Linux Audio

Check our new training course

Loading...
v5.9
  1#ifndef _M68K_BITOPS_H
  2#define _M68K_BITOPS_H
  3/*
  4 * Copyright 1992, Linus Torvalds.
  5 *
  6 * This file is subject to the terms and conditions of the GNU General Public
  7 * License.  See the file COPYING in the main directory of this archive
  8 * for more details.
  9 */
 10
 11#ifndef _LINUX_BITOPS_H
 12#error only <linux/bitops.h> can be included directly
 13#endif
 14
 15#include <linux/compiler.h>
 16#include <asm/barrier.h>
 17
 18/*
 19 *	Bit access functions vary across the ColdFire and 68k families.
 20 *	So we will break them out here, and then macro in the ones we want.
 21 *
 22 *	ColdFire - supports standard bset/bclr/bchg with register operand only
 23 *	68000    - supports standard bset/bclr/bchg with memory operand
 24 *	>= 68020 - also supports the bfset/bfclr/bfchg instructions
 25 *
 26 *	Although it is possible to use only the bset/bclr/bchg with register
 27 *	operands on all platforms you end up with larger generated code.
 28 *	So we use the best form possible on a given platform.
 29 */
 30
 31static inline void bset_reg_set_bit(int nr, volatile unsigned long *vaddr)
 32{
 33	char *p = (char *)vaddr + (nr ^ 31) / 8;
 34
 35	__asm__ __volatile__ ("bset %1,(%0)"
 36		:
 37		: "a" (p), "di" (nr & 7)
 38		: "memory");
 39}
 40
 41static inline void bset_mem_set_bit(int nr, volatile unsigned long *vaddr)
 42{
 43	char *p = (char *)vaddr + (nr ^ 31) / 8;
 44
 45	__asm__ __volatile__ ("bset %1,%0"
 46		: "+m" (*p)
 47		: "di" (nr & 7));
 48}
 49
 50static inline void bfset_mem_set_bit(int nr, volatile unsigned long *vaddr)
 51{
 52	__asm__ __volatile__ ("bfset %1{%0:#1}"
 53		:
 54		: "d" (nr ^ 31), "o" (*vaddr)
 55		: "memory");
 56}
 57
 58#if defined(CONFIG_COLDFIRE)
 59#define	set_bit(nr, vaddr)	bset_reg_set_bit(nr, vaddr)
 60#elif defined(CONFIG_CPU_HAS_NO_BITFIELDS)
 61#define	set_bit(nr, vaddr)	bset_mem_set_bit(nr, vaddr)
 62#else
 63#define set_bit(nr, vaddr)	(__builtin_constant_p(nr) ? \
 64				bset_mem_set_bit(nr, vaddr) : \
 65				bfset_mem_set_bit(nr, vaddr))
 66#endif
 67
 68#define __set_bit(nr, vaddr)	set_bit(nr, vaddr)
 69
 70
 
 
 
 
 
 
 71static inline void bclr_reg_clear_bit(int nr, volatile unsigned long *vaddr)
 72{
 73	char *p = (char *)vaddr + (nr ^ 31) / 8;
 74
 75	__asm__ __volatile__ ("bclr %1,(%0)"
 76		:
 77		: "a" (p), "di" (nr & 7)
 78		: "memory");
 79}
 80
 81static inline void bclr_mem_clear_bit(int nr, volatile unsigned long *vaddr)
 82{
 83	char *p = (char *)vaddr + (nr ^ 31) / 8;
 84
 85	__asm__ __volatile__ ("bclr %1,%0"
 86		: "+m" (*p)
 87		: "di" (nr & 7));
 88}
 89
 90static inline void bfclr_mem_clear_bit(int nr, volatile unsigned long *vaddr)
 91{
 92	__asm__ __volatile__ ("bfclr %1{%0:#1}"
 93		:
 94		: "d" (nr ^ 31), "o" (*vaddr)
 95		: "memory");
 96}
 97
 98#if defined(CONFIG_COLDFIRE)
 99#define	clear_bit(nr, vaddr)	bclr_reg_clear_bit(nr, vaddr)
100#elif defined(CONFIG_CPU_HAS_NO_BITFIELDS)
101#define	clear_bit(nr, vaddr)	bclr_mem_clear_bit(nr, vaddr)
102#else
103#define clear_bit(nr, vaddr)	(__builtin_constant_p(nr) ? \
104				bclr_mem_clear_bit(nr, vaddr) : \
105				bfclr_mem_clear_bit(nr, vaddr))
106#endif
107
108#define __clear_bit(nr, vaddr)	clear_bit(nr, vaddr)
109
110
111static inline void bchg_reg_change_bit(int nr, volatile unsigned long *vaddr)
112{
113	char *p = (char *)vaddr + (nr ^ 31) / 8;
114
115	__asm__ __volatile__ ("bchg %1,(%0)"
116		:
117		: "a" (p), "di" (nr & 7)
118		: "memory");
119}
120
121static inline void bchg_mem_change_bit(int nr, volatile unsigned long *vaddr)
122{
