Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/* -*- mode: c; c-basic-offset: 8; -*-
3 * vim: noexpandtab sw=8 ts=8 sts=0:
4 *
5 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
6 */
7
8#include <linux/fs.h>
9#include <linux/slab.h>
10#include <linux/highmem.h>
11#include <linux/pagemap.h>
12#include <asm/byteorder.h>
13#include <linux/swap.h>
14#include <linux/mpage.h>
15#include <linux/quotaops.h>
16#include <linux/blkdev.h>
17#include <linux/uio.h>
18#include <linux/mm.h>
19
20#include <cluster/masklog.h>
21
22#include "ocfs2.h"
23
24#include "alloc.h"
25#include "aops.h"
26#include "dlmglue.h"
27#include "extent_map.h"
28#include "file.h"
29#include "inode.h"
30#include "journal.h"
31#include "suballoc.h"
32#include "super.h"
33#include "symlink.h"
34#include "refcounttree.h"
35#include "ocfs2_trace.h"
36
37#include "buffer_head_io.h"
38#include "dir.h"
39#include "namei.h"
40#include "sysfile.h"
41
42static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
43 struct buffer_head *bh_result, int create)
44{
45 int err = -EIO;
46 int status;
47 struct ocfs2_dinode *fe = NULL;
48 struct buffer_head *bh = NULL;
49 struct buffer_head *buffer_cache_bh = NULL;
50 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
51 void *kaddr;
52
53 trace_ocfs2_symlink_get_block(
54 (unsigned long long)OCFS2_I(inode)->ip_blkno,
55 (unsigned long long)iblock, bh_result, create);
56
57 BUG_ON(ocfs2_inode_is_fast_symlink(inode));
58
59 if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
60 mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
61 (unsigned long long)iblock);
62 goto bail;
63 }
64
65 status = ocfs2_read_inode_block(inode, &bh);
66 if (status < 0) {
67 mlog_errno(status);
68 goto bail;
69 }
70 fe = (struct ocfs2_dinode *) bh->b_data;
71
72 if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
73 le32_to_cpu(fe->i_clusters))) {
74 err = -ENOMEM;
75 mlog(ML_ERROR, "block offset is outside the allocated size: "
76 "%llu\n", (unsigned long long)iblock);
77 goto bail;
78 }
79
80 /* We don't use the page cache to create symlink data, so if
81 * need be, copy it over from the buffer cache. */
82 if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
83 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
84 iblock;
85 buffer_cache_bh = sb_getblk(osb->sb, blkno);
86 if (!buffer_cache_bh) {
87 err = -ENOMEM;
88 mlog(ML_ERROR, "couldn't getblock for symlink!\n");
89 goto bail;
90 }
91
92 /* we haven't locked out transactions, so a commit
93 * could've happened. Since we've got a reference on
94 * the bh, even if it commits while we're doing the
95 * copy, the data is still good. */
96 if (buffer_jbd(buffer_cache_bh)
97 && ocfs2_inode_is_new(inode)) {
98 kaddr = kmap_atomic(bh_result->b_page);
99 if (!kaddr) {
100 mlog(ML_ERROR, "couldn't kmap!\n");
101 goto bail;
102 }
103 memcpy(kaddr + (bh_result->b_size * iblock),
104 buffer_cache_bh->b_data,
105 bh_result->b_size);
106 kunmap_atomic(kaddr);
107 set_buffer_uptodate(bh_result);
108 }
109 brelse(buffer_cache_bh);
110 }
111
112 map_bh(bh_result, inode->i_sb,
113 le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
114
115 err = 0;
116
117bail:
118 brelse(bh);
119
120 return err;
121}
122
123static int ocfs2_lock_get_block(struct inode *inode, sector_t iblock,
124 struct buffer_head *bh_result, int create)
125{
126 int ret = 0;
127 struct ocfs2_inode_info *oi = OCFS2_I(inode);
128
129 down_read(&oi->ip_alloc_sem);
130 ret = ocfs2_get_block(inode, iblock, bh_result, create);
131 up_read(&oi->ip_alloc_sem);
132
133 return ret;
134}
135
136int ocfs2_get_block(struct inode *inode, sector_t iblock,
137 struct buffer_head *bh_result, int create)
138{
139 int err = 0;
140 unsigned int ext_flags;
141 u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
142 u64 p_blkno, count, past_eof;
143 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
144
145 trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
146 (unsigned long long)iblock, bh_result, create);
147
148 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
149 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
150 inode, inode->i_ino);
151
152 if (S_ISLNK(inode->i_mode)) {
153 /* this always does I/O for some reason. */
154 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
155 goto bail;
156 }
157
158 err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
159 &ext_flags);
160 if (err) {
161 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
162 "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
163 (unsigned long long)p_blkno);
164 goto bail;
165 }
166
167 if (max_blocks < count)
168 count = max_blocks;
169
170 /*
171 * ocfs2 never allocates in this function - the only time we
172 * need to use BH_New is when we're extending i_size on a file
173 * system which doesn't support holes, in which case BH_New
174 * allows __block_write_begin() to zero.
175 *
176 * If we see this on a sparse file system, then a truncate has
177 * raced us and removed the cluster. In this case, we clear
178 * the buffers dirty and uptodate bits and let the buffer code
179 * ignore it as a hole.
180 */
181 if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
182 clear_buffer_dirty(bh_result);
183 clear_buffer_uptodate(bh_result);
184 goto bail;
185 }
186
187 /* Treat the unwritten extent as a hole for zeroing purposes. */
188 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
189 map_bh(bh_result, inode->i_sb, p_blkno);
190
191 bh_result->b_size = count << inode->i_blkbits;
192
193 if (!ocfs2_sparse_alloc(osb)) {
194 if (p_blkno == 0) {
195 err = -EIO;
196 mlog(ML_ERROR,
197 "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
198 (unsigned long long)iblock,
199 (unsigned long long)p_blkno,
200 (unsigned long long)OCFS2_I(inode)->ip_blkno);
201 mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
202 dump_stack();
203 goto bail;
204 }
205 }
206
207 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
208
209 trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
210 (unsigned long long)past_eof);
211 if (create && (iblock >= past_eof))
212 set_buffer_new(bh_result);
213
214bail:
215 if (err < 0)
216 err = -EIO;
217
218 return err;
219}
220
221int ocfs2_read_inline_data(struct inode *inode, struct page *page,
222 struct buffer_head *di_bh)
223{
224 void *kaddr;
225 loff_t size;
226 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
227
228 if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
229 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag\n",
230 (unsigned long long)OCFS2_I(inode)->ip_blkno);
231 return -EROFS;
232 }
233
234 size = i_size_read(inode);
235
236 if (size > PAGE_SIZE ||
237 size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
238 ocfs2_error(inode->i_sb,
239 "Inode %llu has with inline data has bad size: %Lu\n",
240 (unsigned long long)OCFS2_I(inode)->ip_blkno,
241 (unsigned long long)size);
242 return -EROFS;
243 }
244
245 kaddr = kmap_atomic(page);
246 if (size)
247 memcpy(kaddr, di->id2.i_data.id_data, size);
248 /* Clear the remaining part of the page */
249 memset(kaddr + size, 0, PAGE_SIZE - size);
250 flush_dcache_page(page);
251 kunmap_atomic(kaddr);
252
253 SetPageUptodate(page);
254
255 return 0;
256}
257
258static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
259{
260 int ret;
261 struct buffer_head *di_bh = NULL;
262
263 BUG_ON(!PageLocked(page));
264 BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
265
266 ret = ocfs2_read_inode_block(inode, &di_bh);
267 if (ret) {
268 mlog_errno(ret);
269 goto out;
270 }
271
272 ret = ocfs2_read_inline_data(inode, page, di_bh);
273out:
274 unlock_page(page);
275
276 brelse(di_bh);
277 return ret;
278}
279
280static int ocfs2_readpage(struct file *file, struct page *page)
281{
282 struct inode *inode = page->mapping->host;
283 struct ocfs2_inode_info *oi = OCFS2_I(inode);
284 loff_t start = (loff_t)page->index << PAGE_SHIFT;
285 int ret, unlock = 1;
286
287 trace_ocfs2_readpage((unsigned long long)oi->ip_blkno,
288 (page ? page->index : 0));
289
290 ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
291 if (ret != 0) {
292 if (ret == AOP_TRUNCATED_PAGE)
293 unlock = 0;
294 mlog_errno(ret);
295 goto out;
296 }
297
298 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
299 /*
300 * Unlock the page and cycle ip_alloc_sem so that we don't
301 * busyloop waiting for ip_alloc_sem to unlock
302 */
303 ret = AOP_TRUNCATED_PAGE;
304 unlock_page(page);
305 unlock = 0;
306 down_read(&oi->ip_alloc_sem);
307 up_read(&oi->ip_alloc_sem);
308 goto out_inode_unlock;
309 }
310
311 /*
312 * i_size might have just been updated as we grabed the meta lock. We
313 * might now be discovering a truncate that hit on another node.
314 * block_read_full_page->get_block freaks out if it is asked to read
315 * beyond the end of a file, so we check here. Callers
316 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
317 * and notice that the page they just read isn't needed.
318 *
319 * XXX sys_readahead() seems to get that wrong?
320 */
321 if (start >= i_size_read(inode)) {
322 zero_user(page, 0, PAGE_SIZE);
323 SetPageUptodate(page);
324 ret = 0;
325 goto out_alloc;
326 }
327
328 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
329 ret = ocfs2_readpage_inline(inode, page);
330 else
331 ret = block_read_full_page(page, ocfs2_get_block);
332 unlock = 0;
333
334out_alloc:
335 up_read(&oi->ip_alloc_sem);
336out_inode_unlock:
337 ocfs2_inode_unlock(inode, 0);
338out:
339 if (unlock)
340 unlock_page(page);
341 return ret;
342}
343
344/*
345 * This is used only for read-ahead. Failures or difficult to handle
346 * situations are safe to ignore.
347 *
348 * Right now, we don't bother with BH_Boundary - in-inode extent lists
349 * are quite large (243 extents on 4k blocks), so most inodes don't
350 * grow out to a tree. If need be, detecting boundary extents could
351 * trivially be added in a future version of ocfs2_get_block().
352 */
353static void ocfs2_readahead(struct readahead_control *rac)
354{
355 int ret;
356 struct inode *inode = rac->mapping->host;
357 struct ocfs2_inode_info *oi = OCFS2_I(inode);
358
359 /*
360 * Use the nonblocking flag for the dlm code to avoid page
361 * lock inversion, but don't bother with retrying.
362 */
363 ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
364 if (ret)
365 return;
366
367 if (down_read_trylock(&oi->ip_alloc_sem) == 0)
368 goto out_unlock;
369
370 /*
371 * Don't bother with inline-data. There isn't anything
372 * to read-ahead in that case anyway...
373 */
374 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
375 goto out_up;
376
377 /*
378 * Check whether a remote node truncated this file - we just
379 * drop out in that case as it's not worth handling here.
380 */
381 if (readahead_pos(rac) >= i_size_read(inode))
382 goto out_up;
383
384 mpage_readahead(rac, ocfs2_get_block);
385
386out_up:
387 up_read(&oi->ip_alloc_sem);
388out_unlock:
389 ocfs2_inode_unlock(inode, 0);
390}
391
392/* Note: Because we don't support holes, our allocation has
393 * already happened (allocation writes zeros to the file data)
394 * so we don't have to worry about ordered writes in
395 * ocfs2_writepage.
396 *
397 * ->writepage is called during the process of invalidating the page cache
398 * during blocked lock processing. It can't block on any cluster locks
399 * to during block mapping. It's relying on the fact that the block
400 * mapping can't have disappeared under the dirty pages that it is
401 * being asked to write back.
402 */
403static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
404{
405 trace_ocfs2_writepage(
406 (unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno,
407 page->index);
408
409 return block_write_full_page(page, ocfs2_get_block, wbc);
410}
411
412/* Taken from ext3. We don't necessarily need the full blown
413 * functionality yet, but IMHO it's better to cut and paste the whole
414 * thing so we can avoid introducing our own bugs (and easily pick up
415 * their fixes when they happen) --Mark */
416int walk_page_buffers( handle_t *handle,
417 struct buffer_head *head,
418 unsigned from,
419 unsigned to,
420 int *partial,
421 int (*fn)( handle_t *handle,
422 struct buffer_head *bh))
423{
424 struct buffer_head *bh;
425 unsigned block_start, block_end;
426 unsigned blocksize = head->b_size;
427 int err, ret = 0;
428 struct buffer_head *next;
429
430 for ( bh = head, block_start = 0;
431 ret == 0 && (bh != head || !block_start);
432 block_start = block_end, bh = next)
433 {
434 next = bh->b_this_page;
435 block_end = block_start + blocksize;
436 if (block_end <= from || block_start >= to) {
437 if (partial && !buffer_uptodate(bh))
438 *partial = 1;
439 continue;
440 }
441 err = (*fn)(handle, bh);
442 if (!ret)
443 ret = err;
444 }
445 return ret;
446}
447
448static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
449{
450 sector_t status;
451 u64 p_blkno = 0;
452 int err = 0;
453 struct inode *inode = mapping->host;
454
455 trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
456 (unsigned long long)block);
457
458 /*
459 * The swap code (ab-)uses ->bmap to get a block mapping and then
460 * bypasseѕ the file system for actual I/O. We really can't allow
461 * that on refcounted inodes, so we have to skip out here. And yes,
462 * 0 is the magic code for a bmap error..
463 */
464 if (ocfs2_is_refcount_inode(inode))
465 return 0;
466
467 /* We don't need to lock journal system files, since they aren't
468 * accessed concurrently from multiple nodes.
469 */
470 if (!INODE_JOURNAL(inode)) {
471 err = ocfs2_inode_lock(inode, NULL, 0);
472 if (err) {
473 if (err != -ENOENT)
474 mlog_errno(err);
475 goto bail;
476 }
477 down_read(&OCFS2_I(inode)->ip_alloc_sem);
478 }
479
480 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
481 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
482 NULL);
483
484 if (!INODE_JOURNAL(inode)) {
485 up_read(&OCFS2_I(inode)->ip_alloc_sem);
486 ocfs2_inode_unlock(inode, 0);
487 }
488
489 if (err) {
490 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
491 (unsigned long long)block);
492 mlog_errno(err);
493 goto bail;
494 }
495
496bail:
497 status = err ? 0 : p_blkno;
498
499 return status;
500}
501
502static int ocfs2_releasepage(struct page *page, gfp_t wait)
503{
504 if (!page_has_buffers(page))
505 return 0;
506 return try_to_free_buffers(page);
507}
508
509static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
510 u32 cpos,
511 unsigned int *start,
512 unsigned int *end)
513{
514 unsigned int cluster_start = 0, cluster_end = PAGE_SIZE;
515
516 if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits)) {
517 unsigned int cpp;
518
519 cpp = 1 << (PAGE_SHIFT - osb->s_clustersize_bits);
520
521 cluster_start = cpos % cpp;
522 cluster_start = cluster_start << osb->s_clustersize_bits;
523
524 cluster_end = cluster_start + osb->s_clustersize;
525 }
526
527 BUG_ON(cluster_start > PAGE_SIZE);
528 BUG_ON(cluster_end > PAGE_SIZE);
529
530 if (start)
531 *start = cluster_start;
532 if (end)
533 *end = cluster_end;
534}
535
536/*
537 * 'from' and 'to' are the region in the page to avoid zeroing.
538 *
539 * If pagesize > clustersize, this function will avoid zeroing outside
540 * of the cluster boundary.
541 *
542 * from == to == 0 is code for "zero the entire cluster region"
543 */
544static void ocfs2_clear_page_regions(struct page *page,
545 struct ocfs2_super *osb, u32 cpos,
546 unsigned from, unsigned to)
547{
548 void *kaddr;
549 unsigned int cluster_start, cluster_end;
550
551 ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
552
553 kaddr = kmap_atomic(page);
554
555 if (from || to) {
556 if (from > cluster_start)
557 memset(kaddr + cluster_start, 0, from - cluster_start);
558 if (to < cluster_end)
559 memset(kaddr + to, 0, cluster_end - to);
560 } else {
561 memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
562 }
563
564 kunmap_atomic(kaddr);
565}
566
567/*
568 * Nonsparse file systems fully allocate before we get to the write
569 * code. This prevents ocfs2_write() from tagging the write as an
570 * allocating one, which means ocfs2_map_page_blocks() might try to
571 * read-in the blocks at the tail of our file. Avoid reading them by
572 * testing i_size against each block offset.
573 */
574static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
575 unsigned int block_start)
576{
577 u64 offset = page_offset(page) + block_start;
578
579 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
580 return 1;
581
582 if (i_size_read(inode) > offset)
583 return 1;
584
585 return 0;
586}
587
588/*
589 * Some of this taken from __block_write_begin(). We already have our
590 * mapping by now though, and the entire write will be allocating or
591 * it won't, so not much need to use BH_New.
592 *
593 * This will also skip zeroing, which is handled externally.
