Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * DB8500 PRCM Unit driver
   4 *
   5 * Copyright (C) STMicroelectronics 2009
   6 * Copyright (C) ST-Ericsson SA 2010
   7 *
 
   8 * Author: Kumar Sanghvi <kumar.sanghvi@stericsson.com>
   9 * Author: Sundar Iyer <sundar.iyer@stericsson.com>
  10 * Author: Mattias Nilsson <mattias.i.nilsson@stericsson.com>
  11 *
  12 * U8500 PRCM Unit interface driver
 
  13 */
  14#include <linux/init.h>
  15#include <linux/export.h>
  16#include <linux/kernel.h>
  17#include <linux/delay.h>
  18#include <linux/errno.h>
  19#include <linux/err.h>
  20#include <linux/spinlock.h>
  21#include <linux/io.h>
  22#include <linux/slab.h>
  23#include <linux/mutex.h>
  24#include <linux/completion.h>
  25#include <linux/irq.h>
  26#include <linux/jiffies.h>
  27#include <linux/bitops.h>
  28#include <linux/fs.h>
  29#include <linux/of.h>
  30#include <linux/of_address.h>
  31#include <linux/of_irq.h>
  32#include <linux/platform_device.h>
  33#include <linux/uaccess.h>
  34#include <linux/mfd/core.h>
  35#include <linux/mfd/dbx500-prcmu.h>
  36#include <linux/mfd/abx500/ab8500.h>
  37#include <linux/regulator/db8500-prcmu.h>
  38#include <linux/regulator/machine.h>
  39#include <linux/platform_data/ux500_wdt.h>
 
 
 
 
  40#include "dbx500-prcmu-regs.h"
  41
 
 
 
  42/* Index of different voltages to be used when accessing AVSData */
  43#define PRCM_AVS_BASE		0x2FC
  44#define PRCM_AVS_VBB_RET	(PRCM_AVS_BASE + 0x0)
  45#define PRCM_AVS_VBB_MAX_OPP	(PRCM_AVS_BASE + 0x1)
  46#define PRCM_AVS_VBB_100_OPP	(PRCM_AVS_BASE + 0x2)
  47#define PRCM_AVS_VBB_50_OPP	(PRCM_AVS_BASE + 0x3)
  48#define PRCM_AVS_VARM_MAX_OPP	(PRCM_AVS_BASE + 0x4)
  49#define PRCM_AVS_VARM_100_OPP	(PRCM_AVS_BASE + 0x5)
  50#define PRCM_AVS_VARM_50_OPP	(PRCM_AVS_BASE + 0x6)
  51#define PRCM_AVS_VARM_RET	(PRCM_AVS_BASE + 0x7)
  52#define PRCM_AVS_VAPE_100_OPP	(PRCM_AVS_BASE + 0x8)
  53#define PRCM_AVS_VAPE_50_OPP	(PRCM_AVS_BASE + 0x9)
  54#define PRCM_AVS_VMOD_100_OPP	(PRCM_AVS_BASE + 0xA)
  55#define PRCM_AVS_VMOD_50_OPP	(PRCM_AVS_BASE + 0xB)
  56#define PRCM_AVS_VSAFE		(PRCM_AVS_BASE + 0xC)
  57
  58#define PRCM_AVS_VOLTAGE		0
  59#define PRCM_AVS_VOLTAGE_MASK		0x3f
  60#define PRCM_AVS_ISSLOWSTARTUP		6
  61#define PRCM_AVS_ISSLOWSTARTUP_MASK	(1 << PRCM_AVS_ISSLOWSTARTUP)
  62#define PRCM_AVS_ISMODEENABLE		7
  63#define PRCM_AVS_ISMODEENABLE_MASK	(1 << PRCM_AVS_ISMODEENABLE)
  64
  65#define PRCM_BOOT_STATUS	0xFFF
  66#define PRCM_ROMCODE_A2P	0xFFE
  67#define PRCM_ROMCODE_P2A	0xFFD
  68#define PRCM_XP70_CUR_PWR_STATE 0xFFC      /* 4 BYTES */
  69
  70#define PRCM_SW_RST_REASON 0xFF8 /* 2 bytes */
  71
  72#define _PRCM_MBOX_HEADER		0xFE8 /* 16 bytes */
  73#define PRCM_MBOX_HEADER_REQ_MB0	(_PRCM_MBOX_HEADER + 0x0)
  74#define PRCM_MBOX_HEADER_REQ_MB1	(_PRCM_MBOX_HEADER + 0x1)
  75#define PRCM_MBOX_HEADER_REQ_MB2	(_PRCM_MBOX_HEADER + 0x2)
  76#define PRCM_MBOX_HEADER_REQ_MB3	(_PRCM_MBOX_HEADER + 0x3)
  77#define PRCM_MBOX_HEADER_REQ_MB4	(_PRCM_MBOX_HEADER + 0x4)
  78#define PRCM_MBOX_HEADER_REQ_MB5	(_PRCM_MBOX_HEADER + 0x5)
  79#define PRCM_MBOX_HEADER_ACK_MB0	(_PRCM_MBOX_HEADER + 0x8)
  80
  81/* Req Mailboxes */
  82#define PRCM_REQ_MB0 0xFDC /* 12 bytes  */
  83#define PRCM_REQ_MB1 0xFD0 /* 12 bytes  */
  84#define PRCM_REQ_MB2 0xFC0 /* 16 bytes  */
  85#define PRCM_REQ_MB3 0xE4C /* 372 bytes  */
  86#define PRCM_REQ_MB4 0xE48 /* 4 bytes  */
  87#define PRCM_REQ_MB5 0xE44 /* 4 bytes  */
  88
  89/* Ack Mailboxes */
  90#define PRCM_ACK_MB0 0xE08 /* 52 bytes  */
  91#define PRCM_ACK_MB1 0xE04 /* 4 bytes */
  92#define PRCM_ACK_MB2 0xE00 /* 4 bytes */
  93#define PRCM_ACK_MB3 0xDFC /* 4 bytes */
  94#define PRCM_ACK_MB4 0xDF8 /* 4 bytes */
  95#define PRCM_ACK_MB5 0xDF4 /* 4 bytes */
  96
  97/* Mailbox 0 headers */
  98#define MB0H_POWER_STATE_TRANS		0
  99#define MB0H_CONFIG_WAKEUPS_EXE		1
 100#define MB0H_READ_WAKEUP_ACK		3
 101#define MB0H_CONFIG_WAKEUPS_SLEEP	4
 102
 103#define MB0H_WAKEUP_EXE 2
 104#define MB0H_WAKEUP_SLEEP 5
 105
 106/* Mailbox 0 REQs */
 107#define PRCM_REQ_MB0_AP_POWER_STATE	(PRCM_REQ_MB0 + 0x0)
 108#define PRCM_REQ_MB0_AP_PLL_STATE	(PRCM_REQ_MB0 + 0x1)
 109#define PRCM_REQ_MB0_ULP_CLOCK_STATE	(PRCM_REQ_MB0 + 0x2)
 110#define PRCM_REQ_MB0_DO_NOT_WFI		(PRCM_REQ_MB0 + 0x3)
 111#define PRCM_REQ_MB0_WAKEUP_8500	(PRCM_REQ_MB0 + 0x4)
 112#define PRCM_REQ_MB0_WAKEUP_4500	(PRCM_REQ_MB0 + 0x8)
 113
 114/* Mailbox 0 ACKs */
 115#define PRCM_ACK_MB0_AP_PWRSTTR_STATUS	(PRCM_ACK_MB0 + 0x0)
 116#define PRCM_ACK_MB0_READ_POINTER	(PRCM_ACK_MB0 + 0x1)
 117#define PRCM_ACK_MB0_WAKEUP_0_8500	(PRCM_ACK_MB0 + 0x4)
 118#define PRCM_ACK_MB0_WAKEUP_0_4500	(PRCM_ACK_MB0 + 0x8)
 119#define PRCM_ACK_MB0_WAKEUP_1_8500	(PRCM_ACK_MB0 + 0x1C)
 120#define PRCM_ACK_MB0_WAKEUP_1_4500	(PRCM_ACK_MB0 + 0x20)
 121#define PRCM_ACK_MB0_EVENT_4500_NUMBERS	20
 122
 123/* Mailbox 1 headers */
 124#define MB1H_ARM_APE_OPP 0x0
 125#define MB1H_RESET_MODEM 0x2
 126#define MB1H_REQUEST_APE_OPP_100_VOLT 0x3
 127#define MB1H_RELEASE_APE_OPP_100_VOLT 0x4
 128#define MB1H_RELEASE_USB_WAKEUP 0x5
 129#define MB1H_PLL_ON_OFF 0x6
 130
 131/* Mailbox 1 Requests */
 132#define PRCM_REQ_MB1_ARM_OPP			(PRCM_REQ_MB1 + 0x0)
 133#define PRCM_REQ_MB1_APE_OPP			(PRCM_REQ_MB1 + 0x1)
 134#define PRCM_REQ_MB1_PLL_ON_OFF			(PRCM_REQ_MB1 + 0x4)
 135#define PLL_SOC0_OFF	0x1
 136#define PLL_SOC0_ON	0x2
 137#define PLL_SOC1_OFF	0x4
 138#define PLL_SOC1_ON	0x8
 139
 140/* Mailbox 1 ACKs */
 141#define PRCM_ACK_MB1_CURRENT_ARM_OPP	(PRCM_ACK_MB1 + 0x0)
 142#define PRCM_ACK_MB1_CURRENT_APE_OPP	(PRCM_ACK_MB1 + 0x1)
 143#define PRCM_ACK_MB1_APE_VOLTAGE_STATUS	(PRCM_ACK_MB1 + 0x2)
 144#define PRCM_ACK_MB1_DVFS_STATUS	(PRCM_ACK_MB1 + 0x3)
 145
 146/* Mailbox 2 headers */
 147#define MB2H_DPS	0x0
 148#define MB2H_AUTO_PWR	0x1
 149
 150/* Mailbox 2 REQs */
 151#define PRCM_REQ_MB2_SVA_MMDSP		(PRCM_REQ_MB2 + 0x0)
 152#define PRCM_REQ_MB2_SVA_PIPE		(PRCM_REQ_MB2 + 0x1)
 153#define PRCM_REQ_MB2_SIA_MMDSP		(PRCM_REQ_MB2 + 0x2)
 154#define PRCM_REQ_MB2_SIA_PIPE		(PRCM_REQ_MB2 + 0x3)
 155#define PRCM_REQ_MB2_SGA		(PRCM_REQ_MB2 + 0x4)
 156#define PRCM_REQ_MB2_B2R2_MCDE		(PRCM_REQ_MB2 + 0x5)
 157#define PRCM_REQ_MB2_ESRAM12		(PRCM_REQ_MB2 + 0x6)
 158#define PRCM_REQ_MB2_ESRAM34		(PRCM_REQ_MB2 + 0x7)
 159#define PRCM_REQ_MB2_AUTO_PM_SLEEP	(PRCM_REQ_MB2 + 0x8)
 160#define PRCM_REQ_MB2_AUTO_PM_IDLE	(PRCM_REQ_MB2 + 0xC)
 161
 162/* Mailbox 2 ACKs */
 163#define PRCM_ACK_MB2_DPS_STATUS (PRCM_ACK_MB2 + 0x0)
 164#define HWACC_PWR_ST_OK 0xFE
 165
 166/* Mailbox 3 headers */
 167#define MB3H_ANC	0x0
 168#define MB3H_SIDETONE	0x1
 169#define MB3H_SYSCLK	0xE
 170
 171/* Mailbox 3 Requests */
 172#define PRCM_REQ_MB3_ANC_FIR_COEFF	(PRCM_REQ_MB3 + 0x0)
 173#define PRCM_REQ_MB3_ANC_IIR_COEFF	(PRCM_REQ_MB3 + 0x20)
 174#define PRCM_REQ_MB3_ANC_SHIFTER	(PRCM_REQ_MB3 + 0x60)
 175#define PRCM_REQ_MB3_ANC_WARP		(PRCM_REQ_MB3 + 0x64)
 176#define PRCM_REQ_MB3_SIDETONE_FIR_GAIN	(PRCM_REQ_MB3 + 0x68)
 177#define PRCM_REQ_MB3_SIDETONE_FIR_COEFF	(PRCM_REQ_MB3 + 0x6C)
 178#define PRCM_REQ_MB3_SYSCLK_MGT		(PRCM_REQ_MB3 + 0x16C)
 179
 180/* Mailbox 4 headers */
 181#define MB4H_DDR_INIT	0x0
 182#define MB4H_MEM_ST	0x1
 183#define MB4H_HOTDOG	0x12
 184#define MB4H_HOTMON	0x13
 185#define MB4H_HOT_PERIOD	0x14
 186#define MB4H_A9WDOG_CONF 0x16
 187#define MB4H_A9WDOG_EN   0x17
 188#define MB4H_A9WDOG_DIS  0x18
 189#define MB4H_A9WDOG_LOAD 0x19
 190#define MB4H_A9WDOG_KICK 0x20
 191
 192/* Mailbox 4 Requests */
 193#define PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE	(PRCM_REQ_MB4 + 0x0)
 194#define PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE	(PRCM_REQ_MB4 + 0x1)
 195#define PRCM_REQ_MB4_ESRAM0_ST			(PRCM_REQ_MB4 + 0x3)
 196#define PRCM_REQ_MB4_HOTDOG_THRESHOLD		(PRCM_REQ_MB4 + 0x0)
 197#define PRCM_REQ_MB4_HOTMON_LOW			(PRCM_REQ_MB4 + 0x0)
 198#define PRCM_REQ_MB4_HOTMON_HIGH		(PRCM_REQ_MB4 + 0x1)
 199#define PRCM_REQ_MB4_HOTMON_CONFIG		(PRCM_REQ_MB4 + 0x2)
 200#define PRCM_REQ_MB4_HOT_PERIOD			(PRCM_REQ_MB4 + 0x0)
 201#define HOTMON_CONFIG_LOW			BIT(0)
 202#define HOTMON_CONFIG_HIGH			BIT(1)
 203#define PRCM_REQ_MB4_A9WDOG_0			(PRCM_REQ_MB4 + 0x0)
 204#define PRCM_REQ_MB4_A9WDOG_1			(PRCM_REQ_MB4 + 0x1)
 205#define PRCM_REQ_MB4_A9WDOG_2			(PRCM_REQ_MB4 + 0x2)
 206#define PRCM_REQ_MB4_A9WDOG_3			(PRCM_REQ_MB4 + 0x3)
 207#define A9WDOG_AUTO_OFF_EN			BIT(7)
 208#define A9WDOG_AUTO_OFF_DIS			0
 209#define A9WDOG_ID_MASK				0xf
 210
 211/* Mailbox 5 Requests */
 212#define PRCM_REQ_MB5_I2C_SLAVE_OP	(PRCM_REQ_MB5 + 0x0)
 213#define PRCM_REQ_MB5_I2C_HW_BITS	(PRCM_REQ_MB5 + 0x1)
 214#define PRCM_REQ_MB5_I2C_REG		(PRCM_REQ_MB5 + 0x2)
 215#define PRCM_REQ_MB5_I2C_VAL		(PRCM_REQ_MB5 + 0x3)
 216#define PRCMU_I2C_WRITE(slave) (((slave) << 1) | BIT(6))
 217#define PRCMU_I2C_READ(slave) (((slave) << 1) | BIT(0) | BIT(6))
 
