Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/* -*- mode: c; c-basic-offset: 8; -*-
   3 * vim: noexpandtab sw=8 ts=8 sts=0:
   4 *
   5 * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   6 */
   7
   8#include <linux/fs.h>
   9#include <linux/slab.h>
  10#include <linux/highmem.h>
  11#include <linux/pagemap.h>
  12#include <asm/byteorder.h>
  13#include <linux/swap.h>
 
  14#include <linux/mpage.h>
  15#include <linux/quotaops.h>
  16#include <linux/blkdev.h>
  17#include <linux/uio.h>
  18#include <linux/mm.h>
  19
  20#include <cluster/masklog.h>
  21
  22#include "ocfs2.h"
  23
  24#include "alloc.h"
  25#include "aops.h"
  26#include "dlmglue.h"
  27#include "extent_map.h"
  28#include "file.h"
  29#include "inode.h"
  30#include "journal.h"
  31#include "suballoc.h"
  32#include "super.h"
  33#include "symlink.h"
  34#include "refcounttree.h"
  35#include "ocfs2_trace.h"
  36
  37#include "buffer_head_io.h"
  38#include "dir.h"
  39#include "namei.h"
  40#include "sysfile.h"
  41
  42static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
  43				   struct buffer_head *bh_result, int create)
  44{
  45	int err = -EIO;
  46	int status;
  47	struct ocfs2_dinode *fe = NULL;
  48	struct buffer_head *bh = NULL;
  49	struct buffer_head *buffer_cache_bh = NULL;
  50	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
  51	void *kaddr;
  52
  53	trace_ocfs2_symlink_get_block(
  54			(unsigned long long)OCFS2_I(inode)->ip_blkno,
  55			(unsigned long long)iblock, bh_result, create);
  56
  57	BUG_ON(ocfs2_inode_is_fast_symlink(inode));
  58
  59	if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
  60		mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
  61		     (unsigned long long)iblock);
  62		goto bail;
  63	}
  64
  65	status = ocfs2_read_inode_block(inode, &bh);
  66	if (status < 0) {
  67		mlog_errno(status);
  68		goto bail;
  69	}
  70	fe = (struct ocfs2_dinode *) bh->b_data;
  71
  72	if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
  73						    le32_to_cpu(fe->i_clusters))) {
  74		err = -ENOMEM;
  75		mlog(ML_ERROR, "block offset is outside the allocated size: "
  76		     "%llu\n", (unsigned long long)iblock);
  77		goto bail;
  78	}
  79
  80	/* We don't use the page cache to create symlink data, so if
  81	 * need be, copy it over from the buffer cache. */
  82	if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
  83		u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
  84			    iblock;
  85		buffer_cache_bh = sb_getblk(osb->sb, blkno);
  86		if (!buffer_cache_bh) {
  87			err = -ENOMEM;
  88			mlog(ML_ERROR, "couldn't getblock for symlink!\n");
  89			goto bail;
  90		}
  91
  92		/* we haven't locked out transactions, so a commit
  93		 * could've happened. Since we've got a reference on
  94		 * the bh, even if it commits while we're doing the
  95		 * copy, the data is still good. */
  96		if (buffer_jbd(buffer_cache_bh)
  97		    && ocfs2_inode_is_new(inode)) {
  98			kaddr = kmap_atomic(bh_result->b_page);
  99			if (!kaddr) {
 100				mlog(ML_ERROR, "couldn't kmap!\n");
 101				goto bail;
 102			}
 103			memcpy(kaddr + (bh_result->b_size * iblock),
 104			       buffer_cache_bh->b_data,
 105			       bh_result->b_size);
 106			kunmap_atomic(kaddr);
 107			set_buffer_uptodate(bh_result);
 108		}
 109		brelse(buffer_cache_bh);
 110	}
 111
 112	map_bh(bh_result, inode->i_sb,
 113	       le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
 114
 115	err = 0;
 116
 117bail:
 118	brelse(bh);
 119
 120	return err;
 121}
 122
 123static int ocfs2_lock_get_block(struct inode *inode, sector_t iblock,
 124		    struct buffer_head *bh_result, int create)
 125{
 126	int ret = 0;
 127	struct ocfs2_inode_info *oi = OCFS2_I(inode);
 128
 129	down_read(&oi->ip_alloc_sem);
 130	ret = ocfs2_get_block(inode, iblock, bh_result, create);
 131	up_read(&oi->ip_alloc_sem);
 132
 133	return ret;
 134}
 135
 136int ocfs2_get_block(struct inode *inode, sector_t iblock,
 137		    struct buffer_head *bh_result, int create)
 138{
 139	int err = 0;
 140	unsigned int ext_flags;
 141	u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
 142	u64 p_blkno, count, past_eof;
 143	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
 144
 145	trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
 146			      (unsigned long long)iblock, bh_result, create);
 147
 148	if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
 149		mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
 150		     inode, inode->i_ino);
 151
 152	if (S_ISLNK(inode->i_mode)) {
 153		/* this always does I/O for some reason. */
 154		err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
 155		goto bail;
 156	}
 157
 158	err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
 159					  &ext_flags);
 160	if (err) {
 161		mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
 162		     "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
 163		     (unsigned long long)p_blkno);
 164		goto bail;
 165	}
 166
 167	if (max_blocks < count)
 168		count = max_blocks;
 169
 170	/*
 171	 * ocfs2 never allocates in this function - the only time we
 172	 * need to use BH_New is when we're extending i_size on a file
 173	 * system which doesn't support holes, in which case BH_New
 174	 * allows __block_write_begin() to zero.
 175	 *
 176	 * If we see this on a sparse file system, then a truncate has
 177	 * raced us and removed the cluster. In this case, we clear
 178	 * the buffers dirty and uptodate bits and let the buffer code
 179	 * ignore it as a hole.
 180	 */
 181	if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
 182		clear_buffer_dirty(bh_result);
 183		clear_buffer_uptodate(bh_result);
 184		goto bail;
 185	}
 186
 187	/* Treat the unwritten extent as a hole for zeroing purposes. */
 188	if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
 189		map_bh(bh_result, inode->i_sb, p_blkno);
 190
 191	bh_result->b_size = count << inode->i_blkbits;
 192
 193	if (!ocfs2_sparse_alloc(osb)) {
 194		if (p_blkno == 0) {
 195			err = -EIO;
 196			mlog(ML_ERROR,
 197			     "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
 198			     (unsigned long long)iblock,
 199			     (unsigned long long)p_blkno,
 200			     (unsigned long long)OCFS2_I(inode)->ip_blkno);
 201			mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
 202			dump_stack();
 203			goto bail;
 204		}
 205	}
 206
 207	past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
 208
 209	trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
 210				  (unsigned long long)past_eof);
 211	if (create && (iblock >= past_eof))
 212		set_buffer_new(bh_result);
 213
 214bail:
 215	if (err < 0)
 216		err = -EIO;
 217
 218	return err;
 219}
 220
 221int ocfs2_read_inline_data(struct inode *inode, struct page *page,
 222			   struct buffer_head *di_bh)
 223{
 224	void *kaddr;
 225	loff_t size;
 226	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
 227
 228	if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
 229		ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag\n",
 230			    (unsigned long long)OCFS2_I(inode)->ip_blkno);
 231		return -EROFS;
 232	}
 233
 234	size = i_size_read(inode);
 235
 236	if (size > PAGE_SIZE ||
 237	    size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
 238		ocfs2_error(inode->i_sb,
 239			    "Inode %llu has with inline data has bad size: %Lu\n",
 240			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
 241			    (unsigned long long)size);
 242		return -EROFS;
 243	}
 244
 245	kaddr = kmap_atomic(page);
 246	if (size)
 247		memcpy(kaddr, di->id2.i_data.id_data, size);
 248	/* Clear the remaining part of the page */
 249	memset(kaddr + size, 0, PAGE_SIZE - size);
 250	flush_dcache_page(page);
 251	kunmap_atomic(kaddr);
 252
 253	SetPageUptodate(page);
 254
 255	return 0;
 256}
 257
 258static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
 259{
 260	int ret;
 261	struct buffer_head *di_bh = NULL;
 262
 263	BUG_ON(!PageLocked(page));
 264	BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
 265
 266	ret = ocfs2_read_inode_block(inode, &di_bh);
 267	if (ret) {
 268		mlog_errno(ret);
 269		goto out;
 270	}
 271
 272	ret = ocfs2_read_inline_data(inode, page, di_bh);
 273out:
 274	unlock_page(page);
 275
 276	brelse(di_bh);
 277	return ret;
 278}
 279
 280static int ocfs2_readpage(struct file *file, struct page *page)
 281{
 282	struct inode *inode = page->mapping->host;
 283	struct ocfs2_inode_info *oi = OCFS2_I(inode);
 284	loff_t start = (loff_t)page->index << PAGE_SHIFT;
 285	int ret, unlock = 1;
 286
 287	trace_ocfs2_readpage((unsigned long long)oi->ip_blkno,
 288			     (page ? page->index : 0));
 289
 290	ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
 291	if (ret != 0) {
 292		if (ret == AOP_TRUNCATED_PAGE)
 293			unlock = 0;
 294		mlog_errno(ret);
 295		goto out;
 296	}
 297
 298	if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
 299		/*
 300		 * Unlock the page and cycle ip_alloc_sem so that we don't
 301		 * busyloop waiting for ip_alloc_sem to unlock
 302		 */
 303		ret = AOP_TRUNCATED_PAGE;
 304		unlock_page(page);
 305		unlock = 0;
 306		down_read(&oi->ip_alloc_sem);
 307		up_read(&oi->ip_alloc_sem);
 308		goto out_inode_unlock;
 309	}
 310
 311	/*
 312	 * i_size might have just been updated as we grabed the meta lock.  We
 313	 * might now be discovering a truncate that hit on another node.
 314	 * block_read_full_page->get_block freaks out if it is asked to read
 315	 * beyond the end of a file, so we check here.  Callers
 316	 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
 317	 * and notice that the page they just read isn't needed.
 318	 *
 319	 * XXX sys_readahead() seems to get that wrong?
 320	 */
 321	if (start >= i_size_read(inode)) {
 322		zero_user(page, 0, PAGE_SIZE);
 323		SetPageUptodate(page);
 324		ret = 0;
 325		goto out_alloc;
 326	}
 327
 328	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
 329		ret = ocfs2_readpage_inline(inode, page);
 330	else
 331		ret = block_read_full_page(page, ocfs2_get_block);
 332	unlock = 0;
 333
 334out_alloc:
 335	up_read(&oi->ip_alloc_sem);
 336out_inode_unlock:
 337	ocfs2_inode_unlock(inode, 0);
 338out:
 339	if (unlock)
 340		unlock_page(page);
 341	return ret;
 342}
 343
 344/*
 345 * This is used only for read-ahead. Failures or difficult to handle
 346 * situations are safe to ignore.
 347 *
 348 * Right now, we don't bother with BH_Boundary - in-inode extent lists
 349 * are quite large (243 extents on 4k blocks), so most inodes don't
 350 * grow out to a tree. If need be, detecting boundary extents could
 351 * trivially be added in a future version of ocfs2_get_block().
 352 */
 353static void ocfs2_readahead(struct readahead_control *rac)
 
 354{
 355	int ret;
 356	struct inode *inode = rac->mapping->host;
 357	struct ocfs2_inode_info *oi = OCFS2_I(inode);
 
 
 358
 359	/*
 360	 * Use the nonblocking flag for the dlm code to avoid page
 361	 * lock inversion, but don't bother with retrying.
 362	 */
 363	ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
 364	if (ret)
 365		return;
 366
 367	if (down_read_trylock(&oi->ip_alloc_sem) == 0)
 368		goto out_unlock;
 
 
 369
 370	/*
 371	 * Don't bother with inline-data. There isn't anything
 372	 * to read-ahead in that case anyway...
 373	 */
 374	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
 375		goto out_up;
 376
 377	/*
 378	 * Check whether a remote node truncated this file - we just
 379	 * drop out in that case as it's not worth handling here.
 380	 */
 381	if (readahead_pos(rac) >= i_size_read(inode))
 382		goto out_up;
 
 
 383
 384	mpage_readahead(rac, ocfs2_get_block);
 385
 386out_up:
 387	up_read(&oi->ip_alloc_sem);
 388out_unlock:
 
 389	ocfs2_inode_unlock(inode, 0);
 
 
 390}
 391
 392/* Note: Because we don't support holes, our allocation has
 393 * already happened (allocation writes zeros to the file data)
 394 * so we don't have to worry about ordered writes in
 395 * ocfs2_writepage.
 396 *
 397 * ->writepage is called during the process of invalidating the page cache
 398 * during blocked lock processing.  It can't block on any cluster locks
 399 * to during block mapping.  It's relying on the fact that the block
 400 * mapping can't have disappeared under the dirty pages that it is
 401 * being asked to write back.
 402 */
 403static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
 404{
 405	trace_ocfs2_writepage(
 406		(unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno,
 407		page->index);
 408
 409	return block_write_full_page(page, ocfs2_get_block, wbc);
 410}
 411
 412/* Taken from ext3. We don't necessarily need the full blown
 413 * functionality yet, but IMHO it's better to cut and paste the whole
 414 * thing so we can avoid introducing our own bugs (and easily pick up
 415 * their fixes when they happen) --Mark */
 416int walk_page_buffers(	handle_t *handle,
 417			struct buffer_head *head,
 418			unsigned from,
 419			unsigned to,
 420			int *partial,
 421			int (*fn)(	handle_t *handle,
 422					struct buffer_head *bh))
 423{
 424	struct buffer_head *bh;
 425	unsigned block_start, block_end;
 426	unsigned blocksize = head->b_size;
 427	int err, ret = 0;
 428	struct buffer_head *next;
 429
 430	for (	bh = head, block_start = 0;
 431		ret == 0 && (bh != head || !block_start);
 432	    	block_start = block_end, bh = next)
 433	{
 434		next = bh->b_this_page;
 435		block_end = block_start + blocksize;
 436		if (block_end <= from || block_start >= to) {
 437			if (partial && !buffer_uptodate(bh))
 438				*partial = 1;
 439			continue;
 440		}
 441		err = (*fn)(handle, bh);
 442		if (!ret)
 443			ret = err;
 444	}
 445	return ret;
 446}
 447
 448static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
 449{
 450	sector_t status;
 451	u64 p_blkno = 0;
 452	int err = 0;
 453	struct inode *inode = mapping->host;
 454
 455	trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
 456			 (unsigned long long)block);
 457
 458	/*
 459	 * The swap code (ab-)uses ->bmap to get a block mapping and then
 460	 * bypasseѕ the file system for actual I/O.  We really can't allow
 461	 * that on refcounted inodes, so we have to skip out here.  And yes,
 462	 * 0 is the magic code for a bmap error..
 463	 */
 464	if (ocfs2_is_refcount_inode(inode))
 465		return 0;
 466
 467	/* We don't need to lock journal system files, since they aren't
 468	 * accessed concurrently from multiple nodes.
 469	 */
 470	if (!INODE_JOURNAL(inode)) {
 471		err = ocfs2_inode_lock(inode, NULL, 0);
 472		if (err) {
 473			if (err != -ENOENT)
 474				mlog_errno(err);
 475			goto bail;
 476		}
 477		down_read(&OCFS2_I(inode)->ip_alloc_sem);
 478	}
 479
 480	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
 481		err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
 482						  NULL);
 483
 484	if (!INODE_JOURNAL(inode)) {
 485		up_read(&OCFS2_I(inode)->ip_alloc_sem);
 486		ocfs2_inode_unlock(inode, 0);
 487	}
 488
 489	if (err) {
 490		mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
 491		     (unsigned long long)block);
 492		mlog_errno(err);
 493		goto bail;
 494	}
 495
 496bail:
 497	status = err ? 0 : p_blkno;
 498
 499	return status;
 500}
 501
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 502static int ocfs2_releasepage(struct page *page, gfp_t wait)
 503{
 