594 */
595int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
596 struct inode *inode, unsigned int from,
597 unsigned int to, int new)
598{
599 int ret = 0;
600 struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
601 unsigned int block_end, block_start;
602 unsigned int bsize = i_blocksize(inode);
603
604 if (!page_has_buffers(page))
605 create_empty_buffers(page, bsize, 0);
606
607 head = page_buffers(page);
608 for (bh = head, block_start = 0; bh != head || !block_start;
609 bh = bh->b_this_page, block_start += bsize) {
610 block_end = block_start + bsize;
611
612 clear_buffer_new(bh);
613
614 /*
615 * Ignore blocks outside of our i/o range -
616 * they may belong to unallocated clusters.
617 */
618 if (block_start >= to || block_end <= from) {
619 if (PageUptodate(page))
620 set_buffer_uptodate(bh);
621 continue;
622 }
623
624 /*
625 * For an allocating write with cluster size >= page
626 * size, we always write the entire page.
627 */
628 if (new)
629 set_buffer_new(bh);
630
631 if (!buffer_mapped(bh)) {
632 map_bh(bh, inode->i_sb, *p_blkno);
633 clean_bdev_bh_alias(bh);
634 }
635
636 if (PageUptodate(page)) {
637 if (!buffer_uptodate(bh))
638 set_buffer_uptodate(bh);
639 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
640 !buffer_new(bh) &&
641 ocfs2_should_read_blk(inode, page, block_start) &&
642 (block_start < from || block_end > to)) {
643 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
644 *wait_bh++=bh;
645 }
646
647 *p_blkno = *p_blkno + 1;
648 }
649
650 /*
651 * If we issued read requests - let them complete.
652 */
653 while(wait_bh > wait) {
654 wait_on_buffer(*--wait_bh);
655 if (!buffer_uptodate(*wait_bh))
656 ret = -EIO;
657 }
658
659 if (ret == 0 || !new)
660 return ret;
661
662 /*
663 * If we get -EIO above, zero out any newly allocated blocks
664 * to avoid exposing stale data.
665 */
666 bh = head;
667 block_start = 0;
668 do {
669 block_end = block_start + bsize;
670 if (block_end <= from)
671 goto next_bh;
672 if (block_start >= to)
673 break;
674
675 zero_user(page, block_start, bh->b_size);
676 set_buffer_uptodate(bh);
677 mark_buffer_dirty(bh);
678
679next_bh:
680 block_start = block_end;
681 bh = bh->b_this_page;
682 } while (bh != head);
683
684 return ret;
685}
686
687#if (PAGE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
688#define OCFS2_MAX_CTXT_PAGES 1
689#else
690#define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_SIZE)
691#endif
692
693#define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_SIZE / OCFS2_MIN_CLUSTERSIZE)
694
695struct ocfs2_unwritten_extent {
696 struct list_head ue_node;
697 struct list_head ue_ip_node;
698 u32 ue_cpos;
699 u32 ue_phys;
700};
701
702/*
703 * Describe the state of a single cluster to be written to.
704 */
705struct ocfs2_write_cluster_desc {
706 u32 c_cpos;
707 u32 c_phys;
708 /*
709 * Give this a unique field because c_phys eventually gets
710 * filled.
711 */
712 unsigned c_new;
713 unsigned c_clear_unwritten;
714 unsigned c_needs_zero;
715};
716
717struct ocfs2_write_ctxt {
718 /* Logical cluster position / len of write */
719 u32 w_cpos;
720 u32 w_clen;
721
722 /* First cluster allocated in a nonsparse extend */
723 u32 w_first_new_cpos;
724
725 /* Type of caller. Must be one of buffer, mmap, direct. */
726 ocfs2_write_type_t w_type;
727
728 struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
729
730 /*
731 * This is true if page_size > cluster_size.
732 *
733 * It triggers a set of special cases during write which might
734 * have to deal with allocating writes to partial pages.
735 */
736 unsigned int w_large_pages;
737
738 /*
739 * Pages involved in this write.
740 *
741 * w_target_page is the page being written to by the user.
742 *
743 * w_pages is an array of pages which always contains
744 * w_target_page, and in the case of an allocating write with
745 * page_size < cluster size, it will contain zero'd and mapped
746 * pages adjacent to w_target_page which need to be written
747 * out in so that future reads from that region will get
748 * zero's.
749 */
750 unsigned int w_num_pages;
751 struct page *w_pages[OCFS2_MAX_CTXT_PAGES];
752 struct page *w_target_page;
753
754 /*
755 * w_target_locked is used for page_mkwrite path indicating no unlocking
756 * against w_target_page in ocfs2_write_end_nolock.
757 */
758 unsigned int w_target_locked:1;
759
760 /*
761 * ocfs2_write_end() uses this to know what the real range to
762 * write in the target should be.
763 */
764 unsigned int w_target_from;
765 unsigned int w_target_to;
766
767 /*
768 * We could use journal_current_handle() but this is cleaner,
769 * IMHO -Mark
770 */
771 handle_t *w_handle;
772
773 struct buffer_head *w_di_bh;
774
775 struct ocfs2_cached_dealloc_ctxt w_dealloc;
776
777 struct list_head w_unwritten_list;
778 unsigned int w_unwritten_count;
779};
780
781void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
782{
783 int i;
784
785 for(i = 0; i < num_pages; i++) {
786 if (pages[i]) {
787 unlock_page(pages[i]);
788 mark_page_accessed(pages[i]);
789 put_page(pages[i]);
790 }
791 }
792}
793
794static void ocfs2_unlock_pages(struct ocfs2_write_ctxt *wc)
795{
796 int i;
797
798 /*
799 * w_target_locked is only set to true in the page_mkwrite() case.
800 * The intent is to allow us to lock the target page from write_begin()
801 * to write_end(). The caller must hold a ref on w_target_page.
802 */
803 if (wc->w_target_locked) {
804 BUG_ON(!wc->w_target_page);
805 for (i = 0; i < wc->w_num_pages; i++) {
806 if (wc->w_target_page == wc->w_pages[i]) {
807 wc->w_pages[i] = NULL;
808 break;
809 }
810 }
811 mark_page_accessed(wc->w_target_page);
812 put_page(wc->w_target_page);
813 }
814 ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
815}
816
817static void ocfs2_free_unwritten_list(struct inode *inode,
818 struct list_head *head)
819{
820 struct ocfs2_inode_info *oi = OCFS2_I(inode);
821 struct ocfs2_unwritten_extent *ue = NULL, *tmp = NULL;
822
823 list_for_each_entry_safe(ue, tmp, head, ue_node) {
824 list_del(&ue->ue_node);
825 spin_lock(&oi->ip_lock);
826 list_del(&ue->ue_ip_node);
827 spin_unlock(&oi->ip_lock);
828 kfree(ue);
829 }
830}
831
832static void ocfs2_free_write_ctxt(struct inode *inode,
833 struct ocfs2_write_ctxt *wc)
834{
835 ocfs2_free_unwritten_list(inode, &wc->w_unwritten_list);
836 ocfs2_unlock_pages(wc);
837 brelse(wc->w_di_bh);
838 kfree(wc);
839}
840
841static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
842 struct ocfs2_super *osb, loff_t pos,
843 unsigned len, ocfs2_write_type_t type,
844 struct buffer_head *di_bh)
845{
846 u32 cend;
847 struct ocfs2_write_ctxt *wc;
848
849 wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
850 if (!wc)
851 return -ENOMEM;
852
853 wc->w_cpos = pos >> osb->s_clustersize_bits;
854 wc->w_first_new_cpos = UINT_MAX;
855 cend = (pos + len - 1) >> osb->s_clustersize_bits;
856 wc->w_clen = cend - wc->w_cpos + 1;
857 get_bh(di_bh);
858 wc->w_di_bh = di_bh;
859 wc->w_type = type;
860
861 if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits))
862 wc->w_large_pages = 1;
863 else
864 wc->w_large_pages = 0;
865
866 ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
867 INIT_LIST_HEAD(&wc->w_unwritten_list);
868
869 *wcp = wc;
870
871 return 0;
872}
873
874/*
875 * If a page has any new buffers, zero them out here, and mark them uptodate
876 * and dirty so they'll be written out (in order to prevent uninitialised
877 * block data from leaking). And clear the new bit.
878 */
879static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
880{
881 unsigned int block_start, block_end;
882 struct buffer_head *head, *bh;
883
884 BUG_ON(!PageLocked(page));
885 if (!page_has_buffers(page))
886 return;
887
888 bh = head = page_buffers(page);
889 block_start = 0;
890 do {
891 block_end = block_start + bh->b_size;
892
893 if (buffer_new(bh)) {
894 if (block_end > from && block_start < to) {
895 if (!PageUptodate(page)) {
896 unsigned start, end;
897
898 start = max(from, block_start);
899 end = min(to, block_end);
900
901 zero_user_segment(page, start, end);
902 set_buffer_uptodate(bh);
903 }
904
905 clear_buffer_new(bh);
906 mark_buffer_dirty(bh);
907 }
908 }
909
910 block_start = block_end;
911 bh = bh->b_this_page;
912 } while (bh != head);
913}
914
915/*
916 * Only called when we have a failure during allocating write to write
917 * zero's to the newly allocated region.
918 */
919static void ocfs2_write_failure(struct inode *inode,
920 struct ocfs2_write_ctxt *wc,
921 loff_t user_pos, unsigned user_len)
922{
923 int i;
924 unsigned from = user_pos & (PAGE_SIZE - 1),
925 to = user_pos + user_len;
926 struct page *tmppage;
927
928 if (wc->w_target_page)
929 ocfs2_zero_new_buffers(wc->w_target_page, from, to);
930
931 for(i = 0; i < wc->w_num_pages; i++) {
932 tmppage = wc->w_pages[i];
933
934 if (tmppage && page_has_buffers(tmppage)) {
935 if (ocfs2_should_order_data(inode))
936 ocfs2_jbd2_inode_add_write(wc->w_handle, inode,
937 user_pos, user_len);
938
939 block_commit_write(tmppage, from, to);
940 }
941 }
942}
943
944static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
945 struct ocfs2_write_ctxt *wc,
946 struct page *page, u32 cpos,
947 loff_t user_pos, unsigned user_len,
948 int new)
949{
950 int ret;
951 unsigned int map_from = 0, map_to = 0;
952 unsigned int cluster_start, cluster_end;
953 unsigned int user_data_from = 0, user_data_to = 0;
954
955 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
956 &cluster_start, &cluster_end);
957
958 /* treat the write as new if the a hole/lseek spanned across
959 * the page boundary.
960 */
961 new = new | ((i_size_read(inode) <= page_offset(page)) &&
962 (page_offset(page) <= user_pos));
963
964 if (page == wc->w_target_page) {
965 map_from = user_pos & (PAGE_SIZE - 1);
966 map_to = map_from + user_len;
967
968 if (new)
969 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
970 cluster_start, cluster_end,
971 new);
972 else
973 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
974 map_from, map_to, new);
975 if (ret) {
976 mlog_errno(ret);
977 goto out;
978 }
979
980 user_data_from = map_from;
981 user_data_to = map_to;
982 if (new) {
983 map_from = cluster_start;
984 map_to = cluster_end;
985 }
986 } else {
987 /*
988 * If we haven't allocated the new page yet, we
989 * shouldn't be writing it out without copying user
990 * data. This is likely a math error from the caller.
991 */
992 BUG_ON(!new);
993
994 map_from = cluster_start;
995 map_to = cluster_end;
996
997 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
998 cluster_start, cluster_end, new);
999 if (ret) {
1000 mlog_errno(ret);
1001 goto out;
1002 }
1003 }
1004
1005 /*
1006 * Parts of newly allocated pages need to be zero'd.
1007 *
1008 * Above, we have also rewritten 'to' and 'from' - as far as
1009 * the rest of the function is concerned, the entire cluster
1010 * range inside of a page needs to be written.
1011 *
1012 * We can skip this if the page is up to date - it's already
1013 * been zero'd from being read in as a hole.
1014 */
1015 if (new && !PageUptodate(page))
1016 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1017 cpos, user_data_from, user_data_to);
1018
1019 flush_dcache_page(page);
1020
1021out:
1022 return ret;
1023}
1024
1025/*
1026 * This function will only grab one clusters worth of pages.
1027 */
1028static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1029 struct ocfs2_write_ctxt *wc,
1030 u32 cpos, loff_t user_pos,
1031 unsigned user_len, int new,
1032 struct page *mmap_page)
1033{
1034 int ret = 0, i;
1035 unsigned long start, target_index, end_index, index;
1036 struct inode *inode = mapping->host;
1037 loff_t last_byte;
1038
1039 target_index = user_pos >> PAGE_SHIFT;
1040
1041 /*
1042 * Figure out how many pages we'll be manipulating here. For
1043 * non allocating write, we just change the one
1044 * page. Otherwise, we'll need a whole clusters worth. If we're
1045 * writing past i_size, we only need enough pages to cover the
1046 * last page of the write.
1047 */
1048 if (new) {
1049 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1050 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1051 /*
1052 * We need the index *past* the last page we could possibly
1053 * touch. This is the page past the end of the write or
1054 * i_size, whichever is greater.
1055 */
1056 last_byte = max(user_pos + user_len, i_size_read(inode));
1057 BUG_ON(last_byte < 1);
1058 end_index = ((last_byte - 1) >> PAGE_SHIFT) + 1;
1059 if ((start + wc->w_num_pages) > end_index)
1060 wc->w_num_pages = end_index - start;
1061 } else {
1062 wc->w_num_pages = 1;
1063 start = target_index;
1064 }
1065 end_index = (user_pos + user_len - 1) >> PAGE_SHIFT;
1066
1067 for(i = 0; i < wc->w_num_pages; i++) {
1068 index = start + i;
1069
1070 if (index >= target_index && index <= end_index &&
1071 wc->w_type == OCFS2_WRITE_MMAP) {
1072 /*
1073 * ocfs2_pagemkwrite() is a little different
1074 * and wants us to directly use the page
1075 * passed in.
1076 */
1077 lock_page(mmap_page);
1078
1079 /* Exit and let the caller retry */
1080 if (mmap_page->mapping != mapping) {
1081 WARN_ON(mmap_page->mapping);
1082 unlock_page(mmap_page);
1083 ret = -EAGAIN;
1084 goto out;
1085 }
1086
1087 get_page(mmap_page);
1088 wc->w_pages[i] = mmap_page;
1089 wc->w_target_locked = true;
1090 } else if (index >= target_index && index <= end_index &&
1091 wc->w_type == OCFS2_WRITE_DIRECT) {
1092 /* Direct write has no mapping page. */
1093 wc->w_pages[i] = NULL;
1094 continue;
1095 } else {
1096 wc->w_pages[i] = find_or_create_page(mapping, index,
1097 GFP_NOFS);
1098 if (!wc->w_pages[i]) {
1099 ret = -ENOMEM;
1100 mlog_errno(ret);
1101 goto out;
1102 }
1103 }
1104 wait_for_stable_page(wc->w_pages[i]);
1105
1106 if (index == target_index)
1107 wc->w_target_page = wc->w_pages[i];
1108 }
1109out:
1110 if (ret)
1111 wc->w_target_locked = false;
1112 return ret;
1113}
1114
1115/*
1116 * Prepare a single cluster for write one cluster into the file.
1117 */
1118static int ocfs2_write_cluster(struct address_space *mapping,
1119 u32 *phys, unsigned int new,
1120 unsigned int clear_unwritten,
1121 unsigned int should_zero,
1122 struct ocfs2_alloc_context *data_ac,
1123 struct ocfs2_alloc_context *meta_ac,
1124 struct ocfs2_write_ctxt *wc, u32 cpos,
1125 loff_t user_pos, unsigned user_len)
1126{
1127 int ret, i;
1128 u64 p_blkno;
1129 struct inode *inode = mapping->host;
1130 struct ocfs2_extent_tree et;
1131 int bpc = ocfs2_clusters_to_blocks(inode->i_sb, 1);
1132
1133 if (new) {
1134 u32 tmp_pos;
1135
1136 /*
1137 * This is safe to call with the page locks - it won't take
1138 * any additional semaphores or cluster locks.
1139 */
1140 tmp_pos = cpos;
1141 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1142 &tmp_pos, 1, !clear_unwritten,
1143 wc->w_di_bh, wc->w_handle,
1144 data_ac, meta_ac, NULL);
1145 /*
1146 * This shouldn't happen because we must have already
1147 * calculated the correct meta data allocation required. The
1148 * internal tree allocation code should know how to increase
1149 * transaction credits itself.
1150 *
1151 * If need be, we could handle -EAGAIN for a
1152 * RESTART_TRANS here.
1153 */
1154 mlog_bug_on_msg(ret == -EAGAIN,
1155 "Inode %llu: EAGAIN return during allocation.\n",
1156 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1157 if (ret < 0) {
1158 mlog_errno(ret);
1159 goto out;
1160 }
1161 } else if (clear_unwritten) {
1162 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1163 wc->w_di_bh);
1164 ret = ocfs2_mark_extent_written(inode, &et,
1165 wc->w_handle, cpos, 1, *phys,
1166 meta_ac, &wc->w_dealloc);
1167 if (ret < 0) {
1168 mlog_errno(ret);
1169 goto out;
1170 }
1171 }
1172
1173 /*
1174 * The only reason this should fail is due to an inability to
1175 * find the extent added.
