Linux Audio

Check our new training course

Loading...
v5.9
  1// SPDX-License-Identifier: GPL-2.0-only
  2/* 
  3 * Cryptographic API.
  4 *
  5 * Support for VIA PadLock hardware crypto engine.
  6 *
  7 * Copyright (c) 2004  Michal Ludvig <michal@logix.cz>
  8 *
  9 */
 10
 11#include <crypto/algapi.h>
 12#include <crypto/aes.h>
 13#include <crypto/internal/skcipher.h>
 14#include <crypto/padlock.h>
 15#include <linux/module.h>
 16#include <linux/init.h>
 17#include <linux/types.h>
 18#include <linux/errno.h>
 19#include <linux/interrupt.h>
 20#include <linux/kernel.h>
 21#include <linux/percpu.h>
 22#include <linux/smp.h>
 23#include <linux/slab.h>
 24#include <asm/cpu_device_id.h>
 25#include <asm/byteorder.h>
 26#include <asm/processor.h>
 27#include <asm/fpu/api.h>
 28
 29/*
 30 * Number of data blocks actually fetched for each xcrypt insn.
 31 * Processors with prefetch errata will fetch extra blocks.
 32 */
 33static unsigned int ecb_fetch_blocks = 2;
 34#define MAX_ECB_FETCH_BLOCKS (8)
 35#define ecb_fetch_bytes (ecb_fetch_blocks * AES_BLOCK_SIZE)
 36
 37static unsigned int cbc_fetch_blocks = 1;
 38#define MAX_CBC_FETCH_BLOCKS (4)
 39#define cbc_fetch_bytes (cbc_fetch_blocks * AES_BLOCK_SIZE)
 40
 41/* Control word. */
 42struct cword {
 43	unsigned int __attribute__ ((__packed__))
 44		rounds:4,
 45		algo:3,
 46		keygen:1,
 47		interm:1,
 48		encdec:1,
 49		ksize:2;
 50} __attribute__ ((__aligned__(PADLOCK_ALIGNMENT)));
 51
 52/* Whenever making any changes to the following
 53 * structure *make sure* you keep E, d_data
 54 * and cword aligned on 16 Bytes boundaries and
 55 * the Hardware can access 16 * 16 bytes of E and d_data
 56 * (only the first 15 * 16 bytes matter but the HW reads
 57 * more).
 58 */
 59struct aes_ctx {
 60	u32 E[AES_MAX_KEYLENGTH_U32]
 61		__attribute__ ((__aligned__(PADLOCK_ALIGNMENT)));
 62	u32 d_data[AES_MAX_KEYLENGTH_U32]
 63		__attribute__ ((__aligned__(PADLOCK_ALIGNMENT)));
 64	struct {
 65		struct cword encrypt;
 66		struct cword decrypt;
 67	} cword;
 68	u32 *D;
 69};
 70
 71static DEFINE_PER_CPU(struct cword *, paes_last_cword);
 72
 73/* Tells whether the ACE is capable to generate
 74   the extended key for a given key_len. */
 75static inline int
 76aes_hw_extkey_available(uint8_t key_len)
 77{
 78	/* TODO: We should check the actual CPU model/stepping
 79	         as it's possible that the capability will be
 80	         added in the next CPU revisions. */
 81	if (key_len == 16)
 82		return 1;
 83	return 0;
 84}
 85
 86static inline struct aes_ctx *aes_ctx_common(void *ctx)
 87{
 88	unsigned long addr = (unsigned long)ctx;
 89	unsigned long align = PADLOCK_ALIGNMENT;
 90
 91	if (align <= crypto_tfm_ctx_alignment())
 92		align = 1;
 93	return (struct aes_ctx *)ALIGN(addr, align);
 94}
 95
 96static inline struct aes_ctx *aes_ctx(struct crypto_tfm *tfm)
 97{
 98	return aes_ctx_common(crypto_tfm_ctx(tfm));
 99}
100
101static inline struct aes_ctx *skcipher_aes_ctx(struct crypto_skcipher *tfm)
102{
103	return aes_ctx_common(crypto_skcipher_ctx(tfm));
104}
105
106static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
107		       unsigned int key_len)
108{
109	struct aes_ctx *ctx = aes_ctx(tfm);
110	const __le32 *key = (const __le32 *)in_key;
 
111	struct crypto_aes_ctx gen_aes;
112	int cpu;
113
114	if (key_len % 8)
 
115		return -EINVAL;
 
116
117	/*
118	 * If the hardware is capable of generating the extended key
119	 * itself we must supply the plain key for both encryption
120	 * and decryption.
121	 */
122	ctx->D = ctx->E;
123
124	ctx->E[0] = le32_to_cpu(key[0]);
125	ctx->E[1] = le32_to_cpu(key[1]);
126	ctx->E[2] = le32_to_cpu(key[2]);
127	ctx->E[3] = le32_to_cpu(key[3]);
128
129	/* Prepare control words. */
130	memset(&ctx->cword, 0, sizeof(ctx->cword));
131
132	ctx->cword.decrypt.encdec = 1;
133	ctx->cword.encrypt.rounds = 10 + (key_len - 16) / 4;
134	ctx->cword.decrypt.rounds = ctx->cword.encrypt.rounds;
135	ctx->cword.encrypt.ksize = (key_len - 16) / 8;
136	ctx->cword.decrypt.ksize = ctx->cword.encrypt.ksize;
137
138	/* Don't generate extended keys if the hardware can do it. */
139	if (aes_hw_extkey_available(key_len))
140		goto ok;
141
142	ctx->D = ctx->d_data;
143	ctx->cword.encrypt.keygen = 1;
144	ctx->cword.decrypt.keygen = 1;
145
146	if (aes_expandkey(&gen_aes, in_key, key_len))
 
