Loading...
Note: File does not exist in v3.5.6.
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * This file is part of STM32 ADC driver
4 *
5 * Copyright (C) 2016, STMicroelectronics - All Rights Reserved
6 * Author: Fabrice Gasnier <fabrice.gasnier@st.com>.
7 */
8
9#include <linux/clk.h>
10#include <linux/delay.h>
11#include <linux/dma-mapping.h>
12#include <linux/dmaengine.h>
13#include <linux/iio/iio.h>
14#include <linux/iio/buffer.h>
15#include <linux/iio/timer/stm32-lptim-trigger.h>
16#include <linux/iio/timer/stm32-timer-trigger.h>
17#include <linux/iio/trigger.h>
18#include <linux/iio/trigger_consumer.h>
19#include <linux/iio/triggered_buffer.h>
20#include <linux/interrupt.h>
21#include <linux/io.h>
22#include <linux/iopoll.h>
23#include <linux/module.h>
24#include <linux/platform_device.h>
25#include <linux/pm_runtime.h>
26#include <linux/of.h>
27#include <linux/of_device.h>
28
29#include "stm32-adc-core.h"
30
31/* Number of linear calibration shadow registers / LINCALRDYW control bits */
32#define STM32H7_LINCALFACT_NUM 6
33
34/* BOOST bit must be set on STM32H7 when ADC clock is above 20MHz */
35#define STM32H7_BOOST_CLKRATE 20000000UL
36
37#define STM32_ADC_CH_MAX 20 /* max number of channels */
38#define STM32_ADC_CH_SZ 10 /* max channel name size */
39#define STM32_ADC_MAX_SQ 16 /* SQ1..SQ16 */
40#define STM32_ADC_MAX_SMP 7 /* SMPx range is [0..7] */
41#define STM32_ADC_TIMEOUT_US 100000
42#define STM32_ADC_TIMEOUT (msecs_to_jiffies(STM32_ADC_TIMEOUT_US / 1000))
43#define STM32_ADC_HW_STOP_DELAY_MS 100
44
45#define STM32_DMA_BUFFER_SIZE PAGE_SIZE
46
47/* External trigger enable */
48enum stm32_adc_exten {
49 STM32_EXTEN_SWTRIG,
50 STM32_EXTEN_HWTRIG_RISING_EDGE,
51 STM32_EXTEN_HWTRIG_FALLING_EDGE,
52 STM32_EXTEN_HWTRIG_BOTH_EDGES,
53};
54
55/* extsel - trigger mux selection value */
56enum stm32_adc_extsel {
57 STM32_EXT0,
58 STM32_EXT1,
59 STM32_EXT2,
60 STM32_EXT3,
61 STM32_EXT4,
62 STM32_EXT5,
63 STM32_EXT6,
64 STM32_EXT7,
65 STM32_EXT8,
66 STM32_EXT9,
67 STM32_EXT10,
68 STM32_EXT11,
69 STM32_EXT12,
70 STM32_EXT13,
71 STM32_EXT14,
72 STM32_EXT15,
73 STM32_EXT16,
74 STM32_EXT17,
75 STM32_EXT18,
76 STM32_EXT19,
77 STM32_EXT20,
78};
79
80/**
81 * struct stm32_adc_trig_info - ADC trigger info
82 * @name: name of the trigger, corresponding to its source
83 * @extsel: trigger selection
84 */
85struct stm32_adc_trig_info {
86 const char *name;
87 enum stm32_adc_extsel extsel;
88};
89
90/**
91 * struct stm32_adc_calib - optional adc calibration data
92 * @calfact_s: Calibration offset for single ended channels
93 * @calfact_d: Calibration offset in differential
94 * @lincalfact: Linearity calibration factor
95 * @calibrated: Indicates calibration status
96 */
97struct stm32_adc_calib {
98 u32 calfact_s;
99 u32 calfact_d;
100 u32 lincalfact[STM32H7_LINCALFACT_NUM];
101 bool calibrated;
102};
103
104/**
105 * struct stm32_adc_regs - stm32 ADC misc registers & bitfield desc
106 * @reg: register offset
107 * @mask: bitfield mask
108 * @shift: left shift
109 */
110struct stm32_adc_regs {
111 int reg;
112 int mask;
113 int shift;
114};
115
116/**
117 * struct stm32_adc_regspec - stm32 registers definition
118 * @dr: data register offset
119 * @ier_eoc: interrupt enable register & eocie bitfield
120 * @ier_ovr: interrupt enable register & overrun bitfield
121 * @isr_eoc: interrupt status register & eoc bitfield
122 * @isr_ovr: interrupt status register & overrun bitfield
123 * @sqr: reference to sequence registers array
124 * @exten: trigger control register & bitfield
125 * @extsel: trigger selection register & bitfield
126 * @res: resolution selection register & bitfield
127 * @smpr: smpr1 & smpr2 registers offset array
128 * @smp_bits: smpr1 & smpr2 index and bitfields
129 */
130struct stm32_adc_regspec {
131 const u32 dr;
132 const struct stm32_adc_regs ier_eoc;
133 const struct stm32_adc_regs ier_ovr;
134 const struct stm32_adc_regs isr_eoc;
135 const struct stm32_adc_regs isr_ovr;
136 const struct stm32_adc_regs *sqr;
137 const struct stm32_adc_regs exten;
138 const struct stm32_adc_regs extsel;
139 const struct stm32_adc_regs res;
140 const u32 smpr[2];
141 const struct stm32_adc_regs *smp_bits;
142};
143
144struct stm32_adc;
145
146/**
147 * struct stm32_adc_cfg - stm32 compatible configuration data
148 * @regs: registers descriptions
149 * @adc_info: per instance input channels definitions
150 * @trigs: external trigger sources
151 * @clk_required: clock is required
152 * @has_vregready: vregready status flag presence
153 * @prepare: optional prepare routine (power-up, enable)
154 * @start_conv: routine to start conversions
155 * @stop_conv: routine to stop conversions
156 * @unprepare: optional unprepare routine (disable, power-down)
157 * @smp_cycles: programmable sampling time (ADC clock cycles)
158 */
159struct stm32_adc_cfg {
160 const struct stm32_adc_regspec *regs;
161 const struct stm32_adc_info *adc_info;
162 struct stm32_adc_trig_info *trigs;
163 bool clk_required;
164 bool has_vregready;
165 int (*prepare)(struct iio_dev *);
166 void (*start_conv)(struct iio_dev *, bool dma);
167 void (*stop_conv)(struct iio_dev *);
168 void (*unprepare)(struct iio_dev *);
169 const unsigned int *smp_cycles;
170};
171
172/**
173 * struct stm32_adc - private data of each ADC IIO instance
174 * @common: reference to ADC block common data
175 * @offset: ADC instance register offset in ADC block
176 * @cfg: compatible configuration data
177 * @completion: end of single conversion completion
178 * @buffer: data buffer
179 * @clk: clock for this adc instance
180 * @irq: interrupt for this adc instance
181 * @lock: spinlock
182 * @bufi: data buffer index
183 * @num_conv: expected number of scan conversions
184 * @res: data resolution (e.g. RES bitfield value)
185 * @trigger_polarity: external trigger polarity (e.g. exten)
186 * @dma_chan: dma channel
187 * @rx_buf: dma rx buffer cpu address
188 * @rx_dma_buf: dma rx buffer bus address
189 * @rx_buf_sz: dma rx buffer size
190 * @difsel: bitmask to set single-ended/differential channel
191 * @pcsel: bitmask to preselect channels on some devices
192 * @smpr_val: sampling time settings (e.g. smpr1 / smpr2)
193 * @cal: optional calibration data on some devices
194 * @chan_name: channel name array
195 */
196struct stm32_adc {
197 struct stm32_adc_common *common;
198 u32 offset;
199 const struct stm32_adc_cfg *cfg;
200 struct completion completion;
201 u16 buffer[STM32_ADC_MAX_SQ];
202 struct clk *clk;
203 int irq;
204 spinlock_t lock; /* interrupt lock */
205 unsigned int bufi;
206 unsigned int num_conv;
207 u32 res;
208 u32 trigger_polarity;
209 struct dma_chan *dma_chan;
210 u8 *rx_buf;
211 dma_addr_t rx_dma_buf;
212 unsigned int rx_buf_sz;
213 u32 difsel;
214 u32 pcsel;
215 u32 smpr_val[2];
216 struct stm32_adc_calib cal;
217 char chan_name[STM32_ADC_CH_MAX][STM32_ADC_CH_SZ];
218};
219
220struct stm32_adc_diff_channel {
221 u32 vinp;
222 u32 vinn;
223};
224
225/**
226 * struct stm32_adc_info - stm32 ADC, per instance config data
227 * @max_channels: Number of channels
228 * @resolutions: available resolutions
229 * @num_res: number of available resolutions
230 */
231struct stm32_adc_info {
232 int max_channels;
233 const unsigned int *resolutions;
234 const unsigned int num_res;
235};
236
237static const unsigned int stm32f4_adc_resolutions[] = {
238 /* sorted values so the index matches RES[1:0] in STM32F4_ADC_CR1 */
239 12, 10, 8, 6,
240};
241
242/* stm32f4 can have up to 16 channels */
243static const struct stm32_adc_info stm32f4_adc_info = {
244 .max_channels = 16,
245 .resolutions = stm32f4_adc_resolutions,
246 .num_res = ARRAY_SIZE(stm32f4_adc_resolutions),
247};
248
249static const unsigned int stm32h7_adc_resolutions[] = {
250 /* sorted values so the index matches RES[2:0] in STM32H7_ADC_CFGR */
251 16, 14, 12, 10, 8,
252};
253
254/* stm32h7 can have up to 20 channels */
255static const struct stm32_adc_info stm32h7_adc_info = {
256 .max_channels = STM32_ADC_CH_MAX,
257 .resolutions = stm32h7_adc_resolutions,
258 .num_res = ARRAY_SIZE(stm32h7_adc_resolutions),
259};
260
261/*
262 * stm32f4_sq - describe regular sequence registers
263 * - L: sequence len (register & bit field)
264 * - SQ1..SQ16: sequence entries (register & bit field)
265 */
266static const struct stm32_adc_regs stm32f4_sq[STM32_ADC_MAX_SQ + 1] = {
267 /* L: len bit field description to be kept as first element */
268 { STM32F4_ADC_SQR1, GENMASK(23, 20), 20 },
269 /* SQ1..SQ16 registers & bit fields (reg, mask, shift) */
270 { STM32F4_ADC_SQR3, GENMASK(4, 0), 0 },
271 { STM32F4_ADC_SQR3, GENMASK(9, 5), 5 },
272 { STM32F4_ADC_SQR3, GENMASK(14, 10), 10 },
273 { STM32F4_ADC_SQR3, GENMASK(19, 15), 15 },
274 { STM32F4_ADC_SQR3, GENMASK(24, 20), 20 },
275 { STM32F4_ADC_SQR3, GENMASK(29, 25), 25 },
276 { STM32F4_ADC_SQR2, GENMASK(4, 0), 0 },
277 { STM32F4_ADC_SQR2, GENMASK(9, 5), 5 },
278 { STM32F4_ADC_SQR2, GENMASK(14, 10), 10 },
279 { STM32F4_ADC_SQR2, GENMASK(19, 15), 15 },
280 { STM32F4_ADC_SQR2, GENMASK(24, 20), 20 },
281 { STM32F4_ADC_SQR2, GENMASK(29, 25), 25 },
282 { STM32F4_ADC_SQR1, GENMASK(4, 0), 0 },
283 { STM32F4_ADC_SQR1, GENMASK(9, 5), 5 },
284 { STM32F4_ADC_SQR1, GENMASK(14, 10), 10 },
285 { STM32F4_ADC_SQR1, GENMASK(19, 15), 15 },
286};
287
288/* STM32F4 external trigger sources for all instances */
289static struct stm32_adc_trig_info stm32f4_adc_trigs[] = {
290 { TIM1_CH1, STM32_EXT0 },
291 { TIM1_CH2, STM32_EXT1 },
292 { TIM1_CH3, STM32_EXT2 },
293 { TIM2_CH2, STM32_EXT3 },
294 { TIM2_CH3, STM32_EXT4 },
295 { TIM2_CH4, STM32_EXT5 },
296 { TIM2_TRGO, STM32_EXT6 },
297 { TIM3_CH1, STM32_EXT7 },
298 { TIM3_TRGO, STM32_EXT8 },
299 { TIM4_CH4, STM32_EXT9 },
300 { TIM5_CH1, STM32_EXT10 },
301 { TIM5_CH2, STM32_EXT11 },
302 { TIM5_CH3, STM32_EXT12 },
303 { TIM8_CH1, STM32_EXT13 },
304 { TIM8_TRGO, STM32_EXT14 },
305 {}, /* sentinel */
306};
307
308/*
309 * stm32f4_smp_bits[] - describe sampling time register index & bit fields
310 * Sorted so it can be indexed by channel number.