1176 */
1177 ret = ocfs2_get_clusters(inode, cpos, phys, NULL, NULL);
1178 if (ret < 0) {
1179 mlog(ML_ERROR, "Get physical blkno failed for inode %llu, "
1180 "at logical cluster %u",
1181 (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
1182 goto out;
1183 }
1184
1185 BUG_ON(*phys == 0);
1186
1187 p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, *phys);
1188 if (!should_zero)
1189 p_blkno += (user_pos >> inode->i_sb->s_blocksize_bits) & (u64)(bpc - 1);
1190
1191 for(i = 0; i < wc->w_num_pages; i++) {
1192 int tmpret;
1193
1194 /* This is the direct io target page. */
1195 if (wc->w_pages[i] == NULL) {
1196 p_blkno++;
1197 continue;
1198 }
1199
1200 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1201 wc->w_pages[i], cpos,
1202 user_pos, user_len,
1203 should_zero);
1204 if (tmpret) {
1205 mlog_errno(tmpret);
1206 if (ret == 0)
1207 ret = tmpret;
1208 }
1209 }
1210
1211 /*
1212 * We only have cleanup to do in case of allocating write.
1213 */
1214 if (ret && new)
1215 ocfs2_write_failure(inode, wc, user_pos, user_len);
1216
1217out:
1218
1219 return ret;
1220}
1221
1222static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1223 struct ocfs2_alloc_context *data_ac,
1224 struct ocfs2_alloc_context *meta_ac,
1225 struct ocfs2_write_ctxt *wc,
1226 loff_t pos, unsigned len)
1227{
1228 int ret, i;
1229 loff_t cluster_off;
1230 unsigned int local_len = len;
1231 struct ocfs2_write_cluster_desc *desc;
1232 struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1233
1234 for (i = 0; i < wc->w_clen; i++) {
1235 desc = &wc->w_desc[i];
1236
1237 /*
1238 * We have to make sure that the total write passed in
1239 * doesn't extend past a single cluster.
1240 */
1241 local_len = len;
1242 cluster_off = pos & (osb->s_clustersize - 1);
1243 if ((cluster_off + local_len) > osb->s_clustersize)
1244 local_len = osb->s_clustersize - cluster_off;
1245
1246 ret = ocfs2_write_cluster(mapping, &desc->c_phys,
1247 desc->c_new,
1248 desc->c_clear_unwritten,
1249 desc->c_needs_zero,
1250 data_ac, meta_ac,
1251 wc, desc->c_cpos, pos, local_len);
1252 if (ret) {
1253 mlog_errno(ret);
1254 goto out;
1255 }
1256
1257 len -= local_len;
1258 pos += local_len;
1259 }
1260
1261 ret = 0;
1262out:
1263 return ret;
1264}
1265
1266/*
1267 * ocfs2_write_end() wants to know which parts of the target page it
1268 * should complete the write on. It's easiest to compute them ahead of
1269 * time when a more complete view of the write is available.
1270 */
1271static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1272 struct ocfs2_write_ctxt *wc,
1273 loff_t pos, unsigned len, int alloc)
1274{
1275 struct ocfs2_write_cluster_desc *desc;
1276
1277 wc->w_target_from = pos & (PAGE_SIZE - 1);
1278 wc->w_target_to = wc->w_target_from + len;
1279
1280 if (alloc == 0)
1281 return;
1282
1283 /*
1284 * Allocating write - we may have different boundaries based
1285 * on page size and cluster size.
1286 *
1287 * NOTE: We can no longer compute one value from the other as
1288 * the actual write length and user provided length may be
1289 * different.
1290 */
1291
1292 if (wc->w_large_pages) {
1293 /*
1294 * We only care about the 1st and last cluster within
1295 * our range and whether they should be zero'd or not. Either
1296 * value may be extended out to the start/end of a
1297 * newly allocated cluster.
1298 */
1299 desc = &wc->w_desc[0];
1300 if (desc->c_needs_zero)
1301 ocfs2_figure_cluster_boundaries(osb,
1302 desc->c_cpos,
1303 &wc->w_target_from,
1304 NULL);
1305
1306 desc = &wc->w_desc[wc->w_clen - 1];
1307 if (desc->c_needs_zero)
1308 ocfs2_figure_cluster_boundaries(osb,
1309 desc->c_cpos,
1310 NULL,
1311 &wc->w_target_to);
1312 } else {
1313 wc->w_target_from = 0;
1314 wc->w_target_to = PAGE_SIZE;
1315 }
1316}
1317
1318/*
1319 * Check if this extent is marked UNWRITTEN by direct io. If so, we need not to
1320 * do the zero work. And should not to clear UNWRITTEN since it will be cleared
1321 * by the direct io procedure.
1322 * If this is a new extent that allocated by direct io, we should mark it in
1323 * the ip_unwritten_list.
1324 */
1325static int ocfs2_unwritten_check(struct inode *inode,
1326 struct ocfs2_write_ctxt *wc,
1327 struct ocfs2_write_cluster_desc *desc)
1328{
1329 struct ocfs2_inode_info *oi = OCFS2_I(inode);
1330 struct ocfs2_unwritten_extent *ue = NULL, *new = NULL;
1331 int ret = 0;
1332
1333 if (!desc->c_needs_zero)
1334 return 0;
1335
1336retry:
1337 spin_lock(&oi->ip_lock);
1338 /* Needs not to zero no metter buffer or direct. The one who is zero
1339 * the cluster is doing zero. And he will clear unwritten after all
1340 * cluster io finished. */
1341 list_for_each_entry(ue, &oi->ip_unwritten_list, ue_ip_node) {
1342 if (desc->c_cpos == ue->ue_cpos) {
1343 BUG_ON(desc->c_new);
1344 desc->c_needs_zero = 0;
1345 desc->c_clear_unwritten = 0;
1346 goto unlock;
1347 }
1348 }
1349
1350 if (wc->w_type != OCFS2_WRITE_DIRECT)
1351 goto unlock;
1352
1353 if (new == NULL) {
1354 spin_unlock(&oi->ip_lock);
1355 new = kmalloc(sizeof(struct ocfs2_unwritten_extent),
1356 GFP_NOFS);
1357 if (new == NULL) {
1358 ret = -ENOMEM;
1359 goto out;
1360 }
1361 goto retry;
1362 }
1363 /* This direct write will doing zero. */
1364 new->ue_cpos = desc->c_cpos;
1365 new->ue_phys = desc->c_phys;
1366 desc->c_clear_unwritten = 0;
1367 list_add_tail(&new->ue_ip_node, &oi->ip_unwritten_list);
1368 list_add_tail(&new->ue_node, &wc->w_unwritten_list);
1369 wc->w_unwritten_count++;
1370 new = NULL;
1371unlock:
1372 spin_unlock(&oi->ip_lock);
1373out:
1374 kfree(new);
1375 return ret;
1376}
1377
1378/*
1379 * Populate each single-cluster write descriptor in the write context
1380 * with information about the i/o to be done.
1381 *
1382 * Returns the number of clusters that will have to be allocated, as
1383 * well as a worst case estimate of the number of extent records that
1384 * would have to be created during a write to an unwritten region.
1385 */
1386static int ocfs2_populate_write_desc(struct inode *inode,
1387 struct ocfs2_write_ctxt *wc,
1388 unsigned int *clusters_to_alloc,
1389 unsigned int *extents_to_split)
1390{
1391 int ret;
1392 struct ocfs2_write_cluster_desc *desc;
1393 unsigned int num_clusters = 0;
1394 unsigned int ext_flags = 0;
1395 u32 phys = 0;
1396 int i;
1397
1398 *clusters_to_alloc = 0;
1399 *extents_to_split = 0;
1400
1401 for (i = 0; i < wc->w_clen; i++) {
1402 desc = &wc->w_desc[i];
1403 desc->c_cpos = wc->w_cpos + i;
1404
1405 if (num_clusters == 0) {
1406 /*
1407 * Need to look up the next extent record.
1408 */
1409 ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1410 &num_clusters, &ext_flags);
1411 if (ret) {
1412 mlog_errno(ret);
1413 goto out;
1414 }
1415
1416 /* We should already CoW the refcountd extent. */
1417 BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1418
1419 /*
1420 * Assume worst case - that we're writing in
1421 * the middle of the extent.
1422 *
1423 * We can assume that the write proceeds from
1424 * left to right, in which case the extent
1425 * insert code is smart enough to coalesce the
1426 * next splits into the previous records created.
1427 */
1428 if (ext_flags & OCFS2_EXT_UNWRITTEN)
1429 *extents_to_split = *extents_to_split + 2;
1430 } else if (phys) {
1431 /*
1432 * Only increment phys if it doesn't describe
1433 * a hole.
1434 */
1435 phys++;
1436 }
1437
1438 /*
1439 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1440 * file that got extended. w_first_new_cpos tells us
1441 * where the newly allocated clusters are so we can
1442 * zero them.
1443 */
1444 if (desc->c_cpos >= wc->w_first_new_cpos) {
1445 BUG_ON(phys == 0);
1446 desc->c_needs_zero = 1;
1447 }
1448
1449 desc->c_phys = phys;
1450 if (phys == 0) {
1451 desc->c_new = 1;
1452 desc->c_needs_zero = 1;
1453 desc->c_clear_unwritten = 1;
1454 *clusters_to_alloc = *clusters_to_alloc + 1;
1455 }
1456
1457 if (ext_flags & OCFS2_EXT_UNWRITTEN) {
1458 desc->c_clear_unwritten = 1;
1459 desc->c_needs_zero = 1;
1460 }
1461
1462 ret = ocfs2_unwritten_check(inode, wc, desc);
1463 if (ret) {
1464 mlog_errno(ret);
1465 goto out;
1466 }
1467
1468 num_clusters--;
1469 }
1470
1471 ret = 0;
1472out:
1473 return ret;
1474}
1475
1476static int ocfs2_write_begin_inline(struct address_space *mapping,
1477 struct inode *inode,
1478 struct ocfs2_write_ctxt *wc)
1479{
1480 int ret;
1481 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1482 struct page *page;
1483 handle_t *handle;
1484 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1485
1486 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1487 if (IS_ERR(handle)) {
1488 ret = PTR_ERR(handle);
1489 mlog_errno(ret);
1490 goto out;
1491 }
1492
1493 page = find_or_create_page(mapping, 0, GFP_NOFS);
1494 if (!page) {
1495 ocfs2_commit_trans(osb, handle);
1496 ret = -ENOMEM;
1497 mlog_errno(ret);
1498 goto out;
1499 }
1500 /*
1501 * If we don't set w_num_pages then this page won't get unlocked
1502 * and freed on cleanup of the write context.
1503 */
1504 wc->w_pages[0] = wc->w_target_page = page;
1505 wc->w_num_pages = 1;
1506
1507 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1508 OCFS2_JOURNAL_ACCESS_WRITE);
1509 if (ret) {
1510 ocfs2_commit_trans(osb, handle);
1511
1512 mlog_errno(ret);
1513 goto out;
1514 }
1515
1516 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1517 ocfs2_set_inode_data_inline(inode, di);
1518
1519 if (!PageUptodate(page)) {
1520 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1521 if (ret) {
1522 ocfs2_commit_trans(osb, handle);
1523
1524 goto out;
1525 }
1526 }
1527
1528 wc->w_handle = handle;
1529out:
1530 return ret;
1531}
1532
1533int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1534{
1535 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1536
1537 if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1538 return 1;
1539 return 0;
1540}
1541
1542static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1543 struct inode *inode, loff_t pos,
1544 unsigned len, struct page *mmap_page,
1545 struct ocfs2_write_ctxt *wc)
1546{
1547 int ret, written = 0;
1548 loff_t end = pos + len;
1549 struct ocfs2_inode_info *oi = OCFS2_I(inode);
1550 struct ocfs2_dinode *di = NULL;
1551
1552 trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
1553 len, (unsigned long long)pos,
1554 oi->ip_dyn_features);
1555
1556 /*
1557 * Handle inodes which already have inline data 1st.
1558 */
1559 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1560 if (mmap_page == NULL &&
1561 ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1562 goto do_inline_write;
1563
1564 /*
1565 * The write won't fit - we have to give this inode an
1566 * inline extent list now.
1567 */
1568 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1569 if (ret)
1570 mlog_errno(ret);
1571 goto out;
1572 }
1573
1574 /*
1575 * Check whether the inode can accept inline data.
1576 */
1577 if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1578 return 0;
1579
1580 /*
1581 * Check whether the write can fit.
1582 */
1583 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1584 if (mmap_page ||
1585 end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1586 return 0;
1587
1588do_inline_write:
1589 ret = ocfs2_write_begin_inline(mapping, inode, wc);
1590 if (ret) {
1591 mlog_errno(ret);
1592 goto out;
1593 }
1594
1595 /*
1596 * This signals to the caller that the data can be written
1597 * inline.
1598 */
1599 written = 1;
1600out:
1601 return written ? written : ret;
1602}
1603
1604/*
1605 * This function only does anything for file systems which can't
1606 * handle sparse files.
1607 *
1608 * What we want to do here is fill in any hole between the current end
1609 * of allocation and the end of our write. That way the rest of the
1610 * write path can treat it as an non-allocating write, which has no
1611 * special case code for sparse/nonsparse files.
1612 */
1613static int ocfs2_expand_nonsparse_inode(struct inode *inode,
1614 struct buffer_head *di_bh,
1615 loff_t pos, unsigned len,
1616 struct ocfs2_write_ctxt *wc)
1617{
1618 int ret;
1619 loff_t newsize = pos + len;
1620
1621 BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1622
1623 if (newsize <= i_size_read(inode))
1624 return 0;
1625
1626 ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
1627 if (ret)
1628 mlog_errno(ret);
1629
1630 /* There is no wc if this is call from direct. */
1631 if (wc)
1632 wc->w_first_new_cpos =
1633 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
1634
1635 return ret;
1636}
1637
1638static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
1639 loff_t pos)
1640{
1641 int ret = 0;
1642
1643 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1644 if (pos > i_size_read(inode))
1645 ret = ocfs2_zero_extend(inode, di_bh, pos);
1646
1647 return ret;
1648}
1649
1650int ocfs2_write_begin_nolock(struct address_space *mapping,
1651 loff_t pos, unsigned len, ocfs2_write_type_t type,
1652 struct page **pagep, void **fsdata,
1653 struct buffer_head *di_bh, struct page *mmap_page)
1654{
1655 int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
1656 unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
1657 struct ocfs2_write_ctxt *wc;
1658 struct inode *inode = mapping->host;
1659 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1660 struct ocfs2_dinode *di;
1661 struct ocfs2_alloc_context *data_ac = NULL;
1662 struct ocfs2_alloc_context *meta_ac = NULL;
1663 handle_t *handle;
1664 struct ocfs2_extent_tree et;
1665 int try_free = 1, ret1;
1666
1667try_again:
1668 ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, type, di_bh);
1669 if (ret) {
1670 mlog_errno(ret);
1671 return ret;
1672 }
1673
1674 if (ocfs2_supports_inline_data(osb)) {
1675 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1676 mmap_page, wc);
1677 if (ret == 1) {
1678 ret = 0;
1679 goto success;
1680 }
1681 if (ret < 0) {
1682 mlog_errno(ret);
1683 goto out;
1684 }
1685 }
1686
1687 /* Direct io change i_size late, should not zero tail here. */
1688 if (type != OCFS2_WRITE_DIRECT) {
1689 if (ocfs2_sparse_alloc(osb))
1690 ret = ocfs2_zero_tail(inode, di_bh, pos);
1691 else
1692 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos,
1693 len, wc);
1694 if (ret) {
1695 mlog_errno(ret);
1696 goto out;
1697 }
1698 }
1699
1700 ret = ocfs2_check_range_for_refcount(inode, pos, len);
1701 if (ret < 0) {
1702 mlog_errno(ret);
1703 goto out;
1704 } else if (ret == 1) {
1705 clusters_need = wc->w_clen;
1706 ret = ocfs2_refcount_cow(inode, di_bh,
1707 wc->w_cpos, wc->w_clen, UINT_MAX);
1708 if (ret) {
1709 mlog_errno(ret);
1710 goto out;
1711 }
1712 }
1713
1714 ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1715 &extents_to_split);
1716 if (ret) {
1717 mlog_errno(ret);
1718 goto out;
1719 }
1720 clusters_need += clusters_to_alloc;
1721
1722 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1723
1724 trace_ocfs2_write_begin_nolock(
1725 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1726 (long long)i_size_read(inode),
1727 le32_to_cpu(di->i_clusters),
1728 pos, len, type, mmap_page,
1729 clusters_to_alloc, extents_to_split);
1730
1731 /*
1732 * We set w_target_from, w_target_to here so that
1733 * ocfs2_write_end() knows which range in the target page to
1734 * write out. An allocation requires that we write the entire
1735 * cluster range.
1736 */
1737 if (clusters_to_alloc || extents_to_split) {
1738 /*
1739 * XXX: We are stretching the limits of
1740 * ocfs2_lock_allocators(). It greatly over-estimates
1741 * the work to be done.
