Linux Audio

Check our new training course

Loading...
v5.9
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * SMP boot-related support
  4 *
  5 * Copyright (C) 1998-2003, 2005 Hewlett-Packard Co
  6 *	David Mosberger-Tang <davidm@hpl.hp.com>
  7 * Copyright (C) 2001, 2004-2005 Intel Corp
  8 * 	Rohit Seth <rohit.seth@intel.com>
  9 * 	Suresh Siddha <suresh.b.siddha@intel.com>
 10 * 	Gordon Jin <gordon.jin@intel.com>
 11 *	Ashok Raj  <ashok.raj@intel.com>
 12 *
 13 * 01/05/16 Rohit Seth <rohit.seth@intel.com>	Moved SMP booting functions from smp.c to here.
 14 * 01/04/27 David Mosberger <davidm@hpl.hp.com>	Added ITC synching code.
 15 * 02/07/31 David Mosberger <davidm@hpl.hp.com>	Switch over to hotplug-CPU boot-sequence.
 16 *						smp_boot_cpus()/smp_commence() is replaced by
 17 *						smp_prepare_cpus()/__cpu_up()/smp_cpus_done().
 18 * 04/06/21 Ashok Raj		<ashok.raj@intel.com> Added CPU Hotplug Support
 19 * 04/12/26 Jin Gordon <gordon.jin@intel.com>
 20 * 04/12/26 Rohit Seth <rohit.seth@intel.com>
 21 *						Add multi-threading and multi-core detection
 22 * 05/01/30 Suresh Siddha <suresh.b.siddha@intel.com>
 23 *						Setup cpu_sibling_map and cpu_core_map
 24 */
 25
 26#include <linux/module.h>
 27#include <linux/acpi.h>
 28#include <linux/memblock.h>
 29#include <linux/cpu.h>
 30#include <linux/delay.h>
 31#include <linux/init.h>
 32#include <linux/interrupt.h>
 33#include <linux/irq.h>
 34#include <linux/kernel.h>
 35#include <linux/kernel_stat.h>
 36#include <linux/mm.h>
 37#include <linux/notifier.h>
 38#include <linux/smp.h>
 39#include <linux/spinlock.h>
 40#include <linux/efi.h>
 41#include <linux/percpu.h>
 42#include <linux/bitops.h>
 43
 44#include <linux/atomic.h>
 45#include <asm/cache.h>
 46#include <asm/current.h>
 47#include <asm/delay.h>
 48#include <asm/io.h>
 49#include <asm/irq.h>
 
 50#include <asm/mca.h>
 51#include <asm/page.h>
 
 
 
 52#include <asm/processor.h>
 53#include <asm/ptrace.h>
 54#include <asm/sal.h>
 55#include <asm/tlbflush.h>
 56#include <asm/unistd.h>
 
