Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 *
4 * Common boot and setup code.
5 *
6 * Copyright (C) 2001 PPC64 Team, IBM Corp
7 */
8
9#include <linux/export.h>
10#include <linux/string.h>
11#include <linux/sched.h>
12#include <linux/init.h>
13#include <linux/kernel.h>
14#include <linux/reboot.h>
15#include <linux/delay.h>
16#include <linux/initrd.h>
17#include <linux/seq_file.h>
18#include <linux/ioport.h>
19#include <linux/console.h>
20#include <linux/utsname.h>
21#include <linux/tty.h>
22#include <linux/root_dev.h>
23#include <linux/notifier.h>
24#include <linux/cpu.h>
25#include <linux/unistd.h>
26#include <linux/serial.h>
27#include <linux/serial_8250.h>
28#include <linux/memblock.h>
29#include <linux/pci.h>
30#include <linux/lockdep.h>
31#include <linux/memory.h>
32#include <linux/nmi.h>
33#include <linux/pgtable.h>
34
35#include <asm/debugfs.h>
36#include <asm/io.h>
37#include <asm/kdump.h>
38#include <asm/prom.h>
39#include <asm/processor.h>
40#include <asm/smp.h>
41#include <asm/elf.h>
42#include <asm/machdep.h>
43#include <asm/paca.h>
44#include <asm/time.h>
45#include <asm/cputable.h>
46#include <asm/dt_cpu_ftrs.h>
47#include <asm/sections.h>
48#include <asm/btext.h>
49#include <asm/nvram.h>
50#include <asm/setup.h>
51#include <asm/rtas.h>
52#include <asm/iommu.h>
53#include <asm/serial.h>
54#include <asm/cache.h>
55#include <asm/page.h>
56#include <asm/mmu.h>
57#include <asm/firmware.h>
58#include <asm/xmon.h>
59#include <asm/udbg.h>
60#include <asm/kexec.h>
61#include <asm/code-patching.h>
62#include <asm/livepatch.h>
63#include <asm/opal.h>
64#include <asm/cputhreads.h>
65#include <asm/hw_irq.h>
66#include <asm/feature-fixups.h>
67#include <asm/kup.h>
68#include <asm/early_ioremap.h>
69
70#include "setup.h"
71
72int spinning_secondaries;
73u64 ppc64_pft_size;
74
75struct ppc64_caches ppc64_caches = {
76 .l1d = {
77 .block_size = 0x40,
78 .log_block_size = 6,
79 },
80 .l1i = {
81 .block_size = 0x40,
82 .log_block_size = 6
83 },
84};
85EXPORT_SYMBOL_GPL(ppc64_caches);
86
87#if defined(CONFIG_PPC_BOOK3E) && defined(CONFIG_SMP)
88void __init setup_tlb_core_data(void)
89{
90 int cpu;
91
92 BUILD_BUG_ON(offsetof(struct tlb_core_data, lock) != 0);
93
94 for_each_possible_cpu(cpu) {
95 int first = cpu_first_thread_sibling(cpu);
96
97 /*
98 * If we boot via kdump on a non-primary thread,
99 * make sure we point at the thread that actually
100 * set up this TLB.
101 */
102 if (cpu_first_thread_sibling(boot_cpuid) == first)
103 first = boot_cpuid;
104
105 paca_ptrs[cpu]->tcd_ptr = &paca_ptrs[first]->tcd;
106
107 /*
108 * If we have threads, we need either tlbsrx.
109 * or e6500 tablewalk mode, or else TLB handlers
110 * will be racy and could produce duplicate entries.
111 * Should we panic instead?
112 */
113 WARN_ONCE(smt_enabled_at_boot >= 2 &&
114 !mmu_has_feature(MMU_FTR_USE_TLBRSRV) &&
115 book3e_htw_mode != PPC_HTW_E6500,
116 "%s: unsupported MMU configuration\n", __func__);
117 }
118}
119#endif
120
121#ifdef CONFIG_SMP
122
123static char *smt_enabled_cmdline;
124
125/* Look for ibm,smt-enabled OF option */
126void __init check_smt_enabled(void)
127{
128 struct device_node *dn;
129 const char *smt_option;
130
131 /* Default to enabling all threads */
132 smt_enabled_at_boot = threads_per_core;
133
134 /* Allow the command line to overrule the OF option */
135 if (smt_enabled_cmdline) {
136 if (!strcmp(smt_enabled_cmdline, "on"))
137 smt_enabled_at_boot = threads_per_core;
138 else if (!strcmp(smt_enabled_cmdline, "off"))
139 smt_enabled_at_boot = 0;
140 else {
141 int smt;
142 int rc;
143
144 rc = kstrtoint(smt_enabled_cmdline, 10, &smt);
145 if (!rc)
146 smt_enabled_at_boot =
147 min(threads_per_core, smt);
148 }
149 } else {
150 dn = of_find_node_by_path("/options");
151 if (dn) {
152 smt_option = of_get_property(dn, "ibm,smt-enabled",
153 NULL);
154
155 if (smt_option) {
156 if (!strcmp(smt_option, "on"))
157 smt_enabled_at_boot = threads_per_core;
158 else if (!strcmp(smt_option, "off"))
159 smt_enabled_at_boot = 0;
160 }
161
162 of_node_put(dn);
163 }
164 }
165}
166
167/* Look for smt-enabled= cmdline option */
168static int __init early_smt_enabled(char *p)
169{
170 smt_enabled_cmdline = p;
171 return 0;
172}
173early_param("smt-enabled", early_smt_enabled);
174
175#endif /* CONFIG_SMP */
176
177/** Fix up paca fields required for the boot cpu */
178static void __init fixup_boot_paca(void)
179{
180 /* The boot cpu is started */
181 get_paca()->cpu_start = 1;
182 /* Allow percpu accesses to work until we setup percpu data */
183 get_paca()->data_offset = 0;
184 /* Mark interrupts disabled in PACA */
185 irq_soft_mask_set(IRQS_DISABLED);
186}
187
188static void __init configure_exceptions(void)
189{
190 /*
191 * Setup the trampolines from the lowmem exception vectors
192 * to the kdump kernel when not using a relocatable kernel.
193 */
194 setup_kdump_trampoline();
195
196 /* Under a PAPR hypervisor, we need hypercalls */
197 if (firmware_has_feature(FW_FEATURE_SET_MODE)) {
198 /* Enable AIL if possible */
199 if (!pseries_enable_reloc_on_exc()) {
200 init_task.thread.fscr &= ~FSCR_SCV;
201 cur_cpu_spec->cpu_user_features2 &= ~PPC_FEATURE2_SCV;
202 }
203
204 /*
205 * Tell the hypervisor that we want our exceptions to
206 * be taken in little endian mode.
207 *
208 * We don't call this for big endian as our calling convention
209 * makes us always enter in BE, and the call may fail under
210 * some circumstances with kdump.
211 */
212#ifdef __LITTLE_ENDIAN__
213 pseries_little_endian_exceptions();
214#endif
215 } else {
216 /* Set endian mode using OPAL */
217 if (firmware_has_feature(FW_FEATURE_OPAL))
218 opal_configure_cores();
219
220 /* AIL on native is done in cpu_ready_for_interrupts() */
221 }
222}
223
224static void cpu_ready_for_interrupts(void)
225{
226 /*
227 * Enable AIL if supported, and we are in hypervisor mode. This
228 * is called once for every processor.