123	char *p = (char *)vaddr + (nr ^ 31) / 8;
124
125	__asm__ __volatile__ ("bchg %1,%0"
126		: "+m" (*p)
127		: "di" (nr & 7));
128}
129
130static inline void bfchg_mem_change_bit(int nr, volatile unsigned long *vaddr)
131{
132	__asm__ __volatile__ ("bfchg %1{%0:#1}"
133		:
134		: "d" (nr ^ 31), "o" (*vaddr)
135		: "memory");
136}
137
138#if defined(CONFIG_COLDFIRE)
139#define	change_bit(nr, vaddr)	bchg_reg_change_bit(nr, vaddr)
140#elif defined(CONFIG_CPU_HAS_NO_BITFIELDS)
141#define	change_bit(nr, vaddr)	bchg_mem_change_bit(nr, vaddr)
142#else
143#define change_bit(nr, vaddr)	(__builtin_constant_p(nr) ? \
144				bchg_mem_change_bit(nr, vaddr) : \
145				bfchg_mem_change_bit(nr, vaddr))
146#endif
147
148#define __change_bit(nr, vaddr)	change_bit(nr, vaddr)
149
150
151static inline int test_bit(int nr, const volatile unsigned long *vaddr)
152{
153	return (vaddr[nr >> 5] & (1UL << (nr & 31))) != 0;
154}
155
156
157static inline int bset_reg_test_and_set_bit(int nr,
158					    volatile unsigned long *vaddr)
159{
160	char *p = (char *)vaddr + (nr ^ 31) / 8;
161	char retval;
162
163	__asm__ __volatile__ ("bset %2,(%1); sne %0"
164		: "=d" (retval)
165		: "a" (p), "di" (nr & 7)
166		: "memory");
167	return retval;
168}
169
170static inline int bset_mem_test_and_set_bit(int nr,
171					    volatile unsigned long *vaddr)
172{
173	char *p = (char *)vaddr + (nr ^ 31) / 8;
174	char retval;
175
176	__asm__ __volatile__ ("bset %2,%1; sne %0"
177		: "=d" (retval), "+m" (*p)
178		: "di" (nr & 7));
179	return retval;
180}
181
182static inline int bfset_mem_test_and_set_bit(int nr,
183					     volatile unsigned long *vaddr)
184{
185	char retval;
186
187	__asm__ __volatile__ ("bfset %2{%1:#1}; sne %0"
188		: "=d" (retval)
189		: "d" (nr ^ 31), "o" (*vaddr)
190		: "memory");
191	return retval;
192}
193
194#if defined(CONFIG_COLDFIRE)
195#define	test_and_set_bit(nr, vaddr)	bset_reg_test_and_set_bit(nr, vaddr)
196#elif defined(CONFIG_CPU_HAS_NO_BITFIELDS)
197#define	test_and_set_bit(nr, vaddr)	bset_mem_test_and_set_bit(nr, vaddr)
198#else
199#define test_and_set_bit(nr, vaddr)	(__builtin_constant_p(nr) ? \
200					bset_mem_test_and_set_bit(nr, vaddr) : \
201					bfset_mem_test_and_set_bit(nr, vaddr))
202#endif
203
204#define __test_and_set_bit(nr, vaddr)	test_and_set_bit(nr, vaddr)
205
206
207static inline int bclr_reg_test_and_clear_bit(int nr,
208					      volatile unsigned long *vaddr)
209{
210	char *p = (char *)vaddr + (nr ^ 31) / 8;
211	char retval;
212
213	__asm__ __volatile__ ("bclr %2,(%1); sne %0"
214		: "=d" (retval)
215		: "a" (p), "di" (nr & 7)
216		: "memory");
217	return retval;
218}
219
220static inline int bclr_mem_test_and_clear_bit(int nr,
221					      volatile unsigned long *vaddr)
222{
223	char *p = (char *)vaddr + (nr ^ 31) / 8;
224	char retval;
225
226	__asm__ __volatile__ ("bclr %2,%1; sne %0"
227		: "=d" (retval), "+m" (*p)
228		: "di" (nr & 7));
229	return retval;
230}
231
232static inline int bfclr_mem_test_and_clear_bit(int nr,
233					       volatile unsigned long *vaddr)
234{
235	char retval;
236
237	__asm__ __volatile__ ("bfclr %2{%1:#1}; sne %0"
238		: "=d" (retval)
239		: "d" (nr ^ 31), "o" (*vaddr)
240		: "memory");
241	return retval;
242}
243
244#if defined(CONFIG_COLDFIRE)
245#define	test_and_clear_bit(nr, vaddr)	bclr_reg_test_and_clear_bit(nr, vaddr)
246#elif defined(CONFIG_CPU_HAS_NO_BITFIELDS)
247#define	test_and_clear_bit(nr, vaddr)	bclr_mem_test_and_clear_bit(nr, vaddr)
248#else
249#define test_and_clear_bit(nr, vaddr)	(__builtin_constant_p(nr) ? \
250					bclr_mem_test_and_clear_bit(nr, vaddr) : \
251					bfclr_mem_test_and_clear_bit(nr, vaddr))
