Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * mm/kmemleak.c
   4 *
   5 * Copyright (C) 2008 ARM Limited
   6 * Written by Catalin Marinas <catalin.marinas@arm.com>
   7 *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   8 * For more information on the algorithm and kmemleak usage, please see
   9 * Documentation/dev-tools/kmemleak.rst.
  10 *
  11 * Notes on locking
  12 * ----------------
  13 *
  14 * The following locks and mutexes are used by kmemleak:
  15 *
  16 * - kmemleak_lock (raw_spinlock_t): protects the object_list modifications and
  17 *   accesses to the object_tree_root. The object_list is the main list
  18 *   holding the metadata (struct kmemleak_object) for the allocated memory
  19 *   blocks. The object_tree_root is a red black tree used to look-up
  20 *   metadata based on a pointer to the corresponding memory block.  The
  21 *   kmemleak_object structures are added to the object_list and
  22 *   object_tree_root in the create_object() function called from the
  23 *   kmemleak_alloc() callback and removed in delete_object() called from the
  24 *   kmemleak_free() callback
  25 * - kmemleak_object.lock (raw_spinlock_t): protects a kmemleak_object.
  26 *   Accesses to the metadata (e.g. count) are protected by this lock. Note
  27 *   that some members of this structure may be protected by other means
  28 *   (atomic or kmemleak_lock). This lock is also held when scanning the
  29 *   corresponding memory block to avoid the kernel freeing it via the
  30 *   kmemleak_free() callback. This is less heavyweight than holding a global
  31 *   lock like kmemleak_lock during scanning.
  32 * - scan_mutex (mutex): ensures that only one thread may scan the memory for
  33 *   unreferenced objects at a time. The gray_list contains the objects which
  34 *   are already referenced or marked as false positives and need to be
  35 *   scanned. This list is only modified during a scanning episode when the
  36 *   scan_mutex is held. At the end of a scan, the gray_list is always empty.
  37 *   Note that the kmemleak_object.use_count is incremented when an object is
  38 *   added to the gray_list and therefore cannot be freed. This mutex also
  39 *   prevents multiple users of the "kmemleak" debugfs file together with
  40 *   modifications to the memory scanning parameters including the scan_thread
  41 *   pointer
  42 *
  43 * Locks and mutexes are acquired/nested in the following order:
  44 *
  45 *   scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING)
  46 *
  47 * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex
  48 * regions.
  49 *
  50 * The kmemleak_object structures have a use_count incremented or decremented
  51 * using the get_object()/put_object() functions. When the use_count becomes
  52 * 0, this count can no longer be incremented and put_object() schedules the
  53 * kmemleak_object freeing via an RCU callback. All calls to the get_object()
  54 * function must be protected by rcu_read_lock() to avoid accessing a freed
  55 * structure.
  56 */
  57
  58#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  59
  60#include <linux/init.h>
  61#include <linux/kernel.h>
  62#include <linux/list.h>
  63#include <linux/sched/signal.h>
  64#include <linux/sched/task.h>
  65#include <linux/sched/task_stack.h>
  66#include <linux/jiffies.h>
  67#include <linux/delay.h>
  68#include <linux/export.h>
  69#include <linux/kthread.h>
  70#include <linux/rbtree.h>
  71#include <linux/fs.h>
  72#include <linux/debugfs.h>
  73#include <linux/seq_file.h>
  74#include <linux/cpumask.h>
  75#include <linux/spinlock.h>
  76#include <linux/module.h>
  77#include <linux/mutex.h>
  78#include <linux/rcupdate.h>
  79#include <linux/stacktrace.h>
  80#include <linux/cache.h>
  81#include <linux/percpu.h>
  82#include <linux/memblock.h>
  83#include <linux/pfn.h>
  84#include <linux/mmzone.h>
  85#include <linux/slab.h>
  86#include <linux/thread_info.h>
  87#include <linux/err.h>
  88#include <linux/uaccess.h>
  89#include <linux/string.h>
  90#include <linux/nodemask.h>
  91#include <linux/mm.h>
  92#include <linux/workqueue.h>
  93#include <linux/crc32.h>
  94
  95#include <asm/sections.h>
  96#include <asm/processor.h>
  97#include <linux/atomic.h>
  98
  99#include <linux/kasan.h>
 100#include <linux/kmemleak.h>
 101#include <linux/memory_hotplug.h>
 102
 103/*
 104 * Kmemleak configuration and common defines.
 105 */
 106#define MAX_TRACE		16	/* stack trace length */
 107#define MSECS_MIN_AGE		5000	/* minimum object age for reporting */
 108#define SECS_FIRST_SCAN		60	/* delay before the first scan */
 109#define SECS_SCAN_WAIT		600	/* subsequent auto scanning delay */
 110#define MAX_SCAN_SIZE		4096	/* maximum size of a scanned block */
 111
 112#define BYTES_PER_POINTER	sizeof(void *)
 113
 114/* GFP bitmask for kmemleak internal allocations */
 115#define gfp_kmemleak_mask(gfp)	(((gfp) & (GFP_KERNEL | GFP_ATOMIC)) | \
 116				 __GFP_NORETRY | __GFP_NOMEMALLOC | \
 117				 __GFP_NOWARN)
 118
 119/* scanning area inside a memory block */
 120struct kmemleak_scan_area {
 121	struct hlist_node node;
 122	unsigned long start;
 123	size_t size;
 124};
 125
 126#define KMEMLEAK_GREY	0
 127#define KMEMLEAK_BLACK	-1
 128
 129/*
 130 * Structure holding the metadata for each allocated memory block.
 131 * Modifications to such objects should be made while holding the
 132 * object->lock. Insertions or deletions from object_list, gray_list or
 133 * rb_node are already protected by the corresponding locks or mutex (see
 134 * the notes on locking above). These objects are reference-counted
 135 * (use_count) and freed using the RCU mechanism.
 136 */
 137struct kmemleak_object {
 138	raw_spinlock_t lock;
 139	unsigned int flags;		/* object status flags */
 140	struct list_head object_list;
 141	struct list_head gray_list;
 142	struct rb_node rb_node;
 143	struct rcu_head rcu;		/* object_list lockless traversal */
 144	/* object usage count; object freed when use_count == 0 */
 145	atomic_t use_count;
 146	unsigned long pointer;
 147	size_t size;
 148	/* pass surplus references to this pointer */
 149	unsigned long excess_ref;
 150	/* minimum number of a pointers found before it is considered leak */
 151	int min_count;
 152	/* the total number of pointers found pointing to this object */
 153	int count;
 154	/* checksum for detecting modified objects */
 155	u32 checksum;
 156	/* memory ranges to be scanned inside an object (empty for all) */
 157	struct hlist_head area_list;
 158	unsigned long trace[MAX_TRACE];
 159	unsigned int trace_len;
 160	unsigned long jiffies;		/* creation timestamp */
 161	pid_t pid;			/* pid of the current task */
 162	char comm[TASK_COMM_LEN];	/* executable name */
 163};
 164
 165/* flag representing the memory block allocation status */
 166#define OBJECT_ALLOCATED	(1 << 0)
 167/* flag set after the first reporting of an unreference object */
 168#define OBJECT_REPORTED		(1 << 1)
 169/* flag set to not scan the object */
 170#define OBJECT_NO_SCAN		(1 << 2)
 171/* flag set to fully scan the object when scan_area allocation failed */
 172#define OBJECT_FULL_SCAN	(1 << 3)
 173
 174#define HEX_PREFIX		"    "
 175/* number of bytes to print per line; must be 16 or 32 */
 176#define HEX_ROW_SIZE		16
 177/* number of bytes to print at a time (1, 2, 4, 8) */
 178#define HEX_GROUP_SIZE		1
 179/* include ASCII after the hex output */
 180#define HEX_ASCII		1
 181/* max number of lines to be printed */
 182#define HEX_MAX_LINES		2
 183
 184/* the list of all allocated objects */
 185static LIST_HEAD(object_list);
 186/* the list of gray-colored objects (see color_gray comment below) */
 187static LIST_HEAD(gray_list);
 188/* memory pool allocation */
 189static struct kmemleak_object mem_pool[CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE];
 190static int mem_pool_free_count = ARRAY_SIZE(mem_pool);
 191static LIST_HEAD(mem_pool_free_list);
 192/* search tree for object boundaries */
 193static struct rb_root object_tree_root = RB_ROOT;
 194/* protecting the access to object_list and object_tree_root */
 195static DEFINE_RAW_SPINLOCK(kmemleak_lock);
 196
 197/* allocation caches for kmemleak internal data */
 198static struct kmem_cache *object_cache;
 199static struct kmem_cache *scan_area_cache;
 200
 201/* set if tracing memory operations is enabled */
 202static int kmemleak_enabled = 1;
 203/* same as above but only for the kmemleak_free() callback */
 204static int kmemleak_free_enabled = 1;
 205/* set in the late_initcall if there were no errors */
 206static int kmemleak_initialized;
 
 
 207/* set if a kmemleak warning was issued */
 208static int kmemleak_warning;
 209/* set if a fatal kmemleak error has occurred */
 210static int kmemleak_error;
 211
 212/* minimum and maximum address that may be valid pointers */
 213static unsigned long min_addr = ULONG_MAX;
 214static unsigned long max_addr;
 215
 216static struct task_struct *scan_thread;
 217/* used to avoid reporting of recently allocated objects */
 218static unsigned long jiffies_min_age;
 219static unsigned long jiffies_last_scan;
 220/* delay between automatic memory scannings */
 221static signed long jiffies_scan_wait;
 222/* enables or disables the task stacks scanning */
 223static int kmemleak_stack_scan = 1;
 224/* protects the memory scanning, parameters and debug/kmemleak file access */
 225static DEFINE_MUTEX(scan_mutex);
 226/* setting kmemleak=on, will set this var, skipping the disable */
 227static int kmemleak_skip_disable;
 228/* If there are leaks that can be reported */
 229static bool kmemleak_found_leaks;
 230
 231static bool kmemleak_verbose;
 232module_param_named(verbose, kmemleak_verbose, bool, 0600);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 233
 234static void kmemleak_disable(void);
 235
 236/*
 237 * Print a warning and dump the stack trace.
 238 */
 239#define kmemleak_warn(x...)	do {		\
 240	pr_warn(x);				\
 241	dump_stack();				\
 242	kmemleak_warning = 1;			\
 243} while (0)
 244
 245/*
 246 * Macro invoked when a serious kmemleak condition occurred and cannot be
 247 * recovered from. Kmemleak will be disabled and further allocation/freeing
 248 * tracing no longer available.
 249 */
 250#define kmemleak_stop(x...)	do {	\
 251	kmemleak_warn(x);		\
 252	kmemleak_disable();		\
 253} while (0)
 254
 255#define warn_or_seq_printf(seq, fmt, ...)	do {	\
 256	if (seq)					\
 257		seq_printf(seq, fmt, ##__VA_ARGS__);	\
 258	else						\
 259		pr_warn(fmt, ##__VA_ARGS__);		\
 260} while (0)
 261
 262static void warn_or_seq_hex_dump(struct seq_file *seq, int prefix_type,
 263				 int rowsize, int groupsize, const void *buf,
 264				 size_t len, bool ascii)
 265{
 266	if (seq)
 267		seq_hex_dump(seq, HEX_PREFIX, prefix_type, rowsize, groupsize,
 268			     buf, len, ascii);
 269	else
 270		print_hex_dump(KERN_WARNING, pr_fmt(HEX_PREFIX), prefix_type,
 271			       rowsize, groupsize, buf, len, ascii);
 272}
 273
 274/*
 275 * Printing of the objects hex dump to the seq file. The number of lines to be
 276 * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
 277 * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
 278 * with the object->lock held.
 279 */
 280static void hex_dump_object(struct seq_file *seq,
 281			    struct kmemleak_object *object)
 282{
 283	const u8 *ptr = (const u8 *)object->pointer;
 284	size_t len;
 
 285
 286	/* limit the number of lines to HEX_MAX_LINES */
 287	len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE);
 
 288
 289	warn_or_seq_printf(seq, "  hex dump (first %zu bytes):\n", len);
 290	kasan_disable_current();
 291	warn_or_seq_hex_dump(seq, DUMP_PREFIX_NONE, HEX_ROW_SIZE,
 292			     HEX_GROUP_SIZE, ptr, len, HEX_ASCII);
 293	kasan_enable_current();
 
 
 
 
 
 294}
 295
 296/*
 297 * Object colors, encoded with count and min_count:
 298 * - white - orphan object, not enough references to it (count < min_count)
 299 * - gray  - not orphan, not marked as false positive (min_count == 0) or
 300 *		sufficient references to it (count >= min_count)
 301 * - black - ignore, it doesn't contain references (e.g. text section)
 302 *		(min_count == -1). No function defined for this color.
 303 * Newly created objects don't have any color assigned (object->count == -1)
 304 * before the next memory scan when they become white.
 305 */
 306static bool color_white(const struct kmemleak_object *object)
 307{
 308	return object->count != KMEMLEAK_BLACK &&
 309		object->count < object->min_count;
 310}
 311
 312static bool color_gray(const struct kmemleak_object *object)
 313{
 314	return object->min_count != KMEMLEAK_BLACK &&
 315		object->count >= object->min_count;
 316}
 317
 318/*
 319 * Objects are considered unreferenced only if their color is white, they have
 320 * not be deleted and have a minimum age to avoid false positives caused by
 321 * pointers temporarily stored in CPU registers.
 322 */
 323static bool unreferenced_object(struct kmemleak_object *object)
 324{
 325	return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
 326		time_before_eq(object->jiffies + jiffies_min_age,
 327			       jiffies_last_scan);
 328}
 329
 330/*
 331 * Printing of the unreferenced objects information to the seq file. The
 332 * print_unreferenced function must be called with the object->lock held.
 333 */
 334static void print_unreferenced(struct seq_file *seq,
 335			       struct kmemleak_object *object)
 336{
 337	int i;
 338	unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies);
 339
 340	warn_or_seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
 341		   object->pointer, object->size);
 342	warn_or_seq_printf(seq, "  comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n",
 343		   object->comm, object->pid, object->jiffies,
 344		   msecs_age / 1000, msecs_age % 1000);
 345	hex_dump_object(seq, object);
 346	warn_or_seq_printf(seq, "  backtrace:\n");
 347
 348	for (i = 0; i < object->trace_len; i++) {
 349		void *ptr = (void *)object->trace[i];
 350		warn_or_seq_printf(seq, "    [<%p>] %pS\n", ptr, ptr);
 351	}
 352}
 353
 354/*
 355 * Print the kmemleak_object information. This function is used mainly for
 356 * debugging special cases when kmemleak operations. It must be called with
 357 * the object->lock held.
 358 */
 359static void dump_object_info(struct kmemleak_object *object)
 360{
 
 
 
 
 
 361	pr_notice("Object 0x%08lx (size %zu):\n",
 362		  object->pointer, object->size);
 363	pr_notice("  comm \"%s\", pid %d, jiffies %lu\n",
 364		  object->comm, object->pid, object->jiffies);
 365	pr_notice("  min_count = %d\n", object->min_count);
 366	pr_notice("  count = %d\n", object->count);
 367	pr_notice("  flags = 0x%x\n", object->flags);
 368	pr_notice("  checksum = %u\n", object->checksum);
 369	pr_notice("  backtrace:\n");
 370	stack_trace_print(object->trace, object->trace_len, 4);
 371}
 372
 373/*
 374 * Look-up a memory block metadata (kmemleak_object) in the object search
 375 * tree based on a pointer value. If alias is 0, only values pointing to the
 376 * beginning of the memory block are allowed. The kmemleak_lock must be held
 377 * when calling this function.
 378 */
 379static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
 380{
 381	struct rb_node *rb = object_tree_root.rb_node;
 
 
 382
 383	while (rb) {
 384		struct kmemleak_object *object =
 385			rb_entry(rb, struct kmemleak_object, rb_node);
 386		if (ptr < object->pointer)
 387			rb = object->rb_node.rb_left;
 388		else if (object->pointer + object->size <= ptr)
 389			rb = object->rb_node.rb_right;
 390		else if (object->pointer == ptr || alias)
 391			return object;
 392		else {
 393			kmemleak_warn("Found object by alias at 0x%08lx\n",
 394				      ptr);
 395			dump_object_info(object);
 396			break;
 397		}
 398	}
 399	return NULL;
 