229 *
230 * If we are not in hypervisor mode the job is done once for
231 * the whole partition in configure_exceptions().
232 */
233 if (cpu_has_feature(CPU_FTR_HVMODE) &&
234 cpu_has_feature(CPU_FTR_ARCH_207S)) {
235 unsigned long lpcr = mfspr(SPRN_LPCR);
236 mtspr(SPRN_LPCR, lpcr | LPCR_AIL_3);
237 }
238
239 /*
240 * Set HFSCR:TM based on CPU features:
241 * In the special case of TM no suspend (P9N DD2.1), Linux is
242 * told TM is off via the dt-ftrs but told to (partially) use
243 * it via OPAL_REINIT_CPUS_TM_SUSPEND_DISABLED. So HFSCR[TM]
244 * will be off from dt-ftrs but we need to turn it on for the
245 * no suspend case.
246 */
247 if (cpu_has_feature(CPU_FTR_HVMODE)) {
248 if (cpu_has_feature(CPU_FTR_TM_COMP))
249 mtspr(SPRN_HFSCR, mfspr(SPRN_HFSCR) | HFSCR_TM);
250 else
251 mtspr(SPRN_HFSCR, mfspr(SPRN_HFSCR) & ~HFSCR_TM);
252 }
253
254 /* Set IR and DR in PACA MSR */
255 get_paca()->kernel_msr = MSR_KERNEL;
256}
257
258unsigned long spr_default_dscr = 0;
259
260void __init record_spr_defaults(void)
261{
262 if (early_cpu_has_feature(CPU_FTR_DSCR))
263 spr_default_dscr = mfspr(SPRN_DSCR);
264}
265
266/*
267 * Early initialization entry point. This is called by head.S
268 * with MMU translation disabled. We rely on the "feature" of
269 * the CPU that ignores the top 2 bits of the address in real
270 * mode so we can access kernel globals normally provided we
271 * only toy with things in the RMO region. From here, we do
272 * some early parsing of the device-tree to setup out MEMBLOCK
273 * data structures, and allocate & initialize the hash table
274 * and segment tables so we can start running with translation
275 * enabled.
276 *
277 * It is this function which will call the probe() callback of
278 * the various platform types and copy the matching one to the
279 * global ppc_md structure. Your platform can eventually do
280 * some very early initializations from the probe() routine, but
281 * this is not recommended, be very careful as, for example, the
282 * device-tree is not accessible via normal means at this point.
283 */
284
285void __init __nostackprotector early_setup(unsigned long dt_ptr)
286{
287 static __initdata struct paca_struct boot_paca;
288
289 /* -------- printk is _NOT_ safe to use here ! ------- */
290
291 /*
292 * Assume we're on cpu 0 for now.
293 *
294 * We need to load a PACA very early for a few reasons.
295 *
296 * The stack protector canary is stored in the paca, so as soon as we
297 * call any stack protected code we need r13 pointing somewhere valid.
298 *
299 * If we are using kcov it will call in_task() in its instrumentation,
300 * which relies on the current task from the PACA.
301 *
302 * dt_cpu_ftrs_init() calls into generic OF/fdt code, as well as
303 * printk(), which can trigger both stack protector and kcov.
304 *
305 * percpu variables and spin locks also use the paca.
306 *
307 * So set up a temporary paca. It will be replaced below once we know
308 * what CPU we are on.
309 */
310 initialise_paca(&boot_paca, 0);
311 setup_paca(&boot_paca);
312 fixup_boot_paca();
313
314 /* -------- printk is now safe to use ------- */
315
316 /* Try new device tree based feature discovery ... */
317 if (!dt_cpu_ftrs_init(__va(dt_ptr)))
318 /* Otherwise use the old style CPU table */
319 identify_cpu(0, mfspr(SPRN_PVR));
320
321 /* Enable early debugging if any specified (see udbg.h) */
322 udbg_early_init();
323
324 udbg_printf(" -> %s(), dt_ptr: 0x%lx\n", __func__, dt_ptr);
325
326 /*
327 * Do early initialization using the flattened device
328 * tree, such as retrieving the physical memory map or
329 * calculating/retrieving the hash table size.
330 */
331 early_init_devtree(__va(dt_ptr));
332
333 /* Now we know the logical id of our boot cpu, setup the paca. */
334 if (boot_cpuid != 0) {
335 /* Poison paca_ptrs[0] again if it's not the boot cpu */
336 memset(&paca_ptrs[0], 0x88, sizeof(paca_ptrs[0]));
337 }
338 setup_paca(paca_ptrs[boot_cpuid]);
339 fixup_boot_paca();
340
341 /*
342 * Configure exception handlers. This include setting up trampolines
343 * if needed, setting exception endian mode, etc...
344 */
345 configure_exceptions();
346
347 /*
348 * Configure Kernel Userspace Protection. This needs to happen before
349 * feature fixups for platforms that implement this using features.
350 */
351 setup_kup();
352
353 /* Apply all the dynamic patching */
354 apply_feature_fixups();
355 setup_feature_keys();
356
357 early_ioremap_setup();
358
359 /* Initialize the hash table or TLB handling */
360 early_init_mmu();
361
362 /*
363 * After firmware and early platform setup code has set things up,
364 * we note the SPR values for configurable control/performance
365 * registers, and use those as initial defaults.
366 */
367 record_spr_defaults();
368
369 /*
370 * At this point, we can let interrupts switch to virtual mode
371 * (the MMU has been setup), so adjust the MSR in the PACA to
372 * have IR and DR set and enable AIL if it exists
373 */
374 cpu_ready_for_interrupts();
375
376 /*
377 * We enable ftrace here, but since we only support DYNAMIC_FTRACE, it
378 * will only actually get enabled on the boot cpu much later once
379 * ftrace itself has been initialized.
380 */
381 this_cpu_enable_ftrace();
382
383 udbg_printf(" <- %s()\n", __func__);
384
385#ifdef CONFIG_PPC_EARLY_DEBUG_BOOTX
386 /*
387 * This needs to be done *last* (after the above udbg_printf() even)
388 *
389 * Right after we return from this function, we turn on the MMU
390 * which means the real-mode access trick that btext does will
391 * no longer work, it needs to switch to using a real MMU
392 * mapping. This call will ensure that it does
393 */
394 btext_map();
395#endif /* CONFIG_PPC_EARLY_DEBUG_BOOTX */
396}
397
398#ifdef CONFIG_SMP
399void early_setup_secondary(void)
400{
401 /* Mark interrupts disabled in PACA */
402 irq_soft_mask_set(IRQS_DISABLED);
403
404 /* Initialize the hash table or TLB handling */
405 early_init_mmu_secondary();
406
407 /* Perform any KUP setup that is per-cpu */
408 setup_kup();
409
410 /*
411 * At this point, we can let interrupts switch to virtual mode
412 * (the MMU has been setup), so adjust the MSR in the PACA to
413 * have IR and DR set.