252#endif
253
254#define __test_and_clear_bit(nr, vaddr)	test_and_clear_bit(nr, vaddr)
255
256
257static inline int bchg_reg_test_and_change_bit(int nr,
258					       volatile unsigned long *vaddr)
259{
260	char *p = (char *)vaddr + (nr ^ 31) / 8;
261	char retval;
262
263	__asm__ __volatile__ ("bchg %2,(%1); sne %0"
264		: "=d" (retval)
265		: "a" (p), "di" (nr & 7)
266		: "memory");
267	return retval;
268}
269
270static inline int bchg_mem_test_and_change_bit(int nr,
271					       volatile unsigned long *vaddr)
272{
273	char *p = (char *)vaddr + (nr ^ 31) / 8;
274	char retval;
275
276	__asm__ __volatile__ ("bchg %2,%1; sne %0"
277		: "=d" (retval), "+m" (*p)
278		: "di" (nr & 7));
279	return retval;
280}
281
282static inline int bfchg_mem_test_and_change_bit(int nr,
283						volatile unsigned long *vaddr)
284{
285	char retval;
286
287	__asm__ __volatile__ ("bfchg %2{%1:#1}; sne %0"
288		: "=d" (retval)
289		: "d" (nr ^ 31), "o" (*vaddr)
290		: "memory");
291	return retval;
292}
293
294#if defined(CONFIG_COLDFIRE)
295#define	test_and_change_bit(nr, vaddr)	bchg_reg_test_and_change_bit(nr, vaddr)
296#elif defined(CONFIG_CPU_HAS_NO_BITFIELDS)
297#define	test_and_change_bit(nr, vaddr)	bchg_mem_test_and_change_bit(nr, vaddr)
298#else
299#define test_and_change_bit(nr, vaddr)	(__builtin_constant_p(nr) ? \
300					bchg_mem_test_and_change_bit(nr, vaddr) : \
301					bfchg_mem_test_and_change_bit(nr, vaddr))
302#endif
303
304#define __test_and_change_bit(nr, vaddr) test_and_change_bit(nr, vaddr)
305
306
307/*
308 *	The true 68020 and more advanced processors support the "bfffo"
309 *	instruction for finding bits. ColdFire and simple 68000 parts
310 *	(including CPU32) do not support this. They simply use the generic
311 *	functions.
312 */
313#if defined(CONFIG_CPU_HAS_NO_BITFIELDS)
 
314#include <asm-generic/bitops/ffz.h>
315#else
316
317static inline int find_first_zero_bit(const unsigned long *vaddr,
318				      unsigned size)
319{
320	const unsigned long *p = vaddr;
321	int res = 32;
322	unsigned int words;
323	unsigned long num;
324
325	if (!size)
326		return 0;
327
328	words = (size + 31) >> 5;
329	while (!(num = ~*p++)) {
330		if (!--words)
331			goto out;
332	}
333
334	__asm__ __volatile__ ("bfffo %1{#0,#0},%0"
335			      : "=d" (res) : "d" (num & -num));
336	res ^= 31;
337out:
338	res += ((long)p - (long)vaddr - 4) * 8;
339	return res < size ? res : size;
340}
341#define find_first_zero_bit find_first_zero_bit
342
343static inline int find_next_zero_bit(const unsigned long *vaddr, int size,
344				     int offset)
345{
346	const unsigned long *p = vaddr + (offset >> 5);
347	int bit = offset & 31UL, res;
348
349	if (offset >= size)
350		return size;
351
352	if (bit) {
353		unsigned long num = ~*p++ & (~0UL << bit);
354		offset -= bit;
355
356		/* Look for zero in first longword */
357		__asm__ __volatile__ ("bfffo %1{#0,#0},%0"
358				      : "=d" (res) : "d" (num & -num));
359		if (res < 32) {
360			offset += res ^ 31;
361			return offset < size ? offset : size;
362		}
363		offset += 32;
364
365		if (offset >= size)
366			return size;
367	}
368	/* No zero yet, search remaining full bytes for a zero */
369	return offset + find_first_zero_bit(p, size - offset);
370}
371#define find_next_zero_bit find_next_zero_bit
372
373static inline int find_first_bit(const unsigned long *vaddr, unsigned size)
374{
375	const unsigned long *p = vaddr;
376	int res = 32;
377	unsigned int words;
378	unsigned long num;
379
380	if (!size)
381		return 0;
382
383	words = (size + 31) >> 5;
384	while (!(num = *p++)) {
385		if (!--words)
386			goto out;
387	}
388