 
 400}
 401
 402/*
 403 * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
 404 * that once an object's use_count reached 0, the RCU freeing was already
 405 * registered and the object should no longer be used. This function must be
 406 * called under the protection of rcu_read_lock().
 407 */
 408static int get_object(struct kmemleak_object *object)
 409{
 410	return atomic_inc_not_zero(&object->use_count);
 411}
 412
 413/*
 414 * Memory pool allocation and freeing. kmemleak_lock must not be held.
 415 */
 416static struct kmemleak_object *mem_pool_alloc(gfp_t gfp)
 417{
 418	unsigned long flags;
 419	struct kmemleak_object *object;
 420
 421	/* try the slab allocator first */
 422	if (object_cache) {
 423		object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp));
 424		if (object)
 425			return object;
 426	}
 427
 428	/* slab allocation failed, try the memory pool */
 429	raw_spin_lock_irqsave(&kmemleak_lock, flags);
 430	object = list_first_entry_or_null(&mem_pool_free_list,
 431					  typeof(*object), object_list);
 432	if (object)
 433		list_del(&object->object_list);
 434	else if (mem_pool_free_count)
 435		object = &mem_pool[--mem_pool_free_count];
 436	else
 437		pr_warn_once("Memory pool empty, consider increasing CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE\n");
 438	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
 439
 440	return object;
 441}
 442
 443/*
 444 * Return the object to either the slab allocator or the memory pool.
 445 */
 446static void mem_pool_free(struct kmemleak_object *object)
 447{
 448	unsigned long flags;
 449
 450	if (object < mem_pool || object >= mem_pool + ARRAY_SIZE(mem_pool)) {
 451		kmem_cache_free(object_cache, object);
 452		return;
 453	}
 454
 455	/* add the object to the memory pool free list */
 456	raw_spin_lock_irqsave(&kmemleak_lock, flags);
 457	list_add(&object->object_list, &mem_pool_free_list);
 458	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
 459}
 460
 461/*
 462 * RCU callback to free a kmemleak_object.
 463 */
 464static void free_object_rcu(struct rcu_head *rcu)
 465{
 466	struct hlist_node *tmp;
 467	struct kmemleak_scan_area *area;
 468	struct kmemleak_object *object =
 469		container_of(rcu, struct kmemleak_object, rcu);
 470
 471	/*
 472	 * Once use_count is 0 (guaranteed by put_object), there is no other
 473	 * code accessing this object, hence no need for locking.
 474	 */
 475	hlist_for_each_entry_safe(area, tmp, &object->area_list, node) {
 476		hlist_del(&area->node);
 477		kmem_cache_free(scan_area_cache, area);
 478	}
 479	mem_pool_free(object);
 480}
 481
 482/*
 483 * Decrement the object use_count. Once the count is 0, free the object using
 484 * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
 485 * delete_object() path, the delayed RCU freeing ensures that there is no
 486 * recursive call to the kernel allocator. Lock-less RCU object_list traversal
 487 * is also possible.
 488 */
 489static void put_object(struct kmemleak_object *object)
 490{
 491	if (!atomic_dec_and_test(&object->use_count))
 492		return;
 493
 494	/* should only get here after delete_object was called */
 495	WARN_ON(object->flags & OBJECT_ALLOCATED);
 496
 497	/*
 498	 * It may be too early for the RCU callbacks, however, there is no
 499	 * concurrent object_list traversal when !object_cache and all objects
 500	 * came from the memory pool. Free the object directly.
 501	 */
 502	if (object_cache)
 503		call_rcu(&object->rcu, free_object_rcu);
 504	else
 505		free_object_rcu(&object->rcu);
 506}
 507
 508/*
 509 * Look up an object in the object search tree and increase its use_count.
 510 */
 511static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
 512{
 513	unsigned long flags;
 514	struct kmemleak_object *object;
 515
 516	rcu_read_lock();
 517	raw_spin_lock_irqsave(&kmemleak_lock, flags);
 518	object = lookup_object(ptr, alias);
 519	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
 
 520
 521	/* check whether the object is still available */
 522	if (object && !get_object(object))
 523		object = NULL;
 524	rcu_read_unlock();
 525
 526	return object;
 527}
 528
 529/*
 530 * Remove an object from the object_tree_root and object_list. Must be called
 531 * with the kmemleak_lock held _if_ kmemleak is still enabled.
 532 */
 533static void __remove_object(struct kmemleak_object *object)
 534{
 535	rb_erase(&object->rb_node, &object_tree_root);
 536	list_del_rcu(&object->object_list);
 537}
 538
 539/*
 540 * Look up an object in the object search tree and remove it from both
 541 * object_tree_root and object_list. The returned object's use_count should be
 542 * at least 1, as initially set by create_object().
 543 */
 544static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias)
 545{
 546	unsigned long flags;
 547	struct kmemleak_object *object;
 548
 549	raw_spin_lock_irqsave(&kmemleak_lock, flags);
 550	object = lookup_object(ptr, alias);
 551	if (object)
 552		__remove_object(object);
 553	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
 554
 555	return object;
 556}
 557
 558/*
 559 * Save stack trace to the given array of MAX_TRACE size.
 560 */
 561static int __save_stack_trace(unsigned long *trace)
 562{
 563	return stack_trace_save(trace, MAX_TRACE, 2);
 
 
 
 
 
 
 
 
 564}
 565
 566/*
 567 * Create the metadata (struct kmemleak_object) corresponding to an allocated
 568 * memory block and add it to the object_list and object_tree_root.
 569 */
 570static struct kmemleak_object *create_object(unsigned long ptr, size_t size,
 571					     int min_count, gfp_t gfp)
 572{
 573	unsigned long flags;
 574	struct kmemleak_object *object, *parent;
 575	struct rb_node **link, *rb_parent;
 576	unsigned long untagged_ptr;
 577
 578	object = mem_pool_alloc(gfp);
 579	if (!object) {
 580		pr_warn("Cannot allocate a kmemleak_object structure\n");
 581		kmemleak_disable();
 582		return NULL;
 583	}
 584
 585	INIT_LIST_HEAD(&object->object_list);
 586	INIT_LIST_HEAD(&object->gray_list);
 587	INIT_HLIST_HEAD(&object->area_list);
 588	raw_spin_lock_init(&object->lock);
 589	atomic_set(&object->use_count, 1);
 590	object->flags = OBJECT_ALLOCATED;
 591	object->pointer = ptr;
 592	object->size = size;
 593	object->excess_ref = 0;
 594	object->min_count = min_count;
 595	object->count = 0;			/* white color initially */
 596	object->jiffies = jiffies;
 597	object->checksum = 0;
 598
 599	/* task information */
 600	if (in_irq()) {
 601		object->pid = 0;
 602		strncpy(object->comm, "hardirq", sizeof(object->comm));
 603	} else if (in_serving_softirq()) {
 604		object->pid = 0;
 605		strncpy(object->comm, "softirq", sizeof(object->comm));
 606	} else {
 607		object->pid = current->pid;
 608		/*
 609		 * There is a small chance of a race with set_task_comm(),
 610		 * however using get_task_comm() here may cause locking
 611		 * dependency issues with current->alloc_lock. In the worst
 612		 * case, the command line is not correct.
 613		 */
 614		strncpy(object->comm, current->comm, sizeof(object->comm));
 615	}
 616
 617	/* kernel backtrace */
 618	object->trace_len = __save_stack_trace(object->trace);
 619
 620	raw_spin_lock_irqsave(&kmemleak_lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 621
 622	untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
 623	min_addr = min(min_addr, untagged_ptr);
 624	max_addr = max(max_addr, untagged_ptr + size);
 625	link = &object_tree_root.rb_node;
 626	rb_parent = NULL;
 627	while (*link) {
 628		rb_parent = *link;
 629		parent = rb_entry(rb_parent, struct kmemleak_object, rb_node);
 630		if (ptr + size <= parent->pointer)
 631			link = &parent->rb_node.rb_left;
 632		else if (parent->pointer + parent->size <= ptr)
 633			link = &parent->rb_node.rb_right;
 634		else {
 635			kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n",
 636				      ptr);
 637			/*
 638			 * No need for parent->lock here since "parent" cannot
 639			 * be freed while the kmemleak_lock is held.
 640			 */
 641			dump_object_info(parent);
 642			kmem_cache_free(object_cache, object);
 643			object = NULL;
 644			goto out;
 645		}
 646	}
 647	rb_link_node(&object->rb_node, rb_parent, link);
 648	rb_insert_color(&object->rb_node, &object_tree_root);
 649
 650	list_add_tail_rcu(&object->object_list, &object_list);
 651out:
 652	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
 653	return object;
 654}
 655
 656/*
 657 * Mark the object as not allocated and schedule RCU freeing via put_object().
 
 658 */
 659static void __delete_object(struct kmemleak_object *object)
 660{
 661	unsigned long flags;
 662
 
 
 
 
 
 663	WARN_ON(!(object->flags & OBJECT_ALLOCATED));
 664	WARN_ON(atomic_read(&object->use_count) < 1);
 665
 666	/*
 667	 * Locking here also ensures that the corresponding memory block
 668	 * cannot be freed when it is being scanned.
 669	 */
 670	raw_spin_lock_irqsave(&object->lock, flags);
 671	object->flags &= ~OBJECT_ALLOCATED;
 672	raw_spin_unlock_irqrestore(&object->lock, flags);
 673	put_object(object);
 674}
 675
 676/*
 677 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
 678 * delete it.
 679 */
 680static void delete_object_full(unsigned long ptr)
 681{
 682	struct kmemleak_object *object;
 683
 684	object = find_and_remove_object(ptr, 0);
 685	if (!object) {
 686#ifdef DEBUG
 687		kmemleak_warn("Freeing unknown object at 0x%08lx\n",
 688			      ptr);
 689#endif
 690		return;
 691	}
 692	__delete_object(object);
 
 693}
 694
 695/*
 696 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
 697 * delete it. If the memory block is partially freed, the function may create
 698 * additional metadata for the remaining parts of the block.
 699 */
 700static void delete_object_part(unsigned long ptr, size_t size)
 701{
 702	struct kmemleak_object *object;
 703	unsigned long start, end;
 704
 705	object = find_and_remove_object(ptr, 1);
 706	if (!object) {
 707#ifdef DEBUG
 708		kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n",
 709			      ptr, size);
 710#endif
 711		return;
 712	}
 
 713
 714	/*
 715	 * Create one or two objects that may result from the memory block
 716	 * split. Note that partial freeing is only done by free_bootmem() and
 717	 * this happens before kmemleak_init() is called.
 
 
 718	 */
 719	start = object->pointer;
 720	end = object->pointer + object->size;
 721	if (ptr > start)
 722		create_object(start, ptr - start, object->min_count,
 723			      GFP_KERNEL);
 724	if (ptr + size < end)
 725		create_object(ptr + size, end - ptr - size, object->min_count,
 726			      GFP_KERNEL);
 727
 728	__delete_object(object);
 729}
 730
 731static void __paint_it(struct kmemleak_object *object, int color)
 732{
 733	object->min_count = color;
 734	if (color == KMEMLEAK_BLACK)
 735		object->flags |= OBJECT_NO_SCAN;
 736}
 737
 738static void paint_it(struct kmemleak_object *object, int color)
 739{
 740	unsigned long flags;
 741
 742	raw_spin_lock_irqsave(&object->lock, flags);
 743	__paint_it(object, color);
 744	raw_spin_unlock_irqrestore(&object->lock, flags);
 745}
 746
 747static void paint_ptr(unsigned long ptr, int color)
 748{
 749	struct kmemleak_object *object;
 750
 751	object = find_and_get_object(ptr, 0);
 752	if (!object) {
 753		kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n",
 754			      ptr,
 755			      (color == KMEMLEAK_GREY) ? "Grey" :
 756			      (color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
 757		return;
 758	}
 759	paint_it(object, color);
 760	put_object(object);
 761}
 762
 763/*
 764 * Mark an object permanently as gray-colored so that it can no longer be
 765 * reported as a leak. This is used in general to mark a false positive.
 766 */
 767static void make_gray_object(unsigned long ptr)
 768{
 769	paint_ptr(ptr, KMEMLEAK_GREY);
 770}
 771
 772/*
 773 * Mark the object as black-colored so that it is ignored from scans and
 774 * reporting.
 775 */
 776static void make_black_object(unsigned long ptr)
 777{
 778	paint_ptr(ptr, KMEMLEAK_BLACK);
 779}
 780
 781/*
 782 * Add a scanning area to the object. If at least one such area is added,
 783 * kmemleak will only scan these ranges rather than the whole memory block.
 784 */
 785static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
 786{
 787	unsigned long flags;
 788	struct kmemleak_object *object;
 789	struct kmemleak_scan_area *area = NULL;
 790
 791	object = find_and_get_object(ptr, 1);
 792	if (!object) {
 793		kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
 794			      ptr);
 795		return;
 796	}
 797
 798	if (scan_area_cache)
 799		area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp));
 800
 801	raw_spin_lock_irqsave(&object->lock, flags);
 802	if (!area) {
 803		pr_warn_once("Cannot allocate a scan area, scanning the full object\n");
 804		/* mark the object for full scan to avoid false positives */
 805		object->flags |= OBJECT_FULL_SCAN;
 806		goto out_unlock;
 807	}
 808	if (size == SIZE_MAX) {
 809		size = object->pointer + object->size - ptr;
 810	} else if (ptr + size > object->pointer + object->size) {
 811		kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
 812		dump_object_info(object);
 813		kmem_cache_free(scan_area_cache, area);
 814		goto out_unlock;
 815	}
 816
 817	INIT_HLIST_NODE(&area->node);
 818	area->start = ptr;
 819	area->size = size;
 820
 821	hlist_add_head(&area->node, &object->area_list);
 822out_unlock:
 823	raw_spin_unlock_irqrestore(&object->lock, flags);
 
 824	put_object(object);
 825}
 826
 827/*
 828 * Any surplus references (object already gray) to 'ptr' are passed to
 829 * 'excess_ref'. This is used in the vmalloc() case where a pointer to
 830 * vm_struct may be used as an alternative reference to the vmalloc'ed object
 831 * (see free_thread_stack()).
 832 */
 833static void object_set_excess_ref(unsigned long ptr, unsigned long excess_ref)
 834{
 835	unsigned long flags;
 836	struct kmemleak_object *object;
 837
 838	object = find_and_get_object(ptr, 0);
 839	if (!object) {
 840		kmemleak_warn("Setting excess_ref on unknown object at 0x%08lx\n",
 841			      ptr);
 842		return;
 843	}
 844
 845	raw_spin_lock_irqsave(&object->lock, flags);
 846	object->excess_ref = excess_ref;
 847	raw_spin_unlock_irqrestore(&object->lock, flags);
 848	put_object(object);
 849}
 850
 851/*
 852 * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
 853 * pointer. Such object will not be scanned by kmemleak but references to it
 854 * are searched.
 855 */
 856static void object_no_scan(unsigned long ptr)
 
 857{
 858	unsigned long flags;
 859	struct kmemleak_object *object;
 860
 861	object = find_and_get_object(ptr, 0);
 862	if (!object) {
 863		kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
 864		return;
 865	}
 866
 867	raw_spin_lock_irqsave(&object->lock, flags);
 868	object->flags |= OBJECT_NO_SCAN;
 869	raw_spin_unlock_irqrestore(&object->lock, flags);
 870	put_object(object);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 871}
 872
 873/**
 874 * kmemleak_alloc - register a newly allocated object
 875 * @ptr:	pointer to beginning of the object
 876 * @size:	size of the object
 877 * @min_count:	minimum number of references to this object. If during memory
 878 *		scanning a number of references less than @min_count is found,
 879 *		the object is reported as a memory leak. If @min_count is 0,
 880 *		the object is never reported as a leak. If @min_count is -1,
 881 *		the object is ignored (not scanned and not reported as a leak)
 882 * @gfp:	kmalloc() flags used for kmemleak internal memory allocations
 883 *
 884 * This function is called from the kernel allocators when a new object
 885 * (memory block) is allocated (kmem_cache_alloc, kmalloc etc.).
 886 */
 887void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
 888			  gfp_t gfp)
 889{
 890	pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count);
 891
 892	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
 893		create_object((unsigned long)ptr, size, min_count, gfp);
 
 
 894}
 895EXPORT_SYMBOL_GPL(kmemleak_alloc);
 896
 897/**
 898 * kmemleak_alloc_percpu - register a newly allocated __percpu object
 899 * @ptr:	__percpu pointer to beginning of the object
 900 * @size:	size of the object
 901 * @gfp:	flags used for kmemleak internal memory allocations
 902 *
 903 * This function is called from the kernel percpu allocator when a new object
 904 * (memory block) is allocated (alloc_percpu).
 