147		return -EINVAL;
 
148
149	memcpy(ctx->E, gen_aes.key_enc, AES_MAX_KEYLENGTH);
150	memcpy(ctx->D, gen_aes.key_dec, AES_MAX_KEYLENGTH);
151
152ok:
153	for_each_online_cpu(cpu)
154		if (&ctx->cword.encrypt == per_cpu(paes_last_cword, cpu) ||
155		    &ctx->cword.decrypt == per_cpu(paes_last_cword, cpu))
156			per_cpu(paes_last_cword, cpu) = NULL;
157
158	return 0;
159}
160
161static int aes_set_key_skcipher(struct crypto_skcipher *tfm, const u8 *in_key,
162				unsigned int key_len)
163{
164	return aes_set_key(crypto_skcipher_tfm(tfm), in_key, key_len);
165}
166
167/* ====== Encryption/decryption routines ====== */
168
169/* These are the real call to PadLock. */
170static inline void padlock_reset_key(struct cword *cword)
171{
172	int cpu = raw_smp_processor_id();
173
174	if (cword != per_cpu(paes_last_cword, cpu))
175#ifndef CONFIG_X86_64
176		asm volatile ("pushfl; popfl");
177#else
178		asm volatile ("pushfq; popfq");
179#endif
180}
181
182static inline void padlock_store_cword(struct cword *cword)
183{
184	per_cpu(paes_last_cword, raw_smp_processor_id()) = cword;
185}
186
187/*
188 * While the padlock instructions don't use FP/SSE registers, they
189 * generate a spurious DNA fault when CR0.TS is '1'.  Fortunately,
190 * the kernel doesn't use CR0.TS.
191 */
192
193static inline void rep_xcrypt_ecb(const u8 *input, u8 *output, void *key,
194				  struct cword *control_word, int count)
195{
196	asm volatile (".byte 0xf3,0x0f,0xa7,0xc8"	/* rep xcryptecb */
197		      : "+S"(input), "+D"(output)
198		      : "d"(control_word), "b"(key), "c"(count));
199}
200
201static inline u8 *rep_xcrypt_cbc(const u8 *input, u8 *output, void *key,
202				 u8 *iv, struct cword *control_word, int count)
203{
204	asm volatile (".byte 0xf3,0x0f,0xa7,0xd0"	/* rep xcryptcbc */
205		      : "+S" (input), "+D" (output), "+a" (iv)
206		      : "d" (control_word), "b" (key), "c" (count));
207	return iv;
208}
209
210static void ecb_crypt_copy(const u8 *in, u8 *out, u32 *key,
211			   struct cword *cword, int count)
212{
213	/*
214	 * Padlock prefetches extra data so we must provide mapped input buffers.
215	 * Assume there are at least 16 bytes of stack already in use.
216	 */
217	u8 buf[AES_BLOCK_SIZE * (MAX_ECB_FETCH_BLOCKS - 1) + PADLOCK_ALIGNMENT - 1];
218	u8 *tmp = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT);
219
220	memcpy(tmp, in, count * AES_BLOCK_SIZE);
221	rep_xcrypt_ecb(tmp, out, key, cword, count);
222}
223
224static u8 *cbc_crypt_copy(const u8 *in, u8 *out, u32 *key,
225			   u8 *iv, struct cword *cword, int count)
226{
227	/*
228	 * Padlock prefetches extra data so we must provide mapped input buffers.
229	 * Assume there are at least 16 bytes of stack already in use.
230	 */
231	u8 buf[AES_BLOCK_SIZE * (MAX_CBC_FETCH_BLOCKS - 1) + PADLOCK_ALIGNMENT - 1];
232	u8 *tmp = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT);
233
234	memcpy(tmp, in, count * AES_BLOCK_SIZE);
235	return rep_xcrypt_cbc(tmp, out, key, iv, cword, count);
236}
237
238static inline void ecb_crypt(const u8 *in, u8 *out, u32 *key,
239			     struct cword *cword, int count)
240{
241	/* Padlock in ECB mode fetches at least ecb_fetch_bytes of data.
242	 * We could avoid some copying here but it's probably not worth it.
243	 */
244	if (unlikely(offset_in_page(in) + ecb_fetch_bytes > PAGE_SIZE)) {
245		ecb_crypt_copy(in, out, key, cword, count);
246		return;
247	}
248
249	rep_xcrypt_ecb(in, out, key, cword, count);
250}
251
252static inline u8 *cbc_crypt(const u8 *in, u8 *out, u32 *key,
253			    u8 *iv, struct cword *cword, int count)
254{
255	/* Padlock in CBC mode fetches at least cbc_fetch_bytes of data. */
256	if (unlikely(offset_in_page(in) + cbc_fetch_bytes > PAGE_SIZE))
257		return cbc_crypt_copy(in, out, key, iv, cword, count);
258
259	return rep_xcrypt_cbc(in, out, key, iv, cword, count);
260}
261
262static inline void padlock_xcrypt_ecb(const u8 *input, u8 *output, void *key,
263				      void *control_word, u32 count)
264{
265	u32 initial = count & (ecb_fetch_blocks - 1);
266
267	if (count < ecb_fetch_blocks) {
268		ecb_crypt(input, output, key, control_word, count);
269		return;
270	}
271
272	count -= initial;
273
274	if (initial)
275		asm volatile (".byte 0xf3,0x0f,0xa7,0xc8"	/* rep xcryptecb */
276			      : "+S"(input), "+D"(output)
277			      : "d"(control_word), "b"(key), "c"(initial));
278
279	asm volatile (".byte 0xf3,0x0f,0xa7,0xc8"	/* rep xcryptecb */
280		      : "+S"(input), "+D"(output)
281		      : "d"(control_word), "b"(key), "c"(count));
282}
283
284static inline u8 *padlock_xcrypt_cbc(const u8 *input, u8 *output, void *key,
285				     u8 *iv, void *control_word, u32 count)
286{
287	u32 initial = count & (cbc_fetch_blocks - 1);
288
289	if (count < cbc_fetch_blocks)
290		return cbc_crypt(input, output, key, iv, control_word, count);
291
292	count -= initial;
293
294	if (initial)
295		asm volatile (".byte 0xf3,0x0f,0xa7,0xd0"	/* rep xcryptcbc */
296			      : "+S" (input), "+D" (output), "+a" (iv)
297			      : "d" (control_word), "b" (key), "c" (initial));
298
299	asm volatile (".byte 0xf3,0x0f,0xa7,0xd0"	/* rep xcryptcbc */
300		      : "+S" (input), "+D" (output), "+a" (iv)
301		      : "d" (control_word), "b" (key), "c" (count));
302	return iv;
303}
304
305static void padlock_aes_encrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
306{
307	struct aes_ctx *ctx = aes_ctx(tfm);
 