389	__asm__ __volatile__ ("bfffo %1{#0,#0},%0"
390			      : "=d" (res) : "d" (num & -num));
391	res ^= 31;
392out:
393	res += ((long)p - (long)vaddr - 4) * 8;
394	return res < size ? res : size;
395}
396#define find_first_bit find_first_bit
397
398static inline int find_next_bit(const unsigned long *vaddr, int size,
399				int offset)
400{
401	const unsigned long *p = vaddr + (offset >> 5);
402	int bit = offset & 31UL, res;
403
404	if (offset >= size)
405		return size;
406
407	if (bit) {
408		unsigned long num = *p++ & (~0UL << bit);
409		offset -= bit;
410
411		/* Look for one in first longword */
412		__asm__ __volatile__ ("bfffo %1{#0,#0},%0"
413				      : "=d" (res) : "d" (num & -num));
414		if (res < 32) {
415			offset += res ^ 31;
416			return offset < size ? offset : size;
417		}
418		offset += 32;
419
420		if (offset >= size)
421			return size;
422	}
423	/* No one yet, search remaining full bytes for a one */
424	return offset + find_first_bit(p, size - offset);
425}
426#define find_next_bit find_next_bit
427
428/*
429 * ffz = Find First Zero in word. Undefined if no zero exists,
430 * so code should check against ~0UL first..
431 */
432static inline unsigned long ffz(unsigned long word)
433{
434	int res;
435
436	__asm__ __volatile__ ("bfffo %1{#0,#0},%0"
437			      : "=d" (res) : "d" (~word & -~word));
438	return res ^ 31;
439}
440
441#endif
442
443#include <asm-generic/bitops/find.h>
444
445#ifdef __KERNEL__
446
447#if defined(CONFIG_CPU_HAS_NO_BITFIELDS)
448
449/*
450 *	The newer ColdFire family members support a "bitrev" instruction
451 *	and we can use that to implement a fast ffs. Older Coldfire parts,
452 *	and normal 68000 parts don't have anything special, so we use the
453 *	generic functions for those.
454 */
455#if (defined(__mcfisaaplus__) || defined(__mcfisac__)) && \
456	!defined(CONFIG_M68000) && !defined(CONFIG_MCPU32)
457static inline unsigned long __ffs(unsigned long x)
458{
459	__asm__ __volatile__ ("bitrev %0; ff1 %0"
460		: "=d" (x)
461		: "0" (x));
462	return x;
463}
464
465static inline int ffs(int x)
466{
467	if (!x)
468		return 0;
469	return __ffs(x) + 1;
470}
471
472#else
473#include <asm-generic/bitops/ffs.h>
474#include <asm-generic/bitops/__ffs.h>
475#endif
476
477#include <asm-generic/bitops/fls.h>
478#include <asm-generic/bitops/__fls.h>
479
480#else
481
482/*
483 *	ffs: find first bit set. This is defined the same way as
484 *	the libc and compiler builtin ffs routines, therefore
485 *	differs in spirit from the above ffz (man ffs).
486 */
487static inline int ffs(int x)
488{
489	int cnt;
490
491	__asm__ ("bfffo %1{#0:#0},%0"
492		: "=d" (cnt)
493		: "dm" (x & -x));
494	return 32 - cnt;
495}
496
497static inline unsigned long __ffs(unsigned long x)
498{
499	return ffs(x) - 1;
500}
501
502/*
503 *	fls: find last bit set.
504 */
505static inline int fls(unsigned int x)
506{
507	int cnt;
508
509	__asm__ ("bfffo %1{#0,#0},%0"
510		: "=d" (cnt)
511		: "dm" (x));
512	return 32 - cnt;
513}
514
515static inline int __fls(int x)
516{
517	return fls(x) - 1;
518}
519
520#endif
521
522/* Simple test-and-set bit locks */
523#define test_and_set_bit_lock	test_and_set_bit
524#define clear_bit_unlock	clear_bit
525#define __clear_bit_unlock	clear_bit_unlock
526
527#include <asm-generic/bitops/ext2-atomic.h>
528#include <asm-generic/bitops/le.h>
529#include <asm-generic/bitops/fls64.h>
530#include <asm-generic/bitops/sched.h>
531#include <asm-generic/bitops/hweight.h>
 
532#endif /* __KERNEL__ */
533
534#endif /* _M68K_BITOPS_H */
v3.5.6
  1#ifndef _M68K_BITOPS_H
  2#define _M68K_BITOPS_H
  3/*
  4 * Copyright 1992, Linus Torvalds.