 
 504	if (!page_has_buffers(page))
 505		return 0;
 506	return try_to_free_buffers(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 507}
 508
 509static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
 510					    u32 cpos,
 511					    unsigned int *start,
 512					    unsigned int *end)
 513{
 514	unsigned int cluster_start = 0, cluster_end = PAGE_SIZE;
 515
 516	if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits)) {
 517		unsigned int cpp;
 518
 519		cpp = 1 << (PAGE_SHIFT - osb->s_clustersize_bits);
 520
 521		cluster_start = cpos % cpp;
 522		cluster_start = cluster_start << osb->s_clustersize_bits;
 523
 524		cluster_end = cluster_start + osb->s_clustersize;
 525	}
 526
 527	BUG_ON(cluster_start > PAGE_SIZE);
 528	BUG_ON(cluster_end > PAGE_SIZE);
 529
 530	if (start)
 531		*start = cluster_start;
 532	if (end)
 533		*end = cluster_end;
 534}
 535
 536/*
 537 * 'from' and 'to' are the region in the page to avoid zeroing.
 538 *
 539 * If pagesize > clustersize, this function will avoid zeroing outside
 540 * of the cluster boundary.
 541 *
 542 * from == to == 0 is code for "zero the entire cluster region"
 543 */
 544static void ocfs2_clear_page_regions(struct page *page,
 545				     struct ocfs2_super *osb, u32 cpos,
 546				     unsigned from, unsigned to)
 547{
 548	void *kaddr;
 549	unsigned int cluster_start, cluster_end;
 550
 551	ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
 552
 553	kaddr = kmap_atomic(page);
 554
 555	if (from || to) {
 556		if (from > cluster_start)
 557			memset(kaddr + cluster_start, 0, from - cluster_start);
 558		if (to < cluster_end)
 559			memset(kaddr + to, 0, cluster_end - to);
 560	} else {
 561		memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
 562	}
 563
 564	kunmap_atomic(kaddr);
 565}
 566
 567/*
 568 * Nonsparse file systems fully allocate before we get to the write
 569 * code. This prevents ocfs2_write() from tagging the write as an
 570 * allocating one, which means ocfs2_map_page_blocks() might try to
 571 * read-in the blocks at the tail of our file. Avoid reading them by
 572 * testing i_size against each block offset.
 573 */
 574static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
 575				 unsigned int block_start)
 576{
 577	u64 offset = page_offset(page) + block_start;
 578
 579	if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
 580		return 1;
 581
 582	if (i_size_read(inode) > offset)
 583		return 1;
 584
 585	return 0;
 586}
 587
 588/*
 589 * Some of this taken from __block_write_begin(). We already have our
 590 * mapping by now though, and the entire write will be allocating or
 591 * it won't, so not much need to use BH_New.
 592 *
 593 * This will also skip zeroing, which is handled externally.
 594 */
 595int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
 596			  struct inode *inode, unsigned int from,
 597			  unsigned int to, int new)
 598{
 599	int ret = 0;
 600	struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
 601	unsigned int block_end, block_start;
 602	unsigned int bsize = i_blocksize(inode);
 603
 604	if (!page_has_buffers(page))
 605		create_empty_buffers(page, bsize, 0);
 606
 607	head = page_buffers(page);
 608	for (bh = head, block_start = 0; bh != head || !block_start;
 609	     bh = bh->b_this_page, block_start += bsize) {
 610		block_end = block_start + bsize;
 611
 612		clear_buffer_new(bh);
 613
 614		/*
 615		 * Ignore blocks outside of our i/o range -
 616		 * they may belong to unallocated clusters.
 617		 */
 618		if (block_start >= to || block_end <= from) {
 619			if (PageUptodate(page))
 620				set_buffer_uptodate(bh);
 621			continue;
 622		}
 623
 624		/*
 625		 * For an allocating write with cluster size >= page
 626		 * size, we always write the entire page.
 627		 */
 628		if (new)
 629			set_buffer_new(bh);
 630
 631		if (!buffer_mapped(bh)) {
 632			map_bh(bh, inode->i_sb, *p_blkno);
 633			clean_bdev_bh_alias(bh);
 634		}
 635
 636		if (PageUptodate(page)) {
 637			if (!buffer_uptodate(bh))
 638				set_buffer_uptodate(bh);
 639		} else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
 640			   !buffer_new(bh) &&
 641			   ocfs2_should_read_blk(inode, page, block_start) &&
 642			   (block_start < from || block_end > to)) {
 643			ll_rw_block(REQ_OP_READ, 0, 1, &bh);
 644			*wait_bh++=bh;
 645		}
 646
 647		*p_blkno = *p_blkno + 1;
 648	}
 649
 650	/*
 651	 * If we issued read requests - let them complete.
 652	 */
 653	while(wait_bh > wait) {
 654		wait_on_buffer(*--wait_bh);
 655		if (!buffer_uptodate(*wait_bh))
 656			ret = -EIO;
 657	}
 658
 659	if (ret == 0 || !new)
 660		return ret;
 661
 662	/*
 663	 * If we get -EIO above, zero out any newly allocated blocks
 664	 * to avoid exposing stale data.
 665	 */
 666	bh = head;
 667	block_start = 0;
 668	do {
 669		block_end = block_start + bsize;
 670		if (block_end <= from)
 671			goto next_bh;
 672		if (block_start >= to)
 673			break;
 674
 675		zero_user(page, block_start, bh->b_size);
 676		set_buffer_uptodate(bh);
 677		mark_buffer_dirty(bh);
 678
 679next_bh:
 680		block_start = block_end;
 681		bh = bh->b_this_page;
 682	} while (bh != head);
 683
 684	return ret;
 685}
 686
 687#if (PAGE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
 688#define OCFS2_MAX_CTXT_PAGES	1
 689#else
 690#define OCFS2_MAX_CTXT_PAGES	(OCFS2_MAX_CLUSTERSIZE / PAGE_SIZE)
 691#endif
 692
 693#define OCFS2_MAX_CLUSTERS_PER_PAGE	(PAGE_SIZE / OCFS2_MIN_CLUSTERSIZE)
 694
 695struct ocfs2_unwritten_extent {
 696	struct list_head	ue_node;
 697	struct list_head	ue_ip_node;
 698	u32			ue_cpos;
 699	u32			ue_phys;
 700};
 701
 702/*
 703 * Describe the state of a single cluster to be written to.
 704 */
 705struct ocfs2_write_cluster_desc {
 706	u32		c_cpos;
 707	u32		c_phys;
 708	/*
 709	 * Give this a unique field because c_phys eventually gets
 710	 * filled.
 711	 */
 712	unsigned	c_new;
 713	unsigned	c_clear_unwritten;
 714	unsigned	c_needs_zero;
 715};
 716
 717struct ocfs2_write_ctxt {
 718	/* Logical cluster position / len of write */
 719	u32				w_cpos;
 720	u32				w_clen;
 721
 722	/* First cluster allocated in a nonsparse extend */
 723	u32				w_first_new_cpos;
 724
 725	/* Type of caller. Must be one of buffer, mmap, direct.  */
 726	ocfs2_write_type_t		w_type;
 727
 728	struct ocfs2_write_cluster_desc	w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
 729
 730	/*
 731	 * This is true if page_size > cluster_size.
 732	 *
 733	 * It triggers a set of special cases during write which might
 734	 * have to deal with allocating writes to partial pages.
 735	 */
 736	unsigned int			w_large_pages;
 737
 738	/*
 739	 * Pages involved in this write.
 740	 *
 741	 * w_target_page is the page being written to by the user.
 742	 *
 743	 * w_pages is an array of pages which always contains
 744	 * w_target_page, and in the case of an allocating write with
 745	 * page_size < cluster size, it will contain zero'd and mapped
 746	 * pages adjacent to w_target_page which need to be written
 747	 * out in so that future reads from that region will get
 748	 * zero's.
 749	 */
 750	unsigned int			w_num_pages;
 751	struct page			*w_pages[OCFS2_MAX_CTXT_PAGES];
 752	struct page			*w_target_page;
 753
 754	/*
 755	 * w_target_locked is used for page_mkwrite path indicating no unlocking
 756	 * against w_target_page in ocfs2_write_end_nolock.
 757	 */
 758	unsigned int			w_target_locked:1;
 759
 760	/*
 761	 * ocfs2_write_end() uses this to know what the real range to
 762	 * write in the target should be.
 763	 */
 764	unsigned int			w_target_from;
 765	unsigned int			w_target_to;
 766
 767	/*
 768	 * We could use journal_current_handle() but this is cleaner,
 769	 * IMHO -Mark
 770	 */
 771	handle_t			*w_handle;
 772
 773	struct buffer_head		*w_di_bh;
 774
 775	struct ocfs2_cached_dealloc_ctxt w_dealloc;
 776
 777	struct list_head		w_unwritten_list;
 778	unsigned int			w_unwritten_count;
 779};
 780
 781void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
 782{
 783	int i;
 784
 785	for(i = 0; i < num_pages; i++) {
 786		if (pages[i]) {
 787			unlock_page(pages[i]);
 788			mark_page_accessed(pages[i]);
 789			put_page(pages[i]);
 790		}
 791	}
 792}
 793
 794static void ocfs2_unlock_pages(struct ocfs2_write_ctxt *wc)
 795{
 796	int i;
 797
 798	/*
 799	 * w_target_locked is only set to true in the page_mkwrite() case.
 800	 * The intent is to allow us to lock the target page from write_begin()
 801	 * to write_end(). The caller must hold a ref on w_target_page.
 802	 */
 803	if (wc->w_target_locked) {
 804		BUG_ON(!wc->w_target_page);
 805		for (i = 0; i < wc->w_num_pages; i++) {
 806			if (wc->w_target_page == wc->w_pages[i]) {
 807				wc->w_pages[i] = NULL;
 808				break;
 809			}
 810		}
 811		mark_page_accessed(wc->w_target_page);
 812		put_page(wc->w_target_page);
 813	}
 814	ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
 815}
 816
 817static void ocfs2_free_unwritten_list(struct inode *inode,
 818				 struct list_head *head)
 819{
 820	struct ocfs2_inode_info *oi = OCFS2_I(inode);
 821	struct ocfs2_unwritten_extent *ue = NULL, *tmp = NULL;
 822
 823	list_for_each_entry_safe(ue, tmp, head, ue_node) {
 824		list_del(&ue->ue_node);
 825		spin_lock(&oi->ip_lock);
 826		list_del(&ue->ue_ip_node);
 827		spin_unlock(&oi->ip_lock);
 828		kfree(ue);
 829	}
 830}
 831
 832static void ocfs2_free_write_ctxt(struct inode *inode,
 833				  struct ocfs2_write_ctxt *wc)
 834{
 835	ocfs2_free_unwritten_list(inode, &wc->w_unwritten_list);
 836	ocfs2_unlock_pages(wc);
 837	brelse(wc->w_di_bh);
 838	kfree(wc);
 839}
 840
 841static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
 842				  struct ocfs2_super *osb, loff_t pos,
 843				  unsigned len, ocfs2_write_type_t type,
 844				  struct buffer_head *di_bh)
 845{
 846	u32 cend;
 847	struct ocfs2_write_ctxt *wc;
 848
 849	wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
 850	if (!wc)
 851		return -ENOMEM;
 852
 853	wc->w_cpos = pos >> osb->s_clustersize_bits;
 854	wc->w_first_new_cpos = UINT_MAX;
 855	cend = (pos + len - 1) >> osb->s_clustersize_bits;
 856	wc->w_clen = cend - wc->w_cpos + 1;
 857	get_bh(di_bh);
 858	wc->w_di_bh = di_bh;
 859	wc->w_type = type;
 860
 861	if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits))
 862		wc->w_large_pages = 1;
 863	else
 864		wc->w_large_pages = 0;
 865
 866	ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
 867	INIT_LIST_HEAD(&wc->w_unwritten_list);
 868
 869	*wcp = wc;
 870
 871	return 0;
 872}
 873
 874/*
 875 * If a page has any new buffers, zero them out here, and mark them uptodate
 876 * and dirty so they'll be written out (in order to prevent uninitialised
 877 * block data from leaking). And clear the new bit.
 878 */
 879static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
 880{
 881	unsigned int block_start, block_end;
 882	struct buffer_head *head, *bh;
 883
 884	BUG_ON(!PageLocked(page));
 885	if (!page_has_buffers(page))
 886		return;
 887
 888	bh = head = page_buffers(page);
 889	block_start = 0;
 890	do {
 891		block_end = block_start + bh->b_size;
 892
 893		if (buffer_new(bh)) {
 894			if (block_end > from && block_start < to) {
 895				if (!PageUptodate(page)) {
 896					unsigned start, end;
 897
 898					start = max(from, block_start);
 899					end = min(to, block_end);
 900
 901					zero_user_segment(page, start, end);
 902					set_buffer_uptodate(bh);
 903				}
 904
 905				clear_buffer_new(bh);
 906				mark_buffer_dirty(bh);
 907			}
 908		}
 909
 910		block_start = block_end;
 911		bh = bh->b_this_page;
 912	} while (bh != head);
 913}
 914
 915/*
 916 * Only called when we have a failure during allocating write to write
 917 * zero's to the newly allocated region.
 918 */
 919static void ocfs2_write_failure(struct inode *inode,
 920				struct ocfs2_write_ctxt *wc,
 921				loff_t user_pos, unsigned user_len)
 922{
 923	int i;
 924	unsigned from = user_pos & (PAGE_SIZE - 1),
 925		to = user_pos + user_len;
 926	struct page *tmppage;
 927
 928	if (wc->w_target_page)
 929		ocfs2_zero_new_buffers(wc->w_target_page, from, to);
 930
 931	for(i = 0; i < wc->w_num_pages; i++) {
 932		tmppage = wc->w_pages[i];
 933
 934		if (tmppage && page_has_buffers(tmppage)) {
 935			if (ocfs2_should_order_data(inode))
 936				ocfs2_jbd2_inode_add_write(wc->w_handle, inode,
 937							   user_pos, user_len);
 938
 939			block_commit_write(tmppage, from, to);
 940		}
 941	}
 942}
 943
 944static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
 945					struct ocfs2_write_ctxt *wc,
 946					struct page *page, u32 cpos,
 947					loff_t user_pos, unsigned user_len,
 948					int new)
 949{
 950	int ret;
 951	unsigned int map_from = 0, map_to = 0;
 952	unsigned int cluster_start, cluster_end;
 953	unsigned int user_data_from = 0, user_data_to = 0;
 954
 955	ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
 956					&cluster_start, &cluster_end);
 957
 958	/* treat the write as new if the a hole/lseek spanned across
 959	 * the page boundary.
 960	 */
 961	new = new | ((i_size_read(inode) <= page_offset(page)) &&
 962			(page_offset(page) <= user_pos));
 963
 964	if (page == wc->w_target_page) {
 965		map_from = user_pos & (PAGE_SIZE - 1);
 966		map_to = map_from + user_len;
 967
 968		if (new)
 969			ret = ocfs2_map_page_blocks(page, p_blkno, inode,
 970						    cluster_start, cluster_end,
 971						    new);
 972		else
 973			ret = ocfs2_map_page_blocks(page, p_blkno, inode,
 974						    map_from, map_to, new);
 975		if (ret) {
 976			mlog_errno(ret);
 977			goto out;
 978		}
 979
 980		user_data_from = map_from;
 981		user_data_to = map_to;
 982		if (new) {
 983			map_from = cluster_start;
 984			map_to = cluster_end;
 985		}
 986	} else {
 987		/*
 988		 * If we haven't allocated the new page yet, we
 989		 * shouldn't be writing it out without copying user
 990		 * data. This is likely a math error from the caller.
 991		 */
 992		BUG_ON(!new);
 993
 994		map_from = cluster_start;
 995		map_to = cluster_end;
 996
 997		ret = ocfs2_map_page_blocks(page, p_blkno, inode,
 998					    cluster_start, cluster_end, new);
 999		if (ret) {
1000			mlog_errno(ret);
1001			goto out;
1002		}
1003	}
1004
1005	/*
1006	 * Parts of newly allocated pages need to be zero'd.
1007	 *
1008	 * Above, we have also rewritten 'to' and 'from' - as far as
1009	 * the rest of the function is concerned, the entire cluster
1010	 * range inside of a page needs to be written.
1011	 *
1012	 * We can skip this if the page is up to date - it's already
1013	 * been zero'd from being read in as a hole.
1014	 */
1015	if (new && !PageUptodate(page))
1016		ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1017					 cpos, user_data_from, user_data_to);
1018
1019	flush_dcache_page(page);
1020
1021out:
1022	return ret;
1023}
1024
1025/*
1026 * This function will only grab one clusters worth of pages.
1027 */
1028static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1029				      struct ocfs2_write_ctxt *wc,
1030				      u32 cpos, loff_t user_pos,
1031				      unsigned user_len, int new,
1032				      struct page *mmap_page)
1033{
1034	int ret = 0, i;
1035	unsigned long start, target_index, end_index, index;
1036	struct inode *inode = mapping->host;
1037	loff_t last_byte;
1038
1039	target_index = user_pos >> PAGE_SHIFT;
1040
1041	/*
1042	 * Figure out how many pages we'll be manipulating here. For
1043	 * non allocating write, we just change the one
1044	 * page. Otherwise, we'll need a whole clusters worth.  If we're
1045	 * writing past i_size, we only need enough pages to cover the
1046	 * last page of the write.
1047	 */
1048	if (new) {
1049		wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1050		start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1051		/*
1052		 * We need the index *past* the last page we could possibly
1053		 * touch.  This is the page past the end of the write or
1054		 * i_size, whichever is greater.
1055		 */
1056		last_byte = max(user_pos + user_len, i_size_read(inode));
1057		BUG_ON(last_byte < 1);
1058		end_index = ((last_byte - 1) >> PAGE_SHIFT) + 1;
1059		if ((start + wc->w_num_pages) > end_index)
1060			wc->w_num_pages = end_index - start;
1061	} else {
1062		wc->w_num_pages = 1;
1063		start = target_index;
1064	}
1065	end_index = (user_pos + user_len - 1) >> PAGE_SHIFT;
1066
1067	for(i = 0; i < wc->w_num_pages; i++) {
1068		index = start + i;
1069
1070		if (index >= target_index && index <= end_index &&
1071		    wc->w_type == OCFS2_WRITE_MMAP) {
1072			/*
1073			 * ocfs2_pagemkwrite() is a little different
1074			 * and wants us to directly use the page
1075			 * passed in.
1076			 */
1077			lock_page(mmap_page);
1078
1079			/* Exit and let the caller retry */
1080			if (mmap_page->mapping != mapping) {
1081				WARN_ON(mmap_page->mapping);
1082				unlock_page(mmap_page);
1083				ret = -EAGAIN;
1084				goto out;
1085			}
1086
1087			get_page(mmap_page);
1088			wc->w_pages[i] = mmap_page;
1089			wc->w_target_locked = true;
1090		} else if (index >= target_index && index <= end_index &&
1091			   wc->w_type == OCFS2_WRITE_DIRECT) {
1092			/* Direct write has no mapping page. */
1093			wc->w_pages[i] = NULL;
1094			continue;
1095		} else {
1096			wc->w_pages[i] = find_or_create_page(mapping, index,
1097							     GFP_NOFS);
1098			if (!wc->w_pages[i]) {
1099				ret = -ENOMEM;
1100				mlog_errno(ret);
1101				goto out;
1102			}
1103		}
1104		wait_for_stable_page(wc->w_pages[i]);
1105
1106		if (index == target_index)
1107			wc->w_target_page = wc->w_pages[i];
1108	}
1109out:
1110	if (ret)
1111		wc->w_target_locked = false;
1112	return ret;
1113}
1114
1115/*
1116 * Prepare a single cluster for write one cluster into the file.
1117 */
1118static int ocfs2_write_cluster(struct address_space *mapping,
1119			       u32 *phys, unsigned int new,
1120			       unsigned int clear_unwritten,
1121			       unsigned int should_zero,
1122			       struct ocfs2_alloc_context *data_ac,
1123			       struct ocfs2_alloc_context *meta_ac,
1124			       struct ocfs2_write_ctxt *wc, u32 cpos,
1125			       loff_t user_pos, unsigned user_len)
1126{
1127	int ret, i;
1128	u64 p_blkno;
1129	struct inode *inode = mapping->host;
1130	struct ocfs2_extent_tree et;
1131	int bpc = ocfs2_clusters_to_blocks(inode->i_sb, 1);
1132
 