414 */
415 cpu_ready_for_interrupts();
416}
417
418#endif /* CONFIG_SMP */
419
420void panic_smp_self_stop(void)
421{
422 hard_irq_disable();
423 spin_begin();
424 while (1)
425 spin_cpu_relax();
426}
427
428#if defined(CONFIG_SMP) || defined(CONFIG_KEXEC_CORE)
429static bool use_spinloop(void)
430{
431 if (IS_ENABLED(CONFIG_PPC_BOOK3S)) {
432 /*
433 * See comments in head_64.S -- not all platforms insert
434 * secondaries at __secondary_hold and wait at the spin
435 * loop.
436 */
437 if (firmware_has_feature(FW_FEATURE_OPAL))
438 return false;
439 return true;
440 }
441
442 /*
443 * When book3e boots from kexec, the ePAPR spin table does
444 * not get used.
445 */
446 return of_property_read_bool(of_chosen, "linux,booted-from-kexec");
447}
448
449void smp_release_cpus(void)
450{
451 unsigned long *ptr;
452 int i;
453
454 if (!use_spinloop())
455 return;
456
457 /* All secondary cpus are spinning on a common spinloop, release them
458 * all now so they can start to spin on their individual paca
459 * spinloops. For non SMP kernels, the secondary cpus never get out
460 * of the common spinloop.
461 */
462
463 ptr = (unsigned long *)((unsigned long)&__secondary_hold_spinloop
464 - PHYSICAL_START);
465 *ptr = ppc_function_entry(generic_secondary_smp_init);
466
467 /* And wait a bit for them to catch up */
468 for (i = 0; i < 100000; i++) {
469 mb();
470 HMT_low();
471 if (spinning_secondaries == 0)
472 break;
473 udelay(1);
474 }
475 pr_debug("spinning_secondaries = %d\n", spinning_secondaries);
476}
477#endif /* CONFIG_SMP || CONFIG_KEXEC_CORE */
478
479/*
480 * Initialize some remaining members of the ppc64_caches and systemcfg
481 * structures
482 * (at least until we get rid of them completely). This is mostly some
483 * cache informations about the CPU that will be used by cache flush
484 * routines and/or provided to userland
485 */
486
487static void init_cache_info(struct ppc_cache_info *info, u32 size, u32 lsize,
488 u32 bsize, u32 sets)
489{
490 info->size = size;
491 info->sets = sets;
492 info->line_size = lsize;
493 info->block_size = bsize;
494 info->log_block_size = __ilog2(bsize);
495 if (bsize)
496 info->blocks_per_page = PAGE_SIZE / bsize;
497 else
498 info->blocks_per_page = 0;
499
500 if (sets == 0)
501 info->assoc = 0xffff;
502 else
503 info->assoc = size / (sets * lsize);
504}
505
506static bool __init parse_cache_info(struct device_node *np,
507 bool icache,
508 struct ppc_cache_info *info)
509{
510 static const char *ipropnames[] __initdata = {
511 "i-cache-size",
512 "i-cache-sets",
513 "i-cache-block-size",
514 "i-cache-line-size",
515 };
516 static const char *dpropnames[] __initdata = {
517 "d-cache-size",
518 "d-cache-sets",
519 "d-cache-block-size",
520 "d-cache-line-size",
521 };
522 const char **propnames = icache ? ipropnames : dpropnames;
523 const __be32 *sizep, *lsizep, *bsizep, *setsp;
524 u32 size, lsize, bsize, sets;
525 bool success = true;
526
527 size = 0;
528 sets = -1u;
529 lsize = bsize = cur_cpu_spec->dcache_bsize;
530 sizep = of_get_property(np, propnames[0], NULL);
531 if (sizep != NULL)
532 size = be32_to_cpu(*sizep);
533 setsp = of_get_property(np, propnames[1], NULL);
534 if (setsp != NULL)
535 sets = be32_to_cpu(*setsp);
536 bsizep = of_get_property(np, propnames[2], NULL);
537 lsizep = of_get_property(np, propnames[3], NULL);
538 if (bsizep == NULL)
539 bsizep = lsizep;
540 if (lsizep == NULL)
541 lsizep = bsizep;
542 if (lsizep != NULL)
543 lsize = be32_to_cpu(*lsizep);
544 if (bsizep != NULL)
545 bsize = be32_to_cpu(*bsizep);
546 if (sizep == NULL || bsizep == NULL || lsizep == NULL)
547 success = false;
548
549 /*
550 * OF is weird .. it represents fully associative caches
551 * as "1 way" which doesn't make much sense and doesn't
552 * leave room for direct mapped. We'll assume that 0
553 * in OF means direct mapped for that reason.
554 */
555 if (sets == 1)
556 sets = 0;
557 else if (sets == 0)
558 sets = 1;
559
560 init_cache_info(info, size, lsize, bsize, sets);
561
562 return success;
563}
564
565void __init initialize_cache_info(void)
566{
567 struct device_node *cpu = NULL, *l2, *l3 = NULL;
568 u32 pvr;
569
570 /*
571 * All shipping POWER8 machines have a firmware bug that
572 * puts incorrect information in the device-tree. This will
573 * be (hopefully) fixed for future chips but for now hard
574 * code the values if we are running on one of these
575 */
576 pvr = PVR_VER(mfspr(SPRN_PVR));
577 if (pvr == PVR_POWER8 || pvr == PVR_POWER8E ||
578 pvr == PVR_POWER8NVL) {
579 /* size lsize blk sets */
580 init_cache_info(&ppc64_caches.l1i, 0x8000, 128, 128, 32);
581 init_cache_info(&ppc64_caches.l1d, 0x10000, 128, 128, 64);
582 init_cache_info(&ppc64_caches.l2, 0x80000, 128, 0, 512);
583 init_cache_info(&ppc64_caches.l3, 0x800000, 128, 0, 8192);
584 } else
585 cpu = of_find_node_by_type(NULL, "cpu");
586
587 /*
588 * We're assuming *all* of the CPUs have the same
589 * d-cache and i-cache sizes... -Peter
590 */
591 if (cpu) {
592 if (!parse_cache_info(cpu, false, &ppc64_caches.l1d))
593 pr_warn("Argh, can't find dcache properties !\n");
594
595 if (!parse_cache_info(cpu, true, &ppc64_caches.l1i))
596 pr_warn("Argh, can't find icache properties !\n");
597
598 /*
599 * Try to find the L2 and L3 if any. Assume they are
600 * unified and use the D-side properties.
601 */
602 l2 = of_find_next_cache_node(cpu);
603 of_node_put(cpu);
604 if (l2) {
605 parse_cache_info(l2, false, &ppc64_caches.l2);
606 l3 = of_find_next_cache_node(l2);
607 of_node_put(l2);
608 }
609 if (l3) {
610 parse_cache_info(l3, false, &ppc64_caches.l3);
611 of_node_put(l3);
612 }
613 }
614
615 /* For use by binfmt_elf */
616 dcache_bsize = ppc64_caches.l1d.block_size;
617 icache_bsize = ppc64_caches.l1i.block_size;
618
619 cur_cpu_spec->dcache_bsize = dcache_bsize;
620 cur_cpu_spec->icache_bsize = icache_bsize;
621}
622
623/*
624 * This returns the limit below which memory accesses to the linear
625 * mapping are guarnateed not to cause an architectural exception (e.g.,
626 * TLB or SLB miss fault).
