allow wakeup"
531 * policy through sysfs or these calls.
532 *
533 * Most root hubs support wakeup from downstream devices, for
534 * runtime power management (disabling USB clocks and reducing
535 * VBUS power usage). However, not all of them do so; silicon,
536 * board, and BIOS bugs here are not uncommon, so these can't
537 * be treated quite like external hubs.
538 *
539 * Likewise, not all root hubs will pass wakeup events upstream,
540 * to wake up the whole system. So don't assume root hub and
541 * controller capabilities are identical.
542 */
543
544 case DeviceRequest | USB_REQ_GET_STATUS:
545 tbuf[0] = (device_may_wakeup(&hcd->self.root_hub->dev)
546 << USB_DEVICE_REMOTE_WAKEUP)
547 | (1 << USB_DEVICE_SELF_POWERED);
548 tbuf[1] = 0;
549 len = 2;
550 break;
551 case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
552 if (wValue == USB_DEVICE_REMOTE_WAKEUP)
553 device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
554 else
555 goto error;
556 break;
557 case DeviceOutRequest | USB_REQ_SET_FEATURE:
558 if (device_can_wakeup(&hcd->self.root_hub->dev)
559 && wValue == USB_DEVICE_REMOTE_WAKEUP)
560 device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
561 else
562 goto error;
563 break;
564 case DeviceRequest | USB_REQ_GET_CONFIGURATION:
565 tbuf[0] = 1;
566 len = 1;
567 fallthrough;
568 case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
569 break;
570 case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
571 switch (wValue & 0xff00) {
572 case USB_DT_DEVICE << 8:
573 switch (hcd->speed) {
574 case HCD_USB32:
575 case HCD_USB31:
576 bufp = usb31_rh_dev_descriptor;
577 break;
578 case HCD_USB3:
579 bufp = usb3_rh_dev_descriptor;
580 break;
581 case HCD_USB25:
582 bufp = usb25_rh_dev_descriptor;
583 break;
584 case HCD_USB2:
585 bufp = usb2_rh_dev_descriptor;
586 break;
587 case HCD_USB11:
588 bufp = usb11_rh_dev_descriptor;
589 break;
590 default:
591 goto error;
592 }
593 len = 18;
594 if (hcd->has_tt)
595 patch_protocol = 1;
596 break;
597 case USB_DT_CONFIG << 8:
598 switch (hcd->speed) {
599 case HCD_USB32:
600 case HCD_USB31:
601 case HCD_USB3:
602 bufp = ss_rh_config_descriptor;
603 len = sizeof ss_rh_config_descriptor;
604 break;
605 case HCD_USB25:
606 case HCD_USB2:
607 bufp = hs_rh_config_descriptor;
608 len = sizeof hs_rh_config_descriptor;
609 break;
610 case HCD_USB11:
611 bufp = fs_rh_config_descriptor;
612 len = sizeof fs_rh_config_descriptor;
613 break;
614 default:
615 goto error;
616 }
617 if (device_can_wakeup(&hcd->self.root_hub->dev))
618 patch_wakeup = 1;
619 break;
620 case USB_DT_STRING << 8:
621 if ((wValue & 0xff) < 4)
622 urb->actual_length = rh_string(wValue & 0xff,
623 hcd, ubuf, wLength);
624 else /* unsupported IDs --> "protocol stall" */
625 goto error;
626 break;
627 case USB_DT_BOS << 8:
628 goto nongeneric;
629 default:
630 goto error;
631 }
632 break;
633 case DeviceRequest | USB_REQ_GET_INTERFACE:
634 tbuf[0] = 0;
635 len = 1;
636 fallthrough;
637 case DeviceOutRequest | USB_REQ_SET_INTERFACE:
638 break;
639 case DeviceOutRequest | USB_REQ_SET_ADDRESS:
640 /* wValue == urb->dev->devaddr */
641 dev_dbg (hcd->self.controller, "root hub device address %d\n",
642 wValue);
643 break;
644
645 /* INTERFACE REQUESTS (no defined feature/status flags) */
646
647 /* ENDPOINT REQUESTS */
648
649 case EndpointRequest | USB_REQ_GET_STATUS:
650 /* ENDPOINT_HALT flag */
651 tbuf[0] = 0;
652 tbuf[1] = 0;
653 len = 2;
654 fallthrough;
655 case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
656 case EndpointOutRequest | USB_REQ_SET_FEATURE:
657 dev_dbg (hcd->self.controller, "no endpoint features yet\n");
658 break;
659
660 /* CLASS REQUESTS (and errors) */
661
662 default:
663nongeneric:
664 /* non-generic request */
665 switch (typeReq) {
666 case GetHubStatus:
667 len = 4;
668 break;
669 case GetPortStatus:
670 if (wValue == HUB_PORT_STATUS)
671 len = 4;
672 else
673 /* other port status types return 8 bytes */
674 len = 8;
675 break;
676 case GetHubDescriptor:
677 len = sizeof (struct usb_hub_descriptor);
678 break;
679 case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
680 /* len is returned by hub_control */
681 break;
682 }
683 status = hcd->driver->hub_control (hcd,
684 typeReq, wValue, wIndex,
685 tbuf, wLength);
686
687 if (typeReq == GetHubDescriptor)
688 usb_hub_adjust_deviceremovable(hcd->self.root_hub,
689 (struct usb_hub_descriptor *)tbuf);
690 break;
691error:
692 /* "protocol stall" on error */
693 status = -EPIPE;
694 }
695
696 if (status < 0) {
697 len = 0;
698 if (status != -EPIPE) {
699 dev_dbg (hcd->self.controller,
700 "CTRL: TypeReq=0x%x val=0x%x "
701 "idx=0x%x len=%d ==> %d\n",
702 typeReq, wValue, wIndex,
703 wLength, status);
704 }
705 } else if (status > 0) {
706 /* hub_control may return the length of data copied. */
707 len = status;
708 status = 0;
709 }
710 if (len) {
711 if (urb->transfer_buffer_length < len)
712 len = urb->transfer_buffer_length;
713 urb->actual_length = len;
714 /* always USB_DIR_IN, toward host */
715 memcpy (ubuf, bufp, len);
716
717 /* report whether RH hardware supports remote wakeup */
718 if (patch_wakeup &&
719 len > offsetof (struct usb_config_descriptor,
720 bmAttributes))
721 ((struct usb_config_descriptor *)ubuf)->bmAttributes
722 |= USB_CONFIG_ATT_WAKEUP;
723
724 /* report whether RH hardware has an integrated TT */
725 if (patch_protocol &&
726 len > offsetof(struct usb_device_descriptor,
727 bDeviceProtocol))
728 ((struct usb_device_descriptor *) ubuf)->
729 bDeviceProtocol = USB_HUB_PR_HS_SINGLE_TT;
730 }
731
732 kfree(tbuf);
733 err_alloc:
734
735 /* any errors get returned through the urb completion */
736 spin_lock_irq(&hcd_root_hub_lock);
737 usb_hcd_unlink_urb_from_ep(hcd, urb);
738 usb_hcd_giveback_urb(hcd, urb, status);
739 spin_unlock_irq(&hcd_root_hub_lock);
740 return 0;
741}
742
743/*-------------------------------------------------------------------------*/
744
745/*
746 * Root Hub interrupt transfers are polled using a timer if the
747 * driver requests it; otherwise the driver is responsible for
748 * calling usb_hcd_poll_rh_status() when an event occurs.
749 *
750 * Completions are called in_interrupt(), but they may or may not
751 * be in_irq().
752 */
753void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
754{
755 struct urb *urb;
756 int length;
757 unsigned long flags;
758 char buffer[6]; /* Any root hubs with > 31 ports? */
759
760 if (unlikely(!hcd->rh_pollable))
761 return;
762 if (!hcd->uses_new_polling && !hcd->status_urb)
763 return;
764
765 length = hcd->driver->hub_status_data(hcd, buffer);
766 if (length > 0) {
767
768 /* try to complete the status urb */
769 spin_lock_irqsave(&hcd_root_hub_lock, flags);
770 urb = hcd->status_urb;
771 if (urb) {
772 clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
773 hcd->status_urb = NULL;
774 urb->actual_length = length;
775 memcpy(urb->transfer_buffer, buffer, length);
776
777 usb_hcd_unlink_urb_from_ep(hcd, urb);
778 usb_hcd_giveback_urb(hcd, urb, 0);
779 } else {
780 length = 0;
781 set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
782 }
783 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
784 }
785
786 /* The USB 2.0 spec says 256 ms. This is close enough and won't
787 * exceed that limit if HZ is 100. The math is more clunky than
788 * maybe expected, this is to make sure that all timers for USB devices
789 * fire at the same time to give the CPU a break in between */
790 if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) :
791 (length == 0 && hcd->status_urb != NULL))
792 mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
793}
794EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
795
796/* timer callback */
797static void rh_timer_func (struct timer_list *t)
798{
799 struct usb_hcd *_hcd = from_timer(_hcd, t, rh_timer);
800
801 usb_hcd_poll_rh_status(_hcd);
802}
803
804/*-------------------------------------------------------------------------*/
805
806static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
807{
808 int retval;
809 unsigned long flags;
810 unsigned len = 1 + (urb->dev->maxchild / 8);
811
812 spin_lock_irqsave (&hcd_root_hub_lock, flags);
813 if (hcd->status_urb || urb->transfer_buffer_length < len) {
814 dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
815 retval = -EINVAL;
816 goto done;
817 }
818
819 retval = usb_hcd_link_urb_to_ep(hcd, urb);
820 if (retval)
821 goto done;
822
823 hcd->status_urb = urb;
824 urb->hcpriv = hcd; /* indicate it's queued */
825 if (!hcd->uses_new_polling)
826 mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
827
828 /* If a status change has already occurred, report it ASAP */
829 else if (HCD_POLL_PENDING(hcd))
830 mod_timer(&hcd->rh_timer, jiffies);
831 retval = 0;
832 done:
833 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
834 return retval;
835}
836
837static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
838{
839 if (usb_endpoint_xfer_int(&urb->ep->desc))
840 return rh_queue_status (hcd, urb);
841 if (usb_endpoint_xfer_control(&urb->ep->desc))
842 return rh_call_control (hcd, urb);
843 return -EINVAL;
844}
845
846/*-------------------------------------------------------------------------*/
847
848/* Unlinks of root-hub control URBs are legal, but they don't do anything
849 * since these URBs always execute synchronously.
850 */
851static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
852{
853 unsigned long flags;
854 int rc;
855
856 spin_lock_irqsave(&hcd_root_hub_lock, flags);
857 rc = usb_hcd_check_unlink_urb(hcd, urb, status);
858 if (rc)
859 goto done;
860
861 if (usb_endpoint_num(&urb->ep->desc) == 0) { /* Control URB */
862 ; /* Do nothing */
863
864 } else { /* Status URB */
865 if (!hcd->uses_new_polling)
866 del_timer (&hcd->rh_timer);
867 if (urb == hcd->status_urb) {
868 hcd->status_urb = NULL;
869 usb_hcd_unlink_urb_from_ep(hcd, urb);
870 usb_hcd_giveback_urb(hcd, urb, status);
871 }
872 }
873 done:
874 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
875 return rc;
876}
877
878
879/*-------------------------------------------------------------------------*/
880
881/**
882 * usb_bus_init - shared initialization code
883 * @bus: the bus structure being initialized
884 *
885 * This code is used to initialize a usb_bus structure, memory for which is
886 * separately managed.
887 */
888static void usb_bus_init (struct usb_bus *bus)
889{
890 memset (&bus->devmap, 0, sizeof(struct usb_devmap));
891
892 bus->devnum_next = 1;
893
894 bus->root_hub = NULL;
895 bus->busnum = -1;
896 bus->bandwidth_allocated = 0;
897 bus->bandwidth_int_reqs = 0;
898 bus->bandwidth_isoc_reqs = 0;
899 mutex_init(&bus->devnum_next_mutex);
900}
901
902/*-------------------------------------------------------------------------*/
903
904/**
905 * usb_register_bus - registers the USB host controller with the usb core
906 * @bus: pointer to the bus to register
907 * Context: !in_interrupt()
908 *
909 * Assigns a bus number, and links the controller into usbcore data
910 * structures so that it can be seen by scanning the bus list.
911 *
912 * Return: 0 if successful. A negative error code otherwise.
913 */
914static int usb_register_bus(struct usb_bus *bus)
915{
916 int result = -E2BIG;
917 int busnum;
918
919 mutex_lock(&usb_bus_idr_lock);
920 busnum = idr_alloc(&usb_bus_idr, bus, 1, USB_MAXBUS, GFP_KERNEL);
921 if (busnum < 0) {
922 pr_err("%s: failed to get bus number\n", usbcore_name);
923 goto error_find_busnum;
924 }
925 bus->busnum = busnum;
926 mutex_unlock(&usb_bus_idr_lock);
927
928 usb_notify_add_bus(bus);
929
930 dev_info (bus->controller, "new USB bus registered, assigned bus "
931 "number %d\n", bus->busnum);
932 return 0;
933
934error_find_busnum:
935 mutex_unlock(&usb_bus_idr_lock);
936 return result;
937}
938
939/**
940 * usb_deregister_bus - deregisters the USB host controller
941 * @bus: pointer to the bus to deregister
942 * Context: !in_interrupt()
943 *
944 * Recycles the bus number, and unlinks the controller from usbcore data
945 * structures so that it won't be seen by scanning the bus list.
946 */
947static void usb_deregister_bus (struct usb_bus *bus)
948{
949 dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
950
951 /*
952 * NOTE: make sure that all the devices are removed by the
953 * controller code, as well as having it call this when cleaning
954 * itself up
955 */
956 mutex_lock(&usb_bus_idr_lock);
957 idr_remove(&usb_bus_idr, bus->busnum);
958 mutex_unlock(&usb_bus_idr_lock);
959
960 usb_notify_remove_bus(bus);
961}
962
963/**
964 * register_root_hub - called by usb_add_hcd() to register a root hub
965 * @hcd: host controller for this root hub
966 *
967 * This function registers the root hub with the USB subsystem. It sets up
968 * the device properly in the device tree and then calls usb_new_device()
969 * to register the usb device. It also assigns the root hub's USB address
970 * (always 1).
971 *
972 * Return: 0 if successful. A negative error code otherwise.
973 */
974static int register_root_hub(struct usb_hcd *hcd)
975{
976 struct device *parent_dev = hcd->self.controller;
977 struct usb_device *usb_dev = hcd->self.root_hub;
978 const int devnum = 1;
979 int retval;
980
981 usb_dev->devnum = devnum;
982 usb_dev->bus->devnum_next = devnum + 1;
983 set_bit (devnum, usb_dev->bus->devmap.devicemap);
984 usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
985
986 mutex_lock(&usb_bus_idr_lock);
987
988 usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64);
989 retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE);
990 if (retval != sizeof usb_dev->descriptor) {
991 mutex_unlock(&usb_bus_idr_lock);
992 dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
993 dev_name(&usb_dev->dev), retval);
994 return (retval < 0) ? retval : -EMSGSIZE;
995 }
996
997 if (le16_to_cpu(usb_dev->descriptor.bcdUSB) >= 0x0201) {
998 retval = usb_get_bos_descriptor(usb_dev);
999 if (!retval) {
1000 usb_dev->lpm_capable = usb_device_supports_lpm(usb_dev);
1001 } else if (usb_dev->speed >= USB_SPEED_SUPER) {
1002 mutex_unlock(&usb_bus_idr_lock);
1003 dev_dbg(parent_dev, "can't read %s bos descriptor %d\n",
1004 dev_name(&usb_dev->dev), retval);
1005 return retval;
1006 }
1007 }
1008
1009 retval = usb_new_device (usb_dev);
1010 if (retval) {
1011 dev_err (parent_dev, "can't register root hub for %s, %d\n",
1012 dev_name(&usb_dev->dev), retval);
1013 } else {
1014 spin_lock_irq (&hcd_root_hub_lock);
1015 hcd->rh_registered = 1;
1016 spin_unlock_irq (&hcd_root_hub_lock);
1017
1018 /* Did the HC die before the root hub was registered? */
1019 if (HCD_DEAD(hcd))
1020 usb_hc_died (hcd); /* This time clean up */
1021 }
1022 mutex_unlock(&usb_bus_idr_lock);
1023
1024 return retval;
1025}
1026
1027/*
1028 * usb_hcd_start_port_resume - a root-hub port is sending a resume signal
1029 * @bus: the bus which the root hub belongs to
1030 * @portnum: the port which is being resumed
1031 *
1032 * HCDs should call this function when they know that a resume signal is
1033 * being sent to a root-hub port. The root hub will be prevented from
1034 * going into autosuspend until usb_hcd_end_port_resume() is called.
1035 *
1036 * The bus's private lock must be held by the caller.
1037 */
1038void usb_hcd_start_port_resume(struct usb_bus *bus, int portnum)
1039{
1040 unsigned bit = 1 << portnum;
1041
1042 if (!(bus->resuming_ports & bit)) {
1043 bus->resuming_ports |= bit;
1044 pm_runtime_get_noresume(&bus->root_hub->dev);
1045 }
1046}
1047EXPORT_SYMBOL_GPL(usb_hcd_start_port_resume);
1048
1049/*
1050 * usb_hcd_end_port_resume - a root-hub port has stopped sending a resume signal
1051 * @bus: the bus which the root hub belongs to
1052 * @portnum: the port which is being resumed
1053 *
1054 * HCDs should call this function when they know that a resume signal has
1055 * stopped being sent to a root-hub port. The root hub will be allowed to
1056 * autosuspend again.
1057 *
1058 * The bus's private lock must be held by the caller.
1059 */
1060void usb_hcd_end_port_resume(struct usb_bus *bus, int portnum)
1061{
1062 unsigned bit = 1 << portnum;
1063
1064 if (bus->resuming_ports & bit) {
1065 bus->resuming_ports &= ~bit;
1066 pm_runtime_put_noidle(&bus->root_hub->dev);
1067 }
1068}
1069EXPORT_SYMBOL_GPL(usb_hcd_end_port_resume);
1070
1071/*-------------------------------------------------------------------------*/
1072
1073/**
1074 * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
1075 * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
1076 * @is_input: true iff the transaction sends data to the host
1077 * @isoc: true for isochronous transactions, false for interrupt ones
1078 * @bytecount: how many bytes in the transaction.
1079 *
1080 * Return: Approximate bus time in nanoseconds for a periodic transaction.
1081 *
1082 * Note:
1083 * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
1084 * scheduled in software, this function is only used for such scheduling.
1085 */
1086long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
1087{
1088 unsigned long tmp;
1089
1090 switch (speed) {
1091 case USB_SPEED_LOW: /* INTR only */
1092 if (is_input) {
1093 tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
1094 return 64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1095 } else {
1096 tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
1097 return 64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1098 }
1099 case USB_SPEED_FULL: /* ISOC or INTR */
1100 if (isoc) {
1101 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1102 return ((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp;
1103 } else {
1104 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1105 return 9107L + BW_HOST_DELAY + tmp;
1106 }
1107 case USB_SPEED_HIGH: /* ISOC or INTR */
1108 /* FIXME adjust for input vs output */
1109 if (isoc)
1110 tmp = HS_NSECS_ISO (bytecount);
1111 else
1112 tmp = HS_NSECS (bytecount);
1113 return tmp;
1114 default:
1115 pr_debug ("%s: bogus device speed!\n", usbcore_name);
1116 return -1;
1117 }
1118}
1119EXPORT_SYMBOL_GPL(usb_calc_bus_time);
1120
1121
1122/*-------------------------------------------------------------------------*/
1123
1124/*
1125 * Generic HC operations.
1126 */
1127
1128/*-------------------------------------------------------------------------*/
1129
1130/**
1131 * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
1132 * @hcd: host controller to which @urb was submitted
1133 * @urb: URB being submitted
1134 *
1135 * Host controller drivers should call this routine in their enqueue()
1136 * method. The HCD's private spinlock must be held and interrupts must
1137 * be disabled. The actions carried out here are required for URB
1138 * submission, as well as for endpoint shutdown and for usb_kill_urb.
1139 *
1140 * Return: 0 for no error, otherwise a negative error code (in which case
1141 * the enqueue() method must fail). If no error occurs but enqueue() fails
1142 * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
1143 * the private spinlock and returning.
1144 */
1145int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb)
1146{
1147 int rc = 0;
1148
1149 spin_lock(&hcd_urb_list_lock);
1150
1151 /* Check that the URB isn't being killed */
1152 if (unlikely(atomic_read(&urb->reject))) {
1153 rc = -EPERM;
1154 goto done;
1155 }
1156
1157 if (unlikely(!urb->ep->enabled)) {
1158 rc = -ENOENT;
1159 goto done;
1160 }
1161
1162 if (unlikely(!urb->dev->can_submit)) {
1163 rc = -EHOSTUNREACH;
1164 goto done;
1165 }
1166
1167 /*
1168 * Check the host controller's state and add the URB to the
1169 * endpoint's queue.
1170 */
1171 if (HCD_RH_RUNNING(hcd)) {
1172 urb->unlinked = 0;
1173 list_add_tail(&urb->urb_list, &urb->ep->urb_list);
1174 } else {
1175 rc = -ESHUTDOWN;
1176 goto done;
1177 }
1178 done:
1179 spin_unlock(&hcd_urb_list_lock);
1180 return rc;
1181}
1182EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
1183
1184/**
1185 * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1186 * @hcd: host controller to which @urb was submitted
1187 * @urb: URB being checked for unlinkability
1188 * @status: error code to store in @urb if the unlink succeeds
1189 *
1190 * Host controller drivers should call this routine in their dequeue()
1191 * method. The HCD's private spinlock must be held and interrupts must
1192 * be disabled. The actions carried out here are required for making
1193 * sure than an unlink is valid.
1194 *
1195 * Return: 0 for no error, otherwise a negative error code (in which case
1196 * the dequeue() method must fail). The possible error codes are:
1197 *
1198 * -EIDRM: @urb was not submitted or has already completed.
1199 * The completion function may not have been called yet.
1200 *
1201 * -EBUSY: @urb has already been unlinked.
1202 */
1203int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb,
1204 int status)
1205{
1206 struct list_head *tmp;
1207
1208 /* insist the urb is still queued */
1209 list_for_each(tmp, &urb->ep->urb_list) {
1210 if (tmp == &urb->urb_list)
1211 break;
1212 }
1213 if (tmp != &urb->urb_list)
1214 return -EIDRM;
1215
1216 /* Any status except -EINPROGRESS means something already started to
1217 * unlink this URB from the hardware. So there's no more work to do.