1133	if (new) {
1134		u32 tmp_pos;
1135
1136		/*
1137		 * This is safe to call with the page locks - it won't take
1138		 * any additional semaphores or cluster locks.
1139		 */
1140		tmp_pos = cpos;
1141		ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1142					   &tmp_pos, 1, !clear_unwritten,
1143					   wc->w_di_bh, wc->w_handle,
1144					   data_ac, meta_ac, NULL);
1145		/*
1146		 * This shouldn't happen because we must have already
1147		 * calculated the correct meta data allocation required. The
1148		 * internal tree allocation code should know how to increase
1149		 * transaction credits itself.
1150		 *
1151		 * If need be, we could handle -EAGAIN for a
1152		 * RESTART_TRANS here.
1153		 */
1154		mlog_bug_on_msg(ret == -EAGAIN,
1155				"Inode %llu: EAGAIN return during allocation.\n",
1156				(unsigned long long)OCFS2_I(inode)->ip_blkno);
1157		if (ret < 0) {
1158			mlog_errno(ret);
1159			goto out;
1160		}
1161	} else if (clear_unwritten) {
1162		ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1163					      wc->w_di_bh);
1164		ret = ocfs2_mark_extent_written(inode, &et,
1165						wc->w_handle, cpos, 1, *phys,
1166						meta_ac, &wc->w_dealloc);
1167		if (ret < 0) {
1168			mlog_errno(ret);
1169			goto out;
1170		}
1171	}
1172
 
 
 
 
 
1173	/*
1174	 * The only reason this should fail is due to an inability to
1175	 * find the extent added.
1176	 */
1177	ret = ocfs2_get_clusters(inode, cpos, phys, NULL, NULL);
 
1178	if (ret < 0) {
1179		mlog(ML_ERROR, "Get physical blkno failed for inode %llu, "
1180			    "at logical cluster %u",
1181			    (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
 
1182		goto out;
1183	}
1184
1185	BUG_ON(*phys == 0);
1186
1187	p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, *phys);
1188	if (!should_zero)
1189		p_blkno += (user_pos >> inode->i_sb->s_blocksize_bits) & (u64)(bpc - 1);
1190
1191	for(i = 0; i < wc->w_num_pages; i++) {
1192		int tmpret;
1193
1194		/* This is the direct io target page. */
1195		if (wc->w_pages[i] == NULL) {
1196			p_blkno++;
1197			continue;
1198		}
1199
1200		tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1201						      wc->w_pages[i], cpos,
1202						      user_pos, user_len,
1203						      should_zero);
1204		if (tmpret) {
1205			mlog_errno(tmpret);
1206			if (ret == 0)
1207				ret = tmpret;
1208		}
1209	}
1210
1211	/*
1212	 * We only have cleanup to do in case of allocating write.
1213	 */
1214	if (ret && new)
1215		ocfs2_write_failure(inode, wc, user_pos, user_len);
1216
1217out:
1218
1219	return ret;
1220}
1221
1222static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1223				       struct ocfs2_alloc_context *data_ac,
1224				       struct ocfs2_alloc_context *meta_ac,
1225				       struct ocfs2_write_ctxt *wc,
1226				       loff_t pos, unsigned len)
1227{
1228	int ret, i;
1229	loff_t cluster_off;
1230	unsigned int local_len = len;
1231	struct ocfs2_write_cluster_desc *desc;
1232	struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1233
1234	for (i = 0; i < wc->w_clen; i++) {
1235		desc = &wc->w_desc[i];
1236
1237		/*
1238		 * We have to make sure that the total write passed in
1239		 * doesn't extend past a single cluster.
1240		 */
1241		local_len = len;
1242		cluster_off = pos & (osb->s_clustersize - 1);
1243		if ((cluster_off + local_len) > osb->s_clustersize)
1244			local_len = osb->s_clustersize - cluster_off;
1245
1246		ret = ocfs2_write_cluster(mapping, &desc->c_phys,
1247					  desc->c_new,
1248					  desc->c_clear_unwritten,
1249					  desc->c_needs_zero,
1250					  data_ac, meta_ac,
1251					  wc, desc->c_cpos, pos, local_len);
1252		if (ret) {
1253			mlog_errno(ret);
1254			goto out;
1255		}
1256
1257		len -= local_len;
1258		pos += local_len;
1259	}
1260
1261	ret = 0;
1262out:
1263	return ret;
1264}
1265
1266/*
1267 * ocfs2_write_end() wants to know which parts of the target page it
1268 * should complete the write on. It's easiest to compute them ahead of
1269 * time when a more complete view of the write is available.
1270 */
1271static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1272					struct ocfs2_write_ctxt *wc,
1273					loff_t pos, unsigned len, int alloc)
1274{
1275	struct ocfs2_write_cluster_desc *desc;
1276
1277	wc->w_target_from = pos & (PAGE_SIZE - 1);
1278	wc->w_target_to = wc->w_target_from + len;
1279
1280	if (alloc == 0)
1281		return;
1282
1283	/*
1284	 * Allocating write - we may have different boundaries based
1285	 * on page size and cluster size.
1286	 *
1287	 * NOTE: We can no longer compute one value from the other as
1288	 * the actual write length and user provided length may be
1289	 * different.
1290	 */
1291
1292	if (wc->w_large_pages) {
1293		/*
1294		 * We only care about the 1st and last cluster within
1295		 * our range and whether they should be zero'd or not. Either
1296		 * value may be extended out to the start/end of a
1297		 * newly allocated cluster.
1298		 */
1299		desc = &wc->w_desc[0];
1300		if (desc->c_needs_zero)
1301			ocfs2_figure_cluster_boundaries(osb,
1302							desc->c_cpos,
1303							&wc->w_target_from,
1304							NULL);
1305
1306		desc = &wc->w_desc[wc->w_clen - 1];
1307		if (desc->c_needs_zero)
1308			ocfs2_figure_cluster_boundaries(osb,
1309							desc->c_cpos,
1310							NULL,
1311							&wc->w_target_to);
1312	} else {
1313		wc->w_target_from = 0;
1314		wc->w_target_to = PAGE_SIZE;
1315	}
1316}
1317
1318/*
1319 * Check if this extent is marked UNWRITTEN by direct io. If so, we need not to
1320 * do the zero work. And should not to clear UNWRITTEN since it will be cleared
1321 * by the direct io procedure.
1322 * If this is a new extent that allocated by direct io, we should mark it in
1323 * the ip_unwritten_list.
1324 */
1325static int ocfs2_unwritten_check(struct inode *inode,
1326				 struct ocfs2_write_ctxt *wc,
1327				 struct ocfs2_write_cluster_desc *desc)
1328{
1329	struct ocfs2_inode_info *oi = OCFS2_I(inode);
1330	struct ocfs2_unwritten_extent *ue = NULL, *new = NULL;
1331	int ret = 0;
1332
1333	if (!desc->c_needs_zero)
1334		return 0;
1335
1336retry:
1337	spin_lock(&oi->ip_lock);
1338	/* Needs not to zero no metter buffer or direct. The one who is zero
1339	 * the cluster is doing zero. And he will clear unwritten after all
1340	 * cluster io finished. */
1341	list_for_each_entry(ue, &oi->ip_unwritten_list, ue_ip_node) {
1342		if (desc->c_cpos == ue->ue_cpos) {
1343			BUG_ON(desc->c_new);
1344			desc->c_needs_zero = 0;
1345			desc->c_clear_unwritten = 0;
1346			goto unlock;
1347		}
1348	}
1349
1350	if (wc->w_type != OCFS2_WRITE_DIRECT)
1351		goto unlock;
1352
1353	if (new == NULL) {
1354		spin_unlock(&oi->ip_lock);
1355		new = kmalloc(sizeof(struct ocfs2_unwritten_extent),
1356			     GFP_NOFS);
1357		if (new == NULL) {
1358			ret = -ENOMEM;
1359			goto out;
1360		}
1361		goto retry;
1362	}
1363	/* This direct write will doing zero. */
1364	new->ue_cpos = desc->c_cpos;
1365	new->ue_phys = desc->c_phys;
1366	desc->c_clear_unwritten = 0;
1367	list_add_tail(&new->ue_ip_node, &oi->ip_unwritten_list);
1368	list_add_tail(&new->ue_node, &wc->w_unwritten_list);
1369	wc->w_unwritten_count++;
1370	new = NULL;
1371unlock:
1372	spin_unlock(&oi->ip_lock);
1373out:
1374	kfree(new);
1375	return ret;
1376}
1377
1378/*
1379 * Populate each single-cluster write descriptor in the write context
1380 * with information about the i/o to be done.
1381 *
1382 * Returns the number of clusters that will have to be allocated, as
1383 * well as a worst case estimate of the number of extent records that
1384 * would have to be created during a write to an unwritten region.
1385 */
1386static int ocfs2_populate_write_desc(struct inode *inode,
1387				     struct ocfs2_write_ctxt *wc,
1388				     unsigned int *clusters_to_alloc,
1389				     unsigned int *extents_to_split)
1390{
1391	int ret;
1392	struct ocfs2_write_cluster_desc *desc;
1393	unsigned int num_clusters = 0;
1394	unsigned int ext_flags = 0;
1395	u32 phys = 0;
1396	int i;
1397
1398	*clusters_to_alloc = 0;
1399	*extents_to_split = 0;
1400
1401	for (i = 0; i < wc->w_clen; i++) {
1402		desc = &wc->w_desc[i];
1403		desc->c_cpos = wc->w_cpos + i;
1404
1405		if (num_clusters == 0) {
1406			/*
1407			 * Need to look up the next extent record.
1408			 */
1409			ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1410						 &num_clusters, &ext_flags);
1411			if (ret) {
1412				mlog_errno(ret);
1413				goto out;
1414			}
1415
1416			/* We should already CoW the refcountd extent. */
1417			BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1418
1419			/*
1420			 * Assume worst case - that we're writing in
1421			 * the middle of the extent.
1422			 *
1423			 * We can assume that the write proceeds from
1424			 * left to right, in which case the extent
1425			 * insert code is smart enough to coalesce the
1426			 * next splits into the previous records created.
1427			 */
1428			if (ext_flags & OCFS2_EXT_UNWRITTEN)
1429				*extents_to_split = *extents_to_split + 2;
1430		} else if (phys) {
1431			/*
1432			 * Only increment phys if it doesn't describe
1433			 * a hole.
1434			 */
1435			phys++;
1436		}
1437
1438		/*
1439		 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1440		 * file that got extended.  w_first_new_cpos tells us
1441		 * where the newly allocated clusters are so we can
1442		 * zero them.
1443		 */
1444		if (desc->c_cpos >= wc->w_first_new_cpos) {
1445			BUG_ON(phys == 0);
1446			desc->c_needs_zero = 1;
1447		}
1448
1449		desc->c_phys = phys;
1450		if (phys == 0) {
1451			desc->c_new = 1;
1452			desc->c_needs_zero = 1;
1453			desc->c_clear_unwritten = 1;
1454			*clusters_to_alloc = *clusters_to_alloc + 1;
1455		}
1456
1457		if (ext_flags & OCFS2_EXT_UNWRITTEN) {
1458			desc->c_clear_unwritten = 1;
1459			desc->c_needs_zero = 1;
1460		}
1461
1462		ret = ocfs2_unwritten_check(inode, wc, desc);
1463		if (ret) {
1464			mlog_errno(ret);
1465			goto out;
1466		}
1467
1468		num_clusters--;
1469	}
1470
1471	ret = 0;
1472out:
1473	return ret;
1474}
1475
1476static int ocfs2_write_begin_inline(struct address_space *mapping,
1477				    struct inode *inode,
1478				    struct ocfs2_write_ctxt *wc)
1479{
1480	int ret;
1481	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1482	struct page *page;
1483	handle_t *handle;
1484	struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1485
1486	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1487	if (IS_ERR(handle)) {
1488		ret = PTR_ERR(handle);
1489		mlog_errno(ret);
1490		goto out;
1491	}
1492
1493	page = find_or_create_page(mapping, 0, GFP_NOFS);
1494	if (!page) {
1495		ocfs2_commit_trans(osb, handle);
1496		ret = -ENOMEM;
1497		mlog_errno(ret);
1498		goto out;
1499	}
1500	/*
1501	 * If we don't set w_num_pages then this page won't get unlocked
1502	 * and freed on cleanup of the write context.
1503	 */
1504	wc->w_pages[0] = wc->w_target_page = page;
1505	wc->w_num_pages = 1;
1506
 
 
 
 
 
 
 
1507	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1508				      OCFS2_JOURNAL_ACCESS_WRITE);
1509	if (ret) {
1510		ocfs2_commit_trans(osb, handle);
1511
1512		mlog_errno(ret);
1513		goto out;
1514	}
1515
1516	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1517		ocfs2_set_inode_data_inline(inode, di);
1518
1519	if (!PageUptodate(page)) {
1520		ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1521		if (ret) {
1522			ocfs2_commit_trans(osb, handle);
1523
1524			goto out;
1525		}
1526	}
1527
1528	wc->w_handle = handle;
1529out:
1530	return ret;
1531}
1532
1533int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1534{
1535	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1536
1537	if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1538		return 1;
1539	return 0;
1540}
1541
1542static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1543					  struct inode *inode, loff_t pos,
1544					  unsigned len, struct page *mmap_page,
1545					  struct ocfs2_write_ctxt *wc)
1546{
1547	int ret, written = 0;
1548	loff_t end = pos + len;
1549	struct ocfs2_inode_info *oi = OCFS2_I(inode);
1550	struct ocfs2_dinode *di = NULL;
1551
1552	trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
1553					     len, (unsigned long long)pos,
1554					     oi->ip_dyn_features);
1555
1556	/*
1557	 * Handle inodes which already have inline data 1st.
1558	 */
1559	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1560		if (mmap_page == NULL &&
1561		    ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1562			goto do_inline_write;
1563
1564		/*
1565		 * The write won't fit - we have to give this inode an
1566		 * inline extent list now.
1567		 */
1568		ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1569		if (ret)
1570			mlog_errno(ret);
1571		goto out;
1572	}
1573
1574	/*
1575	 * Check whether the inode can accept inline data.
1576	 */
1577	if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1578		return 0;
1579
1580	/*
1581	 * Check whether the write can fit.
1582	 */
1583	di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1584	if (mmap_page ||
1585	    end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1586		return 0;
1587
1588do_inline_write:
1589	ret = ocfs2_write_begin_inline(mapping, inode, wc);
1590	if (ret) {
1591		mlog_errno(ret);
1592		goto out;
1593	}
1594
1595	/*
1596	 * This signals to the caller that the data can be written
1597	 * inline.
1598	 */
1599	written = 1;
1600out:
1601	return written ? written : ret;
1602}
1603
1604/*
1605 * This function only does anything for file systems which can't
1606 * handle sparse files.
1607 *
1608 * What we want to do here is fill in any hole between the current end
1609 * of allocation and the end of our write. That way the rest of the
1610 * write path can treat it as an non-allocating write, which has no
1611 * special case code for sparse/nonsparse files.
1612 */
1613static int ocfs2_expand_nonsparse_inode(struct inode *inode,
1614					struct buffer_head *di_bh,
1615					loff_t pos, unsigned len,
1616					struct ocfs2_write_ctxt *wc)
1617{
1618	int ret;
1619	loff_t newsize = pos + len;
1620
1621	BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1622
1623	if (newsize <= i_size_read(inode))
1624		return 0;
1625
1626	ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
1627	if (ret)
1628		mlog_errno(ret);
1629
1630	/* There is no wc if this is call from direct. */
1631	if (wc)
1632		wc->w_first_new_cpos =
1633			ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
1634
1635	return ret;
1636}
1637
1638static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
1639			   loff_t pos)
1640{
1641	int ret = 0;
1642
1643	BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1644	if (pos > i_size_read(inode))
1645		ret = ocfs2_zero_extend(inode, di_bh, pos);
1646
1647	return ret;
1648}
1649
1650int ocfs2_write_begin_nolock(struct address_space *mapping,
1651			     loff_t pos, unsigned len, ocfs2_write_type_t type,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1652			     struct page **pagep, void **fsdata,
1653			     struct buffer_head *di_bh, struct page *mmap_page)
1654{
1655	int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
1656	unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
1657	struct ocfs2_write_ctxt *wc;
1658	struct inode *inode = mapping->host;
1659	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1660	struct ocfs2_dinode *di;
1661	struct ocfs2_alloc_context *data_ac = NULL;
1662	struct ocfs2_alloc_context *meta_ac = NULL;
1663	handle_t *handle;
1664	struct ocfs2_extent_tree et;
1665	int try_free = 1, ret1;
1666
1667try_again:
1668	ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, type, di_bh);
1669	if (ret) {
1670		mlog_errno(ret);
1671		return ret;
1672	}
1673
1674	if (ocfs2_supports_inline_data(osb)) {
1675		ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1676						     mmap_page, wc);
1677		if (ret == 1) {
1678			ret = 0;
1679			goto success;
1680		}
1681		if (ret < 0) {
1682			mlog_errno(ret);
1683			goto out;
1684		}
1685	}
1686
1687	/* Direct io change i_size late, should not zero tail here. */
1688	if (type != OCFS2_WRITE_DIRECT) {
1689		if (ocfs2_sparse_alloc(osb))
1690			ret = ocfs2_zero_tail(inode, di_bh, pos);
1691		else
1692			ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos,
1693							   len, wc);
1694		if (ret) {
1695			mlog_errno(ret);
1696			goto out;
1697		}
1698	}
1699
1700	ret = ocfs2_check_range_for_refcount(inode, pos, len);
1701	if (ret < 0) {
1702		mlog_errno(ret);
1703		goto out;
1704	} else if (ret == 1) {
1705		clusters_need = wc->w_clen;
1706		ret = ocfs2_refcount_cow(inode, di_bh,
1707					 wc->w_cpos, wc->w_clen, UINT_MAX);
1708		if (ret) {
1709			mlog_errno(ret);
1710			goto out;
1711		}
1712	}
1713
1714	ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1715					&extents_to_split);
1716	if (ret) {
1717		mlog_errno(ret);
1718		goto out;
1719	}
1720	clusters_need += clusters_to_alloc;
1721
1722	di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1723
1724	trace_ocfs2_write_begin_nolock(
1725			(unsigned long long)OCFS2_I(inode)->ip_blkno,
1726			(long long)i_size_read(inode),
1727			le32_to_cpu(di->i_clusters),
1728			pos, len, type, mmap_page,
1729			clusters_to_alloc, extents_to_split);
1730
1731	/*
1732	 * We set w_target_from, w_target_to here so that
1733	 * ocfs2_write_end() knows which range in the target page to
1734	 * write out. An allocation requires that we write the entire
1735	 * cluster range.
1736	 */
1737	if (clusters_to_alloc || extents_to_split) {
1738		/*
1739		 * XXX: We are stretching the limits of
1740		 * ocfs2_lock_allocators(). It greatly over-estimates
1741		 * the work to be done.
1742		 */
1743		ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1744					      wc->w_di_bh);
1745		ret = ocfs2_lock_allocators(inode, &et,
1746					    clusters_to_alloc, extents_to_split,
1747					    &data_ac, &meta_ac);
1748		if (ret) {
1749			mlog_errno(ret);
1750			goto out;
1751		}
1752
1753		if (data_ac)
1754			data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
1755
1756		credits = ocfs2_calc_extend_credits(inode->i_sb,
1757						    &di->id2.i_list);
1758	} else if (type == OCFS2_WRITE_DIRECT)
1759		/* direct write needs not to start trans if no extents alloc. */
1760		goto success;
1761
1762	/*
1763	 * We have to zero sparse allocated clusters, unwritten extent clusters,
1764	 * and non-sparse clusters we just extended.  For non-sparse writes,
1765	 * we know zeros will only be needed in the first and/or last cluster.
1766	 */
1767	if (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
1768			   wc->w_desc[wc->w_clen - 1].c_needs_zero))
 