308
309	padlock_reset_key(&ctx->cword.encrypt);
 
310	ecb_crypt(in, out, ctx->E, &ctx->cword.encrypt, 1);
 
311	padlock_store_cword(&ctx->cword.encrypt);
312}
313
314static void padlock_aes_decrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
315{
316	struct aes_ctx *ctx = aes_ctx(tfm);
 
317
318	padlock_reset_key(&ctx->cword.encrypt);
 
319	ecb_crypt(in, out, ctx->D, &ctx->cword.decrypt, 1);
 
320	padlock_store_cword(&ctx->cword.encrypt);
321}
322
323static struct crypto_alg aes_alg = {
324	.cra_name		=	"aes",
325	.cra_driver_name	=	"aes-padlock",
326	.cra_priority		=	PADLOCK_CRA_PRIORITY,
327	.cra_flags		=	CRYPTO_ALG_TYPE_CIPHER,
328	.cra_blocksize		=	AES_BLOCK_SIZE,
329	.cra_ctxsize		=	sizeof(struct aes_ctx),
330	.cra_alignmask		=	PADLOCK_ALIGNMENT - 1,
331	.cra_module		=	THIS_MODULE,
 
332	.cra_u			=	{
333		.cipher = {
334			.cia_min_keysize	=	AES_MIN_KEY_SIZE,
335			.cia_max_keysize	=	AES_MAX_KEY_SIZE,
336			.cia_setkey	   	= 	aes_set_key,
337			.cia_encrypt	 	=	padlock_aes_encrypt,
338			.cia_decrypt	  	=	padlock_aes_decrypt,
339		}
340	}
341};
342
343static int ecb_aes_encrypt(struct skcipher_request *req)
 
 
344{
345	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
346	struct aes_ctx *ctx = skcipher_aes_ctx(tfm);
347	struct skcipher_walk walk;
348	unsigned int nbytes;
349	int err;
 
350
351	padlock_reset_key(&ctx->cword.encrypt);
352
353	err = skcipher_walk_virt(&walk, req, false);
 
354
355	while ((nbytes = walk.nbytes) != 0) {
 
356		padlock_xcrypt_ecb(walk.src.virt.addr, walk.dst.virt.addr,
357				   ctx->E, &ctx->cword.encrypt,
358				   nbytes / AES_BLOCK_SIZE);
359		nbytes &= AES_BLOCK_SIZE - 1;
360		err = skcipher_walk_done(&walk, nbytes);
361	}
 
362
363	padlock_store_cword(&ctx->cword.encrypt);
364
365	return err;
366}
367
368static int ecb_aes_decrypt(struct skcipher_request *req)
 
 
369{
370	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
371	struct aes_ctx *ctx = skcipher_aes_ctx(tfm);
372	struct skcipher_walk walk;
373	unsigned int nbytes;
374	int err;
 
375
376	padlock_reset_key(&ctx->cword.decrypt);
377
378	err = skcipher_walk_virt(&walk, req, false);
 
379
380	while ((nbytes = walk.nbytes) != 0) {
 
381		padlock_xcrypt_ecb(walk.src.virt.addr, walk.dst.virt.addr,
382				   ctx->D, &ctx->cword.decrypt,
383				   nbytes / AES_BLOCK_SIZE);
384		nbytes &= AES_BLOCK_SIZE - 1;
385		err = skcipher_walk_done(&walk, nbytes);
386	}
 
387
388	padlock_store_cword(&ctx->cword.encrypt);
389
390	return err;
391}
392
393static struct skcipher_alg ecb_aes_alg = {
394	.base.cra_name		=	"ecb(aes)",
395	.base.cra_driver_name	=	"ecb-aes-padlock",
396	.base.cra_priority	=	PADLOCK_COMPOSITE_PRIORITY,
397	.base.cra_blocksize	=	AES_BLOCK_SIZE,
398	.base.cra_ctxsize	=	sizeof(struct aes_ctx),
399	.base.cra_alignmask	=	PADLOCK_ALIGNMENT - 1,
400	.base.cra_module	=	THIS_MODULE,
401	.min_keysize		=	AES_MIN_KEY_SIZE,
402	.max_keysize		=	AES_MAX_KEY_SIZE,
403	.setkey			=	aes_set_key_skcipher,
404	.encrypt		=	ecb_aes_encrypt,
405	.decrypt		=	ecb_aes_decrypt,
 
 
 
 
 
 
 
406};
407
408static int cbc_aes_encrypt(struct skcipher_request *req)
 
 
409{
410	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
411	struct aes_ctx *ctx = skcipher_aes_ctx(tfm);
412	struct skcipher_walk walk;
413	unsigned int nbytes;
414	int err;
 
415
416	padlock_reset_key(&ctx->cword.encrypt);
417
418	err = skcipher_walk_virt(&walk, req, false);
 