311 */
312static const struct stm32_adc_regs stm32f4_smp_bits[] = {
313 /* STM32F4_ADC_SMPR2: smpr[] index, mask, shift for SMP0 to SMP9 */
314 { 1, GENMASK(2, 0), 0 },
315 { 1, GENMASK(5, 3), 3 },
316 { 1, GENMASK(8, 6), 6 },
317 { 1, GENMASK(11, 9), 9 },
318 { 1, GENMASK(14, 12), 12 },
319 { 1, GENMASK(17, 15), 15 },
320 { 1, GENMASK(20, 18), 18 },
321 { 1, GENMASK(23, 21), 21 },
322 { 1, GENMASK(26, 24), 24 },
323 { 1, GENMASK(29, 27), 27 },
324 /* STM32F4_ADC_SMPR1, smpr[] index, mask, shift for SMP10 to SMP18 */
325 { 0, GENMASK(2, 0), 0 },
326 { 0, GENMASK(5, 3), 3 },
327 { 0, GENMASK(8, 6), 6 },
328 { 0, GENMASK(11, 9), 9 },
329 { 0, GENMASK(14, 12), 12 },
330 { 0, GENMASK(17, 15), 15 },
331 { 0, GENMASK(20, 18), 18 },
332 { 0, GENMASK(23, 21), 21 },
333 { 0, GENMASK(26, 24), 24 },
334};
335
336/* STM32F4 programmable sampling time (ADC clock cycles) */
337static const unsigned int stm32f4_adc_smp_cycles[STM32_ADC_MAX_SMP + 1] = {
338 3, 15, 28, 56, 84, 112, 144, 480,
339};
340
341static const struct stm32_adc_regspec stm32f4_adc_regspec = {
342 .dr = STM32F4_ADC_DR,
343 .ier_eoc = { STM32F4_ADC_CR1, STM32F4_EOCIE },
344 .ier_ovr = { STM32F4_ADC_CR1, STM32F4_OVRIE },
345 .isr_eoc = { STM32F4_ADC_SR, STM32F4_EOC },
346 .isr_ovr = { STM32F4_ADC_SR, STM32F4_OVR },
347 .sqr = stm32f4_sq,
348 .exten = { STM32F4_ADC_CR2, STM32F4_EXTEN_MASK, STM32F4_EXTEN_SHIFT },
349 .extsel = { STM32F4_ADC_CR2, STM32F4_EXTSEL_MASK,
350 STM32F4_EXTSEL_SHIFT },
351 .res = { STM32F4_ADC_CR1, STM32F4_RES_MASK, STM32F4_RES_SHIFT },
352 .smpr = { STM32F4_ADC_SMPR1, STM32F4_ADC_SMPR2 },
353 .smp_bits = stm32f4_smp_bits,
354};
355
356static const struct stm32_adc_regs stm32h7_sq[STM32_ADC_MAX_SQ + 1] = {
357 /* L: len bit field description to be kept as first element */
358 { STM32H7_ADC_SQR1, GENMASK(3, 0), 0 },
359 /* SQ1..SQ16 registers & bit fields (reg, mask, shift) */
360 { STM32H7_ADC_SQR1, GENMASK(10, 6), 6 },
361 { STM32H7_ADC_SQR1, GENMASK(16, 12), 12 },
362 { STM32H7_ADC_SQR1, GENMASK(22, 18), 18 },
363 { STM32H7_ADC_SQR1, GENMASK(28, 24), 24 },
364 { STM32H7_ADC_SQR2, GENMASK(4, 0), 0 },
365 { STM32H7_ADC_SQR2, GENMASK(10, 6), 6 },
366 { STM32H7_ADC_SQR2, GENMASK(16, 12), 12 },
367 { STM32H7_ADC_SQR2, GENMASK(22, 18), 18 },
368 { STM32H7_ADC_SQR2, GENMASK(28, 24), 24 },
369 { STM32H7_ADC_SQR3, GENMASK(4, 0), 0 },
370 { STM32H7_ADC_SQR3, GENMASK(10, 6), 6 },
371 { STM32H7_ADC_SQR3, GENMASK(16, 12), 12 },
372 { STM32H7_ADC_SQR3, GENMASK(22, 18), 18 },
373 { STM32H7_ADC_SQR3, GENMASK(28, 24), 24 },
374 { STM32H7_ADC_SQR4, GENMASK(4, 0), 0 },
375 { STM32H7_ADC_SQR4, GENMASK(10, 6), 6 },
376};
377
378/* STM32H7 external trigger sources for all instances */
379static struct stm32_adc_trig_info stm32h7_adc_trigs[] = {
380 { TIM1_CH1, STM32_EXT0 },
381 { TIM1_CH2, STM32_EXT1 },
382 { TIM1_CH3, STM32_EXT2 },
383 { TIM2_CH2, STM32_EXT3 },
384 { TIM3_TRGO, STM32_EXT4 },
385 { TIM4_CH4, STM32_EXT5 },
386 { TIM8_TRGO, STM32_EXT7 },
387 { TIM8_TRGO2, STM32_EXT8 },
388 { TIM1_TRGO, STM32_EXT9 },
389 { TIM1_TRGO2, STM32_EXT10 },
390 { TIM2_TRGO, STM32_EXT11 },
391 { TIM4_TRGO, STM32_EXT12 },
392 { TIM6_TRGO, STM32_EXT13 },
393 { TIM15_TRGO, STM32_EXT14 },
394 { TIM3_CH4, STM32_EXT15 },
395 { LPTIM1_OUT, STM32_EXT18 },
396 { LPTIM2_OUT, STM32_EXT19 },
397 { LPTIM3_OUT, STM32_EXT20 },
398 {},
399};
400
401/*
402 * stm32h7_smp_bits - describe sampling time register index & bit fields
403 * Sorted so it can be indexed by channel number.
404 */
405static const struct stm32_adc_regs stm32h7_smp_bits[] = {
406 /* STM32H7_ADC_SMPR1, smpr[] index, mask, shift for SMP0 to SMP9 */
407 { 0, GENMASK(2, 0), 0 },
408 { 0, GENMASK(5, 3), 3 },
409 { 0, GENMASK(8, 6), 6 },
410 { 0, GENMASK(11, 9), 9 },
411 { 0, GENMASK(14, 12), 12 },
412 { 0, GENMASK(17, 15), 15 },
413 { 0, GENMASK(20, 18), 18 },
414 { 0, GENMASK(23, 21), 21 },
415 { 0, GENMASK(26, 24), 24 },
416 { 0, GENMASK(29, 27), 27 },
417 /* STM32H7_ADC_SMPR2, smpr[] index, mask, shift for SMP10 to SMP19 */
418 { 1, GENMASK(2, 0), 0 },
419 { 1, GENMASK(5, 3), 3 },
420 { 1, GENMASK(8, 6), 6 },
421 { 1, GENMASK(11, 9), 9 },
422 { 1, GENMASK(14, 12), 12 },
423 { 1, GENMASK(17, 15), 15 },
424 { 1, GENMASK(20, 18), 18 },
425 { 1, GENMASK(23, 21), 21 },
426 { 1, GENMASK(26, 24), 24 },
427 { 1, GENMASK(29, 27), 27 },
428};
429
430/* STM32H7 programmable sampling time (ADC clock cycles, rounded down) */
431static const unsigned int stm32h7_adc_smp_cycles[STM32_ADC_MAX_SMP + 1] = {
432 1, 2, 8, 16, 32, 64, 387, 810,
433};
434
435static const struct stm32_adc_regspec stm32h7_adc_regspec = {
436 .dr = STM32H7_ADC_DR,
437 .ier_eoc = { STM32H7_ADC_IER, STM32H7_EOCIE },
438 .ier_ovr = { STM32H7_ADC_IER, STM32H7_OVRIE },
439 .isr_eoc = { STM32H7_ADC_ISR, STM32H7_EOC },
440 .isr_ovr = { STM32H7_ADC_ISR, STM32H7_OVR },
441 .sqr = stm32h7_sq,
442 .exten = { STM32H7_ADC_CFGR, STM32H7_EXTEN_MASK, STM32H7_EXTEN_SHIFT },
443 .extsel = { STM32H7_ADC_CFGR, STM32H7_EXTSEL_MASK,
444 STM32H7_EXTSEL_SHIFT },
445 .res = { STM32H7_ADC_CFGR, STM32H7_RES_MASK, STM32H7_RES_SHIFT },
446 .smpr = { STM32H7_ADC_SMPR1, STM32H7_ADC_SMPR2 },
447 .smp_bits = stm32h7_smp_bits,
448};
449
450/**
451 * STM32 ADC registers access routines
452 * @adc: stm32 adc instance
453 * @reg: reg offset in adc instance
454 *
455 * Note: All instances share same base, with 0x0, 0x100 or 0x200 offset resp.