627 *
628 * This is used to allocate PACAs and various interrupt stacks that
629 * that are accessed early in interrupt handlers that must not cause
630 * re-entrant interrupts.
631 */
632__init u64 ppc64_bolted_size(void)
633{
634#ifdef CONFIG_PPC_BOOK3E
635 /* Freescale BookE bolts the entire linear mapping */
636 /* XXX: BookE ppc64_rma_limit setup seems to disagree? */
637 if (early_mmu_has_feature(MMU_FTR_TYPE_FSL_E))
638 return linear_map_top;
639 /* Other BookE, we assume the first GB is bolted */
640 return 1ul << 30;
641#else
642 /* BookS radix, does not take faults on linear mapping */
643 if (early_radix_enabled())
644 return ULONG_MAX;
645
646 /* BookS hash, the first segment is bolted */
647 if (early_mmu_has_feature(MMU_FTR_1T_SEGMENT))
648 return 1UL << SID_SHIFT_1T;
649 return 1UL << SID_SHIFT;
650#endif
651}
652
653static void *__init alloc_stack(unsigned long limit, int cpu)
654{
655 void *ptr;
656
657 BUILD_BUG_ON(STACK_INT_FRAME_SIZE % 16);
658
659 ptr = memblock_alloc_try_nid(THREAD_SIZE, THREAD_ALIGN,
660 MEMBLOCK_LOW_LIMIT, limit,
661 early_cpu_to_node(cpu));
662 if (!ptr)
663 panic("cannot allocate stacks");
664
665 return ptr;
666}
667
668void __init irqstack_early_init(void)
669{
670 u64 limit = ppc64_bolted_size();
671 unsigned int i;
672
673 /*
674 * Interrupt stacks must be in the first segment since we
675 * cannot afford to take SLB misses on them. They are not
676 * accessed in realmode.
677 */
678 for_each_possible_cpu(i) {
679 softirq_ctx[i] = alloc_stack(limit, i);
680 hardirq_ctx[i] = alloc_stack(limit, i);
681 }
682}
683
684#ifdef CONFIG_PPC_BOOK3E
685void __init exc_lvl_early_init(void)
686{
687 unsigned int i;
688
689 for_each_possible_cpu(i) {
690 void *sp;
691
692 sp = alloc_stack(ULONG_MAX, i);
693 critirq_ctx[i] = sp;
694 paca_ptrs[i]->crit_kstack = sp + THREAD_SIZE;
695
696 sp = alloc_stack(ULONG_MAX, i);
697 dbgirq_ctx[i] = sp;
698 paca_ptrs[i]->dbg_kstack = sp + THREAD_SIZE;
699
700 sp = alloc_stack(ULONG_MAX, i);
701 mcheckirq_ctx[i] = sp;
702 paca_ptrs[i]->mc_kstack = sp + THREAD_SIZE;
703 }
704
705 if (cpu_has_feature(CPU_FTR_DEBUG_LVL_EXC))
706 patch_exception(0x040, exc_debug_debug_book3e);
707}
708#endif
709
710/*
711 * Stack space used when we detect a bad kernel stack pointer, and
712 * early in SMP boots before relocation is enabled. Exclusive emergency
713 * stack for machine checks.
714 */
715void __init emergency_stack_init(void)
716{
717 u64 limit, mce_limit;
718 unsigned int i;
719
720 /*
721 * Emergency stacks must be under 256MB, we cannot afford to take
722 * SLB misses on them. The ABI also requires them to be 128-byte
723 * aligned.
724 *
725 * Since we use these as temporary stacks during secondary CPU
726 * bringup, machine check, system reset, and HMI, we need to get
727 * at them in real mode. This means they must also be within the RMO
728 * region.
729 *
730 * The IRQ stacks allocated elsewhere in this file are zeroed and
731 * initialized in kernel/irq.c. These are initialized here in order
732 * to have emergency stacks available as early as possible.
733 */
734 limit = mce_limit = min(ppc64_bolted_size(), ppc64_rma_size);
735
736 /*
737 * Machine check on pseries calls rtas, but can't use the static
738 * rtas_args due to a machine check hitting while the lock is held.
739 * rtas args have to be under 4GB, so the machine check stack is
740 * limited to 4GB so args can be put on stack.
741 */
742 if (firmware_has_feature(FW_FEATURE_LPAR) && mce_limit > SZ_4G)
743 mce_limit = SZ_4G;
744
745 for_each_possible_cpu(i) {
746 paca_ptrs[i]->emergency_sp = alloc_stack(limit, i) + THREAD_SIZE;
747
748#ifdef CONFIG_PPC_BOOK3S_64
749 /* emergency stack for NMI exception handling. */
750 paca_ptrs[i]->nmi_emergency_sp = alloc_stack(limit, i) + THREAD_SIZE;
751
752 /* emergency stack for machine check exception handling. */
753 paca_ptrs[i]->mc_emergency_sp = alloc_stack(mce_limit, i) + THREAD_SIZE;
754#endif
755 }
756}
757
758#ifdef CONFIG_SMP
759#define PCPU_DYN_SIZE ()
760
761static void * __init pcpu_fc_alloc(unsigned int cpu, size_t size, size_t align)
762{
763 return memblock_alloc_try_nid(size, align, __pa(MAX_DMA_ADDRESS),
764 MEMBLOCK_ALLOC_ACCESSIBLE,
765 early_cpu_to_node(cpu));
766
767}
768
769static void __init pcpu_fc_free(void *ptr, size_t size)
770{
771 memblock_free(__pa(ptr), size);
772}
773
774static int pcpu_cpu_distance(unsigned int from, unsigned int to)
775{
776 if (early_cpu_to_node(from) == early_cpu_to_node(to))
777 return LOCAL_DISTANCE;
778 else
779 return REMOTE_DISTANCE;
780}
781
782unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
783EXPORT_SYMBOL(__per_cpu_offset);
784
785void __init setup_per_cpu_areas(void)
786{
787 const size_t dyn_size = PERCPU_MODULE_RESERVE + PERCPU_DYNAMIC_RESERVE;
788 size_t atom_size;
789 unsigned long delta;
790 unsigned int cpu;
791 int rc;
792
793 /*
794 * Linear mapping is one of 4K, 1M and 16M. For 4K, no need
795 * to group units. For larger mappings, use 1M atom which
796 * should be large enough to contain a number of units.
797 */
798 if (mmu_linear_psize == MMU_PAGE_4K)
799 atom_size = PAGE_SIZE;
800 else
801 atom_size = 1 << 20;
802
803 rc = pcpu_embed_first_chunk(0, dyn_size, atom_size, pcpu_cpu_distance,
804 pcpu_fc_alloc, pcpu_fc_free);
805 if (rc < 0)
806 panic("cannot initialize percpu area (err=%d)", rc);
807
808 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
809 for_each_possible_cpu(cpu) {
810 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
811 paca_ptrs[cpu]->data_offset = __per_cpu_offset[cpu];
812 }
813}
814#endif
815
816#ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
817unsigned long memory_block_size_bytes(void)
818{
819 if (ppc_md.memory_block_size)
820 return ppc_md.memory_block_size();
821
822 return MIN_MEMORY_BLOCK_SIZE;
823}
824#endif
825
826#if defined(CONFIG_PPC_INDIRECT_PIO) || defined(CONFIG_PPC_INDIRECT_MMIO)
827struct ppc_pci_io ppc_pci_io;
828EXPORT_SYMBOL(ppc_pci_io);
829#endif
830
831#ifdef CONFIG_HARDLOCKUP_DETECTOR_PERF
832u64 hw_nmi_get_sample_period(int watchdog_thresh)
833{
834 return ppc_proc_freq * watchdog_thresh;
835}
836#endif
837
838/*
839 * The perf based hardlockup detector breaks PMU event based branches, so
840 * disable it by default. Book3S has a soft-nmi hardlockup detector based
841 * on the decrementer interrupt, so it does not suffer from this problem.