 57
 58#define SMP_DEBUG 0
 59
 60#if SMP_DEBUG
 61#define Dprintk(x...)  printk(x)
 62#else
 63#define Dprintk(x...)
 64#endif
 65
 66#ifdef CONFIG_HOTPLUG_CPU
 67#ifdef CONFIG_PERMIT_BSP_REMOVE
 68#define bsp_remove_ok	1
 69#else
 70#define bsp_remove_ok	0
 71#endif
 72
 73/*
 74 * Global array allocated for NR_CPUS at boot time
 75 */
 76struct sal_to_os_boot sal_boot_rendez_state[NR_CPUS];
 77
 78/*
 79 * start_ap in head.S uses this to store current booting cpu
 80 * info.
 81 */
 82struct sal_to_os_boot *sal_state_for_booting_cpu = &sal_boot_rendez_state[0];
 83
 84#define set_brendez_area(x) (sal_state_for_booting_cpu = &sal_boot_rendez_state[(x)]);
 85
 86#else
 87#define set_brendez_area(x)
 88#endif
 89
 90
 91/*
 92 * ITC synchronization related stuff:
 93 */
 94#define MASTER	(0)
 95#define SLAVE	(SMP_CACHE_BYTES/8)
 96
 97#define NUM_ROUNDS	64	/* magic value */
 98#define NUM_ITERS	5	/* likewise */
 99
100static DEFINE_SPINLOCK(itc_sync_lock);
101static volatile unsigned long go[SLAVE + 1];
102
103#define DEBUG_ITC_SYNC	0
104
105extern void start_ap (void);
106extern unsigned long ia64_iobase;
107
108struct task_struct *task_for_booting_cpu;
109
110/*
111 * State for each CPU
112 */
113DEFINE_PER_CPU(int, cpu_state);
114
115cpumask_t cpu_core_map[NR_CPUS] __cacheline_aligned;
116EXPORT_SYMBOL(cpu_core_map);
117DEFINE_PER_CPU_SHARED_ALIGNED(cpumask_t, cpu_sibling_map);
118EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
119
120int smp_num_siblings = 1;
121
122/* which logical CPU number maps to which CPU (physical APIC ID) */
123volatile int ia64_cpu_to_sapicid[NR_CPUS];
124EXPORT_SYMBOL(ia64_cpu_to_sapicid);
125
126static cpumask_t cpu_callin_map;
127
128struct smp_boot_data smp_boot_data __initdata;
129
130unsigned long ap_wakeup_vector = -1; /* External Int use to wakeup APs */
131
132char __initdata no_int_routing;
133
134unsigned char smp_int_redirect; /* are INT and IPI redirectable by the chipset? */
135
136#ifdef CONFIG_FORCE_CPEI_RETARGET
137#define CPEI_OVERRIDE_DEFAULT	(1)
138#else
139#define CPEI_OVERRIDE_DEFAULT	(0)
140#endif
141
142unsigned int force_cpei_retarget = CPEI_OVERRIDE_DEFAULT;
143
144static int __init
145cmdl_force_cpei(char *str)
146{
147	int value=0;
148
149	get_option (&str, &value);
150	force_cpei_retarget = value;
151
152	return 1;
153}
154
155__setup("force_cpei=", cmdl_force_cpei);
156
157static int __init
158nointroute (char *str)
159{
160	no_int_routing = 1;
161	printk ("no_int_routing on\n");
162	return 1;
163}
164
165__setup("nointroute", nointroute);
166
167static void fix_b0_for_bsp(void)
168{
169#ifdef CONFIG_HOTPLUG_CPU
170	int cpuid;
171	static int fix_bsp_b0 = 1;
172
173	cpuid = smp_processor_id();
174
175	/*
176	 * Cache the b0 value on the first AP that comes up
177	 */
178	if (!(fix_bsp_b0 && cpuid))
179		return;
180
181	sal_boot_rendez_state[0].br[0] = sal_boot_rendez_state[cpuid].br[0];
182	printk ("Fixed BSP b0 value from CPU %d\n", cpuid);
183
184	fix_bsp_b0 = 0;
185#endif
186}
187
188void
189sync_master (void *arg)
190{
191	unsigned long flags, i;
192
193	go[MASTER] = 0;
194
195	local_irq_save(flags);
196	{
197		for (i = 0; i < NUM_ROUNDS*NUM_ITERS; ++i) {
198			while (!go[MASTER])
199				cpu_relax();
200			go[MASTER] = 0;
201			go[SLAVE] = ia64_get_itc();
202		}
203	}
204	local_irq_restore(flags);
205}
206
207/*
208 * Return the number of cycles by which our itc differs from the itc on the master
209 * (time-keeper) CPU.  A positive number indicates our itc is ahead of the master,
210 * negative that it is behind.
211 */
212static inline long
213get_delta (long *rt, long *master)
214{
215	unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
216	unsigned long tcenter, t0, t1, tm;
217	long i;
218
219	for (i = 0; i < NUM_ITERS; ++i) {
220		t0 = ia64_get_itc();
221		go[MASTER] = 1;
222		while (!(tm = go[SLAVE]))
223			cpu_relax();
224		go[SLAVE] = 0;
225		t1 = ia64_get_itc();
226
227		if (t1 - t0 < best_t1 - best_t0)
228			best_t0 = t0, best_t1 = t1, best_tm = tm;
229	}
230
231	*rt = best_t1 - best_t0;
232	*master = best_tm - best_t0;
233
234	/* average best_t0 and best_t1 without overflow: */
235	tcenter = (best_t0/2 + best_t1/2);
236	if (best_t0 % 2 + best_t1 % 2 == 2)
237		++tcenter;
238	return tcenter - best_tm;
239}
240
241/*
242 * Synchronize ar.itc of the current (slave) CPU with the ar.itc of the MASTER CPU
243 * (normally the time-keeper CPU).  We use a closed loop to eliminate the possibility of
244 * unaccounted-for errors (such as getting a machine check in the middle of a calibration
245 * step).  The basic idea is for the slave to ask the master what itc value it has and to
246 * read its own itc before and after the master responds.  Each iteration gives us three
247 * timestamps:
248 *
249 *	slave		master
250 *
251 *	t0 ---\
252 *             ---\
253 *		   --->
254 *			tm
255 *		   /---
256 *	       /---
257 *	t1 <---
258 *
259 *
260 * The goal is to adjust the slave's ar.itc such that tm falls exactly half-way between t0
261 * and t1.  If we achieve this, the clocks are synchronized provided the interconnect
262 * between the slave and the master is symmetric.  Even if the interconnect were
263 * asymmetric, we would still know that the synchronization error is smaller than the
264 * roundtrip latency (t0 - t1).
265 *
266 * When the interconnect is quiet and symmetric, this lets us synchronize the itc to
267 * within one or two cycles.  However, we can only *guarantee* that the synchronization is
268 * accurate to within a round-trip time, which is typically in the range of several
269 * hundred cycles (e.g., ~500 cycles).  In practice, this means that the itc's are usually
270 * almost perfectly synchronized, but we shouldn't assume that the accuracy is much better
271 * than half a micro second or so.
272 */
273void
274ia64_sync_itc (unsigned int master)
275{
276	long i, delta, adj, adjust_latency = 0, done = 0;
277	unsigned long flags, rt, master_time_stamp, bound;
278#if DEBUG_ITC_SYNC
279	struct {
280		long rt;	/* roundtrip time */
281		long master;	/* master's timestamp */
282		long diff;	/* difference between midpoint and master's timestamp */
283		long lat;	/* estimate of itc adjustment latency */
284	} t[NUM_ROUNDS];
285#endif
286
287	/*
288	 * Make sure local timer ticks are disabled while we sync.  If
289	 * they were enabled, we'd have to worry about nasty issues
290	 * like setting the ITC ahead of (or a long time before) the
291	 * next scheduled tick.
292	 */
293	BUG_ON((ia64_get_itv() & (1 << 16)) == 0);
294
295	go[MASTER] = 1;
296
297	if (smp_call_function_single(master, sync_master, NULL, 0) < 0) {
298		printk(KERN_ERR "sync_itc: failed to get attention of CPU %u!\n", master);
299		return;
300	}
301
302	while (go[MASTER])
303		cpu_relax();	/* wait for master to be ready */
304
305	spin_lock_irqsave(&itc_sync_lock, flags);
306	{
307		for (i = 0; i < NUM_ROUNDS; ++i) {
308			delta = get_delta(&rt, &master_time_stamp);
309			if (delta == 0) {
310				done = 1;	/* let's lock on to this... */
311				bound = rt;
312			}
313
314			if (!done) {
315				if (i > 0) {
316					adjust_latency += -delta;
317					adj = -delta + adjust_latency/4;
318				} else
319					adj = -delta;
320
321				ia64_set_itc(ia64_get_itc() + adj);
322			}
323#if DEBUG_ITC_SYNC
324			t[i].rt = rt;
325			t[i].master = master_time_stamp;
326			t[i].diff = delta;
327			t[i].lat = adjust_latency/4;
328#endif
329		}
330	}
331	spin_unlock_irqrestore(&itc_sync_lock, flags);
332
333#if DEBUG_ITC_SYNC
334	for (i = 0; i < NUM_ROUNDS; ++i)
335		printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
336		       t[i].rt, t[i].master, t[i].diff, t[i].lat);
337#endif
338
339	printk(KERN_INFO "CPU %d: synchronized ITC with CPU %u (last diff %ld cycles, "
340	       "maxerr %lu cycles)\n", smp_processor_id(), master, delta, rt);
341}
342
343/*
344 * Ideally sets up per-cpu profiling hooks.  Doesn't do much now...
345 */
346static inline void smp_setup_percpu_timer(void)
 
347{
348}
349
350static void
351smp_callin (void)
352{
353	int cpuid, phys_id, itc_master;
354	struct cpuinfo_ia64 *last_cpuinfo, *this_cpuinfo;
355	extern void ia64_init_itm(void);
356	extern volatile int time_keeper_id;
357
358#ifdef CONFIG_PERFMON
359	extern void pfm_init_percpu(void);
360#endif
361
362	cpuid = smp_processor_id();
363	phys_id = hard_smp_processor_id();
364	itc_master = time_keeper_id;
365
366	if (cpu_online(cpuid)) {
367		printk(KERN_ERR "huh, phys CPU#0x%x, CPU#0x%x already present??\n",
368		       phys_id, cpuid);
369		BUG();
370	}
371
372	fix_b0_for_bsp();
373
374	/*
375	 * numa_node_id() works after this.
376	 */
377	set_numa_node(cpu_to_node_map[cpuid]);
378	set_numa_mem(local_memory_node(cpu_to_node_map[cpuid]));
379
 
380	spin_lock(&vector_lock);
381	/* Setup the per cpu irq handling data structures */
382	__setup_vector_irq(cpuid);
383	notify_cpu_starting(cpuid);
384	set_cpu_online(cpuid, true);
385	per_cpu(cpu_state, cpuid) = CPU_ONLINE;
386	spin_unlock(&vector_lock);
 