456 * for adc1, adc2 and adc3.
457 */
458static u32 stm32_adc_readl(struct stm32_adc *adc, u32 reg)
459{
460 return readl_relaxed(adc->common->base + adc->offset + reg);
461}
462
463#define stm32_adc_readl_addr(addr) stm32_adc_readl(adc, addr)
464
465#define stm32_adc_readl_poll_timeout(reg, val, cond, sleep_us, timeout_us) \
466 readx_poll_timeout(stm32_adc_readl_addr, reg, val, \
467 cond, sleep_us, timeout_us)
468
469static u16 stm32_adc_readw(struct stm32_adc *adc, u32 reg)
470{
471 return readw_relaxed(adc->common->base + adc->offset + reg);
472}
473
474static void stm32_adc_writel(struct stm32_adc *adc, u32 reg, u32 val)
475{
476 writel_relaxed(val, adc->common->base + adc->offset + reg);
477}
478
479static void stm32_adc_set_bits(struct stm32_adc *adc, u32 reg, u32 bits)
480{
481 unsigned long flags;
482
483 spin_lock_irqsave(&adc->lock, flags);
484 stm32_adc_writel(adc, reg, stm32_adc_readl(adc, reg) | bits);
485 spin_unlock_irqrestore(&adc->lock, flags);
486}
487
488static void stm32_adc_clr_bits(struct stm32_adc *adc, u32 reg, u32 bits)
489{
490 unsigned long flags;
491
492 spin_lock_irqsave(&adc->lock, flags);
493 stm32_adc_writel(adc, reg, stm32_adc_readl(adc, reg) & ~bits);
494 spin_unlock_irqrestore(&adc->lock, flags);
495}
496
497/**
498 * stm32_adc_conv_irq_enable() - Enable end of conversion interrupt
499 * @adc: stm32 adc instance
500 */
501static void stm32_adc_conv_irq_enable(struct stm32_adc *adc)
502{
503 stm32_adc_set_bits(adc, adc->cfg->regs->ier_eoc.reg,
504 adc->cfg->regs->ier_eoc.mask);
505};
506
507/**
508 * stm32_adc_conv_irq_disable() - Disable end of conversion interrupt
509 * @adc: stm32 adc instance
510 */
511static void stm32_adc_conv_irq_disable(struct stm32_adc *adc)
512{
513 stm32_adc_clr_bits(adc, adc->cfg->regs->ier_eoc.reg,
514 adc->cfg->regs->ier_eoc.mask);
515}
516
517static void stm32_adc_ovr_irq_enable(struct stm32_adc *adc)
518{
519 stm32_adc_set_bits(adc, adc->cfg->regs->ier_ovr.reg,
520 adc->cfg->regs->ier_ovr.mask);
521}
522
523static void stm32_adc_ovr_irq_disable(struct stm32_adc *adc)
524{
525 stm32_adc_clr_bits(adc, adc->cfg->regs->ier_ovr.reg,
526 adc->cfg->regs->ier_ovr.mask);
527}
528
529static void stm32_adc_set_res(struct stm32_adc *adc)
530{
531 const struct stm32_adc_regs *res = &adc->cfg->regs->res;
532 u32 val;
533
534 val = stm32_adc_readl(adc, res->reg);
535 val = (val & ~res->mask) | (adc->res << res->shift);
536 stm32_adc_writel(adc, res->reg, val);
537}
538
539static int stm32_adc_hw_stop(struct device *dev)
540{
541 struct iio_dev *indio_dev = dev_get_drvdata(dev);
542 struct stm32_adc *adc = iio_priv(indio_dev);
543
544 if (adc->cfg->unprepare)
545 adc->cfg->unprepare(indio_dev);
546
547 if (adc->clk)
548 clk_disable_unprepare(adc->clk);
549
550 return 0;
551}
552
553static int stm32_adc_hw_start(struct device *dev)
554{
555 struct iio_dev *indio_dev = dev_get_drvdata(dev);
556 struct stm32_adc *adc = iio_priv(indio_dev);
557 int ret;
558
559 if (adc->clk) {
560 ret = clk_prepare_enable(adc->clk);
561 if (ret)
562 return ret;
563 }
564
565 stm32_adc_set_res(adc);
566
567 if (adc->cfg->prepare) {
568 ret = adc->cfg->prepare(indio_dev);
569 if (ret)
570 goto err_clk_dis;
571 }
572
573 return 0;
574
575err_clk_dis:
576 if (adc->clk)
577 clk_disable_unprepare(adc->clk);
578
579 return ret;
580}
581
582/**
583 * stm32f4_adc_start_conv() - Start conversions for regular channels.
584 * @indio_dev: IIO device instance
585 * @dma: use dma to transfer conversion result
586 *
587 * Start conversions for regular channels.
588 * Also take care of normal or DMA mode. Circular DMA may be used for regular
589 * conversions, in IIO buffer modes. Otherwise, use ADC interrupt with direct
590 * DR read instead (e.g. read_raw, or triggered buffer mode without DMA).
591 */
592static void stm32f4_adc_start_conv(struct iio_dev *indio_dev, bool dma)
593{
594 struct stm32_adc *adc = iio_priv(indio_dev);
595
596 stm32_adc_set_bits(adc, STM32F4_ADC_CR1, STM32F4_SCAN);
597
598 if (dma)
599 stm32_adc_set_bits(adc, STM32F4_ADC_CR2,
600 STM32F4_DMA | STM32F4_DDS);
601
602 stm32_adc_set_bits(adc, STM32F4_ADC_CR2, STM32F4_EOCS | STM32F4_ADON);
603
604 /* Wait for Power-up time (tSTAB from datasheet) */
605 usleep_range(2, 3);
606
607 /* Software start ? (e.g. trigger detection disabled ?) */
608 if (!(stm32_adc_readl(adc, STM32F4_ADC_CR2) & STM32F4_EXTEN_MASK))
609 stm32_adc_set_bits(adc, STM32F4_ADC_CR2, STM32F4_SWSTART);
610}
611
612static void stm32f4_adc_stop_conv(struct iio_dev *indio_dev)
613{
614 struct stm32_adc *adc = iio_priv(indio_dev);
615
616 stm32_adc_clr_bits(adc, STM32F4_ADC_CR2, STM32F4_EXTEN_MASK);
617 stm32_adc_clr_bits(adc, STM32F4_ADC_SR, STM32F4_STRT);
618
619 stm32_adc_clr_bits(adc, STM32F4_ADC_CR1, STM32F4_SCAN);
620 stm32_adc_clr_bits(adc, STM32F4_ADC_CR2,
621 STM32F4_ADON | STM32F4_DMA | STM32F4_DDS);
622}
623
624static void stm32h7_adc_start_conv(struct iio_dev *indio_dev, bool dma)
625{
626 struct stm32_adc *adc = iio_priv(indio_dev);
627 enum stm32h7_adc_dmngt dmngt;
628 unsigned long flags;
629 u32 val;
630
631 if (dma)
632 dmngt = STM32H7_DMNGT_DMA_CIRC;
633 else
634 dmngt = STM32H7_DMNGT_DR_ONLY;
635
636 spin_lock_irqsave(&adc->lock, flags);
637 val = stm32_adc_readl(adc, STM32H7_ADC_CFGR);
638 val = (val & ~STM32H7_DMNGT_MASK) | (dmngt << STM32H7_DMNGT_SHIFT);
639 stm32_adc_writel(adc, STM32H7_ADC_CFGR, val);
640 spin_unlock_irqrestore(&adc->lock, flags);
641
642 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADSTART);
643}
644
645static void stm32h7_adc_stop_conv(struct iio_dev *indio_dev)
646{
647 struct stm32_adc *adc = iio_priv(indio_dev);
648 int ret;
649 u32 val;
650
651 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADSTP);
652
653 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
654 !(val & (STM32H7_ADSTART)),
655 100, STM32_ADC_TIMEOUT_US);
656 if (ret)
657 dev_warn(&indio_dev->dev, "stop failed\n");
658
659 stm32_adc_clr_bits(adc, STM32H7_ADC_CFGR, STM32H7_DMNGT_MASK);
660}
661
662static int stm32h7_adc_exit_pwr_down(struct iio_dev *indio_dev)
663{
664 struct stm32_adc *adc = iio_priv(indio_dev);
665 int ret;
666 u32 val;
667
668 /* Exit deep power down, then enable ADC voltage regulator */
669 stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_DEEPPWD);
670 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADVREGEN);
671
672 if (adc->common->rate > STM32H7_BOOST_CLKRATE)
673 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_BOOST);
674
675 /* Wait for startup time */
676 if (!adc->cfg->has_vregready) {
677 usleep_range(10, 20);
678 return 0;
679 }
680
681 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_ISR, val,
682 val & STM32MP1_VREGREADY, 100,
683 STM32_ADC_TIMEOUT_US);
684 if (ret) {
685 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_DEEPPWD);
686 dev_err(&indio_dev->dev, "Failed to exit power down\n");
687 }
688
689 return ret;
690}
691
692static void stm32h7_adc_enter_pwr_down(struct stm32_adc *adc)
693{
694 stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_BOOST);
695
696 /* Setting DEEPPWD disables ADC vreg and clears ADVREGEN */
697 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_DEEPPWD);
698}
699
700static int stm32h7_adc_enable(struct iio_dev *indio_dev)
701{
702 struct stm32_adc *adc = iio_priv(indio_dev);
703 int ret;
704 u32 val;
705
706 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADEN);
707
708 /* Poll for ADRDY to be set (after adc startup time) */
709 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_ISR, val,
710 val & STM32H7_ADRDY,
711 100, STM32_ADC_TIMEOUT_US);
712 if (ret) {
713 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADDIS);
714 dev_err(&indio_dev->dev, "Failed to enable ADC\n");
715 } else {
716 /* Clear ADRDY by writing one */
717 stm32_adc_set_bits(adc, STM32H7_ADC_ISR, STM32H7_ADRDY);
718 }
719
720 return ret;
721}
722
723static void stm32h7_adc_disable(struct iio_dev *indio_dev)
724{
725 struct stm32_adc *adc = iio_priv(indio_dev);
726 int ret;
727 u32 val;
728
729 /* Disable ADC and wait until it's effectively disabled */
730 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADDIS);
731 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
732 !(val & STM32H7_ADEN), 100,
733 STM32_ADC_TIMEOUT_US);
734 if (ret)
735 dev_warn(&indio_dev->dev, "Failed to disable\n");
736}
737
738/**
739 * stm32h7_adc_read_selfcalib() - read calibration shadow regs, save result
740 * @indio_dev: IIO device instance
741 * Note: Must be called once ADC is enabled, so LINCALRDYW[1..6] are writable
742 */
743static int stm32h7_adc_read_selfcalib(struct iio_dev *indio_dev)
744{
745 struct stm32_adc *adc = iio_priv(indio_dev);
746 int i, ret;
747 u32 lincalrdyw_mask, val;
748
749 /* Read linearity calibration */
750 lincalrdyw_mask = STM32H7_LINCALRDYW6;
751 for (i = STM32H7_LINCALFACT_NUM - 1; i >= 0; i--) {
752 /* Clear STM32H7_LINCALRDYW[6..1]: transfer calib to CALFACT2 */
753 stm32_adc_clr_bits(adc, STM32H7_ADC_CR, lincalrdyw_mask);
754
755 /* Poll: wait calib data to be ready in CALFACT2 register */
756 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
757 !(val & lincalrdyw_mask),
758 100, STM32_ADC_TIMEOUT_US);
759 if (ret) {
760 dev_err(&indio_dev->dev, "Failed to read calfact\n");
761 return ret;
762 }
763
764 val = stm32_adc_readl(adc, STM32H7_ADC_CALFACT2);
765 adc->cal.lincalfact[i] = (val & STM32H7_LINCALFACT_MASK);
766 adc->cal.lincalfact[i] >>= STM32H7_LINCALFACT_SHIFT;
767
768 lincalrdyw_mask >>= 1;
769 }
770
771 /* Read offset calibration */
772 val = stm32_adc_readl(adc, STM32H7_ADC_CALFACT);
773 adc->cal.calfact_s = (val & STM32H7_CALFACT_S_MASK);
774 adc->cal.calfact_s >>= STM32H7_CALFACT_S_SHIFT;
775 adc->cal.calfact_d = (val & STM32H7_CALFACT_D_MASK);
776 adc->cal.calfact_d >>= STM32H7_CALFACT_D_SHIFT;
777 adc->cal.calibrated = true;
778
779 return 0;
780}
781
782/**
783 * stm32h7_adc_restore_selfcalib() - Restore saved self-calibration result
784 * @indio_dev: IIO device instance
785 * Note: ADC must be enabled, with no on-going conversions.