1218 */
1219 if (urb->unlinked)
1220 return -EBUSY;
1221 urb->unlinked = status;
1222 return 0;
1223}
1224EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb);
1225
1226/**
1227 * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1228 * @hcd: host controller to which @urb was submitted
1229 * @urb: URB being unlinked
1230 *
1231 * Host controller drivers should call this routine before calling
1232 * usb_hcd_giveback_urb(). The HCD's private spinlock must be held and
1233 * interrupts must be disabled. The actions carried out here are required
1234 * for URB completion.
1235 */
1236void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb)
1237{
1238 /* clear all state linking urb to this dev (and hcd) */
1239 spin_lock(&hcd_urb_list_lock);
1240 list_del_init(&urb->urb_list);
1241 spin_unlock(&hcd_urb_list_lock);
1242}
1243EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
1244
1245/*
1246 * Some usb host controllers can only perform dma using a small SRAM area.
1247 * The usb core itself is however optimized for host controllers that can dma
1248 * using regular system memory - like pci devices doing bus mastering.
1249 *
1250 * To support host controllers with limited dma capabilities we provide dma
1251 * bounce buffers. This feature can be enabled by initializing
1252 * hcd->localmem_pool using usb_hcd_setup_local_mem().
1253 *
1254 * The initialized hcd->localmem_pool then tells the usb code to allocate all
1255 * data for dma using the genalloc API.
1256 *
1257 * So, to summarize...
1258 *
1259 * - We need "local" memory, canonical example being
1260 * a small SRAM on a discrete controller being the
1261 * only memory that the controller can read ...
1262 * (a) "normal" kernel memory is no good, and
1263 * (b) there's not enough to share
1264 *
1265 * - So we use that, even though the primary requirement
1266 * is that the memory be "local" (hence addressable
1267 * by that device), not "coherent".
1268 *
1269 */
1270
1271static int hcd_alloc_coherent(struct usb_bus *bus,
1272 gfp_t mem_flags, dma_addr_t *dma_handle,
1273 void **vaddr_handle, size_t size,
1274 enum dma_data_direction dir)
1275{
1276 unsigned char *vaddr;
1277
1278 if (*vaddr_handle == NULL) {
1279 WARN_ON_ONCE(1);
1280 return -EFAULT;
1281 }
1282
1283 vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr),
1284 mem_flags, dma_handle);
1285 if (!vaddr)
1286 return -ENOMEM;
1287
1288 /*
1289 * Store the virtual address of the buffer at the end
1290 * of the allocated dma buffer. The size of the buffer
1291 * may be uneven so use unaligned functions instead
1292 * of just rounding up. It makes sense to optimize for
1293 * memory footprint over access speed since the amount
1294 * of memory available for dma may be limited.
1295 */
1296 put_unaligned((unsigned long)*vaddr_handle,
1297 (unsigned long *)(vaddr + size));
1298
1299 if (dir == DMA_TO_DEVICE)
1300 memcpy(vaddr, *vaddr_handle, size);
1301
1302 *vaddr_handle = vaddr;
1303 return 0;
1304}
1305
1306static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle,
1307 void **vaddr_handle, size_t size,
1308 enum dma_data_direction dir)
1309{
1310 unsigned char *vaddr = *vaddr_handle;
1311
1312 vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size));
1313
1314 if (dir == DMA_FROM_DEVICE)
1315 memcpy(vaddr, *vaddr_handle, size);
1316
1317 hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle);
1318
1319 *vaddr_handle = vaddr;
1320 *dma_handle = 0;
1321}
1322
1323void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb)
1324{
1325 if (IS_ENABLED(CONFIG_HAS_DMA) &&
1326 (urb->transfer_flags & URB_SETUP_MAP_SINGLE))
1327 dma_unmap_single(hcd->self.sysdev,
1328 urb->setup_dma,
1329 sizeof(struct usb_ctrlrequest),
1330 DMA_TO_DEVICE);
1331 else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL)
1332 hcd_free_coherent(urb->dev->bus,
1333 &urb->setup_dma,
1334 (void **) &urb->setup_packet,
1335 sizeof(struct usb_ctrlrequest),
1336 DMA_TO_DEVICE);
1337
1338 /* Make it safe to call this routine more than once */
1339 urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL);
1340}
1341EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma);
1342
1343static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1344{
1345 if (hcd->driver->unmap_urb_for_dma)
1346 hcd->driver->unmap_urb_for_dma(hcd, urb);
1347 else
1348 usb_hcd_unmap_urb_for_dma(hcd, urb);
1349}
1350
1351void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1352{
1353 enum dma_data_direction dir;
1354
1355 usb_hcd_unmap_urb_setup_for_dma(hcd, urb);
1356
1357 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1358 if (IS_ENABLED(CONFIG_HAS_DMA) &&
1359 (urb->transfer_flags & URB_DMA_MAP_SG))
1360 dma_unmap_sg(hcd->self.sysdev,
1361 urb->sg,
1362 urb->num_sgs,
1363 dir);
1364 else if (IS_ENABLED(CONFIG_HAS_DMA) &&
1365 (urb->transfer_flags & URB_DMA_MAP_PAGE))
1366 dma_unmap_page(hcd->self.sysdev,
1367 urb->transfer_dma,
1368 urb->transfer_buffer_length,
1369 dir);
1370 else if (IS_ENABLED(CONFIG_HAS_DMA) &&
1371 (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1372 dma_unmap_single(hcd->self.sysdev,
1373 urb->transfer_dma,
1374 urb->transfer_buffer_length,
1375 dir);
1376 else if (urb->transfer_flags & URB_MAP_LOCAL)
1377 hcd_free_coherent(urb->dev->bus,
1378 &urb->transfer_dma,
1379 &urb->transfer_buffer,
1380 urb->transfer_buffer_length,
1381 dir);
1382
1383 /* Make it safe to call this routine more than once */
1384 urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE |
1385 URB_DMA_MAP_SINGLE | URB_MAP_LOCAL);
1386}
1387EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma);
1388
1389static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1390 gfp_t mem_flags)
1391{
1392 if (hcd->driver->map_urb_for_dma)
1393 return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags);
1394 else
1395 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1396}
1397
1398int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1399 gfp_t mem_flags)
1400{
1401 enum dma_data_direction dir;
1402 int ret = 0;
1403
1404 /* Map the URB's buffers for DMA access.
1405 * Lower level HCD code should use *_dma exclusively,
1406 * unless it uses pio or talks to another transport,
1407 * or uses the provided scatter gather list for bulk.
1408 */
1409
1410 if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1411 if (hcd->self.uses_pio_for_control)
1412 return ret;
1413 if (hcd->localmem_pool) {
1414 ret = hcd_alloc_coherent(
1415 urb->dev->bus, mem_flags,
1416 &urb->setup_dma,
1417 (void **)&urb->setup_packet,
1418 sizeof(struct usb_ctrlrequest),
1419 DMA_TO_DEVICE);
1420 if (ret)
1421 return ret;
1422 urb->transfer_flags |= URB_SETUP_MAP_LOCAL;
1423 } else if (hcd_uses_dma(hcd)) {
1424 if (object_is_on_stack(urb->setup_packet)) {
1425 WARN_ONCE(1, "setup packet is on stack\n");
1426 return -EAGAIN;
1427 }
1428
1429 urb->setup_dma = dma_map_single(
1430 hcd->self.sysdev,
1431 urb->setup_packet,
1432 sizeof(struct usb_ctrlrequest),
1433 DMA_TO_DEVICE);
1434 if (dma_mapping_error(hcd->self.sysdev,
1435 urb->setup_dma))
1436 return -EAGAIN;
1437 urb->transfer_flags |= URB_SETUP_MAP_SINGLE;
1438 }
1439 }
1440
1441 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1442 if (urb->transfer_buffer_length != 0
1443 && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1444 if (hcd->localmem_pool) {
1445 ret = hcd_alloc_coherent(
1446 urb->dev->bus, mem_flags,
1447 &urb->transfer_dma,
1448 &urb->transfer_buffer,
1449 urb->transfer_buffer_length,
1450 dir);
1451 if (ret == 0)
1452 urb->transfer_flags |= URB_MAP_LOCAL;
1453 } else if (hcd_uses_dma(hcd)) {
1454 if (urb->num_sgs) {
1455 int n;
1456
1457 /* We don't support sg for isoc transfers ! */
1458 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) {
1459 WARN_ON(1);
1460 return -EINVAL;
1461 }
1462
1463 n = dma_map_sg(
1464 hcd->self.sysdev,
1465 urb->sg,
1466 urb->num_sgs,
1467 dir);
1468 if (n <= 0)
1469 ret = -EAGAIN;
1470 else
1471 urb->transfer_flags |= URB_DMA_MAP_SG;
1472 urb->num_mapped_sgs = n;
1473 if (n != urb->num_sgs)
1474 urb->transfer_flags |=
1475 URB_DMA_SG_COMBINED;
1476 } else if (urb->sg) {
1477 struct scatterlist *sg = urb->sg;
1478 urb->transfer_dma = dma_map_page(
1479 hcd->self.sysdev,
1480 sg_page(sg),
1481 sg->offset,
1482 urb->transfer_buffer_length,
1483 dir);
1484 if (dma_mapping_error(hcd->self.sysdev,
1485 urb->transfer_dma))
1486 ret = -EAGAIN;
1487 else
1488 urb->transfer_flags |= URB_DMA_MAP_PAGE;
1489 } else if (object_is_on_stack(urb->transfer_buffer)) {
1490 WARN_ONCE(1, "transfer buffer is on stack\n");
1491 ret = -EAGAIN;
1492 } else {
1493 urb->transfer_dma = dma_map_single(
1494 hcd->self.sysdev,
1495 urb->transfer_buffer,
1496 urb->transfer_buffer_length,
1497 dir);
1498 if (dma_mapping_error(hcd->self.sysdev,
1499 urb->transfer_dma))
1500 ret = -EAGAIN;
1501 else
1502 urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1503 }
1504 }
1505 if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE |
1506 URB_SETUP_MAP_LOCAL)))
1507 usb_hcd_unmap_urb_for_dma(hcd, urb);
1508 }
1509 return ret;
1510}
1511EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma);
1512
1513/*-------------------------------------------------------------------------*/
1514
1515/* may be called in any context with a valid urb->dev usecount
1516 * caller surrenders "ownership" of urb
1517 * expects usb_submit_urb() to have sanity checked and conditioned all
1518 * inputs in the urb
1519 */
1520int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1521{
1522 int status;
1523 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1524
1525 /* increment urb's reference count as part of giving it to the HCD
1526 * (which will control it). HCD guarantees that it either returns
1527 * an error or calls giveback(), but not both.
1528 */
1529 usb_get_urb(urb);
1530 atomic_inc(&urb->use_count);
1531 atomic_inc(&urb->dev->urbnum);
1532 usbmon_urb_submit(&hcd->self, urb);
1533
1534 /* NOTE requirements on root-hub callers (usbfs and the hub
1535 * driver, for now): URBs' urb->transfer_buffer must be
1536 * valid and usb_buffer_{sync,unmap}() not be needed, since
1537 * they could clobber root hub response data. Also, control
1538 * URBs must be submitted in process context with interrupts
1539 * enabled.
1540 */
1541
1542 if (is_root_hub(urb->dev)) {
1543 status = rh_urb_enqueue(hcd, urb);
1544 } else {
1545 status = map_urb_for_dma(hcd, urb, mem_flags);
1546 if (likely(status == 0)) {
1547 status = hcd->driver->urb_enqueue(hcd, urb, mem_flags);
1548 if (unlikely(status))
1549 unmap_urb_for_dma(hcd, urb);
1550 }
1551 }
1552
1553 if (unlikely(status)) {
1554 usbmon_urb_submit_error(&hcd->self, urb, status);
1555 urb->hcpriv = NULL;
1556 INIT_LIST_HEAD(&urb->urb_list);
1557 atomic_dec(&urb->use_count);
1558 atomic_dec(&urb->dev->urbnum);
1559 if (atomic_read(&urb->reject))
1560 wake_up(&usb_kill_urb_queue);
1561 usb_put_urb(urb);
1562 }
1563 return status;
1564}
1565
1566/*-------------------------------------------------------------------------*/
1567
1568/* this makes the hcd giveback() the urb more quickly, by kicking it
1569 * off hardware queues (which may take a while) and returning it as
1570 * soon as practical. we've already set up the urb's return status,
1571 * but we can't know if the callback completed already.
1572 */
1573static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status)
1574{
1575 int value;
1576
1577 if (is_root_hub(urb->dev))
1578 value = usb_rh_urb_dequeue(hcd, urb, status);
1579 else {
1580
1581 /* The only reason an HCD might fail this call is if
1582 * it has not yet fully queued the urb to begin with.
1583 * Such failures should be harmless. */
1584 value = hcd->driver->urb_dequeue(hcd, urb, status);
1585 }
1586 return value;
1587}
1588
1589/*
1590 * called in any context
1591 *
1592 * caller guarantees urb won't be recycled till both unlink()
1593 * and the urb's completion function return
1594 */
1595int usb_hcd_unlink_urb (struct urb *urb, int status)
1596{
1597 struct usb_hcd *hcd;
1598 struct usb_device *udev = urb->dev;
1599 int retval = -EIDRM;
1600 unsigned long flags;
1601
1602 /* Prevent the device and bus from going away while
1603 * the unlink is carried out. If they are already gone
1604 * then urb->use_count must be 0, since disconnected
1605 * devices can't have any active URBs.
1606 */
1607 spin_lock_irqsave(&hcd_urb_unlink_lock, flags);
1608 if (atomic_read(&urb->use_count) > 0) {
1609 retval = 0;
1610 usb_get_dev(udev);
1611 }
1612 spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags);
1613 if (retval == 0) {
1614 hcd = bus_to_hcd(urb->dev->bus);
1615 retval = unlink1(hcd, urb, status);
1616 if (retval == 0)
1617 retval = -EINPROGRESS;
1618 else if (retval != -EIDRM && retval != -EBUSY)
1619 dev_dbg(&udev->dev, "hcd_unlink_urb %pK fail %d\n",
1620 urb, retval);
1621 usb_put_dev(udev);
1622 }
1623 return retval;
1624}
1625
1626/*-------------------------------------------------------------------------*/
1627
1628static void __usb_hcd_giveback_urb(struct urb *urb)
1629{
1630 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1631 struct usb_anchor *anchor = urb->anchor;
1632 int status = urb->unlinked;
1633
1634 urb->hcpriv = NULL;
1635 if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) &&
1636 urb->actual_length < urb->transfer_buffer_length &&
1637 !status))
1638 status = -EREMOTEIO;
1639
1640 unmap_urb_for_dma(hcd, urb);
1641 usbmon_urb_complete(&hcd->self, urb, status);
1642 usb_anchor_suspend_wakeups(anchor);
1643 usb_unanchor_urb(urb);
1644 if (likely(status == 0))
1645 usb_led_activity(USB_LED_EVENT_HOST);
1646
1647 /* pass ownership to the completion handler */
1648 urb->status = status;
1649 kcov_remote_start_usb((u64)urb->dev->bus->busnum);
1650 urb->complete(urb);
1651 kcov_remote_stop();
1652
1653 usb_anchor_resume_wakeups(anchor);
1654 atomic_dec(&urb->use_count);
1655 if (unlikely(atomic_read(&urb->reject)))
1656 wake_up(&usb_kill_urb_queue);
1657 usb_put_urb(urb);
1658}
1659
1660static void usb_giveback_urb_bh(unsigned long param)
1661{
1662 struct giveback_urb_bh *bh = (struct giveback_urb_bh *)param;
1663 struct list_head local_list;
1664
1665 spin_lock_irq(&bh->lock);
1666 bh->running = true;
1667 restart:
1668 list_replace_init(&bh->head, &local_list);
1669 spin_unlock_irq(&bh->lock);
1670
1671 while (!list_empty(&local_list)) {
1672 struct urb *urb;
1673
1674 urb = list_entry(local_list.next, struct urb, urb_list);
1675 list_del_init(&urb->urb_list);
1676 bh->completing_ep = urb->ep;
1677 __usb_hcd_giveback_urb(urb);
1678 bh->completing_ep = NULL;
1679 }
1680
1681 /* check if there are new URBs to giveback */
1682 spin_lock_irq(&bh->lock);
1683 if (!list_empty(&bh->head))
1684 goto restart;
1685 bh->running = false;
1686 spin_unlock_irq(&bh->lock);
1687}
1688
1689/**
1690 * usb_hcd_giveback_urb - return URB from HCD to device driver
1691 * @hcd: host controller returning the URB
1692 * @urb: urb being returned to the USB device driver.
1693 * @status: completion status code for the URB.
1694 * Context: in_interrupt()
1695 *
1696 * This hands the URB from HCD to its USB device driver, using its
1697 * completion function. The HCD has freed all per-urb resources
1698 * (and is done using urb->hcpriv). It also released all HCD locks;
1699 * the device driver won't cause problems if it frees, modifies,
1700 * or resubmits this URB.
1701 *
1702 * If @urb was unlinked, the value of @status will be overridden by
1703 * @urb->unlinked. Erroneous short transfers are detected in case
1704 * the HCD hasn't checked for them.
1705 */
1706void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status)
1707{
1708 struct giveback_urb_bh *bh;
1709 bool running, high_prio_bh;
1710
1711 /* pass status to tasklet via unlinked */
1712 if (likely(!urb->unlinked))
1713 urb->unlinked = status;
1714
1715 if (!hcd_giveback_urb_in_bh(hcd) && !is_root_hub(urb->dev)) {
1716 __usb_hcd_giveback_urb(urb);
1717 return;
1718 }
1719
1720 if (usb_pipeisoc(urb->pipe) || usb_pipeint(urb->pipe)) {
1721 bh = &hcd->high_prio_bh;
1722 high_prio_bh = true;
1723 } else {
1724 bh = &hcd->low_prio_bh;
1725 high_prio_bh = false;
1726 }
1727
1728 spin_lock(&bh->lock);
1729 list_add_tail(&urb->urb_list, &bh->head);
1730 running = bh->running;
1731 spin_unlock(&bh->lock);
1732
1733 if (running)
1734 ;
1735 else if (high_prio_bh)
1736 tasklet_hi_schedule(&bh->bh);
1737 else
1738 tasklet_schedule(&bh->bh);
1739}
1740EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb);
1741
1742/*-------------------------------------------------------------------------*/
1743
1744/* Cancel all URBs pending on this endpoint and wait for the endpoint's
1745 * queue to drain completely. The caller must first insure that no more
1746 * URBs can be submitted for this endpoint.
1747 */
1748void usb_hcd_flush_endpoint(struct usb_device *udev,
1749 struct usb_host_endpoint *ep)
1750{
1751 struct usb_hcd *hcd;
1752 struct urb *urb;
1753
1754 if (!ep)
1755 return;
1756 might_sleep();
1757 hcd = bus_to_hcd(udev->bus);
1758
1759 /* No more submits can occur */
1760 spin_lock_irq(&hcd_urb_list_lock);
1761rescan:
1762 list_for_each_entry_reverse(urb, &ep->urb_list, urb_list) {
1763 int is_in;
1764
1765 if (urb->unlinked)
1766 continue;
1767 usb_get_urb (urb);
1768 is_in = usb_urb_dir_in(urb);
1769 spin_unlock(&hcd_urb_list_lock);
1770
1771 /* kick hcd */
1772 unlink1(hcd, urb, -ESHUTDOWN);
1773 dev_dbg (hcd->self.controller,
1774 "shutdown urb %pK ep%d%s-%s\n",
1775 urb, usb_endpoint_num(&ep->desc),
1776 is_in ? "in" : "out",
1777 usb_ep_type_string(usb_endpoint_type(&ep->desc)));
1778 usb_put_urb (urb);
1779
1780 /* list contents may have changed */
1781 spin_lock(&hcd_urb_list_lock);
1782 goto rescan;
1783 }
1784 spin_unlock_irq(&hcd_urb_list_lock);
1785
1786 /* Wait until the endpoint queue is completely empty */
1787 while (!list_empty (&ep->urb_list)) {
1788 spin_lock_irq(&hcd_urb_list_lock);
1789
1790 /* The list may have changed while we acquired the spinlock */
1791 urb = NULL;
1792 if (!list_empty (&ep->urb_list)) {
1793 urb = list_entry (ep->urb_list.prev, struct urb,
1794 urb_list);
1795 usb_get_urb (urb);
1796 }
1797 spin_unlock_irq(&hcd_urb_list_lock);
1798
1799 if (urb) {
1800 usb_kill_urb (urb);
1801 usb_put_urb (urb);
1802 }
1803 }
1804}
1805
1806/**
1807 * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds
1808 * the bus bandwidth
1809 * @udev: target &usb_device
1810 * @new_config: new configuration to install
1811 * @cur_alt: the current alternate interface setting
1812 * @new_alt: alternate interface setting that is being installed
1813 *
1814 * To change configurations, pass in the new configuration in new_config,
1815 * and pass NULL for cur_alt and new_alt.
1816 *
1817 * To reset a device's configuration (put the device in the ADDRESSED state),
1818 * pass in NULL for new_config, cur_alt, and new_alt.
1819 *
1820 * To change alternate interface settings, pass in NULL for new_config,
1821 * pass in the current alternate interface setting in cur_alt,
1822 * and pass in the new alternate interface setting in new_alt.
1823 *
1824 * Return: An error if the requested bandwidth change exceeds the
1825 * bus bandwidth or host controller internal resources.
1826 */
1827int usb_hcd_alloc_bandwidth(struct usb_device *udev,
1828 struct usb_host_config *new_config,
1829 struct usb_host_interface *cur_alt,
1830 struct usb_host_interface *new_alt)
1831{
1832 int num_intfs, i, j;
1833 struct usb_host_interface *alt = NULL;
1834 int ret = 0;
1835 struct usb_hcd *hcd;
1836 struct usb_host_endpoint *ep;
1837
1838 hcd = bus_to_hcd(udev->bus);
1839 if (!hcd->driver->check_bandwidth)
1840 return 0;
1841
1842 /* Configuration is being removed - set configuration 0 */
1843 if (!new_config && !cur_alt) {
1844 for (i = 1; i < 16; ++i) {
1845 ep = udev->ep_out[i];
1846 if (ep)
1847 hcd->driver->drop_endpoint(hcd, udev, ep);
1848 ep = udev->ep_in[i];
1849 if (ep)
1850 hcd->driver->drop_endpoint(hcd, udev, ep);
1851 }
1852 hcd->driver->check_bandwidth(hcd, udev);
1853 return 0;
1854 }
1855 /* Check if the HCD says there's enough bandwidth. Enable all endpoints
1856 * each interface's alt setting 0 and ask the HCD to check the bandwidth
1857 * of the bus. There will always be bandwidth for endpoint 0, so it's
1858 * ok to exclude it.