 
 218#define PRCMU_I2C_STOP_EN		BIT(3)
 219
 220/* Mailbox 5 ACKs */
 221#define PRCM_ACK_MB5_I2C_STATUS	(PRCM_ACK_MB5 + 0x1)
 222#define PRCM_ACK_MB5_I2C_VAL	(PRCM_ACK_MB5 + 0x3)
 223#define I2C_WR_OK 0x1
 224#define I2C_RD_OK 0x2
 225
 226#define NUM_MB 8
 227#define MBOX_BIT BIT
 228#define ALL_MBOX_BITS (MBOX_BIT(NUM_MB) - 1)
 229
 230/*
 231 * Wakeups/IRQs
 232 */
 233
 234#define WAKEUP_BIT_RTC BIT(0)
 235#define WAKEUP_BIT_RTT0 BIT(1)
 236#define WAKEUP_BIT_RTT1 BIT(2)
 237#define WAKEUP_BIT_HSI0 BIT(3)
 238#define WAKEUP_BIT_HSI1 BIT(4)
 239#define WAKEUP_BIT_CA_WAKE BIT(5)
 240#define WAKEUP_BIT_USB BIT(6)
 241#define WAKEUP_BIT_ABB BIT(7)
 242#define WAKEUP_BIT_ABB_FIFO BIT(8)
 243#define WAKEUP_BIT_SYSCLK_OK BIT(9)
 244#define WAKEUP_BIT_CA_SLEEP BIT(10)
 245#define WAKEUP_BIT_AC_WAKE_ACK BIT(11)
 246#define WAKEUP_BIT_SIDE_TONE_OK BIT(12)
 247#define WAKEUP_BIT_ANC_OK BIT(13)
 248#define WAKEUP_BIT_SW_ERROR BIT(14)
 249#define WAKEUP_BIT_AC_SLEEP_ACK BIT(15)
 250#define WAKEUP_BIT_ARM BIT(17)
 251#define WAKEUP_BIT_HOTMON_LOW BIT(18)
 252#define WAKEUP_BIT_HOTMON_HIGH BIT(19)
 253#define WAKEUP_BIT_MODEM_SW_RESET_REQ BIT(20)
 254#define WAKEUP_BIT_GPIO0 BIT(23)
 255#define WAKEUP_BIT_GPIO1 BIT(24)
 256#define WAKEUP_BIT_GPIO2 BIT(25)
 257#define WAKEUP_BIT_GPIO3 BIT(26)
 258#define WAKEUP_BIT_GPIO4 BIT(27)
 259#define WAKEUP_BIT_GPIO5 BIT(28)
 260#define WAKEUP_BIT_GPIO6 BIT(29)
 261#define WAKEUP_BIT_GPIO7 BIT(30)
 262#define WAKEUP_BIT_GPIO8 BIT(31)
 263
 264static struct {
 265	bool valid;
 266	struct prcmu_fw_version version;
 267} fw_info;
 268
 269static struct irq_domain *db8500_irq_domain;
 270
 271/*
 272 * This vector maps irq numbers to the bits in the bit field used in
 273 * communication with the PRCMU firmware.
 274 *
 275 * The reason for having this is to keep the irq numbers contiguous even though
 276 * the bits in the bit field are not. (The bits also have a tendency to move
 277 * around, to further complicate matters.)
 278 */
 279#define IRQ_INDEX(_name) ((IRQ_PRCMU_##_name))
 280#define IRQ_ENTRY(_name)[IRQ_INDEX(_name)] = (WAKEUP_BIT_##_name)
 281
 282#define IRQ_PRCMU_RTC 0
 283#define IRQ_PRCMU_RTT0 1
 284#define IRQ_PRCMU_RTT1 2
 285#define IRQ_PRCMU_HSI0 3
 286#define IRQ_PRCMU_HSI1 4
 287#define IRQ_PRCMU_CA_WAKE 5
 288#define IRQ_PRCMU_USB 6
 289#define IRQ_PRCMU_ABB 7
 290#define IRQ_PRCMU_ABB_FIFO 8
 291#define IRQ_PRCMU_ARM 9
 292#define IRQ_PRCMU_MODEM_SW_RESET_REQ 10
 293#define IRQ_PRCMU_GPIO0 11
 294#define IRQ_PRCMU_GPIO1 12
 295#define IRQ_PRCMU_GPIO2 13
 296#define IRQ_PRCMU_GPIO3 14
 297#define IRQ_PRCMU_GPIO4 15
 298#define IRQ_PRCMU_GPIO5 16
 299#define IRQ_PRCMU_GPIO6 17
 300#define IRQ_PRCMU_GPIO7 18
 301#define IRQ_PRCMU_GPIO8 19
 302#define IRQ_PRCMU_CA_SLEEP 20
 303#define IRQ_PRCMU_HOTMON_LOW 21
 304#define IRQ_PRCMU_HOTMON_HIGH 22
 305#define NUM_PRCMU_WAKEUPS 23
 306
 307static u32 prcmu_irq_bit[NUM_PRCMU_WAKEUPS] = {
 308	IRQ_ENTRY(RTC),
 309	IRQ_ENTRY(RTT0),
 310	IRQ_ENTRY(RTT1),
 311	IRQ_ENTRY(HSI0),
 312	IRQ_ENTRY(HSI1),
 313	IRQ_ENTRY(CA_WAKE),
 314	IRQ_ENTRY(USB),
 315	IRQ_ENTRY(ABB),
 316	IRQ_ENTRY(ABB_FIFO),
 317	IRQ_ENTRY(CA_SLEEP),
 318	IRQ_ENTRY(ARM),
 319	IRQ_ENTRY(HOTMON_LOW),
 320	IRQ_ENTRY(HOTMON_HIGH),
 321	IRQ_ENTRY(MODEM_SW_RESET_REQ),
 322	IRQ_ENTRY(GPIO0),
 323	IRQ_ENTRY(GPIO1),
 324	IRQ_ENTRY(GPIO2),
 325	IRQ_ENTRY(GPIO3),
 326	IRQ_ENTRY(GPIO4),
 327	IRQ_ENTRY(GPIO5),
 328	IRQ_ENTRY(GPIO6),
 329	IRQ_ENTRY(GPIO7),
 330	IRQ_ENTRY(GPIO8)
 331};
 332
 333#define VALID_WAKEUPS (BIT(NUM_PRCMU_WAKEUP_INDICES) - 1)
 334#define WAKEUP_ENTRY(_name)[PRCMU_WAKEUP_INDEX_##_name] = (WAKEUP_BIT_##_name)
 335static u32 prcmu_wakeup_bit[NUM_PRCMU_WAKEUP_INDICES] = {
 336	WAKEUP_ENTRY(RTC),
 337	WAKEUP_ENTRY(RTT0),
 338	WAKEUP_ENTRY(RTT1),
 339	WAKEUP_ENTRY(HSI0),
 340	WAKEUP_ENTRY(HSI1),
 341	WAKEUP_ENTRY(USB),
 342	WAKEUP_ENTRY(ABB),
 343	WAKEUP_ENTRY(ABB_FIFO),
 344	WAKEUP_ENTRY(ARM)
 345};
 346
 347/*
 348 * mb0_transfer - state needed for mailbox 0 communication.
 349 * @lock:		The transaction lock.
 350 * @dbb_events_lock:	A lock used to handle concurrent access to (parts of)
 351 *			the request data.
 352 * @mask_work:		Work structure used for (un)masking wakeup interrupts.
 353 * @req:		Request data that need to persist between requests.
 354 */
 355static struct {
 356	spinlock_t lock;
 357	spinlock_t dbb_irqs_lock;
 358	struct work_struct mask_work;
 359	struct mutex ac_wake_lock;
 360	struct completion ac_wake_work;
 361	struct {
 362		u32 dbb_irqs;
 363		u32 dbb_wakeups;
 364		u32 abb_events;
 365	} req;
 366} mb0_transfer;
 367
 368/*
 369 * mb1_transfer - state needed for mailbox 1 communication.
 370 * @lock:	The transaction lock.
 371 * @work:	The transaction completion structure.
 372 * @ape_opp:	The current APE OPP.
 373 * @ack:	Reply ("acknowledge") data.
 374 */
 375static struct {
 376	struct mutex lock;
 377	struct completion work;
 378	u8 ape_opp;
 379	struct {
 380		u8 header;
 381		u8 arm_opp;
 382		u8 ape_opp;
 383		u8 ape_voltage_status;
 384	} ack;
 385} mb1_transfer;
 386
 387/*
 388 * mb2_transfer - state needed for mailbox 2 communication.
 389 * @lock:            The transaction lock.
 390 * @work:            The transaction completion structure.
 391 * @auto_pm_lock:    The autonomous power management configuration lock.
 392 * @auto_pm_enabled: A flag indicating whether autonomous PM is enabled.
 393 * @req:             Request data that need to persist between requests.
 394 * @ack:             Reply ("acknowledge") data.
 395 */
 396static struct {
 397	struct mutex lock;
 398	struct completion work;
 399	spinlock_t auto_pm_lock;
 400	bool auto_pm_enabled;
 401	struct {
 402		u8 status;