786 */
787static int stm32h7_adc_restore_selfcalib(struct iio_dev *indio_dev)
788{
789 struct stm32_adc *adc = iio_priv(indio_dev);
790 int i, ret;
791 u32 lincalrdyw_mask, val;
792
793 val = (adc->cal.calfact_s << STM32H7_CALFACT_S_SHIFT) |
794 (adc->cal.calfact_d << STM32H7_CALFACT_D_SHIFT);
795 stm32_adc_writel(adc, STM32H7_ADC_CALFACT, val);
796
797 lincalrdyw_mask = STM32H7_LINCALRDYW6;
798 for (i = STM32H7_LINCALFACT_NUM - 1; i >= 0; i--) {
799 /*
800 * Write saved calibration data to shadow registers:
801 * Write CALFACT2, and set LINCALRDYW[6..1] bit to trigger
802 * data write. Then poll to wait for complete transfer.
803 */
804 val = adc->cal.lincalfact[i] << STM32H7_LINCALFACT_SHIFT;
805 stm32_adc_writel(adc, STM32H7_ADC_CALFACT2, val);
806 stm32_adc_set_bits(adc, STM32H7_ADC_CR, lincalrdyw_mask);
807 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
808 val & lincalrdyw_mask,
809 100, STM32_ADC_TIMEOUT_US);
810 if (ret) {
811 dev_err(&indio_dev->dev, "Failed to write calfact\n");
812 return ret;
813 }
814
815 /*
816 * Read back calibration data, has two effects:
817 * - It ensures bits LINCALRDYW[6..1] are kept cleared
818 * for next time calibration needs to be restored.
819 * - BTW, bit clear triggers a read, then check data has been
820 * correctly written.
821 */
822 stm32_adc_clr_bits(adc, STM32H7_ADC_CR, lincalrdyw_mask);
823 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
824 !(val & lincalrdyw_mask),
825 100, STM32_ADC_TIMEOUT_US);
826 if (ret) {
827 dev_err(&indio_dev->dev, "Failed to read calfact\n");
828 return ret;
829 }
830 val = stm32_adc_readl(adc, STM32H7_ADC_CALFACT2);
831 if (val != adc->cal.lincalfact[i] << STM32H7_LINCALFACT_SHIFT) {
832 dev_err(&indio_dev->dev, "calfact not consistent\n");
833 return -EIO;
834 }
835
836 lincalrdyw_mask >>= 1;
837 }
838
839 return 0;
840}
841
842/**
843 * Fixed timeout value for ADC calibration.
844 * worst cases:
845 * - low clock frequency
846 * - maximum prescalers
847 * Calibration requires:
848 * - 131,072 ADC clock cycle for the linear calibration
849 * - 20 ADC clock cycle for the offset calibration
850 *
851 * Set to 100ms for now
852 */
853#define STM32H7_ADC_CALIB_TIMEOUT_US 100000
854
855/**
856 * stm32h7_adc_selfcalib() - Procedure to calibrate ADC
857 * @indio_dev: IIO device instance
858 * Note: Must be called once ADC is out of power down.
859 */
860static int stm32h7_adc_selfcalib(struct iio_dev *indio_dev)
861{
862 struct stm32_adc *adc = iio_priv(indio_dev);
863 int ret;
864 u32 val;
865
866 if (adc->cal.calibrated)
867 return true;
868
869 /*
870 * Select calibration mode:
871 * - Offset calibration for single ended inputs
872 * - No linearity calibration (do it later, before reading it)
873 */
874 stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_ADCALDIF);
875 stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_ADCALLIN);
876
877 /* Start calibration, then wait for completion */
878 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADCAL);
879 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
880 !(val & STM32H7_ADCAL), 100,
881 STM32H7_ADC_CALIB_TIMEOUT_US);
882 if (ret) {
883 dev_err(&indio_dev->dev, "calibration failed\n");
884 goto out;
885 }
886
887 /*
888 * Select calibration mode, then start calibration:
889 * - Offset calibration for differential input
890 * - Linearity calibration (needs to be done only once for single/diff)
891 * will run simultaneously with offset calibration.
892 */
893 stm32_adc_set_bits(adc, STM32H7_ADC_CR,
894 STM32H7_ADCALDIF | STM32H7_ADCALLIN);
895 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADCAL);
896 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
897 !(val & STM32H7_ADCAL), 100,
898 STM32H7_ADC_CALIB_TIMEOUT_US);
899 if (ret) {
900 dev_err(&indio_dev->dev, "calibration failed\n");
901 goto out;
902 }
903
904out:
905 stm32_adc_clr_bits(adc, STM32H7_ADC_CR,
906 STM32H7_ADCALDIF | STM32H7_ADCALLIN);
907
908 return ret;
909}
910
911/**
912 * stm32h7_adc_prepare() - Leave power down mode to enable ADC.
913 * @indio_dev: IIO device instance
914 * Leave power down mode.
915 * Configure channels as single ended or differential before enabling ADC.
916 * Enable ADC.
917 * Restore calibration data.
918 * Pre-select channels that may be used in PCSEL (required by input MUX / IO):
919 * - Only one input is selected for single ended (e.g. 'vinp')
920 * - Two inputs are selected for differential channels (e.g. 'vinp' & 'vinn')
921 */
922static int stm32h7_adc_prepare(struct iio_dev *indio_dev)
923{
924 struct stm32_adc *adc = iio_priv(indio_dev);
925 int calib, ret;
926
927 ret = stm32h7_adc_exit_pwr_down(indio_dev);
928 if (ret)
929 return ret;
930
931 ret = stm32h7_adc_selfcalib(indio_dev);
932 if (ret < 0)
933 goto pwr_dwn;
934 calib = ret;
935
936 stm32_adc_writel(adc, STM32H7_ADC_DIFSEL, adc->difsel);
937
938 ret = stm32h7_adc_enable(indio_dev);
939 if (ret)
940 goto pwr_dwn;
941
942 /* Either restore or read calibration result for future reference */
943 if (calib)
944 ret = stm32h7_adc_restore_selfcalib(indio_dev);
945 else
946 ret = stm32h7_adc_read_selfcalib(indio_dev);
947 if (ret)
948 goto disable;
949
950 stm32_adc_writel(adc, STM32H7_ADC_PCSEL, adc->pcsel);
951
952 return 0;
953
954disable:
955 stm32h7_adc_disable(indio_dev);
956pwr_dwn:
957 stm32h7_adc_enter_pwr_down(adc);
958
959 return ret;
960}
961
962static void stm32h7_adc_unprepare(struct iio_dev *indio_dev)
963{
964 struct stm32_adc *adc = iio_priv(indio_dev);
965
966 stm32h7_adc_disable(indio_dev);
967 stm32h7_adc_enter_pwr_down(adc);
968}
969
970/**
971 * stm32_adc_conf_scan_seq() - Build regular channels scan sequence
972 * @indio_dev: IIO device
973 * @scan_mask: channels to be converted
974 *
975 * Conversion sequence :
976 * Apply sampling time settings for all channels.
977 * Configure ADC scan sequence based on selected channels in scan_mask.
978 * Add channels to SQR registers, from scan_mask LSB to MSB, then
979 * program sequence len.
980 */
981static int stm32_adc_conf_scan_seq(struct iio_dev *indio_dev,
982 const unsigned long *scan_mask)
983{
984 struct stm32_adc *adc = iio_priv(indio_dev);
985 const struct stm32_adc_regs *sqr = adc->cfg->regs->sqr;
986 const struct iio_chan_spec *chan;
987 u32 val, bit;
988 int i = 0;
989
990 /* Apply sampling time settings */
991 stm32_adc_writel(adc, adc->cfg->regs->smpr[0], adc->smpr_val[0]);
992 stm32_adc_writel(adc, adc->cfg->regs->smpr[1], adc->smpr_val[1]);
993
994 for_each_set_bit(bit, scan_mask, indio_dev->masklength) {
995 chan = indio_dev->channels + bit;
996 /*
997 * Assign one channel per SQ entry in regular
998 * sequence, starting with SQ1.