842 *
843 * It is likely to get false positives in VM guests, so disable it there
844 * by default too.
845 */
846static int __init disable_hardlockup_detector(void)
847{
848#ifdef CONFIG_HARDLOCKUP_DETECTOR_PERF
849 hardlockup_detector_disable();
850#else
851 if (firmware_has_feature(FW_FEATURE_LPAR))
852 hardlockup_detector_disable();
853#endif
854
855 return 0;
856}
857early_initcall(disable_hardlockup_detector);
858
859#ifdef CONFIG_PPC_BOOK3S_64
860static enum l1d_flush_type enabled_flush_types;
861static void *l1d_flush_fallback_area;
862static bool no_rfi_flush;
863bool rfi_flush;
864
865static int __init handle_no_rfi_flush(char *p)
866{
867 pr_info("rfi-flush: disabled on command line.");
868 no_rfi_flush = true;
869 return 0;
870}
871early_param("no_rfi_flush", handle_no_rfi_flush);
872
873/*
874 * The RFI flush is not KPTI, but because users will see doco that says to use
875 * nopti we hijack that option here to also disable the RFI flush.
876 */
877static int __init handle_no_pti(char *p)
878{
879 pr_info("rfi-flush: disabling due to 'nopti' on command line.\n");
880 handle_no_rfi_flush(NULL);
881 return 0;
882}
883early_param("nopti", handle_no_pti);
884
885static void do_nothing(void *unused)
886{
887 /*
888 * We don't need to do the flush explicitly, just enter+exit kernel is
889 * sufficient, the RFI exit handlers will do the right thing.
890 */
891}
892
893void rfi_flush_enable(bool enable)
894{
895 if (enable) {
896 do_rfi_flush_fixups(enabled_flush_types);
897 on_each_cpu(do_nothing, NULL, 1);
898 } else
899 do_rfi_flush_fixups(L1D_FLUSH_NONE);
900
901 rfi_flush = enable;
902}
903
904static void __ref init_fallback_flush(void)
905{
906 u64 l1d_size, limit;
907 int cpu;
908
909 /* Only allocate the fallback flush area once (at boot time). */
910 if (l1d_flush_fallback_area)
911 return;
912
913 l1d_size = ppc64_caches.l1d.size;
914
915 /*
916 * If there is no d-cache-size property in the device tree, l1d_size
917 * could be zero. That leads to the loop in the asm wrapping around to
918 * 2^64-1, and then walking off the end of the fallback area and
919 * eventually causing a page fault which is fatal. Just default to
920 * something vaguely sane.
921 */
922 if (!l1d_size)
923 l1d_size = (64 * 1024);
924
925 limit = min(ppc64_bolted_size(), ppc64_rma_size);
926
927 /*
928 * Align to L1d size, and size it at 2x L1d size, to catch possible
929 * hardware prefetch runoff. We don't have a recipe for load patterns to
930 * reliably avoid the prefetcher.
931 */
932 l1d_flush_fallback_area = memblock_alloc_try_nid(l1d_size * 2,
933 l1d_size, MEMBLOCK_LOW_LIMIT,
934 limit, NUMA_NO_NODE);
935 if (!l1d_flush_fallback_area)
936 panic("%s: Failed to allocate %llu bytes align=0x%llx max_addr=%pa\n",
937 __func__, l1d_size * 2, l1d_size, &limit);
938
939
940 for_each_possible_cpu(cpu) {
941 struct paca_struct *paca = paca_ptrs[cpu];
942 paca->rfi_flush_fallback_area = l1d_flush_fallback_area;
943 paca->l1d_flush_size = l1d_size;
944 }
945}
946
947void setup_rfi_flush(enum l1d_flush_type types, bool enable)
948{
949 if (types & L1D_FLUSH_FALLBACK) {
950 pr_info("rfi-flush: fallback displacement flush available\n");
951 init_fallback_flush();
952 }
953
954 if (types & L1D_FLUSH_ORI)
955 pr_info("rfi-flush: ori type flush available\n");
956
957 if (types & L1D_FLUSH_MTTRIG)
958 pr_info("rfi-flush: mttrig type flush available\n");
959
960 enabled_flush_types = types;
961
962 if (!no_rfi_flush && !cpu_mitigations_off())
963 rfi_flush_enable(enable);
964}
965
966#ifdef CONFIG_DEBUG_FS
967static int rfi_flush_set(void *data, u64 val)
968{
969 bool enable;
970
971 if (val == 1)
972 enable = true;
973 else if (val == 0)
974 enable = false;
975 else
976 return -EINVAL;
977
978 /* Only do anything if we're changing state */
979 if (enable != rfi_flush)
980 rfi_flush_enable(enable);
981
982 return 0;
983}
984
985static int rfi_flush_get(void *data, u64 *val)
986{
987 *val = rfi_flush ? 1 : 0;
988 return 0;
989}
990
991DEFINE_SIMPLE_ATTRIBUTE(fops_rfi_flush, rfi_flush_get, rfi_flush_set, "%llu\n");
992
993static __init int rfi_flush_debugfs_init(void)
994{
995 debugfs_create_file("rfi_flush", 0600, powerpc_debugfs_root, NULL, &fops_rfi_flush);
996 return 0;
997}
998device_initcall(rfi_flush_debugfs_init);
999#endif
1000#endif /* CONFIG_PPC_BOOK3S_64 */
1/*
2 *
3 * Common boot and setup code.
4 *
5 * Copyright (C) 2001 PPC64 Team, IBM Corp
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
11 */
12
13#undef DEBUG
14
15#include <linux/export.h>
16#include <linux/string.h>
17#include <linux/sched.h>
18#include <linux/init.h>
19#include <linux/kernel.h>
20#include <linux/reboot.h>
21#include <linux/delay.h>
22#include <linux/initrd.h>
23#include <linux/seq_file.h>
24#include <linux/ioport.h>
25#include <linux/console.h>
26#include <linux/utsname.h>
27#include <linux/tty.h>
28#include <linux/root_dev.h>
29#include <linux/notifier.h>
30#include <linux/cpu.h>
31#include <linux/unistd.h>
32#include <linux/serial.h>
33#include <linux/serial_8250.h>
34#include <linux/bootmem.h>
35#include <linux/pci.h>
36#include <linux/lockdep.h>
37#include <linux/memblock.h>
38#include <linux/hugetlb.h>
39
40#include <asm/io.h>
41#include <asm/kdump.h>
42#include <asm/prom.h>
43#include <asm/processor.h>
44#include <asm/pgtable.h>
45#include <asm/smp.h>
46#include <asm/elf.h>
47#include <asm/machdep.h>
48#include <asm/paca.h>
49#include <asm/time.h>
50#include <asm/cputable.h>
51#include <asm/sections.h>
52#include <asm/btext.h>
53#include <asm/nvram.h>
54#include <asm/setup.h>
55#include <asm/rtas.h>
56#include <asm/iommu.h>
57#include <asm/serial.h>
58#include <asm/cache.h>
59#include <asm/page.h>
60#include <asm/mmu.h>
61#include <asm/firmware.h>
62#include <asm/xmon.h>
63#include <asm/udbg.h>
64#include <asm/kexec.h>
65#include <asm/mmu_context.h>
66#include <asm/code-patching.h>
67#include <asm/kvm_ppc.h>
68#include <asm/hugetlb.h>
69
70#include "setup.h"
71
72#ifdef DEBUG
73#define DBG(fmt...) udbg_printf(fmt)
74#else
75#define DBG(fmt...)