 403	} ack;
 404} mb2_transfer;
 405
 406/*
 407 * mb3_transfer - state needed for mailbox 3 communication.
 408 * @lock:		The request lock.
 409 * @sysclk_lock:	A lock used to handle concurrent sysclk requests.
 410 * @sysclk_work:	Work structure used for sysclk requests.
 411 */
 412static struct {
 413	spinlock_t lock;
 414	struct mutex sysclk_lock;
 415	struct completion sysclk_work;
 416} mb3_transfer;
 417
 418/*
 419 * mb4_transfer - state needed for mailbox 4 communication.
 420 * @lock:	The transaction lock.
 421 * @work:	The transaction completion structure.
 422 */
 423static struct {
 424	struct mutex lock;
 425	struct completion work;
 426} mb4_transfer;
 427
 428/*
 429 * mb5_transfer - state needed for mailbox 5 communication.
 430 * @lock:	The transaction lock.
 431 * @work:	The transaction completion structure.
 432 * @ack:	Reply ("acknowledge") data.
 433 */
 434static struct {
 435	struct mutex lock;
 436	struct completion work;
 437	struct {
 438		u8 status;
 439		u8 value;
 440	} ack;
 441} mb5_transfer;
 442
 443static atomic_t ac_wake_req_state = ATOMIC_INIT(0);
 444
 445/* Spinlocks */
 446static DEFINE_SPINLOCK(prcmu_lock);
 447static DEFINE_SPINLOCK(clkout_lock);
 448
 449/* Global var to runtime determine TCDM base for v2 or v1 */
 450static __iomem void *tcdm_base;
 451static __iomem void *prcmu_base;
 452
 453struct clk_mgt {
 454	u32 offset;
 455	u32 pllsw;
 456	int branch;
 457	bool clk38div;
 458};
 459
 460enum {
 461	PLL_RAW,
 462	PLL_FIX,
 463	PLL_DIV
 464};
 465
 466static DEFINE_SPINLOCK(clk_mgt_lock);
 467
 468#define CLK_MGT_ENTRY(_name, _branch, _clk38div)[PRCMU_##_name] = \
 469	{ (PRCM_##_name##_MGT), 0 , _branch, _clk38div}
 470static struct clk_mgt clk_mgt[PRCMU_NUM_REG_CLOCKS] = {
 471	CLK_MGT_ENTRY(SGACLK, PLL_DIV, false),
 472	CLK_MGT_ENTRY(UARTCLK, PLL_FIX, true),
 473	CLK_MGT_ENTRY(MSP02CLK, PLL_FIX, true),
 474	CLK_MGT_ENTRY(MSP1CLK, PLL_FIX, true),
 475	CLK_MGT_ENTRY(I2CCLK, PLL_FIX, true),
 476	CLK_MGT_ENTRY(SDMMCCLK, PLL_DIV, true),
 477	CLK_MGT_ENTRY(SLIMCLK, PLL_FIX, true),
 478	CLK_MGT_ENTRY(PER1CLK, PLL_DIV, true),
 479	CLK_MGT_ENTRY(PER2CLK, PLL_DIV, true),
 480	CLK_MGT_ENTRY(PER3CLK, PLL_DIV, true),
 481	CLK_MGT_ENTRY(PER5CLK, PLL_DIV, true),
 482	CLK_MGT_ENTRY(PER6CLK, PLL_DIV, true),
 483	CLK_MGT_ENTRY(PER7CLK, PLL_DIV, true),
 484	CLK_MGT_ENTRY(LCDCLK, PLL_FIX, true),
 485	CLK_MGT_ENTRY(BMLCLK, PLL_DIV, true),
 486	CLK_MGT_ENTRY(HSITXCLK, PLL_DIV, true),
 487	CLK_MGT_ENTRY(HSIRXCLK, PLL_DIV, true),
 488	CLK_MGT_ENTRY(HDMICLK, PLL_FIX, false),
 489	CLK_MGT_ENTRY(APEATCLK, PLL_DIV, true),
 490	CLK_MGT_ENTRY(APETRACECLK, PLL_DIV, true),
 491	CLK_MGT_ENTRY(MCDECLK, PLL_DIV, true),
 492	CLK_MGT_ENTRY(IPI2CCLK, PLL_FIX, true),
 493	CLK_MGT_ENTRY(DSIALTCLK, PLL_FIX, false),
 494	CLK_MGT_ENTRY(DMACLK, PLL_DIV, true),
 495	CLK_MGT_ENTRY(B2R2CLK, PLL_DIV, true),
 496	CLK_MGT_ENTRY(TVCLK, PLL_FIX, true),
 497	CLK_MGT_ENTRY(SSPCLK, PLL_FIX, true),
 498	CLK_MGT_ENTRY(RNGCLK, PLL_FIX, true),
 499	CLK_MGT_ENTRY(UICCCLK, PLL_FIX, false),
 500};
 501
 502struct dsiclk {
 503	u32 divsel_mask;
 504	u32 divsel_shift;
 505	u32 divsel;
 506};
 507
 508static struct dsiclk dsiclk[2] = {
 509	{
 510		.divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_MASK,
 511		.divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_SHIFT,
 512		.divsel = PRCM_DSI_PLLOUT_SEL_PHI,
 513	},
 514	{
 515		.divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_MASK,
 516		.divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_SHIFT,
 517		.divsel = PRCM_DSI_PLLOUT_SEL_PHI,
 518	}
 519};
 520
 521struct dsiescclk {
 522	u32 en;
 523	u32 div_mask;
 524	u32 div_shift;
 525};
 526
 527static struct dsiescclk dsiescclk[3] = {
 528	{
 529		.en = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_EN,
 530		.div_mask = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_MASK,
 531		.div_shift = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_SHIFT,
 532	},
 533	{
 534		.en = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_EN,
 535		.div_mask = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_MASK,
 536		.div_shift = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_SHIFT,
 537	},
 538	{
 539		.en = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_EN,
 540		.div_mask = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_MASK,
 541		.div_shift = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_SHIFT,
 542	}
 543};
 544
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 545u32 db8500_prcmu_read(unsigned int reg)
 546{
 547	return readl(prcmu_base + reg);
 548}
 549
 550void db8500_prcmu_write(unsigned int reg, u32 value)
 551{
 552	unsigned long flags;
 553
 554	spin_lock_irqsave(&prcmu_lock, flags);
 555	writel(value, (prcmu_base + reg));
 556	spin_unlock_irqrestore(&prcmu_lock, flags);
 557}
 558
 559void db8500_prcmu_write_masked(unsigned int reg, u32 mask, u32 value)
 560{
 561	u32 val;
 562	unsigned long flags;
 563
 564	spin_lock_irqsave(&prcmu_lock, flags);
 565	val = readl(prcmu_base + reg);
 566	val = ((val & ~mask) | (value & mask));
 567	writel(val, (prcmu_base + reg));
 568	spin_unlock_irqrestore(&prcmu_lock, flags);
 569}
 570
 571struct prcmu_fw_version *prcmu_get_fw_version(void)
 572{
 573	return fw_info.valid ? &fw_info.version : NULL;
 574}
 575
 576static bool prcmu_is_ulppll_disabled(void)
 577{
 578	struct prcmu_fw_version *ver;
 579
 580	ver = prcmu_get_fw_version();
 581	return ver && ver->project == PRCMU_FW_PROJECT_U8420_SYSCLK;
 582}
 583
 584bool prcmu_has_arm_maxopp(void)
 585{
 586	return (readb(tcdm_base + PRCM_AVS_VARM_MAX_OPP) &
 587		PRCM_AVS_ISMODEENABLE_MASK) == PRCM_AVS_ISMODEENABLE_MASK;
 588}
 589
 590/**
 