1859 */
1860 if (new_config) {
1861 num_intfs = new_config->desc.bNumInterfaces;
1862 /* Remove endpoints (except endpoint 0, which is always on the
1863 * schedule) from the old config from the schedule
1864 */
1865 for (i = 1; i < 16; ++i) {
1866 ep = udev->ep_out[i];
1867 if (ep) {
1868 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1869 if (ret < 0)
1870 goto reset;
1871 }
1872 ep = udev->ep_in[i];
1873 if (ep) {
1874 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1875 if (ret < 0)
1876 goto reset;
1877 }
1878 }
1879 for (i = 0; i < num_intfs; ++i) {
1880 struct usb_host_interface *first_alt;
1881 int iface_num;
1882
1883 first_alt = &new_config->intf_cache[i]->altsetting[0];
1884 iface_num = first_alt->desc.bInterfaceNumber;
1885 /* Set up endpoints for alternate interface setting 0 */
1886 alt = usb_find_alt_setting(new_config, iface_num, 0);
1887 if (!alt)
1888 /* No alt setting 0? Pick the first setting. */
1889 alt = first_alt;
1890
1891 for (j = 0; j < alt->desc.bNumEndpoints; j++) {
1892 ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]);
1893 if (ret < 0)
1894 goto reset;
1895 }
1896 }
1897 }
1898 if (cur_alt && new_alt) {
1899 struct usb_interface *iface = usb_ifnum_to_if(udev,
1900 cur_alt->desc.bInterfaceNumber);
1901
1902 if (!iface)
1903 return -EINVAL;
1904 if (iface->resetting_device) {
1905 /*
1906 * The USB core just reset the device, so the xHCI host
1907 * and the device will think alt setting 0 is installed.
1908 * However, the USB core will pass in the alternate
1909 * setting installed before the reset as cur_alt. Dig
1910 * out the alternate setting 0 structure, or the first
1911 * alternate setting if a broken device doesn't have alt
1912 * setting 0.
1913 */
1914 cur_alt = usb_altnum_to_altsetting(iface, 0);
1915 if (!cur_alt)
1916 cur_alt = &iface->altsetting[0];
1917 }
1918
1919 /* Drop all the endpoints in the current alt setting */
1920 for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) {
1921 ret = hcd->driver->drop_endpoint(hcd, udev,
1922 &cur_alt->endpoint[i]);
1923 if (ret < 0)
1924 goto reset;
1925 }
1926 /* Add all the endpoints in the new alt setting */
1927 for (i = 0; i < new_alt->desc.bNumEndpoints; i++) {
1928 ret = hcd->driver->add_endpoint(hcd, udev,
1929 &new_alt->endpoint[i]);
1930 if (ret < 0)
1931 goto reset;
1932 }
1933 }
1934 ret = hcd->driver->check_bandwidth(hcd, udev);
1935reset:
1936 if (ret < 0)
1937 hcd->driver->reset_bandwidth(hcd, udev);
1938 return ret;
1939}
1940
1941/* Disables the endpoint: synchronizes with the hcd to make sure all
1942 * endpoint state is gone from hardware. usb_hcd_flush_endpoint() must
1943 * have been called previously. Use for set_configuration, set_interface,
1944 * driver removal, physical disconnect.
1945 *
1946 * example: a qh stored in ep->hcpriv, holding state related to endpoint
1947 * type, maxpacket size, toggle, halt status, and scheduling.
1948 */
1949void usb_hcd_disable_endpoint(struct usb_device *udev,
1950 struct usb_host_endpoint *ep)
1951{
1952 struct usb_hcd *hcd;
1953
1954 might_sleep();
1955 hcd = bus_to_hcd(udev->bus);
1956 if (hcd->driver->endpoint_disable)
1957 hcd->driver->endpoint_disable(hcd, ep);
1958}
1959
1960/**
1961 * usb_hcd_reset_endpoint - reset host endpoint state
1962 * @udev: USB device.
1963 * @ep: the endpoint to reset.
1964 *
1965 * Resets any host endpoint state such as the toggle bit, sequence
1966 * number and current window.
1967 */
1968void usb_hcd_reset_endpoint(struct usb_device *udev,
1969 struct usb_host_endpoint *ep)
1970{
1971 struct usb_hcd *hcd = bus_to_hcd(udev->bus);
1972
1973 if (hcd->driver->endpoint_reset)
1974 hcd->driver->endpoint_reset(hcd, ep);
1975 else {
1976 int epnum = usb_endpoint_num(&ep->desc);
1977 int is_out = usb_endpoint_dir_out(&ep->desc);
1978 int is_control = usb_endpoint_xfer_control(&ep->desc);
1979
1980 usb_settoggle(udev, epnum, is_out, 0);
1981 if (is_control)
1982 usb_settoggle(udev, epnum, !is_out, 0);
1983 }
1984}
1985
1986/**
1987 * usb_alloc_streams - allocate bulk endpoint stream IDs.
1988 * @interface: alternate setting that includes all endpoints.
1989 * @eps: array of endpoints that need streams.
1990 * @num_eps: number of endpoints in the array.
1991 * @num_streams: number of streams to allocate.
1992 * @mem_flags: flags hcd should use to allocate memory.
1993 *
1994 * Sets up a group of bulk endpoints to have @num_streams stream IDs available.
1995 * Drivers may queue multiple transfers to different stream IDs, which may
1996 * complete in a different order than they were queued.
1997 *
1998 * Return: On success, the number of allocated streams. On failure, a negative
1999 * error code.
2000 */
2001int usb_alloc_streams(struct usb_interface *interface,
2002 struct usb_host_endpoint **eps, unsigned int num_eps,
2003 unsigned int num_streams, gfp_t mem_flags)
2004{
2005 struct usb_hcd *hcd;
2006 struct usb_device *dev;
2007 int i, ret;
2008
2009 dev = interface_to_usbdev(interface);
2010 hcd = bus_to_hcd(dev->bus);
2011 if (!hcd->driver->alloc_streams || !hcd->driver->free_streams)
2012 return -EINVAL;
2013 if (dev->speed < USB_SPEED_SUPER)
2014 return -EINVAL;
2015 if (dev->state < USB_STATE_CONFIGURED)
2016 return -ENODEV;
2017
2018 for (i = 0; i < num_eps; i++) {
2019 /* Streams only apply to bulk endpoints. */
2020 if (!usb_endpoint_xfer_bulk(&eps[i]->desc))
2021 return -EINVAL;
2022 /* Re-alloc is not allowed */
2023 if (eps[i]->streams)
2024 return -EINVAL;
2025 }
2026
2027 ret = hcd->driver->alloc_streams(hcd, dev, eps, num_eps,
2028 num_streams, mem_flags);
2029 if (ret < 0)
2030 return ret;
2031
2032 for (i = 0; i < num_eps; i++)
2033 eps[i]->streams = ret;
2034
2035 return ret;
2036}
2037EXPORT_SYMBOL_GPL(usb_alloc_streams);
2038
2039/**
2040 * usb_free_streams - free bulk endpoint stream IDs.
2041 * @interface: alternate setting that includes all endpoints.
2042 * @eps: array of endpoints to remove streams from.
2043 * @num_eps: number of endpoints in the array.
2044 * @mem_flags: flags hcd should use to allocate memory.
2045 *
2046 * Reverts a group of bulk endpoints back to not using stream IDs.
2047 * Can fail if we are given bad arguments, or HCD is broken.
2048 *
2049 * Return: 0 on success. On failure, a negative error code.
2050 */
2051int usb_free_streams(struct usb_interface *interface,
2052 struct usb_host_endpoint **eps, unsigned int num_eps,
2053 gfp_t mem_flags)
2054{
2055 struct usb_hcd *hcd;
2056 struct usb_device *dev;
2057 int i, ret;
2058
2059 dev = interface_to_usbdev(interface);
2060 hcd = bus_to_hcd(dev->bus);
2061 if (dev->speed < USB_SPEED_SUPER)
2062 return -EINVAL;
2063
2064 /* Double-free is not allowed */
2065 for (i = 0; i < num_eps; i++)
2066 if (!eps[i] || !eps[i]->streams)
2067 return -EINVAL;
2068
2069 ret = hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags);
2070 if (ret < 0)
2071 return ret;
2072
2073 for (i = 0; i < num_eps; i++)
2074 eps[i]->streams = 0;
2075
2076 return ret;
2077}
2078EXPORT_SYMBOL_GPL(usb_free_streams);
2079
2080/* Protect against drivers that try to unlink URBs after the device
2081 * is gone, by waiting until all unlinks for @udev are finished.
2082 * Since we don't currently track URBs by device, simply wait until
2083 * nothing is running in the locked region of usb_hcd_unlink_urb().
2084 */
2085void usb_hcd_synchronize_unlinks(struct usb_device *udev)
2086{
2087 spin_lock_irq(&hcd_urb_unlink_lock);
2088 spin_unlock_irq(&hcd_urb_unlink_lock);
2089}
2090
2091/*-------------------------------------------------------------------------*/
2092
2093/* called in any context */
2094int usb_hcd_get_frame_number (struct usb_device *udev)
2095{
2096 struct usb_hcd *hcd = bus_to_hcd(udev->bus);
2097
2098 if (!HCD_RH_RUNNING(hcd))
2099 return -ESHUTDOWN;
2100 return hcd->driver->get_frame_number (hcd);
2101}
2102
2103/*-------------------------------------------------------------------------*/
2104
2105#ifdef CONFIG_PM
2106
2107int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg)
2108{
2109 struct usb_hcd *hcd = bus_to_hcd(rhdev->bus);
2110 int status;
2111 int old_state = hcd->state;
2112
2113 dev_dbg(&rhdev->dev, "bus %ssuspend, wakeup %d\n",
2114 (PMSG_IS_AUTO(msg) ? "auto-" : ""),
2115 rhdev->do_remote_wakeup);
2116 if (HCD_DEAD(hcd)) {
2117 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend");
2118 return 0;
2119 }
2120
2121 if (!hcd->driver->bus_suspend) {
2122 status = -ENOENT;
2123 } else {
2124 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2125 hcd->state = HC_STATE_QUIESCING;
2126 status = hcd->driver->bus_suspend(hcd);
2127 }
2128 if (status == 0) {
2129 usb_set_device_state(rhdev, USB_STATE_SUSPENDED);
2130 hcd->state = HC_STATE_SUSPENDED;
2131
2132 if (!PMSG_IS_AUTO(msg))
2133 usb_phy_roothub_suspend(hcd->self.sysdev,
2134 hcd->phy_roothub);
2135
2136 /* Did we race with a root-hub wakeup event? */
2137 if (rhdev->do_remote_wakeup) {
2138 char buffer[6];
2139
2140 status = hcd->driver->hub_status_data(hcd, buffer);
2141 if (status != 0) {
2142 dev_dbg(&rhdev->dev, "suspend raced with wakeup event\n");
2143 hcd_bus_resume(rhdev, PMSG_AUTO_RESUME);
2144 status = -EBUSY;
2145 }
2146 }
2147 } else {
2148 spin_lock_irq(&hcd_root_hub_lock);
2149 if (!HCD_DEAD(hcd)) {
2150 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2151 hcd->state = old_state;
2152 }
2153 spin_unlock_irq(&hcd_root_hub_lock);
2154 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2155 "suspend", status);
2156 }
2157 return status;
2158}
2159
2160int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg)
2161{
2162 struct usb_hcd *hcd = bus_to_hcd(rhdev->bus);
2163 int status;
2164 int old_state = hcd->state;
2165
2166 dev_dbg(&rhdev->dev, "usb %sresume\n",
2167 (PMSG_IS_AUTO(msg) ? "auto-" : ""));
2168 if (HCD_DEAD(hcd)) {
2169 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume");
2170 return 0;
2171 }
2172
2173 if (!PMSG_IS_AUTO(msg)) {
2174 status = usb_phy_roothub_resume(hcd->self.sysdev,
2175 hcd->phy_roothub);
2176 if (status)
2177 return status;
2178 }
2179
2180 if (!hcd->driver->bus_resume)
2181 return -ENOENT;
2182 if (HCD_RH_RUNNING(hcd))
2183 return 0;
2184
2185 hcd->state = HC_STATE_RESUMING;
2186 status = hcd->driver->bus_resume(hcd);
2187 clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2188 if (status == 0)
2189 status = usb_phy_roothub_calibrate(hcd->phy_roothub);
2190
2191 if (status == 0) {
2192 struct usb_device *udev;
2193 int port1;
2194
2195 spin_lock_irq(&hcd_root_hub_lock);
2196 if (!HCD_DEAD(hcd)) {
2197 usb_set_device_state(rhdev, rhdev->actconfig
2198 ? USB_STATE_CONFIGURED
2199 : USB_STATE_ADDRESS);
2200 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2201 hcd->state = HC_STATE_RUNNING;
2202 }
2203 spin_unlock_irq(&hcd_root_hub_lock);
2204
2205 /*
2206 * Check whether any of the enabled ports on the root hub are
2207 * unsuspended. If they are then a TRSMRCY delay is needed
2208 * (this is what the USB-2 spec calls a "global resume").
2209 * Otherwise we can skip the delay.
2210 */
2211 usb_hub_for_each_child(rhdev, port1, udev) {
2212 if (udev->state != USB_STATE_NOTATTACHED &&
2213 !udev->port_is_suspended) {
2214 usleep_range(10000, 11000); /* TRSMRCY */
2215 break;
2216 }
2217 }
2218 } else {
2219 hcd->state = old_state;
2220 usb_phy_roothub_suspend(hcd->self.sysdev, hcd->phy_roothub);
2221 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2222 "resume", status);
2223 if (status != -ESHUTDOWN)
2224 usb_hc_died(hcd);
2225 }
2226 return status;
2227}
2228
2229/* Workqueue routine for root-hub remote wakeup */
2230static void hcd_resume_work(struct work_struct *work)
2231{
2232 struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work);
2233 struct usb_device *udev = hcd->self.root_hub;
2234
2235 usb_remote_wakeup(udev);
2236}
2237
2238/**
2239 * usb_hcd_resume_root_hub - called by HCD to resume its root hub
2240 * @hcd: host controller for this root hub
2241 *
2242 * The USB host controller calls this function when its root hub is
2243 * suspended (with the remote wakeup feature enabled) and a remote
2244 * wakeup request is received. The routine submits a workqueue request
2245 * to resume the root hub (that is, manage its downstream ports again).
2246 */
2247void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
2248{
2249 unsigned long flags;
2250
2251 spin_lock_irqsave (&hcd_root_hub_lock, flags);
2252 if (hcd->rh_registered) {
2253 pm_wakeup_event(&hcd->self.root_hub->dev, 0);
2254 set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2255 queue_work(pm_wq, &hcd->wakeup_work);
2256 }
2257 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2258}
2259EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
2260
2261#endif /* CONFIG_PM */
2262
2263/*-------------------------------------------------------------------------*/
2264
2265#ifdef CONFIG_USB_OTG
2266
2267/**
2268 * usb_bus_start_enum - start immediate enumeration (for OTG)
2269 * @bus: the bus (must use hcd framework)
2270 * @port_num: 1-based number of port; usually bus->otg_port
2271 * Context: in_interrupt()
2272 *
2273 * Starts enumeration, with an immediate reset followed later by
2274 * hub_wq identifying and possibly configuring the device.
2275 * This is needed by OTG controller drivers, where it helps meet
2276 * HNP protocol timing requirements for starting a port reset.
2277 *
2278 * Return: 0 if successful.
2279 */
2280int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
2281{
2282 struct usb_hcd *hcd;
2283 int status = -EOPNOTSUPP;
2284
2285 /* NOTE: since HNP can't start by grabbing the bus's address0_sem,
2286 * boards with root hubs hooked up to internal devices (instead of
2287 * just the OTG port) may need more attention to resetting...
2288 */
2289 hcd = bus_to_hcd(bus);
2290 if (port_num && hcd->driver->start_port_reset)
2291 status = hcd->driver->start_port_reset(hcd, port_num);
2292
2293 /* allocate hub_wq shortly after (first) root port reset finishes;
2294 * it may issue others, until at least 50 msecs have passed.
2295 */
2296 if (status == 0)
2297 mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
2298 return status;
2299}
2300EXPORT_SYMBOL_GPL(usb_bus_start_enum);
2301
2302#endif
2303
2304/*-------------------------------------------------------------------------*/
2305
2306/**
2307 * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
2308 * @irq: the IRQ being raised
2309 * @__hcd: pointer to the HCD whose IRQ is being signaled
2310 *
2311 * If the controller isn't HALTed, calls the driver's irq handler.
2312 * Checks whether the controller is now dead.
2313 *
2314 * Return: %IRQ_HANDLED if the IRQ was handled. %IRQ_NONE otherwise.
2315 */
2316irqreturn_t usb_hcd_irq (int irq, void *__hcd)
2317{
2318 struct usb_hcd *hcd = __hcd;
2319 irqreturn_t rc;
2320
2321 if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd)))
2322 rc = IRQ_NONE;
2323 else if (hcd->driver->irq(hcd) == IRQ_NONE)
2324 rc = IRQ_NONE;
2325 else
2326 rc = IRQ_HANDLED;
2327
2328 return rc;
2329}
2330EXPORT_SYMBOL_GPL(usb_hcd_irq);
2331
2332/*-------------------------------------------------------------------------*/
2333
2334/* Workqueue routine for when the root-hub has died. */
2335static void hcd_died_work(struct work_struct *work)
2336{
2337 struct usb_hcd *hcd = container_of(work, struct usb_hcd, died_work);
2338 static char *env[] = {
2339 "ERROR=DEAD",
2340 NULL
2341 };
2342
2343 /* Notify user space that the host controller has died */
2344 kobject_uevent_env(&hcd->self.root_hub->dev.kobj, KOBJ_OFFLINE, env);
2345}
2346
2347/**
2348 * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
2349 * @hcd: pointer to the HCD representing the controller
2350 *
2351 * This is called by bus glue to report a USB host controller that died
2352 * while operations may still have been pending. It's called automatically
2353 * by the PCI glue, so only glue for non-PCI busses should need to call it.
2354 *
2355 * Only call this function with the primary HCD.
2356 */
2357void usb_hc_died (struct usb_hcd *hcd)
2358{
2359 unsigned long flags;
2360
2361 dev_err (hcd->self.controller, "HC died; cleaning up\n");
2362
2363 spin_lock_irqsave (&hcd_root_hub_lock, flags);
2364 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2365 set_bit(HCD_FLAG_DEAD, &hcd->flags);
2366 if (hcd->rh_registered) {
2367 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2368
2369 /* make hub_wq clean up old urbs and devices */
2370 usb_set_device_state (hcd->self.root_hub,
2371 USB_STATE_NOTATTACHED);
2372 usb_kick_hub_wq(hcd->self.root_hub);
2373 }
2374 if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) {
2375 hcd = hcd->shared_hcd;
2376 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2377 set_bit(HCD_FLAG_DEAD, &hcd->flags);
2378 if (hcd->rh_registered) {
2379 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2380
2381 /* make hub_wq clean up old urbs and devices */
2382 usb_set_device_state(hcd->self.root_hub,
2383 USB_STATE_NOTATTACHED);
2384 usb_kick_hub_wq(hcd->self.root_hub);
2385 }
2386 }
2387
2388 /* Handle the case where this function gets called with a shared HCD */
2389 if (usb_hcd_is_primary_hcd(hcd))
2390 schedule_work(&hcd->died_work);
2391 else
2392 schedule_work(&hcd->primary_hcd->died_work);
2393
2394 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2395 /* Make sure that the other roothub is also deallocated. */
2396}
2397EXPORT_SYMBOL_GPL (usb_hc_died);
2398
2399/*-------------------------------------------------------------------------*/
2400
2401static void init_giveback_urb_bh(struct giveback_urb_bh *bh)
2402{
2403
2404 spin_lock_init(&bh->lock);
2405 INIT_LIST_HEAD(&bh->head);
2406 tasklet_init(&bh->bh, usb_giveback_urb_bh, (unsigned long)bh);
2407}
2408
2409struct usb_hcd *__usb_create_hcd(const struct hc_driver *driver,
2410 struct device *sysdev, struct device *dev, const char *bus_name,
2411 struct usb_hcd *primary_hcd)
2412{
2413 struct usb_hcd *hcd;
2414
2415 hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
2416 if (!hcd)
2417 return NULL;
2418 if (primary_hcd == NULL) {
2419 hcd->address0_mutex = kmalloc(sizeof(*hcd->address0_mutex),
2420 GFP_KERNEL);
2421 if (!hcd->address0_mutex) {
2422 kfree(hcd);
2423 dev_dbg(dev, "hcd address0 mutex alloc failed\n");
2424 return NULL;
2425 }
2426 mutex_init(hcd->address0_mutex);
2427 hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex),
2428 GFP_KERNEL);
2429 if (!hcd->bandwidth_mutex) {
2430 kfree(hcd->address0_mutex);
2431 kfree(hcd);
2432 dev_dbg(dev, "hcd bandwidth mutex alloc failed\n");
2433 return NULL;
2434 }
2435 mutex_init(hcd->bandwidth_mutex);
2436 dev_set_drvdata(dev, hcd);
2437 } else {
2438 mutex_lock(&usb_port_peer_mutex);
2439 hcd->address0_mutex = primary_hcd->address0_mutex;
2440 hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex;
2441 hcd->primary_hcd = primary_hcd;
2442 primary_hcd->primary_hcd = primary_hcd;
2443 hcd->shared_hcd = primary_hcd;
2444 primary_hcd->shared_hcd = hcd;
2445 mutex_unlock(&usb_port_peer_mutex);
2446 }
2447
2448 kref_init(&hcd->kref);
2449
2450 usb_bus_init(&hcd->self);
2451 hcd->self.controller = dev;
2452 hcd->self.sysdev = sysdev;
2453 hcd->self.bus_name = bus_name;
2454
2455 timer_setup(&hcd->rh_timer, rh_timer_func, 0);
2456#ifdef CONFIG_PM
2457 INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
2458#endif
2459
2460 INIT_WORK(&hcd->died_work, hcd_died_work);
2461
2462 hcd->driver = driver;
2463 hcd->speed = driver->flags & HCD_MASK;
2464 hcd->product_desc = (driver->product_desc) ? driver->product_desc :
2465 "USB Host Controller";
2466 return hcd;
2467}
2468EXPORT_SYMBOL_GPL(__usb_create_hcd);
2469
2470/**
2471 * usb_create_shared_hcd - create and initialize an HCD structure
2472 * @driver: HC driver that will use this hcd
2473 * @dev: device for this HC, stored in hcd->self.controller
2474 * @bus_name: value to store in hcd->self.bus_name
2475 * @primary_hcd: a pointer to the usb_hcd structure that is sharing the
2476 * PCI device. Only allocate certain resources for the primary HCD
2477 * Context: !in_interrupt()
2478 *
2479 * Allocate a struct usb_hcd, with extra space at the end for the
2480 * HC driver's private data. Initialize the generic members of the
2481 * hcd structure.