 905 */
 906void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size,
 907				 gfp_t gfp)
 908{
 909	unsigned int cpu;
 910
 911	pr_debug("%s(0x%p, %zu)\n", __func__, ptr, size);
 912
 913	/*
 914	 * Percpu allocations are only scanned and not reported as leaks
 915	 * (min_count is set to 0).
 916	 */
 917	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
 918		for_each_possible_cpu(cpu)
 919			create_object((unsigned long)per_cpu_ptr(ptr, cpu),
 920				      size, 0, gfp);
 
 
 921}
 922EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu);
 923
 924/**
 925 * kmemleak_vmalloc - register a newly vmalloc'ed object
 926 * @area:	pointer to vm_struct
 927 * @size:	size of the object
 928 * @gfp:	__vmalloc() flags used for kmemleak internal memory allocations
 929 *
 930 * This function is called from the vmalloc() kernel allocator when a new
 931 * object (memory block) is allocated.
 932 */
 933void __ref kmemleak_vmalloc(const struct vm_struct *area, size_t size, gfp_t gfp)
 934{
 935	pr_debug("%s(0x%p, %zu)\n", __func__, area, size);
 936
 937	/*
 938	 * A min_count = 2 is needed because vm_struct contains a reference to
 939	 * the virtual address of the vmalloc'ed block.
 940	 */
 941	if (kmemleak_enabled) {
 942		create_object((unsigned long)area->addr, size, 2, gfp);
 943		object_set_excess_ref((unsigned long)area,
 944				      (unsigned long)area->addr);
 945	}
 946}
 947EXPORT_SYMBOL_GPL(kmemleak_vmalloc);
 948
 949/**
 950 * kmemleak_free - unregister a previously registered object
 951 * @ptr:	pointer to beginning of the object
 952 *
 953 * This function is called from the kernel allocators when an object (memory
 954 * block) is freed (kmem_cache_free, kfree, vfree etc.).
 955 */
 956void __ref kmemleak_free(const void *ptr)
 957{
 958	pr_debug("%s(0x%p)\n", __func__, ptr);
 959
 960	if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
 961		delete_object_full((unsigned long)ptr);
 
 
 962}
 963EXPORT_SYMBOL_GPL(kmemleak_free);
 964
 965/**
 966 * kmemleak_free_part - partially unregister a previously registered object
 967 * @ptr:	pointer to the beginning or inside the object. This also
 968 *		represents the start of the range to be freed
 969 * @size:	size to be unregistered
 970 *
 971 * This function is called when only a part of a memory block is freed
 972 * (usually from the bootmem allocator).
 973 */
 974void __ref kmemleak_free_part(const void *ptr, size_t size)
 975{
 976	pr_debug("%s(0x%p)\n", __func__, ptr);
 977
 978	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
 979		delete_object_part((unsigned long)ptr, size);
 
 
 980}
 981EXPORT_SYMBOL_GPL(kmemleak_free_part);
 982
 983/**
 984 * kmemleak_free_percpu - unregister a previously registered __percpu object
 985 * @ptr:	__percpu pointer to beginning of the object
 986 *
 987 * This function is called from the kernel percpu allocator when an object
 988 * (memory block) is freed (free_percpu).
 989 */
 990void __ref kmemleak_free_percpu(const void __percpu *ptr)
 991{
 992	unsigned int cpu;
 993
 994	pr_debug("%s(0x%p)\n", __func__, ptr);
 995
 996	if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
 997		for_each_possible_cpu(cpu)
 998			delete_object_full((unsigned long)per_cpu_ptr(ptr,
 999								      cpu));
 
 
1000}
1001EXPORT_SYMBOL_GPL(kmemleak_free_percpu);
1002
1003/**
1004 * kmemleak_update_trace - update object allocation stack trace
1005 * @ptr:	pointer to beginning of the object
1006 *
1007 * Override the object allocation stack trace for cases where the actual
1008 * allocation place is not always useful.
1009 */
1010void __ref kmemleak_update_trace(const void *ptr)
1011{
1012	struct kmemleak_object *object;
1013	unsigned long flags;
1014
1015	pr_debug("%s(0x%p)\n", __func__, ptr);
1016
1017	if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr))
1018		return;
1019
1020	object = find_and_get_object((unsigned long)ptr, 1);
1021	if (!object) {
1022#ifdef DEBUG
1023		kmemleak_warn("Updating stack trace for unknown object at %p\n",
1024			      ptr);
1025#endif
1026		return;
1027	}
1028
1029	raw_spin_lock_irqsave(&object->lock, flags);
1030	object->trace_len = __save_stack_trace(object->trace);
1031	raw_spin_unlock_irqrestore(&object->lock, flags);
1032
1033	put_object(object);
1034}
1035EXPORT_SYMBOL(kmemleak_update_trace);
1036
1037/**
1038 * kmemleak_not_leak - mark an allocated object as false positive
1039 * @ptr:	pointer to beginning of the object
1040 *
1041 * Calling this function on an object will cause the memory block to no longer
1042 * be reported as leak and always be scanned.
1043 */
1044void __ref kmemleak_not_leak(const void *ptr)
1045{
1046	pr_debug("%s(0x%p)\n", __func__, ptr);
1047
1048	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1049		make_gray_object((unsigned long)ptr);
 
 
1050}
1051EXPORT_SYMBOL(kmemleak_not_leak);
1052
1053/**
1054 * kmemleak_ignore - ignore an allocated object
1055 * @ptr:	pointer to beginning of the object
1056 *
1057 * Calling this function on an object will cause the memory block to be
1058 * ignored (not scanned and not reported as a leak). This is usually done when
1059 * it is known that the corresponding block is not a leak and does not contain
1060 * any references to other allocated memory blocks.
1061 */
1062void __ref kmemleak_ignore(const void *ptr)
1063{
1064	pr_debug("%s(0x%p)\n", __func__, ptr);
1065
1066	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1067		make_black_object((unsigned long)ptr);
 
 
1068}
1069EXPORT_SYMBOL(kmemleak_ignore);
1070
1071/**
1072 * kmemleak_scan_area - limit the range to be scanned in an allocated object
1073 * @ptr:	pointer to beginning or inside the object. This also
1074 *		represents the start of the scan area
1075 * @size:	size of the scan area
1076 * @gfp:	kmalloc() flags used for kmemleak internal memory allocations
1077 *
1078 * This function is used when it is known that only certain parts of an object
1079 * contain references to other objects. Kmemleak will only scan these areas
1080 * reducing the number false negatives.
1081 */
1082void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp)
1083{
1084	pr_debug("%s(0x%p)\n", __func__, ptr);
1085
1086	if (kmemleak_enabled && ptr && size && !IS_ERR(ptr))
1087		add_scan_area((unsigned long)ptr, size, gfp);
 
 
1088}
1089EXPORT_SYMBOL(kmemleak_scan_area);
1090
1091/**
1092 * kmemleak_no_scan - do not scan an allocated object
1093 * @ptr:	pointer to beginning of the object
1094 *
1095 * This function notifies kmemleak not to scan the given memory block. Useful
1096 * in situations where it is known that the given object does not contain any
1097 * references to other objects. Kmemleak will not scan such objects reducing
1098 * the number of false negatives.
1099 */
1100void __ref kmemleak_no_scan(const void *ptr)
1101{
1102	pr_debug("%s(0x%p)\n", __func__, ptr);
1103
1104	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1105		object_no_scan((unsigned long)ptr);
 
 
1106}
1107EXPORT_SYMBOL(kmemleak_no_scan);
1108
1109/**
1110 * kmemleak_alloc_phys - similar to kmemleak_alloc but taking a physical
1111 *			 address argument
1112 * @phys:	physical address of the object
1113 * @size:	size of the object
1114 * @min_count:	minimum number of references to this object.
1115 *              See kmemleak_alloc()
1116 * @gfp:	kmalloc() flags used for kmemleak internal memory allocations
1117 */
1118void __ref kmemleak_alloc_phys(phys_addr_t phys, size_t size, int min_count,
1119			       gfp_t gfp)
1120{
1121	if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1122		kmemleak_alloc(__va(phys), size, min_count, gfp);
1123}
1124EXPORT_SYMBOL(kmemleak_alloc_phys);
1125
1126/**
1127 * kmemleak_free_part_phys - similar to kmemleak_free_part but taking a
1128 *			     physical address argument
1129 * @phys:	physical address if the beginning or inside an object. This
1130 *		also represents the start of the range to be freed
1131 * @size:	size to be unregistered
1132 */
1133void __ref kmemleak_free_part_phys(phys_addr_t phys, size_t size)
1134{
1135	if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1136		kmemleak_free_part(__va(phys), size);
1137}
1138EXPORT_SYMBOL(kmemleak_free_part_phys);
1139
1140/**
1141 * kmemleak_not_leak_phys - similar to kmemleak_not_leak but taking a physical
1142 *			    address argument
1143 * @phys:	physical address of the object
1144 */
1145void __ref kmemleak_not_leak_phys(phys_addr_t phys)
1146{
1147	if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1148		kmemleak_not_leak(__va(phys));
1149}
1150EXPORT_SYMBOL(kmemleak_not_leak_phys);
1151
1152/**
1153 * kmemleak_ignore_phys - similar to kmemleak_ignore but taking a physical
1154 *			  address argument
1155 * @phys:	physical address of the object
1156 */
1157void __ref kmemleak_ignore_phys(phys_addr_t phys)
1158{
1159	if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1160		kmemleak_ignore(__va(phys));
1161}
1162EXPORT_SYMBOL(kmemleak_ignore_phys);
1163
1164/*
1165 * Update an object's checksum and return true if it was modified.
1166 */
1167static bool update_checksum(struct kmemleak_object *object)
1168{
1169	u32 old_csum = object->checksum;
1170
1171	kasan_disable_current();
1172	kcsan_disable_current();
1173	object->checksum = crc32(0, (void *)object->pointer, object->size);
1174	kasan_enable_current();
1175	kcsan_enable_current();
1176
 
1177	return object->checksum != old_csum;
1178}
1179
1180/*
1181 * Update an object's references. object->lock must be held by the caller.
1182 */
1183static void update_refs(struct kmemleak_object *object)
1184{
1185	if (!color_white(object)) {
1186		/* non-orphan, ignored or new */
1187		return;
1188	}
1189
1190	/*
1191	 * Increase the object's reference count (number of pointers to the
1192	 * memory block). If this count reaches the required minimum, the
1193	 * object's color will become gray and it will be added to the
1194	 * gray_list.
1195	 */
1196	object->count++;
1197	if (color_gray(object)) {
1198		/* put_object() called when removing from gray_list */
1199		WARN_ON(!get_object(object));
1200		list_add_tail(&object->gray_list, &gray_list);
1201	}
1202}
1203
1204/*
1205 * Memory scanning is a long process and it needs to be interruptable. This
1206 * function checks whether such interrupt condition occurred.
1207 */
1208static int scan_should_stop(void)
1209{
1210	if (!kmemleak_enabled)
1211		return 1;
1212
1213	/*
1214	 * This function may be called from either process or kthread context,
1215	 * hence the need to check for both stop conditions.
1216	 */
1217	if (current->mm)
1218		return signal_pending(current);
1219	else
1220		return kthread_should_stop();
1221
1222	return 0;
1223}
1224
1225/*
1226 * Scan a memory block (exclusive range) for valid pointers and add those
1227 * found to the gray list.
1228 */
1229static void scan_block(void *_start, void *_end,
1230		       struct kmemleak_object *scanned)
1231{
1232	unsigned long *ptr;
1233	unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
1234	unsigned long *end = _end - (BYTES_PER_POINTER - 1);
1235	unsigned long flags;
1236	unsigned long untagged_ptr;
1237
1238	raw_spin_lock_irqsave(&kmemleak_lock, flags);
1239	for (ptr = start; ptr < end; ptr++) {
1240		struct kmemleak_object *object;
 
1241		unsigned long pointer;
1242		unsigned long excess_ref;
1243
 
 
1244		if (scan_should_stop())
1245			break;
1246
1247		kasan_disable_current();
1248		pointer = *ptr;
1249		kasan_enable_current();
1250
1251		untagged_ptr = (unsigned long)kasan_reset_tag((void *)pointer);
1252		if (untagged_ptr < min_addr || untagged_ptr >= max_addr)
1253			continue;
1254
1255		/*
1256		 * No need for get_object() here since we hold kmemleak_lock.
1257		 * object->use_count cannot be dropped to 0 while the object
1258		 * is still present in object_tree_root and object_list
1259		 * (with updates protected by kmemleak_lock).
1260		 */
1261		object = lookup_object(pointer, 1);
1262		if (!object)
1263			continue;
1264		if (object == scanned)
1265			/* self referenced, ignore */
 
1266			continue;
 
1267
1268		/*
1269		 * Avoid the lockdep recursive warning on object->lock being
1270		 * previously acquired in scan_object(). These locks are
1271		 * enclosed by scan_mutex.
1272		 */
1273		raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1274		/* only pass surplus references (object already gray) */
1275		if (color_gray(object)) {
1276			excess_ref = object->excess_ref;
1277			/* no need for update_refs() if object already gray */
1278		} else {
1279			excess_ref = 0;
1280			update_refs(object);
1281		}
1282		raw_spin_unlock(&object->lock);
1283
1284		if (excess_ref) {
1285			object = lookup_object(excess_ref, 0);
1286			if (!object)
1287				continue;
1288			if (object == scanned)
1289				/* circular reference, ignore */
1290				continue;
1291			raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1292			update_refs(object);
1293			raw_spin_unlock(&object->lock);
 
1294		}
1295	}
1296	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
1297}
1298
1299/*
1300 * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency.
1301 */
1302#ifdef CONFIG_SMP
1303static void scan_large_block(void *start, void *end)
1304{
1305	void *next;
1306
1307	while (start < end) {
1308		next = min(start + MAX_SCAN_SIZE, end);
1309		scan_block(start, next, NULL);
1310		start = next;
1311		cond_resched();
1312	}
1313}
1314#endif
1315
1316/*
1317 * Scan a memory block corresponding to a kmemleak_object. A condition is
1318 * that object->use_count >= 1.
1319 */
1320static void scan_object(struct kmemleak_object *object)
1321{
1322	struct kmemleak_scan_area *area;
 
1323	unsigned long flags;
1324
1325	/*
1326	 * Once the object->lock is acquired, the corresponding memory block
1327	 * cannot be freed (the same lock is acquired in delete_object).
1328	 */
1329	raw_spin_lock_irqsave(&object->lock, flags);
1330	if (object->flags & OBJECT_NO_SCAN)
1331		goto out;
1332	if (!(object->flags & OBJECT_ALLOCATED))
1333		/* already freed object */
1334		goto out;
1335	if (hlist_empty(&object->area_list) ||
1336	    object->flags & OBJECT_FULL_SCAN) {
1337		void *start = (void *)object->pointer;
1338		void *end = (void *)(object->pointer + object->size);
1339		void *next;
1340
1341		do {
1342			next = min(start + MAX_SCAN_SIZE, end);
1343			scan_block(start, next, object);
1344
1345			start = next;
1346			if (start >= end)
1347				break;
 
 
1348
1349			raw_spin_unlock_irqrestore(&object->lock, flags);
1350			cond_resched();
1351			raw_spin_lock_irqsave(&object->lock, flags);
1352		} while (object->flags & OBJECT_ALLOCATED);
1353	} else
1354		hlist_for_each_entry(area, &object->area_list, node)
1355			scan_block((void *)area->start,
1356				   (void *)(area->start + area->size),
1357				   object);
1358out:
1359	raw_spin_unlock_irqrestore(&object->lock, flags);
1360}
1361
1362/*
1363 * Scan the objects already referenced (gray objects). More objects will be
1364 * referenced and, if there are no memory leaks, all the objects are scanned.
1365 */
1366static void scan_gray_list(void)
1367{
1368	struct kmemleak_object *object, *tmp;
1369
1370	/*
1371	 * The list traversal is safe for both tail additions and removals
1372	 * from inside the loop. The kmemleak objects cannot be freed from
1373	 * outside the loop because their use_count was incremented.
1374	 */
1375	object = list_entry(gray_list.next, typeof(*object), gray_list);
1376	while (&object->gray_list != &gray_list) {
1377		cond_resched();
1378
1379		/* may add new objects to the list */
1380		if (!scan_should_stop())
1381			scan_object(object);
1382
1383		tmp = list_entry(object->gray_list.next, typeof(*object),
1384				 gray_list);
1385
1386		/* remove the object from the list and release it */
1387		list_del(&object->gray_list);
1388		put_object(object);
1389
1390		object = tmp;
1391	}
1392	WARN_ON(!list_empty(&gray_list));
1393}
1394
1395/*
1396 * Scan data sections and all the referenced memory blocks allocated via the
1397 * kernel's standard allocators. This function must be called with the
1398 * scan_mutex held.
1399 */
1400static void kmemleak_scan(void)
1401{
1402	unsigned long flags;
1403	struct kmemleak_object *object;
1404	int i;
1405	int new_leaks = 0;
1406
1407	jiffies_last_scan = jiffies;
1408
1409	/* prepare the kmemleak_object's */
1410	rcu_read_lock();
1411	list_for_each_entry_rcu(object, &object_list, object_list) {
1412		raw_spin_lock_irqsave(&object->lock, flags);
1413#ifdef DEBUG
1414		/*
1415		 * With a few exceptions there should be a maximum of
1416		 * 1 reference to any object at this point.
1417		 */
1418		if (atomic_read(&object->use_count) > 1) {
1419			pr_debug("object->use_count = %d\n",
1420				 atomic_read(&object->use_count));
1421			dump_object_info(object);
1422		}
1423#endif
1424		/* reset the reference count (whiten the object) */
1425		object->count = 0;
1426		if (color_gray(object) && get_object(object))
1427			list_add_tail(&object->gray_list, &gray_list);
1428
1429		raw_spin_unlock_irqrestore(&object->lock, flags);
1430	}
1431	rcu_read_unlock();
1432
 