 
 
 
 
 
 
 
 
 591 * prcmu_set_rc_a2p - This function is used to run few power state sequences
 592 * @val: Value to be set, i.e. transition requested
 593 * Returns: 0 on success, -EINVAL on invalid argument
 594 *
 595 * This function is used to run the following power state sequences -
 596 * any state to ApReset,  ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
 597 */
 598int prcmu_set_rc_a2p(enum romcode_write val)
 599{
 600	if (val < RDY_2_DS || val > RDY_2_XP70_RST)
 601		return -EINVAL;
 602	writeb(val, (tcdm_base + PRCM_ROMCODE_A2P));
 603	return 0;
 604}
 605
 606/**
 607 * prcmu_get_rc_p2a - This function is used to get power state sequences
 608 * Returns: the power transition that has last happened
 609 *
 610 * This function can return the following transitions-
 611 * any state to ApReset,  ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
 612 */
 613enum romcode_read prcmu_get_rc_p2a(void)
 614{
 615	return readb(tcdm_base + PRCM_ROMCODE_P2A);
 616}
 617
 618/**
 619 * prcmu_get_current_mode - Return the current XP70 power mode
 620 * Returns: Returns the current AP(ARM) power mode: init,
 621 * apBoot, apExecute, apDeepSleep, apSleep, apIdle, apReset
 622 */
 623enum ap_pwrst prcmu_get_xp70_current_state(void)
 624{
 625	return readb(tcdm_base + PRCM_XP70_CUR_PWR_STATE);
 626}
 627
 628/**
 629 * prcmu_config_clkout - Configure one of the programmable clock outputs.
 630 * @clkout:	The CLKOUT number (0 or 1).
 631 * @source:	The clock to be used (one of the PRCMU_CLKSRC_*).
 632 * @div:	The divider to be applied.
 633 *
 634 * Configures one of the programmable clock outputs (CLKOUTs).
 635 * @div should be in the range [1,63] to request a configuration, or 0 to
 636 * inform that the configuration is no longer requested.
 637 */
 638int prcmu_config_clkout(u8 clkout, u8 source, u8 div)
 639{
 640	static int requests[2];
 641	int r = 0;
 642	unsigned long flags;
 643	u32 val;
 644	u32 bits;
 645	u32 mask;
 646	u32 div_mask;
 647
 648	BUG_ON(clkout > 1);
 649	BUG_ON(div > 63);
 650	BUG_ON((clkout == 0) && (source > PRCMU_CLKSRC_CLK009));
 651
 652	if (!div && !requests[clkout])
 653		return -EINVAL;
 654
 655	if (clkout == 0) {
 
 656		div_mask = PRCM_CLKOCR_CLKODIV0_MASK;
 657		mask = (PRCM_CLKOCR_CLKODIV0_MASK | PRCM_CLKOCR_CLKOSEL0_MASK);
 658		bits = ((source << PRCM_CLKOCR_CLKOSEL0_SHIFT) |
 659			(div << PRCM_CLKOCR_CLKODIV0_SHIFT));
 660	} else {
 
 661		div_mask = PRCM_CLKOCR_CLKODIV1_MASK;
 662		mask = (PRCM_CLKOCR_CLKODIV1_MASK | PRCM_CLKOCR_CLKOSEL1_MASK |
 663			PRCM_CLKOCR_CLK1TYPE);
 664		bits = ((source << PRCM_CLKOCR_CLKOSEL1_SHIFT) |
 665			(div << PRCM_CLKOCR_CLKODIV1_SHIFT));
 