2482 *
2483 * Return: On success, a pointer to the created and initialized HCD structure.
2484 * On failure (e.g. if memory is unavailable), %NULL.
2485 */
2486struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver,
2487 struct device *dev, const char *bus_name,
2488 struct usb_hcd *primary_hcd)
2489{
2490 return __usb_create_hcd(driver, dev, dev, bus_name, primary_hcd);
2491}
2492EXPORT_SYMBOL_GPL(usb_create_shared_hcd);
2493
2494/**
2495 * usb_create_hcd - create and initialize an HCD structure
2496 * @driver: HC driver that will use this hcd
2497 * @dev: device for this HC, stored in hcd->self.controller
2498 * @bus_name: value to store in hcd->self.bus_name
2499 * Context: !in_interrupt()
2500 *
2501 * Allocate a struct usb_hcd, with extra space at the end for the
2502 * HC driver's private data. Initialize the generic members of the
2503 * hcd structure.
2504 *
2505 * Return: On success, a pointer to the created and initialized HCD
2506 * structure. On failure (e.g. if memory is unavailable), %NULL.
2507 */
2508struct usb_hcd *usb_create_hcd(const struct hc_driver *driver,
2509 struct device *dev, const char *bus_name)
2510{
2511 return __usb_create_hcd(driver, dev, dev, bus_name, NULL);
2512}
2513EXPORT_SYMBOL_GPL(usb_create_hcd);
2514
2515/*
2516 * Roothubs that share one PCI device must also share the bandwidth mutex.
2517 * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is
2518 * deallocated.
2519 *
2520 * Make sure to deallocate the bandwidth_mutex only when the last HCD is
2521 * freed. When hcd_release() is called for either hcd in a peer set,
2522 * invalidate the peer's ->shared_hcd and ->primary_hcd pointers.
2523 */
2524static void hcd_release(struct kref *kref)
2525{
2526 struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
2527
2528 mutex_lock(&usb_port_peer_mutex);
2529 if (hcd->shared_hcd) {
2530 struct usb_hcd *peer = hcd->shared_hcd;
2531
2532 peer->shared_hcd = NULL;
2533 peer->primary_hcd = NULL;
2534 } else {
2535 kfree(hcd->address0_mutex);
2536 kfree(hcd->bandwidth_mutex);
2537 }
2538 mutex_unlock(&usb_port_peer_mutex);
2539 kfree(hcd);
2540}
2541
2542struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd)
2543{
2544 if (hcd)
2545 kref_get (&hcd->kref);
2546 return hcd;
2547}
2548EXPORT_SYMBOL_GPL(usb_get_hcd);
2549
2550void usb_put_hcd (struct usb_hcd *hcd)
2551{
2552 if (hcd)
2553 kref_put (&hcd->kref, hcd_release);
2554}
2555EXPORT_SYMBOL_GPL(usb_put_hcd);
2556
2557int usb_hcd_is_primary_hcd(struct usb_hcd *hcd)
2558{
2559 if (!hcd->primary_hcd)
2560 return 1;
2561 return hcd == hcd->primary_hcd;
2562}
2563EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd);
2564
2565int usb_hcd_find_raw_port_number(struct usb_hcd *hcd, int port1)
2566{
2567 if (!hcd->driver->find_raw_port_number)
2568 return port1;
2569
2570 return hcd->driver->find_raw_port_number(hcd, port1);
2571}
2572
2573static int usb_hcd_request_irqs(struct usb_hcd *hcd,
2574 unsigned int irqnum, unsigned long irqflags)
2575{
2576 int retval;
2577
2578 if (hcd->driver->irq) {
2579
2580 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
2581 hcd->driver->description, hcd->self.busnum);
2582 retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
2583 hcd->irq_descr, hcd);
2584 if (retval != 0) {
2585 dev_err(hcd->self.controller,
2586 "request interrupt %d failed\n",
2587 irqnum);
2588 return retval;
2589 }
2590 hcd->irq = irqnum;
2591 dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
2592 (hcd->driver->flags & HCD_MEMORY) ?
2593 "io mem" : "io base",
2594 (unsigned long long)hcd->rsrc_start);
2595 } else {
2596 hcd->irq = 0;
2597 if (hcd->rsrc_start)
2598 dev_info(hcd->self.controller, "%s 0x%08llx\n",
2599 (hcd->driver->flags & HCD_MEMORY) ?
2600 "io mem" : "io base",
2601 (unsigned long long)hcd->rsrc_start);
2602 }
2603 return 0;
2604}
2605
2606/*
2607 * Before we free this root hub, flush in-flight peering attempts
2608 * and disable peer lookups
2609 */
2610static void usb_put_invalidate_rhdev(struct usb_hcd *hcd)
2611{
2612 struct usb_device *rhdev;
2613
2614 mutex_lock(&usb_port_peer_mutex);
2615 rhdev = hcd->self.root_hub;
2616 hcd->self.root_hub = NULL;
2617 mutex_unlock(&usb_port_peer_mutex);
2618 usb_put_dev(rhdev);
2619}
2620
2621/**
2622 * usb_add_hcd - finish generic HCD structure initialization and register
2623 * @hcd: the usb_hcd structure to initialize
2624 * @irqnum: Interrupt line to allocate
2625 * @irqflags: Interrupt type flags
2626 *
2627 * Finish the remaining parts of generic HCD initialization: allocate the
2628 * buffers of consistent memory, register the bus, request the IRQ line,
2629 * and call the driver's reset() and start() routines.
2630 */
2631int usb_add_hcd(struct usb_hcd *hcd,
2632 unsigned int irqnum, unsigned long irqflags)
2633{
2634 int retval;
2635 struct usb_device *rhdev;
2636
2637 if (!hcd->skip_phy_initialization && usb_hcd_is_primary_hcd(hcd)) {
2638 hcd->phy_roothub = usb_phy_roothub_alloc(hcd->self.sysdev);
2639 if (IS_ERR(hcd->phy_roothub))
2640 return PTR_ERR(hcd->phy_roothub);
2641
2642 retval = usb_phy_roothub_init(hcd->phy_roothub);
2643 if (retval)
2644 return retval;
2645
2646 retval = usb_phy_roothub_set_mode(hcd->phy_roothub,
2647 PHY_MODE_USB_HOST_SS);
2648 if (retval)
2649 retval = usb_phy_roothub_set_mode(hcd->phy_roothub,
2650 PHY_MODE_USB_HOST);
2651 if (retval)
2652 goto err_usb_phy_roothub_power_on;
2653
2654 retval = usb_phy_roothub_power_on(hcd->phy_roothub);
2655 if (retval)
2656 goto err_usb_phy_roothub_power_on;
2657 }
2658
2659 dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
2660
2661 switch (authorized_default) {
2662 case USB_AUTHORIZE_NONE:
2663 hcd->dev_policy = USB_DEVICE_AUTHORIZE_NONE;
2664 break;
2665
2666 case USB_AUTHORIZE_ALL:
2667 hcd->dev_policy = USB_DEVICE_AUTHORIZE_ALL;
2668 break;
2669
2670 case USB_AUTHORIZE_INTERNAL:
2671 hcd->dev_policy = USB_DEVICE_AUTHORIZE_INTERNAL;
2672 break;
2673
2674 case USB_AUTHORIZE_WIRED:
2675 default:
2676 hcd->dev_policy = hcd->wireless ?
2677 USB_DEVICE_AUTHORIZE_NONE : USB_DEVICE_AUTHORIZE_ALL;
2678 break;
2679 }
2680
2681 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
2682
2683 /* per default all interfaces are authorized */
2684 set_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
2685
2686 /* HC is in reset state, but accessible. Now do the one-time init,
2687 * bottom up so that hcds can customize the root hubs before hub_wq
2688 * starts talking to them. (Note, bus id is assigned early too.)
2689 */
2690 retval = hcd_buffer_create(hcd);
2691 if (retval != 0) {
2692 dev_dbg(hcd->self.sysdev, "pool alloc failed\n");
2693 goto err_create_buf;
2694 }
2695
2696 retval = usb_register_bus(&hcd->self);
2697 if (retval < 0)
2698 goto err_register_bus;
2699
2700 rhdev = usb_alloc_dev(NULL, &hcd->self, 0);
2701 if (rhdev == NULL) {
2702 dev_err(hcd->self.sysdev, "unable to allocate root hub\n");
2703 retval = -ENOMEM;
2704 goto err_allocate_root_hub;
2705 }
2706 mutex_lock(&usb_port_peer_mutex);
2707 hcd->self.root_hub = rhdev;
2708 mutex_unlock(&usb_port_peer_mutex);
2709
2710 rhdev->rx_lanes = 1;
2711 rhdev->tx_lanes = 1;
2712
2713 switch (hcd->speed) {
2714 case HCD_USB11:
2715 rhdev->speed = USB_SPEED_FULL;
2716 break;
2717 case HCD_USB2:
2718 rhdev->speed = USB_SPEED_HIGH;
2719 break;
2720 case HCD_USB25:
2721 rhdev->speed = USB_SPEED_WIRELESS;
2722 break;
2723 case HCD_USB3:
2724 rhdev->speed = USB_SPEED_SUPER;
2725 break;
2726 case HCD_USB32:
2727 rhdev->rx_lanes = 2;
2728 rhdev->tx_lanes = 2;
2729 fallthrough;
2730 case HCD_USB31:
2731 rhdev->speed = USB_SPEED_SUPER_PLUS;
2732 break;
2733 default:
2734 retval = -EINVAL;
2735 goto err_set_rh_speed;
2736 }
2737
2738 /* wakeup flag init defaults to "everything works" for root hubs,
2739 * but drivers can override it in reset() if needed, along with
2740 * recording the overall controller's system wakeup capability.
2741 */
2742 device_set_wakeup_capable(&rhdev->dev, 1);
2743
2744 /* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is
2745 * registered. But since the controller can die at any time,
2746 * let's initialize the flag before touching the hardware.
2747 */
2748 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2749
2750 /* "reset" is misnamed; its role is now one-time init. the controller
2751 * should already have been reset (and boot firmware kicked off etc).
2752 */
2753 if (hcd->driver->reset) {
2754 retval = hcd->driver->reset(hcd);
2755 if (retval < 0) {
2756 dev_err(hcd->self.controller, "can't setup: %d\n",
2757 retval);
2758 goto err_hcd_driver_setup;
2759 }
2760 }
2761 hcd->rh_pollable = 1;
2762
2763 retval = usb_phy_roothub_calibrate(hcd->phy_roothub);
2764 if (retval)
2765 goto err_hcd_driver_setup;
2766
2767 /* NOTE: root hub and controller capabilities may not be the same */
2768 if (device_can_wakeup(hcd->self.controller)
2769 && device_can_wakeup(&hcd->self.root_hub->dev))
2770 dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
2771
2772 /* initialize tasklets */
2773 init_giveback_urb_bh(&hcd->high_prio_bh);
2774 init_giveback_urb_bh(&hcd->low_prio_bh);
2775
2776 /* enable irqs just before we start the controller,
2777 * if the BIOS provides legacy PCI irqs.
2778 */
2779 if (usb_hcd_is_primary_hcd(hcd) && irqnum) {
2780 retval = usb_hcd_request_irqs(hcd, irqnum, irqflags);
2781 if (retval)
2782 goto err_request_irq;
2783 }
2784
2785 hcd->state = HC_STATE_RUNNING;
2786 retval = hcd->driver->start(hcd);
2787 if (retval < 0) {
2788 dev_err(hcd->self.controller, "startup error %d\n", retval);
2789 goto err_hcd_driver_start;
2790 }
2791
2792 /* starting here, usbcore will pay attention to this root hub */
2793 retval = register_root_hub(hcd);
2794 if (retval != 0)
2795 goto err_register_root_hub;
2796
2797 if (hcd->uses_new_polling && HCD_POLL_RH(hcd))
2798 usb_hcd_poll_rh_status(hcd);
2799
2800 return retval;
2801
2802err_register_root_hub:
2803 hcd->rh_pollable = 0;
2804 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2805 del_timer_sync(&hcd->rh_timer);
2806 hcd->driver->stop(hcd);
2807 hcd->state = HC_STATE_HALT;
2808 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2809 del_timer_sync(&hcd->rh_timer);
2810err_hcd_driver_start:
2811 if (usb_hcd_is_primary_hcd(hcd) && hcd->irq > 0)
2812 free_irq(irqnum, hcd);
2813err_request_irq:
2814err_hcd_driver_setup:
2815err_set_rh_speed:
2816 usb_put_invalidate_rhdev(hcd);
2817err_allocate_root_hub:
2818 usb_deregister_bus(&hcd->self);
2819err_register_bus:
2820 hcd_buffer_destroy(hcd);
2821err_create_buf:
2822 usb_phy_roothub_power_off(hcd->phy_roothub);
2823err_usb_phy_roothub_power_on:
2824 usb_phy_roothub_exit(hcd->phy_roothub);
2825
2826 return retval;
2827}
2828EXPORT_SYMBOL_GPL(usb_add_hcd);
2829
2830/**
2831 * usb_remove_hcd - shutdown processing for generic HCDs
2832 * @hcd: the usb_hcd structure to remove
2833 * Context: !in_interrupt()
2834 *
2835 * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
2836 * invoking the HCD's stop() method.
2837 */
2838void usb_remove_hcd(struct usb_hcd *hcd)
2839{
2840 struct usb_device *rhdev = hcd->self.root_hub;
2841
2842 dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
2843
2844 usb_get_dev(rhdev);
2845 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2846 if (HC_IS_RUNNING (hcd->state))
2847 hcd->state = HC_STATE_QUIESCING;
2848
2849 dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
2850 spin_lock_irq (&hcd_root_hub_lock);
2851 hcd->rh_registered = 0;
2852 spin_unlock_irq (&hcd_root_hub_lock);
2853
2854#ifdef CONFIG_PM
2855 cancel_work_sync(&hcd->wakeup_work);
2856#endif
2857 cancel_work_sync(&hcd->died_work);
2858
2859 mutex_lock(&usb_bus_idr_lock);
2860 usb_disconnect(&rhdev); /* Sets rhdev to NULL */
2861 mutex_unlock(&usb_bus_idr_lock);
2862
2863 /*
2864 * tasklet_kill() isn't needed here because:
2865 * - driver's disconnect() called from usb_disconnect() should
2866 * make sure its URBs are completed during the disconnect()
2867 * callback
2868 *
2869 * - it is too late to run complete() here since driver may have
2870 * been removed already now
2871 */
2872
2873 /* Prevent any more root-hub status calls from the timer.
2874 * The HCD might still restart the timer (if a port status change
2875 * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke
2876 * the hub_status_data() callback.
2877 */
2878 hcd->rh_pollable = 0;
2879 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2880 del_timer_sync(&hcd->rh_timer);
2881
2882 hcd->driver->stop(hcd);
2883 hcd->state = HC_STATE_HALT;
2884
2885 /* In case the HCD restarted the timer, stop it again. */
2886 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2887 del_timer_sync(&hcd->rh_timer);
2888
2889 if (usb_hcd_is_primary_hcd(hcd)) {
2890 if (hcd->irq > 0)
2891 free_irq(hcd->irq, hcd);
2892 }
2893
2894 usb_deregister_bus(&hcd->self);
2895 hcd_buffer_destroy(hcd);
2896
2897 usb_phy_roothub_power_off(hcd->phy_roothub);
2898 usb_phy_roothub_exit(hcd->phy_roothub);
2899
2900 usb_put_invalidate_rhdev(hcd);
2901 hcd->flags = 0;
2902}
2903EXPORT_SYMBOL_GPL(usb_remove_hcd);
2904
2905void
2906usb_hcd_platform_shutdown(struct platform_device *dev)
2907{
2908 struct usb_hcd *hcd = platform_get_drvdata(dev);
2909
2910 /* No need for pm_runtime_put(), we're shutting down */
2911 pm_runtime_get_sync(&dev->dev);
2912
2913 if (hcd->driver->shutdown)
2914 hcd->driver->shutdown(hcd);
2915}
2916EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
2917
2918int usb_hcd_setup_local_mem(struct usb_hcd *hcd, phys_addr_t phys_addr,
2919 dma_addr_t dma, size_t size)
2920{
2921 int err;
2922 void *local_mem;
2923
2924 hcd->localmem_pool = devm_gen_pool_create(hcd->self.sysdev, 4,
2925 dev_to_node(hcd->self.sysdev),
2926 dev_name(hcd->self.sysdev));
2927 if (IS_ERR(hcd->localmem_pool))
2928 return PTR_ERR(hcd->localmem_pool);
2929
2930 local_mem = devm_memremap(hcd->self.sysdev, phys_addr,
2931 size, MEMREMAP_WC);
2932 if (IS_ERR(local_mem))
2933 return PTR_ERR(local_mem);
2934
2935 /*
2936 * Here we pass a dma_addr_t but the arg type is a phys_addr_t.
2937 * It's not backed by system memory and thus there's no kernel mapping
2938 * for it.
2939 */
2940 err = gen_pool_add_virt(hcd->localmem_pool, (unsigned long)local_mem,
2941 dma, size, dev_to_node(hcd->self.sysdev));
2942 if (err < 0) {
2943 dev_err(hcd->self.sysdev, "gen_pool_add_virt failed with %d\n",
2944 err);
2945 return err;
2946 }
2947
2948 return 0;
2949}
2950EXPORT_SYMBOL_GPL(usb_hcd_setup_local_mem);
2951
2952/*-------------------------------------------------------------------------*/
2953
2954#if IS_ENABLED(CONFIG_USB_MON)
2955
2956const struct usb_mon_operations *mon_ops;
2957
2958/*
2959 * The registration is unlocked.
2960 * We do it this way because we do not want to lock in hot paths.
2961 *
2962 * Notice that the code is minimally error-proof. Because usbmon needs
2963 * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
2964 */
2965
2966int usb_mon_register(const struct usb_mon_operations *ops)
2967{
2968
2969 if (mon_ops)
2970 return -EBUSY;
2971
2972 mon_ops = ops;
2973 mb();
2974 return 0;
2975}
2976EXPORT_SYMBOL_GPL (usb_mon_register);
2977
2978void usb_mon_deregister (void)
2979{
2980
2981 if (mon_ops == NULL) {
2982 printk(KERN_ERR "USB: monitor was not registered\n");
2983 return;
2984 }
2985 mon_ops = NULL;
2986 mb();
2987}
2988EXPORT_SYMBOL_GPL (usb_mon_deregister);
2989
2990#endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */
1/*
2 * (C) Copyright Linus Torvalds 1999
3 * (C) Copyright Johannes Erdfelt 1999-2001
4 * (C) Copyright Andreas Gal 1999
5 * (C) Copyright Gregory P. Smith 1999
6 * (C) Copyright Deti Fliegl 1999
7 * (C) Copyright Randy Dunlap 2000
8 * (C) Copyright David Brownell 2000-2002
9 *
10 * This program is free software; you can redistribute it and/or modify it
11 * under the terms of the GNU General Public License as published by the
12 * Free Software Foundation; either version 2 of the License, or (at your
13 * option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
17 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 * for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software Foundation,
22 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 */
24
25#include <linux/module.h>
26#include <linux/version.h>
27#include <linux/kernel.h>
28#include <linux/slab.h>
29#include <linux/completion.h>
30#include <linux/utsname.h>
31#include <linux/mm.h>
32#include <asm/io.h>
33#include <linux/device.h>
34#include <linux/dma-mapping.h>
35#include <linux/mutex.h>
36#include <asm/irq.h>
37#include <asm/byteorder.h>
38#include <asm/unaligned.h>
39#include <linux/platform_device.h>
40#include <linux/workqueue.h>
41
42#include <linux/usb.h>
43#include <linux/usb/hcd.h>
44
45#include "usb.h"
46
47
48/*-------------------------------------------------------------------------*/
49
50/*
51 * USB Host Controller Driver framework
52 *
53 * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
54 * HCD-specific behaviors/bugs.
55 *
56 * This does error checks, tracks devices and urbs, and delegates to a
57 * "hc_driver" only for code (and data) that really needs to know about
58 * hardware differences. That includes root hub registers, i/o queues,
59 * and so on ... but as little else as possible.
60 *
61 * Shared code includes most of the "root hub" code (these are emulated,
62 * though each HC's hardware works differently) and PCI glue, plus request
63 * tracking overhead. The HCD code should only block on spinlocks or on
64 * hardware handshaking; blocking on software events (such as other kernel
65 * threads releasing resources, or completing actions) is all generic.
66 *
67 * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
68 * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
69 * only by the hub driver ... and that neither should be seen or used by
70 * usb client device drivers.
71 *
72 * Contributors of ideas or unattributed patches include: David Brownell,
73 * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
74 *
75 * HISTORY:
76 * 2002-02-21 Pull in most of the usb_bus support from usb.c; some
77 * associated cleanup. "usb_hcd" still != "usb_bus".
78 * 2001-12-12 Initial patch version for Linux 2.5.1 kernel.