387
388	smp_setup_percpu_timer();
389
390	ia64_mca_cmc_vector_setup();	/* Setup vector on AP */
391
392#ifdef CONFIG_PERFMON
393	pfm_init_percpu();
394#endif
395
396	local_irq_enable();
397
398	if (!(sal_platform_features & IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT)) {
399		/*
400		 * Synchronize the ITC with the BP.  Need to do this after irqs are
401		 * enabled because ia64_sync_itc() calls smp_call_function_single(), which
402		 * calls spin_unlock_bh(), which calls spin_unlock_bh(), which calls
403		 * local_bh_enable(), which bugs out if irqs are not enabled...
404		 */
405		Dprintk("Going to syncup ITC with ITC Master.\n");
406		ia64_sync_itc(itc_master);
407	}
408
409	/*
410	 * Get our bogomips.
411	 */
412	ia64_init_itm();
413
414	/*
415	 * Delay calibration can be skipped if new processor is identical to the
416	 * previous processor.
417	 */
418	last_cpuinfo = cpu_data(cpuid - 1);
419	this_cpuinfo = local_cpu_data;
420	if (last_cpuinfo->itc_freq != this_cpuinfo->itc_freq ||
421	    last_cpuinfo->proc_freq != this_cpuinfo->proc_freq ||
422	    last_cpuinfo->features != this_cpuinfo->features ||
423	    last_cpuinfo->revision != this_cpuinfo->revision ||
424	    last_cpuinfo->family != this_cpuinfo->family ||
425	    last_cpuinfo->archrev != this_cpuinfo->archrev ||
426	    last_cpuinfo->model != this_cpuinfo->model)
427		calibrate_delay();
428	local_cpu_data->loops_per_jiffy = loops_per_jiffy;
429
430	/*
431	 * Allow the master to continue.
432	 */
433	cpumask_set_cpu(cpuid, &cpu_callin_map);
434	Dprintk("Stack on CPU %d at about %p\n",cpuid, &cpuid);
435}
436
437
438/*
439 * Activate a secondary processor.  head.S calls this.
440 */
441int
442start_secondary (void *unused)
443{
444	/* Early console may use I/O ports */
445	ia64_set_kr(IA64_KR_IO_BASE, __pa(ia64_iobase));
446#ifndef CONFIG_PRINTK_TIME
447	Dprintk("start_secondary: starting CPU 0x%x\n", hard_smp_processor_id());
448#endif
449	efi_map_pal_code();
450	cpu_init();
451	preempt_disable();
452	smp_callin();
453
454	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
455	return 0;
456}
457
458static int
 
 
 
 
 
459do_boot_cpu (int sapicid, int cpu, struct task_struct *idle)
460{
461	int timeout;
462
463	task_for_booting_cpu = idle;
464	Dprintk("Sending wakeup vector %lu to AP 0x%x/0x%x.\n", ap_wakeup_vector, cpu, sapicid);
465
466	set_brendez_area(cpu);
467	ia64_send_ipi(cpu, ap_wakeup_vector, IA64_IPI_DM_INT, 0);
468
469	/*
470	 * Wait 10s total for the AP to start
471	 */
472	Dprintk("Waiting on callin_map ...");
473	for (timeout = 0; timeout < 100000; timeout++) {
474		if (cpumask_test_cpu(cpu, &cpu_callin_map))
475			break;  /* It has booted */
476		barrier(); /* Make sure we re-read cpu_callin_map */
477		udelay(100);
478	}
479	Dprintk("\n");
480
481	if (!cpumask_test_cpu(cpu, &cpu_callin_map)) {
482		printk(KERN_ERR "Processor 0x%x/0x%x is stuck.\n", cpu, sapicid);
483		ia64_cpu_to_sapicid[cpu] = -1;
484		set_cpu_online(cpu, false);  /* was set in smp_callin() */
485		return -EINVAL;
486	}
487	return 0;
488}
489
490static int __init
491decay (char *str)
492{
493	int ticks;
494	get_option (&str, &ticks);
495	return 1;
496}
497
498__setup("decay=", decay);
499
500/*
501 * Initialize the logical CPU number to SAPICID mapping
502 */
503void __init
504smp_build_cpu_map (void)
505{
506	int sapicid, cpu, i;
507	int boot_cpu_id = hard_smp_processor_id();
508
509	for (cpu = 0; cpu < NR_CPUS; cpu++) {
510		ia64_cpu_to_sapicid[cpu] = -1;
511	}
512
513	ia64_cpu_to_sapicid[0] = boot_cpu_id;
514	init_cpu_present(cpumask_of(0));
515	set_cpu_possible(0, true);
516	for (cpu = 1, i = 0; i < smp_boot_data.cpu_count; i++) {
517		sapicid = smp_boot_data.cpu_phys_id[i];
518		if (sapicid == boot_cpu_id)
519			continue;
520		set_cpu_present(cpu, true);
521		set_cpu_possible(cpu, true);
522		ia64_cpu_to_sapicid[cpu] = sapicid;
523		cpu++;
524	}
525}
526
527/*
528 * Cycle through the APs sending Wakeup IPIs to boot each.
529 */
530void __init
531smp_prepare_cpus (unsigned int max_cpus)
532{
533	int boot_cpu_id = hard_smp_processor_id();
534
535	/*
536	 * Initialize the per-CPU profiling counter/multiplier
537	 */
538
539	smp_setup_percpu_timer();
540
541	cpumask_set_cpu(0, &cpu_callin_map);
542
543	local_cpu_data->loops_per_jiffy = loops_per_jiffy;
544	ia64_cpu_to_sapicid[0] = boot_cpu_id;
545
546	printk(KERN_INFO "Boot processor id 0x%x/0x%x\n", 0, boot_cpu_id);
547
548	current_thread_info()->cpu = 0;
549
550	/*
551	 * If SMP should be disabled, then really disable it!
552	 */
553	if (!max_cpus) {
554		printk(KERN_INFO "SMP mode deactivated.\n");
555		init_cpu_online(cpumask_of(0));
556		init_cpu_present(cpumask_of(0));
557		init_cpu_possible(cpumask_of(0));
558		return;
559	}
560}
561
562void smp_prepare_boot_cpu(void)
563{
564	set_cpu_online(smp_processor_id(), true);
565	cpumask_set_cpu(smp_processor_id(), &cpu_callin_map);
566	set_numa_node(cpu_to_node_map[smp_processor_id()]);
567	per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE;
 
568}
569
570#ifdef CONFIG_HOTPLUG_CPU
571static inline void
572clear_cpu_sibling_map(int cpu)
573{
574	int i;
575
576	for_each_cpu(i, &per_cpu(cpu_sibling_map, cpu))
577		cpumask_clear_cpu(cpu, &per_cpu(cpu_sibling_map, i));
578	for_each_cpu(i, &cpu_core_map[cpu])
579		cpumask_clear_cpu(cpu, &cpu_core_map[i]);
580
581	per_cpu(cpu_sibling_map, cpu) = cpu_core_map[cpu] = CPU_MASK_NONE;
582}
583
584static void
585remove_siblinginfo(int cpu)
586{
587	int last = 0;
588
589	if (cpu_data(cpu)->threads_per_core == 1 &&
590	    cpu_data(cpu)->cores_per_socket == 1) {
591		cpumask_clear_cpu(cpu, &cpu_core_map[cpu]);
592		cpumask_clear_cpu(cpu, &per_cpu(cpu_sibling_map, cpu));
593		return;
594	}
595
596	last = (cpumask_weight(&cpu_core_map[cpu]) == 1 ? 1 : 0);
597
598	/* remove it from all sibling map's */
599	clear_cpu_sibling_map(cpu);
600}
601
602extern void fixup_irqs(void);
603
604int migrate_platform_irqs(unsigned int cpu)
605{
606	int new_cpei_cpu;
607	struct irq_data *data = NULL;
608	const struct cpumask *mask;
609	int 		retval = 0;
610
611	/*
612	 * dont permit CPEI target to removed.
613	 */
614	if (cpe_vector > 0 && is_cpu_cpei_target(cpu)) {
615		printk ("CPU (%d) is CPEI Target\n", cpu);
616		if (can_cpei_retarget()) {
617			/*
618			 * Now re-target the CPEI to a different processor
619			 */
620			new_cpei_cpu = cpumask_any(cpu_online_mask);
621			mask = cpumask_of(new_cpei_cpu);
622			set_cpei_target_cpu(new_cpei_cpu);
623			data = irq_get_irq_data(ia64_cpe_irq);
624			/*
625			 * Switch for now, immediately, we need to do fake intr
626			 * as other interrupts, but need to study CPEI behaviour with
627			 * polling before making changes.
628			 */
629			if (data && data->chip) {
630				data->chip->irq_disable(data);
631				data->chip->irq_set_affinity(data, mask, false);
632				data->chip->irq_enable(data);
633				printk ("Re-targeting CPEI to cpu %d\n", new_cpei_cpu);
634			}
635		}
636		if (!data) {
637			printk ("Unable to retarget CPEI, offline cpu [%d] failed\n", cpu);
638			retval = -EBUSY;
639		}
640	}
641	return retval;
642}
643
644/* must be called with cpucontrol mutex held */
645int __cpu_disable(void)
646{
647	int cpu = smp_processor_id();
648
649	/*
650	 * dont permit boot processor for now
651	 */
652	if (cpu == 0 && !bsp_remove_ok) {
653		printk ("Your platform does not support removal of BSP\n");
654		return (-EBUSY);
655	}
656
 