  5 *
  6 * This file is subject to the terms and conditions of the GNU General Public
  7 * License.  See the file COPYING in the main directory of this archive
  8 * for more details.
  9 */
 10
 11#ifndef _LINUX_BITOPS_H
 12#error only <linux/bitops.h> can be included directly
 13#endif
 14
 15#include <linux/compiler.h>
 
 16
 17/*
 18 *	Bit access functions vary across the ColdFire and 68k families.
 19 *	So we will break them out here, and then macro in the ones we want.
 20 *
 21 *	ColdFire - supports standard bset/bclr/bchg with register operand only
 22 *	68000    - supports standard bset/bclr/bchg with memory operand
 23 *	>= 68020 - also supports the bfset/bfclr/bfchg instructions
 24 *
 25 *	Although it is possible to use only the bset/bclr/bchg with register
 26 *	operands on all platforms you end up with larger generated code.
 27 *	So we use the best form possible on a given platform.
 28 */
 29
 30static inline void bset_reg_set_bit(int nr, volatile unsigned long *vaddr)
 31{
 32	char *p = (char *)vaddr + (nr ^ 31) / 8;
 33
 34	__asm__ __volatile__ ("bset %1,(%0)"
 35		:
 36		: "a" (p), "di" (nr & 7)
 37		: "memory");
 38}
 39
 40static inline void bset_mem_set_bit(int nr, volatile unsigned long *vaddr)
 41{
 42	char *p = (char *)vaddr + (nr ^ 31) / 8;
 43
 44	__asm__ __volatile__ ("bset %1,%0"
 45		: "+m" (*p)
 46		: "di" (nr & 7));
 47}
 48
 49static inline void bfset_mem_set_bit(int nr, volatile unsigned long *vaddr)
 50{
 51	__asm__ __volatile__ ("bfset %1{%0:#1}"
 52		:
 53		: "d" (nr ^ 31), "o" (*vaddr)
 54		: "memory");
 55}
 56
 57#if defined(CONFIG_COLDFIRE)
 58#define	set_bit(nr, vaddr)	bset_reg_set_bit(nr, vaddr)
 59#elif defined(CONFIG_CPU_HAS_NO_BITFIELDS)
 60#define	set_bit(nr, vaddr)	bset_mem_set_bit(nr, vaddr)
 61#else
 62#define set_bit(nr, vaddr)	(__builtin_constant_p(nr) ? \
 63				bset_mem_set_bit(nr, vaddr) : \
 64				bfset_mem_set_bit(nr, vaddr))
 65#endif
 66
 67#define __set_bit(nr, vaddr)	set_bit(nr, vaddr)
 68
 69
 70/*
 71 * clear_bit() doesn't provide any barrier for the compiler.
 72 */
 73#define smp_mb__before_clear_bit()	barrier()
 74#define smp_mb__after_clear_bit()	barrier()
 75
 76static inline void bclr_reg_clear_bit(int nr, volatile unsigned long *vaddr)
 77{
 78	char *p = (char *)vaddr + (nr ^ 31) / 8;
 79
 80	__asm__ __volatile__ ("bclr %1,(%0)"
 81		:
 82		: "a" (p), "di" (nr & 7)
 83		: "memory");
 84}
 85
 86static inline void bclr_mem_clear_bit(int nr, volatile unsigned long *vaddr)
 87{
 88	char *p = (char *)vaddr + (nr ^ 31) / 8;
 89
 90	__asm__ __volatile__ ("bclr %1,%0"
 91		: "+m" (*p)
 92		: "di" (nr & 7));
 93}
 94
 95static inline void bfclr_mem_clear_bit(int nr, volatile unsigned long *vaddr)
 96{
 97	__asm__ __volatile__ ("bfclr %1{%0:#1}"
 98		:
 99		: "d" (nr ^ 31), "o" (*vaddr)
100		: "memory");
101}
102
103#if defined(CONFIG_COLDFIRE)
104#define	clear_bit(nr, vaddr)	bclr_reg_clear_bit(nr, vaddr)
105#elif defined(CONFIG_CPU_HAS_NO_BITFIELDS)
106#define	clear_bit(nr, vaddr)	bclr_mem_clear_bit(nr, vaddr)
107#else
108#define clear_bit(nr, vaddr)	(__builtin_constant_p(nr) ? \
109				bclr_mem_clear_bit(nr, vaddr) : \
110				bfclr_mem_clear_bit(nr, vaddr))
111#endif
112
113#define __clear_bit(nr, vaddr)	clear_bit(nr, vaddr)
114
115
116static inline void bchg_reg_change_bit(int nr, volatile unsigned long *vaddr)
117{
118	char *p = (char *)vaddr + (nr ^ 31) / 8;
119
120	__asm__ __volatile__ ("bchg %1,(%0)"
121		:
122		: "a" (p), "di" (nr & 7)
123		: "memory");
124}
125