 
 
 
1433#ifdef CONFIG_SMP
1434	/* per-cpu sections scanning */
1435	for_each_possible_cpu(i)
1436		scan_large_block(__per_cpu_start + per_cpu_offset(i),
1437				 __per_cpu_end + per_cpu_offset(i));
1438#endif
1439
1440	/*
1441	 * Struct page scanning for each node.
1442	 */
1443	get_online_mems();
1444	for_each_online_node(i) {
1445		unsigned long start_pfn = node_start_pfn(i);
1446		unsigned long end_pfn = node_end_pfn(i);
 
1447		unsigned long pfn;
1448
1449		for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1450			struct page *page = pfn_to_online_page(pfn);
1451
1452			if (!page)
1453				continue;
1454
1455			/* only scan pages belonging to this node */
1456			if (page_to_nid(page) != i)
1457				continue;
 
1458			/* only scan if page is in use */
1459			if (page_count(page) == 0)
1460				continue;
1461			scan_block(page, page + 1, NULL);
1462			if (!(pfn & 63))
1463				cond_resched();
1464		}
1465	}
1466	put_online_mems();
1467
1468	/*
1469	 * Scanning the task stacks (may introduce false negatives).
1470	 */
1471	if (kmemleak_stack_scan) {
1472		struct task_struct *p, *g;
1473
1474		read_lock(&tasklist_lock);
1475		do_each_thread(g, p) {
1476			void *stack = try_get_task_stack(p);
1477			if (stack) {
1478				scan_block(stack, stack + THREAD_SIZE, NULL);
1479				put_task_stack(p);
1480			}
1481		} while_each_thread(g, p);
1482		read_unlock(&tasklist_lock);
1483	}
1484
1485	/*
1486	 * Scan the objects already referenced from the sections scanned
1487	 * above.
1488	 */
1489	scan_gray_list();
1490
1491	/*
1492	 * Check for new or unreferenced objects modified since the previous
1493	 * scan and color them gray until the next scan.
1494	 */
1495	rcu_read_lock();
1496	list_for_each_entry_rcu(object, &object_list, object_list) {
1497		raw_spin_lock_irqsave(&object->lock, flags);
1498		if (color_white(object) && (object->flags & OBJECT_ALLOCATED)
1499		    && update_checksum(object) && get_object(object)) {
1500			/* color it gray temporarily */
1501			object->count = object->min_count;
1502			list_add_tail(&object->gray_list, &gray_list);
1503		}
1504		raw_spin_unlock_irqrestore(&object->lock, flags);
1505	}
1506	rcu_read_unlock();
1507
1508	/*
1509	 * Re-scan the gray list for modified unreferenced objects.
1510	 */
1511	scan_gray_list();
1512
1513	/*
1514	 * If scanning was stopped do not report any new unreferenced objects.
1515	 */
1516	if (scan_should_stop())
1517		return;
1518
1519	/*
1520	 * Scanning result reporting.
1521	 */
1522	rcu_read_lock();
1523	list_for_each_entry_rcu(object, &object_list, object_list) {
1524		raw_spin_lock_irqsave(&object->lock, flags);
1525		if (unreferenced_object(object) &&
1526		    !(object->flags & OBJECT_REPORTED)) {
1527			object->flags |= OBJECT_REPORTED;
1528
1529			if (kmemleak_verbose)
1530				print_unreferenced(NULL, object);
1531
1532			new_leaks++;
1533		}
1534		raw_spin_unlock_irqrestore(&object->lock, flags);
1535	}
1536	rcu_read_unlock();
1537
1538	if (new_leaks) {
1539		kmemleak_found_leaks = true;
1540
1541		pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n",
1542			new_leaks);
1543	}
1544
1545}
1546
1547/*
1548 * Thread function performing automatic memory scanning. Unreferenced objects
1549 * at the end of a memory scan are reported but only the first time.
1550 */
1551static int kmemleak_scan_thread(void *arg)
1552{
1553	static int first_run = IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN);
1554
1555	pr_info("Automatic memory scanning thread started\n");
1556	set_user_nice(current, 10);
1557
1558	/*
1559	 * Wait before the first scan to allow the system to fully initialize.
1560	 */
1561	if (first_run) {
1562		signed long timeout = msecs_to_jiffies(SECS_FIRST_SCAN * 1000);
1563		first_run = 0;
1564		while (timeout && !kthread_should_stop())
1565			timeout = schedule_timeout_interruptible(timeout);
1566	}
1567
1568	while (!kthread_should_stop()) {
1569		signed long timeout = jiffies_scan_wait;
1570
1571		mutex_lock(&scan_mutex);
1572		kmemleak_scan();
1573		mutex_unlock(&scan_mutex);
1574
1575		/* wait before the next scan */
1576		while (timeout && !kthread_should_stop())
1577			timeout = schedule_timeout_interruptible(timeout);
1578	}
1579
1580	pr_info("Automatic memory scanning thread ended\n");
1581
1582	return 0;
1583}
1584
1585/*
1586 * Start the automatic memory scanning thread. This function must be called
1587 * with the scan_mutex held.
1588 */
1589static void start_scan_thread(void)
1590{
1591	if (scan_thread)
1592		return;
1593	scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1594	if (IS_ERR(scan_thread)) {
1595		pr_warn("Failed to create the scan thread\n");
1596		scan_thread = NULL;
1597	}
1598}
1599
1600/*
1601 * Stop the automatic memory scanning thread.
 
1602 */
1603static void stop_scan_thread(void)
1604{
1605	if (scan_thread) {
1606		kthread_stop(scan_thread);
1607		scan_thread = NULL;
1608	}
1609}
1610
1611/*
1612 * Iterate over the object_list and return the first valid object at or after
1613 * the required position with its use_count incremented. The function triggers
1614 * a memory scanning when the pos argument points to the first position.
1615 */
1616static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1617{
1618	struct kmemleak_object *object;
1619	loff_t n = *pos;
1620	int err;
1621
1622	err = mutex_lock_interruptible(&scan_mutex);
1623	if (err < 0)
1624		return ERR_PTR(err);
1625
1626	rcu_read_lock();
1627	list_for_each_entry_rcu(object, &object_list, object_list) {
1628		if (n-- > 0)
1629			continue;
1630		if (get_object(object))
1631			goto out;
1632	}
1633	object = NULL;
1634out:
1635	return object;
1636}
1637
1638/*
1639 * Return the next object in the object_list. The function decrements the
1640 * use_count of the previous object and increases that of the next one.
1641 */
1642static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1643{
1644	struct kmemleak_object *prev_obj = v;
1645	struct kmemleak_object *next_obj = NULL;
1646	struct kmemleak_object *obj = prev_obj;
1647
1648	++(*pos);
1649
1650	list_for_each_entry_continue_rcu(obj, &object_list, object_list) {
 
 
1651		if (get_object(obj)) {
1652			next_obj = obj;
1653			break;
1654		}
1655	}
1656
1657	put_object(prev_obj);
1658	return next_obj;
1659}
1660
1661/*
1662 * Decrement the use_count of the last object required, if any.
1663 */
1664static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1665{
1666	if (!IS_ERR(v)) {
1667		/*
1668		 * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1669		 * waiting was interrupted, so only release it if !IS_ERR.
1670		 */
1671		rcu_read_unlock();
1672		mutex_unlock(&scan_mutex);
1673		if (v)
1674			put_object(v);
1675	}
1676}
1677
1678/*
1679 * Print the information for an unreferenced object to the seq file.
1680 */
1681static int kmemleak_seq_show(struct seq_file *seq, void *v)
1682{
1683	struct kmemleak_object *object = v;
1684	unsigned long flags;
1685
1686	raw_spin_lock_irqsave(&object->lock, flags);
1687	if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
1688		print_unreferenced(seq, object);
1689	raw_spin_unlock_irqrestore(&object->lock, flags);
1690	return 0;
1691}
1692
1693static const struct seq_operations kmemleak_seq_ops = {
1694	.start = kmemleak_seq_start,
1695	.next  = kmemleak_seq_next,
1696	.stop  = kmemleak_seq_stop,
1697	.show  = kmemleak_seq_show,
1698};
1699
1700static int kmemleak_open(struct inode *inode, struct file *file)
1701{
1702	return seq_open(file, &kmemleak_seq_ops);
1703}
1704
 
 
 
 
 
1705static int dump_str_object_info(const char *str)
1706{
1707	unsigned long flags;
1708	struct kmemleak_object *object;
1709	unsigned long addr;
1710
1711	if (kstrtoul(str, 0, &addr))
1712		return -EINVAL;
1713	object = find_and_get_object(addr, 0);
1714	if (!object) {
1715		pr_info("Unknown object at 0x%08lx\n", addr);
1716		return -EINVAL;
1717	}
1718
1719	raw_spin_lock_irqsave(&object->lock, flags);
1720	dump_object_info(object);
1721	raw_spin_unlock_irqrestore(&object->lock, flags);
1722
1723	put_object(object);
1724	return 0;
1725}
1726
1727/*
1728 * We use grey instead of black to ensure we can do future scans on the same
1729 * objects. If we did not do future scans these black objects could
1730 * potentially contain references to newly allocated objects in the future and
1731 * we'd end up with false positives.
1732 */
1733static void kmemleak_clear(void)
1734{
1735	struct kmemleak_object *object;
1736	unsigned long flags;
1737
1738	rcu_read_lock();
1739	list_for_each_entry_rcu(object, &object_list, object_list) {
1740		raw_spin_lock_irqsave(&object->lock, flags);
1741		if ((object->flags & OBJECT_REPORTED) &&
1742		    unreferenced_object(object))
1743			__paint_it(object, KMEMLEAK_GREY);
1744		raw_spin_unlock_irqrestore(&object->lock, flags);
1745	}
1746	rcu_read_unlock();
1747
1748	kmemleak_found_leaks = false;
1749}
1750
1751static void __kmemleak_do_cleanup(void);
1752
1753/*
1754 * File write operation to configure kmemleak at run-time. The following
1755 * commands can be written to the /sys/kernel/debug/kmemleak file:
1756 *   off	- disable kmemleak (irreversible)
1757 *   stack=on	- enable the task stacks scanning
1758 *   stack=off	- disable the tasks stacks scanning
1759 *   scan=on	- start the automatic memory scanning thread
1760 *   scan=off	- stop the automatic memory scanning thread
1761 *   scan=...	- set the automatic memory scanning period in seconds (0 to
1762 *		  disable it)
1763 *   scan	- trigger a memory scan
1764 *   clear	- mark all current reported unreferenced kmemleak objects as
1765 *		  grey to ignore printing them, or free all kmemleak objects
1766 *		  if kmemleak has been disabled.
1767 *   dump=...	- dump information about the object found at the given address
1768 */
1769static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
1770			      size_t size, loff_t *ppos)
1771{
1772	char buf[64];
1773	int buf_size;
1774	int ret;
1775
 
 
 
1776	buf_size = min(size, (sizeof(buf) - 1));
1777	if (strncpy_from_user(buf, user_buf, buf_size) < 0)
1778		return -EFAULT;
1779	buf[buf_size] = 0;
1780
1781	ret = mutex_lock_interruptible(&scan_mutex);
1782	if (ret < 0)
1783		return ret;
1784
1785	if (strncmp(buf, "clear", 5) == 0) {
1786		if (kmemleak_enabled)
1787			kmemleak_clear();
1788		else
1789			__kmemleak_do_cleanup();
1790		goto out;
1791	}
1792
1793	if (!kmemleak_enabled) {
1794		ret = -EPERM;
1795		goto out;
1796	}
1797
1798	if (strncmp(buf, "off", 3) == 0)
1799		kmemleak_disable();
1800	else if (strncmp(buf, "stack=on", 8) == 0)
1801		kmemleak_stack_scan = 1;
1802	else if (strncmp(buf, "stack=off", 9) == 0)
1803		kmemleak_stack_scan = 0;
1804	else if (strncmp(buf, "scan=on", 7) == 0)
1805		start_scan_thread();
1806	else if (strncmp(buf, "scan=off", 8) == 0)
1807		stop_scan_thread();
1808	else if (strncmp(buf, "scan=", 5) == 0) {
1809		unsigned long secs;
1810
1811		ret = kstrtoul(buf + 5, 0, &secs);
1812		if (ret < 0)
1813			goto out;
1814		stop_scan_thread();
1815		if (secs) {
1816			jiffies_scan_wait = msecs_to_jiffies(secs * 1000);
1817			start_scan_thread();
1818		}
1819	} else if (strncmp(buf, "scan", 4) == 0)
1820		kmemleak_scan();
 
 
1821	else if (strncmp(buf, "dump=", 5) == 0)
1822		ret = dump_str_object_info(buf + 5);
1823	else
1824		ret = -EINVAL;
1825
1826out:
1827	mutex_unlock(&scan_mutex);
1828	if (ret < 0)
1829		return ret;
1830
1831	/* ignore the rest of the buffer, only one command at a time */
1832	*ppos += size;
1833	return size;
1834}
1835
1836static const struct file_operations kmemleak_fops = {
1837	.owner		= THIS_MODULE,
1838	.open		= kmemleak_open,
1839	.read		= seq_read,
1840	.write		= kmemleak_write,
1841	.llseek		= seq_lseek,
1842	.release	= seq_release,
1843};
1844
1845static void __kmemleak_do_cleanup(void)
1846{
1847	struct kmemleak_object *object, *tmp;
1848
1849	/*
1850	 * Kmemleak has already been disabled, no need for RCU list traversal
1851	 * or kmemleak_lock held.
1852	 */
1853	list_for_each_entry_safe(object, tmp, &object_list, object_list) {
1854		__remove_object(object);
1855		__delete_object(object);
1856	}
1857}
1858
1859/*
1860 * Stop the memory scanning thread and free the kmemleak internal objects if
1861 * no previous scan thread (otherwise, kmemleak may still have some useful
1862 * information on memory leaks).
1863 */
1864static void kmemleak_do_cleanup(struct work_struct *work)
1865{
1866	stop_scan_thread();
 
1867
1868	mutex_lock(&scan_mutex);
1869	/*
1870	 * Once it is made sure that kmemleak_scan has stopped, it is safe to no
1871	 * longer track object freeing. Ordering of the scan thread stopping and
1872	 * the memory accesses below is guaranteed by the kthread_stop()
1873	 * function.
1874	 */
1875	kmemleak_free_enabled = 0;
1876	mutex_unlock(&scan_mutex);
1877
1878	if (!kmemleak_found_leaks)
1879		__kmemleak_do_cleanup();
1880	else
1881		pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n");
 
 
 
1882}
1883
1884static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
1885
1886/*
1887 * Disable kmemleak. No memory allocation/freeing will be traced once this
1888 * function is called. Disabling kmemleak is an irreversible operation.
1889 */
1890static void kmemleak_disable(void)
1891{
1892	/* atomically check whether it was already invoked */
1893	if (cmpxchg(&kmemleak_error, 0, 1))
1894		return;
1895
1896	/* stop any memory operation tracing */
1897	kmemleak_enabled = 0;
1898
1899	/* check whether it is too early for a kernel thread */
1900	if (kmemleak_initialized)
1901		schedule_work(&cleanup_work);
1902	else
1903		kmemleak_free_enabled = 0;
1904
1905	pr_info("Kernel memory leak detector disabled\n");
1906}
1907
1908/*
1909 * Allow boot-time kmemleak disabling (enabled by default).
1910 */
1911static int __init kmemleak_boot_config(char *str)
1912{
1913	if (!str)
1914		return -EINVAL;
1915	if (strcmp(str, "off") == 0)
1916		kmemleak_disable();
1917	else if (strcmp(str, "on") == 0)
1918		kmemleak_skip_disable = 1;
1919	else
1920		return -EINVAL;
1921	return 0;
1922}
1923early_param("kmemleak", kmemleak_boot_config);
1924
 
 
 
 
 
 
 
 
 
 
 
1925/*
1926 * Kmemleak initialization.
1927 */
1928void __init kmemleak_init(void)
1929{
 
 
 
1930#ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
1931	if (!kmemleak_skip_disable) {
 