 
 
 
 
657	set_cpu_online(cpu, false);
658
659	if (migrate_platform_irqs(cpu)) {
660		set_cpu_online(cpu, true);
661		return -EBUSY;
662	}
663
664	remove_siblinginfo(cpu);
665	fixup_irqs();
666	local_flush_tlb_all();
667	cpumask_clear_cpu(cpu, &cpu_callin_map);
668	return 0;
669}
670
671void __cpu_die(unsigned int cpu)
672{
673	unsigned int i;
674
675	for (i = 0; i < 100; i++) {
676		/* They ack this in play_dead by setting CPU_DEAD */
677		if (per_cpu(cpu_state, cpu) == CPU_DEAD)
678		{
679			printk ("CPU %d is now offline\n", cpu);
680			return;
681		}
682		msleep(100);
683	}
684 	printk(KERN_ERR "CPU %u didn't die...\n", cpu);
685}
686#endif /* CONFIG_HOTPLUG_CPU */
687
688void
689smp_cpus_done (unsigned int dummy)
690{
691	int cpu;
692	unsigned long bogosum = 0;
693
694	/*
695	 * Allow the user to impress friends.
696	 */
697
698	for_each_online_cpu(cpu) {
699		bogosum += cpu_data(cpu)->loops_per_jiffy;
700	}
701
702	printk(KERN_INFO "Total of %d processors activated (%lu.%02lu BogoMIPS).\n",
703	       (int)num_online_cpus(), bogosum/(500000/HZ), (bogosum/(5000/HZ))%100);
704}
705
706static inline void set_cpu_sibling_map(int cpu)
 
707{
708	int i;
709
710	for_each_online_cpu(i) {
711		if ((cpu_data(cpu)->socket_id == cpu_data(i)->socket_id)) {
712			cpumask_set_cpu(i, &cpu_core_map[cpu]);
713			cpumask_set_cpu(cpu, &cpu_core_map[i]);
714			if (cpu_data(cpu)->core_id == cpu_data(i)->core_id) {
715				cpumask_set_cpu(i,
716						&per_cpu(cpu_sibling_map, cpu));
717				cpumask_set_cpu(cpu,
718						&per_cpu(cpu_sibling_map, i));
719			}
720		}
721	}
722}
723
724int
725__cpu_up(unsigned int cpu, struct task_struct *tidle)
726{
727	int ret;
728	int sapicid;
729
730	sapicid = ia64_cpu_to_sapicid[cpu];
731	if (sapicid == -1)
732		return -EINVAL;
733
734	/*
735	 * Already booted cpu? not valid anymore since we dont
736	 * do idle loop tightspin anymore.
737	 */
738	if (cpumask_test_cpu(cpu, &cpu_callin_map))
739		return -EINVAL;
740
741	per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
742	/* Processor goes to start_secondary(), sets online flag */
743	ret = do_boot_cpu(sapicid, cpu, tidle);
744	if (ret < 0)
745		return ret;
746
747	if (cpu_data(cpu)->threads_per_core == 1 &&
748	    cpu_data(cpu)->cores_per_socket == 1) {
749		cpumask_set_cpu(cpu, &per_cpu(cpu_sibling_map, cpu));
750		cpumask_set_cpu(cpu, &cpu_core_map[cpu]);
751		return 0;
752	}
753
754	set_cpu_sibling_map(cpu);
755
756	return 0;
757}
758
759/*
760 * Assume that CPUs have been discovered by some platform-dependent interface.  For
761 * SoftSDV/Lion, that would be ACPI.
762 *
763 * Setup of the IPI irq handler is done in irq.c:init_IRQ_SMP().
764 */
765void __init
766init_smp_config(void)
767{
768	struct fptr {
769		unsigned long fp;
770		unsigned long gp;
771	} *ap_startup;
772	long sal_ret;
773
774	/* Tell SAL where to drop the APs.  */
775	ap_startup = (struct fptr *) start_ap;
776	sal_ret = ia64_sal_set_vectors(SAL_VECTOR_OS_BOOT_RENDEZ,
777				       ia64_tpa(ap_startup->fp), ia64_tpa(ap_startup->gp), 0, 0, 0, 0);
778	if (sal_ret < 0)
779		printk(KERN_ERR "SMP: Can't set SAL AP Boot Rendezvous: %s\n",
780		       ia64_sal_strerror(sal_ret));
781}
782
783/*
784 * identify_siblings(cpu) gets called from identify_cpu. This populates the 
785 * information related to logical execution units in per_cpu_data structure.
786 */
787void identify_siblings(struct cpuinfo_ia64 *c)
 
788{
789	long status;
790	u16 pltid;
791	pal_logical_to_physical_t info;
792
793	status = ia64_pal_logical_to_phys(-1, &info);
794	if (status != PAL_STATUS_SUCCESS) {
795		if (status != PAL_STATUS_UNIMPLEMENTED) {
796			printk(KERN_ERR
797				"ia64_pal_logical_to_phys failed with %ld\n",
798				status);
799			return;
800		}
801
802		info.overview_ppid = 0;
803		info.overview_cpp  = 1;
804		info.overview_tpc  = 1;
805	}
806
807	status = ia64_sal_physical_id_info(&pltid);
808	if (status != PAL_STATUS_SUCCESS) {
809		if (status != PAL_STATUS_UNIMPLEMENTED)
810			printk(KERN_ERR
811				"ia64_sal_pltid failed with %ld\n",
812				status);
813		return;
814	}
815
816	c->socket_id =  (pltid << 8) | info.overview_ppid;
817
818	if (info.overview_cpp == 1 && info.overview_tpc == 1)
819		return;
820
821	c->cores_per_socket = info.overview_cpp;
822	c->threads_per_core = info.overview_tpc;
823	c->num_log = info.overview_num_log;
824
825	c->core_id = info.log1_cid;
826	c->thread_id = info.log1_tid;
827}
828
829/*
830 * returns non zero, if multi-threading is enabled
831 * on at least one physical package. Due to hotplug cpu
832 * and (maxcpus=), all threads may not necessarily be enabled
833 * even though the processor supports multi-threading.
834 */
835int is_multithreading_enabled(void)
836{
837	int i, j;
838
839	for_each_present_cpu(i) {
840		for_each_present_cpu(j) {
841			if (j == i)
842				continue;
843			if ((cpu_data(j)->socket_id == cpu_data(i)->socket_id)) {
844				if (cpu_data(j)->core_id == cpu_data(i)->core_id)
845					return 1;
846			}
847		}
848	}
849	return 0;
850}
851EXPORT_SYMBOL_GPL(is_multithreading_enabled);
v3.5.6
 