1742 */
1743 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1744 wc->w_di_bh);
1745 ret = ocfs2_lock_allocators(inode, &et,
1746 clusters_to_alloc, extents_to_split,
1747 &data_ac, &meta_ac);
1748 if (ret) {
1749 mlog_errno(ret);
1750 goto out;
1751 }
1752
1753 if (data_ac)
1754 data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
1755
1756 credits = ocfs2_calc_extend_credits(inode->i_sb,
1757 &di->id2.i_list);
1758 } else if (type == OCFS2_WRITE_DIRECT)
1759 /* direct write needs not to start trans if no extents alloc. */
1760 goto success;
1761
1762 /*
1763 * We have to zero sparse allocated clusters, unwritten extent clusters,
1764 * and non-sparse clusters we just extended. For non-sparse writes,
1765 * we know zeros will only be needed in the first and/or last cluster.
1766 */
1767 if (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
1768 wc->w_desc[wc->w_clen - 1].c_needs_zero))
1769 cluster_of_pages = 1;
1770 else
1771 cluster_of_pages = 0;
1772
1773 ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
1774
1775 handle = ocfs2_start_trans(osb, credits);
1776 if (IS_ERR(handle)) {
1777 ret = PTR_ERR(handle);
1778 mlog_errno(ret);
1779 goto out;
1780 }
1781
1782 wc->w_handle = handle;
1783
1784 if (clusters_to_alloc) {
1785 ret = dquot_alloc_space_nodirty(inode,
1786 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1787 if (ret)
1788 goto out_commit;
1789 }
1790
1791 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1792 OCFS2_JOURNAL_ACCESS_WRITE);
1793 if (ret) {
1794 mlog_errno(ret);
1795 goto out_quota;
1796 }
1797
1798 /*
1799 * Fill our page array first. That way we've grabbed enough so
1800 * that we can zero and flush if we error after adding the
1801 * extent.
1802 */
1803 ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
1804 cluster_of_pages, mmap_page);
1805 if (ret && ret != -EAGAIN) {
1806 mlog_errno(ret);
1807 goto out_quota;
1808 }
1809
1810 /*
1811 * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock
1812 * the target page. In this case, we exit with no error and no target
1813 * page. This will trigger the caller, page_mkwrite(), to re-try
1814 * the operation.
1815 */
1816 if (ret == -EAGAIN) {
1817 BUG_ON(wc->w_target_page);
1818 ret = 0;
1819 goto out_quota;
1820 }
1821
1822 ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1823 len);
1824 if (ret) {
1825 mlog_errno(ret);
1826 goto out_quota;
1827 }
1828
1829 if (data_ac)
1830 ocfs2_free_alloc_context(data_ac);
1831 if (meta_ac)
1832 ocfs2_free_alloc_context(meta_ac);
1833
1834success:
1835 if (pagep)
1836 *pagep = wc->w_target_page;
1837 *fsdata = wc;
1838 return 0;
1839out_quota:
1840 if (clusters_to_alloc)
1841 dquot_free_space(inode,
1842 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1843out_commit:
1844 ocfs2_commit_trans(osb, handle);
1845
1846out:
1847 /*
1848 * The mmapped page won't be unlocked in ocfs2_free_write_ctxt(),
1849 * even in case of error here like ENOSPC and ENOMEM. So, we need
1850 * to unlock the target page manually to prevent deadlocks when
1851 * retrying again on ENOSPC, or when returning non-VM_FAULT_LOCKED
1852 * to VM code.
1853 */
1854 if (wc->w_target_locked)
1855 unlock_page(mmap_page);
1856
1857 ocfs2_free_write_ctxt(inode, wc);
1858
1859 if (data_ac) {
1860 ocfs2_free_alloc_context(data_ac);
1861 data_ac = NULL;
1862 }
1863 if (meta_ac) {
1864 ocfs2_free_alloc_context(meta_ac);
1865 meta_ac = NULL;
1866 }
1867
1868 if (ret == -ENOSPC && try_free) {
1869 /*
1870 * Try to free some truncate log so that we can have enough
1871 * clusters to allocate.
1872 */
1873 try_free = 0;
1874
1875 ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
1876 if (ret1 == 1)
1877 goto try_again;
1878
1879 if (ret1 < 0)
1880 mlog_errno(ret1);
1881 }
1882
1883 return ret;
1884}
1885
1886static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1887 loff_t pos, unsigned len, unsigned flags,
1888 struct page **pagep, void **fsdata)
1889{
1890 int ret;
1891 struct buffer_head *di_bh = NULL;
1892 struct inode *inode = mapping->host;
1893
1894 ret = ocfs2_inode_lock(inode, &di_bh, 1);
1895 if (ret) {
1896 mlog_errno(ret);
1897 return ret;
1898 }
1899
1900 /*
1901 * Take alloc sem here to prevent concurrent lookups. That way
1902 * the mapping, zeroing and tree manipulation within
1903 * ocfs2_write() will be safe against ->readpage(). This
1904 * should also serve to lock out allocation from a shared
1905 * writeable region.
1906 */
1907 down_write(&OCFS2_I(inode)->ip_alloc_sem);
1908
1909 ret = ocfs2_write_begin_nolock(mapping, pos, len, OCFS2_WRITE_BUFFER,
1910 pagep, fsdata, di_bh, NULL);
1911 if (ret) {
1912 mlog_errno(ret);
1913 goto out_fail;
1914 }
1915
1916 brelse(di_bh);
1917
1918 return 0;
1919
1920out_fail:
1921 up_write(&OCFS2_I(inode)->ip_alloc_sem);
1922
1923 brelse(di_bh);
1924 ocfs2_inode_unlock(inode, 1);
1925
1926 return ret;
1927}
1928
1929static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1930 unsigned len, unsigned *copied,
1931 struct ocfs2_dinode *di,
1932 struct ocfs2_write_ctxt *wc)
1933{
1934 void *kaddr;
1935
1936 if (unlikely(*copied < len)) {
1937 if (!PageUptodate(wc->w_target_page)) {
1938 *copied = 0;
1939 return;
1940 }
1941 }
1942
1943 kaddr = kmap_atomic(wc->w_target_page);
1944 memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
1945 kunmap_atomic(kaddr);
1946
1947 trace_ocfs2_write_end_inline(
1948 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1949 (unsigned long long)pos, *copied,
1950 le16_to_cpu(di->id2.i_data.id_count),
1951 le16_to_cpu(di->i_dyn_features));
1952}
1953
1954int ocfs2_write_end_nolock(struct address_space *mapping,
1955 loff_t pos, unsigned len, unsigned copied, void *fsdata)
1956{
1957 int i, ret;
1958 unsigned from, to, start = pos & (PAGE_SIZE - 1);
1959 struct inode *inode = mapping->host;
1960 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1961 struct ocfs2_write_ctxt *wc = fsdata;
1962 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1963 handle_t *handle = wc->w_handle;
1964 struct page *tmppage;
1965
1966 BUG_ON(!list_empty(&wc->w_unwritten_list));
1967
1968 if (handle) {
1969 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode),
1970 wc->w_di_bh, OCFS2_JOURNAL_ACCESS_WRITE);
1971 if (ret) {
1972 copied = ret;
1973 mlog_errno(ret);
1974 goto out;
1975 }
1976 }
1977
1978 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1979 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
1980 goto out_write_size;
1981 }
1982
1983 if (unlikely(copied < len) && wc->w_target_page) {
1984 if (!PageUptodate(wc->w_target_page))
1985 copied = 0;
1986
1987 ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
1988 start+len);
1989 }
1990 if (wc->w_target_page)
1991 flush_dcache_page(wc->w_target_page);
1992
1993 for(i = 0; i < wc->w_num_pages; i++) {
1994 tmppage = wc->w_pages[i];
1995
1996 /* This is the direct io target page. */
1997 if (tmppage == NULL)
1998 continue;
1999
2000 if (tmppage == wc->w_target_page) {
2001 from = wc->w_target_from;
2002 to = wc->w_target_to;
2003
2004 BUG_ON(from > PAGE_SIZE ||
2005 to > PAGE_SIZE ||
2006 to < from);
2007 } else {
2008 /*
2009 * Pages adjacent to the target (if any) imply
2010 * a hole-filling write in which case we want
2011 * to flush their entire range.
2012 */
2013 from = 0;
2014 to = PAGE_SIZE;
2015 }
2016
2017 if (page_has_buffers(tmppage)) {
2018 if (handle && ocfs2_should_order_data(inode)) {
2019 loff_t start_byte =
2020 ((loff_t)tmppage->index << PAGE_SHIFT) +
2021 from;
2022 loff_t length = to - from;
2023 ocfs2_jbd2_inode_add_write(handle, inode,
2024 start_byte, length);
2025 }
2026 block_commit_write(tmppage, from, to);
2027 }
2028 }
2029
2030out_write_size:
2031 /* Direct io do not update i_size here. */
2032 if (wc->w_type != OCFS2_WRITE_DIRECT) {
2033 pos += copied;
2034 if (pos > i_size_read(inode)) {
2035 i_size_write(inode, pos);
2036 mark_inode_dirty(inode);
2037 }
2038 inode->i_blocks = ocfs2_inode_sector_count(inode);
2039 di->i_size = cpu_to_le64((u64)i_size_read(inode));
2040 inode->i_mtime = inode->i_ctime = current_time(inode);
2041 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
2042 di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
2043 if (handle)
2044 ocfs2_update_inode_fsync_trans(handle, inode, 1);
2045 }
2046 if (handle)
2047 ocfs2_journal_dirty(handle, wc->w_di_bh);
2048
2049out:
2050 /* unlock pages before dealloc since it needs acquiring j_trans_barrier
2051 * lock, or it will cause a deadlock since journal commit threads holds
2052 * this lock and will ask for the page lock when flushing the data.
2053 * put it here to preserve the unlock order.
2054 */
2055 ocfs2_unlock_pages(wc);
2056
2057 if (handle)
2058 ocfs2_commit_trans(osb, handle);
2059
2060 ocfs2_run_deallocs(osb, &wc->w_dealloc);
2061
2062 brelse(wc->w_di_bh);
2063 kfree(wc);
2064
2065 return copied;
2066}
2067
2068static int ocfs2_write_end(struct file *file, struct address_space *mapping,
2069 loff_t pos, unsigned len, unsigned copied,
2070 struct page *page, void *fsdata)
2071{
2072 int ret;
2073 struct inode *inode = mapping->host;
2074
2075 ret = ocfs2_write_end_nolock(mapping, pos, len, copied, fsdata);
2076
2077 up_write(&OCFS2_I(inode)->ip_alloc_sem);
2078 ocfs2_inode_unlock(inode, 1);
2079
2080 return ret;
2081}
2082
2083struct ocfs2_dio_write_ctxt {
2084 struct list_head dw_zero_list;
2085 unsigned dw_zero_count;
2086 int dw_orphaned;
2087 pid_t dw_writer_pid;
2088};
2089
2090static struct ocfs2_dio_write_ctxt *
2091ocfs2_dio_alloc_write_ctx(struct buffer_head *bh, int *alloc)
2092{
2093 struct ocfs2_dio_write_ctxt *dwc = NULL;
2094
2095 if (bh->b_private)
2096 return bh->b_private;
2097
2098 dwc = kmalloc(sizeof(struct ocfs2_dio_write_ctxt), GFP_NOFS);
2099 if (dwc == NULL)
2100 return NULL;
2101 INIT_LIST_HEAD(&dwc->dw_zero_list);
2102 dwc->dw_zero_count = 0;
2103 dwc->dw_orphaned = 0;
2104 dwc->dw_writer_pid = task_pid_nr(current);
2105 bh->b_private = dwc;
2106 *alloc = 1;
2107
2108 return dwc;
2109}
2110
2111static void ocfs2_dio_free_write_ctx(struct inode *inode,
2112 struct ocfs2_dio_write_ctxt *dwc)
2113{
2114 ocfs2_free_unwritten_list(inode, &dwc->dw_zero_list);
2115 kfree(dwc);
2116}
2117
2118/*
2119 * TODO: Make this into a generic get_blocks function.
2120 *
2121 * From do_direct_io in direct-io.c:
2122 * "So what we do is to permit the ->get_blocks function to populate
2123 * bh.b_size with the size of IO which is permitted at this offset and
2124 * this i_blkbits."
2125 *
2126 * This function is called directly from get_more_blocks in direct-io.c.
2127 *
2128 * called like this: dio->get_blocks(dio->inode, fs_startblk,
2129 * fs_count, map_bh, dio->rw == WRITE);
2130 */
2131static int ocfs2_dio_wr_get_block(struct inode *inode, sector_t iblock,
2132 struct buffer_head *bh_result, int create)
2133{
2134 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2135 struct ocfs2_inode_info *oi = OCFS2_I(inode);
2136 struct ocfs2_write_ctxt *wc;
2137 struct ocfs2_write_cluster_desc *desc = NULL;
2138 struct ocfs2_dio_write_ctxt *dwc = NULL;
2139 struct buffer_head *di_bh = NULL;
2140 u64 p_blkno;
2141 unsigned int i_blkbits = inode->i_sb->s_blocksize_bits;
2142 loff_t pos = iblock << i_blkbits;
2143 sector_t endblk = (i_size_read(inode) - 1) >> i_blkbits;
2144 unsigned len, total_len = bh_result->b_size;
2145 int ret = 0, first_get_block = 0;
2146
2147 len = osb->s_clustersize - (pos & (osb->s_clustersize - 1));
2148 len = min(total_len, len);
2149
2150 /*
2151 * bh_result->b_size is count in get_more_blocks according to write
2152 * "pos" and "end", we need map twice to return different buffer state:
2153 * 1. area in file size, not set NEW;
2154 * 2. area out file size, set NEW.
2155 *
2156 * iblock endblk
2157 * |--------|---------|---------|---------
2158 * |<-------area in file------->|
2159 */
2160
2161 if ((iblock <= endblk) &&
2162 ((iblock + ((len - 1) >> i_blkbits)) > endblk))
2163 len = (endblk - iblock + 1) << i_blkbits;
2164
2165 mlog(0, "get block of %lu at %llu:%u req %u\n",
2166 inode->i_ino, pos, len, total_len);
2167
2168 /*
2169 * Because we need to change file size in ocfs2_dio_end_io_write(), or
2170 * we may need to add it to orphan dir. So can not fall to fast path
2171 * while file size will be changed.
2172 */
2173 if (pos + total_len <= i_size_read(inode)) {
2174
2175 /* This is the fast path for re-write. */
2176 ret = ocfs2_lock_get_block(inode, iblock, bh_result, create);
2177 if (buffer_mapped(bh_result) &&
2178 !buffer_new(bh_result) &&
2179 ret == 0)
2180 goto out;
2181
2182 /* Clear state set by ocfs2_get_block. */
2183 bh_result->b_state = 0;
2184 }
2185
2186 dwc = ocfs2_dio_alloc_write_ctx(bh_result, &first_get_block);
2187 if (unlikely(dwc == NULL)) {
2188 ret = -ENOMEM;
2189 mlog_errno(ret);
2190 goto out;
2191 }
2192
2193 if (ocfs2_clusters_for_bytes(inode->i_sb, pos + total_len) >
2194 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode)) &&
2195 !dwc->dw_orphaned) {
2196 /*
2197 * when we are going to alloc extents beyond file size, add the
2198 * inode to orphan dir, so we can recall those spaces when
2199 * system crashed during write.