999 */
1000 i++;
1001 if (i > STM32_ADC_MAX_SQ)
1002 return -EINVAL;
1003
1004 dev_dbg(&indio_dev->dev, "%s chan %d to SQ%d\n",
1005 __func__, chan->channel, i);
1006
1007 val = stm32_adc_readl(adc, sqr[i].reg);
1008 val &= ~sqr[i].mask;
1009 val |= chan->channel << sqr[i].shift;
1010 stm32_adc_writel(adc, sqr[i].reg, val);
1011 }
1012
1013 if (!i)
1014 return -EINVAL;
1015
1016 /* Sequence len */
1017 val = stm32_adc_readl(adc, sqr[0].reg);
1018 val &= ~sqr[0].mask;
1019 val |= ((i - 1) << sqr[0].shift);
1020 stm32_adc_writel(adc, sqr[0].reg, val);
1021
1022 return 0;
1023}
1024
1025/**
1026 * stm32_adc_get_trig_extsel() - Get external trigger selection
1027 * @indio_dev: IIO device structure
1028 * @trig: trigger
1029 *
1030 * Returns trigger extsel value, if trig matches, -EINVAL otherwise.
1031 */
1032static int stm32_adc_get_trig_extsel(struct iio_dev *indio_dev,
1033 struct iio_trigger *trig)
1034{
1035 struct stm32_adc *adc = iio_priv(indio_dev);
1036 int i;
1037
1038 /* lookup triggers registered by stm32 timer trigger driver */
1039 for (i = 0; adc->cfg->trigs[i].name; i++) {
1040 /**
1041 * Checking both stm32 timer trigger type and trig name
1042 * should be safe against arbitrary trigger names.
1043 */
1044 if ((is_stm32_timer_trigger(trig) ||
1045 is_stm32_lptim_trigger(trig)) &&
1046 !strcmp(adc->cfg->trigs[i].name, trig->name)) {
1047 return adc->cfg->trigs[i].extsel;
1048 }
1049 }
1050
1051 return -EINVAL;
1052}
1053
1054/**
1055 * stm32_adc_set_trig() - Set a regular trigger
1056 * @indio_dev: IIO device
1057 * @trig: IIO trigger
1058 *
1059 * Set trigger source/polarity (e.g. SW, or HW with polarity) :
1060 * - if HW trigger disabled (e.g. trig == NULL, conversion launched by sw)
1061 * - if HW trigger enabled, set source & polarity
1062 */
1063static int stm32_adc_set_trig(struct iio_dev *indio_dev,
1064 struct iio_trigger *trig)
1065{
1066 struct stm32_adc *adc = iio_priv(indio_dev);
1067 u32 val, extsel = 0, exten = STM32_EXTEN_SWTRIG;
1068 unsigned long flags;
1069 int ret;
1070
1071 if (trig) {
1072 ret = stm32_adc_get_trig_extsel(indio_dev, trig);
1073 if (ret < 0)
1074 return ret;
1075
1076 /* set trigger source and polarity (default to rising edge) */
1077 extsel = ret;
1078 exten = adc->trigger_polarity + STM32_EXTEN_HWTRIG_RISING_EDGE;
1079 }
1080
1081 spin_lock_irqsave(&adc->lock, flags);
1082 val = stm32_adc_readl(adc, adc->cfg->regs->exten.reg);
1083 val &= ~(adc->cfg->regs->exten.mask | adc->cfg->regs->extsel.mask);
1084 val |= exten << adc->cfg->regs->exten.shift;
1085 val |= extsel << adc->cfg->regs->extsel.shift;
1086 stm32_adc_writel(adc, adc->cfg->regs->exten.reg, val);
1087 spin_unlock_irqrestore(&adc->lock, flags);
1088
1089 return 0;
1090}
1091
1092static int stm32_adc_set_trig_pol(struct iio_dev *indio_dev,
1093 const struct iio_chan_spec *chan,
1094 unsigned int type)
1095{
1096 struct stm32_adc *adc = iio_priv(indio_dev);
1097
1098 adc->trigger_polarity = type;
1099
1100 return 0;
1101}
1102
1103static int stm32_adc_get_trig_pol(struct iio_dev *indio_dev,
1104 const struct iio_chan_spec *chan)
1105{
1106 struct stm32_adc *adc = iio_priv(indio_dev);
1107
1108 return adc->trigger_polarity;
1109}
1110
1111static const char * const stm32_trig_pol_items[] = {
1112 "rising-edge", "falling-edge", "both-edges",
1113};
1114
1115static const struct iio_enum stm32_adc_trig_pol = {
1116 .items = stm32_trig_pol_items,
1117 .num_items = ARRAY_SIZE(stm32_trig_pol_items),
1118 .get = stm32_adc_get_trig_pol,
1119 .set = stm32_adc_set_trig_pol,
1120};
1121
1122/**
1123 * stm32_adc_single_conv() - Performs a single conversion
1124 * @indio_dev: IIO device
1125 * @chan: IIO channel
1126 * @res: conversion result
1127 *
1128 * The function performs a single conversion on a given channel:
1129 * - Apply sampling time settings
1130 * - Program sequencer with one channel (e.g. in SQ1 with len = 1)
1131 * - Use SW trigger
1132 * - Start conversion, then wait for interrupt completion.
1133 */
1134static int stm32_adc_single_conv(struct iio_dev *indio_dev,
1135 const struct iio_chan_spec *chan,
1136 int *res)
1137{
1138 struct stm32_adc *adc = iio_priv(indio_dev);
1139 struct device *dev = indio_dev->dev.parent;
1140 const struct stm32_adc_regspec *regs = adc->cfg->regs;
1141 long timeout;
1142 u32 val;
1143 int ret;
1144
1145 reinit_completion(&adc->completion);
1146
1147 adc->bufi = 0;
1148
1149 ret = pm_runtime_get_sync(dev);
1150 if (ret < 0) {
1151 pm_runtime_put_noidle(dev);
1152 return ret;
1153 }
1154
1155 /* Apply sampling time settings */
1156 stm32_adc_writel(adc, regs->smpr[0], adc->smpr_val[0]);
1157 stm32_adc_writel(adc, regs->smpr[1], adc->smpr_val[1]);
1158
1159 /* Program chan number in regular sequence (SQ1) */
1160 val = stm32_adc_readl(adc, regs->sqr[1].reg);
1161 val &= ~regs->sqr[1].mask;
1162 val |= chan->channel << regs->sqr[1].shift;
1163 stm32_adc_writel(adc, regs->sqr[1].reg, val);
1164
1165 /* Set regular sequence len (0 for 1 conversion) */
1166 stm32_adc_clr_bits(adc, regs->sqr[0].reg, regs->sqr[0].mask);
1167
1168 /* Trigger detection disabled (conversion can be launched in SW) */
1169 stm32_adc_clr_bits(adc, regs->exten.reg, regs->exten.mask);
1170
1171 stm32_adc_conv_irq_enable(adc);
1172
1173 adc->cfg->start_conv(indio_dev, false);
1174
1175 timeout = wait_for_completion_interruptible_timeout(
1176 &adc->completion, STM32_ADC_TIMEOUT);
1177 if (timeout == 0) {
1178 ret = -ETIMEDOUT;
1179 } else if (timeout < 0) {
1180 ret = timeout;
1181 } else {
1182 *res = adc->buffer[0];
1183 ret = IIO_VAL_INT;
1184 }
1185
1186 adc->cfg->stop_conv(indio_dev);
1187
1188 stm32_adc_conv_irq_disable(adc);
1189
1190 pm_runtime_mark_last_busy(dev);
1191 pm_runtime_put_autosuspend(dev);
1192
1193 return ret;
1194}
1195
1196static int stm32_adc_read_raw(struct iio_dev *indio_dev,
1197 struct iio_chan_spec const *chan,
1198 int *val, int *val2, long mask)
1199{
1200 struct stm32_adc *adc = iio_priv(indio_dev);
1201 int ret;
1202
1203 switch (mask) {
1204 case IIO_CHAN_INFO_RAW:
1205 ret = iio_device_claim_direct_mode(indio_dev);
1206 if (ret)
1207 return ret;
1208 if (chan->type == IIO_VOLTAGE)
1209 ret = stm32_adc_single_conv(indio_dev, chan, val);
1210 else
1211 ret = -EINVAL;
1212 iio_device_release_direct_mode(indio_dev);
1213 return ret;
1214
1215 case IIO_CHAN_INFO_SCALE:
1216 if (chan->differential) {
1217 *val = adc->common->vref_mv * 2;
1218 *val2 = chan->scan_type.realbits;
1219 } else {
1220 *val = adc->common->vref_mv;
1221 *val2 = chan->scan_type.realbits;
1222 }
1223 return IIO_VAL_FRACTIONAL_LOG2;
1224
1225 case IIO_CHAN_INFO_OFFSET:
1226 if (chan->differential)
1227 /* ADC_full_scale / 2 */
1228 *val = -((1 << chan->scan_type.realbits) / 2);
1229 else
1230 *val = 0;
1231 return IIO_VAL_INT;
1232
1233 default:
1234 return -EINVAL;
1235 }
1236}
1237
1238static irqreturn_t stm32_adc_threaded_isr(int irq, void *data)
1239{
1240 struct iio_dev *indio_dev = data;
1241 struct stm32_adc *adc = iio_priv(indio_dev);
1242 const struct stm32_adc_regspec *regs = adc->cfg->regs;
1243 u32 status = stm32_adc_readl(adc, regs->isr_eoc.reg);
1244
1245 if (status & regs->isr_ovr.mask)
1246 dev_err(&indio_dev->dev, "Overrun, stopping: restart needed\n");
1247
1248 return IRQ_HANDLED;
1249}
1250
1251static irqreturn_t stm32_adc_isr(int irq, void *data)
1252{
1253 struct iio_dev *indio_dev = data;
1254 struct stm32_adc *adc = iio_priv(indio_dev);
1255 const struct stm32_adc_regspec *regs = adc->cfg->regs;
1256 u32 status = stm32_adc_readl(adc, regs->isr_eoc.reg);
1257
1258 if (status & regs->isr_ovr.mask) {
1259 /*
1260 * Overrun occurred on regular conversions: data for wrong
1261 * channel may be read. Unconditionally disable interrupts
1262 * to stop processing data and print error message.
1263 * Restarting the capture can be done by disabling, then
1264 * re-enabling it (e.g. write 0, then 1 to buffer/enable).
1265 */
1266 stm32_adc_ovr_irq_disable(adc);
1267 stm32_adc_conv_irq_disable(adc);
1268 return IRQ_WAKE_THREAD;
1269 }
1270
1271 if (status & regs->isr_eoc.mask) {
1272 /* Reading DR also clears EOC status flag */
1273 adc->buffer[adc->bufi] = stm32_adc_readw(adc, regs->dr);
1274 if (iio_buffer_enabled(indio_dev)) {
1275 adc->bufi++;
1276 if (adc->bufi >= adc->num_conv) {
1277 stm32_adc_conv_irq_disable(adc);
1278 iio_trigger_poll(indio_dev->trig);
1279 }
1280 } else {
1281 complete(&adc->completion);
1282 }
1283 return IRQ_HANDLED;
1284 }
1285
1286 return IRQ_NONE;
1287}
1288
1289/**
1290 * stm32_adc_validate_trigger() - validate trigger for stm32 adc
1291 * @indio_dev: IIO device
1292 * @trig: new trigger
1293 *
1294 * Returns: 0 if trig matches one of the triggers registered by stm32 adc
1295 * driver, -EINVAL otherwise.