 666	}
 667	bits &= mask;
 668
 669	spin_lock_irqsave(&clkout_lock, flags);
 670
 671	val = readl(PRCM_CLKOCR);
 672	if (val & div_mask) {
 673		if (div) {
 674			if ((val & mask) != bits) {
 675				r = -EBUSY;
 676				goto unlock_and_return;
 677			}
 678		} else {
 679			if ((val & mask & ~div_mask) != bits) {
 680				r = -EINVAL;
 681				goto unlock_and_return;
 682			}
 683		}
 684	}
 685	writel((bits | (val & ~mask)), PRCM_CLKOCR);
 686	requests[clkout] += (div ? 1 : -1);
 687
 688unlock_and_return:
 689	spin_unlock_irqrestore(&clkout_lock, flags);
 690
 691	return r;
 692}
 693
 694int db8500_prcmu_set_power_state(u8 state, bool keep_ulp_clk, bool keep_ap_pll)
 695{
 696	unsigned long flags;
 697
 698	BUG_ON((state < PRCMU_AP_SLEEP) || (PRCMU_AP_DEEP_IDLE < state));
 699
 700	spin_lock_irqsave(&mb0_transfer.lock, flags);
 701
 702	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
 703		cpu_relax();
 704
 705	writeb(MB0H_POWER_STATE_TRANS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
 706	writeb(state, (tcdm_base + PRCM_REQ_MB0_AP_POWER_STATE));
 707	writeb((keep_ap_pll ? 1 : 0), (tcdm_base + PRCM_REQ_MB0_AP_PLL_STATE));
 708	writeb((keep_ulp_clk ? 1 : 0),
 709		(tcdm_base + PRCM_REQ_MB0_ULP_CLOCK_STATE));
 710	writeb(0, (tcdm_base + PRCM_REQ_MB0_DO_NOT_WFI));
 711	writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
 712
 713	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
 714
 715	return 0;
 716}
 717
 718u8 db8500_prcmu_get_power_state_result(void)
 719{
 720	return readb(tcdm_base + PRCM_ACK_MB0_AP_PWRSTTR_STATUS);
 721}
 722
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 723/* This function should only be called while mb0_transfer.lock is held. */
 724static void config_wakeups(void)
 725{
 726	const u8 header[2] = {
 727		MB0H_CONFIG_WAKEUPS_EXE,
 728		MB0H_CONFIG_WAKEUPS_SLEEP
 729	};
 730	static u32 last_dbb_events;
 731	static u32 last_abb_events;
 732	u32 dbb_events;
 733	u32 abb_events;
 734	unsigned int i;
 735
 736	dbb_events = mb0_transfer.req.dbb_irqs | mb0_transfer.req.dbb_wakeups;
 737	dbb_events |= (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK);
 738
 739	abb_events = mb0_transfer.req.abb_events;
 740
 741	if ((dbb_events == last_dbb_events) && (abb_events == last_abb_events))
 742		return;
 743
 744	for (i = 0; i < 2; i++) {
 745		while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
 746			cpu_relax();
 747		writel(dbb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_8500));
 748		writel(abb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_4500));
 749		writeb(header[i], (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
 750		writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
 751	}
 752	last_dbb_events = dbb_events;
 753	last_abb_events = abb_events;
 754}
 755
 756void db8500_prcmu_enable_wakeups(u32 wakeups)
 757{
 758	unsigned long flags;
 759	u32 bits;
 760	int i;
 761
 762	BUG_ON(wakeups != (wakeups & VALID_WAKEUPS));
 763
 764	for (i = 0, bits = 0; i < NUM_PRCMU_WAKEUP_INDICES; i++) {
 765		if (wakeups & BIT(i))
 766			bits |= prcmu_wakeup_bit[i];
 767	}
 768
 769	spin_lock_irqsave(&mb0_transfer.lock, flags);
 770
 771	mb0_transfer.req.dbb_wakeups = bits;
 772	config_wakeups();
 773
 774	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
 775}
 776
 777void db8500_prcmu_config_abb_event_readout(u32 abb_events)
 778{
 779	unsigned long flags;
 780
 781	spin_lock_irqsave(&mb0_transfer.lock, flags);
 782
 783	mb0_transfer.req.abb_events = abb_events;
 784	config_wakeups();
 785
 786	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
 787}
 788
 789void db8500_prcmu_get_abb_event_buffer(void __iomem **buf)
 790{
 791	if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
 792		*buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_1_4500);
 793	else
 794		*buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_0_4500);
 795}
 796
 797/**
 798 * db8500_prcmu_set_arm_opp - set the appropriate ARM OPP
 799 * @opp: The new ARM operating point to which transition is to be made
 800 * Returns: 0 on success, non-zero on failure
 801 *
 802 * This function sets the the operating point of the ARM.
 803 */
 804int db8500_prcmu_set_arm_opp(u8 opp)
 805{
 806	int r;
 807
 808	if (opp < ARM_NO_CHANGE || opp > ARM_EXTCLK)
 809		return -EINVAL;
 810
 811	r = 0;
 812
 813	mutex_lock(&mb1_transfer.lock);
 814
 815	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
 816		cpu_relax();
 817
 818	writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
 819	writeb(opp, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
 820	writeb(APE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_APE_OPP));
 821
 822	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
 823	wait_for_completion(&mb1_transfer.work);
 824
 825	if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
 826		(mb1_transfer.ack.arm_opp != opp))
 827		r = -EIO;
 828
 829	mutex_unlock(&mb1_transfer.lock);
 830
 831	return r;
 832}
 833
 834/**
 835 * db8500_prcmu_get_arm_opp - get the current ARM OPP
 836 *
 837 * Returns: the current ARM OPP
 838 */
 839int db8500_prcmu_get_arm_opp(void)
 840{
 841	return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_ARM_OPP);
 842}
 843
 844/**
 845 * db8500_prcmu_get_ddr_opp - get the current DDR OPP
 846 *
 847 * Returns: the current DDR OPP
 848 */
 849int db8500_prcmu_get_ddr_opp(void)
 850{
 851	return readb(PRCM_DDR_SUBSYS_APE_MINBW);
 852}
 853
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 854/* Divide the frequency of certain clocks by 2 for APE_50_PARTLY_25_OPP. */
 855static void request_even_slower_clocks(bool enable)
 856{
 857	u32 clock_reg[] = {
 858		PRCM_ACLK_MGT,
 859		PRCM_DMACLK_MGT
 860	};
 861	unsigned long flags;
 862	unsigned int i;
 863
 864	spin_lock_irqsave(&clk_mgt_lock, flags);
 865
 866	/* Grab the HW semaphore. */
 867	while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
 868		cpu_relax();
 869
 870	for (i = 0; i < ARRAY_SIZE(clock_reg); i++) {
 871		u32 val;
 872		u32 div;
 873
 874		val = readl(prcmu_base + clock_reg[i]);
 875		div = (val & PRCM_CLK_MGT_CLKPLLDIV_MASK);
 876		if (enable) {
 877			if ((div <= 1) || (div > 15)) {
 878				pr_err("prcmu: Bad clock divider %d in %s\n",
 879					div, __func__);
 880				goto unlock_and_return;
 881			}
 882			div <<= 1;
 883		} else {
 884			if (div <= 2)
 885				goto unlock_and_return;
 886			div >>= 1;
 887		}
 888		val = ((val & ~PRCM_CLK_MGT_CLKPLLDIV_MASK) |
 889			(div & PRCM_CLK_MGT_CLKPLLDIV_MASK));
 890		writel(val, prcmu_base + clock_reg[i]);
 891	}
 892
 893unlock_and_return:
 894	/* Release the HW semaphore. */
 895	writel(0, PRCM_SEM);
 896
 897	spin_unlock_irqrestore(&clk_mgt_lock, flags);
 898}
 899
 900/**
 901 * db8500_set_ape_opp - set the appropriate APE OPP
 902 * @opp: The new APE operating point to which transition is to be made
 903 * Returns: 0 on success, non-zero on failure
 904 *
 905 * This function sets the operating point of the APE.
 906 */
 907int db8500_prcmu_set_ape_opp(u8 opp)
 908{
 909	int r = 0;
 910
 911	if (opp == mb1_transfer.ape_opp)
 912		return 0;
 913
 914	mutex_lock(&mb1_transfer.lock);
 915
 916	if (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)
 917		request_even_slower_clocks(false);
 918
 919	if ((opp != APE_100_OPP) && (mb1_transfer.ape_opp != APE_100_OPP))
 920		goto skip_message;
 921
 922	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
 923		cpu_relax();
 924
 925	writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
 926	writeb(ARM_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