1932		kmemleak_disable();
1933		return;
1934	}
1935#endif
1936
1937	if (kmemleak_error)
1938		return;
1939
1940	jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
1941	jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
1942
1943	object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
1944	scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1945
1946	/* register the data/bss sections */
1947	create_object((unsigned long)_sdata, _edata - _sdata,
1948		      KMEMLEAK_GREY, GFP_ATOMIC);
1949	create_object((unsigned long)__bss_start, __bss_stop - __bss_start,
1950		      KMEMLEAK_GREY, GFP_ATOMIC);
1951	/* only register .data..ro_after_init if not within .data */
1952	if (&__start_ro_after_init < &_sdata || &__end_ro_after_init > &_edata)
1953		create_object((unsigned long)__start_ro_after_init,
1954			      __end_ro_after_init - __start_ro_after_init,
1955			      KMEMLEAK_GREY, GFP_ATOMIC);
1956}
1957
1958/*
1959 * Late initialization function.
1960 */
1961static int __init kmemleak_late_init(void)
1962{
1963	kmemleak_initialized = 1;
1964
1965	debugfs_create_file("kmemleak", 0644, NULL, NULL, &kmemleak_fops);
1966
1967	if (kmemleak_error) {
1968		/*
1969		 * Some error occurred and kmemleak was disabled. There is a
1970		 * small chance that kmemleak_disable() was called immediately
1971		 * after setting kmemleak_initialized and we may end up with
1972		 * two clean-up threads but serialized by scan_mutex.
1973		 */
1974		schedule_work(&cleanup_work);
1975		return -ENOMEM;
1976	}
1977
1978	if (IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN)) {
1979		mutex_lock(&scan_mutex);
1980		start_scan_thread();
1981		mutex_unlock(&scan_mutex);
1982	}
 
 
1983
1984	pr_info("Kernel memory leak detector initialized (mem pool available: %d)\n",
1985		mem_pool_free_count);
1986
1987	return 0;
1988}
1989late_initcall(kmemleak_late_init);
v3.5.6
 
   1/*
   2 * mm/kmemleak.c
   3 *
   4 * Copyright (C) 2008 ARM Limited
   5 * Written by Catalin Marinas <catalin.marinas@arm.com>
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 as
   9 * published by the Free Software Foundation.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * along with this program; if not, write to the Free Software
  18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  19 *
  20 *
  21 * For more information on the algorithm and kmemleak usage, please see
  22 * Documentation/kmemleak.txt.
  23 *
  24 * Notes on locking
  25 * ----------------
  26 *
  27 * The following locks and mutexes are used by kmemleak:
  28 *
  29 * - kmemleak_lock (rwlock): protects the object_list modifications and
  30 *   accesses to the object_tree_root. The object_list is the main list
  31 *   holding the metadata (struct kmemleak_object) for the allocated memory
  32 *   blocks. The object_tree_root is a priority search tree used to look-up
  33 *   metadata based on a pointer to the corresponding memory block.  The
  34 *   kmemleak_object structures are added to the object_list and
  35 *   object_tree_root in the create_object() function called from the
  36 *   kmemleak_alloc() callback and removed in delete_object() called from the
  37 *   kmemleak_free() callback
  38 * - kmemleak_object.lock (spinlock): protects a kmemleak_object. Accesses to
  39 *   the metadata (e.g. count) are protected by this lock. Note that some
  40 *   members of this structure may be protected by other means (atomic or
  41 *   kmemleak_lock). This lock is also held when scanning the corresponding
  42 *   memory block to avoid the kernel freeing it via the kmemleak_free()
  43 *   callback. This is less heavyweight than holding a global lock like
  44 *   kmemleak_lock during scanning
  45 * - scan_mutex (mutex): ensures that only one thread may scan the memory for
  46 *   unreferenced objects at a time. The gray_list contains the objects which
  47 *   are already referenced or marked as false positives and need to be
  48 *   scanned. This list is only modified during a scanning episode when the
  49 *   scan_mutex is held. At the end of a scan, the gray_list is always empty.
  50 *   Note that the kmemleak_object.use_count is incremented when an object is
  51 *   added to the gray_list and therefore cannot be freed. This mutex also
  52 *   prevents multiple users of the "kmemleak" debugfs file together with
  53 *   modifications to the memory scanning parameters including the scan_thread
  54 *   pointer
  55 *
 
 
 
 
 
 
 
  56 * The kmemleak_object structures have a use_count incremented or decremented
  57 * using the get_object()/put_object() functions. When the use_count becomes
  58 * 0, this count can no longer be incremented and put_object() schedules the
  59 * kmemleak_object freeing via an RCU callback. All calls to the get_object()
  60 * function must be protected by rcu_read_lock() to avoid accessing a freed
  61 * structure.
  62 */
  63
  64#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  65
  66#include <linux/init.h>
  67#include <linux/kernel.h>
  68#include <linux/list.h>
  69#include <linux/sched.h>
 
 
  70#include <linux/jiffies.h>
  71#include <linux/delay.h>
  72#include <linux/export.h>
  73#include <linux/kthread.h>
  74#include <linux/prio_tree.h>
  75#include <linux/fs.h>
  76#include <linux/debugfs.h>
  77#include <linux/seq_file.h>
  78#include <linux/cpumask.h>
  79#include <linux/spinlock.h>
 
  80#include <linux/mutex.h>
  81#include <linux/rcupdate.h>
  82#include <linux/stacktrace.h>
  83#include <linux/cache.h>
  84#include <linux/percpu.h>
  85#include <linux/hardirq.h>
 
  86#include <linux/mmzone.h>
  87#include <linux/slab.h>
  88#include <linux/thread_info.h>
  89#include <linux/err.h>
  90#include <linux/uaccess.h>
  91#include <linux/string.h>
  92#include <linux/nodemask.h>
  93#include <linux/mm.h>
  94#include <linux/workqueue.h>
  95#include <linux/crc32.h>
  96
  97#include <asm/sections.h>
  98#include <asm/processor.h>
  99#include <linux/atomic.h>
 100
 101#include <linux/kmemcheck.h>
 102#include <linux/kmemleak.h>
 103#include <linux/memory_hotplug.h>
 104
 105/*
 106 * Kmemleak configuration and common defines.
 107 */
 108#define MAX_TRACE		16	/* stack trace length */
 109#define MSECS_MIN_AGE		5000	/* minimum object age for reporting */
 110#define SECS_FIRST_SCAN		60	/* delay before the first scan */
 111#define SECS_SCAN_WAIT		600	/* subsequent auto scanning delay */
 112#define MAX_SCAN_SIZE		4096	/* maximum size of a scanned block */
 113
 114#define BYTES_PER_POINTER	sizeof(void *)
 115
 116/* GFP bitmask for kmemleak internal allocations */
 117#define gfp_kmemleak_mask(gfp)	(((gfp) & (GFP_KERNEL | GFP_ATOMIC)) | \
 118				 __GFP_NORETRY | __GFP_NOMEMALLOC | \
 119				 __GFP_NOWARN)
 120
 121/* scanning area inside a memory block */
 122struct kmemleak_scan_area {
 123	struct hlist_node node;
 124	unsigned long start;
 125	size_t size;
 126};
 127
 128#define KMEMLEAK_GREY	0
 129#define KMEMLEAK_BLACK	-1
 130
 131/*
 132 * Structure holding the metadata for each allocated memory block.
 133 * Modifications to such objects should be made while holding the
 134 * object->lock. Insertions or deletions from object_list, gray_list or
 135 * tree_node are already protected by the corresponding locks or mutex (see
 136 * the notes on locking above). These objects are reference-counted
 137 * (use_count) and freed using the RCU mechanism.
 138 */
 139struct kmemleak_object {
 140	spinlock_t lock;
 141	unsigned long flags;		/* object status flags */
 142	struct list_head object_list;
 143	struct list_head gray_list;
 144	struct prio_tree_node tree_node;
 145	struct rcu_head rcu;		/* object_list lockless traversal */
 146	/* object usage count; object freed when use_count == 0 */
 147	atomic_t use_count;
 148	unsigned long pointer;
 149	size_t size;
 
 
 150	/* minimum number of a pointers found before it is considered leak */
 151	int min_count;
 152	/* the total number of pointers found pointing to this object */
 153	int count;
 154	/* checksum for detecting modified objects */
 155	u32 checksum;
 156	/* memory ranges to be scanned inside an object (empty for all) */
 157	struct hlist_head area_list;
 158	unsigned long trace[MAX_TRACE];
 159	unsigned int trace_len;
 160	unsigned long jiffies;		/* creation timestamp */
 161	pid_t pid;			/* pid of the current task */
 162	char comm[TASK_COMM_LEN];	/* executable name */
 163};
 164
 165/* flag representing the memory block allocation status */
 166#define OBJECT_ALLOCATED	(1 << 0)
 167/* flag set after the first reporting of an unreference object */
 168#define OBJECT_REPORTED		(1 << 1)
 169/* flag set to not scan the object */
 170#define OBJECT_NO_SCAN		(1 << 2)
 
 
 171
 
 172/* number of bytes to print per line; must be 16 or 32 */
 173#define HEX_ROW_SIZE		16
 174/* number of bytes to print at a time (1, 2, 4, 8) */
 175#define HEX_GROUP_SIZE		1
 176/* include ASCII after the hex output */
 177#define HEX_ASCII		1
 178/* max number of lines to be printed */
 179#define HEX_MAX_LINES		2
 180
 181/* the list of all allocated objects */
 182static LIST_HEAD(object_list);
 183/* the list of gray-colored objects (see color_gray comment below) */
 184static LIST_HEAD(gray_list);
 185/* prio search tree for object boundaries */
 186static struct prio_tree_root object_tree_root;
 187/* rw_lock protecting the access to object_list and prio_tree_root */
 188static DEFINE_RWLOCK(kmemleak_lock);
 
 
 
 
 189
 190/* allocation caches for kmemleak internal data */
 191static struct kmem_cache *object_cache;
 192static struct kmem_cache *scan_area_cache;
 193
 194/* set if tracing memory operations is enabled */
 195static atomic_t kmemleak_enabled = ATOMIC_INIT(0);
 
 
 196/* set in the late_initcall if there were no errors */
 197static atomic_t kmemleak_initialized = ATOMIC_INIT(0);
 198/* enables or disables early logging of the memory operations */
 199static atomic_t kmemleak_early_log = ATOMIC_INIT(1);
 200/* set if a kmemleak warning was issued */
 201static atomic_t kmemleak_warning = ATOMIC_INIT(0);
 202/* set if a fatal kmemleak error has occurred */
 203static atomic_t kmemleak_error = ATOMIC_INIT(0);
 204
 205/* minimum and maximum address that may be valid pointers */
 206static unsigned long min_addr = ULONG_MAX;
 207static unsigned long max_addr;
 208
 209static struct task_struct *scan_thread;
 210/* used to avoid reporting of recently allocated objects */
 211static unsigned long jiffies_min_age;
 212static unsigned long jiffies_last_scan;
 213/* delay between automatic memory scannings */
 214static signed long jiffies_scan_wait;
 215/* enables or disables the task stacks scanning */
 216static int kmemleak_stack_scan = 1;
 217/* protects the memory scanning, parameters and debug/kmemleak file access */
 218static DEFINE_MUTEX(scan_mutex);
 219/* setting kmemleak=on, will set this var, skipping the disable */
 220static int kmemleak_skip_disable;
 
 
 221
 222
 223/*
 224 * Early object allocation/freeing logging. Kmemleak is initialized after the
 225 * kernel allocator. However, both the kernel allocator and kmemleak may
 226 * allocate memory blocks which need to be tracked. Kmemleak defines an
 227 * arbitrary buffer to hold the allocation/freeing information before it is
 228 * fully initialized.
 229 */
 230
 231/* kmemleak operation type for early logging */
 232enum {
 233	KMEMLEAK_ALLOC,
 234	KMEMLEAK_ALLOC_PERCPU,
 235	KMEMLEAK_FREE,
 236	KMEMLEAK_FREE_PART,
 237	KMEMLEAK_FREE_PERCPU,
 238	KMEMLEAK_NOT_LEAK,
 239	KMEMLEAK_IGNORE,
 240	KMEMLEAK_SCAN_AREA,
 241	KMEMLEAK_NO_SCAN
 242};
 243
 244/*
 245 * Structure holding the information passed to kmemleak callbacks during the
 246 * early logging.
 247 */
 248struct early_log {
 249	int op_type;			/* kmemleak operation type */
 250	const void *ptr;		/* allocated/freed memory block */
 251	size_t size;			/* memory block size */
 252	int min_count;			/* minimum reference count */
 253	unsigned long trace[MAX_TRACE];	/* stack trace */
 254	unsigned int trace_len;		/* stack trace length */
 255};
 256
 257/* early logging buffer and current position */
 258static struct early_log
 259	early_log[CONFIG_DEBUG_KMEMLEAK_EARLY_LOG_SIZE] __initdata;
 260static int crt_early_log __initdata;
 261
 262static void kmemleak_disable(void);
 263
 264/*
 265 * Print a warning and dump the stack trace.
 266 */
 267#define kmemleak_warn(x...)	do {		\
 268	pr_warning(x);				\
 269	dump_stack();				\
 270	atomic_set(&kmemleak_warning, 1);	\
 271} while (0)
 272
 273/*
 274 * Macro invoked when a serious kmemleak condition occurred and cannot be
 275 * recovered from. Kmemleak will be disabled and further allocation/freeing
 276 * tracing no longer available.
 277 */
 278#define kmemleak_stop(x...)	do {	\
 279	kmemleak_warn(x);		\
 280	kmemleak_disable();		\
 281} while (0)
 282
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 283/*
 284 * Printing of the objects hex dump to the seq file. The number of lines to be
 285 * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
 286 * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
 287 * with the object->lock held.
 288 */
 289static void hex_dump_object(struct seq_file *seq,
 290			    struct kmemleak_object *object)
 291{
 292	const u8 *ptr = (const u8 *)object->pointer;
 293	int i, len, remaining;
 294	unsigned char linebuf[HEX_ROW_SIZE * 5];
 295
 296	/* limit the number of lines to HEX_MAX_LINES */
 297	remaining = len =
 298		min(object->size, (size_t)(HEX_MAX_LINES * HEX_ROW_SIZE));
 299
 300	seq_printf(seq, "  hex dump (first %d bytes):\n", len);
 301	for (i = 0; i < len; i += HEX_ROW_SIZE) {
 302		int linelen = min(remaining, HEX_ROW_SIZE);
 303
 304		remaining -= HEX_ROW_SIZE;
 305		hex_dump_to_buffer(ptr + i, linelen, HEX_ROW_SIZE,
 306				   HEX_GROUP_SIZE, linebuf, sizeof(linebuf),
 307				   HEX_ASCII);
 308		seq_printf(seq, "    %s\n", linebuf);
 309	}
 310}
 311
 312/*
 313 * Object colors, encoded with count and min_count:
 314 * - white - orphan object, not enough references to it (count < min_count)
 315 * - gray  - not orphan, not marked as false positive (min_count == 0) or
 316 *		sufficient references to it (count >= min_count)
 317 * - black - ignore, it doesn't contain references (e.g. text section)
 318 *		(min_count == -1). No function defined for this color.
 319 * Newly created objects don't have any color assigned (object->count == -1)
 320 * before the next memory scan when they become white.
 321 */
 322static bool color_white(const struct kmemleak_object *object)
 323{
 324	return object->count != KMEMLEAK_BLACK &&
 325		object->count < object->min_count;
 326}
 327
 328static bool color_gray(const struct kmemleak_object *object)
 329{
 330	return object->min_count != KMEMLEAK_BLACK &&
 331		object->count >= object->min_count;
 332}
 333
 334/*
 335 * Objects are considered unreferenced only if their color is white, they have
 336 * not be deleted and have a minimum age to avoid false positives caused by
 337 * pointers temporarily stored in CPU registers.
 338 */
 339static bool unreferenced_object(struct kmemleak_object *object)
 340{
 341	return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
 342		time_before_eq(object->jiffies + jiffies_min_age,
 343			       jiffies_last_scan);
 344}
 345
 346/*
 347 * Printing of the unreferenced objects information to the seq file. The
 348 * print_unreferenced function must be called with the object->lock held.
 349 */
 350static void print_unreferenced(struct seq_file *seq,
 351			       struct kmemleak_object *object)
 352{
 353	int i;
 354	unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies);
 355
 356	seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
 357		   object->pointer, object->size);
 358	seq_printf(seq, "  comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n",
 359		   object->comm, object->pid, object->jiffies,
 360		   msecs_age / 1000, msecs_age % 1000);
 361	hex_dump_object(seq, object);
 362	seq_printf(seq, "  backtrace:\n");
 363
 364	for (i = 0; i < object->trace_len; i++) {
 365		void *ptr = (void *)object->trace[i];
 366		seq_printf(seq, "    [<%p>] %pS\n", ptr, ptr);
 367	}
 368}
 369
 370/*
 371 * Print the kmemleak_object information. This function is used mainly for
 372 * debugging special cases when kmemleak operations. It must be called with
 373 * the object->lock held.
 374 */
 375static void dump_object_info(struct kmemleak_object *object)
 376{
 377	struct stack_trace trace;
 378
 379	trace.nr_entries = object->trace_len;
 380	trace.entries = object->trace;
 381
 382	pr_notice("Object 0x%08lx (size %zu):\n",
 383		  object->tree_node.start, object->size);
 384	pr_notice("  comm \"%s\", pid %d, jiffies %lu\n",
 385		  object->comm, object->pid, object->jiffies);
 386	pr_notice("  min_count = %d\n", object->min_count);
 387	pr_notice("  count = %d\n", object->count);
 388	pr_notice("  flags = 0x%lx\n", object->flags);
 389	pr_notice("  checksum = %d\n", object->checksum);
 390	pr_notice("  backtrace:\n");
 391	print_stack_trace(&trace, 4);
 392}
 393
 394/*
 395 * Look-up a memory block metadata (kmemleak_object) in the priority search
 396 * tree based on a pointer value. If alias is 0, only values pointing to the
 397 * beginning of the memory block are allowed. The kmemleak_lock must be held
 398 * when calling this function.
 399 */
 400static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
 401{
 402	struct prio_tree_node *node;
 403	struct prio_tree_iter iter;
 404	struct kmemleak_object *object;
 405
 406	prio_tree_iter_init(&iter, &object_tree_root, ptr, ptr);
 407	node = prio_tree_next(&iter);
 408	if (node) {
 409		object = prio_tree_entry(node, struct kmemleak_object,
 410					 tree_node);
 411		if (!alias && object->pointer != ptr) {
 