1769		cluster_of_pages = 1;
1770	else
1771		cluster_of_pages = 0;
1772
1773	ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
1774
1775	handle = ocfs2_start_trans(osb, credits);
1776	if (IS_ERR(handle)) {
1777		ret = PTR_ERR(handle);
1778		mlog_errno(ret);
1779		goto out;
1780	}
1781
1782	wc->w_handle = handle;
1783
1784	if (clusters_to_alloc) {
1785		ret = dquot_alloc_space_nodirty(inode,
1786			ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1787		if (ret)
1788			goto out_commit;
1789	}
1790
 
 
 
1791	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1792				      OCFS2_JOURNAL_ACCESS_WRITE);
1793	if (ret) {
1794		mlog_errno(ret);
1795		goto out_quota;
1796	}
1797
1798	/*
1799	 * Fill our page array first. That way we've grabbed enough so
1800	 * that we can zero and flush if we error after adding the
1801	 * extent.
1802	 */
1803	ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
1804					 cluster_of_pages, mmap_page);
1805	if (ret && ret != -EAGAIN) {
1806		mlog_errno(ret);
1807		goto out_quota;
1808	}
1809
1810	/*
1811	 * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock
1812	 * the target page. In this case, we exit with no error and no target
1813	 * page. This will trigger the caller, page_mkwrite(), to re-try
1814	 * the operation.
1815	 */
1816	if (ret == -EAGAIN) {
1817		BUG_ON(wc->w_target_page);
1818		ret = 0;
1819		goto out_quota;
1820	}
1821
1822	ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1823					  len);
1824	if (ret) {
1825		mlog_errno(ret);
1826		goto out_quota;
1827	}
1828
1829	if (data_ac)
1830		ocfs2_free_alloc_context(data_ac);
1831	if (meta_ac)
1832		ocfs2_free_alloc_context(meta_ac);
1833
1834success:
1835	if (pagep)
1836		*pagep = wc->w_target_page;
1837	*fsdata = wc;
1838	return 0;
1839out_quota:
1840	if (clusters_to_alloc)
1841		dquot_free_space(inode,
1842			  ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1843out_commit:
1844	ocfs2_commit_trans(osb, handle);
1845
1846out:
1847	/*
1848	 * The mmapped page won't be unlocked in ocfs2_free_write_ctxt(),
1849	 * even in case of error here like ENOSPC and ENOMEM. So, we need
1850	 * to unlock the target page manually to prevent deadlocks when
1851	 * retrying again on ENOSPC, or when returning non-VM_FAULT_LOCKED
1852	 * to VM code.
1853	 */
1854	if (wc->w_target_locked)
1855		unlock_page(mmap_page);
1856
1857	ocfs2_free_write_ctxt(inode, wc);
1858
1859	if (data_ac) {
1860		ocfs2_free_alloc_context(data_ac);
1861		data_ac = NULL;
1862	}
1863	if (meta_ac) {
1864		ocfs2_free_alloc_context(meta_ac);
1865		meta_ac = NULL;
1866	}
1867
1868	if (ret == -ENOSPC && try_free) {
1869		/*
1870		 * Try to free some truncate log so that we can have enough
1871		 * clusters to allocate.
1872		 */
1873		try_free = 0;
1874
1875		ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
1876		if (ret1 == 1)
1877			goto try_again;
1878
1879		if (ret1 < 0)
1880			mlog_errno(ret1);
1881	}
1882
1883	return ret;
1884}
1885
1886static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1887			     loff_t pos, unsigned len, unsigned flags,
1888			     struct page **pagep, void **fsdata)
1889{
1890	int ret;
1891	struct buffer_head *di_bh = NULL;
1892	struct inode *inode = mapping->host;
1893
1894	ret = ocfs2_inode_lock(inode, &di_bh, 1);
1895	if (ret) {
1896		mlog_errno(ret);
1897		return ret;
1898	}
1899
1900	/*
1901	 * Take alloc sem here to prevent concurrent lookups. That way
1902	 * the mapping, zeroing and tree manipulation within
1903	 * ocfs2_write() will be safe against ->readpage(). This
1904	 * should also serve to lock out allocation from a shared
1905	 * writeable region.
1906	 */
1907	down_write(&OCFS2_I(inode)->ip_alloc_sem);
1908
1909	ret = ocfs2_write_begin_nolock(mapping, pos, len, OCFS2_WRITE_BUFFER,
1910				       pagep, fsdata, di_bh, NULL);
1911	if (ret) {
1912		mlog_errno(ret);
1913		goto out_fail;
1914	}
1915
1916	brelse(di_bh);
1917
1918	return 0;
1919
1920out_fail:
1921	up_write(&OCFS2_I(inode)->ip_alloc_sem);
1922
1923	brelse(di_bh);
1924	ocfs2_inode_unlock(inode, 1);
1925
1926	return ret;
1927}
1928
1929static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1930				   unsigned len, unsigned *copied,
1931				   struct ocfs2_dinode *di,
1932				   struct ocfs2_write_ctxt *wc)
1933{
1934	void *kaddr;
1935
1936	if (unlikely(*copied < len)) {
1937		if (!PageUptodate(wc->w_target_page)) {
1938			*copied = 0;
1939			return;
1940		}
1941	}
1942
1943	kaddr = kmap_atomic(wc->w_target_page);
1944	memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
1945	kunmap_atomic(kaddr);
1946
1947	trace_ocfs2_write_end_inline(
1948	     (unsigned long long)OCFS2_I(inode)->ip_blkno,
1949	     (unsigned long long)pos, *copied,
1950	     le16_to_cpu(di->id2.i_data.id_count),
1951	     le16_to_cpu(di->i_dyn_features));
1952}
1953
1954int ocfs2_write_end_nolock(struct address_space *mapping,
1955			   loff_t pos, unsigned len, unsigned copied, void *fsdata)
 
1956{
1957	int i, ret;
1958	unsigned from, to, start = pos & (PAGE_SIZE - 1);
1959	struct inode *inode = mapping->host;
1960	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1961	struct ocfs2_write_ctxt *wc = fsdata;
1962	struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1963	handle_t *handle = wc->w_handle;
1964	struct page *tmppage;
1965
1966	BUG_ON(!list_empty(&wc->w_unwritten_list));
1967
1968	if (handle) {
1969		ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode),
1970				wc->w_di_bh, OCFS2_JOURNAL_ACCESS_WRITE);
1971		if (ret) {
1972			copied = ret;
1973			mlog_errno(ret);
1974			goto out;
1975		}
1976	}
1977
1978	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1979		ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
1980		goto out_write_size;
1981	}
1982
1983	if (unlikely(copied < len) && wc->w_target_page) {
1984		if (!PageUptodate(wc->w_target_page))
1985			copied = 0;
1986
1987		ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
1988				       start+len);
1989	}
1990	if (wc->w_target_page)
1991		flush_dcache_page(wc->w_target_page);
1992
1993	for(i = 0; i < wc->w_num_pages; i++) {
1994		tmppage = wc->w_pages[i];
1995
1996		/* This is the direct io target page. */
1997		if (tmppage == NULL)
1998			continue;
1999
2000		if (tmppage == wc->w_target_page) {
2001			from = wc->w_target_from;
2002			to = wc->w_target_to;
2003
2004			BUG_ON(from > PAGE_SIZE ||
2005			       to > PAGE_SIZE ||
2006			       to < from);
2007		} else {
2008			/*
2009			 * Pages adjacent to the target (if any) imply
2010			 * a hole-filling write in which case we want
2011			 * to flush their entire range.
2012			 */
2013			from = 0;
2014			to = PAGE_SIZE;
2015		}
2016
2017		if (page_has_buffers(tmppage)) {
2018			if (handle && ocfs2_should_order_data(inode)) {
2019				loff_t start_byte =
2020					((loff_t)tmppage->index << PAGE_SHIFT) +
2021					from;
2022				loff_t length = to - from;
2023				ocfs2_jbd2_inode_add_write(handle, inode,
2024							   start_byte, length);
2025			}
2026			block_commit_write(tmppage, from, to);
2027		}
2028	}
2029
2030out_write_size:
2031	/* Direct io do not update i_size here. */
2032	if (wc->w_type != OCFS2_WRITE_DIRECT) {
2033		pos += copied;
2034		if (pos > i_size_read(inode)) {
2035			i_size_write(inode, pos);
2036			mark_inode_dirty(inode);
2037		}
2038		inode->i_blocks = ocfs2_inode_sector_count(inode);
2039		di->i_size = cpu_to_le64((u64)i_size_read(inode));
2040		inode->i_mtime = inode->i_ctime = current_time(inode);
2041		di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
2042		di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
2043		if (handle)
2044			ocfs2_update_inode_fsync_trans(handle, inode, 1);
2045	}
2046	if (handle)
2047		ocfs2_journal_dirty(handle, wc->w_di_bh);
2048
2049out:
2050	/* unlock pages before dealloc since it needs acquiring j_trans_barrier
2051	 * lock, or it will cause a deadlock since journal commit threads holds
2052	 * this lock and will ask for the page lock when flushing the data.
2053	 * put it here to preserve the unlock order.
2054	 */
2055	ocfs2_unlock_pages(wc);
2056
2057	if (handle)
2058		ocfs2_commit_trans(osb, handle);
2059
2060	ocfs2_run_deallocs(osb, &wc->w_dealloc);
2061
2062	brelse(wc->w_di_bh);
2063	kfree(wc);
2064
2065	return copied;
2066}
2067
2068static int ocfs2_write_end(struct file *file, struct address_space *mapping,
2069			   loff_t pos, unsigned len, unsigned copied,
2070			   struct page *page, void *fsdata)
2071{
2072	int ret;
2073	struct inode *inode = mapping->host;
2074
2075	ret = ocfs2_write_end_nolock(mapping, pos, len, copied, fsdata);
2076
2077	up_write(&OCFS2_I(inode)->ip_alloc_sem);
2078	ocfs2_inode_unlock(inode, 1);
2079
2080	return ret;
2081}
2082
2083struct ocfs2_dio_write_ctxt {
2084	struct list_head	dw_zero_list;
2085	unsigned		dw_zero_count;
2086	int			dw_orphaned;
2087	pid_t			dw_writer_pid;
2088};
2089
2090static struct ocfs2_dio_write_ctxt *
2091ocfs2_dio_alloc_write_ctx(struct buffer_head *bh, int *alloc)
2092{
2093	struct ocfs2_dio_write_ctxt *dwc = NULL;
2094
2095	if (bh->b_private)
2096		return bh->b_private;
2097
2098	dwc = kmalloc(sizeof(struct ocfs2_dio_write_ctxt), GFP_NOFS);
2099	if (dwc == NULL)
2100		return NULL;
2101	INIT_LIST_HEAD(&dwc->dw_zero_list);
2102	dwc->dw_zero_count = 0;
2103	dwc->dw_orphaned = 0;
2104	dwc->dw_writer_pid = task_pid_nr(current);
2105	bh->b_private = dwc;
2106	*alloc = 1;
2107
2108	return dwc;
2109}
2110
2111static void ocfs2_dio_free_write_ctx(struct inode *inode,
2112				     struct ocfs2_dio_write_ctxt *dwc)
2113{
2114	ocfs2_free_unwritten_list(inode, &dwc->dw_zero_list);
2115	kfree(dwc);
2116}
2117
2118/*
2119 * TODO: Make this into a generic get_blocks function.
2120 *
2121 * From do_direct_io in direct-io.c:
2122 *  "So what we do is to permit the ->get_blocks function to populate
2123 *   bh.b_size with the size of IO which is permitted at this offset and
2124 *   this i_blkbits."
2125 *
2126 * This function is called directly from get_more_blocks in direct-io.c.
2127 *
2128 * called like this: dio->get_blocks(dio->inode, fs_startblk,
2129 * 					fs_count, map_bh, dio->rw == WRITE);
2130 */
2131static int ocfs2_dio_wr_get_block(struct inode *inode, sector_t iblock,
2132			       struct buffer_head *bh_result, int create)
2133{
2134	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2135	struct ocfs2_inode_info *oi = OCFS2_I(inode);
2136	struct ocfs2_write_ctxt *wc;
2137	struct ocfs2_write_cluster_desc *desc = NULL;
2138	struct ocfs2_dio_write_ctxt *dwc = NULL;
2139	struct buffer_head *di_bh = NULL;
2140	u64 p_blkno;
2141	unsigned int i_blkbits = inode->i_sb->s_blocksize_bits;
2142	loff_t pos = iblock << i_blkbits;
2143	sector_t endblk = (i_size_read(inode) - 1) >> i_blkbits;
2144	unsigned len, total_len = bh_result->b_size;
2145	int ret = 0, first_get_block = 0;
2146
2147	len = osb->s_clustersize - (pos & (osb->s_clustersize - 1));
2148	len = min(total_len, len);
2149
2150	/*
2151	 * bh_result->b_size is count in get_more_blocks according to write
2152	 * "pos" and "end", we need map twice to return different buffer state:
2153	 * 1. area in file size, not set NEW;
2154	 * 2. area out file size, set  NEW.
2155	 *
2156	 *		   iblock    endblk
2157	 * |--------|---------|---------|---------
2158	 * |<-------area in file------->|
2159	 */
2160
2161	if ((iblock <= endblk) &&
2162	    ((iblock + ((len - 1) >> i_blkbits)) > endblk))
2163		len = (endblk - iblock + 1) << i_blkbits;
2164
2165	mlog(0, "get block of %lu at %llu:%u req %u\n",
2166			inode->i_ino, pos, len, total_len);
2167
2168	/*
2169	 * Because we need to change file size in ocfs2_dio_end_io_write(), or
2170	 * we may need to add it to orphan dir. So can not fall to fast path
2171	 * while file size will be changed.
2172	 */
2173	if (pos + total_len <= i_size_read(inode)) {
2174
2175		/* This is the fast path for re-write. */
2176		ret = ocfs2_lock_get_block(inode, iblock, bh_result, create);
2177		if (buffer_mapped(bh_result) &&
2178		    !buffer_new(bh_result) &&
2179		    ret == 0)
2180			goto out;
2181
2182		/* Clear state set by ocfs2_get_block. */
2183		bh_result->b_state = 0;
2184	}
2185
2186	dwc = ocfs2_dio_alloc_write_ctx(bh_result, &first_get_block);
2187	if (unlikely(dwc == NULL)) {
2188		ret = -ENOMEM;
2189		mlog_errno(ret);
2190		goto out;
2191	}
2192
2193	if (ocfs2_clusters_for_bytes(inode->i_sb, pos + total_len) >
2194	    ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode)) &&
2195	    !dwc->dw_orphaned) {
2196		/*
2197		 * when we are going to alloc extents beyond file size, add the
2198		 * inode to orphan dir, so we can recall those spaces when
2199		 * system crashed during write.
2200		 */
2201		ret = ocfs2_add_inode_to_orphan(osb, inode);
2202		if (ret < 0) {
2203			mlog_errno(ret);
2204			goto out;
2205		}
2206		dwc->dw_orphaned = 1;
2207	}
2208
2209	ret = ocfs2_inode_lock(inode, &di_bh, 1);
2210	if (ret) {
2211		mlog_errno(ret);
2212		goto out;
2213	}
2214
2215	down_write(&oi->ip_alloc_sem);
2216
2217	if (first_get_block) {
2218		if (ocfs2_sparse_alloc(osb))
2219			ret = ocfs2_zero_tail(inode, di_bh, pos);
2220		else
2221			ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos,
2222							   total_len, NULL);
2223		if (ret < 0) {
2224			mlog_errno(ret);
2225			goto unlock;
2226		}
2227	}
2228
2229	ret = ocfs2_write_begin_nolock(inode->i_mapping, pos, len,
2230				       OCFS2_WRITE_DIRECT, NULL,
2231				       (void **)&wc, di_bh, NULL);
2232	if (ret) {
2233		mlog_errno(ret);
2234		goto unlock;
2235	}
2236
2237	desc = &wc->w_desc[0];
2238
2239	p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, desc->c_phys);
2240	BUG_ON(p_blkno == 0);
2241	p_blkno += iblock & (u64)(ocfs2_clusters_to_blocks(inode->i_sb, 1) - 1);
2242
2243	map_bh(bh_result, inode->i_sb, p_blkno);
2244	bh_result->b_size = len;
2245	if (desc->c_needs_zero)
2246		set_buffer_new(bh_result);
2247
2248	if (iblock > endblk)
2249		set_buffer_new(bh_result);
2250
2251	/* May sleep in end_io. It should not happen in a irq context. So defer
2252	 * it to dio work queue. */
2253	set_buffer_defer_completion(bh_result);
2254
2255	if (!list_empty(&wc->w_unwritten_list)) {
2256		struct ocfs2_unwritten_extent *ue = NULL;
2257
2258		ue = list_first_entry(&wc->w_unwritten_list,
2259				      struct ocfs2_unwritten_extent,
2260				      ue_node);
2261		BUG_ON(ue->ue_cpos != desc->c_cpos);
2262		/* The physical address may be 0, fill it. */
2263		ue->ue_phys = desc->c_phys;
2264
2265		list_splice_tail_init(&wc->w_unwritten_list, &dwc->dw_zero_list);
2266		dwc->dw_zero_count += wc->w_unwritten_count;
2267	}
2268
2269	ret = ocfs2_write_end_nolock(inode->i_mapping, pos, len, len, wc);
2270	BUG_ON(ret != len);
2271	ret = 0;
2272unlock:
2273	up_write(&oi->ip_alloc_sem);
2274	ocfs2_inode_unlock(inode, 1);
2275	brelse(di_bh);
2276out:
2277	if (ret < 0)
2278		ret = -EIO;
2279	return ret;
2280}
2281
2282static int ocfs2_dio_end_io_write(struct inode *inode,
2283				  struct ocfs2_dio_write_ctxt *dwc,
2284				  loff_t offset,
2285				  ssize_t bytes)
2286{
2287	struct ocfs2_cached_dealloc_ctxt dealloc;
2288	struct ocfs2_extent_tree et;
2289	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2290	struct ocfs2_inode_info *oi = OCFS2_I(inode);
2291	struct ocfs2_unwritten_extent *ue = NULL;
2292	struct buffer_head *di_bh = NULL;
2293	struct ocfs2_dinode *di;
2294	struct ocfs2_alloc_context *data_ac = NULL;
2295	struct ocfs2_alloc_context *meta_ac = NULL;
2296	handle_t *handle = NULL;
2297	loff_t end = offset + bytes;
2298	int ret = 0, credits = 0, locked = 0;
2299
2300	ocfs2_init_dealloc_ctxt(&dealloc);
2301
2302	/* We do clear unwritten, delete orphan, change i_size here. If neither
2303	 * of these happen, we can skip all this. */
2304	if (list_empty(&dwc->dw_zero_list) &&
2305	    end <= i_size_read(inode) &&
2306	    !dwc->dw_orphaned)
2307		goto out;
2308
2309	/* ocfs2_file_write_iter will get i_mutex, so we need not lock if we
2310	 * are in that context. */
2311	if (dwc->dw_writer_pid != task_pid_nr(current)) {
2312		inode_lock(inode);
2313		locked = 1;
2314	}
2315
2316	ret = ocfs2_inode_lock(inode, &di_bh, 1);
2317	if (ret < 0) {
2318		mlog_errno(ret);
2319		goto out;
2320	}
2321
2322	down_write(&oi->ip_alloc_sem);
2323
2324	/* Delete orphan before acquire i_mutex. */
2325	if (dwc->dw_orphaned) {
2326		BUG_ON(dwc->dw_writer_pid != task_pid_nr(current));
2327
2328		end = end > i_size_read(inode) ? end : 0;
2329
2330		ret = ocfs2_del_inode_from_orphan(osb, inode, di_bh,
2331				!!end, end);
2332		if (ret < 0)
2333			mlog_errno(ret);
2334	}
2335
2336	di = (struct ocfs2_dinode *)di_bh->b_data;
2337
2338	ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
2339
2340	/* Attach dealloc with extent tree in case that we may reuse extents
2341	 * which are already unlinked from current extent tree due to extent
2342	 * rotation and merging.
2343	 */
2344	et.et_dealloc = &dealloc;
2345
2346	ret = ocfs2_lock_allocators(inode, &et, 0, dwc->dw_zero_count*2,
2347				    &data_ac, &meta_ac);
2348	if (ret) {
2349		mlog_errno(ret);
2350		goto unlock;
2351	}
2352
2353	credits = ocfs2_calc_extend_credits(inode->i_sb, &di->id2.i_list);
2354
2355	handle = ocfs2_start_trans(osb, credits);
2356	if (IS_ERR(handle)) {
2357		ret = PTR_ERR(handle);
2358		mlog_errno(ret);
2359		goto unlock;
2360	}
2361	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
2362				      OCFS2_JOURNAL_ACCESS_WRITE);
2363	if (ret) {
2364		mlog_errno(ret);
2365		goto commit;
2366	}
2367
2368	list_for_each_entry(ue, &dwc->dw_zero_list, ue_node) {
2369		ret = ocfs2_mark_extent_written(inode, &et, handle,
2370						ue->ue_cpos, 1,
2371						ue->ue_phys,
2372						meta_ac, &dealloc);
2373		if (ret < 0) {
2374			mlog_errno(ret);
2375			break;
2376		}
2377	}
2378
2379	if (end > i_size_read(inode)) {
2380		ret = ocfs2_set_inode_size(handle, inode, di_bh, end);
2381		if (ret < 0)
2382			mlog_errno(ret);
2383	}
2384commit:
2385	ocfs2_commit_trans(osb, handle);
2386unlock:
2387	up_write(&oi->ip_alloc_sem);
2388	ocfs2_inode_unlock(inode, 1);
2389	brelse(di_bh);
2390out:
2391	if (data_ac)
2392		ocfs2_free_alloc_context(data_ac);
2393	if (meta_ac)
2394		ocfs2_free_alloc_context(meta_ac);
2395	ocfs2_run_deallocs(osb, &dealloc);
2396	if (locked)
2397		inode_unlock(inode);
2398	ocfs2_dio_free_write_ctx(inode, dwc);
2399
2400	return ret;
2401}
2402
2403/*
2404 * ocfs2_dio_end_io is called by the dio core when a dio is finished.  We're
2405 * particularly interested in the aio/dio case.  We use the rw_lock DLM lock
2406 * to protect io on one node from truncation on another.
2407 */
2408static int ocfs2_dio_end_io(struct kiocb *iocb,
2409			    loff_t offset,
2410			    ssize_t bytes,
2411			    void *private)
2412{
2413	struct inode *inode = file_inode(iocb->ki_filp);
2414	int level;
2415	int ret = 0;
2416
2417	/* this io's submitter should not have unlocked this before we could */
2418	BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
2419
2420	if (bytes <= 0)
2421		mlog_ratelimited(ML_ERROR, "Direct IO failed, bytes = %lld",
2422				 (long long)bytes);
2423	if (private) {
2424		if (bytes > 0)
2425			ret = ocfs2_dio_end_io_write(inode, private, offset,
2426						     bytes);
2427		else
2428			ocfs2_dio_free_write_ctx(inode, private);
2429	}
2430
2431	ocfs2_iocb_clear_rw_locked(iocb);
2432
2433	level = ocfs2_iocb_rw_locked_level(iocb);
2434	ocfs2_rw_unlock(inode, level);
2435	return ret;
2436}
2437
2438static ssize_t ocfs2_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
2439{
2440	struct file *file = iocb->ki_filp;
2441	struct inode *inode = file->f_mapping->host;
2442	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2443	get_block_t *get_block;
2444
2445	/*
2446	 * Fallback to buffered I/O if we see an inode without
2447	 * extents.
2448	 */
2449	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
2450		return 0;
2451
2452	/* Fallback to buffered I/O if we do not support append dio. */
2453	if (iocb->ki_pos + iter->count > i_size_read(inode) &&
2454	    !ocfs2_supports_append_dio(osb))
2455		return 0;
2456
2457	if (iov_iter_rw(iter) == READ)
2458		get_block = ocfs2_lock_get_block;
2459	else
2460		get_block = ocfs2_dio_wr_get_block;
2461
2462	return __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
2463				    iter, get_block,
2464				    ocfs2_dio_end_io, NULL, 0);
2465}
2466
2467const struct address_space_operations ocfs2_aops = {
2468	.readpage		= ocfs2_readpage,
2469	.readahead		= ocfs2_readahead,
2470	.writepage		= ocfs2_writepage,
2471	.write_begin		= ocfs2_write_begin,
2472	.write_end		= ocfs2_write_end,
2473	.bmap			= ocfs2_bmap,
2474	.direct_IO		= ocfs2_direct_IO,
2475	.invalidatepage		= block_invalidatepage,
2476	.releasepage		= ocfs2_releasepage,
2477	.migratepage		= buffer_migrate_page,
2478	.is_partially_uptodate	= block_is_partially_uptodate,
2479	.error_remove_page	= generic_error_remove_page,
2480};
v3.5.6
 