 927	writeb(((opp == APE_50_PARTLY_25_OPP) ? APE_50_OPP : opp),
 928		(tcdm_base + PRCM_REQ_MB1_APE_OPP));
 929
 930	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
 931	wait_for_completion(&mb1_transfer.work);
 932
 933	if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
 934		(mb1_transfer.ack.ape_opp != opp))
 935		r = -EIO;
 936
 937skip_message:
 938	if ((!r && (opp == APE_50_PARTLY_25_OPP)) ||
 939		(r && (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)))
 940		request_even_slower_clocks(true);
 941	if (!r)
 942		mb1_transfer.ape_opp = opp;
 943
 944	mutex_unlock(&mb1_transfer.lock);
 945
 946	return r;
 947}
 948
 949/**
 950 * db8500_prcmu_get_ape_opp - get the current APE OPP
 951 *
 952 * Returns: the current APE OPP
 953 */
 954int db8500_prcmu_get_ape_opp(void)
 955{
 956	return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_APE_OPP);
 957}
 958
 959/**
 960 * db8500_prcmu_request_ape_opp_100_voltage - Request APE OPP 100% voltage
 961 * @enable: true to request the higher voltage, false to drop a request.
 962 *
 963 * Calls to this function to enable and disable requests must be balanced.
 964 */
 965int db8500_prcmu_request_ape_opp_100_voltage(bool enable)
 966{
 967	int r = 0;
 968	u8 header;
 969	static unsigned int requests;
 970
 971	mutex_lock(&mb1_transfer.lock);
 972
 973	if (enable) {
 974		if (0 != requests++)
 975			goto unlock_and_return;
 976		header = MB1H_REQUEST_APE_OPP_100_VOLT;
 977	} else {
 978		if (requests == 0) {
 979			r = -EIO;
 980			goto unlock_and_return;
 981		} else if (1 != requests--) {
 982			goto unlock_and_return;
 983		}
 984		header = MB1H_RELEASE_APE_OPP_100_VOLT;
 985	}
 986
 987	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
 988		cpu_relax();
 989
 990	writeb(header, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
 991
 992	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
 993	wait_for_completion(&mb1_transfer.work);
 994
 995	if ((mb1_transfer.ack.header != header) ||
 996		((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
 997		r = -EIO;
 998
 999unlock_and_return:
1000	mutex_unlock(&mb1_transfer.lock);
1001
1002	return r;
1003}
1004
1005/**
1006 * prcmu_release_usb_wakeup_state - release the state required by a USB wakeup
1007 *
1008 * This function releases the power state requirements of a USB wakeup.
1009 */
1010int prcmu_release_usb_wakeup_state(void)
1011{
1012	int r = 0;
1013
1014	mutex_lock(&mb1_transfer.lock);
1015
1016	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1017		cpu_relax();
1018
1019	writeb(MB1H_RELEASE_USB_WAKEUP,
1020		(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1021
1022	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1023	wait_for_completion(&mb1_transfer.work);
1024
1025	if ((mb1_transfer.ack.header != MB1H_RELEASE_USB_WAKEUP) ||
1026		((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1027		r = -EIO;
1028
1029	mutex_unlock(&mb1_transfer.lock);
1030
1031	return r;
1032}
1033
1034static int request_pll(u8 clock, bool enable)
1035{
1036	int r = 0;
1037
1038	if (clock == PRCMU_PLLSOC0)
1039		clock = (enable ? PLL_SOC0_ON : PLL_SOC0_OFF);
1040	else if (clock == PRCMU_PLLSOC1)
1041		clock = (enable ? PLL_SOC1_ON : PLL_SOC1_OFF);
1042	else
1043		return -EINVAL;
1044
1045	mutex_lock(&mb1_transfer.lock);
1046
1047	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1048		cpu_relax();
1049
1050	writeb(MB1H_PLL_ON_OFF, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1051	writeb(clock, (tcdm_base + PRCM_REQ_MB1_PLL_ON_OFF));
1052
1053	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1054	wait_for_completion(&mb1_transfer.work);
1055
1056	if (mb1_transfer.ack.header != MB1H_PLL_ON_OFF)
1057		r = -EIO;
1058
1059	mutex_unlock(&mb1_transfer.lock);
1060
1061	return r;
1062}
1063
1064/**
1065 * db8500_prcmu_set_epod - set the state of a EPOD (power domain)
1066 * @epod_id: The EPOD to set
1067 * @epod_state: The new EPOD state
1068 *
1069 * This function sets the state of a EPOD (power domain). It may not be called
1070 * from interrupt context.
1071 */
1072int db8500_prcmu_set_epod(u16 epod_id, u8 epod_state)
1073{
1074	int r = 0;
1075	bool ram_retention = false;
1076	int i;
1077
1078	/* check argument */
1079	BUG_ON(epod_id >= NUM_EPOD_ID);
1080
1081	/* set flag if retention is possible */
1082	switch (epod_id) {
1083	case EPOD_ID_SVAMMDSP:
1084	case EPOD_ID_SIAMMDSP:
1085	case EPOD_ID_ESRAM12:
1086	case EPOD_ID_ESRAM34:
1087		ram_retention = true;
1088		break;
1089	}
1090
1091	/* check argument */
1092	BUG_ON(epod_state > EPOD_STATE_ON);
1093	BUG_ON(epod_state == EPOD_STATE_RAMRET && !ram_retention);
1094
1095	/* get lock */
1096	mutex_lock(&mb2_transfer.lock);
1097
1098	/* wait for mailbox */
1099	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(2))
1100		cpu_relax();
1101
1102	/* fill in mailbox */
1103	for (i = 0; i < NUM_EPOD_ID; i++)
1104		writeb(EPOD_STATE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB2 + i));
1105	writeb(epod_state, (tcdm_base + PRCM_REQ_MB2 + epod_id));
1106
1107	writeb(MB2H_DPS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB2));
1108
1109	writel(MBOX_BIT(2), PRCM_MBOX_CPU_SET);
1110
1111	/*
1112	 * The current firmware version does not handle errors correctly,
1113	 * and we cannot recover if there is an error.
1114	 * This is expected to change when the firmware is updated.
1115	 */
1116	if (!wait_for_completion_timeout(&mb2_transfer.work,
1117			msecs_to_jiffies(20000))) {
1118		pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1119			__func__);
1120		r = -EIO;
1121		goto unlock_and_return;
1122	}
1123
1124	if (mb2_transfer.ack.status != HWACC_PWR_ST_OK)
1125		r = -EIO;
1126
1127unlock_and_return:
1128	mutex_unlock(&mb2_transfer.lock);
1129	return r;
1130}
1131
1132/**
1133 * prcmu_configure_auto_pm - Configure autonomous power management.
1134 * @sleep: Configuration for ApSleep.
1135 * @idle:  Configuration for ApIdle.
1136 */
1137void prcmu_configure_auto_pm(struct prcmu_auto_pm_config *sleep,
1138	struct prcmu_auto_pm_config *idle)
1139{
1140	u32 sleep_cfg;
1141	u32 idle_cfg;
1142	unsigned long flags;
1143
1144	BUG_ON((sleep == NULL) || (idle == NULL));
1145
1146	sleep_cfg = (sleep->sva_auto_pm_enable & 0xF);
1147	sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_auto_pm_enable & 0xF));
1148	sleep_cfg = ((sleep_cfg << 8) | (sleep->sva_power_on & 0xFF));
1149	sleep_cfg = ((sleep_cfg << 8) | (sleep->sia_power_on & 0xFF));
1150	sleep_cfg = ((sleep_cfg << 4) | (sleep->sva_policy & 0xF));
1151	sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_policy & 0xF));
1152
1153	idle_cfg = (idle->sva_auto_pm_enable & 0xF);
1154	idle_cfg = ((idle_cfg << 4) | (idle->sia_auto_pm_enable & 0xF));
1155	idle_cfg = ((idle_cfg << 8) | (idle->sva_power_on & 0xFF));
1156	idle_cfg = ((idle_cfg << 8) | (idle->sia_power_on & 0xFF));
1157	idle_cfg = ((idle_cfg << 4) | (idle->sva_policy & 0xF));
1158	idle_cfg = ((idle_cfg << 4) | (idle->sia_policy & 0xF));
1159
1160	spin_lock_irqsave(&mb2_transfer.auto_pm_lock, flags);
1161
1162	/*
1163	 * The autonomous power management configuration is done through
1164	 * fields in mailbox 2, but these fields are only used as shared
1165	 * variables - i.e. there is no need to send a message.
1166	 */
1167	writel(sleep_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_SLEEP));
1168	writel(idle_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_IDLE));
1169
1170	mb2_transfer.auto_pm_enabled =
1171		((sleep->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1172		 (sleep->sia_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1173		 (idle->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1174		 (idle->sia_auto_pm_enable == PRCMU_AUTO_PM_ON));