  1/*
  2 * SMP boot-related support
  3 *
  4 * Copyright (C) 1998-2003, 2005 Hewlett-Packard Co
  5 *	David Mosberger-Tang <davidm@hpl.hp.com>
  6 * Copyright (C) 2001, 2004-2005 Intel Corp
  7 * 	Rohit Seth <rohit.seth@intel.com>
  8 * 	Suresh Siddha <suresh.b.siddha@intel.com>
  9 * 	Gordon Jin <gordon.jin@intel.com>
 10 *	Ashok Raj  <ashok.raj@intel.com>
 11 *
 12 * 01/05/16 Rohit Seth <rohit.seth@intel.com>	Moved SMP booting functions from smp.c to here.
 13 * 01/04/27 David Mosberger <davidm@hpl.hp.com>	Added ITC synching code.
 14 * 02/07/31 David Mosberger <davidm@hpl.hp.com>	Switch over to hotplug-CPU boot-sequence.
 15 *						smp_boot_cpus()/smp_commence() is replaced by
 16 *						smp_prepare_cpus()/__cpu_up()/smp_cpus_done().
 17 * 04/06/21 Ashok Raj		<ashok.raj@intel.com> Added CPU Hotplug Support
 18 * 04/12/26 Jin Gordon <gordon.jin@intel.com>
 19 * 04/12/26 Rohit Seth <rohit.seth@intel.com>
 20 *						Add multi-threading and multi-core detection
 21 * 05/01/30 Suresh Siddha <suresh.b.siddha@intel.com>
 22 *						Setup cpu_sibling_map and cpu_core_map
 23 */
 24
 25#include <linux/module.h>
 26#include <linux/acpi.h>
 27#include <linux/bootmem.h>
 28#include <linux/cpu.h>
 29#include <linux/delay.h>
 30#include <linux/init.h>
 31#include <linux/interrupt.h>
 32#include <linux/irq.h>
 33#include <linux/kernel.h>
 34#include <linux/kernel_stat.h>
 35#include <linux/mm.h>
 36#include <linux/notifier.h>
 37#include <linux/smp.h>
 38#include <linux/spinlock.h>
 39#include <linux/efi.h>
 40#include <linux/percpu.h>
 41#include <linux/bitops.h>
 42
 43#include <linux/atomic.h>
 44#include <asm/cache.h>
 45#include <asm/current.h>
 46#include <asm/delay.h>
 47#include <asm/io.h>
 48#include <asm/irq.h>
 49#include <asm/machvec.h>
 50#include <asm/mca.h>
 51#include <asm/page.h>
 52#include <asm/paravirt.h>
 53#include <asm/pgalloc.h>
 54#include <asm/pgtable.h>
 55#include <asm/processor.h>
 56#include <asm/ptrace.h>
 57#include <asm/sal.h>
 58#include <asm/tlbflush.h>
 59#include <asm/unistd.h>
 60#include <asm/sn/arch.h>
 61
 62#define SMP_DEBUG 0
 63
 64#if SMP_DEBUG
 65#define Dprintk(x...)  printk(x)
 66#else
 67#define Dprintk(x...)
 68#endif
 69
 70#ifdef CONFIG_HOTPLUG_CPU
 71#ifdef CONFIG_PERMIT_BSP_REMOVE
 72#define bsp_remove_ok	1
 73#else
 74#define bsp_remove_ok	0
 75#endif
 76
 77/*
 78 * Global array allocated for NR_CPUS at boot time
 79 */
 80struct sal_to_os_boot sal_boot_rendez_state[NR_CPUS];
 81
 82/*
 83 * start_ap in head.S uses this to store current booting cpu
 84 * info.
 85 */
 86struct sal_to_os_boot *sal_state_for_booting_cpu = &sal_boot_rendez_state[0];
 87
 88#define set_brendez_area(x) (sal_state_for_booting_cpu = &sal_boot_rendez_state[(x)]);
 89
 90#else
 91#define set_brendez_area(x)
 92#endif
 93
 94
 95/*
 96 * ITC synchronization related stuff:
 97 */
 98#define MASTER	(0)
 99#define SLAVE	(SMP_CACHE_BYTES/8)
100
101#define NUM_ROUNDS	64	/* magic value */
102#define NUM_ITERS	5	/* likewise */
103
104static DEFINE_SPINLOCK(itc_sync_lock);
105static volatile unsigned long go[SLAVE + 1];
106
107#define DEBUG_ITC_SYNC	0
108
109extern void start_ap (void);
110extern unsigned long ia64_iobase;
111
112struct task_struct *task_for_booting_cpu;
113
114/*
115 * State for each CPU
116 */
117DEFINE_PER_CPU(int, cpu_state);
118
119cpumask_t cpu_core_map[NR_CPUS] __cacheline_aligned;
120EXPORT_SYMBOL(cpu_core_map);
121DEFINE_PER_CPU_SHARED_ALIGNED(cpumask_t, cpu_sibling_map);
122EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
123
124int smp_num_siblings = 1;
125
126/* which logical CPU number maps to which CPU (physical APIC ID) */
127volatile int ia64_cpu_to_sapicid[NR_CPUS];
128EXPORT_SYMBOL(ia64_cpu_to_sapicid);
129
130static volatile cpumask_t cpu_callin_map;
131
132struct smp_boot_data smp_boot_data __initdata;
133
134unsigned long ap_wakeup_vector = -1; /* External Int use to wakeup APs */
135
136char __initdata no_int_routing;
137
138unsigned char smp_int_redirect; /* are INT and IPI redirectable by the chipset? */
139
140#ifdef CONFIG_FORCE_CPEI_RETARGET
141#define CPEI_OVERRIDE_DEFAULT	(1)
142#else
143#define CPEI_OVERRIDE_DEFAULT	(0)
144#endif
145
146unsigned int force_cpei_retarget = CPEI_OVERRIDE_DEFAULT;
147
148static int __init
149cmdl_force_cpei(char *str)
150{
151	int value=0;
152
153	get_option (&str, &value);
154	force_cpei_retarget = value;
155
156	return 1;
157}
158
159__setup("force_cpei=", cmdl_force_cpei);
160
161static int __init
162nointroute (char *str)
163{
164	no_int_routing = 1;
165	printk ("no_int_routing on\n");
166	return 1;
167}
168
169__setup("nointroute", nointroute);
170
171static void fix_b0_for_bsp(void)
172{
173#ifdef CONFIG_HOTPLUG_CPU
174	int cpuid;
175	static int fix_bsp_b0 = 1;
176
177	cpuid = smp_processor_id();
178
179	/*
180	 * Cache the b0 value on the first AP that comes up
181	 */
182	if (!(fix_bsp_b0 && cpuid))
183		return;
184
185	sal_boot_rendez_state[0].br[0] = sal_boot_rendez_state[cpuid].br[0];
186	printk ("Fixed BSP b0 value from CPU %d\n", cpuid);
187
188	fix_bsp_b0 = 0;
189#endif
190}
191
192void
193sync_master (void *arg)
194{
195	unsigned long flags, i;
196
197	go[MASTER] = 0;
198
199	local_irq_save(flags);
200	{
201		for (i = 0; i < NUM_ROUNDS*NUM_ITERS; ++i) {
202			while (!go[MASTER])
203				cpu_relax();
204			go[MASTER] = 0;
205			go[SLAVE] = ia64_get_itc();
206		}
207	}
208	local_irq_restore(flags);
209}
210
211/*
212 * Return the number of cycles by which our itc differs from the itc on the master
213 * (time-keeper) CPU.  A positive number indicates our itc is ahead of the master,
214 * negative that it is behind.
215 */
216static inline long
217get_delta (long *rt, long *master)
218{
219	unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
220	unsigned long tcenter, t0, t1, tm;
221	long i;
222
223	for (i = 0; i < NUM_ITERS; ++i) {
224		t0 = ia64_get_itc();
225		go[MASTER] = 1;
226		while (!(tm = go[SLAVE]))
227			cpu_relax();
228		go[SLAVE] = 0;
229		t1 = ia64_get_itc();
230
231		if (t1 - t0 < best_t1 - best_t0)
232			best_t0 = t0, best_t1 = t1, best_tm = tm;
233	}
234
235	*rt = best_t1 - best_t0;
236	*master = best_tm - best_t0;
237
238	/* average best_t0 and best_t1 without overflow: */
239	tcenter = (best_t0/2 + best_t1/2);
240	if (best_t0 % 2 + best_t1 % 2 == 2)
241		++tcenter;
242	return tcenter - best_tm;
243}
244
245/*
246 * Synchronize ar.itc of the current (slave) CPU with the ar.itc of the MASTER CPU
247 * (normally the time-keeper CPU).  We use a closed loop to eliminate the possibility of
248 * unaccounted-for errors (such as getting a machine check in the middle of a calibration
249 * step).  The basic idea is for the slave to ask the master what itc value it has and to
250 * read its own itc before and after the master responds.  Each iteration gives us three
251 * timestamps:
252 *
253 *	slave		master
254 *
255 *	t0 ---\
256 *             ---\
257 *		   --->
258 *			tm
259 *		   /---