419
420	while ((nbytes = walk.nbytes) != 0) {
 
421		u8 *iv = padlock_xcrypt_cbc(walk.src.virt.addr,
422					    walk.dst.virt.addr, ctx->E,
423					    walk.iv, &ctx->cword.encrypt,
424					    nbytes / AES_BLOCK_SIZE);
425		memcpy(walk.iv, iv, AES_BLOCK_SIZE);
426		nbytes &= AES_BLOCK_SIZE - 1;
427		err = skcipher_walk_done(&walk, nbytes);
428	}
 
429
430	padlock_store_cword(&ctx->cword.decrypt);
431
432	return err;
433}
434
435static int cbc_aes_decrypt(struct skcipher_request *req)
 
 
436{
437	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
438	struct aes_ctx *ctx = skcipher_aes_ctx(tfm);
439	struct skcipher_walk walk;
440	unsigned int nbytes;
441	int err;
 
442
443	padlock_reset_key(&ctx->cword.encrypt);
444
445	err = skcipher_walk_virt(&walk, req, false);
 
446
447	while ((nbytes = walk.nbytes) != 0) {
 
448		padlock_xcrypt_cbc(walk.src.virt.addr, walk.dst.virt.addr,
449				   ctx->D, walk.iv, &ctx->cword.decrypt,
450				   nbytes / AES_BLOCK_SIZE);
451		nbytes &= AES_BLOCK_SIZE - 1;
452		err = skcipher_walk_done(&walk, nbytes);
453	}
454
 
 
455	padlock_store_cword(&ctx->cword.encrypt);
456
457	return err;
458}
459
460static struct skcipher_alg cbc_aes_alg = {
461	.base.cra_name		=	"cbc(aes)",
462	.base.cra_driver_name	=	"cbc-aes-padlock",
463	.base.cra_priority	=	PADLOCK_COMPOSITE_PRIORITY,
464	.base.cra_blocksize	=	AES_BLOCK_SIZE,
465	.base.cra_ctxsize	=	sizeof(struct aes_ctx),
466	.base.cra_alignmask	=	PADLOCK_ALIGNMENT - 1,
467	.base.cra_module	=	THIS_MODULE,
468	.min_keysize		=	AES_MIN_KEY_SIZE,
469	.max_keysize		=	AES_MAX_KEY_SIZE,
470	.ivsize			=	AES_BLOCK_SIZE,
471	.setkey			=	aes_set_key_skcipher,
472	.encrypt		=	cbc_aes_encrypt,
473	.decrypt		=	cbc_aes_decrypt,
 
 
 
 
 
 
 
474};
475
476static const struct x86_cpu_id padlock_cpu_id[] = {
477	X86_MATCH_FEATURE(X86_FEATURE_XCRYPT, NULL),
478	{}
479};
480MODULE_DEVICE_TABLE(x86cpu, padlock_cpu_id);
481
482static int __init padlock_init(void)
483{
484	int ret;
485	struct cpuinfo_x86 *c = &cpu_data(0);
486
487	if (!x86_match_cpu(padlock_cpu_id))
488		return -ENODEV;
489
490	if (!boot_cpu_has(X86_FEATURE_XCRYPT_EN)) {
491		printk(KERN_NOTICE PFX "VIA PadLock detected, but not enabled. Hmm, strange...\n");
492		return -ENODEV;
493	}
494
495	if ((ret = crypto_register_alg(&aes_alg)) != 0)
496		goto aes_err;
497
498	if ((ret = crypto_register_skcipher(&ecb_aes_alg)) != 0)
499		goto ecb_aes_err;
500
501	if ((ret = crypto_register_skcipher(&cbc_aes_alg)) != 0)
502		goto cbc_aes_err;
503
504	printk(KERN_NOTICE PFX "Using VIA PadLock ACE for AES algorithm.\n");
505
506	if (c->x86 == 6 && c->x86_model == 15 && c->x86_stepping == 2) {
507		ecb_fetch_blocks = MAX_ECB_FETCH_BLOCKS;
508		cbc_fetch_blocks = MAX_CBC_FETCH_BLOCKS;
509		printk(KERN_NOTICE PFX "VIA Nano stepping 2 detected: enabling workaround.\n");
510	}
511
512out:
513	return ret;
514
515cbc_aes_err:
516	crypto_unregister_skcipher(&ecb_aes_alg);
517ecb_aes_err:
518	crypto_unregister_alg(&aes_alg);
519aes_err:
520	printk(KERN_ERR PFX "VIA PadLock AES initialization failed.\n");
521	goto out;
522}
523
524static void __exit padlock_fini(void)
525{
526	crypto_unregister_skcipher(&cbc_aes_alg);
527	crypto_unregister_skcipher(&ecb_aes_alg);
528	crypto_unregister_alg(&aes_alg);
529}
530
531module_init(padlock_init);
532module_exit(padlock_fini);
533
534MODULE_DESCRIPTION("VIA PadLock AES algorithm support");
535MODULE_LICENSE("GPL");
536MODULE_AUTHOR("Michal Ludvig");
537
538MODULE_ALIAS_CRYPTO("aes");
v3.5.6
 
  1/* 
  2 * Cryptographic API.
  3 *
  4 * Support for VIA PadLock hardware crypto engine.
  5 *
  6 * Copyright (c) 2004  Michal Ludvig <michal@logix.cz>
  7 *
  8 */
  9
 10#include <crypto/algapi.h>
 11#include <crypto/aes.h>
 