1175
1176	spin_unlock_irqrestore(&mb2_transfer.auto_pm_lock, flags);
1177}
1178EXPORT_SYMBOL(prcmu_configure_auto_pm);
1179
1180bool prcmu_is_auto_pm_enabled(void)
1181{
1182	return mb2_transfer.auto_pm_enabled;
1183}
1184
1185static int request_sysclk(bool enable)
1186{
1187	int r;
1188	unsigned long flags;
1189
1190	r = 0;
1191
1192	mutex_lock(&mb3_transfer.sysclk_lock);
1193
1194	spin_lock_irqsave(&mb3_transfer.lock, flags);
1195
1196	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(3))
1197		cpu_relax();
1198
1199	writeb((enable ? ON : OFF), (tcdm_base + PRCM_REQ_MB3_SYSCLK_MGT));
1200
1201	writeb(MB3H_SYSCLK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB3));
1202	writel(MBOX_BIT(3), PRCM_MBOX_CPU_SET);
1203
1204	spin_unlock_irqrestore(&mb3_transfer.lock, flags);
1205
1206	/*
1207	 * The firmware only sends an ACK if we want to enable the
1208	 * SysClk, and it succeeds.
1209	 */
1210	if (enable && !wait_for_completion_timeout(&mb3_transfer.sysclk_work,
1211			msecs_to_jiffies(20000))) {
1212		pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1213			__func__);
1214		r = -EIO;
1215	}
1216
1217	mutex_unlock(&mb3_transfer.sysclk_lock);
1218
1219	return r;
1220}
1221
1222static int request_timclk(bool enable)
1223{
1224	u32 val;
1225
1226	/*
1227	 * On the U8420_CLKSEL firmware, the ULP (Ultra Low Power)
1228	 * PLL is disabled so we cannot use doze mode, this will
1229	 * stop the clock on this firmware.
1230	 */
1231	if (prcmu_is_ulppll_disabled())
1232		val = 0;
1233	else
1234		val = (PRCM_TCR_DOZE_MODE | PRCM_TCR_TENSEL_MASK);
1235
1236	if (!enable)
1237		val |= PRCM_TCR_STOP_TIMERS |
1238			PRCM_TCR_DOZE_MODE |
1239			PRCM_TCR_TENSEL_MASK;
1240
1241	writel(val, PRCM_TCR);
1242
1243	return 0;
1244}
1245
1246static int request_clock(u8 clock, bool enable)
1247{
1248	u32 val;
1249	unsigned long flags;
1250
1251	spin_lock_irqsave(&clk_mgt_lock, flags);
1252
1253	/* Grab the HW semaphore. */
1254	while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1255		cpu_relax();
1256
1257	val = readl(prcmu_base + clk_mgt[clock].offset);
1258	if (enable) {
1259		val |= (PRCM_CLK_MGT_CLKEN | clk_mgt[clock].pllsw);
1260	} else {
1261		clk_mgt[clock].pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1262		val &= ~(PRCM_CLK_MGT_CLKEN | PRCM_CLK_MGT_CLKPLLSW_MASK);
1263	}
1264	writel(val, prcmu_base + clk_mgt[clock].offset);
1265
1266	/* Release the HW semaphore. */
1267	writel(0, PRCM_SEM);
1268
1269	spin_unlock_irqrestore(&clk_mgt_lock, flags);
1270
1271	return 0;
1272}
1273
1274static int request_sga_clock(u8 clock, bool enable)
1275{
1276	u32 val;
1277	int ret;
1278
1279	if (enable) {
1280		val = readl(PRCM_CGATING_BYPASS);
1281		writel(val | PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1282	}
1283
1284	ret = request_clock(clock, enable);
1285
1286	if (!ret && !enable) {
1287		val = readl(PRCM_CGATING_BYPASS);
1288		writel(val & ~PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1289	}
1290
1291	return ret;
1292}
1293
1294static inline bool plldsi_locked(void)
1295{
1296	return (readl(PRCM_PLLDSI_LOCKP) &
1297		(PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1298		 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3)) ==
1299		(PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1300		 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3);
1301}
1302
1303static int request_plldsi(bool enable)
1304{
1305	int r = 0;
1306	u32 val;
1307
1308	writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1309		PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI), (enable ?
1310		PRCM_MMIP_LS_CLAMP_CLR : PRCM_MMIP_LS_CLAMP_SET));
1311
1312	val = readl(PRCM_PLLDSI_ENABLE);
1313	if (enable)
1314		val |= PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1315	else
1316		val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1317	writel(val, PRCM_PLLDSI_ENABLE);
1318
1319	if (enable) {
1320		unsigned int i;
1321		bool locked = plldsi_locked();
1322
1323		for (i = 10; !locked && (i > 0); --i) {
1324			udelay(100);
1325			locked = plldsi_locked();
1326		}
1327		if (locked) {
1328			writel(PRCM_APE_RESETN_DSIPLL_RESETN,
1329				PRCM_APE_RESETN_SET);
1330		} else {
1331			writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1332				PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI),
1333				PRCM_MMIP_LS_CLAMP_SET);
1334			val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1335			writel(val, PRCM_PLLDSI_ENABLE);
1336			r = -EAGAIN;
1337		}
1338	} else {
1339		writel(PRCM_APE_RESETN_DSIPLL_RESETN, PRCM_APE_RESETN_CLR);
1340	}
1341	return r;
1342}
1343
1344static int request_dsiclk(u8 n, bool enable)
1345{
1346	u32 val;
1347
1348	val = readl(PRCM_DSI_PLLOUT_SEL);
1349	val &= ~dsiclk[n].divsel_mask;
1350	val |= ((enable ? dsiclk[n].divsel : PRCM_DSI_PLLOUT_SEL_OFF) <<
1351		dsiclk[n].divsel_shift);
1352	writel(val, PRCM_DSI_PLLOUT_SEL);
1353	return 0;
1354}
1355
1356static int request_dsiescclk(u8 n, bool enable)
1357{
1358	u32 val;
1359
1360	val = readl(PRCM_DSITVCLK_DIV);
1361	enable ? (val |= dsiescclk[n].en) : (val &= ~dsiescclk[n].en);
1362	writel(val, PRCM_DSITVCLK_DIV);
1363	return 0;
1364}
1365
1366/**
1367 * db8500_prcmu_request_clock() - Request for a clock to be enabled or disabled.
1368 * @clock:      The clock for which the request is made.
1369 * @enable:     Whether the clock should be enabled (true) or disabled (false).
1370 *
1371 * This function should only be used by the clock implementation.
1372 * Do not use it from any other place!
1373 */
1374int db8500_prcmu_request_clock(u8 clock, bool enable)
1375{
1376	if (clock == PRCMU_SGACLK)
1377		return request_sga_clock(clock, enable);
1378	else if (clock < PRCMU_NUM_REG_CLOCKS)
1379		return request_clock(clock, enable);
1380	else if (clock == PRCMU_TIMCLK)
1381		return request_timclk(enable);
1382	else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1383		return request_dsiclk((clock - PRCMU_DSI0CLK), enable);
1384	else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1385		return request_dsiescclk((clock - PRCMU_DSI0ESCCLK), enable);
1386	else if (clock == PRCMU_PLLDSI)
1387		return request_plldsi(enable);
1388	else if (clock == PRCMU_SYSCLK)
1389		return request_sysclk(enable);
1390	else if ((clock == PRCMU_PLLSOC0) || (clock == PRCMU_PLLSOC1))
1391		return request_pll(clock, enable);
1392	else
1393		return -EINVAL;
1394}
1395
1396static unsigned long pll_rate(void __iomem *reg, unsigned long src_rate,
1397	int branch)
1398{
1399	u64 rate;
1400	u32 val;
1401	u32 d;
1402	u32 div = 1;
1403
1404	val = readl(reg);
1405
1406	rate = src_rate;
1407	rate *= ((val & PRCM_PLL_FREQ_D_MASK) >> PRCM_PLL_FREQ_D_SHIFT);
1408
1409	d = ((val & PRCM_PLL_FREQ_N_MASK) >> PRCM_PLL_FREQ_N_SHIFT);
1410	if (d > 1)
1411		div *= d;
1412
1413	d = ((val & PRCM_PLL_FREQ_R_MASK) >> PRCM_PLL_FREQ_R_SHIFT);
1414	if (d > 1)
1415		div *= d;
1416
1417	if (val & PRCM_PLL_FREQ_SELDIV2)
1418		div *= 2;
1419
1420	if ((branch == PLL_FIX) || ((branch == PLL_DIV) &&
1421		(val & PRCM_PLL_FREQ_DIV2EN) &&
1422		((reg == PRCM_PLLSOC0_FREQ) ||
1423		 (reg == PRCM_PLLARM_FREQ) ||
1424		 (reg == PRCM_PLLDDR_FREQ))))
1425		div *= 2;
1426
1427	(void)do_div(rate, div);
1428
1429	return (unsigned long)rate;
1430}
1431
1432#define ROOT_CLOCK_RATE 38400000
1433
1434static unsigned long clock_rate(u8 clock)
1435{
1436	u32 val;
1437	u32 pllsw;
1438	unsigned long rate = ROOT_CLOCK_RATE;
1439
1440	val = readl(prcmu_base + clk_mgt[clock].offset);
1441
1442	if (val & PRCM_CLK_MGT_CLK38) {
1443		if (clk_mgt[clock].clk38div && (val & PRCM_CLK_MGT_CLK38DIV))