 
 
 
 412			kmemleak_warn("Found object by alias at 0x%08lx\n",
 413				      ptr);
 414			dump_object_info(object);
 415			object = NULL;
 416		}
 417	} else
 418		object = NULL;
 419
 420	return object;
 421}
 422
 423/*
 424 * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
 425 * that once an object's use_count reached 0, the RCU freeing was already
 426 * registered and the object should no longer be used. This function must be
 427 * called under the protection of rcu_read_lock().
 428 */
 429static int get_object(struct kmemleak_object *object)
 430{
 431	return atomic_inc_not_zero(&object->use_count);
 432}
 433
 434/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 435 * RCU callback to free a kmemleak_object.
 436 */
 437static void free_object_rcu(struct rcu_head *rcu)
 438{
 439	struct hlist_node *elem, *tmp;
 440	struct kmemleak_scan_area *area;
 441	struct kmemleak_object *object =
 442		container_of(rcu, struct kmemleak_object, rcu);
 443
 444	/*
 445	 * Once use_count is 0 (guaranteed by put_object), there is no other
 446	 * code accessing this object, hence no need for locking.
 447	 */
 448	hlist_for_each_entry_safe(area, elem, tmp, &object->area_list, node) {
 449		hlist_del(elem);
 450		kmem_cache_free(scan_area_cache, area);
 451	}
 452	kmem_cache_free(object_cache, object);
 453}
 454
 455/*
 456 * Decrement the object use_count. Once the count is 0, free the object using
 457 * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
 458 * delete_object() path, the delayed RCU freeing ensures that there is no
 459 * recursive call to the kernel allocator. Lock-less RCU object_list traversal
 460 * is also possible.
 461 */
 462static void put_object(struct kmemleak_object *object)
 463{
 464	if (!atomic_dec_and_test(&object->use_count))
 465		return;
 466
 467	/* should only get here after delete_object was called */
 468	WARN_ON(object->flags & OBJECT_ALLOCATED);
 469
 470	call_rcu(&object->rcu, free_object_rcu);
 
 
 
 
 
 
 
 
 471}
 472
 473/*
 474 * Look up an object in the prio search tree and increase its use_count.
 475 */
 476static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
 477{
 478	unsigned long flags;
 479	struct kmemleak_object *object = NULL;
 480
 481	rcu_read_lock();
 482	read_lock_irqsave(&kmemleak_lock, flags);
 483	if (ptr >= min_addr && ptr < max_addr)
 484		object = lookup_object(ptr, alias);
 485	read_unlock_irqrestore(&kmemleak_lock, flags);
 486
 487	/* check whether the object is still available */
 488	if (object && !get_object(object))
 489		object = NULL;
 490	rcu_read_unlock();
 491
 492	return object;
 493}
 494
 495/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 496 * Save stack trace to the given array of MAX_TRACE size.
 497 */
 498static int __save_stack_trace(unsigned long *trace)
 499{
 500	struct stack_trace stack_trace;
 501
 502	stack_trace.max_entries = MAX_TRACE;
 503	stack_trace.nr_entries = 0;
 504	stack_trace.entries = trace;
 505	stack_trace.skip = 2;
 506	save_stack_trace(&stack_trace);
 507
 508	return stack_trace.nr_entries;
 509}
 510
 511/*
 512 * Create the metadata (struct kmemleak_object) corresponding to an allocated
 513 * memory block and add it to the object_list and object_tree_root.
 514 */
 515static struct kmemleak_object *create_object(unsigned long ptr, size_t size,
 516					     int min_count, gfp_t gfp)
 517{
 518	unsigned long flags;
 519	struct kmemleak_object *object;
 520	struct prio_tree_node *node;
 
 521
 522	object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp));
 523	if (!object) {
 524		pr_warning("Cannot allocate a kmemleak_object structure\n");
 525		kmemleak_disable();
 526		return NULL;
 527	}
 528
 529	INIT_LIST_HEAD(&object->object_list);
 530	INIT_LIST_HEAD(&object->gray_list);
 531	INIT_HLIST_HEAD(&object->area_list);
 532	spin_lock_init(&object->lock);
 533	atomic_set(&object->use_count, 1);
 534	object->flags = OBJECT_ALLOCATED;
 535	object->pointer = ptr;
 536	object->size = size;
 
 537	object->min_count = min_count;
 538	object->count = 0;			/* white color initially */
 539	object->jiffies = jiffies;
 540	object->checksum = 0;
 541
 542	/* task information */
 543	if (in_irq()) {
 544		object->pid = 0;
 545		strncpy(object->comm, "hardirq", sizeof(object->comm));
 546	} else if (in_softirq()) {
 547		object->pid = 0;
 548		strncpy(object->comm, "softirq", sizeof(object->comm));
 549	} else {
 550		object->pid = current->pid;
 551		/*
 552		 * There is a small chance of a race with set_task_comm(),
 553		 * however using get_task_comm() here may cause locking
 554		 * dependency issues with current->alloc_lock. In the worst
 555		 * case, the command line is not correct.
 556		 */
 557		strncpy(object->comm, current->comm, sizeof(object->comm));
 558	}
 559
 560	/* kernel backtrace */
 561	object->trace_len = __save_stack_trace(object->trace);
 562
 563	INIT_PRIO_TREE_NODE(&object->tree_node);
 564	object->tree_node.start = ptr;
 565	object->tree_node.last = ptr + size - 1;
 566
 567	write_lock_irqsave(&kmemleak_lock, flags);
 568
 569	min_addr = min(min_addr, ptr);
 570	max_addr = max(max_addr, ptr + size);
 571	node = prio_tree_insert(&object_tree_root, &object->tree_node);
 572	/*
 573	 * The code calling the kernel does not yet have the pointer to the
 574	 * memory block to be able to free it.  However, we still hold the
 575	 * kmemleak_lock here in case parts of the kernel started freeing
 576	 * random memory blocks.
 577	 */
 578	if (node != &object->tree_node) {
 579		kmemleak_stop("Cannot insert 0x%lx into the object search tree "
 580			      "(already existing)\n", ptr);
 581		object = lookup_object(ptr, 1);
 582		spin_lock(&object->lock);
 583		dump_object_info(object);
 584		spin_unlock(&object->lock);
 585
 586		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 587	}
 
 
 
 588	list_add_tail_rcu(&object->object_list, &object_list);
 589out:
 590	write_unlock_irqrestore(&kmemleak_lock, flags);
 591	return object;
 592}
 593
 594/*
 595 * Remove the metadata (struct kmemleak_object) for a memory block from the
 596 * object_list and object_tree_root and decrement its use_count.
 597 */
 598static void __delete_object(struct kmemleak_object *object)
 599{
 600	unsigned long flags;
 601
 602	write_lock_irqsave(&kmemleak_lock, flags);
 603	prio_tree_remove(&object_tree_root, &object->tree_node);
 604	list_del_rcu(&object->object_list);
 605	write_unlock_irqrestore(&kmemleak_lock, flags);
 606
 607	WARN_ON(!(object->flags & OBJECT_ALLOCATED));
 608	WARN_ON(atomic_read(&object->use_count) < 2);
 609
 610	/*
 611	 * Locking here also ensures that the corresponding memory block
 612	 * cannot be freed when it is being scanned.
 613	 */
 614	spin_lock_irqsave(&object->lock, flags);
 615	object->flags &= ~OBJECT_ALLOCATED;
 616	spin_unlock_irqrestore(&object->lock, flags);
 617	put_object(object);
 618}
 619
 620/*
 621 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
 622 * delete it.
 623 */
 624static void delete_object_full(unsigned long ptr)
 625{
 626	struct kmemleak_object *object;
 627
 628	object = find_and_get_object(ptr, 0);
 629	if (!object) {
 630#ifdef DEBUG
 631		kmemleak_warn("Freeing unknown object at 0x%08lx\n",
 632			      ptr);
 633#endif
 634		return;
 635	}
 636	__delete_object(object);
 637	put_object(object);
 638}
 639
 640/*
 641 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
 642 * delete it. If the memory block is partially freed, the function may create
 643 * additional metadata for the remaining parts of the block.
 644 */
 645static void delete_object_part(unsigned long ptr, size_t size)
 646{
 647	struct kmemleak_object *object;
 648	unsigned long start, end;
 649
 650	object = find_and_get_object(ptr, 1);
 651	if (!object) {
 652#ifdef DEBUG
 653		kmemleak_warn("Partially freeing unknown object at 0x%08lx "
 654			      "(size %zu)\n", ptr, size);
 655#endif
 656		return;
 657	}
 658	__delete_object(object);
 659
 660	/*
 661	 * Create one or two objects that may result from the memory block
 662	 * split. Note that partial freeing is only done by free_bootmem() and
 663	 * this happens before kmemleak_init() is called. The path below is
 664	 * only executed during early log recording in kmemleak_init(), so
 665	 * GFP_KERNEL is enough.
 666	 */
 667	start = object->pointer;
 668	end = object->pointer + object->size;
 669	if (ptr > start)
 670		create_object(start, ptr - start, object->min_count,
 671			      GFP_KERNEL);
 672	if (ptr + size < end)
 673		create_object(ptr + size, end - ptr - size, object->min_count,
 674			      GFP_KERNEL);
 675
 676	put_object(object);
 677}
 678
 679static void __paint_it(struct kmemleak_object *object, int color)
 680{
 681	object->min_count = color;
 682	if (color == KMEMLEAK_BLACK)
 683		object->flags |= OBJECT_NO_SCAN;
 684}
 685
 686static void paint_it(struct kmemleak_object *object, int color)
 687{
 688	unsigned long flags;
 689
 690	spin_lock_irqsave(&object->lock, flags);
 691	__paint_it(object, color);
 692	spin_unlock_irqrestore(&object->lock, flags);
 693}
 694
 695static void paint_ptr(unsigned long ptr, int color)
 696{
 697	struct kmemleak_object *object;
 698
 699	object = find_and_get_object(ptr, 0);
 700	if (!object) {
 701		kmemleak_warn("Trying to color unknown object "
 702			      "at 0x%08lx as %s\n", ptr,
 703			      (color == KMEMLEAK_GREY) ? "Grey" :
 704			      (color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
 705		return;
 706	}
 707	paint_it(object, color);
 708	put_object(object);
 709}
 710
 711/*
 712 * Mark an object permanently as gray-colored so that it can no longer be
 713 * reported as a leak. This is used in general to mark a false positive.
 714 */
 715static void make_gray_object(unsigned long ptr)
 716{
 717	paint_ptr(ptr, KMEMLEAK_GREY);
 718}
 719
 720/*
 721 * Mark the object as black-colored so that it is ignored from scans and
 722 * reporting.
 723 */
 724static void make_black_object(unsigned long ptr)
 725{
 726	paint_ptr(ptr, KMEMLEAK_BLACK);
 727}
 728
 729/*
 730 * Add a scanning area to the object. If at least one such area is added,
 731 * kmemleak will only scan these ranges rather than the whole memory block.
 732 */
 733static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
 734{
 735	unsigned long flags;
 736	struct kmemleak_object *object;
 737	struct kmemleak_scan_area *area;
 738
 739	object = find_and_get_object(ptr, 1);
 740	if (!object) {
 741		kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
 742			      ptr);
 743		return;
 744	}
 745
 746	area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp));
 
 
 
 747	if (!area) {
 748		pr_warning("Cannot allocate a scan area\n");
 749		goto out;
 
 
 750	}
 751
 752	spin_lock_irqsave(&object->lock, flags);
 753	if (ptr + size > object->pointer + object->size) {
 754		kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
 755		dump_object_info(object);
 756		kmem_cache_free(scan_area_cache, area);
 757		goto out_unlock;
 758	}
 759
 760	INIT_HLIST_NODE(&area->node);
 761	area->start = ptr;
 762	area->size = size;
 763
 764	hlist_add_head(&area->node, &object->area_list);
 765out_unlock:
 766	spin_unlock_irqrestore(&object->lock, flags);
 767out:
 768	put_object(object);
 769}
 770
 771/*
 772 * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
 773 * pointer. Such object will not be scanned by kmemleak but references to it
 774 * are searched.
 
 775 */
 776static void object_no_scan(unsigned long ptr)
 777{
 778	unsigned long flags;
 779	struct kmemleak_object *object;
 780
 781	object = find_and_get_object(ptr, 0);
 782	if (!object) {
 783		kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
 
 784		return;
 785	}
 786
 787	spin_lock_irqsave(&object->lock, flags);
 788	object->flags |= OBJECT_NO_SCAN;
 789	spin_unlock_irqrestore(&object->lock, flags);
 790	put_object(object);
 791}
 792
 793/*
 794 * Log an early kmemleak_* call to the early_log buffer. These calls will be
 795 * processed later once kmemleak is fully initialized.
 
 796 */
 797static void __init log_early(int op_type, const void *ptr, size_t size,
 798			     int min_count)
 799{
 800	unsigned long flags;
 801	struct early_log *log;
 802
 803	if (atomic_read(&kmemleak_error)) {
 804		/* kmemleak stopped recording, just count the requests */
 805		crt_early_log++;
 806		return;
 807	}
 808
 809	if (crt_early_log >= ARRAY_SIZE(early_log)) {
 810		kmemleak_disable();
 811		return;
 812	}
 813
 814	/*
 815	 * There is no need for locking since the kernel is still in UP mode
 816	 * at this stage. Disabling the IRQs is enough.
 817	 */
 818	local_irq_save(flags);
 819	log = &early_log[crt_early_log];
 820	log->op_type = op_type;
 821	log->ptr = ptr;
 822	log->size = size;
 823	log->min_count = min_count;
 824	log->trace_len = __save_stack_trace(log->trace);
 825	crt_early_log++;
 826	local_irq_restore(flags);
 827}
 828
 829/*
 830 * Log an early allocated block and populate the stack trace.
 831 */
 832static void early_alloc(struct early_log *log)
 833{
 834	struct kmemleak_object *object;
 835	unsigned long flags;
 836	int i;
 837
 838	if (!atomic_read(&kmemleak_enabled) || !log->ptr || IS_ERR(log->ptr))
 839		return;
 840
 841	/*
 842	 * RCU locking needed to ensure object is not freed via put_object().
 843	 */
 844	rcu_read_lock();
 845	object = create_object((unsigned long)log->ptr, log->size,
 846			       log->min_count, GFP_ATOMIC);
 847	if (!object)
 848		goto out;
 849	spin_lock_irqsave(&object->lock, flags);
 850	for (i = 0; i < log->trace_len; i++)
 851		object->trace[i] = log->trace[i];
 852	object->trace_len = log->trace_len;
 853	spin_unlock_irqrestore(&object->lock, flags);
 854out:
 855	rcu_read_unlock();
 856}
 857
 858/*
 859 * Log an early allocated block and populate the stack trace.
 860 */
 861static void early_alloc_percpu(struct early_log *log)
 862{
 863	unsigned int cpu;
 864	const void __percpu *ptr = log->ptr;
 865
 866	for_each_possible_cpu(cpu) {
 867		log->ptr = per_cpu_ptr(ptr, cpu);
 868		early_alloc(log);
 869	}
 870}
 871
 872/**
 873 * kmemleak_alloc - register a newly allocated object
 874 * @ptr:	pointer to beginning of the object
 875 * @size:	size of the object
 876 * @min_count:	minimum number of references to this object. If during memory
 877 *		scanning a number of references less than @min_count is found,
 878 *		the object is reported as a memory leak. If @min_count is 0,
 879 *		the object is never reported as a leak. If @min_count is -1,
 880 *		the object is ignored (not scanned and not reported as a leak)
 881 * @gfp:	kmalloc() flags used for kmemleak internal memory allocations
 882 *
 883 * This function is called from the kernel allocators when a new object
 884 * (memory block) is allocated (kmem_cache_alloc, kmalloc, vmalloc etc.).
 885 */
 886void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
 887			  gfp_t gfp)
 888{
 889	pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count);
 890
 891	if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
 892		create_object((unsigned long)ptr, size, min_count, gfp);
 893	else if (atomic_read(&kmemleak_early_log))
 894		log_early(KMEMLEAK_ALLOC, ptr, size, min_count);
 895}
 896EXPORT_SYMBOL_GPL(kmemleak_alloc);
 897
 898/**
 899 * kmemleak_alloc_percpu - register a newly allocated __percpu object
 900 * @ptr:	__percpu pointer to beginning of the object
 901 * @size:	size of the object
 