79 */
80
81/*-------------------------------------------------------------------------*/
82
83/* Keep track of which host controller drivers are loaded */
84unsigned long usb_hcds_loaded;
85EXPORT_SYMBOL_GPL(usb_hcds_loaded);
86
87/* host controllers we manage */
88LIST_HEAD (usb_bus_list);
89EXPORT_SYMBOL_GPL (usb_bus_list);
90
91/* used when allocating bus numbers */
92#define USB_MAXBUS 64
93struct usb_busmap {
94 unsigned long busmap [USB_MAXBUS / (8*sizeof (unsigned long))];
95};
96static struct usb_busmap busmap;
97
98/* used when updating list of hcds */
99DEFINE_MUTEX(usb_bus_list_lock); /* exported only for usbfs */
100EXPORT_SYMBOL_GPL (usb_bus_list_lock);
101
102/* used for controlling access to virtual root hubs */
103static DEFINE_SPINLOCK(hcd_root_hub_lock);
104
105/* used when updating an endpoint's URB list */
106static DEFINE_SPINLOCK(hcd_urb_list_lock);
107
108/* used to protect against unlinking URBs after the device is gone */
109static DEFINE_SPINLOCK(hcd_urb_unlink_lock);
110
111/* wait queue for synchronous unlinks */
112DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
113
114static inline int is_root_hub(struct usb_device *udev)
115{
116 return (udev->parent == NULL);
117}
118
119/*-------------------------------------------------------------------------*/
120
121/*
122 * Sharable chunks of root hub code.
123 */
124
125/*-------------------------------------------------------------------------*/
126
127#define KERNEL_REL ((LINUX_VERSION_CODE >> 16) & 0x0ff)
128#define KERNEL_VER ((LINUX_VERSION_CODE >> 8) & 0x0ff)
129
130/* usb 3.0 root hub device descriptor */
131static const u8 usb3_rh_dev_descriptor[18] = {
132 0x12, /* __u8 bLength; */
133 0x01, /* __u8 bDescriptorType; Device */
134 0x00, 0x03, /* __le16 bcdUSB; v3.0 */
135
136 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
137 0x00, /* __u8 bDeviceSubClass; */
138 0x03, /* __u8 bDeviceProtocol; USB 3.0 hub */
139 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */
140
141 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
142 0x03, 0x00, /* __le16 idProduct; device 0x0003 */
143 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
144
145 0x03, /* __u8 iManufacturer; */
146 0x02, /* __u8 iProduct; */
147 0x01, /* __u8 iSerialNumber; */
148 0x01 /* __u8 bNumConfigurations; */
149};
150
151/* usb 2.0 root hub device descriptor */
152static const u8 usb2_rh_dev_descriptor [18] = {
153 0x12, /* __u8 bLength; */
154 0x01, /* __u8 bDescriptorType; Device */
155 0x00, 0x02, /* __le16 bcdUSB; v2.0 */
156
157 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
158 0x00, /* __u8 bDeviceSubClass; */
159 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */
160 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
161
162 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
163 0x02, 0x00, /* __le16 idProduct; device 0x0002 */
164 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
165
166 0x03, /* __u8 iManufacturer; */
167 0x02, /* __u8 iProduct; */
168 0x01, /* __u8 iSerialNumber; */
169 0x01 /* __u8 bNumConfigurations; */
170};
171
172/* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
173
174/* usb 1.1 root hub device descriptor */
175static const u8 usb11_rh_dev_descriptor [18] = {
176 0x12, /* __u8 bLength; */
177 0x01, /* __u8 bDescriptorType; Device */
178 0x10, 0x01, /* __le16 bcdUSB; v1.1 */
179
180 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
181 0x00, /* __u8 bDeviceSubClass; */
182 0x00, /* __u8 bDeviceProtocol; [ low/full speeds only ] */
183 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
184
185 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
186 0x01, 0x00, /* __le16 idProduct; device 0x0001 */
187 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
188
189 0x03, /* __u8 iManufacturer; */
190 0x02, /* __u8 iProduct; */
191 0x01, /* __u8 iSerialNumber; */
192 0x01 /* __u8 bNumConfigurations; */
193};
194
195
196/*-------------------------------------------------------------------------*/
197
198/* Configuration descriptors for our root hubs */
199
200static const u8 fs_rh_config_descriptor [] = {
201
202 /* one configuration */
203 0x09, /* __u8 bLength; */
204 0x02, /* __u8 bDescriptorType; Configuration */
205 0x19, 0x00, /* __le16 wTotalLength; */
206 0x01, /* __u8 bNumInterfaces; (1) */
207 0x01, /* __u8 bConfigurationValue; */
208 0x00, /* __u8 iConfiguration; */
209 0xc0, /* __u8 bmAttributes;
210 Bit 7: must be set,
211 6: Self-powered,
212 5: Remote wakeup,
213 4..0: resvd */
214 0x00, /* __u8 MaxPower; */
215
216 /* USB 1.1:
217 * USB 2.0, single TT organization (mandatory):
218 * one interface, protocol 0
219 *
220 * USB 2.0, multiple TT organization (optional):
221 * two interfaces, protocols 1 (like single TT)
222 * and 2 (multiple TT mode) ... config is
223 * sometimes settable
224 * NOT IMPLEMENTED
225 */
226
227 /* one interface */
228 0x09, /* __u8 if_bLength; */
229 0x04, /* __u8 if_bDescriptorType; Interface */
230 0x00, /* __u8 if_bInterfaceNumber; */
231 0x00, /* __u8 if_bAlternateSetting; */
232 0x01, /* __u8 if_bNumEndpoints; */
233 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
234 0x00, /* __u8 if_bInterfaceSubClass; */
235 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
236 0x00, /* __u8 if_iInterface; */
237
238 /* one endpoint (status change endpoint) */
239 0x07, /* __u8 ep_bLength; */
240 0x05, /* __u8 ep_bDescriptorType; Endpoint */
241 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
242 0x03, /* __u8 ep_bmAttributes; Interrupt */
243 0x02, 0x00, /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
244 0xff /* __u8 ep_bInterval; (255ms -- usb 2.0 spec) */
245};
246
247static const u8 hs_rh_config_descriptor [] = {
248
249 /* one configuration */
250 0x09, /* __u8 bLength; */
251 0x02, /* __u8 bDescriptorType; Configuration */
252 0x19, 0x00, /* __le16 wTotalLength; */
253 0x01, /* __u8 bNumInterfaces; (1) */
254 0x01, /* __u8 bConfigurationValue; */
255 0x00, /* __u8 iConfiguration; */
256 0xc0, /* __u8 bmAttributes;
257 Bit 7: must be set,
258 6: Self-powered,
259 5: Remote wakeup,
260 4..0: resvd */
261 0x00, /* __u8 MaxPower; */
262
263 /* USB 1.1:
264 * USB 2.0, single TT organization (mandatory):
265 * one interface, protocol 0
266 *
267 * USB 2.0, multiple TT organization (optional):
268 * two interfaces, protocols 1 (like single TT)
269 * and 2 (multiple TT mode) ... config is
270 * sometimes settable
271 * NOT IMPLEMENTED
272 */
273
274 /* one interface */
275 0x09, /* __u8 if_bLength; */
276 0x04, /* __u8 if_bDescriptorType; Interface */
277 0x00, /* __u8 if_bInterfaceNumber; */
278 0x00, /* __u8 if_bAlternateSetting; */
279 0x01, /* __u8 if_bNumEndpoints; */
280 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
281 0x00, /* __u8 if_bInterfaceSubClass; */
282 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
283 0x00, /* __u8 if_iInterface; */
284
285 /* one endpoint (status change endpoint) */
286 0x07, /* __u8 ep_bLength; */
287 0x05, /* __u8 ep_bDescriptorType; Endpoint */
288 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
289 0x03, /* __u8 ep_bmAttributes; Interrupt */
290 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
291 * see hub.c:hub_configure() for details. */
292 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
293 0x0c /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */
294};
295
296static const u8 ss_rh_config_descriptor[] = {
297 /* one configuration */
298 0x09, /* __u8 bLength; */
299 0x02, /* __u8 bDescriptorType; Configuration */
300 0x1f, 0x00, /* __le16 wTotalLength; */
301 0x01, /* __u8 bNumInterfaces; (1) */
302 0x01, /* __u8 bConfigurationValue; */
303 0x00, /* __u8 iConfiguration; */
304 0xc0, /* __u8 bmAttributes;
305 Bit 7: must be set,
306 6: Self-powered,
307 5: Remote wakeup,
308 4..0: resvd */
309 0x00, /* __u8 MaxPower; */
310
311 /* one interface */
312 0x09, /* __u8 if_bLength; */
313 0x04, /* __u8 if_bDescriptorType; Interface */
314 0x00, /* __u8 if_bInterfaceNumber; */
315 0x00, /* __u8 if_bAlternateSetting; */
316 0x01, /* __u8 if_bNumEndpoints; */
317 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
318 0x00, /* __u8 if_bInterfaceSubClass; */
319 0x00, /* __u8 if_bInterfaceProtocol; */
320 0x00, /* __u8 if_iInterface; */
321
322 /* one endpoint (status change endpoint) */
323 0x07, /* __u8 ep_bLength; */
324 0x05, /* __u8 ep_bDescriptorType; Endpoint */
325 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
326 0x03, /* __u8 ep_bmAttributes; Interrupt */
327 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
328 * see hub.c:hub_configure() for details. */
329 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
330 0x0c, /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */
331
332 /* one SuperSpeed endpoint companion descriptor */
333 0x06, /* __u8 ss_bLength */
334 0x30, /* __u8 ss_bDescriptorType; SuperSpeed EP Companion */
335 0x00, /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */
336 0x00, /* __u8 ss_bmAttributes; 1 packet per service interval */
337 0x02, 0x00 /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */
338};
339
340/* authorized_default behaviour:
341 * -1 is authorized for all devices except wireless (old behaviour)
342 * 0 is unauthorized for all devices
343 * 1 is authorized for all devices
344 */
345static int authorized_default = -1;
346module_param(authorized_default, int, S_IRUGO|S_IWUSR);
347MODULE_PARM_DESC(authorized_default,
348 "Default USB device authorization: 0 is not authorized, 1 is "
349 "authorized, -1 is authorized except for wireless USB (default, "
350 "old behaviour");
351/*-------------------------------------------------------------------------*/
352
353/**
354 * ascii2desc() - Helper routine for producing UTF-16LE string descriptors
355 * @s: Null-terminated ASCII (actually ISO-8859-1) string
356 * @buf: Buffer for USB string descriptor (header + UTF-16LE)
357 * @len: Length (in bytes; may be odd) of descriptor buffer.
358 *
359 * The return value is the number of bytes filled in: 2 + 2*strlen(s) or
360 * buflen, whichever is less.
361 *
362 * USB String descriptors can contain at most 126 characters; input
363 * strings longer than that are truncated.
364 */
365static unsigned
366ascii2desc(char const *s, u8 *buf, unsigned len)
367{
368 unsigned n, t = 2 + 2*strlen(s);
369
370 if (t > 254)
371 t = 254; /* Longest possible UTF string descriptor */
372 if (len > t)
373 len = t;
374
375 t += USB_DT_STRING << 8; /* Now t is first 16 bits to store */
376
377 n = len;
378 while (n--) {
379 *buf++ = t;
380 if (!n--)
381 break;
382 *buf++ = t >> 8;
383 t = (unsigned char)*s++;
384 }
385 return len;
386}
387
388/**
389 * rh_string() - provides string descriptors for root hub
390 * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor)
391 * @hcd: the host controller for this root hub
392 * @data: buffer for output packet
393 * @len: length of the provided buffer
394 *
395 * Produces either a manufacturer, product or serial number string for the
396 * virtual root hub device.
397 * Returns the number of bytes filled in: the length of the descriptor or
398 * of the provided buffer, whichever is less.
399 */
400static unsigned
401rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len)
402{
403 char buf[100];
404 char const *s;
405 static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04};
406
407 // language ids
408 switch (id) {
409 case 0:
410 /* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */
411 /* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */
412 if (len > 4)
413 len = 4;
414 memcpy(data, langids, len);
415 return len;
416 case 1:
417 /* Serial number */
418 s = hcd->self.bus_name;
419 break;
420 case 2:
421 /* Product name */
422 s = hcd->product_desc;
423 break;
424 case 3:
425 /* Manufacturer */
426 snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
427 init_utsname()->release, hcd->driver->description);
428 s = buf;
429 break;
430 default:
431 /* Can't happen; caller guarantees it */
432 return 0;
433 }
434
435 return ascii2desc(s, data, len);
436}
437
438
439/* Root hub control transfers execute synchronously */
440static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
441{
442 struct usb_ctrlrequest *cmd;
443 u16 typeReq, wValue, wIndex, wLength;
444 u8 *ubuf = urb->transfer_buffer;
445 /*
446 * tbuf should be as big as the BOS descriptor and
447 * the USB hub descriptor.
448 */
449 u8 tbuf[USB_DT_BOS_SIZE + USB_DT_USB_SS_CAP_SIZE]
450 __attribute__((aligned(4)));
451 const u8 *bufp = tbuf;
452 unsigned len = 0;
453 int status;
454 u8 patch_wakeup = 0;
455 u8 patch_protocol = 0;
456
457 might_sleep();
458
459 spin_lock_irq(&hcd_root_hub_lock);
460 status = usb_hcd_link_urb_to_ep(hcd, urb);
461 spin_unlock_irq(&hcd_root_hub_lock);
462 if (status)
463 return status;
464 urb->hcpriv = hcd; /* Indicate it's queued */
465
466 cmd = (struct usb_ctrlrequest *) urb->setup_packet;
467 typeReq = (cmd->bRequestType << 8) | cmd->bRequest;
468 wValue = le16_to_cpu (cmd->wValue);
469 wIndex = le16_to_cpu (cmd->wIndex);
470 wLength = le16_to_cpu (cmd->wLength);
471
472 if (wLength > urb->transfer_buffer_length)
473 goto error;
474
475 urb->actual_length = 0;
476 switch (typeReq) {
477
478 /* DEVICE REQUESTS */
479
480 /* The root hub's remote wakeup enable bit is implemented using
481 * driver model wakeup flags. If this system supports wakeup
482 * through USB, userspace may change the default "allow wakeup"
483 * policy through sysfs or these calls.
484 *
485 * Most root hubs support wakeup from downstream devices, for
486 * runtime power management (disabling USB clocks and reducing
487 * VBUS power usage). However, not all of them do so; silicon,
488 * board, and BIOS bugs here are not uncommon, so these can't
489 * be treated quite like external hubs.
490 *
491 * Likewise, not all root hubs will pass wakeup events upstream,
492 * to wake up the whole system. So don't assume root hub and
493 * controller capabilities are identical.
494 */
495
496 case DeviceRequest | USB_REQ_GET_STATUS:
497 tbuf [0] = (device_may_wakeup(&hcd->self.root_hub->dev)
498 << USB_DEVICE_REMOTE_WAKEUP)
499 | (1 << USB_DEVICE_SELF_POWERED);
500 tbuf [1] = 0;
501 len = 2;
502 break;
503 case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
504 if (wValue == USB_DEVICE_REMOTE_WAKEUP)
505 device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
506 else
507 goto error;
508 break;
509 case DeviceOutRequest | USB_REQ_SET_FEATURE:
510 if (device_can_wakeup(&hcd->self.root_hub->dev)
511 && wValue == USB_DEVICE_REMOTE_WAKEUP)
512 device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
513 else
514 goto error;
515 break;
516 case DeviceRequest | USB_REQ_GET_CONFIGURATION:
517 tbuf [0] = 1;
518 len = 1;
519 /* FALLTHROUGH */
520 case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
521 break;
522 case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
523 switch (wValue & 0xff00) {
524 case USB_DT_DEVICE << 8:
525 switch (hcd->speed) {
526 case HCD_USB3:
527 bufp = usb3_rh_dev_descriptor;
528 break;
529 case HCD_USB2:
530 bufp = usb2_rh_dev_descriptor;
531 break;
532 case HCD_USB11:
533 bufp = usb11_rh_dev_descriptor;
534 break;
535 default:
536 goto error;
537 }
538 len = 18;
539 if (hcd->has_tt)
540 patch_protocol = 1;
541 break;
542 case USB_DT_CONFIG << 8:
543 switch (hcd->speed) {
544 case HCD_USB3:
545 bufp = ss_rh_config_descriptor;
546 len = sizeof ss_rh_config_descriptor;
547 break;
548 case HCD_USB2:
549 bufp = hs_rh_config_descriptor;
550 len = sizeof hs_rh_config_descriptor;
551 break;
552 case HCD_USB11:
553 bufp = fs_rh_config_descriptor;
554 len = sizeof fs_rh_config_descriptor;
555 break;
556 default:
557 goto error;
558 }
559 if (device_can_wakeup(&hcd->self.root_hub->dev))
560 patch_wakeup = 1;
561 break;
562 case USB_DT_STRING << 8:
563 if ((wValue & 0xff) < 4)
564 urb->actual_length = rh_string(wValue & 0xff,
565 hcd, ubuf, wLength);
566 else /* unsupported IDs --> "protocol stall" */
567 goto error;
568 break;
569 case USB_DT_BOS << 8:
570 goto nongeneric;
571 default:
572 goto error;
573 }
574 break;
575 case DeviceRequest | USB_REQ_GET_INTERFACE:
576 tbuf [0] = 0;
577 len = 1;
578 /* FALLTHROUGH */
579 case DeviceOutRequest | USB_REQ_SET_INTERFACE:
580 break;
581 case DeviceOutRequest | USB_REQ_SET_ADDRESS:
582 // wValue == urb->dev->devaddr
583 dev_dbg (hcd->self.controller, "root hub device address %d\n",
584 wValue);
585 break;
586
587 /* INTERFACE REQUESTS (no defined feature/status flags) */
588
589 /* ENDPOINT REQUESTS */
590
591 case EndpointRequest | USB_REQ_GET_STATUS:
592 // ENDPOINT_HALT flag
593 tbuf [0] = 0;
594 tbuf [1] = 0;
595 len = 2;
596 /* FALLTHROUGH */
597 case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
598 case EndpointOutRequest | USB_REQ_SET_FEATURE:
599 dev_dbg (hcd->self.controller, "no endpoint features yet\n");
600 break;
601
602 /* CLASS REQUESTS (and errors) */
603
604 default:
605nongeneric:
606 /* non-generic request */
607 switch (typeReq) {
608 case GetHubStatus:
609 case GetPortStatus:
610 len = 4;
611 break;
612 case GetHubDescriptor:
613 len = sizeof (struct usb_hub_descriptor);
614 break;
615 case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
616 /* len is returned by hub_control */
617 break;
618 }
619 status = hcd->driver->hub_control (hcd,
620 typeReq, wValue, wIndex,
621 tbuf, wLength);
622 break;
623error:
624 /* "protocol stall" on error */
625 status = -EPIPE;
626 }
627
628 if (status < 0) {
629 len = 0;
630 if (status != -EPIPE) {
631 dev_dbg (hcd->self.controller,
632 "CTRL: TypeReq=0x%x val=0x%x "
633 "idx=0x%x len=%d ==> %d\n",
634 typeReq, wValue, wIndex,
635 wLength, status);
636 }
637 } else if (status > 0) {
638 /* hub_control may return the length of data copied. */
639 len = status;
640 status = 0;
641 }
642 if (len) {
643 if (urb->transfer_buffer_length < len)
644 len = urb->transfer_buffer_length;
645 urb->actual_length = len;
646 // always USB_DIR_IN, toward host
647 memcpy (ubuf, bufp, len);
648
649 /* report whether RH hardware supports remote wakeup */
650 if (patch_wakeup &&
651 len > offsetof (struct usb_config_descriptor,
652 bmAttributes))
653 ((struct usb_config_descriptor *)ubuf)->bmAttributes
654 |= USB_CONFIG_ATT_WAKEUP;
655
656 /* report whether RH hardware has an integrated TT */
657 if (patch_protocol &&
658 len > offsetof(struct usb_device_descriptor,
659 bDeviceProtocol))
660 ((struct usb_device_descriptor *) ubuf)->
661 bDeviceProtocol = USB_HUB_PR_HS_SINGLE_TT;
662 }
663
664 /* any errors get returned through the urb completion */
665 spin_lock_irq(&hcd_root_hub_lock);
666 usb_hcd_unlink_urb_from_ep(hcd, urb);
667
668 /* This peculiar use of spinlocks echoes what real HC drivers do.
669 * Avoiding calls to local_irq_disable/enable makes the code
670 * RT-friendly.
671 */
672 spin_unlock(&hcd_root_hub_lock);
673 usb_hcd_giveback_urb(hcd, urb, status);
674 spin_lock(&hcd_root_hub_lock);
675
676 spin_unlock_irq(&hcd_root_hub_lock);
677 return 0;
678}
679
680/*-------------------------------------------------------------------------*/
681
682/*
683 * Root Hub interrupt transfers are polled using a timer if the
684 * driver requests it; otherwise the driver is responsible for
685 * calling usb_hcd_poll_rh_status() when an event occurs.
686 *
687 * Completions are called in_interrupt(), but they may or may not
688 * be in_irq().