   1/* -*- mode: c; c-basic-offset: 8; -*-
   2 * vim: noexpandtab sw=8 ts=8 sts=0:
   3 *
   4 * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
   5 *
   6 * This program is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public
   8 * License as published by the Free Software Foundation; either
   9 * version 2 of the License, or (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  14 * General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public
  17 * License along with this program; if not, write to the
  18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  19 * Boston, MA 021110-1307, USA.
  20 */
  21
  22#include <linux/fs.h>
  23#include <linux/slab.h>
  24#include <linux/highmem.h>
  25#include <linux/pagemap.h>
  26#include <asm/byteorder.h>
  27#include <linux/swap.h>
  28#include <linux/pipe_fs_i.h>
  29#include <linux/mpage.h>
  30#include <linux/quotaops.h>
 
 
 
  31
  32#include <cluster/masklog.h>
  33
  34#include "ocfs2.h"
  35
  36#include "alloc.h"
  37#include "aops.h"
  38#include "dlmglue.h"
  39#include "extent_map.h"
  40#include "file.h"
  41#include "inode.h"
  42#include "journal.h"
  43#include "suballoc.h"
  44#include "super.h"
  45#include "symlink.h"
  46#include "refcounttree.h"
  47#include "ocfs2_trace.h"
  48
  49#include "buffer_head_io.h"
 
 
 
  50
  51static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
  52				   struct buffer_head *bh_result, int create)
  53{
  54	int err = -EIO;
  55	int status;
  56	struct ocfs2_dinode *fe = NULL;
  57	struct buffer_head *bh = NULL;
  58	struct buffer_head *buffer_cache_bh = NULL;
  59	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
  60	void *kaddr;
  61
  62	trace_ocfs2_symlink_get_block(
  63			(unsigned long long)OCFS2_I(inode)->ip_blkno,
  64			(unsigned long long)iblock, bh_result, create);
  65
  66	BUG_ON(ocfs2_inode_is_fast_symlink(inode));
  67
  68	if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
  69		mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
  70		     (unsigned long long)iblock);
  71		goto bail;
  72	}
  73
  74	status = ocfs2_read_inode_block(inode, &bh);
  75	if (status < 0) {
  76		mlog_errno(status);
  77		goto bail;
  78	}
  79	fe = (struct ocfs2_dinode *) bh->b_data;
  80
  81	if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
  82						    le32_to_cpu(fe->i_clusters))) {
 
  83		mlog(ML_ERROR, "block offset is outside the allocated size: "
  84		     "%llu\n", (unsigned long long)iblock);
  85		goto bail;
  86	}
  87
  88	/* We don't use the page cache to create symlink data, so if
  89	 * need be, copy it over from the buffer cache. */
  90	if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
  91		u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
  92			    iblock;
  93		buffer_cache_bh = sb_getblk(osb->sb, blkno);
  94		if (!buffer_cache_bh) {
 
  95			mlog(ML_ERROR, "couldn't getblock for symlink!\n");
  96			goto bail;
  97		}
  98
  99		/* we haven't locked out transactions, so a commit
 100		 * could've happened. Since we've got a reference on
 101		 * the bh, even if it commits while we're doing the
 102		 * copy, the data is still good. */
 103		if (buffer_jbd(buffer_cache_bh)
 104		    && ocfs2_inode_is_new(inode)) {
 105			kaddr = kmap_atomic(bh_result->b_page);
 106			if (!kaddr) {
 107				mlog(ML_ERROR, "couldn't kmap!\n");
 108				goto bail;
 109			}
 110			memcpy(kaddr + (bh_result->b_size * iblock),
 111			       buffer_cache_bh->b_data,
 112			       bh_result->b_size);
 113			kunmap_atomic(kaddr);
 114			set_buffer_uptodate(bh_result);
 115		}
 116		brelse(buffer_cache_bh);
 117	}
 118
 119	map_bh(bh_result, inode->i_sb,
 120	       le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
 121
 122	err = 0;
 123
 124bail:
 125	brelse(bh);
 126
 127	return err;
 128}
 129
 
 
 
 
 
 
 
 
 
 
 
 
 
 130int ocfs2_get_block(struct inode *inode, sector_t iblock,
 131		    struct buffer_head *bh_result, int create)
 132{
 133	int err = 0;
 134	unsigned int ext_flags;
 135	u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
 136	u64 p_blkno, count, past_eof;
 137	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
 138
 139	trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
 140			      (unsigned long long)iblock, bh_result, create);
 141
 142	if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
 143		mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
 144		     inode, inode->i_ino);
 145
 146	if (S_ISLNK(inode->i_mode)) {
 147		/* this always does I/O for some reason. */
 148		err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
 149		goto bail;
 150	}
 151
 152	err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
 153					  &ext_flags);
 154	if (err) {
 155		mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
 156		     "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
 157		     (unsigned long long)p_blkno);
 158		goto bail;
 159	}
 160
 161	if (max_blocks < count)
 162		count = max_blocks;
 163
 164	/*
 165	 * ocfs2 never allocates in this function - the only time we
 166	 * need to use BH_New is when we're extending i_size on a file
 167	 * system which doesn't support holes, in which case BH_New
 168	 * allows __block_write_begin() to zero.
 169	 *
 170	 * If we see this on a sparse file system, then a truncate has
 171	 * raced us and removed the cluster. In this case, we clear
 172	 * the buffers dirty and uptodate bits and let the buffer code
 173	 * ignore it as a hole.
 174	 */
 175	if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
 176		clear_buffer_dirty(bh_result);
 177		clear_buffer_uptodate(bh_result);
 178		goto bail;
 179	}
 180
 181	/* Treat the unwritten extent as a hole for zeroing purposes. */
 182	if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
 183		map_bh(bh_result, inode->i_sb, p_blkno);
 184
 185	bh_result->b_size = count << inode->i_blkbits;
 186
 187	if (!ocfs2_sparse_alloc(osb)) {
 188		if (p_blkno == 0) {
 189			err = -EIO;
 190			mlog(ML_ERROR,
 191			     "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
 192			     (unsigned long long)iblock,
 193			     (unsigned long long)p_blkno,
 194			     (unsigned long long)OCFS2_I(inode)->ip_blkno);
 195			mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
 196			dump_stack();
 197			goto bail;
 198		}
 199	}
 200
 201	past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
 202
 203	trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
 204				  (unsigned long long)past_eof);
 205	if (create && (iblock >= past_eof))
 206		set_buffer_new(bh_result);
 207
 208bail:
 209	if (err < 0)
 210		err = -EIO;
 211
 212	return err;
 213}
 214
 215int ocfs2_read_inline_data(struct inode *inode, struct page *page,
 216			   struct buffer_head *di_bh)
 217{
 218	void *kaddr;
 219	loff_t size;
 220	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
 221
 222	if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
 223		ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag",
 224			    (unsigned long long)OCFS2_I(inode)->ip_blkno);
 225		return -EROFS;
 226	}
 227
 228	size = i_size_read(inode);
 229
 230	if (size > PAGE_CACHE_SIZE ||
 231	    size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
 232		ocfs2_error(inode->i_sb,
 233			    "Inode %llu has with inline data has bad size: %Lu",
 234			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
 235			    (unsigned long long)size);
 236		return -EROFS;
 237	}
 238
 239	kaddr = kmap_atomic(page);
 240	if (size)
 241		memcpy(kaddr, di->id2.i_data.id_data, size);
 242	/* Clear the remaining part of the page */
 243	memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
 244	flush_dcache_page(page);
 245	kunmap_atomic(kaddr);
 246
 247	SetPageUptodate(page);
 248
 249	return 0;
 250}
 251
 252static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
 253{
 254	int ret;
 255	struct buffer_head *di_bh = NULL;
 256
 257	BUG_ON(!PageLocked(page));
 258	BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
 259
 260	ret = ocfs2_read_inode_block(inode, &di_bh);
 261	if (ret) {
 262		mlog_errno(ret);
 263		goto out;
 264	}
 265
 266	ret = ocfs2_read_inline_data(inode, page, di_bh);
 267out:
 268	unlock_page(page);
 269
 270	brelse(di_bh);
 271	return ret;
 272}
 273
 274static int ocfs2_readpage(struct file *file, struct page *page)
 275{
 276	struct inode *inode = page->mapping->host;
 277	struct ocfs2_inode_info *oi = OCFS2_I(inode);
 278	loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
 279	int ret, unlock = 1;
 280
 281	trace_ocfs2_readpage((unsigned long long)oi->ip_blkno,
 282			     (page ? page->index : 0));
 283
 284	ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
 285	if (ret != 0) {
 286		if (ret == AOP_TRUNCATED_PAGE)
 287			unlock = 0;
 288		mlog_errno(ret);
 289		goto out;
 290	}
 291
 292	if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
 293		/*
 294		 * Unlock the page and cycle ip_alloc_sem so that we don't
 295		 * busyloop waiting for ip_alloc_sem to unlock
 296		 */
 297		ret = AOP_TRUNCATED_PAGE;
 298		unlock_page(page);
 299		unlock = 0;
 300		down_read(&oi->ip_alloc_sem);
 301		up_read(&oi->ip_alloc_sem);
 302		goto out_inode_unlock;
 303	}
 304
 305	/*
 306	 * i_size might have just been updated as we grabed the meta lock.  We
 307	 * might now be discovering a truncate that hit on another node.
 308	 * block_read_full_page->get_block freaks out if it is asked to read
 309	 * beyond the end of a file, so we check here.  Callers
 310	 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
 311	 * and notice that the page they just read isn't needed.
 312	 *
 313	 * XXX sys_readahead() seems to get that wrong?
 314	 */
 315	if (start >= i_size_read(inode)) {
 316		zero_user(page, 0, PAGE_SIZE);
 317		SetPageUptodate(page);
 318		ret = 0;
 319		goto out_alloc;
 320	}
 321
 322	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
 323		ret = ocfs2_readpage_inline(inode, page);
 324	else
 325		ret = block_read_full_page(page, ocfs2_get_block);
 326	unlock = 0;
 327
 328out_alloc:
 329	up_read(&OCFS2_I(inode)->ip_alloc_sem);
 330out_inode_unlock:
 331	ocfs2_inode_unlock(inode, 0);
 332out:
 333	if (unlock)
 334		unlock_page(page);
 335	return ret;
 336}
 337
 338/*
 339 * This is used only for read-ahead. Failures or difficult to handle
 340 * situations are safe to ignore.
 341 *
 342 * Right now, we don't bother with BH_Boundary - in-inode extent lists
 343 * are quite large (243 extents on 4k blocks), so most inodes don't
 344 * grow out to a tree. If need be, detecting boundary extents could
 345 * trivially be added in a future version of ocfs2_get_block().
 346 */
 347static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
 348			   struct list_head *pages, unsigned nr_pages)
 349{
 350	int ret, err = -EIO;
 351	struct inode *inode = mapping->host;
 352	struct ocfs2_inode_info *oi = OCFS2_I(inode);
 353	loff_t start;
 354	struct page *last;
 355
 356	/*
 357	 * Use the nonblocking flag for the dlm code to avoid page
 358	 * lock inversion, but don't bother with retrying.
 359	 */
 360	ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
 361	if (ret)
 362		return err;
 363
 364	if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
 365		ocfs2_inode_unlock(inode, 0);
 366		return err;
 367	}
 368
 369	/*
 370	 * Don't bother with inline-data. There isn't anything
 371	 * to read-ahead in that case anyway...
 372	 */
 373	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
 374		goto out_unlock;
 375
 376	/*
 377	 * Check whether a remote node truncated this file - we just
 378	 * drop out in that case as it's not worth handling here.
 379	 */
 380	last = list_entry(pages->prev, struct page, lru);
 381	start = (loff_t)last->index << PAGE_CACHE_SHIFT;
 382	if (start >= i_size_read(inode))
 383		goto out_unlock;
 384
 385	err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
 386
 