2200 */
2201 ret = ocfs2_add_inode_to_orphan(osb, inode);
2202 if (ret < 0) {
2203 mlog_errno(ret);
2204 goto out;
2205 }
2206 dwc->dw_orphaned = 1;
2207 }
2208
2209 ret = ocfs2_inode_lock(inode, &di_bh, 1);
2210 if (ret) {
2211 mlog_errno(ret);
2212 goto out;
2213 }
2214
2215 down_write(&oi->ip_alloc_sem);
2216
2217 if (first_get_block) {
2218 if (ocfs2_sparse_alloc(osb))
2219 ret = ocfs2_zero_tail(inode, di_bh, pos);
2220 else
2221 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos,
2222 total_len, NULL);
2223 if (ret < 0) {
2224 mlog_errno(ret);
2225 goto unlock;
2226 }
2227 }
2228
2229 ret = ocfs2_write_begin_nolock(inode->i_mapping, pos, len,
2230 OCFS2_WRITE_DIRECT, NULL,
2231 (void **)&wc, di_bh, NULL);
2232 if (ret) {
2233 mlog_errno(ret);
2234 goto unlock;
2235 }
2236
2237 desc = &wc->w_desc[0];
2238
2239 p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, desc->c_phys);
2240 BUG_ON(p_blkno == 0);
2241 p_blkno += iblock & (u64)(ocfs2_clusters_to_blocks(inode->i_sb, 1) - 1);
2242
2243 map_bh(bh_result, inode->i_sb, p_blkno);
2244 bh_result->b_size = len;
2245 if (desc->c_needs_zero)
2246 set_buffer_new(bh_result);
2247
2248 if (iblock > endblk)
2249 set_buffer_new(bh_result);
2250
2251 /* May sleep in end_io. It should not happen in a irq context. So defer
2252 * it to dio work queue. */
2253 set_buffer_defer_completion(bh_result);
2254
2255 if (!list_empty(&wc->w_unwritten_list)) {
2256 struct ocfs2_unwritten_extent *ue = NULL;
2257
2258 ue = list_first_entry(&wc->w_unwritten_list,
2259 struct ocfs2_unwritten_extent,
2260 ue_node);
2261 BUG_ON(ue->ue_cpos != desc->c_cpos);
2262 /* The physical address may be 0, fill it. */
2263 ue->ue_phys = desc->c_phys;
2264
2265 list_splice_tail_init(&wc->w_unwritten_list, &dwc->dw_zero_list);
2266 dwc->dw_zero_count += wc->w_unwritten_count;
2267 }
2268
2269 ret = ocfs2_write_end_nolock(inode->i_mapping, pos, len, len, wc);
2270 BUG_ON(ret != len);
2271 ret = 0;
2272unlock:
2273 up_write(&oi->ip_alloc_sem);
2274 ocfs2_inode_unlock(inode, 1);
2275 brelse(di_bh);
2276out:
2277 if (ret < 0)
2278 ret = -EIO;
2279 return ret;
2280}
2281
2282static int ocfs2_dio_end_io_write(struct inode *inode,
2283 struct ocfs2_dio_write_ctxt *dwc,
2284 loff_t offset,
2285 ssize_t bytes)
2286{
2287 struct ocfs2_cached_dealloc_ctxt dealloc;
2288 struct ocfs2_extent_tree et;
2289 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2290 struct ocfs2_inode_info *oi = OCFS2_I(inode);
2291 struct ocfs2_unwritten_extent *ue = NULL;
2292 struct buffer_head *di_bh = NULL;
2293 struct ocfs2_dinode *di;
2294 struct ocfs2_alloc_context *data_ac = NULL;
2295 struct ocfs2_alloc_context *meta_ac = NULL;
2296 handle_t *handle = NULL;
2297 loff_t end = offset + bytes;
2298 int ret = 0, credits = 0, locked = 0;
2299
2300 ocfs2_init_dealloc_ctxt(&dealloc);
2301
2302 /* We do clear unwritten, delete orphan, change i_size here. If neither
2303 * of these happen, we can skip all this. */
2304 if (list_empty(&dwc->dw_zero_list) &&
2305 end <= i_size_read(inode) &&
2306 !dwc->dw_orphaned)
2307 goto out;
2308
2309 /* ocfs2_file_write_iter will get i_mutex, so we need not lock if we
2310 * are in that context. */
2311 if (dwc->dw_writer_pid != task_pid_nr(current)) {
2312 inode_lock(inode);
2313 locked = 1;
2314 }
2315
2316 ret = ocfs2_inode_lock(inode, &di_bh, 1);
2317 if (ret < 0) {
2318 mlog_errno(ret);
2319 goto out;
2320 }
2321
2322 down_write(&oi->ip_alloc_sem);
2323
2324 /* Delete orphan before acquire i_mutex. */
2325 if (dwc->dw_orphaned) {
2326 BUG_ON(dwc->dw_writer_pid != task_pid_nr(current));
2327
2328 end = end > i_size_read(inode) ? end : 0;
2329
2330 ret = ocfs2_del_inode_from_orphan(osb, inode, di_bh,
2331 !!end, end);
2332 if (ret < 0)
2333 mlog_errno(ret);
2334 }
2335
2336 di = (struct ocfs2_dinode *)di_bh->b_data;
2337
2338 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
2339
2340 /* Attach dealloc with extent tree in case that we may reuse extents
2341 * which are already unlinked from current extent tree due to extent
2342 * rotation and merging.
2343 */
2344 et.et_dealloc = &dealloc;
2345
2346 ret = ocfs2_lock_allocators(inode, &et, 0, dwc->dw_zero_count*2,
2347 &data_ac, &meta_ac);
2348 if (ret) {
2349 mlog_errno(ret);
2350 goto unlock;
2351 }
2352
2353 credits = ocfs2_calc_extend_credits(inode->i_sb, &di->id2.i_list);
2354
2355 handle = ocfs2_start_trans(osb, credits);
2356 if (IS_ERR(handle)) {
2357 ret = PTR_ERR(handle);
2358 mlog_errno(ret);
2359 goto unlock;
2360 }
2361 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
2362 OCFS2_JOURNAL_ACCESS_WRITE);
2363 if (ret) {
2364 mlog_errno(ret);
2365 goto commit;
2366 }
2367
2368 list_for_each_entry(ue, &dwc->dw_zero_list, ue_node) {
2369 ret = ocfs2_mark_extent_written(inode, &et, handle,
2370 ue->ue_cpos, 1,
2371 ue->ue_phys,
2372 meta_ac, &dealloc);
2373 if (ret < 0) {
2374 mlog_errno(ret);
2375 break;
2376 }
2377 }
2378
2379 if (end > i_size_read(inode)) {
2380 ret = ocfs2_set_inode_size(handle, inode, di_bh, end);
2381 if (ret < 0)
2382 mlog_errno(ret);
2383 }
2384commit:
2385 ocfs2_commit_trans(osb, handle);
2386unlock:
2387 up_write(&oi->ip_alloc_sem);
2388 ocfs2_inode_unlock(inode, 1);
2389 brelse(di_bh);
2390out:
2391 if (data_ac)
2392 ocfs2_free_alloc_context(data_ac);
2393 if (meta_ac)
2394 ocfs2_free_alloc_context(meta_ac);
2395 ocfs2_run_deallocs(osb, &dealloc);
2396 if (locked)
2397 inode_unlock(inode);
2398 ocfs2_dio_free_write_ctx(inode, dwc);
2399
2400 return ret;
2401}
2402
2403/*
2404 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're
2405 * particularly interested in the aio/dio case. We use the rw_lock DLM lock
2406 * to protect io on one node from truncation on another.
2407 */
2408static int ocfs2_dio_end_io(struct kiocb *iocb,
2409 loff_t offset,
2410 ssize_t bytes,
2411 void *private)
2412{
2413 struct inode *inode = file_inode(iocb->ki_filp);
2414 int level;
2415 int ret = 0;
2416
2417 /* this io's submitter should not have unlocked this before we could */
2418 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
2419
2420 if (bytes <= 0)
2421 mlog_ratelimited(ML_ERROR, "Direct IO failed, bytes = %lld",
2422 (long long)bytes);
2423 if (private) {
2424 if (bytes > 0)
2425 ret = ocfs2_dio_end_io_write(inode, private, offset,
2426 bytes);
2427 else
2428 ocfs2_dio_free_write_ctx(inode, private);
2429 }
2430
2431 ocfs2_iocb_clear_rw_locked(iocb);
2432
2433 level = ocfs2_iocb_rw_locked_level(iocb);
2434 ocfs2_rw_unlock(inode, level);
2435 return ret;
2436}
2437
2438static ssize_t ocfs2_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
2439{
2440 struct file *file = iocb->ki_filp;
2441 struct inode *inode = file->f_mapping->host;
2442 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2443 get_block_t *get_block;
2444
2445 /*
2446 * Fallback to buffered I/O if we see an inode without
2447 * extents.
2448 */
2449 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
2450 return 0;
2451
2452 /* Fallback to buffered I/O if we do not support append dio. */
2453 if (iocb->ki_pos + iter->count > i_size_read(inode) &&
2454 !ocfs2_supports_append_dio(osb))
2455 return 0;
2456
2457 if (iov_iter_rw(iter) == READ)
2458 get_block = ocfs2_lock_get_block;
2459 else
2460 get_block = ocfs2_dio_wr_get_block;
2461
2462 return __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
2463 iter, get_block,
2464 ocfs2_dio_end_io, NULL, 0);
2465}
2466
2467const struct address_space_operations ocfs2_aops = {
2468 .readpage = ocfs2_readpage,
2469 .readahead = ocfs2_readahead,
2470 .writepage = ocfs2_writepage,
2471 .write_begin = ocfs2_write_begin,
2472 .write_end = ocfs2_write_end,
2473 .bmap = ocfs2_bmap,
2474 .direct_IO = ocfs2_direct_IO,
2475 .invalidatepage = block_invalidatepage,
2476 .releasepage = ocfs2_releasepage,
2477 .migratepage = buffer_migrate_page,
2478 .is_partially_uptodate = block_is_partially_uptodate,
2479 .error_remove_page = generic_error_remove_page,
2480};
1/* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
3 *
4 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public
17 * License along with this program; if not, write to the
18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 * Boston, MA 021110-1307, USA.
20 */
21
22#include <linux/fs.h>
23#include <linux/slab.h>
24#include <linux/highmem.h>
25#include <linux/pagemap.h>
26#include <asm/byteorder.h>
27#include <linux/swap.h>
28#include <linux/pipe_fs_i.h>
29#include <linux/mpage.h>
30#include <linux/quotaops.h>
31
32#include <cluster/masklog.h>
33
34#include "ocfs2.h"
35
36#include "alloc.h"
37#include "aops.h"
38#include "dlmglue.h"
39#include "extent_map.h"
40#include "file.h"
41#include "inode.h"
42#include "journal.h"
43#include "suballoc.h"
44#include "super.h"
45#include "symlink.h"
46#include "refcounttree.h"
47#include "ocfs2_trace.h"
48
49#include "buffer_head_io.h"
50
51static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
52 struct buffer_head *bh_result, int create)
53{
54 int err = -EIO;
55 int status;
56 struct ocfs2_dinode *fe = NULL;
57 struct buffer_head *bh = NULL;
58 struct buffer_head *buffer_cache_bh = NULL;
59 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
60 void *kaddr;
61
62 trace_ocfs2_symlink_get_block(
63 (unsigned long long)OCFS2_I(inode)->ip_blkno,
64 (unsigned long long)iblock, bh_result, create);
65
66 BUG_ON(ocfs2_inode_is_fast_symlink(inode));
67
68 if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
69 mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
70 (unsigned long long)iblock);
71 goto bail;
72 }
73
74 status = ocfs2_read_inode_block(inode, &bh);
75 if (status < 0) {
76 mlog_errno(status);
77 goto bail;
78 }
79 fe = (struct ocfs2_dinode *) bh->b_data;
80
81 if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
82 le32_to_cpu(fe->i_clusters))) {
83 mlog(ML_ERROR, "block offset is outside the allocated size: "
84 "%llu\n", (unsigned long long)iblock);
85 goto bail;
86 }
87
88 /* We don't use the page cache to create symlink data, so if
89 * need be, copy it over from the buffer cache. */
90 if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
91 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
92 iblock;
93 buffer_cache_bh = sb_getblk(osb->sb, blkno);
94 if (!buffer_cache_bh) {
95 mlog(ML_ERROR, "couldn't getblock for symlink!\n");
96 goto bail;
97 }
98
99 /* we haven't locked out transactions, so a commit
100 * could've happened. Since we've got a reference on
101 * the bh, even if it commits while we're doing the
102 * copy, the data is still good. */
103 if (buffer_jbd(buffer_cache_bh)
104 && ocfs2_inode_is_new(inode)) {
105 kaddr = kmap_atomic(bh_result->b_page);
106 if (!kaddr) {
107 mlog(ML_ERROR, "couldn't kmap!\n");
108 goto bail;
109 }
110 memcpy(kaddr + (bh_result->b_size * iblock),
111 buffer_cache_bh->b_data,
112 bh_result->b_size);
113 kunmap_atomic(kaddr);
114 set_buffer_uptodate(bh_result);
115 }
116 brelse(buffer_cache_bh);
117 }
118
119 map_bh(bh_result, inode->i_sb,
120 le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
121
122 err = 0;
123
124bail:
125 brelse(bh);
126
127 return err;
128}
129
130int ocfs2_get_block(struct inode *inode, sector_t iblock,
131 struct buffer_head *bh_result, int create)
132{
133 int err = 0;
134 unsigned int ext_flags;
135 u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
136 u64 p_blkno, count, past_eof;
137 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
138
139 trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
140 (unsigned long long)iblock, bh_result, create);
141
142 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
143 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
144 inode, inode->i_ino);
145
146 if (S_ISLNK(inode->i_mode)) {
147 /* this always does I/O for some reason. */
148 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
149 goto bail;
150 }
151
152 err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
153 &ext_flags);
154 if (err) {
155 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
156 "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
157 (unsigned long long)p_blkno);
158 goto bail;
159 }
160
161 if (max_blocks < count)
162 count = max_blocks;
163
164 /*
165 * ocfs2 never allocates in this function - the only time we
166 * need to use BH_New is when we're extending i_size on a file
167 * system which doesn't support holes, in which case BH_New
168 * allows __block_write_begin() to zero.
169 *
170 * If we see this on a sparse file system, then a truncate has
171 * raced us and removed the cluster. In this case, we clear
172 * the buffers dirty and uptodate bits and let the buffer code
173 * ignore it as a hole.
174 */
175 if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
176 clear_buffer_dirty(bh_result);
177 clear_buffer_uptodate(bh_result);
178 goto bail;
179 }
180
181 /* Treat the unwritten extent as a hole for zeroing purposes. */
182 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
183 map_bh(bh_result, inode->i_sb, p_blkno);
184
185 bh_result->b_size = count << inode->i_blkbits;
186
187 if (!ocfs2_sparse_alloc(osb)) {
188 if (p_blkno == 0) {
189 err = -EIO;
190 mlog(ML_ERROR,
191 "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
192 (unsigned long long)iblock,
193 (unsigned long long)p_blkno,
194 (unsigned long long)OCFS2_I(inode)->ip_blkno);
195 mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
196 dump_stack();
197 goto bail;
198 }
199 }
200
201 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
202
203 trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
204 (unsigned long long)past_eof);
205 if (create && (iblock >= past_eof))
206 set_buffer_new(bh_result);
207
208bail:
209 if (err < 0)
210 err = -EIO;
211
212 return err;
213}
214
215int ocfs2_read_inline_data(struct inode *inode, struct page *page,
216 struct buffer_head *di_bh)
217{
218 void *kaddr;
219 loff_t size;
220 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
221
222 if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
223 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag",
224 (unsigned long long)OCFS2_I(inode)->ip_blkno);
225 return -EROFS;
226 }
227
228 size = i_size_read(inode);
229
230 if (size > PAGE_CACHE_SIZE ||
231 size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
232 ocfs2_error(inode->i_sb,
233 "Inode %llu has with inline data has bad size: %Lu",
234 (unsigned long long)OCFS2_I(inode)->ip_blkno,
235 (unsigned long long)size);
236 return -EROFS;
237 }
238
239 kaddr = kmap_atomic(page);
240 if (size)
241 memcpy(kaddr, di->id2.i_data.id_data, size);
242 /* Clear the remaining part of the page */
243 memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
244 flush_dcache_page(page);
245 kunmap_atomic(kaddr);
246
247 SetPageUptodate(page);
248
249 return 0;
250}
251
252static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
253{
254 int ret;
255 struct buffer_head *di_bh = NULL;
256
257 BUG_ON(!PageLocked(page));
258 BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
259
260 ret = ocfs2_read_inode_block(inode, &di_bh);
261 if (ret) {
262 mlog_errno(ret);
263 goto out;
264 }
265
266 ret = ocfs2_read_inline_data(inode, page, di_bh);
267out:
268 unlock_page(page);
269
270 brelse(di_bh);
271 return ret;
272}
273
274static int ocfs2_readpage(struct file *file, struct page *page)
275{
276 struct inode *inode = page->mapping->host;
277 struct ocfs2_inode_info *oi = OCFS2_I(inode);
278 loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
279 int ret, unlock = 1;
280
281 trace_ocfs2_readpage((unsigned long long)oi->ip_blkno,
282 (page ? page->index : 0));
283
284 ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
285 if (ret != 0) {
286 if (ret == AOP_TRUNCATED_PAGE)
287 unlock = 0;
288 mlog_errno(ret);
289 goto out;
290 }
291
292 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
293 /*
294 * Unlock the page and cycle ip_alloc_sem so that we don't
295 * busyloop waiting for ip_alloc_sem to unlock
296 */
297 ret = AOP_TRUNCATED_PAGE;
298 unlock_page(page);
299 unlock = 0;
300 down_read(&oi->ip_alloc_sem);
301 up_read(&oi->ip_alloc_sem);
302 goto out_inode_unlock;
303 }
304
305 /*
306 * i_size might have just been updated as we grabed the meta lock. We
307 * might now be discovering a truncate that hit on another node.
308 * block_read_full_page->get_block freaks out if it is asked to read
309 * beyond the end of a file, so we check here. Callers
310 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
311 * and notice that the page they just read isn't needed.
312 *
313 * XXX sys_readahead() seems to get that wrong?
314 */
315 if (start >= i_size_read(inode)) {
316 zero_user(page, 0, PAGE_SIZE);
317 SetPageUptodate(page);
318 ret = 0;
319 goto out_alloc;
320 }
321
322 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
323 ret = ocfs2_readpage_inline(inode, page);
324 else
325 ret = block_read_full_page(page, ocfs2_get_block);
326 unlock = 0;
327
328out_alloc:
329 up_read(&OCFS2_I(inode)->ip_alloc_sem);
330out_inode_unlock:
331 ocfs2_inode_unlock(inode, 0);
332out:
333 if (unlock)
334 unlock_page(page);
335 return ret;
336}
337
338/*
339 * This is used only for read-ahead. Failures or difficult to handle
340 * situations are safe to ignore.