 902 *
 903 * This function is called from the kernel percpu allocator when a new object
 904 * (memory block) is allocated (alloc_percpu). It assumes GFP_KERNEL
 905 * allocation.
 906 */
 907void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size)
 
 908{
 909	unsigned int cpu;
 910
 911	pr_debug("%s(0x%p, %zu)\n", __func__, ptr, size);
 912
 913	/*
 914	 * Percpu allocations are only scanned and not reported as leaks
 915	 * (min_count is set to 0).
 916	 */
 917	if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
 918		for_each_possible_cpu(cpu)
 919			create_object((unsigned long)per_cpu_ptr(ptr, cpu),
 920				      size, 0, GFP_KERNEL);
 921	else if (atomic_read(&kmemleak_early_log))
 922		log_early(KMEMLEAK_ALLOC_PERCPU, ptr, size, 0);
 923}
 924EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu);
 925
 926/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 927 * kmemleak_free - unregister a previously registered object
 928 * @ptr:	pointer to beginning of the object
 929 *
 930 * This function is called from the kernel allocators when an object (memory
 931 * block) is freed (kmem_cache_free, kfree, vfree etc.).
 932 */
 933void __ref kmemleak_free(const void *ptr)
 934{
 935	pr_debug("%s(0x%p)\n", __func__, ptr);
 936
 937	if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
 938		delete_object_full((unsigned long)ptr);
 939	else if (atomic_read(&kmemleak_early_log))
 940		log_early(KMEMLEAK_FREE, ptr, 0, 0);
 941}
 942EXPORT_SYMBOL_GPL(kmemleak_free);
 943
 944/**
 945 * kmemleak_free_part - partially unregister a previously registered object
 946 * @ptr:	pointer to the beginning or inside the object. This also
 947 *		represents the start of the range to be freed
 948 * @size:	size to be unregistered
 949 *
 950 * This function is called when only a part of a memory block is freed
 951 * (usually from the bootmem allocator).
 952 */
 953void __ref kmemleak_free_part(const void *ptr, size_t size)
 954{
 955	pr_debug("%s(0x%p)\n", __func__, ptr);
 956
 957	if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
 958		delete_object_part((unsigned long)ptr, size);
 959	else if (atomic_read(&kmemleak_early_log))
 960		log_early(KMEMLEAK_FREE_PART, ptr, size, 0);
 961}
 962EXPORT_SYMBOL_GPL(kmemleak_free_part);
 963
 964/**
 965 * kmemleak_free_percpu - unregister a previously registered __percpu object
 966 * @ptr:	__percpu pointer to beginning of the object
 967 *
 968 * This function is called from the kernel percpu allocator when an object
 969 * (memory block) is freed (free_percpu).
 970 */
 971void __ref kmemleak_free_percpu(const void __percpu *ptr)
 972{
 973	unsigned int cpu;
 974
 975	pr_debug("%s(0x%p)\n", __func__, ptr);
 976
 977	if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
 978		for_each_possible_cpu(cpu)
 979			delete_object_full((unsigned long)per_cpu_ptr(ptr,
 980								      cpu));
 981	else if (atomic_read(&kmemleak_early_log))
 982		log_early(KMEMLEAK_FREE_PERCPU, ptr, 0, 0);
 983}
 984EXPORT_SYMBOL_GPL(kmemleak_free_percpu);
 985
 986/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 987 * kmemleak_not_leak - mark an allocated object as false positive
 988 * @ptr:	pointer to beginning of the object
 989 *
 990 * Calling this function on an object will cause the memory block to no longer
 991 * be reported as leak and always be scanned.
 992 */
 993void __ref kmemleak_not_leak(const void *ptr)
 994{
 995	pr_debug("%s(0x%p)\n", __func__, ptr);
 996
 997	if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
 998		make_gray_object((unsigned long)ptr);
 999	else if (atomic_read(&kmemleak_early_log))
1000		log_early(KMEMLEAK_NOT_LEAK, ptr, 0, 0);
1001}
1002EXPORT_SYMBOL(kmemleak_not_leak);
1003
1004/**
1005 * kmemleak_ignore - ignore an allocated object
1006 * @ptr:	pointer to beginning of the object
1007 *
1008 * Calling this function on an object will cause the memory block to be
1009 * ignored (not scanned and not reported as a leak). This is usually done when
1010 * it is known that the corresponding block is not a leak and does not contain
1011 * any references to other allocated memory blocks.
1012 */
1013void __ref kmemleak_ignore(const void *ptr)
1014{
1015	pr_debug("%s(0x%p)\n", __func__, ptr);
1016
1017	if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
1018		make_black_object((unsigned long)ptr);
1019	else if (atomic_read(&kmemleak_early_log))
1020		log_early(KMEMLEAK_IGNORE, ptr, 0, 0);
1021}
1022EXPORT_SYMBOL(kmemleak_ignore);
1023
1024/**
1025 * kmemleak_scan_area - limit the range to be scanned in an allocated object
1026 * @ptr:	pointer to beginning or inside the object. This also
1027 *		represents the start of the scan area
1028 * @size:	size of the scan area
1029 * @gfp:	kmalloc() flags used for kmemleak internal memory allocations
1030 *
1031 * This function is used when it is known that only certain parts of an object
1032 * contain references to other objects. Kmemleak will only scan these areas
1033 * reducing the number false negatives.
1034 */
1035void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp)
1036{
1037	pr_debug("%s(0x%p)\n", __func__, ptr);
1038
1039	if (atomic_read(&kmemleak_enabled) && ptr && size && !IS_ERR(ptr))
1040		add_scan_area((unsigned long)ptr, size, gfp);
1041	else if (atomic_read(&kmemleak_early_log))
1042		log_early(KMEMLEAK_SCAN_AREA, ptr, size, 0);
1043}
1044EXPORT_SYMBOL(kmemleak_scan_area);
1045
1046/**
1047 * kmemleak_no_scan - do not scan an allocated object
1048 * @ptr:	pointer to beginning of the object
1049 *
1050 * This function notifies kmemleak not to scan the given memory block. Useful
1051 * in situations where it is known that the given object does not contain any
1052 * references to other objects. Kmemleak will not scan such objects reducing
1053 * the number of false negatives.
1054 */
1055void __ref kmemleak_no_scan(const void *ptr)
1056{
1057	pr_debug("%s(0x%p)\n", __func__, ptr);
1058
1059	if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
1060		object_no_scan((unsigned long)ptr);
1061	else if (atomic_read(&kmemleak_early_log))
1062		log_early(KMEMLEAK_NO_SCAN, ptr, 0, 0);
1063}
1064EXPORT_SYMBOL(kmemleak_no_scan);
1065
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1066/*
1067 * Update an object's checksum and return true if it was modified.
1068 */
1069static bool update_checksum(struct kmemleak_object *object)
1070{
1071	u32 old_csum = object->checksum;
1072
1073	if (!kmemcheck_is_obj_initialized(object->pointer, object->size))
1074		return false;
 
 
 
1075
1076	object->checksum = crc32(0, (void *)object->pointer, object->size);
1077	return object->checksum != old_csum;
1078}
1079
1080/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1081 * Memory scanning is a long process and it needs to be interruptable. This
1082 * function checks whether such interrupt condition occurred.
1083 */
1084static int scan_should_stop(void)
1085{
1086	if (!atomic_read(&kmemleak_enabled))
1087		return 1;
1088
1089	/*
1090	 * This function may be called from either process or kthread context,
1091	 * hence the need to check for both stop conditions.
1092	 */
1093	if (current->mm)
1094		return signal_pending(current);
1095	else
1096		return kthread_should_stop();
1097
1098	return 0;
1099}
1100
1101/*
1102 * Scan a memory block (exclusive range) for valid pointers and add those
1103 * found to the gray list.
1104 */
1105static void scan_block(void *_start, void *_end,
1106		       struct kmemleak_object *scanned, int allow_resched)
1107{
1108	unsigned long *ptr;
1109	unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
1110	unsigned long *end = _end - (BYTES_PER_POINTER - 1);
 
 
1111
 
1112	for (ptr = start; ptr < end; ptr++) {
1113		struct kmemleak_object *object;
1114		unsigned long flags;
1115		unsigned long pointer;
 
1116
1117		if (allow_resched)
1118			cond_resched();
1119		if (scan_should_stop())
1120			break;
1121
1122		/* don't scan uninitialized memory */
1123		if (!kmemcheck_is_obj_initialized((unsigned long)ptr,
1124						  BYTES_PER_POINTER))
 
 
 
1125			continue;
1126
1127		pointer = *ptr;
1128
1129		object = find_and_get_object(pointer, 1);
 
 
 
 
1130		if (!object)
1131			continue;
1132		if (object == scanned) {
1133			/* self referenced, ignore */
1134			put_object(object);
1135			continue;
1136		}
1137
1138		/*
1139		 * Avoid the lockdep recursive warning on object->lock being
1140		 * previously acquired in scan_object(). These locks are
1141		 * enclosed by scan_mutex.
1142		 */
1143		spin_lock_irqsave_nested(&object->lock, flags,
1144					 SINGLE_DEPTH_NESTING);
1145		if (!color_white(object)) {
1146			/* non-orphan, ignored or new */
1147			spin_unlock_irqrestore(&object->lock, flags);
1148			put_object(object);
1149			continue;
 
1150		}
 
1151
1152		/*
1153		 * Increase the object's reference count (number of pointers
1154		 * to the memory block). If this count reaches the required
1155		 * minimum, the object's color will become gray and it will be
1156		 * added to the gray_list.
1157		 */
1158		object->count++;
1159		if (color_gray(object)) {
1160			list_add_tail(&object->gray_list, &gray_list);
1161			spin_unlock_irqrestore(&object->lock, flags);
1162			continue;
1163		}
 
 
 
 
 
 
 
 
 
 
 
1164
1165		spin_unlock_irqrestore(&object->lock, flags);
1166		put_object(object);
 
 
 
1167	}
1168}
 
1169
1170/*
1171 * Scan a memory block corresponding to a kmemleak_object. A condition is
1172 * that object->use_count >= 1.
1173 */
1174static void scan_object(struct kmemleak_object *object)
1175{
1176	struct kmemleak_scan_area *area;
1177	struct hlist_node *elem;
1178	unsigned long flags;
1179
1180	/*
1181	 * Once the object->lock is acquired, the corresponding memory block
1182	 * cannot be freed (the same lock is acquired in delete_object).
1183	 */
1184	spin_lock_irqsave(&object->lock, flags);
1185	if (object->flags & OBJECT_NO_SCAN)
1186		goto out;
1187	if (!(object->flags & OBJECT_ALLOCATED))
1188		/* already freed object */
1189		goto out;
1190	if (hlist_empty(&object->area_list)) {
 
1191		void *start = (void *)object->pointer;
1192		void *end = (void *)(object->pointer + object->size);
 
 
 
 
 
1193
1194		while (start < end && (object->flags & OBJECT_ALLOCATED) &&
1195		       !(object->flags & OBJECT_NO_SCAN)) {
1196			scan_block(start, min(start + MAX_SCAN_SIZE, end),
1197				   object, 0);
1198			start += MAX_SCAN_SIZE;
1199
1200			spin_unlock_irqrestore(&object->lock, flags);
1201			cond_resched();
1202			spin_lock_irqsave(&object->lock, flags);
1203		}
1204	} else
1205		hlist_for_each_entry(area, elem, &object->area_list, node)
1206			scan_block((void *)area->start,
1207				   (void *)(area->start + area->size),
1208				   object, 0);
1209out:
1210	spin_unlock_irqrestore(&object->lock, flags);
1211}
1212
1213/*
1214 * Scan the objects already referenced (gray objects). More objects will be
1215 * referenced and, if there are no memory leaks, all the objects are scanned.
1216 */
1217static void scan_gray_list(void)
1218{
1219	struct kmemleak_object *object, *tmp;
1220
1221	/*
1222	 * The list traversal is safe for both tail additions and removals
1223	 * from inside the loop. The kmemleak objects cannot be freed from
1224	 * outside the loop because their use_count was incremented.
1225	 */
1226	object = list_entry(gray_list.next, typeof(*object), gray_list);
1227	while (&object->gray_list != &gray_list) {
1228		cond_resched();
1229
1230		/* may add new objects to the list */
1231		if (!scan_should_stop())
1232			scan_object(object);
1233
1234		tmp = list_entry(object->gray_list.next, typeof(*object),
1235				 gray_list);
1236
1237		/* remove the object from the list and release it */
1238		list_del(&object->gray_list);
1239		put_object(object);
1240
1241		object = tmp;
1242	}
1243	WARN_ON(!list_empty(&gray_list));
1244}
1245
1246/*
1247 * Scan data sections and all the referenced memory blocks allocated via the
1248 * kernel's standard allocators. This function must be called with the
1249 * scan_mutex held.
1250 */
1251static void kmemleak_scan(void)
1252{
1253	unsigned long flags;
1254	struct kmemleak_object *object;
1255	int i;
1256	int new_leaks = 0;
1257
1258	jiffies_last_scan = jiffies;
1259
1260	/* prepare the kmemleak_object's */
1261	rcu_read_lock();
1262	list_for_each_entry_rcu(object, &object_list, object_list) {
1263		spin_lock_irqsave(&object->lock, flags);
1264#ifdef DEBUG
1265		/*
1266		 * With a few exceptions there should be a maximum of
1267		 * 1 reference to any object at this point.
1268		 */
1269		if (atomic_read(&object->use_count) > 1) {
1270			pr_debug("object->use_count = %d\n",
1271				 atomic_read(&object->use_count));
1272			dump_object_info(object);
1273		}
1274#endif
1275		/* reset the reference count (whiten the object) */
1276		object->count = 0;
1277		if (color_gray(object) && get_object(object))
1278			list_add_tail(&object->gray_list, &gray_list);
1279
1280		spin_unlock_irqrestore(&object->lock, flags);
1281	}
1282	rcu_read_unlock();
1283
1284	/* data/bss scanning */
1285	scan_block(_sdata, _edata, NULL, 1);
1286	scan_block(__bss_start, __bss_stop, NULL, 1);
1287
1288#ifdef CONFIG_SMP
1289	/* per-cpu sections scanning */
1290	for_each_possible_cpu(i)
1291		scan_block(__per_cpu_start + per_cpu_offset(i),
1292			   __per_cpu_end + per_cpu_offset(i), NULL, 1);
1293#endif
1294
1295	/*
1296	 * Struct page scanning for each node.
1297	 */
1298	lock_memory_hotplug();
1299	for_each_online_node(i) {
1300		pg_data_t *pgdat = NODE_DATA(i);
1301		unsigned long start_pfn = pgdat->node_start_pfn;
1302		unsigned long end_pfn = start_pfn + pgdat->node_spanned_pages;
1303		unsigned long pfn;
1304
1305		for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1306			struct page *page;
1307
1308			if (!pfn_valid(pfn))
 
 
 
 
1309				continue;
1310			page = pfn_to_page(pfn);
1311			/* only scan if page is in use */
1312			if (page_count(page) == 0)
1313				continue;
1314			scan_block(page, page + 1, NULL, 1);
 
 
1315		}
1316	}
1317	unlock_memory_hotplug();
1318
1319	/*
1320	 * Scanning the task stacks (may introduce false negatives).
1321	 */
1322	if (kmemleak_stack_scan) {
1323		struct task_struct *p, *g;
1324
1325		read_lock(&tasklist_lock);
1326		do_each_thread(g, p) {
1327			scan_block(task_stack_page(p), task_stack_page(p) +
1328				   THREAD_SIZE, NULL, 0);
 
 
 
1329		} while_each_thread(g, p);
1330		read_unlock(&tasklist_lock);
1331	}
1332
1333	/*
1334	 * Scan the objects already referenced from the sections scanned
1335	 * above.
1336	 */
1337	scan_gray_list();
1338
1339	/*
1340	 * Check for new or unreferenced objects modified since the previous
1341	 * scan and color them gray until the next scan.
1342	 */
1343	rcu_read_lock();
1344	list_for_each_entry_rcu(object, &object_list, object_list) {
1345		spin_lock_irqsave(&object->lock, flags);
1346		if (color_white(object) && (object->flags & OBJECT_ALLOCATED)
1347		    && update_checksum(object) && get_object(object)) {
1348			/* color it gray temporarily */
1349			object->count = object->min_count;
1350			list_add_tail(&object->gray_list, &gray_list);
1351		}
1352		spin_unlock_irqrestore(&object->lock, flags);
1353	}
1354	rcu_read_unlock();
1355
1356	/*
1357	 * Re-scan the gray list for modified unreferenced objects.
1358	 */
1359	scan_gray_list();
1360
1361	/*
1362	 * If scanning was stopped do not report any new unreferenced objects.
1363	 */
1364	if (scan_should_stop())
1365		return;
1366
1367	/*
1368	 * Scanning result reporting.
1369	 */
1370	rcu_read_lock();
1371	list_for_each_entry_rcu(object, &object_list, object_list) {
1372		spin_lock_irqsave(&object->lock, flags);
1373		if (unreferenced_object(object) &&
1374		    !(object->flags & OBJECT_REPORTED)) {
1375			object->flags |= OBJECT_REPORTED;
 