260 *	       /---
261 *	t1 <---
262 *
263 *
264 * The goal is to adjust the slave's ar.itc such that tm falls exactly half-way between t0
265 * and t1.  If we achieve this, the clocks are synchronized provided the interconnect
266 * between the slave and the master is symmetric.  Even if the interconnect were
267 * asymmetric, we would still know that the synchronization error is smaller than the
268 * roundtrip latency (t0 - t1).
269 *
270 * When the interconnect is quiet and symmetric, this lets us synchronize the itc to
271 * within one or two cycles.  However, we can only *guarantee* that the synchronization is
272 * accurate to within a round-trip time, which is typically in the range of several
273 * hundred cycles (e.g., ~500 cycles).  In practice, this means that the itc's are usually
274 * almost perfectly synchronized, but we shouldn't assume that the accuracy is much better
275 * than half a micro second or so.
276 */
277void
278ia64_sync_itc (unsigned int master)
279{
280	long i, delta, adj, adjust_latency = 0, done = 0;
281	unsigned long flags, rt, master_time_stamp, bound;
282#if DEBUG_ITC_SYNC
283	struct {
284		long rt;	/* roundtrip time */
285		long master;	/* master's timestamp */
286		long diff;	/* difference between midpoint and master's timestamp */
287		long lat;	/* estimate of itc adjustment latency */
288	} t[NUM_ROUNDS];
289#endif
290
291	/*
292	 * Make sure local timer ticks are disabled while we sync.  If
293	 * they were enabled, we'd have to worry about nasty issues
294	 * like setting the ITC ahead of (or a long time before) the
295	 * next scheduled tick.
296	 */
297	BUG_ON((ia64_get_itv() & (1 << 16)) == 0);
298
299	go[MASTER] = 1;
300
301	if (smp_call_function_single(master, sync_master, NULL, 0) < 0) {
302		printk(KERN_ERR "sync_itc: failed to get attention of CPU %u!\n", master);
303		return;
304	}
305
306	while (go[MASTER])
307		cpu_relax();	/* wait for master to be ready */
308
309	spin_lock_irqsave(&itc_sync_lock, flags);
310	{
311		for (i = 0; i < NUM_ROUNDS; ++i) {
312			delta = get_delta(&rt, &master_time_stamp);
313			if (delta == 0) {
314				done = 1;	/* let's lock on to this... */
315				bound = rt;
316			}
317
318			if (!done) {
319				if (i > 0) {
320					adjust_latency += -delta;
321					adj = -delta + adjust_latency/4;
322				} else
323					adj = -delta;
324
325				ia64_set_itc(ia64_get_itc() + adj);
326			}
327#if DEBUG_ITC_SYNC
328			t[i].rt = rt;
329			t[i].master = master_time_stamp;
330			t[i].diff = delta;
331			t[i].lat = adjust_latency/4;
332#endif
333		}
334	}
335	spin_unlock_irqrestore(&itc_sync_lock, flags);
336
337#if DEBUG_ITC_SYNC
338	for (i = 0; i < NUM_ROUNDS; ++i)
339		printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
340		       t[i].rt, t[i].master, t[i].diff, t[i].lat);
341#endif
342
343	printk(KERN_INFO "CPU %d: synchronized ITC with CPU %u (last diff %ld cycles, "
344	       "maxerr %lu cycles)\n", smp_processor_id(), master, delta, rt);
345}
346
347/*
348 * Ideally sets up per-cpu profiling hooks.  Doesn't do much now...
349 */
350static inline void __devinit
351smp_setup_percpu_timer (void)
352{
353}
354
355static void __cpuinit
356smp_callin (void)
357{
358	int cpuid, phys_id, itc_master;
359	struct cpuinfo_ia64 *last_cpuinfo, *this_cpuinfo;
360	extern void ia64_init_itm(void);
361	extern volatile int time_keeper_id;
362
363#ifdef CONFIG_PERFMON
364	extern void pfm_init_percpu(void);
365#endif
366
367	cpuid = smp_processor_id();
368	phys_id = hard_smp_processor_id();
369	itc_master = time_keeper_id;
370
371	if (cpu_online(cpuid)) {
372		printk(KERN_ERR "huh, phys CPU#0x%x, CPU#0x%x already present??\n",
373		       phys_id, cpuid);
374		BUG();
375	}
376
377	fix_b0_for_bsp();
378
379	/*
380	 * numa_node_id() works after this.
381	 */
382	set_numa_node(cpu_to_node_map[cpuid]);
383	set_numa_mem(local_memory_node(cpu_to_node_map[cpuid]));
384
385	ipi_call_lock_irq();
386	spin_lock(&vector_lock);
387	/* Setup the per cpu irq handling data structures */
388	__setup_vector_irq(cpuid);
389	notify_cpu_starting(cpuid);
390	set_cpu_online(cpuid, true);
391	per_cpu(cpu_state, cpuid) = CPU_ONLINE;
392	spin_unlock(&vector_lock);
393	ipi_call_unlock_irq();
394
395	smp_setup_percpu_timer();
396
397	ia64_mca_cmc_vector_setup();	/* Setup vector on AP */
398
399#ifdef CONFIG_PERFMON
400	pfm_init_percpu();
401#endif
402
403	local_irq_enable();
404
405	if (!(sal_platform_features & IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT)) {
406		/*
407		 * Synchronize the ITC with the BP.  Need to do this after irqs are
408		 * enabled because ia64_sync_itc() calls smp_call_function_single(), which
409		 * calls spin_unlock_bh(), which calls spin_unlock_bh(), which calls
410		 * local_bh_enable(), which bugs out if irqs are not enabled...
411		 */
412		Dprintk("Going to syncup ITC with ITC Master.\n");
413		ia64_sync_itc(itc_master);
414	}
415
416	/*
417	 * Get our bogomips.
418	 */
419	ia64_init_itm();
420
421	/*
422	 * Delay calibration can be skipped if new processor is identical to the
423	 * previous processor.
424	 */
425	last_cpuinfo = cpu_data(cpuid - 1);
426	this_cpuinfo = local_cpu_data;
427	if (last_cpuinfo->itc_freq != this_cpuinfo->itc_freq ||
428	    last_cpuinfo->proc_freq != this_cpuinfo->proc_freq ||
429	    last_cpuinfo->features != this_cpuinfo->features ||
430	    last_cpuinfo->revision != this_cpuinfo->revision ||
431	    last_cpuinfo->family != this_cpuinfo->family ||
432	    last_cpuinfo->archrev != this_cpuinfo->archrev ||
433	    last_cpuinfo->model != this_cpuinfo->model)
434		calibrate_delay();
435	local_cpu_data->loops_per_jiffy = loops_per_jiffy;
436
437	/*
438	 * Allow the master to continue.
439	 */
440	cpu_set(cpuid, cpu_callin_map);
441	Dprintk("Stack on CPU %d at about %p\n",cpuid, &cpuid);
442}
443
444
445/*
446 * Activate a secondary processor.  head.S calls this.
447 */
448int __cpuinit
449start_secondary (void *unused)
450{
451	/* Early console may use I/O ports */
452	ia64_set_kr(IA64_KR_IO_BASE, __pa(ia64_iobase));
453#ifndef CONFIG_PRINTK_TIME
454	Dprintk("start_secondary: starting CPU 0x%x\n", hard_smp_processor_id());
455#endif
456	efi_map_pal_code();
457	cpu_init();
458	preempt_disable();
459	smp_callin();
460
461	cpu_idle();
462	return 0;
463}
464
465struct pt_regs * __cpuinit idle_regs(struct pt_regs *regs)
466{
467	return NULL;
468}
469
470static int __cpuinit
471do_boot_cpu (int sapicid, int cpu, struct task_struct *idle)
472{
473	int timeout;
474
475	task_for_booting_cpu = idle;
476	Dprintk("Sending wakeup vector %lu to AP 0x%x/0x%x.\n", ap_wakeup_vector, cpu, sapicid);
477
478	set_brendez_area(cpu);
479	platform_send_ipi(cpu, ap_wakeup_vector, IA64_IPI_DM_INT, 0);
480
481	/*
482	 * Wait 10s total for the AP to start
483	 */
484	Dprintk("Waiting on callin_map ...");
485	for (timeout = 0; timeout < 100000; timeout++) {
486		if (cpu_isset(cpu, cpu_callin_map))
487			break;  /* It has booted */
 