1296 */
1297static int stm32_adc_validate_trigger(struct iio_dev *indio_dev,
1298 struct iio_trigger *trig)
1299{
1300 return stm32_adc_get_trig_extsel(indio_dev, trig) < 0 ? -EINVAL : 0;
1301}
1302
1303static int stm32_adc_set_watermark(struct iio_dev *indio_dev, unsigned int val)
1304{
1305 struct stm32_adc *adc = iio_priv(indio_dev);
1306 unsigned int watermark = STM32_DMA_BUFFER_SIZE / 2;
1307 unsigned int rx_buf_sz = STM32_DMA_BUFFER_SIZE;
1308
1309 /*
1310 * dma cyclic transfers are used, buffer is split into two periods.
1311 * There should be :
1312 * - always one buffer (period) dma is working on
1313 * - one buffer (period) driver can push with iio_trigger_poll().
1314 */
1315 watermark = min(watermark, val * (unsigned)(sizeof(u16)));
1316 adc->rx_buf_sz = min(rx_buf_sz, watermark * 2 * adc->num_conv);
1317
1318 return 0;
1319}
1320
1321static int stm32_adc_update_scan_mode(struct iio_dev *indio_dev,
1322 const unsigned long *scan_mask)
1323{
1324 struct stm32_adc *adc = iio_priv(indio_dev);
1325 struct device *dev = indio_dev->dev.parent;
1326 int ret;
1327
1328 ret = pm_runtime_get_sync(dev);
1329 if (ret < 0) {
1330 pm_runtime_put_noidle(dev);
1331 return ret;
1332 }
1333
1334 adc->num_conv = bitmap_weight(scan_mask, indio_dev->masklength);
1335
1336 ret = stm32_adc_conf_scan_seq(indio_dev, scan_mask);
1337 pm_runtime_mark_last_busy(dev);
1338 pm_runtime_put_autosuspend(dev);
1339
1340 return ret;
1341}
1342
1343static int stm32_adc_of_xlate(struct iio_dev *indio_dev,
1344 const struct of_phandle_args *iiospec)
1345{
1346 int i;
1347
1348 for (i = 0; i < indio_dev->num_channels; i++)
1349 if (indio_dev->channels[i].channel == iiospec->args[0])
1350 return i;
1351
1352 return -EINVAL;
1353}
1354
1355/**
1356 * stm32_adc_debugfs_reg_access - read or write register value
1357 * @indio_dev: IIO device structure
1358 * @reg: register offset
1359 * @writeval: value to write
1360 * @readval: value to read
1361 *
1362 * To read a value from an ADC register:
1363 * echo [ADC reg offset] > direct_reg_access
1364 * cat direct_reg_access
1365 *
1366 * To write a value in a ADC register:
1367 * echo [ADC_reg_offset] [value] > direct_reg_access
1368 */
1369static int stm32_adc_debugfs_reg_access(struct iio_dev *indio_dev,
1370 unsigned reg, unsigned writeval,
1371 unsigned *readval)
1372{
1373 struct stm32_adc *adc = iio_priv(indio_dev);
1374 struct device *dev = indio_dev->dev.parent;
1375 int ret;
1376
1377 ret = pm_runtime_get_sync(dev);
1378 if (ret < 0) {
1379 pm_runtime_put_noidle(dev);
1380 return ret;
1381 }
1382
1383 if (!readval)
1384 stm32_adc_writel(adc, reg, writeval);
1385 else
1386 *readval = stm32_adc_readl(adc, reg);
1387
1388 pm_runtime_mark_last_busy(dev);
1389 pm_runtime_put_autosuspend(dev);
1390
1391 return 0;
1392}
1393
1394static const struct iio_info stm32_adc_iio_info = {
1395 .read_raw = stm32_adc_read_raw,
1396 .validate_trigger = stm32_adc_validate_trigger,
1397 .hwfifo_set_watermark = stm32_adc_set_watermark,
1398 .update_scan_mode = stm32_adc_update_scan_mode,
1399 .debugfs_reg_access = stm32_adc_debugfs_reg_access,
1400 .of_xlate = stm32_adc_of_xlate,
1401};
1402
1403static unsigned int stm32_adc_dma_residue(struct stm32_adc *adc)
1404{
1405 struct dma_tx_state state;
1406 enum dma_status status;
1407
1408 status = dmaengine_tx_status(adc->dma_chan,
1409 adc->dma_chan->cookie,
1410 &state);
1411 if (status == DMA_IN_PROGRESS) {
1412 /* Residue is size in bytes from end of buffer */
1413 unsigned int i = adc->rx_buf_sz - state.residue;
1414 unsigned int size;
1415
1416 /* Return available bytes */
1417 if (i >= adc->bufi)
1418 size = i - adc->bufi;
1419 else
1420 size = adc->rx_buf_sz + i - adc->bufi;
1421
1422 return size;
1423 }
1424
1425 return 0;
1426}
1427
1428static void stm32_adc_dma_buffer_done(void *data)
1429{
1430 struct iio_dev *indio_dev = data;
1431 struct stm32_adc *adc = iio_priv(indio_dev);
1432 int residue = stm32_adc_dma_residue(adc);
1433
1434 /*
1435 * In DMA mode the trigger services of IIO are not used
1436 * (e.g. no call to iio_trigger_poll).
1437 * Calling irq handler associated to the hardware trigger is not
1438 * relevant as the conversions have already been done. Data
1439 * transfers are performed directly in DMA callback instead.
1440 * This implementation avoids to call trigger irq handler that
1441 * may sleep, in an atomic context (DMA irq handler context).
1442 */
1443 dev_dbg(&indio_dev->dev, "%s bufi=%d\n", __func__, adc->bufi);
1444
1445 while (residue >= indio_dev->scan_bytes) {
1446 u16 *buffer = (u16 *)&adc->rx_buf[adc->bufi];
1447
1448 iio_push_to_buffers(indio_dev, buffer);
1449
1450 residue -= indio_dev->scan_bytes;
1451 adc->bufi += indio_dev->scan_bytes;
1452 if (adc->bufi >= adc->rx_buf_sz)
1453 adc->bufi = 0;
1454 }
1455}
1456
1457static int stm32_adc_dma_start(struct iio_dev *indio_dev)
1458{
1459 struct stm32_adc *adc = iio_priv(indio_dev);
1460 struct dma_async_tx_descriptor *desc;
1461 dma_cookie_t cookie;
1462 int ret;
1463
1464 if (!adc->dma_chan)
1465 return 0;
1466
1467 dev_dbg(&indio_dev->dev, "%s size=%d watermark=%d\n", __func__,
1468 adc->rx_buf_sz, adc->rx_buf_sz / 2);
1469
1470 /* Prepare a DMA cyclic transaction */
1471 desc = dmaengine_prep_dma_cyclic(adc->dma_chan,
1472 adc->rx_dma_buf,
1473 adc->rx_buf_sz, adc->rx_buf_sz / 2,
1474 DMA_DEV_TO_MEM,
1475 DMA_PREP_INTERRUPT);
1476 if (!desc)
1477 return -EBUSY;
1478
1479 desc->callback = stm32_adc_dma_buffer_done;
1480 desc->callback_param = indio_dev;
1481
1482 cookie = dmaengine_submit(desc);
1483 ret = dma_submit_error(cookie);
1484 if (ret) {
1485 dmaengine_terminate_sync(adc->dma_chan);
1486 return ret;
1487 }
1488
1489 /* Issue pending DMA requests */
1490 dma_async_issue_pending(adc->dma_chan);
1491
1492 return 0;
1493}
1494
1495static int stm32_adc_buffer_postenable(struct iio_dev *indio_dev)
1496{
1497 struct stm32_adc *adc = iio_priv(indio_dev);
1498 struct device *dev = indio_dev->dev.parent;
1499 int ret;
1500
1501 ret = pm_runtime_get_sync(dev);
1502 if (ret < 0) {
1503 pm_runtime_put_noidle(dev);
1504 return ret;
1505 }
1506
1507 ret = stm32_adc_set_trig(indio_dev, indio_dev->trig);
1508 if (ret) {
1509 dev_err(&indio_dev->dev, "Can't set trigger\n");
1510 goto err_pm_put;
1511 }
1512
1513 ret = stm32_adc_dma_start(indio_dev);
1514 if (ret) {
1515 dev_err(&indio_dev->dev, "Can't start dma\n");
1516 goto err_clr_trig;
1517 }
1518
1519 /* Reset adc buffer index */
1520 adc->bufi = 0;
1521
1522 stm32_adc_ovr_irq_enable(adc);
1523
1524 if (!adc->dma_chan)
1525 stm32_adc_conv_irq_enable(adc);
1526
1527 adc->cfg->start_conv(indio_dev, !!adc->dma_chan);
1528
1529 return 0;
1530
1531err_clr_trig:
1532 stm32_adc_set_trig(indio_dev, NULL);
1533err_pm_put:
1534 pm_runtime_mark_last_busy(dev);
1535 pm_runtime_put_autosuspend(dev);
1536
1537 return ret;
1538}
1539
1540static int stm32_adc_buffer_predisable(struct iio_dev *indio_dev)
1541{
1542 struct stm32_adc *adc = iio_priv(indio_dev);
1543 struct device *dev = indio_dev->dev.parent;
1544
1545 adc->cfg->stop_conv(indio_dev);
1546 if (!adc->dma_chan)
1547 stm32_adc_conv_irq_disable(adc);
1548
1549 stm32_adc_ovr_irq_disable(adc);
1550
1551 if (adc->dma_chan)
1552 dmaengine_terminate_sync(adc->dma_chan);
1553
1554 if (stm32_adc_set_trig(indio_dev, NULL))
1555 dev_err(&indio_dev->dev, "Can't clear trigger\n");
1556
1557 pm_runtime_mark_last_busy(dev);