341 *
342 * Right now, we don't bother with BH_Boundary - in-inode extent lists
343 * are quite large (243 extents on 4k blocks), so most inodes don't
344 * grow out to a tree. If need be, detecting boundary extents could
345 * trivially be added in a future version of ocfs2_get_block().
346 */
347static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
348 struct list_head *pages, unsigned nr_pages)
349{
350 int ret, err = -EIO;
351 struct inode *inode = mapping->host;
352 struct ocfs2_inode_info *oi = OCFS2_I(inode);
353 loff_t start;
354 struct page *last;
355
356 /*
357 * Use the nonblocking flag for the dlm code to avoid page
358 * lock inversion, but don't bother with retrying.
359 */
360 ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
361 if (ret)
362 return err;
363
364 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
365 ocfs2_inode_unlock(inode, 0);
366 return err;
367 }
368
369 /*
370 * Don't bother with inline-data. There isn't anything
371 * to read-ahead in that case anyway...
372 */
373 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
374 goto out_unlock;
375
376 /*
377 * Check whether a remote node truncated this file - we just
378 * drop out in that case as it's not worth handling here.
379 */
380 last = list_entry(pages->prev, struct page, lru);
381 start = (loff_t)last->index << PAGE_CACHE_SHIFT;
382 if (start >= i_size_read(inode))
383 goto out_unlock;
384
385 err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
386
387out_unlock:
388 up_read(&oi->ip_alloc_sem);
389 ocfs2_inode_unlock(inode, 0);
390
391 return err;
392}
393
394/* Note: Because we don't support holes, our allocation has
395 * already happened (allocation writes zeros to the file data)
396 * so we don't have to worry about ordered writes in
397 * ocfs2_writepage.
398 *
399 * ->writepage is called during the process of invalidating the page cache
400 * during blocked lock processing. It can't block on any cluster locks
401 * to during block mapping. It's relying on the fact that the block
402 * mapping can't have disappeared under the dirty pages that it is
403 * being asked to write back.
404 */
405static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
406{
407 trace_ocfs2_writepage(
408 (unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno,
409 page->index);
410
411 return block_write_full_page(page, ocfs2_get_block, wbc);
412}
413
414/* Taken from ext3. We don't necessarily need the full blown
415 * functionality yet, but IMHO it's better to cut and paste the whole
416 * thing so we can avoid introducing our own bugs (and easily pick up
417 * their fixes when they happen) --Mark */
418int walk_page_buffers( handle_t *handle,
419 struct buffer_head *head,
420 unsigned from,
421 unsigned to,
422 int *partial,
423 int (*fn)( handle_t *handle,
424 struct buffer_head *bh))
425{
426 struct buffer_head *bh;
427 unsigned block_start, block_end;
428 unsigned blocksize = head->b_size;
429 int err, ret = 0;
430 struct buffer_head *next;
431
432 for ( bh = head, block_start = 0;
433 ret == 0 && (bh != head || !block_start);
434 block_start = block_end, bh = next)
435 {
436 next = bh->b_this_page;
437 block_end = block_start + blocksize;
438 if (block_end <= from || block_start >= to) {
439 if (partial && !buffer_uptodate(bh))
440 *partial = 1;
441 continue;
442 }
443 err = (*fn)(handle, bh);
444 if (!ret)
445 ret = err;
446 }
447 return ret;
448}
449
450static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
451{
452 sector_t status;
453 u64 p_blkno = 0;
454 int err = 0;
455 struct inode *inode = mapping->host;
456
457 trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
458 (unsigned long long)block);
459
460 /* We don't need to lock journal system files, since they aren't
461 * accessed concurrently from multiple nodes.
462 */
463 if (!INODE_JOURNAL(inode)) {
464 err = ocfs2_inode_lock(inode, NULL, 0);
465 if (err) {
466 if (err != -ENOENT)
467 mlog_errno(err);
468 goto bail;
469 }
470 down_read(&OCFS2_I(inode)->ip_alloc_sem);
471 }
472
473 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
474 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
475 NULL);
476
477 if (!INODE_JOURNAL(inode)) {
478 up_read(&OCFS2_I(inode)->ip_alloc_sem);
479 ocfs2_inode_unlock(inode, 0);
480 }
481
482 if (err) {
483 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
484 (unsigned long long)block);
485 mlog_errno(err);
486 goto bail;
487 }
488
489bail:
490 status = err ? 0 : p_blkno;
491
492 return status;
493}
494
495/*
496 * TODO: Make this into a generic get_blocks function.
497 *
498 * From do_direct_io in direct-io.c:
499 * "So what we do is to permit the ->get_blocks function to populate
500 * bh.b_size with the size of IO which is permitted at this offset and
501 * this i_blkbits."
502 *
503 * This function is called directly from get_more_blocks in direct-io.c.
504 *
505 * called like this: dio->get_blocks(dio->inode, fs_startblk,
506 * fs_count, map_bh, dio->rw == WRITE);
507 *
508 * Note that we never bother to allocate blocks here, and thus ignore the
509 * create argument.
510 */
511static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
512 struct buffer_head *bh_result, int create)
513{
514 int ret;
515 u64 p_blkno, inode_blocks, contig_blocks;
516 unsigned int ext_flags;
517 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
518 unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
519
520 /* This function won't even be called if the request isn't all
521 * nicely aligned and of the right size, so there's no need
522 * for us to check any of that. */
523
524 inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
525
526 /* This figures out the size of the next contiguous block, and
527 * our logical offset */
528 ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
529 &contig_blocks, &ext_flags);
530 if (ret) {
531 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
532 (unsigned long long)iblock);
533 ret = -EIO;
534 goto bail;
535 }
536
537 /* We should already CoW the refcounted extent in case of create. */
538 BUG_ON(create && (ext_flags & OCFS2_EXT_REFCOUNTED));
539
540 /*
541 * get_more_blocks() expects us to describe a hole by clearing
542 * the mapped bit on bh_result().
543 *
544 * Consider an unwritten extent as a hole.
545 */
546 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
547 map_bh(bh_result, inode->i_sb, p_blkno);
548 else
549 clear_buffer_mapped(bh_result);
550
551 /* make sure we don't map more than max_blocks blocks here as
552 that's all the kernel will handle at this point. */
553 if (max_blocks < contig_blocks)
554 contig_blocks = max_blocks;
555 bh_result->b_size = contig_blocks << blocksize_bits;
556bail:
557 return ret;
558}
559
560/*
561 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're
562 * particularly interested in the aio/dio case. We use the rw_lock DLM lock
563 * to protect io on one node from truncation on another.
564 */
565static void ocfs2_dio_end_io(struct kiocb *iocb,
566 loff_t offset,
567 ssize_t bytes,
568 void *private,
569 int ret,
570 bool is_async)
571{
572 struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
573 int level;
574 wait_queue_head_t *wq = ocfs2_ioend_wq(inode);
575
576 /* this io's submitter should not have unlocked this before we could */
577 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
578
579 if (ocfs2_iocb_is_sem_locked(iocb))
580 ocfs2_iocb_clear_sem_locked(iocb);
581
582 if (ocfs2_iocb_is_unaligned_aio(iocb)) {
583 ocfs2_iocb_clear_unaligned_aio(iocb);
584
585 if (atomic_dec_and_test(&OCFS2_I(inode)->ip_unaligned_aio) &&
586 waitqueue_active(wq)) {
587 wake_up_all(wq);
588 }
589 }
590
591 ocfs2_iocb_clear_rw_locked(iocb);
592
593 level = ocfs2_iocb_rw_locked_level(iocb);
594 ocfs2_rw_unlock(inode, level);
595
596 if (is_async)
597 aio_complete(iocb, ret, 0);
598 inode_dio_done(inode);
599}
600
601/*
602 * ocfs2_invalidatepage() and ocfs2_releasepage() are shamelessly stolen
603 * from ext3. PageChecked() bits have been removed as OCFS2 does not
604 * do journalled data.
605 */
606static void ocfs2_invalidatepage(struct page *page, unsigned long offset)
607{
608 journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
609
610 jbd2_journal_invalidatepage(journal, page, offset);
611}
612
613static int ocfs2_releasepage(struct page *page, gfp_t wait)
614{
615 journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
616
617 if (!page_has_buffers(page))
618 return 0;
619 return jbd2_journal_try_to_free_buffers(journal, page, wait);
620}
621
622static ssize_t ocfs2_direct_IO(int rw,
623 struct kiocb *iocb,
624 const struct iovec *iov,
625 loff_t offset,
626 unsigned long nr_segs)
627{
628 struct file *file = iocb->ki_filp;
629 struct inode *inode = file->f_path.dentry->d_inode->i_mapping->host;
630
631 /*
632 * Fallback to buffered I/O if we see an inode without
633 * extents.
634 */
635 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
636 return 0;
637
638 /* Fallback to buffered I/O if we are appending. */
639 if (i_size_read(inode) <= offset)
640 return 0;
641
642 return __blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev,
643 iov, offset, nr_segs,
644 ocfs2_direct_IO_get_blocks,
645 ocfs2_dio_end_io, NULL, 0);
646}
647
648static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
649 u32 cpos,
650 unsigned int *start,
651 unsigned int *end)
652{
653 unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
654
655 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
656 unsigned int cpp;
657
658 cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
659
660 cluster_start = cpos % cpp;
661 cluster_start = cluster_start << osb->s_clustersize_bits;
662
663 cluster_end = cluster_start + osb->s_clustersize;
664 }
665
666 BUG_ON(cluster_start > PAGE_SIZE);
667 BUG_ON(cluster_end > PAGE_SIZE);
668
669 if (start)
670 *start = cluster_start;
671 if (end)
672 *end = cluster_end;
673}
674
675/*
676 * 'from' and 'to' are the region in the page to avoid zeroing.
677 *
678 * If pagesize > clustersize, this function will avoid zeroing outside
679 * of the cluster boundary.
680 *
681 * from == to == 0 is code for "zero the entire cluster region"
682 */
683static void ocfs2_clear_page_regions(struct page *page,
684 struct ocfs2_super *osb, u32 cpos,
685 unsigned from, unsigned to)
686{
687 void *kaddr;
688 unsigned int cluster_start, cluster_end;
689
690 ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
691
692 kaddr = kmap_atomic(page);
693
694 if (from || to) {
695 if (from > cluster_start)
696 memset(kaddr + cluster_start, 0, from - cluster_start);
697 if (to < cluster_end)
698 memset(kaddr + to, 0, cluster_end - to);
699 } else {
700 memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
701 }
702
703 kunmap_atomic(kaddr);
704}
705
706/*
707 * Nonsparse file systems fully allocate before we get to the write
708 * code. This prevents ocfs2_write() from tagging the write as an
709 * allocating one, which means ocfs2_map_page_blocks() might try to
710 * read-in the blocks at the tail of our file. Avoid reading them by
711 * testing i_size against each block offset.
712 */
713static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
714 unsigned int block_start)
715{
716 u64 offset = page_offset(page) + block_start;
717
718 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
719 return 1;
720
721 if (i_size_read(inode) > offset)
722 return 1;
723
724 return 0;
725}
726
727/*
728 * Some of this taken from __block_write_begin(). We already have our
729 * mapping by now though, and the entire write will be allocating or
730 * it won't, so not much need to use BH_New.
731 *
732 * This will also skip zeroing, which is handled externally.
733 */
734int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
735 struct inode *inode, unsigned int from,
736 unsigned int to, int new)
737{
738 int ret = 0;
739 struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
740 unsigned int block_end, block_start;
741 unsigned int bsize = 1 << inode->i_blkbits;
742
743 if (!page_has_buffers(page))
744 create_empty_buffers(page, bsize, 0);
745
746 head = page_buffers(page);
747 for (bh = head, block_start = 0; bh != head || !block_start;
748 bh = bh->b_this_page, block_start += bsize) {
749 block_end = block_start + bsize;
750
751 clear_buffer_new(bh);
752
753 /*
754 * Ignore blocks outside of our i/o range -
755 * they may belong to unallocated clusters.
756 */
757 if (block_start >= to || block_end <= from) {
758 if (PageUptodate(page))
759 set_buffer_uptodate(bh);
760 continue;
761 }
762
763 /*
764 * For an allocating write with cluster size >= page
765 * size, we always write the entire page.
766 */
767 if (new)
768 set_buffer_new(bh);
769
770 if (!buffer_mapped(bh)) {
771 map_bh(bh, inode->i_sb, *p_blkno);
772 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
773 }
774
775 if (PageUptodate(page)) {
776 if (!buffer_uptodate(bh))
777 set_buffer_uptodate(bh);
778 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
779 !buffer_new(bh) &&
780 ocfs2_should_read_blk(inode, page, block_start) &&
781 (block_start < from || block_end > to)) {
782 ll_rw_block(READ, 1, &bh);
783 *wait_bh++=bh;
784 }
785
786 *p_blkno = *p_blkno + 1;
787 }
788
789 /*
790 * If we issued read requests - let them complete.
791 */
792 while(wait_bh > wait) {
793 wait_on_buffer(*--wait_bh);
794 if (!buffer_uptodate(*wait_bh))
795 ret = -EIO;
796 }
797
798 if (ret == 0 || !new)
799 return ret;
800
801 /*
802 * If we get -EIO above, zero out any newly allocated blocks
803 * to avoid exposing stale data.
804 */
805 bh = head;
806 block_start = 0;
807 do {
808 block_end = block_start + bsize;
809 if (block_end <= from)
810 goto next_bh;
811 if (block_start >= to)
812 break;
813
814 zero_user(page, block_start, bh->b_size);
815 set_buffer_uptodate(bh);
816 mark_buffer_dirty(bh);
817
818next_bh:
819 block_start = block_end;
820 bh = bh->b_this_page;
821 } while (bh != head);
822
823 return ret;
824}
825
826#if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
827#define OCFS2_MAX_CTXT_PAGES 1
828#else
829#define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
830#endif
831
832#define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
833
834/*
835 * Describe the state of a single cluster to be written to.
836 */
837struct ocfs2_write_cluster_desc {
838 u32 c_cpos;
839 u32 c_phys;
840 /*
841 * Give this a unique field because c_phys eventually gets
842 * filled.
843 */
844 unsigned c_new;
845 unsigned c_unwritten;
846 unsigned c_needs_zero;
847};
848
849struct ocfs2_write_ctxt {
850 /* Logical cluster position / len of write */
851 u32 w_cpos;
852 u32 w_clen;
853
854 /* First cluster allocated in a nonsparse extend */
855 u32 w_first_new_cpos;
856
857 struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
858
859 /*
860 * This is true if page_size > cluster_size.
861 *
862 * It triggers a set of special cases during write which might
863 * have to deal with allocating writes to partial pages.
864 */
865 unsigned int w_large_pages;
866
867 /*
868 * Pages involved in this write.
869 *
870 * w_target_page is the page being written to by the user.
871 *
872 * w_pages is an array of pages which always contains
873 * w_target_page, and in the case of an allocating write with
874 * page_size < cluster size, it will contain zero'd and mapped
875 * pages adjacent to w_target_page which need to be written
876 * out in so that future reads from that region will get
877 * zero's.
878 */
879 unsigned int w_num_pages;
880 struct page *w_pages[OCFS2_MAX_CTXT_PAGES];
881 struct page *w_target_page;
882
883 /*
884 * w_target_locked is used for page_mkwrite path indicating no unlocking
885 * against w_target_page in ocfs2_write_end_nolock.
886 */
887 unsigned int w_target_locked:1;
888
889 /*
890 * ocfs2_write_end() uses this to know what the real range to
891 * write in the target should be.
892 */
893 unsigned int w_target_from;
894 unsigned int w_target_to;
895
896 /*
897 * We could use journal_current_handle() but this is cleaner,
898 * IMHO -Mark
899 */
900 handle_t *w_handle;
901
902 struct buffer_head *w_di_bh;
903
904 struct ocfs2_cached_dealloc_ctxt w_dealloc;
905};
906
907void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
908{
909 int i;
910
911 for(i = 0; i < num_pages; i++) {
912 if (pages[i]) {
913 unlock_page(pages[i]);
914 mark_page_accessed(pages[i]);
915 page_cache_release(pages[i]);
916 }
917 }
918}
919
920static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
921{
922 int i;
923
924 /*
925 * w_target_locked is only set to true in the page_mkwrite() case.
926 * The intent is to allow us to lock the target page from write_begin()
927 * to write_end(). The caller must hold a ref on w_target_page.