 
 387out_unlock:
 388	up_read(&oi->ip_alloc_sem);
 389	ocfs2_inode_unlock(inode, 0);
 390
 391	return err;
 392}
 393
 394/* Note: Because we don't support holes, our allocation has
 395 * already happened (allocation writes zeros to the file data)
 396 * so we don't have to worry about ordered writes in
 397 * ocfs2_writepage.
 398 *
 399 * ->writepage is called during the process of invalidating the page cache
 400 * during blocked lock processing.  It can't block on any cluster locks
 401 * to during block mapping.  It's relying on the fact that the block
 402 * mapping can't have disappeared under the dirty pages that it is
 403 * being asked to write back.
 404 */
 405static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
 406{
 407	trace_ocfs2_writepage(
 408		(unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno,
 409		page->index);
 410
 411	return block_write_full_page(page, ocfs2_get_block, wbc);
 412}
 413
 414/* Taken from ext3. We don't necessarily need the full blown
 415 * functionality yet, but IMHO it's better to cut and paste the whole
 416 * thing so we can avoid introducing our own bugs (and easily pick up
 417 * their fixes when they happen) --Mark */
 418int walk_page_buffers(	handle_t *handle,
 419			struct buffer_head *head,
 420			unsigned from,
 421			unsigned to,
 422			int *partial,
 423			int (*fn)(	handle_t *handle,
 424					struct buffer_head *bh))
 425{
 426	struct buffer_head *bh;
 427	unsigned block_start, block_end;
 428	unsigned blocksize = head->b_size;
 429	int err, ret = 0;
 430	struct buffer_head *next;
 431
 432	for (	bh = head, block_start = 0;
 433		ret == 0 && (bh != head || !block_start);
 434	    	block_start = block_end, bh = next)
 435	{
 436		next = bh->b_this_page;
 437		block_end = block_start + blocksize;
 438		if (block_end <= from || block_start >= to) {
 439			if (partial && !buffer_uptodate(bh))
 440				*partial = 1;
 441			continue;
 442		}
 443		err = (*fn)(handle, bh);
 444		if (!ret)
 445			ret = err;
 446	}
 447	return ret;
 448}
 449
 450static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
 451{
 452	sector_t status;
 453	u64 p_blkno = 0;
 454	int err = 0;
 455	struct inode *inode = mapping->host;
 456
 457	trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
 458			 (unsigned long long)block);
 459
 
 
 
 
 
 
 
 
 
 460	/* We don't need to lock journal system files, since they aren't
 461	 * accessed concurrently from multiple nodes.
 462	 */
 463	if (!INODE_JOURNAL(inode)) {
 464		err = ocfs2_inode_lock(inode, NULL, 0);
 465		if (err) {
 466			if (err != -ENOENT)
 467				mlog_errno(err);
 468			goto bail;
 469		}
 470		down_read(&OCFS2_I(inode)->ip_alloc_sem);
 471	}
 472
 473	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
 474		err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
 475						  NULL);
 476
 477	if (!INODE_JOURNAL(inode)) {
 478		up_read(&OCFS2_I(inode)->ip_alloc_sem);
 479		ocfs2_inode_unlock(inode, 0);
 480	}
 481
 482	if (err) {
 483		mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
 484		     (unsigned long long)block);
 485		mlog_errno(err);
 486		goto bail;
 487	}
 488
 489bail:
 490	status = err ? 0 : p_blkno;
 491
 492	return status;
 493}
 494
 495/*
 496 * TODO: Make this into a generic get_blocks function.
 497 *
 498 * From do_direct_io in direct-io.c:
 499 *  "So what we do is to permit the ->get_blocks function to populate
 500 *   bh.b_size with the size of IO which is permitted at this offset and
 501 *   this i_blkbits."
 502 *
 503 * This function is called directly from get_more_blocks in direct-io.c.
 504 *
 505 * called like this: dio->get_blocks(dio->inode, fs_startblk,
 506 * 					fs_count, map_bh, dio->rw == WRITE);
 507 *
 508 * Note that we never bother to allocate blocks here, and thus ignore the
 509 * create argument.
 510 */
 511static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
 512				     struct buffer_head *bh_result, int create)
 513{
 514	int ret;
 515	u64 p_blkno, inode_blocks, contig_blocks;
 516	unsigned int ext_flags;
 517	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
 518	unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
 519
 520	/* This function won't even be called if the request isn't all
 521	 * nicely aligned and of the right size, so there's no need
 522	 * for us to check any of that. */
 523
 524	inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
 525
 526	/* This figures out the size of the next contiguous block, and
 527	 * our logical offset */
 528	ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
 529					  &contig_blocks, &ext_flags);
 530	if (ret) {
 531		mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
 532		     (unsigned long long)iblock);
 533		ret = -EIO;
 534		goto bail;
 535	}
 536
 537	/* We should already CoW the refcounted extent in case of create. */
 538	BUG_ON(create && (ext_flags & OCFS2_EXT_REFCOUNTED));
 539
 540	/*
 541	 * get_more_blocks() expects us to describe a hole by clearing
 542	 * the mapped bit on bh_result().
 543	 *
 544	 * Consider an unwritten extent as a hole.
 545	 */
 546	if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
 547		map_bh(bh_result, inode->i_sb, p_blkno);
 548	else
 549		clear_buffer_mapped(bh_result);
 550
 551	/* make sure we don't map more than max_blocks blocks here as
 552	   that's all the kernel will handle at this point. */
 553	if (max_blocks < contig_blocks)
 554		contig_blocks = max_blocks;
 555	bh_result->b_size = contig_blocks << blocksize_bits;
 556bail:
 557	return ret;
 558}
 559
 560/*
 561 * ocfs2_dio_end_io is called by the dio core when a dio is finished.  We're
 562 * particularly interested in the aio/dio case.  We use the rw_lock DLM lock
 563 * to protect io on one node from truncation on another.
 564 */
 565static void ocfs2_dio_end_io(struct kiocb *iocb,
 566			     loff_t offset,
 567			     ssize_t bytes,
 568			     void *private,
 569			     int ret,
 570			     bool is_async)
 571{
 572	struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
 573	int level;
 574	wait_queue_head_t *wq = ocfs2_ioend_wq(inode);
 575
 576	/* this io's submitter should not have unlocked this before we could */
 577	BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
 578
 579	if (ocfs2_iocb_is_sem_locked(iocb))
 580		ocfs2_iocb_clear_sem_locked(iocb);
 581
 582	if (ocfs2_iocb_is_unaligned_aio(iocb)) {
 583		ocfs2_iocb_clear_unaligned_aio(iocb);
 584
 585		if (atomic_dec_and_test(&OCFS2_I(inode)->ip_unaligned_aio) &&
 586		    waitqueue_active(wq)) {
 587			wake_up_all(wq);
 588		}
 589	}
 590
 591	ocfs2_iocb_clear_rw_locked(iocb);
 592
 593	level = ocfs2_iocb_rw_locked_level(iocb);
 594	ocfs2_rw_unlock(inode, level);
 595
 596	if (is_async)
 597		aio_complete(iocb, ret, 0);
 598	inode_dio_done(inode);
 599}
 600
 601/*
 602 * ocfs2_invalidatepage() and ocfs2_releasepage() are shamelessly stolen
 603 * from ext3.  PageChecked() bits have been removed as OCFS2 does not
 604 * do journalled data.
 605 */
 606static void ocfs2_invalidatepage(struct page *page, unsigned long offset)
 607{
 608	journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
 609
 610	jbd2_journal_invalidatepage(journal, page, offset);
 611}
 612
 613static int ocfs2_releasepage(struct page *page, gfp_t wait)
 614{
 615	journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
 616
 617	if (!page_has_buffers(page))
 618		return 0;
 619	return jbd2_journal_try_to_free_buffers(journal, page, wait);
 620}
 621
 622static ssize_t ocfs2_direct_IO(int rw,
 623			       struct kiocb *iocb,
 624			       const struct iovec *iov,
 625			       loff_t offset,
 626			       unsigned long nr_segs)
 627{
 628	struct file *file = iocb->ki_filp;
 629	struct inode *inode = file->f_path.dentry->d_inode->i_mapping->host;
 630
 631	/*
 632	 * Fallback to buffered I/O if we see an inode without
 633	 * extents.
 634	 */
 635	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
 636		return 0;
 637
 638	/* Fallback to buffered I/O if we are appending. */
 639	if (i_size_read(inode) <= offset)
 640		return 0;
 641
 642	return __blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev,
 643				    iov, offset, nr_segs,
 644				    ocfs2_direct_IO_get_blocks,
 645				    ocfs2_dio_end_io, NULL, 0);
 646}
 647
 648static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
 649					    u32 cpos,
 650					    unsigned int *start,
 651					    unsigned int *end)
 652{
 653	unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
 654
 655	if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
 656		unsigned int cpp;
 657
 658		cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
 659
 660		cluster_start = cpos % cpp;
 661		cluster_start = cluster_start << osb->s_clustersize_bits;
 662
 663		cluster_end = cluster_start + osb->s_clustersize;
 664	}
 665
 666	BUG_ON(cluster_start > PAGE_SIZE);
 667	BUG_ON(cluster_end > PAGE_SIZE);
 668
 669	if (start)
 670		*start = cluster_start;
 671	if (end)
 672		*end = cluster_end;
 673}
 674
 675/*
 676 * 'from' and 'to' are the region in the page to avoid zeroing.
 677 *
 678 * If pagesize > clustersize, this function will avoid zeroing outside
 679 * of the cluster boundary.
 680 *
 681 * from == to == 0 is code for "zero the entire cluster region"
 682 */
 683static void ocfs2_clear_page_regions(struct page *page,
 684				     struct ocfs2_super *osb, u32 cpos,
 685				     unsigned from, unsigned to)
 686{
 687	void *kaddr;
 688	unsigned int cluster_start, cluster_end;
 689
 690	ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
 691
 692	kaddr = kmap_atomic(page);
 693
 694	if (from || to) {
 695		if (from > cluster_start)
 696			memset(kaddr + cluster_start, 0, from - cluster_start);
 697		if (to < cluster_end)
 698			memset(kaddr + to, 0, cluster_end - to);
 699	} else {
 700		memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
 701	}
 702
 703	kunmap_atomic(kaddr);
 704}
 705
 706/*
 707 * Nonsparse file systems fully allocate before we get to the write
 708 * code. This prevents ocfs2_write() from tagging the write as an
 709 * allocating one, which means ocfs2_map_page_blocks() might try to
 710 * read-in the blocks at the tail of our file. Avoid reading them by
 711 * testing i_size against each block offset.
 712 */
 713static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
 714				 unsigned int block_start)
 715{
 716	u64 offset = page_offset(page) + block_start;
 717
 718	if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
 719		return 1;
 720
 721	if (i_size_read(inode) > offset)
 722		return 1;
 723
 724	return 0;
 725}
 726
 727/*
 728 * Some of this taken from __block_write_begin(). We already have our
 729 * mapping by now though, and the entire write will be allocating or
 730 * it won't, so not much need to use BH_New.
 731 *
 732 * This will also skip zeroing, which is handled externally.
 733 */
 734int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
 735			  struct inode *inode, unsigned int from,
 736			  unsigned int to, int new)
 737{
 738	int ret = 0;
 739	struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
 740	unsigned int block_end, block_start;
 741	unsigned int bsize = 1 << inode->i_blkbits;
 742
 743	if (!page_has_buffers(page))
 744		create_empty_buffers(page, bsize, 0);
 745
 746	head = page_buffers(page);
 747	for (bh = head, block_start = 0; bh != head || !block_start;
 748	     bh = bh->b_this_page, block_start += bsize) {
 749		block_end = block_start + bsize;
 750
 751		clear_buffer_new(bh);
 752
 753		/*
 754		 * Ignore blocks outside of our i/o range -
 755		 * they may belong to unallocated clusters.
 756		 */
 757		if (block_start >= to || block_end <= from) {
 758			if (PageUptodate(page))
 759				set_buffer_uptodate(bh);
 760			continue;
 761		}
 762
 763		/*
 764		 * For an allocating write with cluster size >= page
 765		 * size, we always write the entire page.
 766		 */
 767		if (new)
 768			set_buffer_new(bh);
 769
 770		if (!buffer_mapped(bh)) {
 771			map_bh(bh, inode->i_sb, *p_blkno);
 772			unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
 773		}
 774
 775		if (PageUptodate(page)) {
 776			if (!buffer_uptodate(bh))
 777				set_buffer_uptodate(bh);
 778		} else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
 779			   !buffer_new(bh) &&
 780			   ocfs2_should_read_blk(inode, page, block_start) &&
 781			   (block_start < from || block_end > to)) {
 782			ll_rw_block(READ, 1, &bh);
 783			*wait_bh++=bh;
 784		}
 785
 786		*p_blkno = *p_blkno + 1;
 787	}
 788
 789	/*
 790	 * If we issued read requests - let them complete.
 791	 */
 792	while(wait_bh > wait) {
 793		wait_on_buffer(*--wait_bh);
 794		if (!buffer_uptodate(*wait_bh))
 795			ret = -EIO;
 796	}
 797
 798	if (ret == 0 || !new)
 799		return ret;
 800
 801	/*
 802	 * If we get -EIO above, zero out any newly allocated blocks
 803	 * to avoid exposing stale data.
 804	 */
 805	bh = head;
 806	block_start = 0;
 807	do {
 808		block_end = block_start + bsize;
 809		if (block_end <= from)
 810			goto next_bh;
 811		if (block_start >= to)
 812			break;
 813
 814		zero_user(page, block_start, bh->b_size);
 815		set_buffer_uptodate(bh);
 816		mark_buffer_dirty(bh);
 817
 818next_bh:
 819		block_start = block_end;
 820		bh = bh->b_this_page;
 821	} while (bh != head);
 822
 823	return ret;
 824}
 825
 826#if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
 827#define OCFS2_MAX_CTXT_PAGES	1
 828#else
 829#define OCFS2_MAX_CTXT_PAGES	(OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
 830#endif
 831
 832#define OCFS2_MAX_CLUSTERS_PER_PAGE	(PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
 
 
 
 
 
 
 
 833
 834/*
 835 * Describe the state of a single cluster to be written to.
 836 */
 837struct ocfs2_write_cluster_desc {
 838	u32		c_cpos;
 839	u32		c_phys;
 840	/*
 841	 * Give this a unique field because c_phys eventually gets
 842	 * filled.
 843	 */
 844	unsigned	c_new;
 845	unsigned	c_unwritten;
 846	unsigned	c_needs_zero;
 847};
 848
 849struct ocfs2_write_ctxt {
 850	/* Logical cluster position / len of write */
 851	u32				w_cpos;
 852	u32				w_clen;
 853
 854	/* First cluster allocated in a nonsparse extend */
 855	u32				w_first_new_cpos;
 856
 
 
 
 857	struct ocfs2_write_cluster_desc	w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
 858
 859	/*
 860	 * This is true if page_size > cluster_size.
 861	 *
 862	 * It triggers a set of special cases during write which might
 863	 * have to deal with allocating writes to partial pages.
 864	 */
 865	unsigned int			w_large_pages;
 866
 867	/*
 868	 * Pages involved in this write.
 869	 *
 870	 * w_target_page is the page being written to by the user.
 871	 *
 872	 * w_pages is an array of pages which always contains
 873	 * w_target_page, and in the case of an allocating write with
 874	 * page_size < cluster size, it will contain zero'd and mapped
 875	 * pages adjacent to w_target_page which need to be written
 876	 * out in so that future reads from that region will get
 877	 * zero's.
 878	 */
 879	unsigned int			w_num_pages;
 880	struct page			*w_pages[OCFS2_MAX_CTXT_PAGES];
 881	struct page			*w_target_page;
 882
 883	/*
 884	 * w_target_locked is used for page_mkwrite path indicating no unlocking
 885	 * against w_target_page in ocfs2_write_end_nolock.
 886	 */
 887	unsigned int			w_target_locked:1;
 888
 889	/*
 890	 * ocfs2_write_end() uses this to know what the real range to
 891	 * write in the target should be.
 892	 */
 893	unsigned int			w_target_from;
 894	unsigned int			w_target_to;
 895
 896	/*
 897	 * We could use journal_current_handle() but this is cleaner,
 898	 * IMHO -Mark
 899	 */
 900	handle_t			*w_handle;
 901
 902	struct buffer_head		*w_di_bh;
 903
 904	struct ocfs2_cached_dealloc_ctxt w_dealloc;
 
 
 