76#endif
77
78int boot_cpuid = 0;
79int __initdata spinning_secondaries;
80u64 ppc64_pft_size;
81
82/* Pick defaults since we might want to patch instructions
83 * before we've read this from the device tree.
84 */
85struct ppc64_caches ppc64_caches = {
86 .dline_size = 0x40,
87 .log_dline_size = 6,
88 .iline_size = 0x40,
89 .log_iline_size = 6
90};
91EXPORT_SYMBOL_GPL(ppc64_caches);
92
93/*
94 * These are used in binfmt_elf.c to put aux entries on the stack
95 * for each elf executable being started.
96 */
97int dcache_bsize;
98int icache_bsize;
99int ucache_bsize;
100
101#ifdef CONFIG_SMP
102
103static char *smt_enabled_cmdline;
104
105/* Look for ibm,smt-enabled OF option */
106static void check_smt_enabled(void)
107{
108 struct device_node *dn;
109 const char *smt_option;
110
111 /* Default to enabling all threads */
112 smt_enabled_at_boot = threads_per_core;
113
114 /* Allow the command line to overrule the OF option */
115 if (smt_enabled_cmdline) {
116 if (!strcmp(smt_enabled_cmdline, "on"))
117 smt_enabled_at_boot = threads_per_core;
118 else if (!strcmp(smt_enabled_cmdline, "off"))
119 smt_enabled_at_boot = 0;
120 else {
121 long smt;
122 int rc;
123
124 rc = strict_strtol(smt_enabled_cmdline, 10, &smt);
125 if (!rc)
126 smt_enabled_at_boot =
127 min(threads_per_core, (int)smt);
128 }
129 } else {
130 dn = of_find_node_by_path("/options");
131 if (dn) {
132 smt_option = of_get_property(dn, "ibm,smt-enabled",
133 NULL);
134
135 if (smt_option) {
136 if (!strcmp(smt_option, "on"))
137 smt_enabled_at_boot = threads_per_core;
138 else if (!strcmp(smt_option, "off"))
139 smt_enabled_at_boot = 0;
140 }
141
142 of_node_put(dn);
143 }
144 }
145}
146
147/* Look for smt-enabled= cmdline option */
148static int __init early_smt_enabled(char *p)
149{
150 smt_enabled_cmdline = p;
151 return 0;
152}
153early_param("smt-enabled", early_smt_enabled);
154
155#else
156#define check_smt_enabled()
157#endif /* CONFIG_SMP */
158
159/*
160 * Early initialization entry point. This is called by head.S
161 * with MMU translation disabled. We rely on the "feature" of
162 * the CPU that ignores the top 2 bits of the address in real
163 * mode so we can access kernel globals normally provided we
164 * only toy with things in the RMO region. From here, we do
165 * some early parsing of the device-tree to setup out MEMBLOCK
166 * data structures, and allocate & initialize the hash table
167 * and segment tables so we can start running with translation
168 * enabled.
169 *
170 * It is this function which will call the probe() callback of
171 * the various platform types and copy the matching one to the
172 * global ppc_md structure. Your platform can eventually do
173 * some very early initializations from the probe() routine, but
174 * this is not recommended, be very careful as, for example, the
175 * device-tree is not accessible via normal means at this point.
176 */
177
178void __init early_setup(unsigned long dt_ptr)
179{
180 /* -------- printk is _NOT_ safe to use here ! ------- */
181
182 /* Identify CPU type */
183 identify_cpu(0, mfspr(SPRN_PVR));
184
185 /* Assume we're on cpu 0 for now. Don't write to the paca yet! */
186 initialise_paca(&boot_paca, 0);
187 setup_paca(&boot_paca);
188
189 /* Initialize lockdep early or else spinlocks will blow */
190 lockdep_init();
191
192 /* -------- printk is now safe to use ------- */
193
194 /* Enable early debugging if any specified (see udbg.h) */
195 udbg_early_init();
196
197 DBG(" -> early_setup(), dt_ptr: 0x%lx\n", dt_ptr);
198
199 /*
200 * Do early initialization using the flattened device
201 * tree, such as retrieving the physical memory map or
202 * calculating/retrieving the hash table size.
203 */
204 early_init_devtree(__va(dt_ptr));
205
206 /* Now we know the logical id of our boot cpu, setup the paca. */
207 setup_paca(&paca[boot_cpuid]);
208
209 /* Fix up paca fields required for the boot cpu */
210 get_paca()->cpu_start = 1;
211
212 /* Probe the machine type */
213 probe_machine();
214
215 setup_kdump_trampoline();
216
217 DBG("Found, Initializing memory management...\n");
218
219 /* Initialize the hash table or TLB handling */
220 early_init_mmu();
221
222 /*
223 * Reserve any gigantic pages requested on the command line.
224 * memblock needs to have been initialized by the time this is
225 * called since this will reserve memory.
226 */
227 reserve_hugetlb_gpages();
228
229 DBG(" <- early_setup()\n");
230}
231
232#ifdef CONFIG_SMP
233void early_setup_secondary(void)
234{
235 /* Mark interrupts enabled in PACA */
236 get_paca()->soft_enabled = 0;
237
238 /* Initialize the hash table or TLB handling */
239 early_init_mmu_secondary();
240}
241
242#endif /* CONFIG_SMP */
243
244#if defined(CONFIG_SMP) || defined(CONFIG_KEXEC)
245void smp_release_cpus(void)
246{
247 unsigned long *ptr;
248 int i;
249
250 DBG(" -> smp_release_cpus()\n");
251
252 /* All secondary cpus are spinning on a common spinloop, release them
253 * all now so they can start to spin on their individual paca
254 * spinloops. For non SMP kernels, the secondary cpus never get out
255 * of the common spinloop.