126static inline void bchg_mem_change_bit(int nr, volatile unsigned long *vaddr)
127{
128	char *p = (char *)vaddr + (nr ^ 31) / 8;
129
130	__asm__ __volatile__ ("bchg %1,%0"
131		: "+m" (*p)
132		: "di" (nr & 7));
133}
134
135static inline void bfchg_mem_change_bit(int nr, volatile unsigned long *vaddr)
136{
137	__asm__ __volatile__ ("bfchg %1{%0:#1}"
138		:
139		: "d" (nr ^ 31), "o" (*vaddr)
140		: "memory");
141}
142
143#if defined(CONFIG_COLDFIRE)
144#define	change_bit(nr, vaddr)	bchg_reg_change_bit(nr, vaddr)
145#elif defined(CONFIG_CPU_HAS_NO_BITFIELDS)
146#define	change_bit(nr, vaddr)	bchg_mem_change_bit(nr, vaddr)
147#else
148#define change_bit(nr, vaddr)	(__builtin_constant_p(nr) ? \
149				bchg_mem_change_bit(nr, vaddr) : \
150				bfchg_mem_change_bit(nr, vaddr))
151#endif
152
153#define __change_bit(nr, vaddr)	change_bit(nr, vaddr)
154
155
156static inline int test_bit(int nr, const unsigned long *vaddr)
157{
158	return (vaddr[nr >> 5] & (1UL << (nr & 31))) != 0;
159}
160
161
162static inline int bset_reg_test_and_set_bit(int nr,
163					    volatile unsigned long *vaddr)
164{
165	char *p = (char *)vaddr + (nr ^ 31) / 8;
166	char retval;
167
168	__asm__ __volatile__ ("bset %2,(%1); sne %0"
169		: "=d" (retval)
170		: "a" (p), "di" (nr & 7)
171		: "memory");
172	return retval;
173}
174
175static inline int bset_mem_test_and_set_bit(int nr,
176					    volatile unsigned long *vaddr)
177{
178	char *p = (char *)vaddr + (nr ^ 31) / 8;
179	char retval;
180
181	__asm__ __volatile__ ("bset %2,%1; sne %0"
182		: "=d" (retval), "+m" (*p)
183		: "di" (nr & 7));
184	return retval;
185}
186
187static inline int bfset_mem_test_and_set_bit(int nr,
188					     volatile unsigned long *vaddr)
189{
190	char retval;
191
192	__asm__ __volatile__ ("bfset %2{%1:#1}; sne %0"
193		: "=d" (retval)
194		: "d" (nr ^ 31), "o" (*vaddr)
195		: "memory");
196	return retval;
197}
198
199#if defined(CONFIG_COLDFIRE)
200#define	test_and_set_bit(nr, vaddr)	bset_reg_test_and_set_bit(nr, vaddr)
201#elif defined(CONFIG_CPU_HAS_NO_BITFIELDS)
202#define	test_and_set_bit(nr, vaddr)	bset_mem_test_and_set_bit(nr, vaddr)
203#else
204#define test_and_set_bit(nr, vaddr)	(__builtin_constant_p(nr) ? \
205					bset_mem_test_and_set_bit(nr, vaddr) : \
206					bfset_mem_test_and_set_bit(nr, vaddr))
207#endif
208
209#define __test_and_set_bit(nr, vaddr)	test_and_set_bit(nr, vaddr)
210
211
212static inline int bclr_reg_test_and_clear_bit(int nr,
213					      volatile unsigned long *vaddr)
214{
215	char *p = (char *)vaddr + (nr ^ 31) / 8;
216	char retval;
217
218	__asm__ __volatile__ ("bclr %2,(%1); sne %0"
219		: "=d" (retval)
220		: "a" (p), "di" (nr & 7)
221		: "memory");
222	return retval;
223}
224
225static inline int bclr_mem_test_and_clear_bit(int nr,
226					      volatile unsigned long *vaddr)
227{
228	char *p = (char *)vaddr + (nr ^ 31) / 8;
229	char retval;
230
231	__asm__ __volatile__ ("bclr %2,%1; sne %0"
232		: "=d" (retval), "+m" (*p)
233		: "di" (nr & 7));
234	return retval;
235}
236
237static inline int bfclr_mem_test_and_clear_bit(int nr,
238					       volatile unsigned long *vaddr)
239{
240	char retval;
241
242	__asm__ __volatile__ ("bfclr %2{%1:#1}; sne %0"
243		: "=d" (retval)
244		: "d" (nr ^ 31), "o" (*vaddr)
245		: "memory");
246	return retval;
247}
248
249#if defined(CONFIG_COLDFIRE)
250#define	test_and_clear_bit(nr, vaddr)	bclr_reg_test_and_clear_bit(nr, vaddr)
251#elif defined(CONFIG_CPU_HAS_NO_BITFIELDS)
252#define	test_and_clear_bit(nr, vaddr)	bclr_mem_test_and_clear_bit(nr, vaddr)
253#else