 905};
 906
 907void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
 908{
 909	int i;
 910
 911	for(i = 0; i < num_pages; i++) {
 912		if (pages[i]) {
 913			unlock_page(pages[i]);
 914			mark_page_accessed(pages[i]);
 915			page_cache_release(pages[i]);
 916		}
 917	}
 918}
 919
 920static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
 921{
 922	int i;
 923
 924	/*
 925	 * w_target_locked is only set to true in the page_mkwrite() case.
 926	 * The intent is to allow us to lock the target page from write_begin()
 927	 * to write_end(). The caller must hold a ref on w_target_page.
 928	 */
 929	if (wc->w_target_locked) {
 930		BUG_ON(!wc->w_target_page);
 931		for (i = 0; i < wc->w_num_pages; i++) {
 932			if (wc->w_target_page == wc->w_pages[i]) {
 933				wc->w_pages[i] = NULL;
 934				break;
 935			}
 936		}
 937		mark_page_accessed(wc->w_target_page);
 938		page_cache_release(wc->w_target_page);
 939	}
 940	ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
 
 941
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 942	brelse(wc->w_di_bh);
 943	kfree(wc);
 944}
 945
 946static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
 947				  struct ocfs2_super *osb, loff_t pos,
 948				  unsigned len, struct buffer_head *di_bh)
 
 949{
 950	u32 cend;
 951	struct ocfs2_write_ctxt *wc;
 952
 953	wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
 954	if (!wc)
 955		return -ENOMEM;
 956
 957	wc->w_cpos = pos >> osb->s_clustersize_bits;
 958	wc->w_first_new_cpos = UINT_MAX;
 959	cend = (pos + len - 1) >> osb->s_clustersize_bits;
 960	wc->w_clen = cend - wc->w_cpos + 1;
 961	get_bh(di_bh);
 962	wc->w_di_bh = di_bh;
 
 963
 964	if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
 965		wc->w_large_pages = 1;
 966	else
 967		wc->w_large_pages = 0;
 968
 969	ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
 
 970
 971	*wcp = wc;
 972
 973	return 0;
 974}
 975
 976/*
 977 * If a page has any new buffers, zero them out here, and mark them uptodate
 978 * and dirty so they'll be written out (in order to prevent uninitialised
 979 * block data from leaking). And clear the new bit.
 980 */
 981static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
 982{
 983	unsigned int block_start, block_end;
 984	struct buffer_head *head, *bh;
 985
 986	BUG_ON(!PageLocked(page));
 987	if (!page_has_buffers(page))
 988		return;
 989
 990	bh = head = page_buffers(page);
 991	block_start = 0;
 992	do {
 993		block_end = block_start + bh->b_size;
 994
 995		if (buffer_new(bh)) {
 996			if (block_end > from && block_start < to) {
 997				if (!PageUptodate(page)) {
 998					unsigned start, end;
 999
1000					start = max(from, block_start);
1001					end = min(to, block_end);
1002
1003					zero_user_segment(page, start, end);
1004					set_buffer_uptodate(bh);
1005				}
1006
1007				clear_buffer_new(bh);
1008				mark_buffer_dirty(bh);
1009			}
1010		}
1011
1012		block_start = block_end;
1013		bh = bh->b_this_page;
1014	} while (bh != head);
1015}
1016
1017/*
1018 * Only called when we have a failure during allocating write to write
1019 * zero's to the newly allocated region.
1020 */
1021static void ocfs2_write_failure(struct inode *inode,
1022				struct ocfs2_write_ctxt *wc,
1023				loff_t user_pos, unsigned user_len)
1024{
1025	int i;
1026	unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
1027		to = user_pos + user_len;
1028	struct page *tmppage;
1029
1030	ocfs2_zero_new_buffers(wc->w_target_page, from, to);
 
1031
1032	for(i = 0; i < wc->w_num_pages; i++) {
1033		tmppage = wc->w_pages[i];
1034
1035		if (page_has_buffers(tmppage)) {
1036			if (ocfs2_should_order_data(inode))
1037				ocfs2_jbd2_file_inode(wc->w_handle, inode);
 
1038
1039			block_commit_write(tmppage, from, to);
1040		}
1041	}
1042}
1043
1044static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
1045					struct ocfs2_write_ctxt *wc,
1046					struct page *page, u32 cpos,
1047					loff_t user_pos, unsigned user_len,
1048					int new)
1049{
1050	int ret;
1051	unsigned int map_from = 0, map_to = 0;
1052	unsigned int cluster_start, cluster_end;
1053	unsigned int user_data_from = 0, user_data_to = 0;
1054
1055	ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
1056					&cluster_start, &cluster_end);
1057
1058	/* treat the write as new if the a hole/lseek spanned across
1059	 * the page boundary.
1060	 */
1061	new = new | ((i_size_read(inode) <= page_offset(page)) &&
1062			(page_offset(page) <= user_pos));
1063
1064	if (page == wc->w_target_page) {
1065		map_from = user_pos & (PAGE_CACHE_SIZE - 1);
1066		map_to = map_from + user_len;
1067
1068		if (new)
1069			ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1070						    cluster_start, cluster_end,
1071						    new);
1072		else
1073			ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1074						    map_from, map_to, new);
1075		if (ret) {
1076			mlog_errno(ret);
1077			goto out;
1078		}
1079
1080		user_data_from = map_from;
1081		user_data_to = map_to;
1082		if (new) {
1083			map_from = cluster_start;
1084			map_to = cluster_end;
1085		}
1086	} else {
1087		/*
1088		 * If we haven't allocated the new page yet, we
1089		 * shouldn't be writing it out without copying user
1090		 * data. This is likely a math error from the caller.
1091		 */
1092		BUG_ON(!new);
1093
1094		map_from = cluster_start;
1095		map_to = cluster_end;
1096
1097		ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1098					    cluster_start, cluster_end, new);
1099		if (ret) {
1100			mlog_errno(ret);
1101			goto out;
1102		}
1103	}
1104
1105	/*
1106	 * Parts of newly allocated pages need to be zero'd.
1107	 *
1108	 * Above, we have also rewritten 'to' and 'from' - as far as
1109	 * the rest of the function is concerned, the entire cluster
1110	 * range inside of a page needs to be written.
1111	 *
1112	 * We can skip this if the page is up to date - it's already
1113	 * been zero'd from being read in as a hole.
1114	 */
1115	if (new && !PageUptodate(page))
1116		ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1117					 cpos, user_data_from, user_data_to);
1118
1119	flush_dcache_page(page);
1120
1121out:
1122	return ret;
1123}
1124
1125/*
1126 * This function will only grab one clusters worth of pages.
1127 */
1128static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1129				      struct ocfs2_write_ctxt *wc,
1130				      u32 cpos, loff_t user_pos,
1131				      unsigned user_len, int new,
1132				      struct page *mmap_page)
1133{
1134	int ret = 0, i;
1135	unsigned long start, target_index, end_index, index;
1136	struct inode *inode = mapping->host;
1137	loff_t last_byte;
1138
1139	target_index = user_pos >> PAGE_CACHE_SHIFT;
1140
1141	/*
1142	 * Figure out how many pages we'll be manipulating here. For
1143	 * non allocating write, we just change the one
1144	 * page. Otherwise, we'll need a whole clusters worth.  If we're
1145	 * writing past i_size, we only need enough pages to cover the
1146	 * last page of the write.
1147	 */
1148	if (new) {
1149		wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1150		start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1151		/*
1152		 * We need the index *past* the last page we could possibly
1153		 * touch.  This is the page past the end of the write or
1154		 * i_size, whichever is greater.
1155		 */
1156		last_byte = max(user_pos + user_len, i_size_read(inode));
1157		BUG_ON(last_byte < 1);
1158		end_index = ((last_byte - 1) >> PAGE_CACHE_SHIFT) + 1;
1159		if ((start + wc->w_num_pages) > end_index)
1160			wc->w_num_pages = end_index - start;
1161	} else {
1162		wc->w_num_pages = 1;
1163		start = target_index;
1164	}
 
1165
1166	for(i = 0; i < wc->w_num_pages; i++) {
1167		index = start + i;
1168
1169		if (index == target_index && mmap_page) {
 
1170			/*
1171			 * ocfs2_pagemkwrite() is a little different
1172			 * and wants us to directly use the page
1173			 * passed in.
1174			 */
1175			lock_page(mmap_page);
1176
1177			/* Exit and let the caller retry */
1178			if (mmap_page->mapping != mapping) {
1179				WARN_ON(mmap_page->mapping);
1180				unlock_page(mmap_page);
1181				ret = -EAGAIN;
1182				goto out;
1183			}
1184
1185			page_cache_get(mmap_page);
1186			wc->w_pages[i] = mmap_page;
1187			wc->w_target_locked = true;
 
 
 
 
 
1188		} else {
1189			wc->w_pages[i] = find_or_create_page(mapping, index,
1190							     GFP_NOFS);
1191			if (!wc->w_pages[i]) {
1192				ret = -ENOMEM;
1193				mlog_errno(ret);
1194				goto out;
1195			}
1196		}
 
1197
1198		if (index == target_index)
1199			wc->w_target_page = wc->w_pages[i];
1200	}
1201out:
1202	if (ret)
1203		wc->w_target_locked = false;
1204	return ret;
1205}
1206
1207/*
1208 * Prepare a single cluster for write one cluster into the file.
1209 */
1210static int ocfs2_write_cluster(struct address_space *mapping,
1211			       u32 phys, unsigned int unwritten,
 
1212			       unsigned int should_zero,
1213			       struct ocfs2_alloc_context *data_ac,
1214			       struct ocfs2_alloc_context *meta_ac,
1215			       struct ocfs2_write_ctxt *wc, u32 cpos,
1216			       loff_t user_pos, unsigned user_len)
1217{
1218	int ret, i, new;
1219	u64 v_blkno, p_blkno;
1220	struct inode *inode = mapping->host;
1221	struct ocfs2_extent_tree et;
 
1222
1223	new = phys == 0 ? 1 : 0;
1224	if (new) {
1225		u32 tmp_pos;
1226
1227		/*
1228		 * This is safe to call with the page locks - it won't take
1229		 * any additional semaphores or cluster locks.
1230		 */
1231		tmp_pos = cpos;
1232		ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1233					   &tmp_pos, 1, 0, wc->w_di_bh,
1234					   wc->w_handle, data_ac,
1235					   meta_ac, NULL);
1236		/*
1237		 * This shouldn't happen because we must have already
1238		 * calculated the correct meta data allocation required. The
1239		 * internal tree allocation code should know how to increase
1240		 * transaction credits itself.
1241		 *
1242		 * If need be, we could handle -EAGAIN for a
1243		 * RESTART_TRANS here.
1244		 */
1245		mlog_bug_on_msg(ret == -EAGAIN,
1246				"Inode %llu: EAGAIN return during allocation.\n",
1247				(unsigned long long)OCFS2_I(inode)->ip_blkno);
1248		if (ret < 0) {
1249			mlog_errno(ret);
1250			goto out;
1251		}
1252	} else if (unwritten) {
1253		ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1254					      wc->w_di_bh);
1255		ret = ocfs2_mark_extent_written(inode, &et,
1256						wc->w_handle, cpos, 1, phys,
1257						meta_ac, &wc->w_dealloc);
1258		if (ret < 0) {
1259			mlog_errno(ret);
1260			goto out;
1261		}
1262	}
1263
1264	if (should_zero)
1265		v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
1266	else
1267		v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
1268
1269	/*
1270	 * The only reason this should fail is due to an inability to
1271	 * find the extent added.
1272	 */
1273	ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1274					  NULL);
1275	if (ret < 0) {
1276		ocfs2_error(inode->i_sb, "Corrupting extend for inode %llu, "
1277			    "at logical block %llu",
1278			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
1279			    (unsigned long long)v_blkno);
1280		goto out;
1281	}
1282
1283	BUG_ON(p_blkno == 0);
 
 
 
 
1284
1285	for(i = 0; i < wc->w_num_pages; i++) {
1286		int tmpret;
1287
 
 
 
 
 
 
1288		tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1289						      wc->w_pages[i], cpos,
1290						      user_pos, user_len,
1291						      should_zero);
1292		if (tmpret) {
1293			mlog_errno(tmpret);
1294			if (ret == 0)
1295				ret = tmpret;
1296		}
1297	}
1298
1299	/*
1300	 * We only have cleanup to do in case of allocating write.
1301	 */
1302	if (ret && new)
1303		ocfs2_write_failure(inode, wc, user_pos, user_len);
1304
1305out:
1306
1307	return ret;
1308}
1309
1310static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1311				       struct ocfs2_alloc_context *data_ac,
1312				       struct ocfs2_alloc_context *meta_ac,
1313				       struct ocfs2_write_ctxt *wc,
1314				       loff_t pos, unsigned len)
1315{
1316	int ret, i;
1317	loff_t cluster_off;
1318	unsigned int local_len = len;
1319	struct ocfs2_write_cluster_desc *desc;
1320	struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1321
1322	for (i = 0; i < wc->w_clen; i++) {
1323		desc = &wc->w_desc[i];
1324
1325		/*
1326		 * We have to make sure that the total write passed in
1327		 * doesn't extend past a single cluster.
1328		 */
1329		local_len = len;
1330		cluster_off = pos & (osb->s_clustersize - 1);
1331		if ((cluster_off + local_len) > osb->s_clustersize)
1332			local_len = osb->s_clustersize - cluster_off;
1333
1334		ret = ocfs2_write_cluster(mapping, desc->c_phys,
1335					  desc->c_unwritten,
 
1336					  desc->c_needs_zero,
1337					  data_ac, meta_ac,
1338					  wc, desc->c_cpos, pos, local_len);
1339		if (ret) {
1340			mlog_errno(ret);
1341			goto out;
1342		}
1343
1344		len -= local_len;
1345		pos += local_len;
1346	}
1347
1348	ret = 0;
1349out:
1350	return ret;
1351}
1352
1353/*
1354 * ocfs2_write_end() wants to know which parts of the target page it
1355 * should complete the write on. It's easiest to compute them ahead of
1356 * time when a more complete view of the write is available.
1357 */
1358static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1359					struct ocfs2_write_ctxt *wc,
1360					loff_t pos, unsigned len, int alloc)
1361{
1362	struct ocfs2_write_cluster_desc *desc;
1363
1364	wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1365	wc->w_target_to = wc->w_target_from + len;
1366
1367	if (alloc == 0)
1368		return;
1369
1370	/*
1371	 * Allocating write - we may have different boundaries based
1372	 * on page size and cluster size.
1373	 *
1374	 * NOTE: We can no longer compute one value from the other as
1375	 * the actual write length and user provided length may be
1376	 * different.
1377	 */
1378
1379	if (wc->w_large_pages) {
1380		/*
1381		 * We only care about the 1st and last cluster within
1382		 * our range and whether they should be zero'd or not. Either
1383		 * value may be extended out to the start/end of a
1384		 * newly allocated cluster.
1385		 */
1386		desc = &wc->w_desc[0];
1387		if (desc->c_needs_zero)
1388			ocfs2_figure_cluster_boundaries(osb,
1389							desc->c_cpos,
1390							&wc->w_target_from,
1391							NULL);
1392
1393		desc = &wc->w_desc[wc->w_clen - 1];
1394		if (desc->c_needs_zero)
1395			ocfs2_figure_cluster_boundaries(osb,
1396							desc->c_cpos,
1397							NULL,
1398							&wc->w_target_to);
1399	} else {
1400		wc->w_target_from = 0;
1401		wc->w_target_to = PAGE_CACHE_SIZE;
1402	}
1403}
1404
1405/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1406 * Populate each single-cluster write descriptor in the write context
1407 * with information about the i/o to be done.
1408 *
1409 * Returns the number of clusters that will have to be allocated, as
1410 * well as a worst case estimate of the number of extent records that
1411 * would have to be created during a write to an unwritten region.
1412 */
1413static int ocfs2_populate_write_desc(struct inode *inode,
1414				     struct ocfs2_write_ctxt *wc,
1415				     unsigned int *clusters_to_alloc,
1416				     unsigned int *extents_to_split)
1417{
1418	int ret;
1419	struct ocfs2_write_cluster_desc *desc;
1420	unsigned int num_clusters = 0;
1421	unsigned int ext_flags = 0;
1422	u32 phys = 0;
1423	int i;
1424
1425	*clusters_to_alloc = 0;
1426	*extents_to_split = 0;
1427
1428	for (i = 0; i < wc->w_clen; i++) {
1429		desc = &wc->w_desc[i];
1430		desc->c_cpos = wc->w_cpos + i;
1431
1432		if (num_clusters == 0) {
1433			/*
1434			 * Need to look up the next extent record.
1435			 */
1436			ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1437						 &num_clusters, &ext_flags);
1438			if (ret) {
1439				mlog_errno(ret);
1440				goto out;
1441			}
1442
1443			/* We should already CoW the refcountd extent. */
1444			BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1445
1446			/*
1447			 * Assume worst case - that we're writing in
1448			 * the middle of the extent.
1449			 *
1450			 * We can assume that the write proceeds from
1451			 * left to right, in which case the extent
1452			 * insert code is smart enough to coalesce the
1453			 * next splits into the previous records created.
1454			 */
1455			if (ext_flags & OCFS2_EXT_UNWRITTEN)
1456				*extents_to_split = *extents_to_split + 2;
1457		} else if (phys) {
1458			/*
1459			 * Only increment phys if it doesn't describe
1460			 * a hole.
1461			 */
1462			phys++;
1463		}
1464
1465		/*
1466		 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1467		 * file that got extended.  w_first_new_cpos tells us
1468		 * where the newly allocated clusters are so we can
1469		 * zero them.
1470		 */
1471		if (desc->c_cpos >= wc->w_first_new_cpos) {
1472			BUG_ON(phys == 0);
1473			desc->c_needs_zero = 1;
1474		}
1475
1476		desc->c_phys = phys;
1477		if (phys == 0) {
1478			desc->c_new = 1;
1479			desc->c_needs_zero = 1;
 
1480			*clusters_to_alloc = *clusters_to_alloc + 1;
1481		}
1482
1483		if (ext_flags & OCFS2_EXT_UNWRITTEN) {
1484			desc->c_unwritten = 1;
1485			desc->c_needs_zero = 1;
1486		}
1487
 
 
 
 
 