689 */
690void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
691{
692 struct urb *urb;
693 int length;
694 unsigned long flags;
695 char buffer[6]; /* Any root hubs with > 31 ports? */
696
697 if (unlikely(!hcd->rh_pollable))
698 return;
699 if (!hcd->uses_new_polling && !hcd->status_urb)
700 return;
701
702 length = hcd->driver->hub_status_data(hcd, buffer);
703 if (length > 0) {
704
705 /* try to complete the status urb */
706 spin_lock_irqsave(&hcd_root_hub_lock, flags);
707 urb = hcd->status_urb;
708 if (urb) {
709 clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
710 hcd->status_urb = NULL;
711 urb->actual_length = length;
712 memcpy(urb->transfer_buffer, buffer, length);
713
714 usb_hcd_unlink_urb_from_ep(hcd, urb);
715 spin_unlock(&hcd_root_hub_lock);
716 usb_hcd_giveback_urb(hcd, urb, 0);
717 spin_lock(&hcd_root_hub_lock);
718 } else {
719 length = 0;
720 set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
721 }
722 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
723 }
724
725 /* The USB 2.0 spec says 256 ms. This is close enough and won't
726 * exceed that limit if HZ is 100. The math is more clunky than
727 * maybe expected, this is to make sure that all timers for USB devices
728 * fire at the same time to give the CPU a break in between */
729 if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) :
730 (length == 0 && hcd->status_urb != NULL))
731 mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
732}
733EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
734
735/* timer callback */
736static void rh_timer_func (unsigned long _hcd)
737{
738 usb_hcd_poll_rh_status((struct usb_hcd *) _hcd);
739}
740
741/*-------------------------------------------------------------------------*/
742
743static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
744{
745 int retval;
746 unsigned long flags;
747 unsigned len = 1 + (urb->dev->maxchild / 8);
748
749 spin_lock_irqsave (&hcd_root_hub_lock, flags);
750 if (hcd->status_urb || urb->transfer_buffer_length < len) {
751 dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
752 retval = -EINVAL;
753 goto done;
754 }
755
756 retval = usb_hcd_link_urb_to_ep(hcd, urb);
757 if (retval)
758 goto done;
759
760 hcd->status_urb = urb;
761 urb->hcpriv = hcd; /* indicate it's queued */
762 if (!hcd->uses_new_polling)
763 mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
764
765 /* If a status change has already occurred, report it ASAP */
766 else if (HCD_POLL_PENDING(hcd))
767 mod_timer(&hcd->rh_timer, jiffies);
768 retval = 0;
769 done:
770 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
771 return retval;
772}
773
774static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
775{
776 if (usb_endpoint_xfer_int(&urb->ep->desc))
777 return rh_queue_status (hcd, urb);
778 if (usb_endpoint_xfer_control(&urb->ep->desc))
779 return rh_call_control (hcd, urb);
780 return -EINVAL;
781}
782
783/*-------------------------------------------------------------------------*/
784
785/* Unlinks of root-hub control URBs are legal, but they don't do anything
786 * since these URBs always execute synchronously.
787 */
788static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
789{
790 unsigned long flags;
791 int rc;
792
793 spin_lock_irqsave(&hcd_root_hub_lock, flags);
794 rc = usb_hcd_check_unlink_urb(hcd, urb, status);
795 if (rc)
796 goto done;
797
798 if (usb_endpoint_num(&urb->ep->desc) == 0) { /* Control URB */
799 ; /* Do nothing */
800
801 } else { /* Status URB */
802 if (!hcd->uses_new_polling)
803 del_timer (&hcd->rh_timer);
804 if (urb == hcd->status_urb) {
805 hcd->status_urb = NULL;
806 usb_hcd_unlink_urb_from_ep(hcd, urb);
807
808 spin_unlock(&hcd_root_hub_lock);
809 usb_hcd_giveback_urb(hcd, urb, status);
810 spin_lock(&hcd_root_hub_lock);
811 }
812 }
813 done:
814 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
815 return rc;
816}
817
818
819
820/*
821 * Show & store the current value of authorized_default
822 */
823static ssize_t usb_host_authorized_default_show(struct device *dev,
824 struct device_attribute *attr,
825 char *buf)
826{
827 struct usb_device *rh_usb_dev = to_usb_device(dev);
828 struct usb_bus *usb_bus = rh_usb_dev->bus;
829 struct usb_hcd *usb_hcd;
830
831 if (usb_bus == NULL) /* FIXME: not sure if this case is possible */
832 return -ENODEV;
833 usb_hcd = bus_to_hcd(usb_bus);
834 return snprintf(buf, PAGE_SIZE, "%u\n", usb_hcd->authorized_default);
835}
836
837static ssize_t usb_host_authorized_default_store(struct device *dev,
838 struct device_attribute *attr,
839 const char *buf, size_t size)
840{
841 ssize_t result;
842 unsigned val;
843 struct usb_device *rh_usb_dev = to_usb_device(dev);
844 struct usb_bus *usb_bus = rh_usb_dev->bus;
845 struct usb_hcd *usb_hcd;
846
847 if (usb_bus == NULL) /* FIXME: not sure if this case is possible */
848 return -ENODEV;
849 usb_hcd = bus_to_hcd(usb_bus);
850 result = sscanf(buf, "%u\n", &val);
851 if (result == 1) {
852 usb_hcd->authorized_default = val? 1 : 0;
853 result = size;
854 }
855 else
856 result = -EINVAL;
857 return result;
858}
859
860static DEVICE_ATTR(authorized_default, 0644,
861 usb_host_authorized_default_show,
862 usb_host_authorized_default_store);
863
864
865/* Group all the USB bus attributes */
866static struct attribute *usb_bus_attrs[] = {
867 &dev_attr_authorized_default.attr,
868 NULL,
869};
870
871static struct attribute_group usb_bus_attr_group = {
872 .name = NULL, /* we want them in the same directory */
873 .attrs = usb_bus_attrs,
874};
875
876
877
878/*-------------------------------------------------------------------------*/
879
880/**
881 * usb_bus_init - shared initialization code
882 * @bus: the bus structure being initialized
883 *
884 * This code is used to initialize a usb_bus structure, memory for which is
885 * separately managed.
886 */
887static void usb_bus_init (struct usb_bus *bus)
888{
889 memset (&bus->devmap, 0, sizeof(struct usb_devmap));
890
891 bus->devnum_next = 1;
892
893 bus->root_hub = NULL;
894 bus->busnum = -1;
895 bus->bandwidth_allocated = 0;
896 bus->bandwidth_int_reqs = 0;
897 bus->bandwidth_isoc_reqs = 0;
898
899 INIT_LIST_HEAD (&bus->bus_list);
900}
901
902/*-------------------------------------------------------------------------*/
903
904/**
905 * usb_register_bus - registers the USB host controller with the usb core
906 * @bus: pointer to the bus to register
907 * Context: !in_interrupt()
908 *
909 * Assigns a bus number, and links the controller into usbcore data
910 * structures so that it can be seen by scanning the bus list.
911 */
912static int usb_register_bus(struct usb_bus *bus)
913{
914 int result = -E2BIG;
915 int busnum;
916
917 mutex_lock(&usb_bus_list_lock);
918 busnum = find_next_zero_bit (busmap.busmap, USB_MAXBUS, 1);
919 if (busnum >= USB_MAXBUS) {
920 printk (KERN_ERR "%s: too many buses\n", usbcore_name);
921 goto error_find_busnum;
922 }
923 set_bit (busnum, busmap.busmap);
924 bus->busnum = busnum;
925
926 /* Add it to the local list of buses */
927 list_add (&bus->bus_list, &usb_bus_list);
928 mutex_unlock(&usb_bus_list_lock);
929
930 usb_notify_add_bus(bus);
931
932 dev_info (bus->controller, "new USB bus registered, assigned bus "
933 "number %d\n", bus->busnum);
934 return 0;
935
936error_find_busnum:
937 mutex_unlock(&usb_bus_list_lock);
938 return result;
939}
940
941/**
942 * usb_deregister_bus - deregisters the USB host controller
943 * @bus: pointer to the bus to deregister
944 * Context: !in_interrupt()
945 *
946 * Recycles the bus number, and unlinks the controller from usbcore data
947 * structures so that it won't be seen by scanning the bus list.
948 */
949static void usb_deregister_bus (struct usb_bus *bus)
950{
951 dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
952
953 /*
954 * NOTE: make sure that all the devices are removed by the
955 * controller code, as well as having it call this when cleaning
956 * itself up
957 */
958 mutex_lock(&usb_bus_list_lock);
959 list_del (&bus->bus_list);
960 mutex_unlock(&usb_bus_list_lock);
961
962 usb_notify_remove_bus(bus);
963
964 clear_bit (bus->busnum, busmap.busmap);
965}
966
967/**
968 * register_root_hub - called by usb_add_hcd() to register a root hub
969 * @hcd: host controller for this root hub
970 *
971 * This function registers the root hub with the USB subsystem. It sets up
972 * the device properly in the device tree and then calls usb_new_device()
973 * to register the usb device. It also assigns the root hub's USB address
974 * (always 1).
975 */
976static int register_root_hub(struct usb_hcd *hcd)
977{
978 struct device *parent_dev = hcd->self.controller;
979 struct usb_device *usb_dev = hcd->self.root_hub;
980 const int devnum = 1;
981 int retval;
982
983 usb_dev->devnum = devnum;
984 usb_dev->bus->devnum_next = devnum + 1;
985 memset (&usb_dev->bus->devmap.devicemap, 0,
986 sizeof usb_dev->bus->devmap.devicemap);
987 set_bit (devnum, usb_dev->bus->devmap.devicemap);
988 usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
989
990 mutex_lock(&usb_bus_list_lock);
991
992 usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64);
993 retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE);
994 if (retval != sizeof usb_dev->descriptor) {
995 mutex_unlock(&usb_bus_list_lock);
996 dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
997 dev_name(&usb_dev->dev), retval);
998 return (retval < 0) ? retval : -EMSGSIZE;
999 }
1000 if (usb_dev->speed == USB_SPEED_SUPER) {
1001 retval = usb_get_bos_descriptor(usb_dev);
1002 if (retval < 0) {
1003 mutex_unlock(&usb_bus_list_lock);
1004 dev_dbg(parent_dev, "can't read %s bos descriptor %d\n",
1005 dev_name(&usb_dev->dev), retval);
1006 return retval;
1007 }
1008 }
1009
1010 retval = usb_new_device (usb_dev);
1011 if (retval) {
1012 dev_err (parent_dev, "can't register root hub for %s, %d\n",
1013 dev_name(&usb_dev->dev), retval);
1014 } else {
1015 spin_lock_irq (&hcd_root_hub_lock);
1016 hcd->rh_registered = 1;
1017 spin_unlock_irq (&hcd_root_hub_lock);
1018
1019 /* Did the HC die before the root hub was registered? */
1020 if (HCD_DEAD(hcd))
1021 usb_hc_died (hcd); /* This time clean up */
1022 }
1023 mutex_unlock(&usb_bus_list_lock);
1024
1025 return retval;
1026}
1027
1028
1029/*-------------------------------------------------------------------------*/
1030
1031/**
1032 * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
1033 * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
1034 * @is_input: true iff the transaction sends data to the host
1035 * @isoc: true for isochronous transactions, false for interrupt ones
1036 * @bytecount: how many bytes in the transaction.
1037 *
1038 * Returns approximate bus time in nanoseconds for a periodic transaction.
1039 * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
1040 * scheduled in software, this function is only used for such scheduling.
1041 */
1042long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
1043{
1044 unsigned long tmp;
1045
1046 switch (speed) {
1047 case USB_SPEED_LOW: /* INTR only */
1048 if (is_input) {
1049 tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
1050 return (64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp);
1051 } else {
1052 tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
1053 return (64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp);
1054 }
1055 case USB_SPEED_FULL: /* ISOC or INTR */
1056 if (isoc) {
1057 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1058 return (((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp);
1059 } else {
1060 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1061 return (9107L + BW_HOST_DELAY + tmp);
1062 }
1063 case USB_SPEED_HIGH: /* ISOC or INTR */
1064 // FIXME adjust for input vs output
1065 if (isoc)
1066 tmp = HS_NSECS_ISO (bytecount);
1067 else
1068 tmp = HS_NSECS (bytecount);
1069 return tmp;
1070 default:
1071 pr_debug ("%s: bogus device speed!\n", usbcore_name);
1072 return -1;
1073 }
1074}
1075EXPORT_SYMBOL_GPL(usb_calc_bus_time);
1076
1077
1078/*-------------------------------------------------------------------------*/
1079
1080/*
1081 * Generic HC operations.
1082 */
1083
1084/*-------------------------------------------------------------------------*/
1085
1086/**
1087 * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
1088 * @hcd: host controller to which @urb was submitted
1089 * @urb: URB being submitted
1090 *
1091 * Host controller drivers should call this routine in their enqueue()
1092 * method. The HCD's private spinlock must be held and interrupts must
1093 * be disabled. The actions carried out here are required for URB
1094 * submission, as well as for endpoint shutdown and for usb_kill_urb.
1095 *
1096 * Returns 0 for no error, otherwise a negative error code (in which case
1097 * the enqueue() method must fail). If no error occurs but enqueue() fails
1098 * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
1099 * the private spinlock and returning.
1100 */
1101int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb)
1102{
1103 int rc = 0;
1104
1105 spin_lock(&hcd_urb_list_lock);
1106
1107 /* Check that the URB isn't being killed */
1108 if (unlikely(atomic_read(&urb->reject))) {
1109 rc = -EPERM;
1110 goto done;
1111 }
1112
1113 if (unlikely(!urb->ep->enabled)) {
1114 rc = -ENOENT;
1115 goto done;
1116 }
1117
1118 if (unlikely(!urb->dev->can_submit)) {
1119 rc = -EHOSTUNREACH;
1120 goto done;
1121 }
1122
1123 /*
1124 * Check the host controller's state and add the URB to the
1125 * endpoint's queue.
1126 */
1127 if (HCD_RH_RUNNING(hcd)) {
1128 urb->unlinked = 0;
1129 list_add_tail(&urb->urb_list, &urb->ep->urb_list);
1130 } else {
1131 rc = -ESHUTDOWN;
1132 goto done;
1133 }
1134 done:
1135 spin_unlock(&hcd_urb_list_lock);
1136 return rc;
1137}
1138EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
1139
1140/**
1141 * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1142 * @hcd: host controller to which @urb was submitted
1143 * @urb: URB being checked for unlinkability
1144 * @status: error code to store in @urb if the unlink succeeds
1145 *
1146 * Host controller drivers should call this routine in their dequeue()
1147 * method. The HCD's private spinlock must be held and interrupts must
1148 * be disabled. The actions carried out here are required for making
1149 * sure than an unlink is valid.
1150 *
1151 * Returns 0 for no error, otherwise a negative error code (in which case
1152 * the dequeue() method must fail). The possible error codes are:
1153 *
1154 * -EIDRM: @urb was not submitted or has already completed.
1155 * The completion function may not have been called yet.
1156 *
1157 * -EBUSY: @urb has already been unlinked.
1158 */
1159int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb,
1160 int status)
1161{
1162 struct list_head *tmp;
1163
1164 /* insist the urb is still queued */
1165 list_for_each(tmp, &urb->ep->urb_list) {
1166 if (tmp == &urb->urb_list)
1167 break;
1168 }
1169 if (tmp != &urb->urb_list)
1170 return -EIDRM;
1171
1172 /* Any status except -EINPROGRESS means something already started to
1173 * unlink this URB from the hardware. So there's no more work to do.
1174 */
1175 if (urb->unlinked)
1176 return -EBUSY;
1177 urb->unlinked = status;
1178 return 0;
1179}
1180EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb);
1181
1182/**
1183 * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1184 * @hcd: host controller to which @urb was submitted
1185 * @urb: URB being unlinked
1186 *
1187 * Host controller drivers should call this routine before calling
1188 * usb_hcd_giveback_urb(). The HCD's private spinlock must be held and
1189 * interrupts must be disabled. The actions carried out here are required
1190 * for URB completion.
1191 */
1192void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb)
1193{
1194 /* clear all state linking urb to this dev (and hcd) */
1195 spin_lock(&hcd_urb_list_lock);
1196 list_del_init(&urb->urb_list);
1197 spin_unlock(&hcd_urb_list_lock);
1198}
1199EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
1200
1201/*
1202 * Some usb host controllers can only perform dma using a small SRAM area.
1203 * The usb core itself is however optimized for host controllers that can dma
1204 * using regular system memory - like pci devices doing bus mastering.
1205 *
1206 * To support host controllers with limited dma capabilites we provide dma
1207 * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag.
1208 * For this to work properly the host controller code must first use the
1209 * function dma_declare_coherent_memory() to point out which memory area
1210 * that should be used for dma allocations.
1211 *
1212 * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for
1213 * dma using dma_alloc_coherent() which in turn allocates from the memory
1214 * area pointed out with dma_declare_coherent_memory().
1215 *
1216 * So, to summarize...
1217 *
1218 * - We need "local" memory, canonical example being
1219 * a small SRAM on a discrete controller being the
1220 * only memory that the controller can read ...
1221 * (a) "normal" kernel memory is no good, and
1222 * (b) there's not enough to share
1223 *
1224 * - The only *portable* hook for such stuff in the
1225 * DMA framework is dma_declare_coherent_memory()
1226 *
1227 * - So we use that, even though the primary requirement
1228 * is that the memory be "local" (hence addressible
1229 * by that device), not "coherent".
1230 *
1231 */
1232
1233static int hcd_alloc_coherent(struct usb_bus *bus,
1234 gfp_t mem_flags, dma_addr_t *dma_handle,
1235 void **vaddr_handle, size_t size,
1236 enum dma_data_direction dir)
1237{
1238 unsigned char *vaddr;
1239
1240 if (*vaddr_handle == NULL) {
1241 WARN_ON_ONCE(1);
1242 return -EFAULT;
1243 }
1244
1245 vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr),
1246 mem_flags, dma_handle);
1247 if (!vaddr)
1248 return -ENOMEM;
1249
1250 /*
1251 * Store the virtual address of the buffer at the end
1252 * of the allocated dma buffer. The size of the buffer
1253 * may be uneven so use unaligned functions instead
1254 * of just rounding up. It makes sense to optimize for
1255 * memory footprint over access speed since the amount
1256 * of memory available for dma may be limited.
1257 */
1258 put_unaligned((unsigned long)*vaddr_handle,
1259 (unsigned long *)(vaddr + size));
1260
1261 if (dir == DMA_TO_DEVICE)
1262 memcpy(vaddr, *vaddr_handle, size);
1263
1264 *vaddr_handle = vaddr;
1265 return 0;
1266}
1267
1268static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle,
1269 void **vaddr_handle, size_t size,
1270 enum dma_data_direction dir)
1271{
1272 unsigned char *vaddr = *vaddr_handle;
1273
1274 vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size));
1275
1276 if (dir == DMA_FROM_DEVICE)
1277 memcpy(vaddr, *vaddr_handle, size);
1278
1279 hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle);
1280
1281 *vaddr_handle = vaddr;
1282 *dma_handle = 0;
1283}
1284
1285void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb)
1286{
1287 if (urb->transfer_flags & URB_SETUP_MAP_SINGLE)
1288 dma_unmap_single(hcd->self.controller,
1289 urb->setup_dma,
1290 sizeof(struct usb_ctrlrequest),
1291 DMA_TO_DEVICE);
1292 else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL)
1293 hcd_free_coherent(urb->dev->bus,
1294 &urb->setup_dma,
1295 (void **) &urb->setup_packet,
1296 sizeof(struct usb_ctrlrequest),
1297 DMA_TO_DEVICE);
1298
1299 /* Make it safe to call this routine more than once */
1300 urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL);
1301}
1302EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma);
1303
1304static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1305{
1306 if (hcd->driver->unmap_urb_for_dma)
1307 hcd->driver->unmap_urb_for_dma(hcd, urb);
1308 else
1309 usb_hcd_unmap_urb_for_dma(hcd, urb);
1310}
1311
1312void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1313{
1314 enum dma_data_direction dir;
1315
1316 usb_hcd_unmap_urb_setup_for_dma(hcd, urb);
1317
1318 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1319 if (urb->transfer_flags & URB_DMA_MAP_SG)
1320 dma_unmap_sg(hcd->self.controller,
1321 urb->sg,
1322 urb->num_sgs,
1323 dir);
1324 else if (urb->transfer_flags & URB_DMA_MAP_PAGE)
1325 dma_unmap_page(hcd->self.controller,
1326 urb->transfer_dma,
1327 urb->transfer_buffer_length,
1328 dir);
1329 else if (urb->transfer_flags & URB_DMA_MAP_SINGLE)
1330 dma_unmap_single(hcd->self.controller,
1331 urb->transfer_dma,
1332 urb->transfer_buffer_length,
1333 dir);
1334 else if (urb->transfer_flags & URB_MAP_LOCAL)
1335 hcd_free_coherent(urb->dev->bus,
1336 &urb->transfer_dma,
1337 &urb->transfer_buffer,
1338 urb->transfer_buffer_length,
1339 dir);
1340
1341 /* Make it safe to call this routine more than once */
1342 urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE |
1343 URB_DMA_MAP_SINGLE | URB_MAP_LOCAL);
1344}
1345EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma);
1346
1347static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1348 gfp_t mem_flags)
1349{
1350 if (hcd->driver->map_urb_for_dma)
1351 return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags);
1352 else
1353 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1354}
1355
1356int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1357 gfp_t mem_flags)
1358{
1359 enum dma_data_direction dir;
1360 int ret = 0;
1361
1362 /* Map the URB's buffers for DMA access.
1363 * Lower level HCD code should use *_dma exclusively,
1364 * unless it uses pio or talks to another transport,
1365 * or uses the provided scatter gather list for bulk.
1366 */
1367
1368 if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1369 if (hcd->self.uses_pio_for_control)
1370 return ret;
1371 if (hcd->self.uses_dma) {
1372 urb->setup_dma = dma_map_single(
1373 hcd->self.controller,
1374 urb->setup_packet,
1375 sizeof(struct usb_ctrlrequest),
1376 DMA_TO_DEVICE);
1377 if (dma_mapping_error(hcd->self.controller,
1378 urb->setup_dma))
1379 return -EAGAIN;
1380 urb->transfer_flags |= URB_SETUP_MAP_SINGLE;
1381 } else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1382 ret = hcd_alloc_coherent(
1383 urb->dev->bus, mem_flags,
1384 &urb->setup_dma,
1385 (void **)&urb->setup_packet,
1386 sizeof(struct usb_ctrlrequest),
1387 DMA_TO_DEVICE);
1388 if (ret)
1389 return ret;
1390 urb->transfer_flags |= URB_SETUP_MAP_LOCAL;
1391 }
1392 }
1393
1394 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1395 if (urb->transfer_buffer_length != 0
1396 && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1397 if (hcd->self.uses_dma) {
1398 if (urb->num_sgs) {
1399 int n = dma_map_sg(
1400 hcd->self.controller,
1401 urb->sg,
1402 urb->num_sgs,
1403 dir);
1404 if (n <= 0)
1405 ret = -EAGAIN;
1406 else
1407 urb->transfer_flags |= URB_DMA_MAP_SG;
1408 urb->num_mapped_sgs = n;
1409 if (n != urb->num_sgs)
1410 urb->transfer_flags |=
1411 URB_DMA_SG_COMBINED;
1412 } else if (urb->sg) {
1413 struct scatterlist *sg = urb->sg;
1414 urb->transfer_dma = dma_map_page(
1415 hcd->self.controller,
1416 sg_page(sg),
1417 sg->offset,
1418 urb->transfer_buffer_length,
1419 dir);
1420 if (dma_mapping_error(hcd->self.controller,
1421 urb->transfer_dma))
1422 ret = -EAGAIN;
1423 else
1424 urb->transfer_flags |= URB_DMA_MAP_PAGE;
1425 } else {
1426 urb->transfer_dma = dma_map_single(
1427 hcd->self.controller,
1428 urb->transfer_buffer,
1429 urb->transfer_buffer_length,
1430 dir);
1431 if (dma_mapping_error(hcd->self.controller,
1432 urb->transfer_dma))
1433 ret = -EAGAIN;
1434 else
1435 urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1436 }
1437 } else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1438 ret = hcd_alloc_coherent(
1439 urb->dev->bus, mem_flags,
1440 &urb->transfer_dma,
1441 &urb->transfer_buffer,
1442 urb->transfer_buffer_length,
1443 dir);
1444 if (ret == 0)
1445 urb->transfer_flags |= URB_MAP_LOCAL;
1446 }
1447 if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE |
1448 URB_SETUP_MAP_LOCAL)))
1449 usb_hcd_unmap_urb_for_dma(hcd, urb);
1450 }
1451 return ret;
1452}
1453EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma);
1454
1455/*-------------------------------------------------------------------------*/
1456
1457/* may be called in any context with a valid urb->dev usecount
1458 * caller surrenders "ownership" of urb
1459 * expects usb_submit_urb() to have sanity checked and conditioned all
1460 * inputs in the urb
1461 */
1462int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1463{
1464 int status;
1465 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1466
1467 /* increment urb's reference count as part of giving it to the HCD
1468 * (which will control it). HCD guarantees that it either returns
1469 * an error or calls giveback(), but not both.