256 */
257
258 ptr = (unsigned long *)((unsigned long)&__secondary_hold_spinloop
259 - PHYSICAL_START);
260 *ptr = __pa(generic_secondary_smp_init);
261
262 /* And wait a bit for them to catch up */
263 for (i = 0; i < 100000; i++) {
264 mb();
265 HMT_low();
266 if (spinning_secondaries == 0)
267 break;
268 udelay(1);
269 }
270 DBG("spinning_secondaries = %d\n", spinning_secondaries);
271
272 DBG(" <- smp_release_cpus()\n");
273}
274#endif /* CONFIG_SMP || CONFIG_KEXEC */
275
276/*
277 * Initialize some remaining members of the ppc64_caches and systemcfg
278 * structures
279 * (at least until we get rid of them completely). This is mostly some
280 * cache informations about the CPU that will be used by cache flush
281 * routines and/or provided to userland
282 */
283static void __init initialize_cache_info(void)
284{
285 struct device_node *np;
286 unsigned long num_cpus = 0;
287
288 DBG(" -> initialize_cache_info()\n");
289
290 for_each_node_by_type(np, "cpu") {
291 num_cpus += 1;
292
293 /*
294 * We're assuming *all* of the CPUs have the same
295 * d-cache and i-cache sizes... -Peter
296 */
297 if (num_cpus == 1) {
298 const u32 *sizep, *lsizep;
299 u32 size, lsize;
300
301 size = 0;
302 lsize = cur_cpu_spec->dcache_bsize;
303 sizep = of_get_property(np, "d-cache-size", NULL);
304 if (sizep != NULL)
305 size = *sizep;
306 lsizep = of_get_property(np, "d-cache-block-size",
307 NULL);
308 /* fallback if block size missing */
309 if (lsizep == NULL)
310 lsizep = of_get_property(np,
311 "d-cache-line-size",
312 NULL);
313 if (lsizep != NULL)
314 lsize = *lsizep;
315 if (sizep == 0 || lsizep == 0)
316 DBG("Argh, can't find dcache properties ! "
317 "sizep: %p, lsizep: %p\n", sizep, lsizep);
318
319 ppc64_caches.dsize = size;
320 ppc64_caches.dline_size = lsize;
321 ppc64_caches.log_dline_size = __ilog2(lsize);
322 ppc64_caches.dlines_per_page = PAGE_SIZE / lsize;
323
324 size = 0;
325 lsize = cur_cpu_spec->icache_bsize;
326 sizep = of_get_property(np, "i-cache-size", NULL);
327 if (sizep != NULL)
328 size = *sizep;
329 lsizep = of_get_property(np, "i-cache-block-size",
330 NULL);
331 if (lsizep == NULL)
332 lsizep = of_get_property(np,
333 "i-cache-line-size",
334 NULL);
335 if (lsizep != NULL)
336 lsize = *lsizep;
337 if (sizep == 0 || lsizep == 0)
338 DBG("Argh, can't find icache properties ! "
339 "sizep: %p, lsizep: %p\n", sizep, lsizep);
340
341 ppc64_caches.isize = size;
342 ppc64_caches.iline_size = lsize;
343 ppc64_caches.log_iline_size = __ilog2(lsize);
344 ppc64_caches.ilines_per_page = PAGE_SIZE / lsize;
345 }
346 }
347
348 DBG(" <- initialize_cache_info()\n");
349}
350
351
352/*
353 * Do some initial setup of the system. The parameters are those which
354 * were passed in from the bootloader.
355 */
356void __init setup_system(void)
357{
358 DBG(" -> setup_system()\n");
359
360 /* Apply the CPUs-specific and firmware specific fixups to kernel
361 * text (nop out sections not relevant to this CPU or this firmware)
362 */
363 do_feature_fixups(cur_cpu_spec->cpu_features,
364 &__start___ftr_fixup, &__stop___ftr_fixup);
365 do_feature_fixups(cur_cpu_spec->mmu_features,
366 &__start___mmu_ftr_fixup, &__stop___mmu_ftr_fixup);
367 do_feature_fixups(powerpc_firmware_features,
368 &__start___fw_ftr_fixup, &__stop___fw_ftr_fixup);
369 do_lwsync_fixups(cur_cpu_spec->cpu_features,
370 &__start___lwsync_fixup, &__stop___lwsync_fixup);
371 do_final_fixups();
372
373 /*
374 * Unflatten the device-tree passed by prom_init or kexec
375 */
376 unflatten_device_tree();
377
378 /*
379 * Fill the ppc64_caches & systemcfg structures with informations
380 * retrieved from the device-tree.
381 */
382 initialize_cache_info();
383
384#ifdef CONFIG_PPC_RTAS
385 /*
386 * Initialize RTAS if available
387 */
388 rtas_initialize();
389#endif /* CONFIG_PPC_RTAS */
390
391 /*
392 * Check if we have an initrd provided via the device-tree
393 */
394 check_for_initrd();
395
396 /*
397 * Do some platform specific early initializations, that includes
398 * setting up the hash table pointers. It also sets up some interrupt-mapping
399 * related options that will be used by finish_device_tree()
400 */
401 if (ppc_md.init_early)
402 ppc_md.init_early();
403
404 /*
405 * We can discover serial ports now since the above did setup the
406 * hash table management for us, thus ioremap works. We do that early
407 * so that further code can be debugged
408 */
409 find_legacy_serial_ports();
410
411 /*
412 * Register early console
413 */
414 register_early_udbg_console();
415
416 /*
417 * Initialize xmon
418 */
419 xmon_setup();
420
421 smp_setup_cpu_maps();
422 check_smt_enabled();
423
424#ifdef CONFIG_SMP
425 /* Release secondary cpus out of their spinloops at 0x60 now that
426 * we can map physical -> logical CPU ids
427 */
428 smp_release_cpus();
429#endif
430
431 printk("Starting Linux PPC64 %s\n", init_utsname()->version);
432
433 printk("-----------------------------------------------------\n");
434 printk("ppc64_pft_size = 0x%llx\n", ppc64_pft_size);
435 printk("physicalMemorySize = 0x%llx\n", memblock_phys_mem_size());
436 if (ppc64_caches.dline_size != 0x80)
437 printk("ppc64_caches.dcache_line_size = 0x%x\n",
438 ppc64_caches.dline_size);
439 if (ppc64_caches.iline_size != 0x80)
440 printk("ppc64_caches.icache_line_size = 0x%x\n",
441 ppc64_caches.iline_size);
442#ifdef CONFIG_PPC_STD_MMU_64
443 if (htab_address)
444 printk("htab_address = 0x%p\n", htab_address);
445 printk("htab_hash_mask = 0x%lx\n", htab_hash_mask);
446#endif /* CONFIG_PPC_STD_MMU_64 */
447 if (PHYSICAL_START > 0)
448 printk("physical_start = 0x%llx\n",
449 (unsigned long long)PHYSICAL_START);
450 printk("-----------------------------------------------------\n");
451
452 DBG(" <- setup_system()\n");
453}
454
455/* This returns the limit below which memory accesses to the linear
456 * mapping are guarnateed not to cause a TLB or SLB miss. This is
457 * used to allocate interrupt or emergency stacks for which our
458 * exception entry path doesn't deal with being interrupted.
459 */
460static u64 safe_stack_limit(void)
461{
462#ifdef CONFIG_PPC_BOOK3E
463 /* Freescale BookE bolts the entire linear mapping */
464 if (mmu_has_feature(MMU_FTR_TYPE_FSL_E))
465 return linear_map_top;
466 /* Other BookE, we assume the first GB is bolted */
467 return 1ul << 30;
468#else
469 /* BookS, the first segment is bolted */
470 if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
471 return 1UL << SID_SHIFT_1T;
472 return 1UL << SID_SHIFT;
473#endif
474}
475
476static void __init irqstack_early_init(void)
477{
478 u64 limit = safe_stack_limit();
479 unsigned int i;
480
481 /*
482 * Interrupt stacks must be in the first segment since we
483 * cannot afford to take SLB misses on them.