254#define test_and_clear_bit(nr, vaddr)	(__builtin_constant_p(nr) ? \
255					bclr_mem_test_and_clear_bit(nr, vaddr) : \
256					bfclr_mem_test_and_clear_bit(nr, vaddr))
257#endif
258
259#define __test_and_clear_bit(nr, vaddr)	test_and_clear_bit(nr, vaddr)
260
261
262static inline int bchg_reg_test_and_change_bit(int nr,
263					       volatile unsigned long *vaddr)
264{
265	char *p = (char *)vaddr + (nr ^ 31) / 8;
266	char retval;
267
268	__asm__ __volatile__ ("bchg %2,(%1); sne %0"
269		: "=d" (retval)
270		: "a" (p), "di" (nr & 7)
271		: "memory");
272	return retval;
273}
274
275static inline int bchg_mem_test_and_change_bit(int nr,
276					       volatile unsigned long *vaddr)
277{
278	char *p = (char *)vaddr + (nr ^ 31) / 8;
279	char retval;
280
281	__asm__ __volatile__ ("bchg %2,%1; sne %0"
282		: "=d" (retval), "+m" (*p)
283		: "di" (nr & 7));
284	return retval;
285}
286
287static inline int bfchg_mem_test_and_change_bit(int nr,
288						volatile unsigned long *vaddr)
289{
290	char retval;
291
292	__asm__ __volatile__ ("bfchg %2{%1:#1}; sne %0"
293		: "=d" (retval)
294		: "d" (nr ^ 31), "o" (*vaddr)
295		: "memory");
296	return retval;
297}
298
299#if defined(CONFIG_COLDFIRE)
300#define	test_and_change_bit(nr, vaddr)	bchg_reg_test_and_change_bit(nr, vaddr)
301#elif defined(CONFIG_CPU_HAS_NO_BITFIELDS)
302#define	test_and_change_bit(nr, vaddr)	bchg_mem_test_and_change_bit(nr, vaddr)
303#else
304#define test_and_change_bit(nr, vaddr)	(__builtin_constant_p(nr) ? \
305					bchg_mem_test_and_change_bit(nr, vaddr) : \
306					bfchg_mem_test_and_change_bit(nr, vaddr))
307#endif
308
309#define __test_and_change_bit(nr, vaddr) test_and_change_bit(nr, vaddr)
310
311
312/*
313 *	The true 68020 and more advanced processors support the "bfffo"
314 *	instruction for finding bits. ColdFire and simple 68000 parts
315 *	(including CPU32) do not support this. They simply use the generic
316 *	functions.
317 */
318#if defined(CONFIG_CPU_HAS_NO_BITFIELDS)
319#include <asm-generic/bitops/find.h>
320#include <asm-generic/bitops/ffz.h>
321#else
322
323static inline int find_first_zero_bit(const unsigned long *vaddr,
324				      unsigned size)
325{
326	const unsigned long *p = vaddr;
327	int res = 32;
328	unsigned int words;
329	unsigned long num;
330
331	if (!size)
332		return 0;
333
334	words = (size + 31) >> 5;
335	while (!(num = ~*p++)) {
336		if (!--words)
337			goto out;
338	}
339
340	__asm__ __volatile__ ("bfffo %1{#0,#0},%0"
341			      : "=d" (res) : "d" (num & -num));
342	res ^= 31;
343out:
344	res += ((long)p - (long)vaddr - 4) * 8;
345	return res < size ? res : size;
346}
347#define find_first_zero_bit find_first_zero_bit
348
349static inline int find_next_zero_bit(const unsigned long *vaddr, int size,
350				     int offset)
351{
352	const unsigned long *p = vaddr + (offset >> 5);
353	int bit = offset & 31UL, res;
354
355	if (offset >= size)
356		return size;
357
358	if (bit) {
359		unsigned long num = ~*p++ & (~0UL << bit);
360		offset -= bit;
361
362		/* Look for zero in first longword */
363		__asm__ __volatile__ ("bfffo %1{#0,#0},%0"
364				      : "=d" (res) : "d" (num & -num));
365		if (res < 32) {
366			offset += res ^ 31;
367			return offset < size ? offset : size;
368		}
369		offset += 32;
370
371		if (offset >= size)
372			return size;
373	}
374	/* No zero yet, search remaining full bytes for a zero */
375	return offset + find_first_zero_bit(p, size - offset);
376}
377#define find_next_zero_bit find_next_zero_bit
378
379static inline int find_first_bit(const unsigned long *vaddr, unsigned size)