1470 */
1471 usb_get_urb(urb);
1472 atomic_inc(&urb->use_count);
1473 atomic_inc(&urb->dev->urbnum);
1474 usbmon_urb_submit(&hcd->self, urb);
1475
1476 /* NOTE requirements on root-hub callers (usbfs and the hub
1477 * driver, for now): URBs' urb->transfer_buffer must be
1478 * valid and usb_buffer_{sync,unmap}() not be needed, since
1479 * they could clobber root hub response data. Also, control
1480 * URBs must be submitted in process context with interrupts
1481 * enabled.
1482 */
1483
1484 if (is_root_hub(urb->dev)) {
1485 status = rh_urb_enqueue(hcd, urb);
1486 } else {
1487 status = map_urb_for_dma(hcd, urb, mem_flags);
1488 if (likely(status == 0)) {
1489 status = hcd->driver->urb_enqueue(hcd, urb, mem_flags);
1490 if (unlikely(status))
1491 unmap_urb_for_dma(hcd, urb);
1492 }
1493 }
1494
1495 if (unlikely(status)) {
1496 usbmon_urb_submit_error(&hcd->self, urb, status);
1497 urb->hcpriv = NULL;
1498 INIT_LIST_HEAD(&urb->urb_list);
1499 atomic_dec(&urb->use_count);
1500 atomic_dec(&urb->dev->urbnum);
1501 if (atomic_read(&urb->reject))
1502 wake_up(&usb_kill_urb_queue);
1503 usb_put_urb(urb);
1504 }
1505 return status;
1506}
1507
1508/*-------------------------------------------------------------------------*/
1509
1510/* this makes the hcd giveback() the urb more quickly, by kicking it
1511 * off hardware queues (which may take a while) and returning it as
1512 * soon as practical. we've already set up the urb's return status,
1513 * but we can't know if the callback completed already.
1514 */
1515static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status)
1516{
1517 int value;
1518
1519 if (is_root_hub(urb->dev))
1520 value = usb_rh_urb_dequeue(hcd, urb, status);
1521 else {
1522
1523 /* The only reason an HCD might fail this call is if
1524 * it has not yet fully queued the urb to begin with.
1525 * Such failures should be harmless. */
1526 value = hcd->driver->urb_dequeue(hcd, urb, status);
1527 }
1528 return value;
1529}
1530
1531/*
1532 * called in any context
1533 *
1534 * caller guarantees urb won't be recycled till both unlink()
1535 * and the urb's completion function return
1536 */
1537int usb_hcd_unlink_urb (struct urb *urb, int status)
1538{
1539 struct usb_hcd *hcd;
1540 int retval = -EIDRM;
1541 unsigned long flags;
1542
1543 /* Prevent the device and bus from going away while
1544 * the unlink is carried out. If they are already gone
1545 * then urb->use_count must be 0, since disconnected
1546 * devices can't have any active URBs.
1547 */
1548 spin_lock_irqsave(&hcd_urb_unlink_lock, flags);
1549 if (atomic_read(&urb->use_count) > 0) {
1550 retval = 0;
1551 usb_get_dev(urb->dev);
1552 }
1553 spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags);
1554 if (retval == 0) {
1555 hcd = bus_to_hcd(urb->dev->bus);
1556 retval = unlink1(hcd, urb, status);
1557 usb_put_dev(urb->dev);
1558 }
1559
1560 if (retval == 0)
1561 retval = -EINPROGRESS;
1562 else if (retval != -EIDRM && retval != -EBUSY)
1563 dev_dbg(&urb->dev->dev, "hcd_unlink_urb %p fail %d\n",
1564 urb, retval);
1565 return retval;
1566}
1567
1568/*-------------------------------------------------------------------------*/
1569
1570/**
1571 * usb_hcd_giveback_urb - return URB from HCD to device driver
1572 * @hcd: host controller returning the URB
1573 * @urb: urb being returned to the USB device driver.
1574 * @status: completion status code for the URB.
1575 * Context: in_interrupt()
1576 *
1577 * This hands the URB from HCD to its USB device driver, using its
1578 * completion function. The HCD has freed all per-urb resources
1579 * (and is done using urb->hcpriv). It also released all HCD locks;
1580 * the device driver won't cause problems if it frees, modifies,
1581 * or resubmits this URB.
1582 *
1583 * If @urb was unlinked, the value of @status will be overridden by
1584 * @urb->unlinked. Erroneous short transfers are detected in case
1585 * the HCD hasn't checked for them.
1586 */
1587void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status)
1588{
1589 urb->hcpriv = NULL;
1590 if (unlikely(urb->unlinked))
1591 status = urb->unlinked;
1592 else if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) &&
1593 urb->actual_length < urb->transfer_buffer_length &&
1594 !status))
1595 status = -EREMOTEIO;
1596
1597 unmap_urb_for_dma(hcd, urb);
1598 usbmon_urb_complete(&hcd->self, urb, status);
1599 usb_unanchor_urb(urb);
1600
1601 /* pass ownership to the completion handler */
1602 urb->status = status;
1603 urb->complete (urb);
1604 atomic_dec (&urb->use_count);
1605 if (unlikely(atomic_read(&urb->reject)))
1606 wake_up (&usb_kill_urb_queue);
1607 usb_put_urb (urb);
1608}
1609EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb);
1610
1611/*-------------------------------------------------------------------------*/
1612
1613/* Cancel all URBs pending on this endpoint and wait for the endpoint's
1614 * queue to drain completely. The caller must first insure that no more
1615 * URBs can be submitted for this endpoint.
1616 */
1617void usb_hcd_flush_endpoint(struct usb_device *udev,
1618 struct usb_host_endpoint *ep)
1619{
1620 struct usb_hcd *hcd;
1621 struct urb *urb;
1622
1623 if (!ep)
1624 return;
1625 might_sleep();
1626 hcd = bus_to_hcd(udev->bus);
1627
1628 /* No more submits can occur */
1629 spin_lock_irq(&hcd_urb_list_lock);
1630rescan:
1631 list_for_each_entry (urb, &ep->urb_list, urb_list) {
1632 int is_in;
1633
1634 if (urb->unlinked)
1635 continue;
1636 usb_get_urb (urb);
1637 is_in = usb_urb_dir_in(urb);
1638 spin_unlock(&hcd_urb_list_lock);
1639
1640 /* kick hcd */
1641 unlink1(hcd, urb, -ESHUTDOWN);
1642 dev_dbg (hcd->self.controller,
1643 "shutdown urb %p ep%d%s%s\n",
1644 urb, usb_endpoint_num(&ep->desc),
1645 is_in ? "in" : "out",
1646 ({ char *s;
1647
1648 switch (usb_endpoint_type(&ep->desc)) {
1649 case USB_ENDPOINT_XFER_CONTROL:
1650 s = ""; break;
1651 case USB_ENDPOINT_XFER_BULK:
1652 s = "-bulk"; break;
1653 case USB_ENDPOINT_XFER_INT:
1654 s = "-intr"; break;
1655 default:
1656 s = "-iso"; break;
1657 };
1658 s;
1659 }));
1660 usb_put_urb (urb);
1661
1662 /* list contents may have changed */
1663 spin_lock(&hcd_urb_list_lock);
1664 goto rescan;
1665 }
1666 spin_unlock_irq(&hcd_urb_list_lock);
1667
1668 /* Wait until the endpoint queue is completely empty */
1669 while (!list_empty (&ep->urb_list)) {
1670 spin_lock_irq(&hcd_urb_list_lock);
1671
1672 /* The list may have changed while we acquired the spinlock */
1673 urb = NULL;
1674 if (!list_empty (&ep->urb_list)) {
1675 urb = list_entry (ep->urb_list.prev, struct urb,
1676 urb_list);
1677 usb_get_urb (urb);
1678 }
1679 spin_unlock_irq(&hcd_urb_list_lock);
1680
1681 if (urb) {
1682 usb_kill_urb (urb);
1683 usb_put_urb (urb);
1684 }
1685 }
1686}
1687
1688/**
1689 * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds
1690 * the bus bandwidth
1691 * @udev: target &usb_device
1692 * @new_config: new configuration to install
1693 * @cur_alt: the current alternate interface setting
1694 * @new_alt: alternate interface setting that is being installed
1695 *
1696 * To change configurations, pass in the new configuration in new_config,
1697 * and pass NULL for cur_alt and new_alt.
1698 *
1699 * To reset a device's configuration (put the device in the ADDRESSED state),
1700 * pass in NULL for new_config, cur_alt, and new_alt.
1701 *
1702 * To change alternate interface settings, pass in NULL for new_config,
1703 * pass in the current alternate interface setting in cur_alt,
1704 * and pass in the new alternate interface setting in new_alt.
1705 *
1706 * Returns an error if the requested bandwidth change exceeds the
1707 * bus bandwidth or host controller internal resources.
1708 */
1709int usb_hcd_alloc_bandwidth(struct usb_device *udev,
1710 struct usb_host_config *new_config,
1711 struct usb_host_interface *cur_alt,
1712 struct usb_host_interface *new_alt)
1713{
1714 int num_intfs, i, j;
1715 struct usb_host_interface *alt = NULL;
1716 int ret = 0;
1717 struct usb_hcd *hcd;
1718 struct usb_host_endpoint *ep;
1719
1720 hcd = bus_to_hcd(udev->bus);
1721 if (!hcd->driver->check_bandwidth)
1722 return 0;
1723
1724 /* Configuration is being removed - set configuration 0 */
1725 if (!new_config && !cur_alt) {
1726 for (i = 1; i < 16; ++i) {
1727 ep = udev->ep_out[i];
1728 if (ep)
1729 hcd->driver->drop_endpoint(hcd, udev, ep);
1730 ep = udev->ep_in[i];
1731 if (ep)
1732 hcd->driver->drop_endpoint(hcd, udev, ep);
1733 }
1734 hcd->driver->check_bandwidth(hcd, udev);
1735 return 0;
1736 }
1737 /* Check if the HCD says there's enough bandwidth. Enable all endpoints
1738 * each interface's alt setting 0 and ask the HCD to check the bandwidth
1739 * of the bus. There will always be bandwidth for endpoint 0, so it's
1740 * ok to exclude it.
1741 */
1742 if (new_config) {
1743 num_intfs = new_config->desc.bNumInterfaces;
1744 /* Remove endpoints (except endpoint 0, which is always on the
1745 * schedule) from the old config from the schedule
1746 */
1747 for (i = 1; i < 16; ++i) {
1748 ep = udev->ep_out[i];
1749 if (ep) {
1750 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1751 if (ret < 0)
1752 goto reset;
1753 }
1754 ep = udev->ep_in[i];
1755 if (ep) {
1756 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1757 if (ret < 0)
1758 goto reset;
1759 }
1760 }
1761 for (i = 0; i < num_intfs; ++i) {
1762 struct usb_host_interface *first_alt;
1763 int iface_num;
1764
1765 first_alt = &new_config->intf_cache[i]->altsetting[0];
1766 iface_num = first_alt->desc.bInterfaceNumber;
1767 /* Set up endpoints for alternate interface setting 0 */
1768 alt = usb_find_alt_setting(new_config, iface_num, 0);
1769 if (!alt)
1770 /* No alt setting 0? Pick the first setting. */
1771 alt = first_alt;
1772
1773 for (j = 0; j < alt->desc.bNumEndpoints; j++) {
1774 ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]);
1775 if (ret < 0)
1776 goto reset;
1777 }
1778 }
1779 }
1780 if (cur_alt && new_alt) {
1781 struct usb_interface *iface = usb_ifnum_to_if(udev,
1782 cur_alt->desc.bInterfaceNumber);
1783
1784 if (!iface)
1785 return -EINVAL;
1786 if (iface->resetting_device) {
1787 /*
1788 * The USB core just reset the device, so the xHCI host
1789 * and the device will think alt setting 0 is installed.
1790 * However, the USB core will pass in the alternate
1791 * setting installed before the reset as cur_alt. Dig
1792 * out the alternate setting 0 structure, or the first
1793 * alternate setting if a broken device doesn't have alt
1794 * setting 0.
1795 */
1796 cur_alt = usb_altnum_to_altsetting(iface, 0);
1797 if (!cur_alt)
1798 cur_alt = &iface->altsetting[0];
1799 }
1800
1801 /* Drop all the endpoints in the current alt setting */
1802 for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) {
1803 ret = hcd->driver->drop_endpoint(hcd, udev,
1804 &cur_alt->endpoint[i]);
1805 if (ret < 0)
1806 goto reset;
1807 }
1808 /* Add all the endpoints in the new alt setting */
1809 for (i = 0; i < new_alt->desc.bNumEndpoints; i++) {
1810 ret = hcd->driver->add_endpoint(hcd, udev,
1811 &new_alt->endpoint[i]);
1812 if (ret < 0)
1813 goto reset;
1814 }
1815 }
1816 ret = hcd->driver->check_bandwidth(hcd, udev);
1817reset:
1818 if (ret < 0)
1819 hcd->driver->reset_bandwidth(hcd, udev);
1820 return ret;
1821}
1822
1823/* Disables the endpoint: synchronizes with the hcd to make sure all
1824 * endpoint state is gone from hardware. usb_hcd_flush_endpoint() must
1825 * have been called previously. Use for set_configuration, set_interface,
1826 * driver removal, physical disconnect.
1827 *
1828 * example: a qh stored in ep->hcpriv, holding state related to endpoint
1829 * type, maxpacket size, toggle, halt status, and scheduling.
1830 */
1831void usb_hcd_disable_endpoint(struct usb_device *udev,
1832 struct usb_host_endpoint *ep)
1833{
1834 struct usb_hcd *hcd;
1835
1836 might_sleep();
1837 hcd = bus_to_hcd(udev->bus);
1838 if (hcd->driver->endpoint_disable)
1839 hcd->driver->endpoint_disable(hcd, ep);
1840}
1841
1842/**
1843 * usb_hcd_reset_endpoint - reset host endpoint state
1844 * @udev: USB device.
1845 * @ep: the endpoint to reset.
1846 *
1847 * Resets any host endpoint state such as the toggle bit, sequence
1848 * number and current window.
1849 */
1850void usb_hcd_reset_endpoint(struct usb_device *udev,
1851 struct usb_host_endpoint *ep)
1852{
1853 struct usb_hcd *hcd = bus_to_hcd(udev->bus);
1854
1855 if (hcd->driver->endpoint_reset)
1856 hcd->driver->endpoint_reset(hcd, ep);
1857 else {
1858 int epnum = usb_endpoint_num(&ep->desc);
1859 int is_out = usb_endpoint_dir_out(&ep->desc);
1860 int is_control = usb_endpoint_xfer_control(&ep->desc);
1861
1862 usb_settoggle(udev, epnum, is_out, 0);
1863 if (is_control)
1864 usb_settoggle(udev, epnum, !is_out, 0);
1865 }
1866}
1867
1868/**
1869 * usb_alloc_streams - allocate bulk endpoint stream IDs.
1870 * @interface: alternate setting that includes all endpoints.
1871 * @eps: array of endpoints that need streams.
1872 * @num_eps: number of endpoints in the array.
1873 * @num_streams: number of streams to allocate.
1874 * @mem_flags: flags hcd should use to allocate memory.
1875 *
1876 * Sets up a group of bulk endpoints to have num_streams stream IDs available.
1877 * Drivers may queue multiple transfers to different stream IDs, which may
1878 * complete in a different order than they were queued.
1879 */
1880int usb_alloc_streams(struct usb_interface *interface,
1881 struct usb_host_endpoint **eps, unsigned int num_eps,
1882 unsigned int num_streams, gfp_t mem_flags)
1883{
1884 struct usb_hcd *hcd;
1885 struct usb_device *dev;
1886 int i;
1887
1888 dev = interface_to_usbdev(interface);
1889 hcd = bus_to_hcd(dev->bus);
1890 if (!hcd->driver->alloc_streams || !hcd->driver->free_streams)
1891 return -EINVAL;
1892 if (dev->speed != USB_SPEED_SUPER)
1893 return -EINVAL;
1894
1895 /* Streams only apply to bulk endpoints. */
1896 for (i = 0; i < num_eps; i++)
1897 if (!usb_endpoint_xfer_bulk(&eps[i]->desc))
1898 return -EINVAL;
1899
1900 return hcd->driver->alloc_streams(hcd, dev, eps, num_eps,
1901 num_streams, mem_flags);
1902}
1903EXPORT_SYMBOL_GPL(usb_alloc_streams);
1904
1905/**
1906 * usb_free_streams - free bulk endpoint stream IDs.
1907 * @interface: alternate setting that includes all endpoints.
1908 * @eps: array of endpoints to remove streams from.
1909 * @num_eps: number of endpoints in the array.
1910 * @mem_flags: flags hcd should use to allocate memory.
1911 *
1912 * Reverts a group of bulk endpoints back to not using stream IDs.
1913 * Can fail if we are given bad arguments, or HCD is broken.
1914 */
1915void usb_free_streams(struct usb_interface *interface,
1916 struct usb_host_endpoint **eps, unsigned int num_eps,
1917 gfp_t mem_flags)
1918{
1919 struct usb_hcd *hcd;
1920 struct usb_device *dev;
1921 int i;
1922
1923 dev = interface_to_usbdev(interface);
1924 hcd = bus_to_hcd(dev->bus);
1925 if (dev->speed != USB_SPEED_SUPER)
1926 return;
1927
1928 /* Streams only apply to bulk endpoints. */
1929 for (i = 0; i < num_eps; i++)
1930 if (!eps[i] || !usb_endpoint_xfer_bulk(&eps[i]->desc))
1931 return;
1932
1933 hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags);
1934}
1935EXPORT_SYMBOL_GPL(usb_free_streams);
1936
1937/* Protect against drivers that try to unlink URBs after the device
1938 * is gone, by waiting until all unlinks for @udev are finished.
1939 * Since we don't currently track URBs by device, simply wait until
1940 * nothing is running in the locked region of usb_hcd_unlink_urb().
1941 */
1942void usb_hcd_synchronize_unlinks(struct usb_device *udev)
1943{
1944 spin_lock_irq(&hcd_urb_unlink_lock);
1945 spin_unlock_irq(&hcd_urb_unlink_lock);
1946}
1947
1948/*-------------------------------------------------------------------------*/
1949
1950/* called in any context */
1951int usb_hcd_get_frame_number (struct usb_device *udev)
1952{
1953 struct usb_hcd *hcd = bus_to_hcd(udev->bus);
1954
1955 if (!HCD_RH_RUNNING(hcd))
1956 return -ESHUTDOWN;
1957 return hcd->driver->get_frame_number (hcd);
1958}
1959
1960/*-------------------------------------------------------------------------*/
1961
1962#ifdef CONFIG_PM
1963
1964int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg)
1965{
1966 struct usb_hcd *hcd = container_of(rhdev->bus, struct usb_hcd, self);
1967 int status;
1968 int old_state = hcd->state;
1969
1970 dev_dbg(&rhdev->dev, "bus %ssuspend, wakeup %d\n",
1971 (PMSG_IS_AUTO(msg) ? "auto-" : ""),
1972 rhdev->do_remote_wakeup);
1973 if (HCD_DEAD(hcd)) {
1974 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend");
1975 return 0;
1976 }
1977
1978 if (!hcd->driver->bus_suspend) {
1979 status = -ENOENT;
1980 } else {
1981 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
1982 hcd->state = HC_STATE_QUIESCING;
1983 status = hcd->driver->bus_suspend(hcd);
1984 }
1985 if (status == 0) {
1986 usb_set_device_state(rhdev, USB_STATE_SUSPENDED);
1987 hcd->state = HC_STATE_SUSPENDED;
1988
1989 /* Did we race with a root-hub wakeup event? */
1990 if (rhdev->do_remote_wakeup) {
1991 char buffer[6];
1992
1993 status = hcd->driver->hub_status_data(hcd, buffer);
1994 if (status != 0) {
1995 dev_dbg(&rhdev->dev, "suspend raced with wakeup event\n");
1996 hcd_bus_resume(rhdev, PMSG_AUTO_RESUME);
1997 status = -EBUSY;
1998 }
1999 }
2000 } else {
2001 spin_lock_irq(&hcd_root_hub_lock);
2002 if (!HCD_DEAD(hcd)) {
2003 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2004 hcd->state = old_state;
2005 }
2006 spin_unlock_irq(&hcd_root_hub_lock);
2007 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2008 "suspend", status);
2009 }
2010 return status;
2011}
2012
2013int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg)
2014{
2015 struct usb_hcd *hcd = container_of(rhdev->bus, struct usb_hcd, self);
2016 int status;
2017 int old_state = hcd->state;
2018
2019 dev_dbg(&rhdev->dev, "usb %sresume\n",
2020 (PMSG_IS_AUTO(msg) ? "auto-" : ""));
2021 if (HCD_DEAD(hcd)) {
2022 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume");
2023 return 0;
2024 }
2025 if (!hcd->driver->bus_resume)
2026 return -ENOENT;
2027 if (HCD_RH_RUNNING(hcd))
2028 return 0;
2029
2030 hcd->state = HC_STATE_RESUMING;
2031 status = hcd->driver->bus_resume(hcd);
2032 clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2033 if (status == 0) {
2034 /* TRSMRCY = 10 msec */
2035 msleep(10);
2036 spin_lock_irq(&hcd_root_hub_lock);
2037 if (!HCD_DEAD(hcd)) {
2038 usb_set_device_state(rhdev, rhdev->actconfig
2039 ? USB_STATE_CONFIGURED
2040 : USB_STATE_ADDRESS);
2041 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2042 hcd->state = HC_STATE_RUNNING;
2043 }
2044 spin_unlock_irq(&hcd_root_hub_lock);
2045 } else {
2046 hcd->state = old_state;
2047 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2048 "resume", status);
2049 if (status != -ESHUTDOWN)
2050 usb_hc_died(hcd);
2051 }
2052 return status;
2053}
2054
2055#endif /* CONFIG_PM */
2056
2057#ifdef CONFIG_USB_SUSPEND
2058
2059/* Workqueue routine for root-hub remote wakeup */
2060static void hcd_resume_work(struct work_struct *work)
2061{
2062 struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work);
2063 struct usb_device *udev = hcd->self.root_hub;
2064
2065 usb_lock_device(udev);
2066 usb_remote_wakeup(udev);
2067 usb_unlock_device(udev);
2068}
2069
2070/**
2071 * usb_hcd_resume_root_hub - called by HCD to resume its root hub
2072 * @hcd: host controller for this root hub
2073 *
2074 * The USB host controller calls this function when its root hub is
2075 * suspended (with the remote wakeup feature enabled) and a remote
2076 * wakeup request is received. The routine submits a workqueue request
2077 * to resume the root hub (that is, manage its downstream ports again).