 12#include <crypto/padlock.h>
 13#include <linux/module.h>
 14#include <linux/init.h>
 15#include <linux/types.h>
 16#include <linux/errno.h>
 17#include <linux/interrupt.h>
 18#include <linux/kernel.h>
 19#include <linux/percpu.h>
 20#include <linux/smp.h>
 21#include <linux/slab.h>
 22#include <asm/cpu_device_id.h>
 23#include <asm/byteorder.h>
 24#include <asm/processor.h>
 25#include <asm/i387.h>
 26
 27/*
 28 * Number of data blocks actually fetched for each xcrypt insn.
 29 * Processors with prefetch errata will fetch extra blocks.
 30 */
 31static unsigned int ecb_fetch_blocks = 2;
 32#define MAX_ECB_FETCH_BLOCKS (8)
 33#define ecb_fetch_bytes (ecb_fetch_blocks * AES_BLOCK_SIZE)
 34
 35static unsigned int cbc_fetch_blocks = 1;
 36#define MAX_CBC_FETCH_BLOCKS (4)
 37#define cbc_fetch_bytes (cbc_fetch_blocks * AES_BLOCK_SIZE)
 38
 39/* Control word. */
 40struct cword {
 41	unsigned int __attribute__ ((__packed__))
 42		rounds:4,
 43		algo:3,
 44		keygen:1,
 45		interm:1,
 46		encdec:1,
 47		ksize:2;
 48} __attribute__ ((__aligned__(PADLOCK_ALIGNMENT)));
 49
 50/* Whenever making any changes to the following
 51 * structure *make sure* you keep E, d_data
 52 * and cword aligned on 16 Bytes boundaries and
 53 * the Hardware can access 16 * 16 bytes of E and d_data
 54 * (only the first 15 * 16 bytes matter but the HW reads
 55 * more).
 56 */
 57struct aes_ctx {
 58	u32 E[AES_MAX_KEYLENGTH_U32]
 59		__attribute__ ((__aligned__(PADLOCK_ALIGNMENT)));
 60	u32 d_data[AES_MAX_KEYLENGTH_U32]
 61		__attribute__ ((__aligned__(PADLOCK_ALIGNMENT)));
 62	struct {
 63		struct cword encrypt;
 64		struct cword decrypt;
 65	} cword;
 66	u32 *D;
 67};
 68
 69static DEFINE_PER_CPU(struct cword *, paes_last_cword);
 70
 71/* Tells whether the ACE is capable to generate
 72   the extended key for a given key_len. */
 73static inline int
 74aes_hw_extkey_available(uint8_t key_len)
 75{
 76	/* TODO: We should check the actual CPU model/stepping
 77	         as it's possible that the capability will be
 78	         added in the next CPU revisions. */
 79	if (key_len == 16)
 80		return 1;
 81	return 0;
 82}
 83
 84static inline struct aes_ctx *aes_ctx_common(void *ctx)
 85{
 86	unsigned long addr = (unsigned long)ctx;
 87	unsigned long align = PADLOCK_ALIGNMENT;
 88
 89	if (align <= crypto_tfm_ctx_alignment())
 90		align = 1;
 91	return (struct aes_ctx *)ALIGN(addr, align);
 92}
 93
 94static inline struct aes_ctx *aes_ctx(struct crypto_tfm *tfm)
 95{
 96	return aes_ctx_common(crypto_tfm_ctx(tfm));
 97}
 98
 99static inline struct aes_ctx *blk_aes_ctx(struct crypto_blkcipher *tfm)
100{
101	return aes_ctx_common(crypto_blkcipher_ctx(tfm));
102}
103
104static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
105		       unsigned int key_len)
106{
107	struct aes_ctx *ctx = aes_ctx(tfm);
108	const __le32 *key = (const __le32 *)in_key;
109	u32 *flags = &tfm->crt_flags;
110	struct crypto_aes_ctx gen_aes;
111	int cpu;
112
113	if (key_len % 8) {
114		*flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
115		return -EINVAL;
116	}
117
118	/*
119	 * If the hardware is capable of generating the extended key
120	 * itself we must supply the plain key for both encryption
121	 * and decryption.
122	 */
123	ctx->D = ctx->E;
124
125	ctx->E[0] = le32_to_cpu(key[0]);
126	ctx->E[1] = le32_to_cpu(key[1]);
127	ctx->E[2] = le32_to_cpu(key[2]);
128	ctx->E[3] = le32_to_cpu(key[3]);
129
130	/* Prepare control words. */
131	memset(&ctx->cword, 0, sizeof(ctx->cword));
132
133	ctx->cword.decrypt.encdec = 1;
134	ctx->cword.encrypt.rounds = 10 + (key_len - 16) / 4;
135	ctx->cword.decrypt.rounds = ctx->cword.encrypt.rounds;
136	ctx->cword.encrypt.ksize = (key_len - 16) / 8;
137	ctx->cword.decrypt.ksize = ctx->cword.encrypt.ksize;
138
139	/* Don't generate extended keys if the hardware can do it. */
140	if (aes_hw_extkey_available(key_len))
141		goto ok;
142
143	ctx->D = ctx->d_data;
144	ctx->cword.encrypt.keygen = 1;
145	ctx->cword.decrypt.keygen = 1;
146
147	if (crypto_aes_expand_key(&gen_aes, in_key, key_len)) {
148		*flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
149		return -EINVAL;
150	}
151
152	memcpy(ctx->E, gen_aes.key_enc, AES_MAX_KEYLENGTH);
153	memcpy(ctx->D, gen_aes.key_dec, AES_MAX_KEYLENGTH);
154
155ok:
156	for_each_online_cpu(cpu)
157		if (&ctx->cword.encrypt == per_cpu(paes_last_cword, cpu) ||
158		    &ctx->cword.decrypt == per_cpu(paes_last_cword, cpu))
159			per_cpu(paes_last_cword, cpu) = NULL;
160
161	return 0;
162}
163
 
 
 
 
 