488		udelay(100);
489	}
490	Dprintk("\n");
491
492	if (!cpu_isset(cpu, cpu_callin_map)) {
493		printk(KERN_ERR "Processor 0x%x/0x%x is stuck.\n", cpu, sapicid);
494		ia64_cpu_to_sapicid[cpu] = -1;
495		set_cpu_online(cpu, false);  /* was set in smp_callin() */
496		return -EINVAL;
497	}
498	return 0;
499}
500
501static int __init
502decay (char *str)
503{
504	int ticks;
505	get_option (&str, &ticks);
506	return 1;
507}
508
509__setup("decay=", decay);
510
511/*
512 * Initialize the logical CPU number to SAPICID mapping
513 */
514void __init
515smp_build_cpu_map (void)
516{
517	int sapicid, cpu, i;
518	int boot_cpu_id = hard_smp_processor_id();
519
520	for (cpu = 0; cpu < NR_CPUS; cpu++) {
521		ia64_cpu_to_sapicid[cpu] = -1;
522	}
523
524	ia64_cpu_to_sapicid[0] = boot_cpu_id;
525	init_cpu_present(cpumask_of(0));
526	set_cpu_possible(0, true);
527	for (cpu = 1, i = 0; i < smp_boot_data.cpu_count; i++) {
528		sapicid = smp_boot_data.cpu_phys_id[i];
529		if (sapicid == boot_cpu_id)
530			continue;
531		set_cpu_present(cpu, true);
532		set_cpu_possible(cpu, true);
533		ia64_cpu_to_sapicid[cpu] = sapicid;
534		cpu++;
535	}
536}
537
538/*
539 * Cycle through the APs sending Wakeup IPIs to boot each.
540 */
541void __init
542smp_prepare_cpus (unsigned int max_cpus)
543{
544	int boot_cpu_id = hard_smp_processor_id();
545
546	/*
547	 * Initialize the per-CPU profiling counter/multiplier
548	 */
549
550	smp_setup_percpu_timer();
551
552	cpu_set(0, cpu_callin_map);
553
554	local_cpu_data->loops_per_jiffy = loops_per_jiffy;
555	ia64_cpu_to_sapicid[0] = boot_cpu_id;
556
557	printk(KERN_INFO "Boot processor id 0x%x/0x%x\n", 0, boot_cpu_id);
558
559	current_thread_info()->cpu = 0;
560
561	/*
562	 * If SMP should be disabled, then really disable it!
563	 */
564	if (!max_cpus) {
565		printk(KERN_INFO "SMP mode deactivated.\n");
566		init_cpu_online(cpumask_of(0));
567		init_cpu_present(cpumask_of(0));
568		init_cpu_possible(cpumask_of(0));
569		return;
570	}
571}
572
573void __devinit smp_prepare_boot_cpu(void)
574{
575	set_cpu_online(smp_processor_id(), true);
576	cpu_set(smp_processor_id(), cpu_callin_map);
577	set_numa_node(cpu_to_node_map[smp_processor_id()]);
578	per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE;
579	paravirt_post_smp_prepare_boot_cpu();
580}
581
582#ifdef CONFIG_HOTPLUG_CPU
583static inline void
584clear_cpu_sibling_map(int cpu)
585{
586	int i;
587
588	for_each_cpu_mask(i, per_cpu(cpu_sibling_map, cpu))
589		cpu_clear(cpu, per_cpu(cpu_sibling_map, i));
590	for_each_cpu_mask(i, cpu_core_map[cpu])
591		cpu_clear(cpu, cpu_core_map[i]);
592
593	per_cpu(cpu_sibling_map, cpu) = cpu_core_map[cpu] = CPU_MASK_NONE;
594}
595
596static void
597remove_siblinginfo(int cpu)
598{
599	int last = 0;
600
601	if (cpu_data(cpu)->threads_per_core == 1 &&
602	    cpu_data(cpu)->cores_per_socket == 1) {
603		cpu_clear(cpu, cpu_core_map[cpu]);
604		cpu_clear(cpu, per_cpu(cpu_sibling_map, cpu));
605		return;
606	}
607
608	last = (cpus_weight(cpu_core_map[cpu]) == 1 ? 1 : 0);
609
610	/* remove it from all sibling map's */
611	clear_cpu_sibling_map(cpu);
612}
613
614extern void fixup_irqs(void);
615
616int migrate_platform_irqs(unsigned int cpu)
617{
618	int new_cpei_cpu;
619	struct irq_data *data = NULL;
620	const struct cpumask *mask;
621	int 		retval = 0;
622
623	/*
624	 * dont permit CPEI target to removed.
625	 */
626	if (cpe_vector > 0 && is_cpu_cpei_target(cpu)) {
627		printk ("CPU (%d) is CPEI Target\n", cpu);
628		if (can_cpei_retarget()) {
629			/*
630			 * Now re-target the CPEI to a different processor
631			 */
632			new_cpei_cpu = cpumask_any(cpu_online_mask);
633			mask = cpumask_of(new_cpei_cpu);
634			set_cpei_target_cpu(new_cpei_cpu);
635			data = irq_get_irq_data(ia64_cpe_irq);
636			/*
637			 * Switch for now, immediately, we need to do fake intr
638			 * as other interrupts, but need to study CPEI behaviour with
639			 * polling before making changes.
640			 */
641			if (data && data->chip) {
642				data->chip->irq_disable(data);
643				data->chip->irq_set_affinity(data, mask, false);
644				data->chip->irq_enable(data);
645				printk ("Re-targeting CPEI to cpu %d\n", new_cpei_cpu);
646			}
647		}
648		if (!data) {
649			printk ("Unable to retarget CPEI, offline cpu [%d] failed\n", cpu);
650			retval = -EBUSY;
651		}
652	}
653	return retval;
654}
655
656/* must be called with cpucontrol mutex held */
657int __cpu_disable(void)
658{
659	int cpu = smp_processor_id();
660
661	/*
662	 * dont permit boot processor for now
663	 */
664	if (cpu == 0 && !bsp_remove_ok) {
665		printk ("Your platform does not support removal of BSP\n");
666		return (-EBUSY);
667	}
668
669	if (ia64_platform_is("sn2")) {
670		if (!sn_cpu_disable_allowed(cpu))
671			return -EBUSY;
672	}
673
674	set_cpu_online(cpu, false);
675
676	if (migrate_platform_irqs(cpu)) {
677		set_cpu_online(cpu, true);
678		return -EBUSY;
679	}
680
681	remove_siblinginfo(cpu);
682	fixup_irqs();
683	local_flush_tlb_all();
684	cpu_clear(cpu, cpu_callin_map);
685	return 0;
686}
687
688void __cpu_die(unsigned int cpu)
689{
690	unsigned int i;
691
692	for (i = 0; i < 100; i++) {
693		/* They ack this in play_dead by setting CPU_DEAD */
694		if (per_cpu(cpu_state, cpu) == CPU_DEAD)
695		{
696			printk ("CPU %d is now offline\n", cpu);
697			return;
698		}
699		msleep(100);
700	}
701 	printk(KERN_ERR "CPU %u didn't die...\n", cpu);
702}
703#endif /* CONFIG_HOTPLUG_CPU */
704
705void
706smp_cpus_done (unsigned int dummy)
707{
708	int cpu;
709	unsigned long bogosum = 0;
710
711	/*
712	 * Allow the user to impress friends.
713	 */
714
715	for_each_online_cpu(cpu) {
716		bogosum += cpu_data(cpu)->loops_per_jiffy;
717	}
718
719	printk(KERN_INFO "Total of %d processors activated (%lu.%02lu BogoMIPS).\n",
720	       (int)num_online_cpus(), bogosum/(500000/HZ), (bogosum/(5000/HZ))%100);
721}
722
723static inline void __devinit
724set_cpu_sibling_map(int cpu)
725{
726	int i;
727
728	for_each_online_cpu(i) {
729		if ((cpu_data(cpu)->socket_id == cpu_data(i)->socket_id)) {
730			cpu_set(i, cpu_core_map[cpu]);
731			cpu_set(cpu, cpu_core_map[i]);
732			if (cpu_data(cpu)->core_id == cpu_data(i)->core_id) {
733				cpu_set(i, per_cpu(cpu_sibling_map, cpu));
734				cpu_set(cpu, per_cpu(cpu_sibling_map, i));
 