 
 
 
1376			new_leaks++;
1377		}
1378		spin_unlock_irqrestore(&object->lock, flags);
1379	}
1380	rcu_read_unlock();
1381
1382	if (new_leaks)
1383		pr_info("%d new suspected memory leaks (see "
1384			"/sys/kernel/debug/kmemleak)\n", new_leaks);
 
 
 
1385
1386}
1387
1388/*
1389 * Thread function performing automatic memory scanning. Unreferenced objects
1390 * at the end of a memory scan are reported but only the first time.
1391 */
1392static int kmemleak_scan_thread(void *arg)
1393{
1394	static int first_run = 1;
1395
1396	pr_info("Automatic memory scanning thread started\n");
1397	set_user_nice(current, 10);
1398
1399	/*
1400	 * Wait before the first scan to allow the system to fully initialize.
1401	 */
1402	if (first_run) {
 
1403		first_run = 0;
1404		ssleep(SECS_FIRST_SCAN);
 
1405	}
1406
1407	while (!kthread_should_stop()) {
1408		signed long timeout = jiffies_scan_wait;
1409
1410		mutex_lock(&scan_mutex);
1411		kmemleak_scan();
1412		mutex_unlock(&scan_mutex);
1413
1414		/* wait before the next scan */
1415		while (timeout && !kthread_should_stop())
1416			timeout = schedule_timeout_interruptible(timeout);
1417	}
1418
1419	pr_info("Automatic memory scanning thread ended\n");
1420
1421	return 0;
1422}
1423
1424/*
1425 * Start the automatic memory scanning thread. This function must be called
1426 * with the scan_mutex held.
1427 */
1428static void start_scan_thread(void)
1429{
1430	if (scan_thread)
1431		return;
1432	scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1433	if (IS_ERR(scan_thread)) {
1434		pr_warning("Failed to create the scan thread\n");
1435		scan_thread = NULL;
1436	}
1437}
1438
1439/*
1440 * Stop the automatic memory scanning thread. This function must be called
1441 * with the scan_mutex held.
1442 */
1443static void stop_scan_thread(void)
1444{
1445	if (scan_thread) {
1446		kthread_stop(scan_thread);
1447		scan_thread = NULL;
1448	}
1449}
1450
1451/*
1452 * Iterate over the object_list and return the first valid object at or after
1453 * the required position with its use_count incremented. The function triggers
1454 * a memory scanning when the pos argument points to the first position.
1455 */
1456static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1457{
1458	struct kmemleak_object *object;
1459	loff_t n = *pos;
1460	int err;
1461
1462	err = mutex_lock_interruptible(&scan_mutex);
1463	if (err < 0)
1464		return ERR_PTR(err);
1465
1466	rcu_read_lock();
1467	list_for_each_entry_rcu(object, &object_list, object_list) {
1468		if (n-- > 0)
1469			continue;
1470		if (get_object(object))
1471			goto out;
1472	}
1473	object = NULL;
1474out:
1475	return object;
1476}
1477
1478/*
1479 * Return the next object in the object_list. The function decrements the
1480 * use_count of the previous object and increases that of the next one.
1481 */
1482static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1483{
1484	struct kmemleak_object *prev_obj = v;
1485	struct kmemleak_object *next_obj = NULL;
1486	struct list_head *n = &prev_obj->object_list;
1487
1488	++(*pos);
1489
1490	list_for_each_continue_rcu(n, &object_list) {
1491		struct kmemleak_object *obj =
1492			list_entry(n, struct kmemleak_object, object_list);
1493		if (get_object(obj)) {
1494			next_obj = obj;
1495			break;
1496		}
1497	}
1498
1499	put_object(prev_obj);
1500	return next_obj;
1501}
1502
1503/*
1504 * Decrement the use_count of the last object required, if any.
1505 */
1506static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1507{
1508	if (!IS_ERR(v)) {
1509		/*
1510		 * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1511		 * waiting was interrupted, so only release it if !IS_ERR.
1512		 */
1513		rcu_read_unlock();
1514		mutex_unlock(&scan_mutex);
1515		if (v)
1516			put_object(v);
1517	}
1518}
1519
1520/*
1521 * Print the information for an unreferenced object to the seq file.
1522 */
1523static int kmemleak_seq_show(struct seq_file *seq, void *v)
1524{
1525	struct kmemleak_object *object = v;
1526	unsigned long flags;
1527
1528	spin_lock_irqsave(&object->lock, flags);
1529	if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
1530		print_unreferenced(seq, object);
1531	spin_unlock_irqrestore(&object->lock, flags);
1532	return 0;
1533}
1534
1535static const struct seq_operations kmemleak_seq_ops = {
1536	.start = kmemleak_seq_start,
1537	.next  = kmemleak_seq_next,
1538	.stop  = kmemleak_seq_stop,
1539	.show  = kmemleak_seq_show,
1540};
1541
1542static int kmemleak_open(struct inode *inode, struct file *file)
1543{
1544	return seq_open(file, &kmemleak_seq_ops);
1545}
1546
1547static int kmemleak_release(struct inode *inode, struct file *file)
1548{
1549	return seq_release(inode, file);
1550}
1551
1552static int dump_str_object_info(const char *str)
1553{
1554	unsigned long flags;
1555	struct kmemleak_object *object;
1556	unsigned long addr;
1557
1558	addr= simple_strtoul(str, NULL, 0);
 
1559	object = find_and_get_object(addr, 0);
1560	if (!object) {
1561		pr_info("Unknown object at 0x%08lx\n", addr);
1562		return -EINVAL;
1563	}
1564
1565	spin_lock_irqsave(&object->lock, flags);
1566	dump_object_info(object);
1567	spin_unlock_irqrestore(&object->lock, flags);
1568
1569	put_object(object);
1570	return 0;
1571}
1572
1573/*
1574 * We use grey instead of black to ensure we can do future scans on the same
1575 * objects. If we did not do future scans these black objects could
1576 * potentially contain references to newly allocated objects in the future and
1577 * we'd end up with false positives.
1578 */
1579static void kmemleak_clear(void)
1580{
1581	struct kmemleak_object *object;
1582	unsigned long flags;
1583
1584	rcu_read_lock();
1585	list_for_each_entry_rcu(object, &object_list, object_list) {
1586		spin_lock_irqsave(&object->lock, flags);
1587		if ((object->flags & OBJECT_REPORTED) &&
1588		    unreferenced_object(object))
1589			__paint_it(object, KMEMLEAK_GREY);
1590		spin_unlock_irqrestore(&object->lock, flags);
1591	}
1592	rcu_read_unlock();
 
 
1593}
1594
 
 
1595/*
1596 * File write operation to configure kmemleak at run-time. The following
1597 * commands can be written to the /sys/kernel/debug/kmemleak file:
1598 *   off	- disable kmemleak (irreversible)
1599 *   stack=on	- enable the task stacks scanning
1600 *   stack=off	- disable the tasks stacks scanning
1601 *   scan=on	- start the automatic memory scanning thread
1602 *   scan=off	- stop the automatic memory scanning thread
1603 *   scan=...	- set the automatic memory scanning period in seconds (0 to
1604 *		  disable it)
1605 *   scan	- trigger a memory scan
1606 *   clear	- mark all current reported unreferenced kmemleak objects as
1607 *		  grey to ignore printing them
 
1608 *   dump=...	- dump information about the object found at the given address
1609 */
1610static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
1611			      size_t size, loff_t *ppos)
1612{
1613	char buf[64];
1614	int buf_size;
1615	int ret;
1616
1617	if (!atomic_read(&kmemleak_enabled))
1618		return -EBUSY;
1619
1620	buf_size = min(size, (sizeof(buf) - 1));
1621	if (strncpy_from_user(buf, user_buf, buf_size) < 0)
1622		return -EFAULT;
1623	buf[buf_size] = 0;
1624
1625	ret = mutex_lock_interruptible(&scan_mutex);
1626	if (ret < 0)
1627		return ret;
1628
 
 
 
 
 
 
 
 
 
 
 
 
 
1629	if (strncmp(buf, "off", 3) == 0)
1630		kmemleak_disable();
1631	else if (strncmp(buf, "stack=on", 8) == 0)
1632		kmemleak_stack_scan = 1;
1633	else if (strncmp(buf, "stack=off", 9) == 0)
1634		kmemleak_stack_scan = 0;
1635	else if (strncmp(buf, "scan=on", 7) == 0)
1636		start_scan_thread();
1637	else if (strncmp(buf, "scan=off", 8) == 0)
1638		stop_scan_thread();
1639	else if (strncmp(buf, "scan=", 5) == 0) {
1640		unsigned long secs;
1641
1642		ret = strict_strtoul(buf + 5, 0, &secs);
1643		if (ret < 0)
1644			goto out;
1645		stop_scan_thread();
1646		if (secs) {
1647			jiffies_scan_wait = msecs_to_jiffies(secs * 1000);
1648			start_scan_thread();
1649		}
1650	} else if (strncmp(buf, "scan", 4) == 0)
1651		kmemleak_scan();
1652	else if (strncmp(buf, "clear", 5) == 0)
1653		kmemleak_clear();
1654	else if (strncmp(buf, "dump=", 5) == 0)
1655		ret = dump_str_object_info(buf + 5);
1656	else
1657		ret = -EINVAL;
1658
1659out:
1660	mutex_unlock(&scan_mutex);
1661	if (ret < 0)
1662		return ret;
1663
1664	/* ignore the rest of the buffer, only one command at a time */
1665	*ppos += size;
1666	return size;
1667}
1668
1669static const struct file_operations kmemleak_fops = {
1670	.owner		= THIS_MODULE,
1671	.open		= kmemleak_open,
1672	.read		= seq_read,
1673	.write		= kmemleak_write,
1674	.llseek		= seq_lseek,
1675	.release	= kmemleak_release,
1676};
1677
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1678/*
1679 * Stop the memory scanning thread and free the kmemleak internal objects if
1680 * no previous scan thread (otherwise, kmemleak may still have some useful
1681 * information on memory leaks).
1682 */
1683static void kmemleak_do_cleanup(struct work_struct *work)
1684{
1685	struct kmemleak_object *object;
1686	bool cleanup = scan_thread == NULL;
1687
1688	mutex_lock(&scan_mutex);
1689	stop_scan_thread();
 
 
 
 
 
 
 
1690
1691	if (cleanup) {
1692		rcu_read_lock();
1693		list_for_each_entry_rcu(object, &object_list, object_list)
1694			delete_object_full(object->pointer);
1695		rcu_read_unlock();
1696	}
1697	mutex_unlock(&scan_mutex);
1698}
1699
1700static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
1701
1702/*
1703 * Disable kmemleak. No memory allocation/freeing will be traced once this
1704 * function is called. Disabling kmemleak is an irreversible operation.
1705 */
1706static void kmemleak_disable(void)
1707{
1708	/* atomically check whether it was already invoked */
1709	if (atomic_cmpxchg(&kmemleak_error, 0, 1))
1710		return;
1711
1712	/* stop any memory operation tracing */
1713	atomic_set(&kmemleak_enabled, 0);
1714
1715	/* check whether it is too early for a kernel thread */
1716	if (atomic_read(&kmemleak_initialized))
1717		schedule_work(&cleanup_work);
 
 
1718
1719	pr_info("Kernel memory leak detector disabled\n");
1720}
1721
1722/*
1723 * Allow boot-time kmemleak disabling (enabled by default).
1724 */
1725static int kmemleak_boot_config(char *str)
1726{
1727	if (!str)
1728		return -EINVAL;
1729	if (strcmp(str, "off") == 0)
1730		kmemleak_disable();
1731	else if (strcmp(str, "on") == 0)
1732		kmemleak_skip_disable = 1;
1733	else
1734		return -EINVAL;
1735	return 0;
1736}
1737early_param("kmemleak", kmemleak_boot_config);
1738
1739static void __init print_log_trace(struct early_log *log)
1740{
1741	struct stack_trace trace;
1742
1743	trace.nr_entries = log->trace_len;
1744	trace.entries = log->trace;
1745
1746	pr_notice("Early log backtrace:\n");
1747	print_stack_trace(&trace, 2);
1748}
1749
1750/*
1751 * Kmemleak initialization.
1752 */
1753void __init kmemleak_init(void)
1754{
1755	int i;
1756	unsigned long flags;
1757
1758#ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
1759	if (!kmemleak_skip_disable) {
1760		atomic_set(&kmemleak_early_log, 0);
1761		kmemleak_disable();
1762		return;
1763	}
1764#endif
1765
 
 
 
1766	jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
1767	jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
1768
1769	object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
1770	scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
1771	INIT_PRIO_TREE_ROOT(&object_tree_root);
1772
1773	if (crt_early_log >= ARRAY_SIZE(early_log))
1774		pr_warning("Early log buffer exceeded (%d), please increase "
1775			   "DEBUG_KMEMLEAK_EARLY_LOG_SIZE\n", crt_early_log);
1776
1777	/* the kernel is still in UP mode, so disabling the IRQs is enough */
1778	local_irq_save(flags);
1779	atomic_set(&kmemleak_early_log, 0);
1780	if (atomic_read(&kmemleak_error)) {
1781		local_irq_restore(flags);
1782		return;
1783	} else
1784		atomic_set(&kmemleak_enabled, 1);
1785	local_irq_restore(flags);
1786
1787	/*
1788	 * This is the point where tracking allocations is safe. Automatic
1789	 * scanning is started during the late initcall. Add the early logged
1790	 * callbacks to the kmemleak infrastructure.
1791	 */
1792	for (i = 0; i < crt_early_log; i++) {
1793		struct early_log *log = &early_log[i];
1794
1795		switch (log->op_type) {
1796		case KMEMLEAK_ALLOC:
1797			early_alloc(log);
1798			break;
1799		case KMEMLEAK_ALLOC_PERCPU:
1800			early_alloc_percpu(log);
1801			break;
1802		case KMEMLEAK_FREE:
1803			kmemleak_free(log->ptr);
1804			break;
1805		case KMEMLEAK_FREE_PART:
1806			kmemleak_free_part(log->ptr, log->size);
1807			break;
1808		case KMEMLEAK_FREE_PERCPU:
1809			kmemleak_free_percpu(log->ptr);
1810			break;
1811		case KMEMLEAK_NOT_LEAK:
1812			kmemleak_not_leak(log->ptr);
1813			break;
1814		case KMEMLEAK_IGNORE:
1815			kmemleak_ignore(log->ptr);
1816			break;
1817		case KMEMLEAK_SCAN_AREA:
1818			kmemleak_scan_area(log->ptr, log->size, GFP_KERNEL);
1819			break;
1820		case KMEMLEAK_NO_SCAN:
1821			kmemleak_no_scan(log->ptr);
1822			break;
1823		default:
1824			kmemleak_warn("Unknown early log operation: %d\n",
1825				      log->op_type);
1826		}
1827
1828		if (atomic_read(&kmemleak_warning)) {
1829			print_log_trace(log);
1830			atomic_set(&kmemleak_warning, 0);
1831		}
1832	}
 
 
 
 
 
1833}
1834
1835/*
1836 * Late initialization function.
1837 */
1838static int __init kmemleak_late_init(void)
1839{
1840	struct dentry *dentry;
1841
1842	atomic_set(&kmemleak_initialized, 1);
1843
1844	if (atomic_read(&kmemleak_error)) {
1845		/*
1846		 * Some error occurred and kmemleak was disabled. There is a
1847		 * small chance that kmemleak_disable() was called immediately
1848		 * after setting kmemleak_initialized and we may end up with
1849		 * two clean-up threads but serialized by scan_mutex.
1850		 */
1851		schedule_work(&cleanup_work);
1852		return -ENOMEM;
1853	}
1854
1855	dentry = debugfs_create_file("kmemleak", S_IRUGO, NULL, NULL,
1856				     &kmemleak_fops);
1857	if (!dentry)
1858		pr_warning("Failed to create the debugfs kmemleak file\n");
1859	mutex_lock(&scan_mutex);
1860	start_scan_thread();
1861	mutex_unlock(&scan_mutex);
1862
1863	pr_info("Kernel memory leak detector initialized\n");
 
1864
1865	return 0;
1866}
1867late_initcall(kmemleak_late_init);