 
164/* ====== Encryption/decryption routines ====== */
165
166/* These are the real call to PadLock. */
167static inline void padlock_reset_key(struct cword *cword)
168{
169	int cpu = raw_smp_processor_id();
170
171	if (cword != per_cpu(paes_last_cword, cpu))
172#ifndef CONFIG_X86_64
173		asm volatile ("pushfl; popfl");
174#else
175		asm volatile ("pushfq; popfq");
176#endif
177}
178
179static inline void padlock_store_cword(struct cword *cword)
180{
181	per_cpu(paes_last_cword, raw_smp_processor_id()) = cword;
182}
183
184/*
185 * While the padlock instructions don't use FP/SSE registers, they
186 * generate a spurious DNA fault when cr0.ts is '1'. These instructions
187 * should be used only inside the irq_ts_save/restore() context
188 */
189
190static inline void rep_xcrypt_ecb(const u8 *input, u8 *output, void *key,
191				  struct cword *control_word, int count)
192{
193	asm volatile (".byte 0xf3,0x0f,0xa7,0xc8"	/* rep xcryptecb */
194		      : "+S"(input), "+D"(output)
195		      : "d"(control_word), "b"(key), "c"(count));
196}
197
198static inline u8 *rep_xcrypt_cbc(const u8 *input, u8 *output, void *key,
199				 u8 *iv, struct cword *control_word, int count)
200{
201	asm volatile (".byte 0xf3,0x0f,0xa7,0xd0"	/* rep xcryptcbc */
202		      : "+S" (input), "+D" (output), "+a" (iv)
203		      : "d" (control_word), "b" (key), "c" (count));
204	return iv;
205}
206
207static void ecb_crypt_copy(const u8 *in, u8 *out, u32 *key,
208			   struct cword *cword, int count)
209{
210	/*
211	 * Padlock prefetches extra data so we must provide mapped input buffers.
212	 * Assume there are at least 16 bytes of stack already in use.
213	 */
214	u8 buf[AES_BLOCK_SIZE * (MAX_ECB_FETCH_BLOCKS - 1) + PADLOCK_ALIGNMENT - 1];
215	u8 *tmp = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT);
216
217	memcpy(tmp, in, count * AES_BLOCK_SIZE);
218	rep_xcrypt_ecb(tmp, out, key, cword, count);
219}
220
221static u8 *cbc_crypt_copy(const u8 *in, u8 *out, u32 *key,
222			   u8 *iv, struct cword *cword, int count)
223{
224	/*
225	 * Padlock prefetches extra data so we must provide mapped input buffers.
226	 * Assume there are at least 16 bytes of stack already in use.
227	 */
228	u8 buf[AES_BLOCK_SIZE * (MAX_CBC_FETCH_BLOCKS - 1) + PADLOCK_ALIGNMENT - 1];
229	u8 *tmp = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT);
230
231	memcpy(tmp, in, count * AES_BLOCK_SIZE);
232	return rep_xcrypt_cbc(tmp, out, key, iv, cword, count);
233}
234
235static inline void ecb_crypt(const u8 *in, u8 *out, u32 *key,
236			     struct cword *cword, int count)
237{
238	/* Padlock in ECB mode fetches at least ecb_fetch_bytes of data.
239	 * We could avoid some copying here but it's probably not worth it.
240	 */
241	if (unlikely(((unsigned long)in & ~PAGE_MASK) + ecb_fetch_bytes > PAGE_SIZE)) {
242		ecb_crypt_copy(in, out, key, cword, count);
243		return;
244	}
245
246	rep_xcrypt_ecb(in, out, key, cword, count);
247}
248
249static inline u8 *cbc_crypt(const u8 *in, u8 *out, u32 *key,
250			    u8 *iv, struct cword *cword, int count)
251{
252	/* Padlock in CBC mode fetches at least cbc_fetch_bytes of data. */
253	if (unlikely(((unsigned long)in & ~PAGE_MASK) + cbc_fetch_bytes > PAGE_SIZE))
254		return cbc_crypt_copy(in, out, key, iv, cword, count);
255
256	return rep_xcrypt_cbc(in, out, key, iv, cword, count);
257}
258
259static inline void padlock_xcrypt_ecb(const u8 *input, u8 *output, void *key,
260				      void *control_word, u32 count)
261{
262	u32 initial = count & (ecb_fetch_blocks - 1);
263
264	if (count < ecb_fetch_blocks) {
265		ecb_crypt(input, output, key, control_word, count);
266		return;
267	}
268
 
 
269	if (initial)
270		asm volatile (".byte 0xf3,0x0f,0xa7,0xc8"	/* rep xcryptecb */
271			      : "+S"(input), "+D"(output)
272			      : "d"(control_word), "b"(key), "c"(initial));
273
274	asm volatile (".byte 0xf3,0x0f,0xa7,0xc8"	/* rep xcryptecb */
275		      : "+S"(input), "+D"(output)
276		      : "d"(control_word), "b"(key), "c"(count - initial));
277}
278
279static inline u8 *padlock_xcrypt_cbc(const u8 *input, u8 *output, void *key,
280				     u8 *iv, void *control_word, u32 count)
281{
282	u32 initial = count & (cbc_fetch_blocks - 1);
283
284	if (count < cbc_fetch_blocks)
285		return cbc_crypt(input, output, key, iv, control_word, count);
286
 
 
287	if (initial)
288		asm volatile (".byte 0xf3,0x0f,0xa7,0xd0"	/* rep xcryptcbc */
289			      : "+S" (input), "+D" (output), "+a" (iv)
290			      : "d" (control_word), "b" (key), "c" (initial));
291
292	asm volatile (".byte 0xf3,0x0f,0xa7,0xd0"	/* rep xcryptcbc */
293		      : "+S" (input), "+D" (output), "+a" (iv)
294		      : "d" (control_word), "b" (key), "c" (count-initial));
295	return iv;
296}
297
298static void aes_encrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
299{
300	struct aes_ctx *ctx = aes_ctx(tfm);
301	int ts_state;
302
303	padlock_reset_key(&ctx->cword.encrypt);
304	ts_state = irq_ts_save();
305	ecb_crypt(in, out, ctx->E, &ctx->cword.encrypt, 1);
306	irq_ts_restore(ts_state);
307	padlock_store_cword(&ctx->cword.encrypt);
308}
309
310static void aes_decrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
311{
312	struct aes_ctx *ctx = aes_ctx(tfm);
313	int ts_state;
314
315	padlock_reset_key(&ctx->cword.encrypt);
316	ts_state = irq_ts_save();
317	ecb_crypt(in, out, ctx->D, &ctx->cword.decrypt, 1);
318	irq_ts_restore(ts_state);
319	padlock_store_cword(&ctx->cword.encrypt);
320}
321
322static struct crypto_alg aes_alg = {
323	.cra_name		=	"aes",
324	.cra_driver_name	=	"aes-padlock",
325	.cra_priority		=	PADLOCK_CRA_PRIORITY,
326	.cra_flags		=	CRYPTO_ALG_TYPE_CIPHER,
327	.cra_blocksize		=	AES_BLOCK_SIZE,
328	.cra_ctxsize		=	sizeof(struct aes_ctx),
329	.cra_alignmask		=	PADLOCK_ALIGNMENT - 1,
330	.cra_module		=	THIS_MODULE,
331	.cra_list		=	LIST_HEAD_INIT(aes_alg.cra_list),
332	.cra_u			=	{
333		.cipher = {
334			.cia_min_keysize	=	AES_MIN_KEY_SIZE,
335			.cia_max_keysize	=	AES_MAX_KEY_SIZE,
336			.cia_setkey	   	= 	aes_set_key,
337			.cia_encrypt	 	=	aes_encrypt,
338			.cia_decrypt	  	=	aes_decrypt,
339		}
340	}
341};
342
343static int ecb_aes_encrypt(struct blkcipher_desc *desc,
344			   struct scatterlist *dst, struct scatterlist *src,
345			   unsigned int nbytes)
346{
347	struct aes_ctx *ctx = blk_aes_ctx(desc->tfm);
348	struct blkcipher_walk walk;
 
 
349	int err;
350	int ts_state;
351
352	padlock_reset_key(&ctx->cword.encrypt);
353
354	blkcipher_walk_init(&walk, dst, src, nbytes);
355	err = blkcipher_walk_virt(desc, &walk);
356
357	ts_state = irq_ts_save();
358	while ((nbytes = walk.nbytes)) {
359		padlock_xcrypt_ecb(walk.src.virt.addr, walk.dst.virt.addr,
360				   ctx->E, &ctx->cword.encrypt,
361				   nbytes / AES_BLOCK_SIZE);
362		nbytes &= AES_BLOCK_SIZE - 1;
363		err = blkcipher_walk_done(desc, &walk, nbytes);
364	}
365	irq_ts_restore(ts_state);
366
367	padlock_store_cword(&ctx->cword.encrypt);
368
369	return err;
370}
371
372static int ecb_aes_decrypt(struct blkcipher_desc *desc,
373			   struct scatterlist *dst, struct scatterlist *src,
374			   unsigned int nbytes)
375{
376	struct aes_ctx *ctx = blk_aes_ctx(desc->tfm);
377	struct blkcipher_walk walk;
 
 
378	int err;
379	int ts_state;
380
381	padlock_reset_key(&ctx->cword.decrypt);
382
383	blkcipher_walk_init(&walk, dst, src, nbytes);
384	err = blkcipher_walk_virt(desc, &walk);
385
386	ts_state = irq_ts_save();
387	while ((nbytes = walk.nbytes)) {
388		padlock_xcrypt_ecb(walk.src.virt.addr, walk.dst.virt.addr,
389				   ctx->D, &ctx->cword.decrypt,
390				   nbytes / AES_BLOCK_SIZE);
391		nbytes &= AES_BLOCK_SIZE - 1;
392		err = blkcipher_walk_done(desc, &walk, nbytes);
393	}
394	irq_ts_restore(ts_state);
395
396	padlock_store_cword(&ctx->cword.encrypt);
397
398	return err;
399}
400
401static struct crypto_alg ecb_aes_alg = {
402	.cra_name		=	"ecb(aes)",
403	.cra_driver_name	=	"ecb-aes-padlock",
404	.cra_priority		=	PADLOCK_COMPOSITE_PRIORITY,
405	.cra_flags		=	CRYPTO_ALG_TYPE_BLKCIPHER,
406	.cra_blocksize		=	AES_BLOCK_SIZE,
407	.cra_ctxsize		=	sizeof(struct aes_ctx),
408	.cra_alignmask		=	PADLOCK_ALIGNMENT - 1,
409	.cra_type		=	&crypto_blkcipher_type,
410	.cra_module		=	THIS_MODULE,
411	.cra_list		=	LIST_HEAD_INIT(ecb_aes_alg.cra_list),
412	.cra_u			=	{
413		.blkcipher = {
414			.min_keysize		=	AES_MIN_KEY_SIZE,
415			.max_keysize		=	AES_MAX_KEY_SIZE,
416			.setkey	   		= 	aes_set_key,
417			.encrypt		=	ecb_aes_encrypt,
418			.decrypt		=	ecb_aes_decrypt,
419		}
420	}
421};
422
423static int cbc_aes_encrypt(struct blkcipher_desc *desc,
424			   struct scatterlist *dst, struct scatterlist *src,
425			   unsigned int nbytes)
426{
427	struct aes_ctx *ctx = blk_aes_ctx(desc->tfm);
428	struct blkcipher_walk walk;
 
 
429	int err;
430	int ts_state;
431
432	padlock_reset_key(&ctx->cword.encrypt);
433
434	blkcipher_walk_init(&walk, dst, src, nbytes);
435	err = blkcipher_walk_virt(desc, &walk);
436
437	ts_state = irq_ts_save();
438	while ((nbytes = walk.nbytes)) {
439		u8 *iv = padlock_xcrypt_cbc(walk.src.virt.addr,
440					    walk.dst.virt.addr, ctx->E,
441					    walk.iv, &ctx->cword.encrypt,
442					    nbytes / AES_BLOCK_SIZE);
443		memcpy(walk.iv, iv, AES_BLOCK_SIZE);
444		nbytes &= AES_BLOCK_SIZE - 1;
445		err = blkcipher_walk_done(desc, &walk, nbytes);
446	}
447	irq_ts_restore(ts_state);
448
449	padlock_store_cword(&ctx->cword.decrypt);
450
451	return err;
452}
453
454static int cbc_aes_decrypt(struct blkcipher_desc *desc,
455			   struct scatterlist *dst, struct scatterlist *src,
456			   unsigned int nbytes)
457{
458	struct aes_ctx *ctx = blk_aes_ctx(desc->tfm);
459	struct blkcipher_walk walk;
 
 
460	int err;
461	int ts_state;
462
463	padlock_reset_key(&ctx->cword.encrypt);
464
465	blkcipher_walk_init(&walk, dst, src, nbytes);
466	err = blkcipher_walk_virt(desc, &walk);
467
468	ts_state = irq_ts_save();
469	while ((nbytes = walk.nbytes)) {
470		padlock_xcrypt_cbc(walk.src.virt.addr, walk.dst.virt.addr,
471				   ctx->D, walk.iv, &ctx->cword.decrypt,
472				   nbytes / AES_BLOCK_SIZE);
473		nbytes &= AES_BLOCK_SIZE - 1;
474		err = blkcipher_walk_done(desc, &walk, nbytes);
475	}
476
477	irq_ts_restore(ts_state);
478
479	padlock_store_cword(&ctx->cword.encrypt);
480
481	return err;
482}
483
484static struct crypto_alg cbc_aes_alg = {
485	.cra_name		=	"cbc(aes)",
486	.cra_driver_name	=	"cbc-aes-padlock",
487	.cra_priority		=	PADLOCK_COMPOSITE_PRIORITY,
488	.cra_flags		=	CRYPTO_ALG_TYPE_BLKCIPHER,
489	.cra_blocksize		=	AES_BLOCK_SIZE,
490	.cra_ctxsize		=	sizeof(struct aes_ctx),
491	.cra_alignmask		=	PADLOCK_ALIGNMENT - 1,
492	.cra_type		=	&crypto_blkcipher_type,
493	.cra_module		=	THIS_MODULE,
494	.cra_list		=	LIST_HEAD_INIT(cbc_aes_alg.cra_list),
495	.cra_u			=	{
496		.blkcipher = {
497			.min_keysize		=	AES_MIN_KEY_SIZE,
498			.max_keysize		=	AES_MAX_KEY_SIZE,
499			.ivsize			=	AES_BLOCK_SIZE,
500			.setkey	   		= 	aes_set_key,
501			.encrypt		=	cbc_aes_encrypt,
502			.decrypt		=	cbc_aes_decrypt,
503		}
504	}
505};
506
507static struct x86_cpu_id padlock_cpu_id[] = {
508	X86_FEATURE_MATCH(X86_FEATURE_XCRYPT),
509	{}
510};
511MODULE_DEVICE_TABLE(x86cpu, padlock_cpu_id);
512
513static int __init padlock_init(void)
514{
515	int ret;
516	struct cpuinfo_x86 *c = &cpu_data(0);
517
518	if (!x86_match_cpu(padlock_cpu_id))
519		return -ENODEV;
520
521	if (!cpu_has_xcrypt_enabled) {
522		printk(KERN_NOTICE PFX "VIA PadLock detected, but not enabled. Hmm, strange...\n");
523		return -ENODEV;
524	}
525
526	if ((ret = crypto_register_alg(&aes_alg)))
527		goto aes_err;
528
529	if ((ret = crypto_register_alg(&ecb_aes_alg)))
530		goto ecb_aes_err;
531
532	if ((ret = crypto_register_alg(&cbc_aes_alg)))
533		goto cbc_aes_err;
534
535	printk(KERN_NOTICE PFX "Using VIA PadLock ACE for AES algorithm.\n");
536
537	if (c->x86 == 6 && c->x86_model == 15 && c->x86_mask == 2) {
538		ecb_fetch_blocks = MAX_ECB_FETCH_BLOCKS;
539		cbc_fetch_blocks = MAX_CBC_FETCH_BLOCKS;
540		printk(KERN_NOTICE PFX "VIA Nano stepping 2 detected: enabling workaround.\n");
541	}
542
543out:
544	return ret;
545
546cbc_aes_err:
547	crypto_unregister_alg(&ecb_aes_alg);
548ecb_aes_err:
549	crypto_unregister_alg(&aes_alg);
550aes_err:
551	printk(KERN_ERR PFX "VIA PadLock AES initialization failed.\n");
552	goto out;
553}
554
555static void __exit padlock_fini(void)
556{
557	crypto_unregister_alg(&cbc_aes_alg);
558	crypto_unregister_alg(&ecb_aes_alg);
559	crypto_unregister_alg(&aes_alg);
560}
561
562module_init(padlock_init);
563module_exit(padlock_fini);
564
565MODULE_DESCRIPTION("VIA PadLock AES algorithm support");
566MODULE_LICENSE("GPL");
567MODULE_AUTHOR("Michal Ludvig");
568
569MODULE_ALIAS("aes");