1558 pm_runtime_put_autosuspend(dev);
1559
1560 return 0;
1561}
1562
1563static const struct iio_buffer_setup_ops stm32_adc_buffer_setup_ops = {
1564 .postenable = &stm32_adc_buffer_postenable,
1565 .predisable = &stm32_adc_buffer_predisable,
1566};
1567
1568static irqreturn_t stm32_adc_trigger_handler(int irq, void *p)
1569{
1570 struct iio_poll_func *pf = p;
1571 struct iio_dev *indio_dev = pf->indio_dev;
1572 struct stm32_adc *adc = iio_priv(indio_dev);
1573
1574 dev_dbg(&indio_dev->dev, "%s bufi=%d\n", __func__, adc->bufi);
1575
1576 if (!adc->dma_chan) {
1577 /* reset buffer index */
1578 adc->bufi = 0;
1579 iio_push_to_buffers_with_timestamp(indio_dev, adc->buffer,
1580 pf->timestamp);
1581 } else {
1582 int residue = stm32_adc_dma_residue(adc);
1583
1584 while (residue >= indio_dev->scan_bytes) {
1585 u16 *buffer = (u16 *)&adc->rx_buf[adc->bufi];
1586
1587 iio_push_to_buffers_with_timestamp(indio_dev, buffer,
1588 pf->timestamp);
1589 residue -= indio_dev->scan_bytes;
1590 adc->bufi += indio_dev->scan_bytes;
1591 if (adc->bufi >= adc->rx_buf_sz)
1592 adc->bufi = 0;
1593 }
1594 }
1595
1596 iio_trigger_notify_done(indio_dev->trig);
1597
1598 /* re-enable eoc irq */
1599 if (!adc->dma_chan)
1600 stm32_adc_conv_irq_enable(adc);
1601
1602 return IRQ_HANDLED;
1603}
1604
1605static const struct iio_chan_spec_ext_info stm32_adc_ext_info[] = {
1606 IIO_ENUM("trigger_polarity", IIO_SHARED_BY_ALL, &stm32_adc_trig_pol),
1607 {
1608 .name = "trigger_polarity_available",
1609 .shared = IIO_SHARED_BY_ALL,
1610 .read = iio_enum_available_read,
1611 .private = (uintptr_t)&stm32_adc_trig_pol,
1612 },
1613 {},
1614};
1615
1616static int stm32_adc_of_get_resolution(struct iio_dev *indio_dev)
1617{
1618 struct device_node *node = indio_dev->dev.of_node;
1619 struct stm32_adc *adc = iio_priv(indio_dev);
1620 unsigned int i;
1621 u32 res;
1622
1623 if (of_property_read_u32(node, "assigned-resolution-bits", &res))
1624 res = adc->cfg->adc_info->resolutions[0];
1625
1626 for (i = 0; i < adc->cfg->adc_info->num_res; i++)
1627 if (res == adc->cfg->adc_info->resolutions[i])
1628 break;
1629 if (i >= adc->cfg->adc_info->num_res) {
1630 dev_err(&indio_dev->dev, "Bad resolution: %u bits\n", res);
1631 return -EINVAL;
1632 }
1633
1634 dev_dbg(&indio_dev->dev, "Using %u bits resolution\n", res);
1635 adc->res = i;
1636
1637 return 0;
1638}
1639
1640static void stm32_adc_smpr_init(struct stm32_adc *adc, int channel, u32 smp_ns)
1641{
1642 const struct stm32_adc_regs *smpr = &adc->cfg->regs->smp_bits[channel];
1643 u32 period_ns, shift = smpr->shift, mask = smpr->mask;
1644 unsigned int smp, r = smpr->reg;
1645
1646 /* Determine sampling time (ADC clock cycles) */
1647 period_ns = NSEC_PER_SEC / adc->common->rate;
1648 for (smp = 0; smp <= STM32_ADC_MAX_SMP; smp++)
1649 if ((period_ns * adc->cfg->smp_cycles[smp]) >= smp_ns)
1650 break;
1651 if (smp > STM32_ADC_MAX_SMP)
1652 smp = STM32_ADC_MAX_SMP;
1653
1654 /* pre-build sampling time registers (e.g. smpr1, smpr2) */
1655 adc->smpr_val[r] = (adc->smpr_val[r] & ~mask) | (smp << shift);
1656}
1657
1658static void stm32_adc_chan_init_one(struct iio_dev *indio_dev,
1659 struct iio_chan_spec *chan, u32 vinp,
1660 u32 vinn, int scan_index, bool differential)
1661{
1662 struct stm32_adc *adc = iio_priv(indio_dev);
1663 char *name = adc->chan_name[vinp];
1664
1665 chan->type = IIO_VOLTAGE;
1666 chan->channel = vinp;
1667 if (differential) {
1668 chan->differential = 1;
1669 chan->channel2 = vinn;
1670 snprintf(name, STM32_ADC_CH_SZ, "in%d-in%d", vinp, vinn);
1671 } else {
1672 snprintf(name, STM32_ADC_CH_SZ, "in%d", vinp);
1673 }
1674 chan->datasheet_name = name;
1675 chan->scan_index = scan_index;
1676 chan->indexed = 1;
1677 chan->info_mask_separate = BIT(IIO_CHAN_INFO_RAW);
1678 chan->info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |
1679 BIT(IIO_CHAN_INFO_OFFSET);
1680 chan->scan_type.sign = 'u';
1681 chan->scan_type.realbits = adc->cfg->adc_info->resolutions[adc->res];
1682 chan->scan_type.storagebits = 16;
1683 chan->ext_info = stm32_adc_ext_info;
1684
1685 /* pre-build selected channels mask */
1686 adc->pcsel |= BIT(chan->channel);
1687 if (differential) {
1688 /* pre-build diff channels mask */
1689 adc->difsel |= BIT(chan->channel);
1690 /* Also add negative input to pre-selected channels */
1691 adc->pcsel |= BIT(chan->channel2);
1692 }
1693}
1694
1695static int stm32_adc_chan_of_init(struct iio_dev *indio_dev)
1696{
1697 struct device_node *node = indio_dev->dev.of_node;
1698 struct stm32_adc *adc = iio_priv(indio_dev);
1699 const struct stm32_adc_info *adc_info = adc->cfg->adc_info;
1700 struct stm32_adc_diff_channel diff[STM32_ADC_CH_MAX];
1701 struct property *prop;
1702 const __be32 *cur;
1703 struct iio_chan_spec *channels;
1704 int scan_index = 0, num_channels = 0, num_diff = 0, ret, i;
1705 u32 val, smp = 0;
1706
1707 ret = of_property_count_u32_elems(node, "st,adc-channels");
1708 if (ret > adc_info->max_channels) {
1709 dev_err(&indio_dev->dev, "Bad st,adc-channels?\n");
1710 return -EINVAL;
1711 } else if (ret > 0) {
1712 num_channels += ret;
1713 }
1714
1715 ret = of_property_count_elems_of_size(node, "st,adc-diff-channels",
1716 sizeof(*diff));
1717 if (ret > adc_info->max_channels) {
1718 dev_err(&indio_dev->dev, "Bad st,adc-diff-channels?\n");
1719 return -EINVAL;
1720 } else if (ret > 0) {
1721 int size = ret * sizeof(*diff) / sizeof(u32);
1722
1723 num_diff = ret;
1724 num_channels += ret;
1725 ret = of_property_read_u32_array(node, "st,adc-diff-channels",
1726 (u32 *)diff, size);
1727 if (ret)
1728 return ret;
1729 }
1730
1731 if (!num_channels) {
1732 dev_err(&indio_dev->dev, "No channels configured\n");
1733 return -ENODATA;
1734 }
1735
1736 /* Optional sample time is provided either for each, or all channels */
1737 ret = of_property_count_u32_elems(node, "st,min-sample-time-nsecs");
1738 if (ret > 1 && ret != num_channels) {
1739 dev_err(&indio_dev->dev, "Invalid st,min-sample-time-nsecs\n");
1740 return -EINVAL;
1741 }
1742
1743 channels = devm_kcalloc(&indio_dev->dev, num_channels,
1744 sizeof(struct iio_chan_spec), GFP_KERNEL);
1745 if (!channels)
1746 return -ENOMEM;
1747
1748 of_property_for_each_u32(node, "st,adc-channels", prop, cur, val) {
1749 if (val >= adc_info->max_channels) {
1750 dev_err(&indio_dev->dev, "Invalid channel %d\n", val);
1751 return -EINVAL;
1752 }
1753
1754 /* Channel can't be configured both as single-ended & diff */
1755 for (i = 0; i < num_diff; i++) {
1756 if (val == diff[i].vinp) {
1757 dev_err(&indio_dev->dev,
1758 "channel %d miss-configured\n", val);
1759 return -EINVAL;
1760 }
1761 }
1762 stm32_adc_chan_init_one(indio_dev, &channels[scan_index], val,
1763 0, scan_index, false);
1764 scan_index++;
1765 }
1766
1767 for (i = 0; i < num_diff; i++) {
1768 if (diff[i].vinp >= adc_info->max_channels ||
1769 diff[i].vinn >= adc_info->max_channels) {
1770 dev_err(&indio_dev->dev, "Invalid channel in%d-in%d\n",
1771 diff[i].vinp, diff[i].vinn);
1772 return -EINVAL;
1773 }
1774 stm32_adc_chan_init_one(indio_dev, &channels[scan_index],
1775 diff[i].vinp, diff[i].vinn, scan_index,
1776 true);
1777 scan_index++;
1778 }
1779
1780 for (i = 0; i < scan_index; i++) {
1781 /*
1782 * Using of_property_read_u32_index(), smp value will only be
1783 * modified if valid u32 value can be decoded. This allows to
1784 * get either no value, 1 shared value for all indexes, or one
1785 * value per channel.