484 */
485 for_each_possible_cpu(i) {
486 softirq_ctx[i] = (struct thread_info *)
487 __va(memblock_alloc_base(THREAD_SIZE,
488 THREAD_SIZE, limit));
489 hardirq_ctx[i] = (struct thread_info *)
490 __va(memblock_alloc_base(THREAD_SIZE,
491 THREAD_SIZE, limit));
492 }
493}
494
495#ifdef CONFIG_PPC_BOOK3E
496static void __init exc_lvl_early_init(void)
497{
498 extern unsigned int interrupt_base_book3e;
499 extern unsigned int exc_debug_debug_book3e;
500
501 unsigned int i;
502
503 for_each_possible_cpu(i) {
504 critirq_ctx[i] = (struct thread_info *)
505 __va(memblock_alloc(THREAD_SIZE, THREAD_SIZE));
506 dbgirq_ctx[i] = (struct thread_info *)
507 __va(memblock_alloc(THREAD_SIZE, THREAD_SIZE));
508 mcheckirq_ctx[i] = (struct thread_info *)
509 __va(memblock_alloc(THREAD_SIZE, THREAD_SIZE));
510 }
511
512 if (cpu_has_feature(CPU_FTR_DEBUG_LVL_EXC))
513 patch_branch(&interrupt_base_book3e + (0x040 / 4) + 1,
514 (unsigned long)&exc_debug_debug_book3e, 0);
515}
516#else
517#define exc_lvl_early_init()
518#endif
519
520/*
521 * Stack space used when we detect a bad kernel stack pointer, and
522 * early in SMP boots before relocation is enabled.
523 */
524static void __init emergency_stack_init(void)
525{
526 u64 limit;
527 unsigned int i;
528
529 /*
530 * Emergency stacks must be under 256MB, we cannot afford to take
531 * SLB misses on them. The ABI also requires them to be 128-byte
532 * aligned.
533 *
534 * Since we use these as temporary stacks during secondary CPU
535 * bringup, we need to get at them in real mode. This means they
536 * must also be within the RMO region.
537 */
538 limit = min(safe_stack_limit(), ppc64_rma_size);
539
540 for_each_possible_cpu(i) {
541 unsigned long sp;
542 sp = memblock_alloc_base(THREAD_SIZE, THREAD_SIZE, limit);
543 sp += THREAD_SIZE;
544 paca[i].emergency_sp = __va(sp);
545 }
546}
547
548/*
549 * Called into from start_kernel this initializes bootmem, which is used
550 * to manage page allocation until mem_init is called.
551 */
552void __init setup_arch(char **cmdline_p)
553{
554 ppc64_boot_msg(0x12, "Setup Arch");
555
556 *cmdline_p = cmd_line;
557
558 /*
559 * Set cache line size based on type of cpu as a default.
560 * Systems with OF can look in the properties on the cpu node(s)
561 * for a possibly more accurate value.
562 */
563 dcache_bsize = ppc64_caches.dline_size;
564 icache_bsize = ppc64_caches.iline_size;
565
566 /* reboot on panic */
567 panic_timeout = 180;
568
569 if (ppc_md.panic)
570 setup_panic();
571
572 init_mm.start_code = (unsigned long)_stext;
573 init_mm.end_code = (unsigned long) _etext;
574 init_mm.end_data = (unsigned long) _edata;
575 init_mm.brk = klimit;
576
577 irqstack_early_init();
578 exc_lvl_early_init();
579 emergency_stack_init();
580
581#ifdef CONFIG_PPC_STD_MMU_64
582 stabs_alloc();
583#endif
584 /* set up the bootmem stuff with available memory */
585 do_init_bootmem();
586 sparse_init();
587
588#ifdef CONFIG_DUMMY_CONSOLE
589 conswitchp = &dummy_con;
590#endif
591
592 if (ppc_md.setup_arch)
593 ppc_md.setup_arch();
594
595 paging_init();
596
597 /* Initialize the MMU context management stuff */
598 mmu_context_init();
599
600 kvm_linear_init();
601
602 ppc64_boot_msg(0x15, "Setup Done");
603}
604
605
606/* ToDo: do something useful if ppc_md is not yet setup. */
607#define PPC64_LINUX_FUNCTION 0x0f000000
608#define PPC64_IPL_MESSAGE 0xc0000000
609#define PPC64_TERM_MESSAGE 0xb0000000
610
611static void ppc64_do_msg(unsigned int src, const char *msg)
612{
613 if (ppc_md.progress) {
614 char buf[128];
615
616 sprintf(buf, "%08X\n", src);
617 ppc_md.progress(buf, 0);
618 snprintf(buf, 128, "%s", msg);
619 ppc_md.progress(buf, 0);
620 }
621}
622
623/* Print a boot progress message. */
624void ppc64_boot_msg(unsigned int src, const char *msg)
625{
626 ppc64_do_msg(PPC64_LINUX_FUNCTION|PPC64_IPL_MESSAGE|src, msg);
627 printk("[boot]%04x %s\n", src, msg);
628}
629
630#ifdef CONFIG_SMP
631#define PCPU_DYN_SIZE ()
632
633static void * __init pcpu_fc_alloc(unsigned int cpu, size_t size, size_t align)
634{
635 return __alloc_bootmem_node(NODE_DATA(cpu_to_node(cpu)), size, align,
636 __pa(MAX_DMA_ADDRESS));
637}
638
639static void __init pcpu_fc_free(void *ptr, size_t size)
640{
641 free_bootmem(__pa(ptr), size);
642}
643
644static int pcpu_cpu_distance(unsigned int from, unsigned int to)
645{
646 if (cpu_to_node(from) == cpu_to_node(to))
647 return LOCAL_DISTANCE;
648 else
649 return REMOTE_DISTANCE;
650}
651
652unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
653EXPORT_SYMBOL(__per_cpu_offset);
654
655void __init setup_per_cpu_areas(void)
656{
657 const size_t dyn_size = PERCPU_MODULE_RESERVE + PERCPU_DYNAMIC_RESERVE;
658 size_t atom_size;
659 unsigned long delta;
660 unsigned int cpu;
661 int rc;
662
663 /*
664 * Linear mapping is one of 4K, 1M and 16M. For 4K, no need
665 * to group units. For larger mappings, use 1M atom which
666 * should be large enough to contain a number of units.
667 */
668 if (mmu_linear_psize == MMU_PAGE_4K)
669 atom_size = PAGE_SIZE;
670 else
671 atom_size = 1 << 20;
672
673 rc = pcpu_embed_first_chunk(0, dyn_size, atom_size, pcpu_cpu_distance,
674 pcpu_fc_alloc, pcpu_fc_free);
675 if (rc < 0)
676 panic("cannot initialize percpu area (err=%d)", rc);
677
678 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
679 for_each_possible_cpu(cpu) {
680 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
681 paca[cpu].data_offset = __per_cpu_offset[cpu];
682 }
683}
684#endif
685
686
687#ifdef CONFIG_PPC_INDIRECT_IO
688struct ppc_pci_io ppc_pci_io;
689EXPORT_SYMBOL(ppc_pci_io);
690#endif /* CONFIG_PPC_INDIRECT_IO */
691