 
735			}
736		}
737	}
738}
739
740int __cpuinit
741__cpu_up(unsigned int cpu, struct task_struct *tidle)
742{
743	int ret;
744	int sapicid;
745
746	sapicid = ia64_cpu_to_sapicid[cpu];
747	if (sapicid == -1)
748		return -EINVAL;
749
750	/*
751	 * Already booted cpu? not valid anymore since we dont
752	 * do idle loop tightspin anymore.
753	 */
754	if (cpu_isset(cpu, cpu_callin_map))
755		return -EINVAL;
756
757	per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
758	/* Processor goes to start_secondary(), sets online flag */
759	ret = do_boot_cpu(sapicid, cpu, tidle);
760	if (ret < 0)
761		return ret;
762
763	if (cpu_data(cpu)->threads_per_core == 1 &&
764	    cpu_data(cpu)->cores_per_socket == 1) {
765		cpu_set(cpu, per_cpu(cpu_sibling_map, cpu));
766		cpu_set(cpu, cpu_core_map[cpu]);
767		return 0;
768	}
769
770	set_cpu_sibling_map(cpu);
771
772	return 0;
773}
774
775/*
776 * Assume that CPUs have been discovered by some platform-dependent interface.  For
777 * SoftSDV/Lion, that would be ACPI.
778 *
779 * Setup of the IPI irq handler is done in irq.c:init_IRQ_SMP().
780 */
781void __init
782init_smp_config(void)
783{
784	struct fptr {
785		unsigned long fp;
786		unsigned long gp;
787	} *ap_startup;
788	long sal_ret;
789
790	/* Tell SAL where to drop the APs.  */
791	ap_startup = (struct fptr *) start_ap;
792	sal_ret = ia64_sal_set_vectors(SAL_VECTOR_OS_BOOT_RENDEZ,
793				       ia64_tpa(ap_startup->fp), ia64_tpa(ap_startup->gp), 0, 0, 0, 0);
794	if (sal_ret < 0)
795		printk(KERN_ERR "SMP: Can't set SAL AP Boot Rendezvous: %s\n",
796		       ia64_sal_strerror(sal_ret));
797}
798
799/*
800 * identify_siblings(cpu) gets called from identify_cpu. This populates the 
801 * information related to logical execution units in per_cpu_data structure.
802 */
803void __devinit
804identify_siblings(struct cpuinfo_ia64 *c)
805{
806	long status;
807	u16 pltid;
808	pal_logical_to_physical_t info;
809
810	status = ia64_pal_logical_to_phys(-1, &info);
811	if (status != PAL_STATUS_SUCCESS) {
812		if (status != PAL_STATUS_UNIMPLEMENTED) {
813			printk(KERN_ERR
814				"ia64_pal_logical_to_phys failed with %ld\n",
815				status);
816			return;
817		}
818
819		info.overview_ppid = 0;
820		info.overview_cpp  = 1;
821		info.overview_tpc  = 1;
822	}
823
824	status = ia64_sal_physical_id_info(&pltid);
825	if (status != PAL_STATUS_SUCCESS) {
826		if (status != PAL_STATUS_UNIMPLEMENTED)
827			printk(KERN_ERR
828				"ia64_sal_pltid failed with %ld\n",
829				status);
830		return;
831	}
832
833	c->socket_id =  (pltid << 8) | info.overview_ppid;
834
835	if (info.overview_cpp == 1 && info.overview_tpc == 1)
836		return;
837
838	c->cores_per_socket = info.overview_cpp;
839	c->threads_per_core = info.overview_tpc;
840	c->num_log = info.overview_num_log;
841
842	c->core_id = info.log1_cid;
843	c->thread_id = info.log1_tid;
844}
845
846/*
847 * returns non zero, if multi-threading is enabled
848 * on at least one physical package. Due to hotplug cpu
849 * and (maxcpus=), all threads may not necessarily be enabled
850 * even though the processor supports multi-threading.
851 */
852int is_multithreading_enabled(void)
853{
854	int i, j;
855
856	for_each_present_cpu(i) {
857		for_each_present_cpu(j) {
858			if (j == i)
859				continue;
860			if ((cpu_data(j)->socket_id == cpu_data(i)->socket_id)) {
861				if (cpu_data(j)->core_id == cpu_data(i)->core_id)
862					return 1;
863			}
864		}
865	}
866	return 0;
867}
868EXPORT_SYMBOL_GPL(is_multithreading_enabled);