928 */
929 if (wc->w_target_locked) {
930 BUG_ON(!wc->w_target_page);
931 for (i = 0; i < wc->w_num_pages; i++) {
932 if (wc->w_target_page == wc->w_pages[i]) {
933 wc->w_pages[i] = NULL;
934 break;
935 }
936 }
937 mark_page_accessed(wc->w_target_page);
938 page_cache_release(wc->w_target_page);
939 }
940 ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
941
942 brelse(wc->w_di_bh);
943 kfree(wc);
944}
945
946static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
947 struct ocfs2_super *osb, loff_t pos,
948 unsigned len, struct buffer_head *di_bh)
949{
950 u32 cend;
951 struct ocfs2_write_ctxt *wc;
952
953 wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
954 if (!wc)
955 return -ENOMEM;
956
957 wc->w_cpos = pos >> osb->s_clustersize_bits;
958 wc->w_first_new_cpos = UINT_MAX;
959 cend = (pos + len - 1) >> osb->s_clustersize_bits;
960 wc->w_clen = cend - wc->w_cpos + 1;
961 get_bh(di_bh);
962 wc->w_di_bh = di_bh;
963
964 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
965 wc->w_large_pages = 1;
966 else
967 wc->w_large_pages = 0;
968
969 ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
970
971 *wcp = wc;
972
973 return 0;
974}
975
976/*
977 * If a page has any new buffers, zero them out here, and mark them uptodate
978 * and dirty so they'll be written out (in order to prevent uninitialised
979 * block data from leaking). And clear the new bit.
980 */
981static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
982{
983 unsigned int block_start, block_end;
984 struct buffer_head *head, *bh;
985
986 BUG_ON(!PageLocked(page));
987 if (!page_has_buffers(page))
988 return;
989
990 bh = head = page_buffers(page);
991 block_start = 0;
992 do {
993 block_end = block_start + bh->b_size;
994
995 if (buffer_new(bh)) {
996 if (block_end > from && block_start < to) {
997 if (!PageUptodate(page)) {
998 unsigned start, end;
999
1000 start = max(from, block_start);
1001 end = min(to, block_end);
1002
1003 zero_user_segment(page, start, end);
1004 set_buffer_uptodate(bh);
1005 }
1006
1007 clear_buffer_new(bh);
1008 mark_buffer_dirty(bh);
1009 }
1010 }
1011
1012 block_start = block_end;
1013 bh = bh->b_this_page;
1014 } while (bh != head);
1015}
1016
1017/*
1018 * Only called when we have a failure during allocating write to write
1019 * zero's to the newly allocated region.
1020 */
1021static void ocfs2_write_failure(struct inode *inode,
1022 struct ocfs2_write_ctxt *wc,
1023 loff_t user_pos, unsigned user_len)
1024{
1025 int i;
1026 unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
1027 to = user_pos + user_len;
1028 struct page *tmppage;
1029
1030 ocfs2_zero_new_buffers(wc->w_target_page, from, to);
1031
1032 for(i = 0; i < wc->w_num_pages; i++) {
1033 tmppage = wc->w_pages[i];
1034
1035 if (page_has_buffers(tmppage)) {
1036 if (ocfs2_should_order_data(inode))
1037 ocfs2_jbd2_file_inode(wc->w_handle, inode);
1038
1039 block_commit_write(tmppage, from, to);
1040 }
1041 }
1042}
1043
1044static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
1045 struct ocfs2_write_ctxt *wc,
1046 struct page *page, u32 cpos,
1047 loff_t user_pos, unsigned user_len,
1048 int new)
1049{
1050 int ret;
1051 unsigned int map_from = 0, map_to = 0;
1052 unsigned int cluster_start, cluster_end;
1053 unsigned int user_data_from = 0, user_data_to = 0;
1054
1055 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
1056 &cluster_start, &cluster_end);
1057
1058 /* treat the write as new if the a hole/lseek spanned across
1059 * the page boundary.
1060 */
1061 new = new | ((i_size_read(inode) <= page_offset(page)) &&
1062 (page_offset(page) <= user_pos));
1063
1064 if (page == wc->w_target_page) {
1065 map_from = user_pos & (PAGE_CACHE_SIZE - 1);
1066 map_to = map_from + user_len;
1067
1068 if (new)
1069 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1070 cluster_start, cluster_end,
1071 new);
1072 else
1073 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1074 map_from, map_to, new);
1075 if (ret) {
1076 mlog_errno(ret);
1077 goto out;
1078 }
1079
1080 user_data_from = map_from;
1081 user_data_to = map_to;
1082 if (new) {
1083 map_from = cluster_start;
1084 map_to = cluster_end;
1085 }
1086 } else {
1087 /*
1088 * If we haven't allocated the new page yet, we
1089 * shouldn't be writing it out without copying user
1090 * data. This is likely a math error from the caller.
1091 */
1092 BUG_ON(!new);
1093
1094 map_from = cluster_start;
1095 map_to = cluster_end;
1096
1097 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1098 cluster_start, cluster_end, new);
1099 if (ret) {
1100 mlog_errno(ret);
1101 goto out;
1102 }
1103 }
1104
1105 /*
1106 * Parts of newly allocated pages need to be zero'd.
1107 *
1108 * Above, we have also rewritten 'to' and 'from' - as far as
1109 * the rest of the function is concerned, the entire cluster
1110 * range inside of a page needs to be written.
1111 *
1112 * We can skip this if the page is up to date - it's already
1113 * been zero'd from being read in as a hole.
1114 */
1115 if (new && !PageUptodate(page))
1116 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1117 cpos, user_data_from, user_data_to);
1118
1119 flush_dcache_page(page);
1120
1121out:
1122 return ret;
1123}
1124
1125/*
1126 * This function will only grab one clusters worth of pages.
1127 */
1128static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1129 struct ocfs2_write_ctxt *wc,
1130 u32 cpos, loff_t user_pos,
1131 unsigned user_len, int new,
1132 struct page *mmap_page)
1133{
1134 int ret = 0, i;
1135 unsigned long start, target_index, end_index, index;
1136 struct inode *inode = mapping->host;
1137 loff_t last_byte;
1138
1139 target_index = user_pos >> PAGE_CACHE_SHIFT;
1140
1141 /*
1142 * Figure out how many pages we'll be manipulating here. For
1143 * non allocating write, we just change the one
1144 * page. Otherwise, we'll need a whole clusters worth. If we're
1145 * writing past i_size, we only need enough pages to cover the
1146 * last page of the write.
1147 */
1148 if (new) {
1149 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1150 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1151 /*
1152 * We need the index *past* the last page we could possibly
1153 * touch. This is the page past the end of the write or
1154 * i_size, whichever is greater.
1155 */
1156 last_byte = max(user_pos + user_len, i_size_read(inode));
1157 BUG_ON(last_byte < 1);
1158 end_index = ((last_byte - 1) >> PAGE_CACHE_SHIFT) + 1;
1159 if ((start + wc->w_num_pages) > end_index)
1160 wc->w_num_pages = end_index - start;
1161 } else {
1162 wc->w_num_pages = 1;
1163 start = target_index;
1164 }
1165
1166 for(i = 0; i < wc->w_num_pages; i++) {
1167 index = start + i;
1168
1169 if (index == target_index && mmap_page) {
1170 /*
1171 * ocfs2_pagemkwrite() is a little different
1172 * and wants us to directly use the page
1173 * passed in.
1174 */
1175 lock_page(mmap_page);
1176
1177 /* Exit and let the caller retry */
1178 if (mmap_page->mapping != mapping) {
1179 WARN_ON(mmap_page->mapping);
1180 unlock_page(mmap_page);
1181 ret = -EAGAIN;
1182 goto out;
1183 }
1184
1185 page_cache_get(mmap_page);
1186 wc->w_pages[i] = mmap_page;
1187 wc->w_target_locked = true;
1188 } else {
1189 wc->w_pages[i] = find_or_create_page(mapping, index,
1190 GFP_NOFS);
1191 if (!wc->w_pages[i]) {
1192 ret = -ENOMEM;
1193 mlog_errno(ret);
1194 goto out;
1195 }
1196 }
1197
1198 if (index == target_index)
1199 wc->w_target_page = wc->w_pages[i];
1200 }
1201out:
1202 if (ret)
1203 wc->w_target_locked = false;
1204 return ret;
1205}
1206
1207/*
1208 * Prepare a single cluster for write one cluster into the file.
1209 */
1210static int ocfs2_write_cluster(struct address_space *mapping,
1211 u32 phys, unsigned int unwritten,
1212 unsigned int should_zero,
1213 struct ocfs2_alloc_context *data_ac,
1214 struct ocfs2_alloc_context *meta_ac,
1215 struct ocfs2_write_ctxt *wc, u32 cpos,
1216 loff_t user_pos, unsigned user_len)
1217{
1218 int ret, i, new;
1219 u64 v_blkno, p_blkno;
1220 struct inode *inode = mapping->host;
1221 struct ocfs2_extent_tree et;
1222
1223 new = phys == 0 ? 1 : 0;
1224 if (new) {
1225 u32 tmp_pos;
1226
1227 /*
1228 * This is safe to call with the page locks - it won't take
1229 * any additional semaphores or cluster locks.
1230 */
1231 tmp_pos = cpos;
1232 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1233 &tmp_pos, 1, 0, wc->w_di_bh,
1234 wc->w_handle, data_ac,
1235 meta_ac, NULL);
1236 /*
1237 * This shouldn't happen because we must have already
1238 * calculated the correct meta data allocation required. The
1239 * internal tree allocation code should know how to increase
1240 * transaction credits itself.
1241 *
1242 * If need be, we could handle -EAGAIN for a
1243 * RESTART_TRANS here.
1244 */
1245 mlog_bug_on_msg(ret == -EAGAIN,
1246 "Inode %llu: EAGAIN return during allocation.\n",
1247 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1248 if (ret < 0) {
1249 mlog_errno(ret);
1250 goto out;
1251 }
1252 } else if (unwritten) {
1253 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1254 wc->w_di_bh);
1255 ret = ocfs2_mark_extent_written(inode, &et,
1256 wc->w_handle, cpos, 1, phys,
1257 meta_ac, &wc->w_dealloc);
1258 if (ret < 0) {
1259 mlog_errno(ret);
1260 goto out;
1261 }
1262 }
1263
1264 if (should_zero)
1265 v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
1266 else
1267 v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
1268
1269 /*
1270 * The only reason this should fail is due to an inability to
1271 * find the extent added.
1272 */
1273 ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1274 NULL);
1275 if (ret < 0) {
1276 ocfs2_error(inode->i_sb, "Corrupting extend for inode %llu, "
1277 "at logical block %llu",
1278 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1279 (unsigned long long)v_blkno);
1280 goto out;
1281 }
1282
1283 BUG_ON(p_blkno == 0);
1284
1285 for(i = 0; i < wc->w_num_pages; i++) {
1286 int tmpret;
1287
1288 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1289 wc->w_pages[i], cpos,
1290 user_pos, user_len,
1291 should_zero);
1292 if (tmpret) {
1293 mlog_errno(tmpret);
1294 if (ret == 0)
1295 ret = tmpret;
1296 }
1297 }
1298
1299 /*
1300 * We only have cleanup to do in case of allocating write.
1301 */
1302 if (ret && new)
1303 ocfs2_write_failure(inode, wc, user_pos, user_len);
1304
1305out:
1306
1307 return ret;
1308}
1309
1310static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1311 struct ocfs2_alloc_context *data_ac,
1312 struct ocfs2_alloc_context *meta_ac,
1313 struct ocfs2_write_ctxt *wc,
1314 loff_t pos, unsigned len)
1315{
1316 int ret, i;
1317 loff_t cluster_off;
1318 unsigned int local_len = len;
1319 struct ocfs2_write_cluster_desc *desc;
1320 struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1321
1322 for (i = 0; i < wc->w_clen; i++) {
1323 desc = &wc->w_desc[i];
1324
1325 /*
1326 * We have to make sure that the total write passed in
1327 * doesn't extend past a single cluster.
1328 */
1329 local_len = len;
1330 cluster_off = pos & (osb->s_clustersize - 1);
1331 if ((cluster_off + local_len) > osb->s_clustersize)
1332 local_len = osb->s_clustersize - cluster_off;
1333
1334 ret = ocfs2_write_cluster(mapping, desc->c_phys,
1335 desc->c_unwritten,
1336 desc->c_needs_zero,
1337 data_ac, meta_ac,
1338 wc, desc->c_cpos, pos, local_len);
1339 if (ret) {
1340 mlog_errno(ret);
1341 goto out;
1342 }
1343
1344 len -= local_len;
1345 pos += local_len;
1346 }
1347
1348 ret = 0;
1349out:
1350 return ret;
1351}
1352
1353/*
1354 * ocfs2_write_end() wants to know which parts of the target page it
1355 * should complete the write on. It's easiest to compute them ahead of
1356 * time when a more complete view of the write is available.
1357 */
1358static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1359 struct ocfs2_write_ctxt *wc,
1360 loff_t pos, unsigned len, int alloc)
1361{
1362 struct ocfs2_write_cluster_desc *desc;
1363
1364 wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1365 wc->w_target_to = wc->w_target_from + len;
1366
1367 if (alloc == 0)
1368 return;
1369
1370 /*
1371 * Allocating write - we may have different boundaries based
1372 * on page size and cluster size.
1373 *
1374 * NOTE: We can no longer compute one value from the other as
1375 * the actual write length and user provided length may be
1376 * different.
1377 */
1378
1379 if (wc->w_large_pages) {
1380 /*
1381 * We only care about the 1st and last cluster within
1382 * our range and whether they should be zero'd or not. Either
1383 * value may be extended out to the start/end of a
1384 * newly allocated cluster.
1385 */
1386 desc = &wc->w_desc[0];
1387 if (desc->c_needs_zero)
1388 ocfs2_figure_cluster_boundaries(osb,
1389 desc->c_cpos,
1390 &wc->w_target_from,
1391 NULL);
1392
1393 desc = &wc->w_desc[wc->w_clen - 1];
1394 if (desc->c_needs_zero)
1395 ocfs2_figure_cluster_boundaries(osb,
1396 desc->c_cpos,
1397 NULL,
1398 &wc->w_target_to);
1399 } else {
1400 wc->w_target_from = 0;
1401 wc->w_target_to = PAGE_CACHE_SIZE;
1402 }
1403}
1404
1405/*
1406 * Populate each single-cluster write descriptor in the write context
1407 * with information about the i/o to be done.
1408 *
1409 * Returns the number of clusters that will have to be allocated, as
1410 * well as a worst case estimate of the number of extent records that
1411 * would have to be created during a write to an unwritten region.
1412 */
1413static int ocfs2_populate_write_desc(struct inode *inode,
1414 struct ocfs2_write_ctxt *wc,
1415 unsigned int *clusters_to_alloc,
1416 unsigned int *extents_to_split)
1417{
1418 int ret;
1419 struct ocfs2_write_cluster_desc *desc;
1420 unsigned int num_clusters = 0;
1421 unsigned int ext_flags = 0;
1422 u32 phys = 0;
1423 int i;
1424
1425 *clusters_to_alloc = 0;
1426 *extents_to_split = 0;
1427
1428 for (i = 0; i < wc->w_clen; i++) {
1429 desc = &wc->w_desc[i];
1430 desc->c_cpos = wc->w_cpos + i;
1431
1432 if (num_clusters == 0) {
1433 /*
1434 * Need to look up the next extent record.
1435 */
1436 ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1437 &num_clusters, &ext_flags);
1438 if (ret) {
1439 mlog_errno(ret);
1440 goto out;
1441 }
1442
1443 /* We should already CoW the refcountd extent. */
1444 BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1445
1446 /*
1447 * Assume worst case - that we're writing in
1448 * the middle of the extent.
1449 *
1450 * We can assume that the write proceeds from
1451 * left to right, in which case the extent
1452 * insert code is smart enough to coalesce the
1453 * next splits into the previous records created.
1454 */
1455 if (ext_flags & OCFS2_EXT_UNWRITTEN)
1456 *extents_to_split = *extents_to_split + 2;
1457 } else if (phys) {
1458 /*
1459 * Only increment phys if it doesn't describe
1460 * a hole.
1461 */
1462 phys++;
1463 }
1464
1465 /*
1466 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1467 * file that got extended. w_first_new_cpos tells us
1468 * where the newly allocated clusters are so we can
1469 * zero them.
1470 */
1471 if (desc->c_cpos >= wc->w_first_new_cpos) {
1472 BUG_ON(phys == 0);
1473 desc->c_needs_zero = 1;
1474 }
1475
1476 desc->c_phys = phys;
1477 if (phys == 0) {
1478 desc->c_new = 1;
1479 desc->c_needs_zero = 1;
1480 *clusters_to_alloc = *clusters_to_alloc + 1;
1481 }
1482
1483 if (ext_flags & OCFS2_EXT_UNWRITTEN) {
1484 desc->c_unwritten = 1;
1485 desc->c_needs_zero = 1;
1486 }
1487
1488 num_clusters--;
1489 }
1490
1491 ret = 0;
1492out:
1493 return ret;
1494}
1495
1496static int ocfs2_write_begin_inline(struct address_space *mapping,
1497 struct inode *inode,
1498 struct ocfs2_write_ctxt *wc)
1499{
1500 int ret;
1501 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1502 struct page *page;
1503 handle_t *handle;
1504 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1505
1506 page = find_or_create_page(mapping, 0, GFP_NOFS);
1507 if (!page) {
1508 ret = -ENOMEM;
1509 mlog_errno(ret);
1510 goto out;
1511 }
1512 /*
1513 * If we don't set w_num_pages then this page won't get unlocked
1514 * and freed on cleanup of the write context.