 
1488		num_clusters--;
1489	}
1490
1491	ret = 0;
1492out:
1493	return ret;
1494}
1495
1496static int ocfs2_write_begin_inline(struct address_space *mapping,
1497				    struct inode *inode,
1498				    struct ocfs2_write_ctxt *wc)
1499{
1500	int ret;
1501	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1502	struct page *page;
1503	handle_t *handle;
1504	struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1505
 
 
 
 
 
 
 
1506	page = find_or_create_page(mapping, 0, GFP_NOFS);
1507	if (!page) {
 
1508		ret = -ENOMEM;
1509		mlog_errno(ret);
1510		goto out;
1511	}
1512	/*
1513	 * If we don't set w_num_pages then this page won't get unlocked
1514	 * and freed on cleanup of the write context.
1515	 */
1516	wc->w_pages[0] = wc->w_target_page = page;
1517	wc->w_num_pages = 1;
1518
1519	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1520	if (IS_ERR(handle)) {
1521		ret = PTR_ERR(handle);
1522		mlog_errno(ret);
1523		goto out;
1524	}
1525
1526	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1527				      OCFS2_JOURNAL_ACCESS_WRITE);
1528	if (ret) {
1529		ocfs2_commit_trans(osb, handle);
1530
1531		mlog_errno(ret);
1532		goto out;
1533	}
1534
1535	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1536		ocfs2_set_inode_data_inline(inode, di);
1537
1538	if (!PageUptodate(page)) {
1539		ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1540		if (ret) {
1541			ocfs2_commit_trans(osb, handle);
1542
1543			goto out;
1544		}
1545	}
1546
1547	wc->w_handle = handle;
1548out:
1549	return ret;
1550}
1551
1552int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1553{
1554	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1555
1556	if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1557		return 1;
1558	return 0;
1559}
1560
1561static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1562					  struct inode *inode, loff_t pos,
1563					  unsigned len, struct page *mmap_page,
1564					  struct ocfs2_write_ctxt *wc)
1565{
1566	int ret, written = 0;
1567	loff_t end = pos + len;
1568	struct ocfs2_inode_info *oi = OCFS2_I(inode);
1569	struct ocfs2_dinode *di = NULL;
1570
1571	trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
1572					     len, (unsigned long long)pos,
1573					     oi->ip_dyn_features);
1574
1575	/*
1576	 * Handle inodes which already have inline data 1st.
1577	 */
1578	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1579		if (mmap_page == NULL &&
1580		    ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1581			goto do_inline_write;
1582
1583		/*
1584		 * The write won't fit - we have to give this inode an
1585		 * inline extent list now.
1586		 */
1587		ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1588		if (ret)
1589			mlog_errno(ret);
1590		goto out;
1591	}
1592
1593	/*
1594	 * Check whether the inode can accept inline data.
1595	 */
1596	if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1597		return 0;
1598
1599	/*
1600	 * Check whether the write can fit.
1601	 */
1602	di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1603	if (mmap_page ||
1604	    end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1605		return 0;
1606
1607do_inline_write:
1608	ret = ocfs2_write_begin_inline(mapping, inode, wc);
1609	if (ret) {
1610		mlog_errno(ret);
1611		goto out;
1612	}
1613
1614	/*
1615	 * This signals to the caller that the data can be written
1616	 * inline.
1617	 */
1618	written = 1;
1619out:
1620	return written ? written : ret;
1621}
1622
1623/*
1624 * This function only does anything for file systems which can't
1625 * handle sparse files.
1626 *
1627 * What we want to do here is fill in any hole between the current end
1628 * of allocation and the end of our write. That way the rest of the
1629 * write path can treat it as an non-allocating write, which has no
1630 * special case code for sparse/nonsparse files.
1631 */
1632static int ocfs2_expand_nonsparse_inode(struct inode *inode,
1633					struct buffer_head *di_bh,
1634					loff_t pos, unsigned len,
1635					struct ocfs2_write_ctxt *wc)
1636{
1637	int ret;
1638	loff_t newsize = pos + len;
1639
1640	BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1641
1642	if (newsize <= i_size_read(inode))
1643		return 0;
1644
1645	ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
1646	if (ret)
1647		mlog_errno(ret);
1648
1649	wc->w_first_new_cpos =
1650		ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
 
 
1651
1652	return ret;
1653}
1654
1655static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
1656			   loff_t pos)
1657{
1658	int ret = 0;
1659
1660	BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1661	if (pos > i_size_read(inode))
1662		ret = ocfs2_zero_extend(inode, di_bh, pos);
1663
1664	return ret;
1665}
1666
1667/*
1668 * Try to flush truncate logs if we can free enough clusters from it.
1669 * As for return value, "< 0" means error, "0" no space and "1" means
1670 * we have freed enough spaces and let the caller try to allocate again.
1671 */
1672static int ocfs2_try_to_free_truncate_log(struct ocfs2_super *osb,
1673					  unsigned int needed)
1674{
1675	tid_t target;
1676	int ret = 0;
1677	unsigned int truncated_clusters;
1678
1679	mutex_lock(&osb->osb_tl_inode->i_mutex);
1680	truncated_clusters = osb->truncated_clusters;
1681	mutex_unlock(&osb->osb_tl_inode->i_mutex);
1682
1683	/*
1684	 * Check whether we can succeed in allocating if we free
1685	 * the truncate log.
1686	 */
1687	if (truncated_clusters < needed)
1688		goto out;
1689
1690	ret = ocfs2_flush_truncate_log(osb);
1691	if (ret) {
1692		mlog_errno(ret);
1693		goto out;
1694	}
1695
1696	if (jbd2_journal_start_commit(osb->journal->j_journal, &target)) {
1697		jbd2_log_wait_commit(osb->journal->j_journal, target);
1698		ret = 1;
1699	}
1700out:
1701	return ret;
1702}
1703
1704int ocfs2_write_begin_nolock(struct file *filp,
1705			     struct address_space *mapping,
1706			     loff_t pos, unsigned len, unsigned flags,
1707			     struct page **pagep, void **fsdata,
1708			     struct buffer_head *di_bh, struct page *mmap_page)
1709{
1710	int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
1711	unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
1712	struct ocfs2_write_ctxt *wc;
1713	struct inode *inode = mapping->host;
1714	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1715	struct ocfs2_dinode *di;
1716	struct ocfs2_alloc_context *data_ac = NULL;
1717	struct ocfs2_alloc_context *meta_ac = NULL;
1718	handle_t *handle;
1719	struct ocfs2_extent_tree et;
1720	int try_free = 1, ret1;
1721
1722try_again:
1723	ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
1724	if (ret) {
1725		mlog_errno(ret);
1726		return ret;
1727	}
1728
1729	if (ocfs2_supports_inline_data(osb)) {
1730		ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1731						     mmap_page, wc);
1732		if (ret == 1) {
1733			ret = 0;
1734			goto success;
1735		}
1736		if (ret < 0) {
1737			mlog_errno(ret);
1738			goto out;
1739		}
1740	}
1741
1742	if (ocfs2_sparse_alloc(osb))
1743		ret = ocfs2_zero_tail(inode, di_bh, pos);
1744	else
1745		ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, len,
1746						   wc);
1747	if (ret) {
1748		mlog_errno(ret);
1749		goto out;
 
 
 
1750	}
1751
1752	ret = ocfs2_check_range_for_refcount(inode, pos, len);
1753	if (ret < 0) {
1754		mlog_errno(ret);
1755		goto out;
1756	} else if (ret == 1) {
1757		clusters_need = wc->w_clen;
1758		ret = ocfs2_refcount_cow(inode, filp, di_bh,
1759					 wc->w_cpos, wc->w_clen, UINT_MAX);
1760		if (ret) {
1761			mlog_errno(ret);
1762			goto out;
1763		}
1764	}
1765
1766	ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1767					&extents_to_split);
1768	if (ret) {
1769		mlog_errno(ret);
1770		goto out;
1771	}
1772	clusters_need += clusters_to_alloc;
1773
1774	di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1775
1776	trace_ocfs2_write_begin_nolock(
1777			(unsigned long long)OCFS2_I(inode)->ip_blkno,
1778			(long long)i_size_read(inode),
1779			le32_to_cpu(di->i_clusters),
1780			pos, len, flags, mmap_page,
1781			clusters_to_alloc, extents_to_split);
1782
1783	/*
1784	 * We set w_target_from, w_target_to here so that
1785	 * ocfs2_write_end() knows which range in the target page to
1786	 * write out. An allocation requires that we write the entire
1787	 * cluster range.
1788	 */
1789	if (clusters_to_alloc || extents_to_split) {
1790		/*
1791		 * XXX: We are stretching the limits of
1792		 * ocfs2_lock_allocators(). It greatly over-estimates
1793		 * the work to be done.
1794		 */
1795		ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1796					      wc->w_di_bh);
1797		ret = ocfs2_lock_allocators(inode, &et,
1798					    clusters_to_alloc, extents_to_split,
1799					    &data_ac, &meta_ac);
1800		if (ret) {
1801			mlog_errno(ret);
1802			goto out;
1803		}
1804
1805		if (data_ac)
1806			data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
1807
1808		credits = ocfs2_calc_extend_credits(inode->i_sb,
1809						    &di->id2.i_list,
1810						    clusters_to_alloc);
1811
1812	}
1813
1814	/*
1815	 * We have to zero sparse allocated clusters, unwritten extent clusters,
1816	 * and non-sparse clusters we just extended.  For non-sparse writes,
1817	 * we know zeros will only be needed in the first and/or last cluster.
1818	 */
1819	if (clusters_to_alloc || extents_to_split ||
1820	    (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
1821			    wc->w_desc[wc->w_clen - 1].c_needs_zero)))
1822		cluster_of_pages = 1;
1823	else
1824		cluster_of_pages = 0;
1825
1826	ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
1827
1828	handle = ocfs2_start_trans(osb, credits);
1829	if (IS_ERR(handle)) {
1830		ret = PTR_ERR(handle);
1831		mlog_errno(ret);
1832		goto out;
1833	}
1834
1835	wc->w_handle = handle;
1836
1837	if (clusters_to_alloc) {
1838		ret = dquot_alloc_space_nodirty(inode,
1839			ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1840		if (ret)
1841			goto out_commit;
1842	}
1843	/*
1844	 * We don't want this to fail in ocfs2_write_end(), so do it
1845	 * here.
1846	 */
1847	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1848				      OCFS2_JOURNAL_ACCESS_WRITE);
1849	if (ret) {
1850		mlog_errno(ret);
1851		goto out_quota;
1852	}
1853
1854	/*
1855	 * Fill our page array first. That way we've grabbed enough so
1856	 * that we can zero and flush if we error after adding the
1857	 * extent.
1858	 */
1859	ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
1860					 cluster_of_pages, mmap_page);
1861	if (ret && ret != -EAGAIN) {
1862		mlog_errno(ret);
1863		goto out_quota;
1864	}
1865
1866	/*
1867	 * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock
1868	 * the target page. In this case, we exit with no error and no target
1869	 * page. This will trigger the caller, page_mkwrite(), to re-try
1870	 * the operation.
1871	 */
1872	if (ret == -EAGAIN) {
1873		BUG_ON(wc->w_target_page);
1874		ret = 0;
1875		goto out_quota;
1876	}
1877
1878	ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1879					  len);
1880	if (ret) {
1881		mlog_errno(ret);
1882		goto out_quota;
1883	}
1884
1885	if (data_ac)
1886		ocfs2_free_alloc_context(data_ac);
1887	if (meta_ac)
1888		ocfs2_free_alloc_context(meta_ac);
1889
1890success:
1891	*pagep = wc->w_target_page;
 
1892	*fsdata = wc;
1893	return 0;
1894out_quota:
1895	if (clusters_to_alloc)
1896		dquot_free_space(inode,
1897			  ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1898out_commit:
1899	ocfs2_commit_trans(osb, handle);
1900
1901out:
1902	ocfs2_free_write_ctxt(wc);
 
 
 
 
 
 
 
 
1903
1904	if (data_ac)
 
 
1905		ocfs2_free_alloc_context(data_ac);
1906	if (meta_ac)
 
 
1907		ocfs2_free_alloc_context(meta_ac);
 
 
1908
1909	if (ret == -ENOSPC && try_free) {
1910		/*
1911		 * Try to free some truncate log so that we can have enough
1912		 * clusters to allocate.
1913		 */
1914		try_free = 0;
1915
1916		ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
1917		if (ret1 == 1)
1918			goto try_again;
1919
1920		if (ret1 < 0)
1921			mlog_errno(ret1);
1922	}
1923
1924	return ret;
1925}
1926
1927static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1928			     loff_t pos, unsigned len, unsigned flags,
1929			     struct page **pagep, void **fsdata)
1930{
1931	int ret;
1932	struct buffer_head *di_bh = NULL;
1933	struct inode *inode = mapping->host;
1934
1935	ret = ocfs2_inode_lock(inode, &di_bh, 1);
1936	if (ret) {
1937		mlog_errno(ret);
1938		return ret;
1939	}
1940
1941	/*
1942	 * Take alloc sem here to prevent concurrent lookups. That way
1943	 * the mapping, zeroing and tree manipulation within
1944	 * ocfs2_write() will be safe against ->readpage(). This
1945	 * should also serve to lock out allocation from a shared
1946	 * writeable region.
1947	 */
1948	down_write(&OCFS2_I(inode)->ip_alloc_sem);
1949
1950	ret = ocfs2_write_begin_nolock(file, mapping, pos, len, flags, pagep,
1951				       fsdata, di_bh, NULL);
1952	if (ret) {
1953		mlog_errno(ret);
1954		goto out_fail;
1955	}
1956
1957	brelse(di_bh);
1958
1959	return 0;
1960
1961out_fail:
1962	up_write(&OCFS2_I(inode)->ip_alloc_sem);
1963
1964	brelse(di_bh);
1965	ocfs2_inode_unlock(inode, 1);
1966
1967	return ret;
1968}
1969
1970static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1971				   unsigned len, unsigned *copied,
1972				   struct ocfs2_dinode *di,
1973				   struct ocfs2_write_ctxt *wc)
1974{
1975	void *kaddr;
1976
1977	if (unlikely(*copied < len)) {
1978		if (!PageUptodate(wc->w_target_page)) {
1979			*copied = 0;
1980			return;
1981		}
1982	}
1983
1984	kaddr = kmap_atomic(wc->w_target_page);
1985	memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
1986	kunmap_atomic(kaddr);
1987
1988	trace_ocfs2_write_end_inline(
1989	     (unsigned long long)OCFS2_I(inode)->ip_blkno,
1990	     (unsigned long long)pos, *copied,
1991	     le16_to_cpu(di->id2.i_data.id_count),
1992	     le16_to_cpu(di->i_dyn_features));
1993}
1994
1995int ocfs2_write_end_nolock(struct address_space *mapping,
1996			   loff_t pos, unsigned len, unsigned copied,
1997			   struct page *page, void *fsdata)
1998{
1999	int i;
2000	unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
2001	struct inode *inode = mapping->host;
2002	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2003	struct ocfs2_write_ctxt *wc = fsdata;
2004	struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
2005	handle_t *handle = wc->w_handle;
2006	struct page *tmppage;
2007
 
 
 
 
 
 
 
 
 
 
 
 
2008	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
2009		ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
2010		goto out_write_size;
2011	}
2012
2013	if (unlikely(copied < len)) {
2014		if (!PageUptodate(wc->w_target_page))
2015			copied = 0;
2016
2017		ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
2018				       start+len);
2019	}
2020	flush_dcache_page(wc->w_target_page);
 
2021
2022	for(i = 0; i < wc->w_num_pages; i++) {
2023		tmppage = wc->w_pages[i];
2024
 
 
 
 
2025		if (tmppage == wc->w_target_page) {
2026			from = wc->w_target_from;
2027			to = wc->w_target_to;
2028
2029			BUG_ON(from > PAGE_CACHE_SIZE ||
2030			       to > PAGE_CACHE_SIZE ||
2031			       to < from);
2032		} else {
2033			/*
2034			 * Pages adjacent to the target (if any) imply
2035			 * a hole-filling write in which case we want
2036			 * to flush their entire range.
2037			 */
2038			from = 0;
2039			to = PAGE_CACHE_SIZE;
2040		}
2041
2042		if (page_has_buffers(tmppage)) {
2043			if (ocfs2_should_order_data(inode))
2044				ocfs2_jbd2_file_inode(wc->w_handle, inode);
 
 
 
 
 
 
2045			block_commit_write(tmppage, from, to);
2046		}
2047	}
2048
2049out_write_size:
2050	pos += copied;
2051	if (pos > inode->i_size) {
2052		i_size_write(inode, pos);
2053		mark_inode_dirty(inode);
2054	}
2055	inode->i_blocks = ocfs2_inode_sector_count(inode);
2056	di->i_size = cpu_to_le64((u64)i_size_read(inode));
2057	inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2058	di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
2059	di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
2060	ocfs2_journal_dirty(handle, wc->w_di_bh);
 
 
 
 
 
 
2061
2062	ocfs2_commit_trans(osb, handle);
 
 
 
 
 
 
 
 
 
2063
2064	ocfs2_run_deallocs(osb, &wc->w_dealloc);
2065
2066	ocfs2_free_write_ctxt(wc);
 
2067
2068	return copied;
2069}
2070
2071static int ocfs2_write_end(struct file *file, struct address_space *mapping,
2072			   loff_t pos, unsigned len, unsigned copied,
2073			   struct page *page, void *fsdata)
2074{
2075	int ret;
2076	struct inode *inode = mapping->host;
2077
2078	ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
2079
2080	up_write(&OCFS2_I(inode)->ip_alloc_sem);
2081	ocfs2_inode_unlock(inode, 1);
2082
2083	return ret;
2084}
2085
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2086const struct address_space_operations ocfs2_aops = {
2087	.readpage		= ocfs2_readpage,
2088	.readpages		= ocfs2_readpages,
2089	.writepage		= ocfs2_writepage,
2090	.write_begin		= ocfs2_write_begin,
2091	.write_end		= ocfs2_write_end,
2092	.bmap			= ocfs2_bmap,
2093	.direct_IO		= ocfs2_direct_IO,
2094	.invalidatepage		= ocfs2_invalidatepage,
2095	.releasepage		= ocfs2_releasepage,
2096	.migratepage		= buffer_migrate_page,
2097	.is_partially_uptodate	= block_is_partially_uptodate,
2098	.error_remove_page	= generic_error_remove_page,
2099};