1786 */
1787 of_property_read_u32_index(node, "st,min-sample-time-nsecs",
1788 i, &smp);
1789 /* Prepare sampling time settings */
1790 stm32_adc_smpr_init(adc, channels[i].channel, smp);
1791 }
1792
1793 indio_dev->num_channels = scan_index;
1794 indio_dev->channels = channels;
1795
1796 return 0;
1797}
1798
1799static int stm32_adc_dma_request(struct device *dev, struct iio_dev *indio_dev)
1800{
1801 struct stm32_adc *adc = iio_priv(indio_dev);
1802 struct dma_slave_config config;
1803 int ret;
1804
1805 adc->dma_chan = dma_request_chan(dev, "rx");
1806 if (IS_ERR(adc->dma_chan)) {
1807 ret = PTR_ERR(adc->dma_chan);
1808 if (ret != -ENODEV) {
1809 if (ret != -EPROBE_DEFER)
1810 dev_err(dev,
1811 "DMA channel request failed with %d\n",
1812 ret);
1813 return ret;
1814 }
1815
1816 /* DMA is optional: fall back to IRQ mode */
1817 adc->dma_chan = NULL;
1818 return 0;
1819 }
1820
1821 adc->rx_buf = dma_alloc_coherent(adc->dma_chan->device->dev,
1822 STM32_DMA_BUFFER_SIZE,
1823 &adc->rx_dma_buf, GFP_KERNEL);
1824 if (!adc->rx_buf) {
1825 ret = -ENOMEM;
1826 goto err_release;
1827 }
1828
1829 /* Configure DMA channel to read data register */
1830 memset(&config, 0, sizeof(config));
1831 config.src_addr = (dma_addr_t)adc->common->phys_base;
1832 config.src_addr += adc->offset + adc->cfg->regs->dr;
1833 config.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
1834
1835 ret = dmaengine_slave_config(adc->dma_chan, &config);
1836 if (ret)
1837 goto err_free;
1838
1839 return 0;
1840
1841err_free:
1842 dma_free_coherent(adc->dma_chan->device->dev, STM32_DMA_BUFFER_SIZE,
1843 adc->rx_buf, adc->rx_dma_buf);
1844err_release:
1845 dma_release_channel(adc->dma_chan);
1846
1847 return ret;
1848}
1849
1850static int stm32_adc_probe(struct platform_device *pdev)
1851{
1852 struct iio_dev *indio_dev;
1853 struct device *dev = &pdev->dev;
1854 irqreturn_t (*handler)(int irq, void *p) = NULL;
1855 struct stm32_adc *adc;
1856 int ret;
1857
1858 if (!pdev->dev.of_node)
1859 return -ENODEV;
1860
1861 indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(*adc));
1862 if (!indio_dev)
1863 return -ENOMEM;
1864
1865 adc = iio_priv(indio_dev);
1866 adc->common = dev_get_drvdata(pdev->dev.parent);
1867 spin_lock_init(&adc->lock);
1868 init_completion(&adc->completion);
1869 adc->cfg = (const struct stm32_adc_cfg *)
1870 of_match_device(dev->driver->of_match_table, dev)->data;
1871
1872 indio_dev->name = dev_name(&pdev->dev);
1873 indio_dev->dev.of_node = pdev->dev.of_node;
1874 indio_dev->info = &stm32_adc_iio_info;
1875 indio_dev->modes = INDIO_DIRECT_MODE | INDIO_HARDWARE_TRIGGERED;
1876
1877 platform_set_drvdata(pdev, indio_dev);
1878
1879 ret = of_property_read_u32(pdev->dev.of_node, "reg", &adc->offset);
1880 if (ret != 0) {
1881 dev_err(&pdev->dev, "missing reg property\n");
1882 return -EINVAL;
1883 }
1884
1885 adc->irq = platform_get_irq(pdev, 0);
1886 if (adc->irq < 0)
1887 return adc->irq;
1888
1889 ret = devm_request_threaded_irq(&pdev->dev, adc->irq, stm32_adc_isr,
1890 stm32_adc_threaded_isr,
1891 0, pdev->name, indio_dev);
1892 if (ret) {
1893 dev_err(&pdev->dev, "failed to request IRQ\n");
1894 return ret;
1895 }
1896
1897 adc->clk = devm_clk_get(&pdev->dev, NULL);
1898 if (IS_ERR(adc->clk)) {
1899 ret = PTR_ERR(adc->clk);
1900 if (ret == -ENOENT && !adc->cfg->clk_required) {
1901 adc->clk = NULL;
1902 } else {
1903 dev_err(&pdev->dev, "Can't get clock\n");
1904 return ret;
1905 }
1906 }
1907
1908 ret = stm32_adc_of_get_resolution(indio_dev);
1909 if (ret < 0)
1910 return ret;
1911
1912 ret = stm32_adc_chan_of_init(indio_dev);
1913 if (ret < 0)
1914 return ret;
1915
1916 ret = stm32_adc_dma_request(dev, indio_dev);
1917 if (ret < 0)
1918 return ret;
1919
1920 if (!adc->dma_chan)
1921 handler = &stm32_adc_trigger_handler;
1922
1923 ret = iio_triggered_buffer_setup(indio_dev,
1924 &iio_pollfunc_store_time, handler,
1925 &stm32_adc_buffer_setup_ops);
1926 if (ret) {
1927 dev_err(&pdev->dev, "buffer setup failed\n");
1928 goto err_dma_disable;
1929 }
1930
1931 /* Get stm32-adc-core PM online */
1932 pm_runtime_get_noresume(dev);
1933 pm_runtime_set_active(dev);
1934 pm_runtime_set_autosuspend_delay(dev, STM32_ADC_HW_STOP_DELAY_MS);
1935 pm_runtime_use_autosuspend(dev);
1936 pm_runtime_enable(dev);
1937
1938 ret = stm32_adc_hw_start(dev);
1939 if (ret)
1940 goto err_buffer_cleanup;
1941
1942 ret = iio_device_register(indio_dev);
1943 if (ret) {
1944 dev_err(&pdev->dev, "iio dev register failed\n");
1945 goto err_hw_stop;
1946 }
1947
1948 pm_runtime_mark_last_busy(dev);
1949 pm_runtime_put_autosuspend(dev);
1950
1951 return 0;
1952
1953err_hw_stop:
1954 stm32_adc_hw_stop(dev);
1955
1956err_buffer_cleanup:
1957 pm_runtime_disable(dev);
1958 pm_runtime_set_suspended(dev);
1959 pm_runtime_put_noidle(dev);
1960 iio_triggered_buffer_cleanup(indio_dev);
1961
1962err_dma_disable:
1963 if (adc->dma_chan) {
1964 dma_free_coherent(adc->dma_chan->device->dev,
1965 STM32_DMA_BUFFER_SIZE,
1966 adc->rx_buf, adc->rx_dma_buf);
1967 dma_release_channel(adc->dma_chan);
1968 }
1969
1970 return ret;
1971}
1972
1973static int stm32_adc_remove(struct platform_device *pdev)
1974{
1975 struct iio_dev *indio_dev = platform_get_drvdata(pdev);
1976 struct stm32_adc *adc = iio_priv(indio_dev);
1977
1978 pm_runtime_get_sync(&pdev->dev);
1979 iio_device_unregister(indio_dev);
1980 stm32_adc_hw_stop(&pdev->dev);
1981 pm_runtime_disable(&pdev->dev);
1982 pm_runtime_set_suspended(&pdev->dev);
1983 pm_runtime_put_noidle(&pdev->dev);
1984 iio_triggered_buffer_cleanup(indio_dev);
1985 if (adc->dma_chan) {
1986 dma_free_coherent(adc->dma_chan->device->dev,
1987 STM32_DMA_BUFFER_SIZE,
1988 adc->rx_buf, adc->rx_dma_buf);
1989 dma_release_channel(adc->dma_chan);
1990 }
1991
1992 return 0;
1993}
1994
1995#if defined(CONFIG_PM_SLEEP)
1996static int stm32_adc_suspend(struct device *dev)
1997{
1998 struct iio_dev *indio_dev = dev_get_drvdata(dev);
1999
2000 if (iio_buffer_enabled(indio_dev))
2001 stm32_adc_buffer_predisable(indio_dev);
2002
2003 return pm_runtime_force_suspend(dev);
2004}
2005
2006static int stm32_adc_resume(struct device *dev)
2007{
2008 struct iio_dev *indio_dev = dev_get_drvdata(dev);
2009 int ret;
2010
2011 ret = pm_runtime_force_resume(dev);
2012 if (ret < 0)
2013 return ret;
2014
2015 if (!iio_buffer_enabled(indio_dev))
2016 return 0;
2017
2018 ret = stm32_adc_update_scan_mode(indio_dev,
2019 indio_dev->active_scan_mask);
2020 if (ret < 0)
2021 return ret;
2022
2023 return stm32_adc_buffer_postenable(indio_dev);
2024}
2025#endif
2026
2027#if defined(CONFIG_PM)
2028static int stm32_adc_runtime_suspend(struct device *dev)
2029{
2030 return stm32_adc_hw_stop(dev);
2031}
2032
2033static int stm32_adc_runtime_resume(struct device *dev)
2034{
2035 return stm32_adc_hw_start(dev);
2036}
2037#endif
2038
2039static const struct dev_pm_ops stm32_adc_pm_ops = {
2040 SET_SYSTEM_SLEEP_PM_OPS(stm32_adc_suspend, stm32_adc_resume)
2041 SET_RUNTIME_PM_OPS(stm32_adc_runtime_suspend, stm32_adc_runtime_resume,
2042 NULL)
2043};
2044
2045static const struct stm32_adc_cfg stm32f4_adc_cfg = {
2046 .regs = &stm32f4_adc_regspec,
2047 .adc_info = &stm32f4_adc_info,
2048 .trigs = stm32f4_adc_trigs,
2049 .clk_required = true,
2050 .start_conv = stm32f4_adc_start_conv,
2051 .stop_conv = stm32f4_adc_stop_conv,
2052 .smp_cycles = stm32f4_adc_smp_cycles,
2053};
2054
2055static const struct stm32_adc_cfg stm32h7_adc_cfg = {
2056 .regs = &stm32h7_adc_regspec,
2057 .adc_info = &stm32h7_adc_info,
2058 .trigs = stm32h7_adc_trigs,
2059 .start_conv = stm32h7_adc_start_conv,
2060 .stop_conv = stm32h7_adc_stop_conv,
2061 .prepare = stm32h7_adc_prepare,
2062 .unprepare = stm32h7_adc_unprepare,
2063 .smp_cycles = stm32h7_adc_smp_cycles,
2064};
2065
2066static const struct stm32_adc_cfg stm32mp1_adc_cfg = {
2067 .regs = &stm32h7_adc_regspec,
2068 .adc_info = &stm32h7_adc_info,
2069 .trigs = stm32h7_adc_trigs,
2070 .has_vregready = true,
2071 .start_conv = stm32h7_adc_start_conv,
2072 .stop_conv = stm32h7_adc_stop_conv,
2073 .prepare = stm32h7_adc_prepare,
2074 .unprepare = stm32h7_adc_unprepare,
2075 .smp_cycles = stm32h7_adc_smp_cycles,
2076};
2077
2078static const struct of_device_id stm32_adc_of_match[] = {
2079 { .compatible = "st,stm32f4-adc", .data = (void *)&stm32f4_adc_cfg },
2080 { .compatible = "st,stm32h7-adc", .data = (void *)&stm32h7_adc_cfg },
2081 { .compatible = "st,stm32mp1-adc", .data = (void *)&stm32mp1_adc_cfg },
2082 {},
2083};
2084MODULE_DEVICE_TABLE(of, stm32_adc_of_match);
2085
2086static struct platform_driver stm32_adc_driver = {
2087 .probe = stm32_adc_probe,
2088 .remove = stm32_adc_remove,
2089 .driver = {
2090 .name = "stm32-adc",
2091 .of_match_table = stm32_adc_of_match,
2092 .pm = &stm32_adc_pm_ops,
2093 },
2094};
2095module_platform_driver(stm32_adc_driver);
2096
2097MODULE_AUTHOR("Fabrice Gasnier <fabrice.gasnier@st.com>");
2098MODULE_DESCRIPTION("STMicroelectronics STM32 ADC IIO driver");
2099MODULE_LICENSE("GPL v2");
2100MODULE_ALIAS("platform:stm32-adc");