1515 */
1516 wc->w_pages[0] = wc->w_target_page = page;
1517 wc->w_num_pages = 1;
1518
1519 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1520 if (IS_ERR(handle)) {
1521 ret = PTR_ERR(handle);
1522 mlog_errno(ret);
1523 goto out;
1524 }
1525
1526 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1527 OCFS2_JOURNAL_ACCESS_WRITE);
1528 if (ret) {
1529 ocfs2_commit_trans(osb, handle);
1530
1531 mlog_errno(ret);
1532 goto out;
1533 }
1534
1535 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1536 ocfs2_set_inode_data_inline(inode, di);
1537
1538 if (!PageUptodate(page)) {
1539 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1540 if (ret) {
1541 ocfs2_commit_trans(osb, handle);
1542
1543 goto out;
1544 }
1545 }
1546
1547 wc->w_handle = handle;
1548out:
1549 return ret;
1550}
1551
1552int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1553{
1554 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1555
1556 if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1557 return 1;
1558 return 0;
1559}
1560
1561static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1562 struct inode *inode, loff_t pos,
1563 unsigned len, struct page *mmap_page,
1564 struct ocfs2_write_ctxt *wc)
1565{
1566 int ret, written = 0;
1567 loff_t end = pos + len;
1568 struct ocfs2_inode_info *oi = OCFS2_I(inode);
1569 struct ocfs2_dinode *di = NULL;
1570
1571 trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
1572 len, (unsigned long long)pos,
1573 oi->ip_dyn_features);
1574
1575 /*
1576 * Handle inodes which already have inline data 1st.
1577 */
1578 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1579 if (mmap_page == NULL &&
1580 ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1581 goto do_inline_write;
1582
1583 /*
1584 * The write won't fit - we have to give this inode an
1585 * inline extent list now.
1586 */
1587 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1588 if (ret)
1589 mlog_errno(ret);
1590 goto out;
1591 }
1592
1593 /*
1594 * Check whether the inode can accept inline data.
1595 */
1596 if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1597 return 0;
1598
1599 /*
1600 * Check whether the write can fit.
1601 */
1602 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1603 if (mmap_page ||
1604 end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1605 return 0;
1606
1607do_inline_write:
1608 ret = ocfs2_write_begin_inline(mapping, inode, wc);
1609 if (ret) {
1610 mlog_errno(ret);
1611 goto out;
1612 }
1613
1614 /*
1615 * This signals to the caller that the data can be written
1616 * inline.
1617 */
1618 written = 1;
1619out:
1620 return written ? written : ret;
1621}
1622
1623/*
1624 * This function only does anything for file systems which can't
1625 * handle sparse files.
1626 *
1627 * What we want to do here is fill in any hole between the current end
1628 * of allocation and the end of our write. That way the rest of the
1629 * write path can treat it as an non-allocating write, which has no
1630 * special case code for sparse/nonsparse files.
1631 */
1632static int ocfs2_expand_nonsparse_inode(struct inode *inode,
1633 struct buffer_head *di_bh,
1634 loff_t pos, unsigned len,
1635 struct ocfs2_write_ctxt *wc)
1636{
1637 int ret;
1638 loff_t newsize = pos + len;
1639
1640 BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1641
1642 if (newsize <= i_size_read(inode))
1643 return 0;
1644
1645 ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
1646 if (ret)
1647 mlog_errno(ret);
1648
1649 wc->w_first_new_cpos =
1650 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
1651
1652 return ret;
1653}
1654
1655static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
1656 loff_t pos)
1657{
1658 int ret = 0;
1659
1660 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1661 if (pos > i_size_read(inode))
1662 ret = ocfs2_zero_extend(inode, di_bh, pos);
1663
1664 return ret;
1665}
1666
1667/*
1668 * Try to flush truncate logs if we can free enough clusters from it.
1669 * As for return value, "< 0" means error, "0" no space and "1" means
1670 * we have freed enough spaces and let the caller try to allocate again.
1671 */
1672static int ocfs2_try_to_free_truncate_log(struct ocfs2_super *osb,
1673 unsigned int needed)
1674{
1675 tid_t target;
1676 int ret = 0;
1677 unsigned int truncated_clusters;
1678
1679 mutex_lock(&osb->osb_tl_inode->i_mutex);
1680 truncated_clusters = osb->truncated_clusters;
1681 mutex_unlock(&osb->osb_tl_inode->i_mutex);
1682
1683 /*
1684 * Check whether we can succeed in allocating if we free
1685 * the truncate log.
1686 */
1687 if (truncated_clusters < needed)
1688 goto out;
1689
1690 ret = ocfs2_flush_truncate_log(osb);
1691 if (ret) {
1692 mlog_errno(ret);
1693 goto out;
1694 }
1695
1696 if (jbd2_journal_start_commit(osb->journal->j_journal, &target)) {
1697 jbd2_log_wait_commit(osb->journal->j_journal, target);
1698 ret = 1;
1699 }
1700out:
1701 return ret;
1702}
1703
1704int ocfs2_write_begin_nolock(struct file *filp,
1705 struct address_space *mapping,
1706 loff_t pos, unsigned len, unsigned flags,
1707 struct page **pagep, void **fsdata,
1708 struct buffer_head *di_bh, struct page *mmap_page)
1709{
1710 int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
1711 unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
1712 struct ocfs2_write_ctxt *wc;
1713 struct inode *inode = mapping->host;
1714 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1715 struct ocfs2_dinode *di;
1716 struct ocfs2_alloc_context *data_ac = NULL;
1717 struct ocfs2_alloc_context *meta_ac = NULL;
1718 handle_t *handle;
1719 struct ocfs2_extent_tree et;
1720 int try_free = 1, ret1;
1721
1722try_again:
1723 ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
1724 if (ret) {
1725 mlog_errno(ret);
1726 return ret;
1727 }
1728
1729 if (ocfs2_supports_inline_data(osb)) {
1730 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1731 mmap_page, wc);
1732 if (ret == 1) {
1733 ret = 0;
1734 goto success;
1735 }
1736 if (ret < 0) {
1737 mlog_errno(ret);
1738 goto out;
1739 }
1740 }
1741
1742 if (ocfs2_sparse_alloc(osb))
1743 ret = ocfs2_zero_tail(inode, di_bh, pos);
1744 else
1745 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, len,
1746 wc);
1747 if (ret) {
1748 mlog_errno(ret);
1749 goto out;
1750 }
1751
1752 ret = ocfs2_check_range_for_refcount(inode, pos, len);
1753 if (ret < 0) {
1754 mlog_errno(ret);
1755 goto out;
1756 } else if (ret == 1) {
1757 clusters_need = wc->w_clen;
1758 ret = ocfs2_refcount_cow(inode, filp, di_bh,
1759 wc->w_cpos, wc->w_clen, UINT_MAX);
1760 if (ret) {
1761 mlog_errno(ret);
1762 goto out;
1763 }
1764 }
1765
1766 ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1767 &extents_to_split);
1768 if (ret) {
1769 mlog_errno(ret);
1770 goto out;
1771 }
1772 clusters_need += clusters_to_alloc;
1773
1774 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1775
1776 trace_ocfs2_write_begin_nolock(
1777 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1778 (long long)i_size_read(inode),
1779 le32_to_cpu(di->i_clusters),
1780 pos, len, flags, mmap_page,
1781 clusters_to_alloc, extents_to_split);
1782
1783 /*
1784 * We set w_target_from, w_target_to here so that
1785 * ocfs2_write_end() knows which range in the target page to
1786 * write out. An allocation requires that we write the entire
1787 * cluster range.
1788 */
1789 if (clusters_to_alloc || extents_to_split) {
1790 /*
1791 * XXX: We are stretching the limits of
1792 * ocfs2_lock_allocators(). It greatly over-estimates
1793 * the work to be done.
1794 */
1795 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1796 wc->w_di_bh);
1797 ret = ocfs2_lock_allocators(inode, &et,
1798 clusters_to_alloc, extents_to_split,
1799 &data_ac, &meta_ac);
1800 if (ret) {
1801 mlog_errno(ret);
1802 goto out;
1803 }
1804
1805 if (data_ac)
1806 data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
1807
1808 credits = ocfs2_calc_extend_credits(inode->i_sb,
1809 &di->id2.i_list,
1810 clusters_to_alloc);
1811
1812 }
1813
1814 /*
1815 * We have to zero sparse allocated clusters, unwritten extent clusters,
1816 * and non-sparse clusters we just extended. For non-sparse writes,
1817 * we know zeros will only be needed in the first and/or last cluster.
1818 */
1819 if (clusters_to_alloc || extents_to_split ||
1820 (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
1821 wc->w_desc[wc->w_clen - 1].c_needs_zero)))
1822 cluster_of_pages = 1;
1823 else
1824 cluster_of_pages = 0;
1825
1826 ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
1827
1828 handle = ocfs2_start_trans(osb, credits);
1829 if (IS_ERR(handle)) {
1830 ret = PTR_ERR(handle);
1831 mlog_errno(ret);
1832 goto out;
1833 }
1834
1835 wc->w_handle = handle;
1836
1837 if (clusters_to_alloc) {
1838 ret = dquot_alloc_space_nodirty(inode,
1839 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1840 if (ret)
1841 goto out_commit;
1842 }
1843 /*
1844 * We don't want this to fail in ocfs2_write_end(), so do it
1845 * here.
1846 */
1847 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1848 OCFS2_JOURNAL_ACCESS_WRITE);
1849 if (ret) {
1850 mlog_errno(ret);
1851 goto out_quota;
1852 }
1853
1854 /*
1855 * Fill our page array first. That way we've grabbed enough so
1856 * that we can zero and flush if we error after adding the
1857 * extent.
1858 */
1859 ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
1860 cluster_of_pages, mmap_page);
1861 if (ret && ret != -EAGAIN) {
1862 mlog_errno(ret);
1863 goto out_quota;
1864 }
1865
1866 /*
1867 * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock
1868 * the target page. In this case, we exit with no error and no target
1869 * page. This will trigger the caller, page_mkwrite(), to re-try
1870 * the operation.
1871 */
1872 if (ret == -EAGAIN) {
1873 BUG_ON(wc->w_target_page);
1874 ret = 0;
1875 goto out_quota;
1876 }
1877
1878 ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1879 len);
1880 if (ret) {
1881 mlog_errno(ret);
1882 goto out_quota;
1883 }
1884
1885 if (data_ac)
1886 ocfs2_free_alloc_context(data_ac);
1887 if (meta_ac)
1888 ocfs2_free_alloc_context(meta_ac);
1889
1890success:
1891 *pagep = wc->w_target_page;
1892 *fsdata = wc;
1893 return 0;
1894out_quota:
1895 if (clusters_to_alloc)
1896 dquot_free_space(inode,
1897 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1898out_commit:
1899 ocfs2_commit_trans(osb, handle);
1900
1901out:
1902 ocfs2_free_write_ctxt(wc);
1903
1904 if (data_ac)
1905 ocfs2_free_alloc_context(data_ac);
1906 if (meta_ac)
1907 ocfs2_free_alloc_context(meta_ac);
1908
1909 if (ret == -ENOSPC && try_free) {
1910 /*
1911 * Try to free some truncate log so that we can have enough
1912 * clusters to allocate.
1913 */
1914 try_free = 0;
1915
1916 ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
1917 if (ret1 == 1)
1918 goto try_again;
1919
1920 if (ret1 < 0)
1921 mlog_errno(ret1);
1922 }
1923
1924 return ret;
1925}
1926
1927static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1928 loff_t pos, unsigned len, unsigned flags,
1929 struct page **pagep, void **fsdata)
1930{
1931 int ret;
1932 struct buffer_head *di_bh = NULL;
1933 struct inode *inode = mapping->host;
1934
1935 ret = ocfs2_inode_lock(inode, &di_bh, 1);
1936 if (ret) {
1937 mlog_errno(ret);
1938 return ret;
1939 }
1940
1941 /*
1942 * Take alloc sem here to prevent concurrent lookups. That way
1943 * the mapping, zeroing and tree manipulation within
1944 * ocfs2_write() will be safe against ->readpage(). This
1945 * should also serve to lock out allocation from a shared
1946 * writeable region.
1947 */
1948 down_write(&OCFS2_I(inode)->ip_alloc_sem);
1949
1950 ret = ocfs2_write_begin_nolock(file, mapping, pos, len, flags, pagep,
1951 fsdata, di_bh, NULL);
1952 if (ret) {
1953 mlog_errno(ret);
1954 goto out_fail;
1955 }
1956
1957 brelse(di_bh);
1958
1959 return 0;
1960
1961out_fail:
1962 up_write(&OCFS2_I(inode)->ip_alloc_sem);
1963
1964 brelse(di_bh);
1965 ocfs2_inode_unlock(inode, 1);
1966
1967 return ret;
1968}
1969
1970static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1971 unsigned len, unsigned *copied,
1972 struct ocfs2_dinode *di,
1973 struct ocfs2_write_ctxt *wc)
1974{
1975 void *kaddr;
1976
1977 if (unlikely(*copied < len)) {
1978 if (!PageUptodate(wc->w_target_page)) {
1979 *copied = 0;
1980 return;
1981 }
1982 }
1983
1984 kaddr = kmap_atomic(wc->w_target_page);
1985 memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
1986 kunmap_atomic(kaddr);
1987
1988 trace_ocfs2_write_end_inline(
1989 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1990 (unsigned long long)pos, *copied,
1991 le16_to_cpu(di->id2.i_data.id_count),
1992 le16_to_cpu(di->i_dyn_features));
1993}
1994
1995int ocfs2_write_end_nolock(struct address_space *mapping,
1996 loff_t pos, unsigned len, unsigned copied,
1997 struct page *page, void *fsdata)
1998{
1999 int i;
2000 unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
2001 struct inode *inode = mapping->host;
2002 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2003 struct ocfs2_write_ctxt *wc = fsdata;
2004 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
2005 handle_t *handle = wc->w_handle;
2006 struct page *tmppage;
2007
2008 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
2009 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
2010 goto out_write_size;
2011 }
2012
2013 if (unlikely(copied < len)) {
2014 if (!PageUptodate(wc->w_target_page))
2015 copied = 0;
2016
2017 ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
2018 start+len);
2019 }
2020 flush_dcache_page(wc->w_target_page);
2021
2022 for(i = 0; i < wc->w_num_pages; i++) {
2023 tmppage = wc->w_pages[i];
2024
2025 if (tmppage == wc->w_target_page) {
2026 from = wc->w_target_from;
2027 to = wc->w_target_to;
2028
2029 BUG_ON(from > PAGE_CACHE_SIZE ||
2030 to > PAGE_CACHE_SIZE ||
2031 to < from);
2032 } else {
2033 /*
2034 * Pages adjacent to the target (if any) imply
2035 * a hole-filling write in which case we want
2036 * to flush their entire range.
2037 */
2038 from = 0;
2039 to = PAGE_CACHE_SIZE;
2040 }
2041
2042 if (page_has_buffers(tmppage)) {
2043 if (ocfs2_should_order_data(inode))
2044 ocfs2_jbd2_file_inode(wc->w_handle, inode);
2045 block_commit_write(tmppage, from, to);
2046 }
2047 }
2048
2049out_write_size:
2050 pos += copied;
2051 if (pos > inode->i_size) {
2052 i_size_write(inode, pos);
2053 mark_inode_dirty(inode);
2054 }
2055 inode->i_blocks = ocfs2_inode_sector_count(inode);
2056 di->i_size = cpu_to_le64((u64)i_size_read(inode));
2057 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2058 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
2059 di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
2060 ocfs2_journal_dirty(handle, wc->w_di_bh);
2061
2062 ocfs2_commit_trans(osb, handle);
2063
2064 ocfs2_run_deallocs(osb, &wc->w_dealloc);
2065
2066 ocfs2_free_write_ctxt(wc);
2067
2068 return copied;
2069}
2070
2071static int ocfs2_write_end(struct file *file, struct address_space *mapping,
2072 loff_t pos, unsigned len, unsigned copied,
2073 struct page *page, void *fsdata)
2074{
2075 int ret;
2076 struct inode *inode = mapping->host;
2077
2078 ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
2079
2080 up_write(&OCFS2_I(inode)->ip_alloc_sem);
2081 ocfs2_inode_unlock(inode, 1);
2082
2083 return ret;
2084}
2085
2086const struct address_space_operations ocfs2_aops = {
2087 .readpage = ocfs2_readpage,
2088 .readpages = ocfs2_readpages,
2089 .writepage = ocfs2_writepage,
2090 .write_begin = ocfs2_write_begin,
2091 .write_end = ocfs2_write_end,
2092 .bmap = ocfs2_bmap,
2093 .direct_IO = ocfs2_direct_IO,
2094 .invalidatepage = ocfs2_invalidatepage,
2095 .releasepage = ocfs2_releasepage,
2096 .migratepage = buffer_migrate_page,
2097 .is_partially_uptodate = block_is_partially_uptodate,
2098 .error_remove_page = generic_error_remove_page,
2099};