2078 */
2079void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
2080{
2081 unsigned long flags;
2082
2083 spin_lock_irqsave (&hcd_root_hub_lock, flags);
2084 if (hcd->rh_registered) {
2085 set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2086 queue_work(pm_wq, &hcd->wakeup_work);
2087 }
2088 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2089}
2090EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
2091
2092#endif /* CONFIG_USB_SUSPEND */
2093
2094/*-------------------------------------------------------------------------*/
2095
2096#ifdef CONFIG_USB_OTG
2097
2098/**
2099 * usb_bus_start_enum - start immediate enumeration (for OTG)
2100 * @bus: the bus (must use hcd framework)
2101 * @port_num: 1-based number of port; usually bus->otg_port
2102 * Context: in_interrupt()
2103 *
2104 * Starts enumeration, with an immediate reset followed later by
2105 * khubd identifying and possibly configuring the device.
2106 * This is needed by OTG controller drivers, where it helps meet
2107 * HNP protocol timing requirements for starting a port reset.
2108 */
2109int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
2110{
2111 struct usb_hcd *hcd;
2112 int status = -EOPNOTSUPP;
2113
2114 /* NOTE: since HNP can't start by grabbing the bus's address0_sem,
2115 * boards with root hubs hooked up to internal devices (instead of
2116 * just the OTG port) may need more attention to resetting...
2117 */
2118 hcd = container_of (bus, struct usb_hcd, self);
2119 if (port_num && hcd->driver->start_port_reset)
2120 status = hcd->driver->start_port_reset(hcd, port_num);
2121
2122 /* run khubd shortly after (first) root port reset finishes;
2123 * it may issue others, until at least 50 msecs have passed.
2124 */
2125 if (status == 0)
2126 mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
2127 return status;
2128}
2129EXPORT_SYMBOL_GPL(usb_bus_start_enum);
2130
2131#endif
2132
2133/*-------------------------------------------------------------------------*/
2134
2135/**
2136 * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
2137 * @irq: the IRQ being raised
2138 * @__hcd: pointer to the HCD whose IRQ is being signaled
2139 *
2140 * If the controller isn't HALTed, calls the driver's irq handler.
2141 * Checks whether the controller is now dead.
2142 */
2143irqreturn_t usb_hcd_irq (int irq, void *__hcd)
2144{
2145 struct usb_hcd *hcd = __hcd;
2146 unsigned long flags;
2147 irqreturn_t rc;
2148
2149 /* IRQF_DISABLED doesn't work correctly with shared IRQs
2150 * when the first handler doesn't use it. So let's just
2151 * assume it's never used.
2152 */
2153 local_irq_save(flags);
2154
2155 if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd)))
2156 rc = IRQ_NONE;
2157 else if (hcd->driver->irq(hcd) == IRQ_NONE)
2158 rc = IRQ_NONE;
2159 else
2160 rc = IRQ_HANDLED;
2161
2162 local_irq_restore(flags);
2163 return rc;
2164}
2165EXPORT_SYMBOL_GPL(usb_hcd_irq);
2166
2167/*-------------------------------------------------------------------------*/
2168
2169/**
2170 * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
2171 * @hcd: pointer to the HCD representing the controller
2172 *
2173 * This is called by bus glue to report a USB host controller that died
2174 * while operations may still have been pending. It's called automatically
2175 * by the PCI glue, so only glue for non-PCI busses should need to call it.
2176 *
2177 * Only call this function with the primary HCD.
2178 */
2179void usb_hc_died (struct usb_hcd *hcd)
2180{
2181 unsigned long flags;
2182
2183 dev_err (hcd->self.controller, "HC died; cleaning up\n");
2184
2185 spin_lock_irqsave (&hcd_root_hub_lock, flags);
2186 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2187 set_bit(HCD_FLAG_DEAD, &hcd->flags);
2188 if (hcd->rh_registered) {
2189 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2190
2191 /* make khubd clean up old urbs and devices */
2192 usb_set_device_state (hcd->self.root_hub,
2193 USB_STATE_NOTATTACHED);
2194 usb_kick_khubd (hcd->self.root_hub);
2195 }
2196 if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) {
2197 hcd = hcd->shared_hcd;
2198 if (hcd->rh_registered) {
2199 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2200
2201 /* make khubd clean up old urbs and devices */
2202 usb_set_device_state(hcd->self.root_hub,
2203 USB_STATE_NOTATTACHED);
2204 usb_kick_khubd(hcd->self.root_hub);
2205 }
2206 }
2207 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2208 /* Make sure that the other roothub is also deallocated. */
2209}
2210EXPORT_SYMBOL_GPL (usb_hc_died);
2211
2212/*-------------------------------------------------------------------------*/
2213
2214/**
2215 * usb_create_shared_hcd - create and initialize an HCD structure
2216 * @driver: HC driver that will use this hcd
2217 * @dev: device for this HC, stored in hcd->self.controller
2218 * @bus_name: value to store in hcd->self.bus_name
2219 * @primary_hcd: a pointer to the usb_hcd structure that is sharing the
2220 * PCI device. Only allocate certain resources for the primary HCD
2221 * Context: !in_interrupt()
2222 *
2223 * Allocate a struct usb_hcd, with extra space at the end for the
2224 * HC driver's private data. Initialize the generic members of the
2225 * hcd structure.
2226 *
2227 * If memory is unavailable, returns NULL.
2228 */
2229struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver,
2230 struct device *dev, const char *bus_name,
2231 struct usb_hcd *primary_hcd)
2232{
2233 struct usb_hcd *hcd;
2234
2235 hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
2236 if (!hcd) {
2237 dev_dbg (dev, "hcd alloc failed\n");
2238 return NULL;
2239 }
2240 if (primary_hcd == NULL) {
2241 hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex),
2242 GFP_KERNEL);
2243 if (!hcd->bandwidth_mutex) {
2244 kfree(hcd);
2245 dev_dbg(dev, "hcd bandwidth mutex alloc failed\n");
2246 return NULL;
2247 }
2248 mutex_init(hcd->bandwidth_mutex);
2249 dev_set_drvdata(dev, hcd);
2250 } else {
2251 hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex;
2252 hcd->primary_hcd = primary_hcd;
2253 primary_hcd->primary_hcd = primary_hcd;
2254 hcd->shared_hcd = primary_hcd;
2255 primary_hcd->shared_hcd = hcd;
2256 }
2257
2258 kref_init(&hcd->kref);
2259
2260 usb_bus_init(&hcd->self);
2261 hcd->self.controller = dev;
2262 hcd->self.bus_name = bus_name;
2263 hcd->self.uses_dma = (dev->dma_mask != NULL);
2264
2265 init_timer(&hcd->rh_timer);
2266 hcd->rh_timer.function = rh_timer_func;
2267 hcd->rh_timer.data = (unsigned long) hcd;
2268#ifdef CONFIG_USB_SUSPEND
2269 INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
2270#endif
2271
2272 hcd->driver = driver;
2273 hcd->speed = driver->flags & HCD_MASK;
2274 hcd->product_desc = (driver->product_desc) ? driver->product_desc :
2275 "USB Host Controller";
2276 return hcd;
2277}
2278EXPORT_SYMBOL_GPL(usb_create_shared_hcd);
2279
2280/**
2281 * usb_create_hcd - create and initialize an HCD structure
2282 * @driver: HC driver that will use this hcd
2283 * @dev: device for this HC, stored in hcd->self.controller
2284 * @bus_name: value to store in hcd->self.bus_name
2285 * Context: !in_interrupt()
2286 *
2287 * Allocate a struct usb_hcd, with extra space at the end for the
2288 * HC driver's private data. Initialize the generic members of the
2289 * hcd structure.
2290 *
2291 * If memory is unavailable, returns NULL.
2292 */
2293struct usb_hcd *usb_create_hcd(const struct hc_driver *driver,
2294 struct device *dev, const char *bus_name)
2295{
2296 return usb_create_shared_hcd(driver, dev, bus_name, NULL);
2297}
2298EXPORT_SYMBOL_GPL(usb_create_hcd);
2299
2300/*
2301 * Roothubs that share one PCI device must also share the bandwidth mutex.
2302 * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is
2303 * deallocated.
2304 *
2305 * Make sure to only deallocate the bandwidth_mutex when the primary HCD is
2306 * freed. When hcd_release() is called for the non-primary HCD, set the
2307 * primary_hcd's shared_hcd pointer to null (since the non-primary HCD will be
2308 * freed shortly).
2309 */
2310static void hcd_release (struct kref *kref)
2311{
2312 struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
2313
2314 if (usb_hcd_is_primary_hcd(hcd))
2315 kfree(hcd->bandwidth_mutex);
2316 else
2317 hcd->shared_hcd->shared_hcd = NULL;
2318 kfree(hcd);
2319}
2320
2321struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd)
2322{
2323 if (hcd)
2324 kref_get (&hcd->kref);
2325 return hcd;
2326}
2327EXPORT_SYMBOL_GPL(usb_get_hcd);
2328
2329void usb_put_hcd (struct usb_hcd *hcd)
2330{
2331 if (hcd)
2332 kref_put (&hcd->kref, hcd_release);
2333}
2334EXPORT_SYMBOL_GPL(usb_put_hcd);
2335
2336int usb_hcd_is_primary_hcd(struct usb_hcd *hcd)
2337{
2338 if (!hcd->primary_hcd)
2339 return 1;
2340 return hcd == hcd->primary_hcd;
2341}
2342EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd);
2343
2344static int usb_hcd_request_irqs(struct usb_hcd *hcd,
2345 unsigned int irqnum, unsigned long irqflags)
2346{
2347 int retval;
2348
2349 if (hcd->driver->irq) {
2350
2351 /* IRQF_DISABLED doesn't work as advertised when used together
2352 * with IRQF_SHARED. As usb_hcd_irq() will always disable
2353 * interrupts we can remove it here.
2354 */
2355 if (irqflags & IRQF_SHARED)
2356 irqflags &= ~IRQF_DISABLED;
2357
2358 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
2359 hcd->driver->description, hcd->self.busnum);
2360 retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
2361 hcd->irq_descr, hcd);
2362 if (retval != 0) {
2363 dev_err(hcd->self.controller,
2364 "request interrupt %d failed\n",
2365 irqnum);
2366 return retval;
2367 }
2368 hcd->irq = irqnum;
2369 dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
2370 (hcd->driver->flags & HCD_MEMORY) ?
2371 "io mem" : "io base",
2372 (unsigned long long)hcd->rsrc_start);
2373 } else {
2374 hcd->irq = 0;
2375 if (hcd->rsrc_start)
2376 dev_info(hcd->self.controller, "%s 0x%08llx\n",
2377 (hcd->driver->flags & HCD_MEMORY) ?
2378 "io mem" : "io base",
2379 (unsigned long long)hcd->rsrc_start);
2380 }
2381 return 0;
2382}
2383
2384/**
2385 * usb_add_hcd - finish generic HCD structure initialization and register
2386 * @hcd: the usb_hcd structure to initialize
2387 * @irqnum: Interrupt line to allocate
2388 * @irqflags: Interrupt type flags
2389 *
2390 * Finish the remaining parts of generic HCD initialization: allocate the
2391 * buffers of consistent memory, register the bus, request the IRQ line,
2392 * and call the driver's reset() and start() routines.
2393 */
2394int usb_add_hcd(struct usb_hcd *hcd,
2395 unsigned int irqnum, unsigned long irqflags)
2396{
2397 int retval;
2398 struct usb_device *rhdev;
2399
2400 dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
2401
2402 /* Keep old behaviour if authorized_default is not in [0, 1]. */
2403 if (authorized_default < 0 || authorized_default > 1)
2404 hcd->authorized_default = hcd->wireless? 0 : 1;
2405 else
2406 hcd->authorized_default = authorized_default;
2407 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
2408
2409 /* HC is in reset state, but accessible. Now do the one-time init,
2410 * bottom up so that hcds can customize the root hubs before khubd
2411 * starts talking to them. (Note, bus id is assigned early too.)
2412 */
2413 if ((retval = hcd_buffer_create(hcd)) != 0) {
2414 dev_dbg(hcd->self.controller, "pool alloc failed\n");
2415 return retval;
2416 }
2417
2418 if ((retval = usb_register_bus(&hcd->self)) < 0)
2419 goto err_register_bus;
2420
2421 if ((rhdev = usb_alloc_dev(NULL, &hcd->self, 0)) == NULL) {
2422 dev_err(hcd->self.controller, "unable to allocate root hub\n");
2423 retval = -ENOMEM;
2424 goto err_allocate_root_hub;
2425 }
2426 hcd->self.root_hub = rhdev;
2427
2428 switch (hcd->speed) {
2429 case HCD_USB11:
2430 rhdev->speed = USB_SPEED_FULL;
2431 break;
2432 case HCD_USB2:
2433 rhdev->speed = USB_SPEED_HIGH;
2434 break;
2435 case HCD_USB3:
2436 rhdev->speed = USB_SPEED_SUPER;
2437 break;
2438 default:
2439 retval = -EINVAL;
2440 goto err_set_rh_speed;
2441 }
2442
2443 /* wakeup flag init defaults to "everything works" for root hubs,
2444 * but drivers can override it in reset() if needed, along with
2445 * recording the overall controller's system wakeup capability.
2446 */
2447 device_set_wakeup_capable(&rhdev->dev, 1);
2448
2449 /* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is
2450 * registered. But since the controller can die at any time,
2451 * let's initialize the flag before touching the hardware.
2452 */
2453 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2454
2455 /* "reset" is misnamed; its role is now one-time init. the controller
2456 * should already have been reset (and boot firmware kicked off etc).
2457 */
2458 if (hcd->driver->reset && (retval = hcd->driver->reset(hcd)) < 0) {
2459 dev_err(hcd->self.controller, "can't setup\n");
2460 goto err_hcd_driver_setup;
2461 }
2462 hcd->rh_pollable = 1;
2463
2464 /* NOTE: root hub and controller capabilities may not be the same */
2465 if (device_can_wakeup(hcd->self.controller)
2466 && device_can_wakeup(&hcd->self.root_hub->dev))
2467 dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
2468
2469 /* enable irqs just before we start the controller,
2470 * if the BIOS provides legacy PCI irqs.
2471 */
2472 if (usb_hcd_is_primary_hcd(hcd) && irqnum) {
2473 retval = usb_hcd_request_irqs(hcd, irqnum, irqflags);
2474 if (retval)
2475 goto err_request_irq;
2476 }
2477
2478 hcd->state = HC_STATE_RUNNING;
2479 retval = hcd->driver->start(hcd);
2480 if (retval < 0) {
2481 dev_err(hcd->self.controller, "startup error %d\n", retval);
2482 goto err_hcd_driver_start;
2483 }
2484
2485 /* starting here, usbcore will pay attention to this root hub */
2486 rhdev->bus_mA = min(500u, hcd->power_budget);
2487 if ((retval = register_root_hub(hcd)) != 0)
2488 goto err_register_root_hub;
2489
2490 retval = sysfs_create_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2491 if (retval < 0) {
2492 printk(KERN_ERR "Cannot register USB bus sysfs attributes: %d\n",
2493 retval);
2494 goto error_create_attr_group;
2495 }
2496 if (hcd->uses_new_polling && HCD_POLL_RH(hcd))
2497 usb_hcd_poll_rh_status(hcd);
2498
2499 /*
2500 * Host controllers don't generate their own wakeup requests;
2501 * they only forward requests from the root hub. Therefore
2502 * controllers should always be enabled for remote wakeup.
2503 */
2504 device_wakeup_enable(hcd->self.controller);
2505 return retval;
2506
2507error_create_attr_group:
2508 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2509 if (HC_IS_RUNNING(hcd->state))
2510 hcd->state = HC_STATE_QUIESCING;
2511 spin_lock_irq(&hcd_root_hub_lock);
2512 hcd->rh_registered = 0;
2513 spin_unlock_irq(&hcd_root_hub_lock);
2514
2515#ifdef CONFIG_USB_SUSPEND
2516 cancel_work_sync(&hcd->wakeup_work);
2517#endif
2518 mutex_lock(&usb_bus_list_lock);
2519 usb_disconnect(&rhdev); /* Sets rhdev to NULL */
2520 mutex_unlock(&usb_bus_list_lock);
2521err_register_root_hub:
2522 hcd->rh_pollable = 0;
2523 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2524 del_timer_sync(&hcd->rh_timer);
2525 hcd->driver->stop(hcd);
2526 hcd->state = HC_STATE_HALT;
2527 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2528 del_timer_sync(&hcd->rh_timer);
2529err_hcd_driver_start:
2530 if (usb_hcd_is_primary_hcd(hcd) && hcd->irq > 0)
2531 free_irq(irqnum, hcd);
2532err_request_irq:
2533err_hcd_driver_setup:
2534err_set_rh_speed:
2535 usb_put_dev(hcd->self.root_hub);
2536err_allocate_root_hub:
2537 usb_deregister_bus(&hcd->self);
2538err_register_bus:
2539 hcd_buffer_destroy(hcd);
2540 return retval;
2541}
2542EXPORT_SYMBOL_GPL(usb_add_hcd);
2543
2544/**
2545 * usb_remove_hcd - shutdown processing for generic HCDs
2546 * @hcd: the usb_hcd structure to remove
2547 * Context: !in_interrupt()
2548 *
2549 * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
2550 * invoking the HCD's stop() method.
2551 */
2552void usb_remove_hcd(struct usb_hcd *hcd)
2553{
2554 struct usb_device *rhdev = hcd->self.root_hub;
2555
2556 dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
2557
2558 usb_get_dev(rhdev);
2559 sysfs_remove_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2560
2561 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2562 if (HC_IS_RUNNING (hcd->state))
2563 hcd->state = HC_STATE_QUIESCING;
2564
2565 dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
2566 spin_lock_irq (&hcd_root_hub_lock);
2567 hcd->rh_registered = 0;
2568 spin_unlock_irq (&hcd_root_hub_lock);
2569
2570#ifdef CONFIG_USB_SUSPEND
2571 cancel_work_sync(&hcd->wakeup_work);
2572#endif
2573
2574 mutex_lock(&usb_bus_list_lock);
2575 usb_disconnect(&rhdev); /* Sets rhdev to NULL */
2576 mutex_unlock(&usb_bus_list_lock);
2577
2578 /* Prevent any more root-hub status calls from the timer.
2579 * The HCD might still restart the timer (if a port status change
2580 * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke
2581 * the hub_status_data() callback.
2582 */
2583 hcd->rh_pollable = 0;
2584 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2585 del_timer_sync(&hcd->rh_timer);
2586
2587 hcd->driver->stop(hcd);
2588 hcd->state = HC_STATE_HALT;
2589
2590 /* In case the HCD restarted the timer, stop it again. */
2591 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2592 del_timer_sync(&hcd->rh_timer);
2593
2594 if (usb_hcd_is_primary_hcd(hcd)) {
2595 if (hcd->irq > 0)
2596 free_irq(hcd->irq, hcd);
2597 }
2598
2599 usb_put_dev(hcd->self.root_hub);
2600 usb_deregister_bus(&hcd->self);
2601 hcd_buffer_destroy(hcd);
2602}
2603EXPORT_SYMBOL_GPL(usb_remove_hcd);
2604
2605void
2606usb_hcd_platform_shutdown(struct platform_device* dev)
2607{
2608 struct usb_hcd *hcd = platform_get_drvdata(dev);
2609
2610 if (hcd->driver->shutdown)
2611 hcd->driver->shutdown(hcd);
2612}
2613EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
2614
2615/*-------------------------------------------------------------------------*/
2616
2617#if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
2618
2619struct usb_mon_operations *mon_ops;
2620
2621/*
2622 * The registration is unlocked.
2623 * We do it this way because we do not want to lock in hot paths.
2624 *
2625 * Notice that the code is minimally error-proof. Because usbmon needs
2626 * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
2627 */
2628
2629int usb_mon_register (struct usb_mon_operations *ops)
2630{
2631
2632 if (mon_ops)
2633 return -EBUSY;
2634
2635 mon_ops = ops;
2636 mb();
2637 return 0;
2638}
2639EXPORT_SYMBOL_GPL (usb_mon_register);
2640
2641void usb_mon_deregister (void)
2642{
2643
2644 if (mon_ops == NULL) {
2645 printk(KERN_ERR "USB: monitor was not registered\n");
2646 return;
2647 }
2648 mon_ops = NULL;
2649 mb();
2650}
2651EXPORT_SYMBOL_GPL (usb_mon_deregister);
2652
2653#endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */