Linux Audio

Check our new training course

Loading...
Note: File does not exist in v5.9.
   1/*
   2 * Support for Marvell's crypto engine which can be found on some Orion5X
   3 * boards.
   4 *
   5 * Author: Sebastian Andrzej Siewior < sebastian at breakpoint dot cc >
   6 * License: GPLv2
   7 *
   8 */
   9#include <crypto/aes.h>
  10#include <crypto/algapi.h>
  11#include <linux/crypto.h>
  12#include <linux/interrupt.h>
  13#include <linux/io.h>
  14#include <linux/kthread.h>
  15#include <linux/platform_device.h>
  16#include <linux/scatterlist.h>
  17#include <linux/slab.h>
  18#include <linux/module.h>
  19#include <linux/clk.h>
  20#include <crypto/internal/hash.h>
  21#include <crypto/sha.h>
  22
  23#include "mv_cesa.h"
  24
  25#define MV_CESA	"MV-CESA:"
  26#define MAX_HW_HASH_SIZE	0xFFFF
  27
  28/*
  29 * STM:
  30 *   /---------------------------------------\
  31 *   |					     | request complete
  32 *  \./					     |
  33 * IDLE -> new request -> BUSY -> done -> DEQUEUE
  34 *                         /°\               |
  35 *			    |		     | more scatter entries
  36 *			    \________________/
  37 */
  38enum engine_status {
  39	ENGINE_IDLE,
  40	ENGINE_BUSY,
  41	ENGINE_W_DEQUEUE,
  42};
  43
  44/**
  45 * struct req_progress - used for every crypt request
  46 * @src_sg_it:		sg iterator for src
  47 * @dst_sg_it:		sg iterator for dst
  48 * @sg_src_left:	bytes left in src to process (scatter list)
  49 * @src_start:		offset to add to src start position (scatter list)
  50 * @crypt_len:		length of current hw crypt/hash process
  51 * @hw_nbytes:		total bytes to process in hw for this request
  52 * @copy_back:		whether to copy data back (crypt) or not (hash)
  53 * @sg_dst_left:	bytes left dst to process in this scatter list
  54 * @dst_start:		offset to add to dst start position (scatter list)
  55 * @hw_processed_bytes:	number of bytes processed by hw (request).
  56 *
  57 * sg helper are used to iterate over the scatterlist. Since the size of the
  58 * SRAM may be less than the scatter size, this struct struct is used to keep
  59 * track of progress within current scatterlist.
  60 */
  61struct req_progress {
  62	struct sg_mapping_iter src_sg_it;
  63	struct sg_mapping_iter dst_sg_it;
  64	void (*complete) (void);
  65	void (*process) (int is_first);
  66
  67	/* src mostly */
  68	int sg_src_left;
  69	int src_start;
  70	int crypt_len;
  71	int hw_nbytes;
  72	/* dst mostly */
  73	int copy_back;
  74	int sg_dst_left;
  75	int dst_start;
  76	int hw_processed_bytes;
  77};
  78
  79struct crypto_priv {
  80	void __iomem *reg;
  81	void __iomem *sram;
  82	int irq;
  83	struct clk *clk;
  84	struct task_struct *queue_th;
  85
  86	/* the lock protects queue and eng_st */
  87	spinlock_t lock;
  88	struct crypto_queue queue;
  89	enum engine_status eng_st;
  90	struct crypto_async_request *cur_req;
  91	struct req_progress p;
  92	int max_req_size;
  93	int sram_size;
  94	int has_sha1;
  95	int has_hmac_sha1;
  96};
  97
  98static struct crypto_priv *cpg;
  99
 100struct mv_ctx {
 101	u8 aes_enc_key[AES_KEY_LEN];
 102	u32 aes_dec_key[8];
 103	int key_len;
 104	u32 need_calc_aes_dkey;
 105};
 106
 107enum crypto_op {
 108	COP_AES_ECB,
 109	COP_AES_CBC,
 110};
 111
 112struct mv_req_ctx {
 113	enum crypto_op op;
 114	int decrypt;
 115};
 116
 117enum hash_op {
 118	COP_SHA1,
 119	COP_HMAC_SHA1
 120};
 121
 122struct mv_tfm_hash_ctx {
 123	struct crypto_shash *fallback;
 124	struct crypto_shash *base_hash;
 125	u32 ivs[2 * SHA1_DIGEST_SIZE / 4];
 126	int count_add;
 127	enum hash_op op;
 128};
 129
 130struct mv_req_hash_ctx {
 131	u64 count;
 132	u32 state[SHA1_DIGEST_SIZE / 4];
 133	u8 buffer[SHA1_BLOCK_SIZE];
 134	int first_hash;		/* marks that we don't have previous state */
 135	int last_chunk;		/* marks that this is the 'final' request */
 136	int extra_bytes;	/* unprocessed bytes in buffer */
 137	enum hash_op op;
 138	int count_add;
 139};
 140
 141static void compute_aes_dec_key(struct mv_ctx *ctx)
 142{
 143	struct crypto_aes_ctx gen_aes_key;
 144	int key_pos;
 145
 146	if (!ctx->need_calc_aes_dkey)
 147		return;
 148
 149	crypto_aes_expand_key(&gen_aes_key, ctx->aes_enc_key, ctx->key_len);
 150
 151	key_pos = ctx->key_len + 24;
 152	memcpy(ctx->aes_dec_key, &gen_aes_key.key_enc[key_pos], 4 * 4);
 153	switch (ctx->key_len) {
 154	case AES_KEYSIZE_256:
 155		key_pos -= 2;
 156		/* fall */
 157	case AES_KEYSIZE_192:
 158		key_pos -= 2;
 159		memcpy(&ctx->aes_dec_key[4], &gen_aes_key.key_enc[key_pos],
 160				4 * 4);
 161		break;
 162	}
 163	ctx->need_calc_aes_dkey = 0;
 164}
 165
 166static int mv_setkey_aes(struct crypto_ablkcipher *cipher, const u8 *key,
 167		unsigned int len)
 168{
 169	struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
 170	struct mv_ctx *ctx = crypto_tfm_ctx(tfm);
 171
 172	switch (len) {
 173	case AES_KEYSIZE_128:
 174	case AES_KEYSIZE_192:
 175	case AES_KEYSIZE_256:
 176		break;
 177	default:
 178		crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
 179		return -EINVAL;
 180	}
 181	ctx->key_len = len;
 182	ctx->need_calc_aes_dkey = 1;
 183
 184	memcpy(ctx->aes_enc_key, key, AES_KEY_LEN);
 185	return 0;
 186}
 187
 188static void copy_src_to_buf(struct req_progress *p, char *dbuf, int len)
 189{
 190	int ret;
 191	void *sbuf;
 192	int copy_len;
 193
 194	while (len) {
 195		if (!p->sg_src_left) {
 196			ret = sg_miter_next(&p->src_sg_it);
 197			BUG_ON(!ret);
 198			p->sg_src_left = p->src_sg_it.length;
 199			p->src_start = 0;
 200		}
 201
 202		sbuf = p->src_sg_it.addr + p->src_start;
 203
 204		copy_len = min(p->sg_src_left, len);
 205		memcpy(dbuf, sbuf, copy_len);
 206
 207		p->src_start += copy_len;
 208		p->sg_src_left -= copy_len;
 209
 210		len -= copy_len;
 211		dbuf += copy_len;
 212	}
 213}
 214
 215static void setup_data_in(void)
 216{
 217	struct req_progress *p = &cpg->p;
 218	int data_in_sram =
 219	    min(p->hw_nbytes - p->hw_processed_bytes, cpg->max_req_size);
 220	copy_src_to_buf(p, cpg->sram + SRAM_DATA_IN_START + p->crypt_len,
 221			data_in_sram - p->crypt_len);
 222	p->crypt_len = data_in_sram;
 223}
 224
 225static void mv_process_current_q(int first_block)
 226{
 227	struct ablkcipher_request *req = ablkcipher_request_cast(cpg->cur_req);
 228	struct mv_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
 229	struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
 230	struct sec_accel_config op;
 231
 232	switch (req_ctx->op) {
 233	case COP_AES_ECB:
 234		op.config = CFG_OP_CRYPT_ONLY | CFG_ENCM_AES | CFG_ENC_MODE_ECB;
 235		break;
 236	case COP_AES_CBC:
 237	default:
 238		op.config = CFG_OP_CRYPT_ONLY | CFG_ENCM_AES | CFG_ENC_MODE_CBC;
 239		op.enc_iv = ENC_IV_POINT(SRAM_DATA_IV) |
 240			ENC_IV_BUF_POINT(SRAM_DATA_IV_BUF);
 241		if (first_block)
 242			memcpy(cpg->sram + SRAM_DATA_IV, req->info, 16);
 243		break;
 244	}
 245	if (req_ctx->decrypt) {
 246		op.config |= CFG_DIR_DEC;
 247		memcpy(cpg->sram + SRAM_DATA_KEY_P, ctx->aes_dec_key,
 248				AES_KEY_LEN);
 249	} else {
 250		op.config |= CFG_DIR_ENC;
 251		memcpy(cpg->sram + SRAM_DATA_KEY_P, ctx->aes_enc_key,
 252				AES_KEY_LEN);
 253	}
 254
 255	switch (ctx->key_len) {
 256	case AES_KEYSIZE_128:
 257		op.config |= CFG_AES_LEN_128;
 258		break;
 259	case AES_KEYSIZE_192:
 260		op.config |= CFG_AES_LEN_192;
 261		break;
 262	case AES_KEYSIZE_256:
 263		op.config |= CFG_AES_LEN_256;
 264		break;
 265	}
 266	op.enc_p = ENC_P_SRC(SRAM_DATA_IN_START) |
 267		ENC_P_DST(SRAM_DATA_OUT_START);
 268	op.enc_key_p = SRAM_DATA_KEY_P;
 269
 270	setup_data_in();
 271	op.enc_len = cpg->p.crypt_len;
 272	memcpy(cpg->sram + SRAM_CONFIG, &op,
 273			sizeof(struct sec_accel_config));
 274
 275	/* GO */
 276	writel(SEC_CMD_EN_SEC_ACCL0, cpg->reg + SEC_ACCEL_CMD);
 277
 278	/*
 279	 * XXX: add timer if the interrupt does not occur for some mystery
 280	 * reason
 281	 */
 282}
 283
 284static void mv_crypto_algo_completion(void)
 285{
 286	struct ablkcipher_request *req = ablkcipher_request_cast(cpg->cur_req);
 287	struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
 288
 289	sg_miter_stop(&cpg->p.src_sg_it);
 290	sg_miter_stop(&cpg->p.dst_sg_it);
 291
 292	if (req_ctx->op != COP_AES_CBC)
 293		return ;
 294
 295	memcpy(req->info, cpg->sram + SRAM_DATA_IV_BUF, 16);
 296}
 297
 298static void mv_process_hash_current(int first_block)
 299{
 300	struct ahash_request *req = ahash_request_cast(cpg->cur_req);
 301	const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm);
 302	struct mv_req_hash_ctx *req_ctx = ahash_request_ctx(req);
 303	struct req_progress *p = &cpg->p;
 304	struct sec_accel_config op = { 0 };
 305	int is_last;
 306
 307	switch (req_ctx->op) {
 308	case COP_SHA1:
 309	default:
 310		op.config = CFG_OP_MAC_ONLY | CFG_MACM_SHA1;
 311		break;
 312	case COP_HMAC_SHA1:
 313		op.config = CFG_OP_MAC_ONLY | CFG_MACM_HMAC_SHA1;
 314		memcpy(cpg->sram + SRAM_HMAC_IV_IN,
 315				tfm_ctx->ivs, sizeof(tfm_ctx->ivs));
 316		break;
 317	}
 318
 319	op.mac_src_p =
 320		MAC_SRC_DATA_P(SRAM_DATA_IN_START) | MAC_SRC_TOTAL_LEN((u32)
 321		req_ctx->
 322		count);
 323
 324	setup_data_in();
 325
 326	op.mac_digest =
 327		MAC_DIGEST_P(SRAM_DIGEST_BUF) | MAC_FRAG_LEN(p->crypt_len);
 328	op.mac_iv =
 329		MAC_INNER_IV_P(SRAM_HMAC_IV_IN) |
 330		MAC_OUTER_IV_P(SRAM_HMAC_IV_OUT);
 331
 332	is_last = req_ctx->last_chunk
 333		&& (p->hw_processed_bytes + p->crypt_len >= p->hw_nbytes)
 334		&& (req_ctx->count <= MAX_HW_HASH_SIZE);
 335	if (req_ctx->first_hash) {
 336		if (is_last)
 337			op.config |= CFG_NOT_FRAG;
 338		else
 339			op.config |= CFG_FIRST_FRAG;
 340
 341		req_ctx->first_hash = 0;
 342	} else {
 343		if (is_last)
 344			op.config |= CFG_LAST_FRAG;
 345		else
 346			op.config |= CFG_MID_FRAG;
 347
 348		if (first_block) {
 349			writel(req_ctx->state[0], cpg->reg + DIGEST_INITIAL_VAL_A);
 350			writel(req_ctx->state[1], cpg->reg + DIGEST_INITIAL_VAL_B);
 351			writel(req_ctx->state[2], cpg->reg + DIGEST_INITIAL_VAL_C);
 352			writel(req_ctx->state[3], cpg->reg + DIGEST_INITIAL_VAL_D);
 353			writel(req_ctx->state[4], cpg->reg + DIGEST_INITIAL_VAL_E);
 354		}
 355	}
 356
 357	memcpy(cpg->sram + SRAM_CONFIG, &op, sizeof(struct sec_accel_config));
 358
 359	/* GO */
 360	writel(SEC_CMD_EN_SEC_ACCL0, cpg->reg + SEC_ACCEL_CMD);
 361
 362	/*
 363	* XXX: add timer if the interrupt does not occur for some mystery
 364	* reason
 365	*/
 366}
 367
 368static inline int mv_hash_import_sha1_ctx(const struct mv_req_hash_ctx *ctx,
 369					  struct shash_desc *desc)
 370{
 371	int i;
 372	struct sha1_state shash_state;
 373
 374	shash_state.count = ctx->count + ctx->count_add;
 375	for (i = 0; i < 5; i++)
 376		shash_state.state[i] = ctx->state[i];
 377	memcpy(shash_state.buffer, ctx->buffer, sizeof(shash_state.buffer));
 378	return crypto_shash_import(desc, &shash_state);
 379}
 380
 381static int mv_hash_final_fallback(struct ahash_request *req)
 382{
 383	const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm);
 384	struct mv_req_hash_ctx *req_ctx = ahash_request_ctx(req);
 385	struct {
 386		struct shash_desc shash;
 387		char ctx[crypto_shash_descsize(tfm_ctx->fallback)];
 388	} desc;
 389	int rc;
 390
 391	desc.shash.tfm = tfm_ctx->fallback;
 392	desc.shash.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
 393	if (unlikely(req_ctx->first_hash)) {
 394		crypto_shash_init(&desc.shash);
 395		crypto_shash_update(&desc.shash, req_ctx->buffer,
 396				    req_ctx->extra_bytes);
 397	} else {
 398		/* only SHA1 for now....
 399		 */
 400		rc = mv_hash_import_sha1_ctx(req_ctx, &desc.shash);
 401		if (rc)
 402			goto out;
 403	}
 404	rc = crypto_shash_final(&desc.shash, req->result);
 405out:
 406	return rc;
 407}
 408
 409static void mv_hash_algo_completion(void)
 410{
 411	struct ahash_request *req = ahash_request_cast(cpg->cur_req);
 412	struct mv_req_hash_ctx *ctx = ahash_request_ctx(req);
 413
 414	if (ctx->extra_bytes)
 415		copy_src_to_buf(&cpg->p, ctx->buffer, ctx->extra_bytes);
 416	sg_miter_stop(&cpg->p.src_sg_it);
 417
 418	if (likely(ctx->last_chunk)) {
 419		if (likely(ctx->count <= MAX_HW_HASH_SIZE)) {
 420			memcpy(req->result, cpg->sram + SRAM_DIGEST_BUF,
 421			       crypto_ahash_digestsize(crypto_ahash_reqtfm
 422						       (req)));
 423		} else
 424			mv_hash_final_fallback(req);
 425	} else {
 426		ctx->state[0] = readl(cpg->reg + DIGEST_INITIAL_VAL_A);
 427		ctx->state[1] = readl(cpg->reg + DIGEST_INITIAL_VAL_B);
 428		ctx->state[2] = readl(cpg->reg + DIGEST_INITIAL_VAL_C);
 429		ctx->state[3] = readl(cpg->reg + DIGEST_INITIAL_VAL_D);
 430		ctx->state[4] = readl(cpg->reg + DIGEST_INITIAL_VAL_E);
 431	}
 432}
 433
 434static void dequeue_complete_req(void)
 435{
 436	struct crypto_async_request *req = cpg->cur_req;
 437	void *buf;
 438	int ret;
 439	cpg->p.hw_processed_bytes += cpg->p.crypt_len;
 440	if (cpg->p.copy_back) {
 441		int need_copy_len = cpg->p.crypt_len;
 442		int sram_offset = 0;
 443		do {
 444			int dst_copy;
 445
 446			if (!cpg->p.sg_dst_left) {
 447				ret = sg_miter_next(&cpg->p.dst_sg_it);
 448				BUG_ON(!ret);
 449				cpg->p.sg_dst_left = cpg->p.dst_sg_it.length;
 450				cpg->p.dst_start = 0;
 451			}
 452
 453			buf = cpg->p.dst_sg_it.addr;
 454			buf += cpg->p.dst_start;
 455
 456			dst_copy = min(need_copy_len, cpg->p.sg_dst_left);
 457
 458			memcpy(buf,
 459			       cpg->sram + SRAM_DATA_OUT_START + sram_offset,
 460			       dst_copy);
 461			sram_offset += dst_copy;
 462			cpg->p.sg_dst_left -= dst_copy;
 463			need_copy_len -= dst_copy;
 464			cpg->p.dst_start += dst_copy;
 465		} while (need_copy_len > 0);
 466	}
 467
 468	cpg->p.crypt_len = 0;
 469
 470	BUG_ON(cpg->eng_st != ENGINE_W_DEQUEUE);
 471	if (cpg->p.hw_processed_bytes < cpg->p.hw_nbytes) {
 472		/* process next scatter list entry */
 473		cpg->eng_st = ENGINE_BUSY;
 474		cpg->p.process(0);
 475	} else {
 476		cpg->p.complete();
 477		cpg->eng_st = ENGINE_IDLE;
 478		local_bh_disable();
 479		req->complete(req, 0);
 480		local_bh_enable();
 481	}
 482}
 483
 484static int count_sgs(struct scatterlist *sl, unsigned int total_bytes)
 485{
 486	int i = 0;
 487	size_t cur_len;
 488
 489	while (sl) {
 490		cur_len = sl[i].length;
 491		++i;
 492		if (total_bytes > cur_len)
 493			total_bytes -= cur_len;
 494		else
 495			break;
 496	}
 497
 498	return i;
 499}
 500
 501static void mv_start_new_crypt_req(struct ablkcipher_request *req)
 502{
 503	struct req_progress *p = &cpg->p;
 504	int num_sgs;
 505
 506	cpg->cur_req = &req->base;
 507	memset(p, 0, sizeof(struct req_progress));
 508	p->hw_nbytes = req->nbytes;
 509	p->complete = mv_crypto_algo_completion;
 510	p->process = mv_process_current_q;
 511	p->copy_back = 1;
 512
 513	num_sgs = count_sgs(req->src, req->nbytes);
 514	sg_miter_start(&p->src_sg_it, req->src, num_sgs, SG_MITER_FROM_SG);
 515
 516	num_sgs = count_sgs(req->dst, req->nbytes);
 517	sg_miter_start(&p->dst_sg_it, req->dst, num_sgs, SG_MITER_TO_SG);
 518
 519	mv_process_current_q(1);
 520}
 521
 522static void mv_start_new_hash_req(struct ahash_request *req)
 523{
 524	struct req_progress *p = &cpg->p;
 525	struct mv_req_hash_ctx *ctx = ahash_request_ctx(req);
 526	int num_sgs, hw_bytes, old_extra_bytes, rc;
 527	cpg->cur_req = &req->base;
 528	memset(p, 0, sizeof(struct req_progress));
 529	hw_bytes = req->nbytes + ctx->extra_bytes;
 530	old_extra_bytes = ctx->extra_bytes;
 531
 532	ctx->extra_bytes = hw_bytes % SHA1_BLOCK_SIZE;
 533	if (ctx->extra_bytes != 0
 534	    && (!ctx->last_chunk || ctx->count > MAX_HW_HASH_SIZE))
 535		hw_bytes -= ctx->extra_bytes;
 536	else
 537		ctx->extra_bytes = 0;
 538
 539	num_sgs = count_sgs(req->src, req->nbytes);
 540	sg_miter_start(&p->src_sg_it, req->src, num_sgs, SG_MITER_FROM_SG);
 541
 542	if (hw_bytes) {
 543		p->hw_nbytes = hw_bytes;
 544		p->complete = mv_hash_algo_completion;
 545		p->process = mv_process_hash_current;
 546
 547		if (unlikely(old_extra_bytes)) {
 548			memcpy(cpg->sram + SRAM_DATA_IN_START, ctx->buffer,
 549			       old_extra_bytes);
 550			p->crypt_len = old_extra_bytes;
 551		}
 552
 553		mv_process_hash_current(1);
 554	} else {
 555		copy_src_to_buf(p, ctx->buffer + old_extra_bytes,
 556				ctx->extra_bytes - old_extra_bytes);
 557		sg_miter_stop(&p->src_sg_it);
 558		if (ctx->last_chunk)
 559			rc = mv_hash_final_fallback(req);
 560		else
 561			rc = 0;
 562		cpg->eng_st = ENGINE_IDLE;
 563		local_bh_disable();
 564		req->base.complete(&req->base, rc);
 565		local_bh_enable();
 566	}
 567}
 568
 569static int queue_manag(void *data)
 570{
 571	cpg->eng_st = ENGINE_IDLE;
 572	do {
 573		struct crypto_async_request *async_req = NULL;
 574		struct crypto_async_request *backlog;
 575
 576		__set_current_state(TASK_INTERRUPTIBLE);
 577
 578		if (cpg->eng_st == ENGINE_W_DEQUEUE)
 579			dequeue_complete_req();
 580
 581		spin_lock_irq(&cpg->lock);
 582		if (cpg->eng_st == ENGINE_IDLE) {
 583			backlog = crypto_get_backlog(&cpg->queue);
 584			async_req = crypto_dequeue_request(&cpg->queue);
 585			if (async_req) {
 586				BUG_ON(cpg->eng_st != ENGINE_IDLE);
 587				cpg->eng_st = ENGINE_BUSY;
 588			}
 589		}
 590		spin_unlock_irq(&cpg->lock);
 591
 592		if (backlog) {
 593			backlog->complete(backlog, -EINPROGRESS);
 594			backlog = NULL;
 595		}
 596
 597		if (async_req) {
 598			if (async_req->tfm->__crt_alg->cra_type !=
 599			    &crypto_ahash_type) {
 600				struct ablkcipher_request *req =
 601				    ablkcipher_request_cast(async_req);
 602				mv_start_new_crypt_req(req);
 603			} else {
 604				struct ahash_request *req =
 605				    ahash_request_cast(async_req);
 606				mv_start_new_hash_req(req);
 607			}
 608			async_req = NULL;
 609		}
 610
 611		schedule();
 612
 613	} while (!kthread_should_stop());
 614	return 0;
 615}
 616
 617static int mv_handle_req(struct crypto_async_request *req)
 618{
 619	unsigned long flags;
 620	int ret;
 621
 622	spin_lock_irqsave(&cpg->lock, flags);
 623	ret = crypto_enqueue_request(&cpg->queue, req);
 624	spin_unlock_irqrestore(&cpg->lock, flags);
 625	wake_up_process(cpg->queue_th);
 626	return ret;
 627}
 628
 629static int mv_enc_aes_ecb(struct ablkcipher_request *req)
 630{
 631	struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
 632
 633	req_ctx->op = COP_AES_ECB;
 634	req_ctx->decrypt = 0;
 635
 636	return mv_handle_req(&req->base);
 637}
 638
 639static int mv_dec_aes_ecb(struct ablkcipher_request *req)
 640{
 641	struct mv_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
 642	struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
 643
 644	req_ctx->op = COP_AES_ECB;
 645	req_ctx->decrypt = 1;
 646
 647	compute_aes_dec_key(ctx);
 648	return mv_handle_req(&req->base);
 649}
 650
 651static int mv_enc_aes_cbc(struct ablkcipher_request *req)
 652{
 653	struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
 654
 655	req_ctx->op = COP_AES_CBC;
 656	req_ctx->decrypt = 0;
 657
 658	return mv_handle_req(&req->base);
 659}
 660
 661static int mv_dec_aes_cbc(struct ablkcipher_request *req)
 662{
 663	struct mv_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
 664	struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
 665
 666	req_ctx->op = COP_AES_CBC;
 667	req_ctx->decrypt = 1;
 668
 669	compute_aes_dec_key(ctx);
 670	return mv_handle_req(&req->base);
 671}
 672
 673static int mv_cra_init(struct crypto_tfm *tfm)
 674{
 675	tfm->crt_ablkcipher.reqsize = sizeof(struct mv_req_ctx);
 676	return 0;
 677}
 678
 679static void mv_init_hash_req_ctx(struct mv_req_hash_ctx *ctx, int op,
 680				 int is_last, unsigned int req_len,
 681				 int count_add)
 682{
 683	memset(ctx, 0, sizeof(*ctx));
 684	ctx->op = op;
 685	ctx->count = req_len;
 686	ctx->first_hash = 1;
 687	ctx->last_chunk = is_last;
 688	ctx->count_add = count_add;
 689}
 690
 691static void mv_update_hash_req_ctx(struct mv_req_hash_ctx *ctx, int is_last,
 692				   unsigned req_len)
 693{
 694	ctx->last_chunk = is_last;
 695	ctx->count += req_len;
 696}
 697
 698static int mv_hash_init(struct ahash_request *req)
 699{
 700	const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm);
 701	mv_init_hash_req_ctx(ahash_request_ctx(req), tfm_ctx->op, 0, 0,
 702			     tfm_ctx->count_add);
 703	return 0;
 704}
 705
 706static int mv_hash_update(struct ahash_request *req)
 707{
 708	if (!req->nbytes)
 709		return 0;
 710
 711	mv_update_hash_req_ctx(ahash_request_ctx(req), 0, req->nbytes);
 712	return mv_handle_req(&req->base);
 713}
 714
 715static int mv_hash_final(struct ahash_request *req)
 716{
 717	struct mv_req_hash_ctx *ctx = ahash_request_ctx(req);
 718
 719	ahash_request_set_crypt(req, NULL, req->result, 0);
 720	mv_update_hash_req_ctx(ctx, 1, 0);
 721	return mv_handle_req(&req->base);
 722}
 723
 724static int mv_hash_finup(struct ahash_request *req)
 725{
 726	mv_update_hash_req_ctx(ahash_request_ctx(req), 1, req->nbytes);
 727	return mv_handle_req(&req->base);
 728}
 729
 730static int mv_hash_digest(struct ahash_request *req)
 731{
 732	const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm);
 733	mv_init_hash_req_ctx(ahash_request_ctx(req), tfm_ctx->op, 1,
 734			     req->nbytes, tfm_ctx->count_add);
 735	return mv_handle_req(&req->base);
 736}
 737
 738static void mv_hash_init_ivs(struct mv_tfm_hash_ctx *ctx, const void *istate,
 739			     const void *ostate)
 740{
 741	const struct sha1_state *isha1_state = istate, *osha1_state = ostate;
 742	int i;
 743	for (i = 0; i < 5; i++) {
 744		ctx->ivs[i] = cpu_to_be32(isha1_state->state[i]);
 745		ctx->ivs[i + 5] = cpu_to_be32(osha1_state->state[i]);
 746	}
 747}
 748
 749static int mv_hash_setkey(struct crypto_ahash *tfm, const u8 * key,
 750			  unsigned int keylen)
 751{
 752	int rc;
 753	struct mv_tfm_hash_ctx *ctx = crypto_tfm_ctx(&tfm->base);
 754	int bs, ds, ss;
 755
 756	if (!ctx->base_hash)
 757		return 0;
 758
 759	rc = crypto_shash_setkey(ctx->fallback, key, keylen);
 760	if (rc)
 761		return rc;
 762
 763	/* Can't see a way to extract the ipad/opad from the fallback tfm
 764	   so I'm basically copying code from the hmac module */
 765	bs = crypto_shash_blocksize(ctx->base_hash);
 766	ds = crypto_shash_digestsize(ctx->base_hash);
 767	ss = crypto_shash_statesize(ctx->base_hash);
 768
 769	{
 770		struct {
 771			struct shash_desc shash;
 772			char ctx[crypto_shash_descsize(ctx->base_hash)];
 773		} desc;
 774		unsigned int i;
 775		char ipad[ss];
 776		char opad[ss];
 777
 778		desc.shash.tfm = ctx->base_hash;
 779		desc.shash.flags = crypto_shash_get_flags(ctx->base_hash) &
 780		    CRYPTO_TFM_REQ_MAY_SLEEP;
 781
 782		if (keylen > bs) {
 783			int err;
 784
 785			err =
 786			    crypto_shash_digest(&desc.shash, key, keylen, ipad);
 787			if (err)
 788				return err;
 789
 790			keylen = ds;
 791		} else
 792			memcpy(ipad, key, keylen);
 793
 794		memset(ipad + keylen, 0, bs - keylen);
 795		memcpy(opad, ipad, bs);
 796
 797		for (i = 0; i < bs; i++) {
 798			ipad[i] ^= 0x36;
 799			opad[i] ^= 0x5c;
 800		}
 801
 802		rc = crypto_shash_init(&desc.shash) ? :
 803		    crypto_shash_update(&desc.shash, ipad, bs) ? :
 804		    crypto_shash_export(&desc.shash, ipad) ? :
 805		    crypto_shash_init(&desc.shash) ? :
 806		    crypto_shash_update(&desc.shash, opad, bs) ? :
 807		    crypto_shash_export(&desc.shash, opad);
 808
 809		if (rc == 0)
 810			mv_hash_init_ivs(ctx, ipad, opad);
 811
 812		return rc;
 813	}
 814}
 815
 816static int mv_cra_hash_init(struct crypto_tfm *tfm, const char *base_hash_name,
 817			    enum hash_op op, int count_add)
 818{
 819	const char *fallback_driver_name = tfm->__crt_alg->cra_name;
 820	struct mv_tfm_hash_ctx *ctx = crypto_tfm_ctx(tfm);
 821	struct crypto_shash *fallback_tfm = NULL;
 822	struct crypto_shash *base_hash = NULL;
 823	int err = -ENOMEM;
 824
 825	ctx->op = op;
 826	ctx->count_add = count_add;
 827
 828	/* Allocate a fallback and abort if it failed. */
 829	fallback_tfm = crypto_alloc_shash(fallback_driver_name, 0,
 830					  CRYPTO_ALG_NEED_FALLBACK);
 831	if (IS_ERR(fallback_tfm)) {
 832		printk(KERN_WARNING MV_CESA
 833		       "Fallback driver '%s' could not be loaded!\n",
 834		       fallback_driver_name);
 835		err = PTR_ERR(fallback_tfm);
 836		goto out;
 837	}
 838	ctx->fallback = fallback_tfm;
 839
 840	if (base_hash_name) {
 841		/* Allocate a hash to compute the ipad/opad of hmac. */
 842		base_hash = crypto_alloc_shash(base_hash_name, 0,
 843					       CRYPTO_ALG_NEED_FALLBACK);
 844		if (IS_ERR(base_hash)) {
 845			printk(KERN_WARNING MV_CESA
 846			       "Base driver '%s' could not be loaded!\n",
 847			       base_hash_name);
 848			err = PTR_ERR(base_hash);
 849			goto err_bad_base;
 850		}
 851	}
 852	ctx->base_hash = base_hash;
 853
 854	crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
 855				 sizeof(struct mv_req_hash_ctx) +
 856				 crypto_shash_descsize(ctx->fallback));
 857	return 0;
 858err_bad_base:
 859	crypto_free_shash(fallback_tfm);
 860out:
 861	return err;
 862}
 863
 864static void mv_cra_hash_exit(struct crypto_tfm *tfm)
 865{
 866	struct mv_tfm_hash_ctx *ctx = crypto_tfm_ctx(tfm);
 867
 868	crypto_free_shash(ctx->fallback);
 869	if (ctx->base_hash)
 870		crypto_free_shash(ctx->base_hash);
 871}
 872
 873static int mv_cra_hash_sha1_init(struct crypto_tfm *tfm)
 874{
 875	return mv_cra_hash_init(tfm, NULL, COP_SHA1, 0);
 876}
 877
 878static int mv_cra_hash_hmac_sha1_init(struct crypto_tfm *tfm)
 879{
 880	return mv_cra_hash_init(tfm, "sha1", COP_HMAC_SHA1, SHA1_BLOCK_SIZE);
 881}
 882
 883irqreturn_t crypto_int(int irq, void *priv)
 884{
 885	u32 val;
 886
 887	val = readl(cpg->reg + SEC_ACCEL_INT_STATUS);
 888	if (!(val & SEC_INT_ACCEL0_DONE))
 889		return IRQ_NONE;
 890
 891	val &= ~SEC_INT_ACCEL0_DONE;
 892	writel(val, cpg->reg + FPGA_INT_STATUS);
 893	writel(val, cpg->reg + SEC_ACCEL_INT_STATUS);
 894	BUG_ON(cpg->eng_st != ENGINE_BUSY);
 895	cpg->eng_st = ENGINE_W_DEQUEUE;
 896	wake_up_process(cpg->queue_th);
 897	return IRQ_HANDLED;
 898}
 899
 900struct crypto_alg mv_aes_alg_ecb = {
 901	.cra_name		= "ecb(aes)",
 902	.cra_driver_name	= "mv-ecb-aes",
 903	.cra_priority	= 300,
 904	.cra_flags	= CRYPTO_ALG_TYPE_ABLKCIPHER |
 905			  CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC,
 906	.cra_blocksize	= 16,
 907	.cra_ctxsize	= sizeof(struct mv_ctx),
 908	.cra_alignmask	= 0,
 909	.cra_type	= &crypto_ablkcipher_type,
 910	.cra_module	= THIS_MODULE,
 911	.cra_init	= mv_cra_init,
 912	.cra_u		= {
 913		.ablkcipher = {
 914			.min_keysize	=	AES_MIN_KEY_SIZE,
 915			.max_keysize	=	AES_MAX_KEY_SIZE,
 916			.setkey		=	mv_setkey_aes,
 917			.encrypt	=	mv_enc_aes_ecb,
 918			.decrypt	=	mv_dec_aes_ecb,
 919		},
 920	},
 921};
 922
 923struct crypto_alg mv_aes_alg_cbc = {
 924	.cra_name		= "cbc(aes)",
 925	.cra_driver_name	= "mv-cbc-aes",
 926	.cra_priority	= 300,
 927	.cra_flags	= CRYPTO_ALG_TYPE_ABLKCIPHER |
 928			  CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC,
 929	.cra_blocksize	= AES_BLOCK_SIZE,
 930	.cra_ctxsize	= sizeof(struct mv_ctx),
 931	.cra_alignmask	= 0,
 932	.cra_type	= &crypto_ablkcipher_type,
 933	.cra_module	= THIS_MODULE,
 934	.cra_init	= mv_cra_init,
 935	.cra_u		= {
 936		.ablkcipher = {
 937			.ivsize		=	AES_BLOCK_SIZE,
 938			.min_keysize	=	AES_MIN_KEY_SIZE,
 939			.max_keysize	=	AES_MAX_KEY_SIZE,
 940			.setkey		=	mv_setkey_aes,
 941			.encrypt	=	mv_enc_aes_cbc,
 942			.decrypt	=	mv_dec_aes_cbc,
 943		},
 944	},
 945};
 946
 947struct ahash_alg mv_sha1_alg = {
 948	.init = mv_hash_init,
 949	.update = mv_hash_update,
 950	.final = mv_hash_final,
 951	.finup = mv_hash_finup,
 952	.digest = mv_hash_digest,
 953	.halg = {
 954		 .digestsize = SHA1_DIGEST_SIZE,
 955		 .base = {
 956			  .cra_name = "sha1",
 957			  .cra_driver_name = "mv-sha1",
 958			  .cra_priority = 300,
 959			  .cra_flags =
 960			  CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY |
 961			  CRYPTO_ALG_NEED_FALLBACK,
 962			  .cra_blocksize = SHA1_BLOCK_SIZE,
 963			  .cra_ctxsize = sizeof(struct mv_tfm_hash_ctx),
 964			  .cra_init = mv_cra_hash_sha1_init,
 965			  .cra_exit = mv_cra_hash_exit,
 966			  .cra_module = THIS_MODULE,
 967			  }
 968		 }
 969};
 970
 971struct ahash_alg mv_hmac_sha1_alg = {
 972	.init = mv_hash_init,
 973	.update = mv_hash_update,
 974	.final = mv_hash_final,
 975	.finup = mv_hash_finup,
 976	.digest = mv_hash_digest,
 977	.setkey = mv_hash_setkey,
 978	.halg = {
 979		 .digestsize = SHA1_DIGEST_SIZE,
 980		 .base = {
 981			  .cra_name = "hmac(sha1)",
 982			  .cra_driver_name = "mv-hmac-sha1",
 983			  .cra_priority = 300,
 984			  .cra_flags =
 985			  CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY |
 986			  CRYPTO_ALG_NEED_FALLBACK,
 987			  .cra_blocksize = SHA1_BLOCK_SIZE,
 988			  .cra_ctxsize = sizeof(struct mv_tfm_hash_ctx),
 989			  .cra_init = mv_cra_hash_hmac_sha1_init,
 990			  .cra_exit = mv_cra_hash_exit,
 991			  .cra_module = THIS_MODULE,
 992			  }
 993		 }
 994};
 995
 996static int mv_probe(struct platform_device *pdev)
 997{
 998	struct crypto_priv *cp;
 999	struct resource *res;
1000	int irq;
1001	int ret;
1002
1003	if (cpg) {
1004		printk(KERN_ERR MV_CESA "Second crypto dev?\n");
1005		return -EEXIST;
1006	}
1007
1008	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "regs");
1009	if (!res)
1010		return -ENXIO;
1011
1012	cp = kzalloc(sizeof(*cp), GFP_KERNEL);
1013	if (!cp)
1014		return -ENOMEM;
1015
1016	spin_lock_init(&cp->lock);
1017	crypto_init_queue(&cp->queue, 50);
1018	cp->reg = ioremap(res->start, resource_size(res));
1019	if (!cp->reg) {
1020		ret = -ENOMEM;
1021		goto err;
1022	}
1023
1024	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "sram");
1025	if (!res) {
1026		ret = -ENXIO;
1027		goto err_unmap_reg;
1028	}
1029	cp->sram_size = resource_size(res);
1030	cp->max_req_size = cp->sram_size - SRAM_CFG_SPACE;
1031	cp->sram = ioremap(res->start, cp->sram_size);
1032	if (!cp->sram) {
1033		ret = -ENOMEM;
1034		goto err_unmap_reg;
1035	}
1036
1037	irq = platform_get_irq(pdev, 0);
1038	if (irq < 0 || irq == NO_IRQ) {
1039		ret = irq;
1040		goto err_unmap_sram;
1041	}
1042	cp->irq = irq;
1043
1044	platform_set_drvdata(pdev, cp);
1045	cpg = cp;
1046
1047	cp->queue_th = kthread_run(queue_manag, cp, "mv_crypto");
1048	if (IS_ERR(cp->queue_th)) {
1049		ret = PTR_ERR(cp->queue_th);
1050		goto err_unmap_sram;
1051	}
1052
1053	ret = request_irq(irq, crypto_int, IRQF_DISABLED, dev_name(&pdev->dev),
1054			cp);
1055	if (ret)
1056		goto err_thread;
1057
1058	/* Not all platforms can gate the clock, so it is not
1059	   an error if the clock does not exists. */
1060	cp->clk = clk_get(&pdev->dev, NULL);
1061	if (!IS_ERR(cp->clk))
1062		clk_prepare_enable(cp->clk);
1063
1064	writel(SEC_INT_ACCEL0_DONE, cpg->reg + SEC_ACCEL_INT_MASK);
1065	writel(SEC_CFG_STOP_DIG_ERR, cpg->reg + SEC_ACCEL_CFG);
1066	writel(SRAM_CONFIG, cpg->reg + SEC_ACCEL_DESC_P0);
1067
1068	ret = crypto_register_alg(&mv_aes_alg_ecb);
1069	if (ret) {
1070		printk(KERN_WARNING MV_CESA
1071		       "Could not register aes-ecb driver\n");
1072		goto err_irq;
1073	}
1074
1075	ret = crypto_register_alg(&mv_aes_alg_cbc);
1076	if (ret) {
1077		printk(KERN_WARNING MV_CESA
1078		       "Could not register aes-cbc driver\n");
1079		goto err_unreg_ecb;
1080	}
1081
1082	ret = crypto_register_ahash(&mv_sha1_alg);
1083	if (ret == 0)
1084		cpg->has_sha1 = 1;
1085	else
1086		printk(KERN_WARNING MV_CESA "Could not register sha1 driver\n");
1087
1088	ret = crypto_register_ahash(&mv_hmac_sha1_alg);
1089	if (ret == 0) {
1090		cpg->has_hmac_sha1 = 1;
1091	} else {
1092		printk(KERN_WARNING MV_CESA
1093		       "Could not register hmac-sha1 driver\n");
1094	}
1095
1096	return 0;
1097err_unreg_ecb:
1098	crypto_unregister_alg(&mv_aes_alg_ecb);
1099err_irq:
1100	free_irq(irq, cp);
1101err_thread:
1102	kthread_stop(cp->queue_th);
1103err_unmap_sram:
1104	iounmap(cp->sram);
1105err_unmap_reg:
1106	iounmap(cp->reg);
1107err:
1108	kfree(cp);
1109	cpg = NULL;
1110	platform_set_drvdata(pdev, NULL);
1111	return ret;
1112}
1113
1114static int mv_remove(struct platform_device *pdev)
1115{
1116	struct crypto_priv *cp = platform_get_drvdata(pdev);
1117
1118	crypto_unregister_alg(&mv_aes_alg_ecb);
1119	crypto_unregister_alg(&mv_aes_alg_cbc);
1120	if (cp->has_sha1)
1121		crypto_unregister_ahash(&mv_sha1_alg);
1122	if (cp->has_hmac_sha1)
1123		crypto_unregister_ahash(&mv_hmac_sha1_alg);
1124	kthread_stop(cp->queue_th);
1125	free_irq(cp->irq, cp);
1126	memset(cp->sram, 0, cp->sram_size);
1127	iounmap(cp->sram);
1128	iounmap(cp->reg);
1129
1130	if (!IS_ERR(cp->clk)) {
1131		clk_disable_unprepare(cp->clk);
1132		clk_put(cp->clk);
1133	}
1134
1135	kfree(cp);
1136	cpg = NULL;
1137	return 0;
1138}
1139
1140static struct platform_driver marvell_crypto = {
1141	.probe		= mv_probe,
1142	.remove		= mv_remove,
1143	.driver		= {
1144		.owner	= THIS_MODULE,
1145		.name	= "mv_crypto",
1146	},
1147};
1148MODULE_ALIAS("platform:mv_crypto");
1149
1150module_platform_driver(marvell_crypto);
1151
1152MODULE_AUTHOR("Sebastian Andrzej Siewior <sebastian@breakpoint.cc>");
1153MODULE_DESCRIPTION("Support for Marvell's cryptographic engine");
1154MODULE_LICENSE("GPL");