380{
381	const unsigned long *p = vaddr;
382	int res = 32;
383	unsigned int words;
384	unsigned long num;
385
386	if (!size)
387		return 0;
388
389	words = (size + 31) >> 5;
390	while (!(num = *p++)) {
391		if (!--words)
392			goto out;
393	}
394
395	__asm__ __volatile__ ("bfffo %1{#0,#0},%0"
396			      : "=d" (res) : "d" (num & -num));
397	res ^= 31;
398out:
399	res += ((long)p - (long)vaddr - 4) * 8;
400	return res < size ? res : size;
401}
402#define find_first_bit find_first_bit
403
404static inline int find_next_bit(const unsigned long *vaddr, int size,
405				int offset)
406{
407	const unsigned long *p = vaddr + (offset >> 5);
408	int bit = offset & 31UL, res;
409
410	if (offset >= size)
411		return size;
412
413	if (bit) {
414		unsigned long num = *p++ & (~0UL << bit);
415		offset -= bit;
416
417		/* Look for one in first longword */
418		__asm__ __volatile__ ("bfffo %1{#0,#0},%0"
419				      : "=d" (res) : "d" (num & -num));
420		if (res < 32) {
421			offset += res ^ 31;
422			return offset < size ? offset : size;
423		}
424		offset += 32;
425
426		if (offset >= size)
427			return size;
428	}
429	/* No one yet, search remaining full bytes for a one */
430	return offset + find_first_bit(p, size - offset);
431}
432#define find_next_bit find_next_bit
433
434/*
435 * ffz = Find First Zero in word. Undefined if no zero exists,
436 * so code should check against ~0UL first..
437 */
438static inline unsigned long ffz(unsigned long word)
439{
440	int res;
441
442	__asm__ __volatile__ ("bfffo %1{#0,#0},%0"
443			      : "=d" (res) : "d" (~word & -~word));
444	return res ^ 31;
445}
446
447#endif
448
 
 
449#ifdef __KERNEL__
450
451#if defined(CONFIG_CPU_HAS_NO_BITFIELDS)
452
453/*
454 *	The newer ColdFire family members support a "bitrev" instruction
455 *	and we can use that to implement a fast ffs. Older Coldfire parts,
456 *	and normal 68000 parts don't have anything special, so we use the
457 *	generic functions for those.
458 */
459#if (defined(__mcfisaaplus__) || defined(__mcfisac__)) && \
460	!defined(CONFIG_M68000) && !defined(CONFIG_MCPU32)
461static inline int __ffs(int x)
462{
463	__asm__ __volatile__ ("bitrev %0; ff1 %0"
464		: "=d" (x)
465		: "0" (x));
466	return x;
467}
468
469static inline int ffs(int x)
470{
471	if (!x)
472		return 0;
473	return __ffs(x) + 1;
474}
475
476#else
477#include <asm-generic/bitops/ffs.h>
478#include <asm-generic/bitops/__ffs.h>
479#endif
480
481#include <asm-generic/bitops/fls.h>
482#include <asm-generic/bitops/__fls.h>
483
484#else
485
486/*
487 *	ffs: find first bit set. This is defined the same way as
488 *	the libc and compiler builtin ffs routines, therefore
489 *	differs in spirit from the above ffz (man ffs).
490 */
491static inline int ffs(int x)
492{
493	int cnt;
494
495	__asm__ ("bfffo %1{#0:#0},%0"
496		: "=d" (cnt)
497		: "dm" (x & -x));
498	return 32 - cnt;
499}
500#define __ffs(x) (ffs(x) - 1)
 
 
 
 
501
502/*
503 *	fls: find last bit set.
504 */
505static inline int fls(int x)
506{
507	int cnt;
508
509	__asm__ ("bfffo %1{#0,#0},%0"
510		: "=d" (cnt)
511		: "dm" (x));
512	return 32 - cnt;
513}
514
515static inline int __fls(int x)
516{
517	return fls(x) - 1;
518}
519
520#endif
521
 
 
 
 
 
522#include <asm-generic/bitops/ext2-atomic.h>
523#include <asm-generic/bitops/le.h>
524#include <asm-generic/bitops/fls64.h>
525#include <asm-generic/bitops/sched.h>
526#include <asm-generic/bitops/hweight.h>
527#include <asm-generic/bitops/lock.h>
528#endif /* __KERNEL__ */
529
530#endif /* _M68K_BITOPS_H */