1444			rate /= 2;
1445		return rate;
1446	}
1447
1448	val |= clk_mgt[clock].pllsw;
1449	pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1450
1451	if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1452		rate = pll_rate(PRCM_PLLSOC0_FREQ, rate, clk_mgt[clock].branch);
1453	else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1454		rate = pll_rate(PRCM_PLLSOC1_FREQ, rate, clk_mgt[clock].branch);
1455	else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_DDR)
1456		rate = pll_rate(PRCM_PLLDDR_FREQ, rate, clk_mgt[clock].branch);
1457	else
1458		return 0;
1459
1460	if ((clock == PRCMU_SGACLK) &&
1461		(val & PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN)) {
1462		u64 r = (rate * 10);
1463
1464		(void)do_div(r, 25);
1465		return (unsigned long)r;
1466	}
1467	val &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1468	if (val)
1469		return rate / val;
1470	else
1471		return 0;
1472}
1473
1474static unsigned long armss_rate(void)
1475{
1476	u32 r;
1477	unsigned long rate;
1478
1479	r = readl(PRCM_ARM_CHGCLKREQ);
1480
1481	if (r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_CHGCLKREQ) {
1482		/* External ARMCLKFIX clock */
1483
1484		rate = pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_FIX);
1485
1486		/* Check PRCM_ARM_CHGCLKREQ divider */
1487		if (!(r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_DIVSEL))
1488			rate /= 2;
1489
1490		/* Check PRCM_ARMCLKFIX_MGT divider */
1491		r = readl(PRCM_ARMCLKFIX_MGT);
1492		r &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1493		rate /= r;
1494
1495	} else {/* ARM PLL */
1496		rate = pll_rate(PRCM_PLLARM_FREQ, ROOT_CLOCK_RATE, PLL_DIV);
1497	}
1498
1499	return rate;
1500}
1501
1502static unsigned long dsiclk_rate(u8 n)
1503{
1504	u32 divsel;
1505	u32 div = 1;
1506
1507	divsel = readl(PRCM_DSI_PLLOUT_SEL);
1508	divsel = ((divsel & dsiclk[n].divsel_mask) >> dsiclk[n].divsel_shift);
1509
1510	if (divsel == PRCM_DSI_PLLOUT_SEL_OFF)
1511		divsel = dsiclk[n].divsel;
1512	else
1513		dsiclk[n].divsel = divsel;
1514
1515	switch (divsel) {
1516	case PRCM_DSI_PLLOUT_SEL_PHI_4:
1517		div *= 2;
1518		fallthrough;
1519	case PRCM_DSI_PLLOUT_SEL_PHI_2:
1520		div *= 2;
1521		fallthrough;
1522	case PRCM_DSI_PLLOUT_SEL_PHI:
1523		return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1524			PLL_RAW) / div;
1525	default:
1526		return 0;
1527	}
1528}
1529
1530static unsigned long dsiescclk_rate(u8 n)
1531{
1532	u32 div;
1533
1534	div = readl(PRCM_DSITVCLK_DIV);
1535	div = ((div & dsiescclk[n].div_mask) >> (dsiescclk[n].div_shift));
1536	return clock_rate(PRCMU_TVCLK) / max((u32)1, div);
1537}
1538
1539unsigned long prcmu_clock_rate(u8 clock)
1540{
1541	if (clock < PRCMU_NUM_REG_CLOCKS)
1542		return clock_rate(clock);
1543	else if (clock == PRCMU_TIMCLK)
1544		return prcmu_is_ulppll_disabled() ?
1545			32768 : ROOT_CLOCK_RATE / 16;
1546	else if (clock == PRCMU_SYSCLK)
1547		return ROOT_CLOCK_RATE;
1548	else if (clock == PRCMU_PLLSOC0)
1549		return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1550	else if (clock == PRCMU_PLLSOC1)
1551		return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1552	else if (clock == PRCMU_ARMSS)
1553		return armss_rate();
1554	else if (clock == PRCMU_PLLDDR)
1555		return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1556	else if (clock == PRCMU_PLLDSI)
1557		return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1558			PLL_RAW);
1559	else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1560		return dsiclk_rate(clock - PRCMU_DSI0CLK);
1561	else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1562		return dsiescclk_rate(clock - PRCMU_DSI0ESCCLK);
1563	else
1564		return 0;
1565}
1566
1567static unsigned long clock_source_rate(u32 clk_mgt_val, int branch)
1568{
1569	if (clk_mgt_val & PRCM_CLK_MGT_CLK38)
1570		return ROOT_CLOCK_RATE;
1571	clk_mgt_val &= PRCM_CLK_MGT_CLKPLLSW_MASK;
1572	if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1573		return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, branch);
1574	else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1575		return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, branch);
1576	else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_DDR)
1577		return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, branch);
1578	else
1579		return 0;
1580}
1581
1582static u32 clock_divider(unsigned long src_rate, unsigned long rate)
1583{
1584	u32 div;
1585
1586	div = (src_rate / rate);
1587	if (div == 0)
1588		return 1;
1589	if (rate < (src_rate / div))
1590		div++;
1591	return div;
1592}
1593
1594static long round_clock_rate(u8 clock, unsigned long rate)
1595{
1596	u32 val;
1597	u32 div;
1598	unsigned long src_rate;
1599	long rounded_rate;
1600
1601	val = readl(prcmu_base + clk_mgt[clock].offset);
1602	src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1603		clk_mgt[clock].branch);
1604	div = clock_divider(src_rate, rate);
1605	if (val & PRCM_CLK_MGT_CLK38) {
1606		if (clk_mgt[clock].clk38div) {
1607			if (div > 2)
1608				div = 2;
1609		} else {
1610			div = 1;
1611		}
1612	} else if ((clock == PRCMU_SGACLK) && (div == 3)) {
1613		u64 r = (src_rate * 10);
1614
1615		(void)do_div(r, 25);
1616		if (r <= rate)
1617			return (unsigned long)r;
1618	}
1619	rounded_rate = (src_rate / min(div, (u32)31));
1620
1621	return rounded_rate;
1622}
1623
1624static const unsigned long db8500_armss_freqs[] = {
1625	200000000,
1626	400000000,
1627	800000000,
1628	998400000
1629};
1630
1631/* The DB8520 has slightly higher ARMSS max frequency */
1632static const unsigned long db8520_armss_freqs[] = {
1633	200000000,
1634	400000000,
1635	800000000,
1636	1152000000
1637};
1638
1639
1640
1641static long round_armss_rate(unsigned long rate)
1642{
1643	unsigned long freq = 0;
1644	const unsigned long *freqs;
1645	int nfreqs;
1646	int i;
1647
1648	if (fw_info.version.project == PRCMU_FW_PROJECT_U8520) {
1649		freqs = db8520_armss_freqs;
1650		nfreqs = ARRAY_SIZE(db8520_armss_freqs);
1651	} else {
1652		freqs = db8500_armss_freqs;
1653		nfreqs = ARRAY_SIZE(db8500_armss_freqs);
1654	}
1655
1656	/* Find the corresponding arm opp from the cpufreq table. */
1657	for (i = 0; i < nfreqs; i++) {
1658		freq = freqs[i];
1659		if (rate <= freq)
1660			break;
1661	}
1662
1663	/* Return the last valid value, even if a match was not found. */
1664	return freq;
1665}
1666
1667#define MIN_PLL_VCO_RATE 600000000ULL
1668#define MAX_PLL_VCO_RATE 1680640000ULL
1669
1670static long round_plldsi_rate(unsigned long rate)
1671{
1672	long rounded_rate = 0;
1673	unsigned long src_rate;
1674	unsigned long rem;
1675	u32 r;
1676
1677	src_rate = clock_rate(PRCMU_HDMICLK);
1678	rem = rate;
1679
1680	for (r = 7; (rem > 0) && (r > 0); r--) {
1681		u64 d;
1682
1683		d = (r * rate);
1684		(void)do_div(d, src_rate);
1685		if (d < 6)
1686			d = 6;
1687		else if (d > 255)
1688			d = 255;
1689		d *= src_rate;
1690		if (((2 * d) < (r * MIN_PLL_VCO_RATE)) ||
1691			((r * MAX_PLL_VCO_RATE) < (2 * d)))
1692			continue;
1693		(void)do_div(d, r);
1694		if (rate < d) {
1695			if (rounded_rate == 0)
1696				rounded_rate = (long)d;
1697			break;
1698		}
1699		if ((rate - d) < rem) {
1700			rem = (rate - d);
1701			rounded_rate = (long)d;
1702		}
1703	}
1704	return rounded_rate;
1705}
1706
1707static long round_dsiclk_rate(unsigned long rate)
1708{
1709	u32 div;
1710	unsigned long src_rate;
1711	long rounded_rate;
1712
1713	src_rate = pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1714		PLL_RAW);
1715	div = clock_divider(src_rate, rate);
1716	rounded_rate = (src_rate / ((div > 2) ? 4 : div));
1717
1718	return rounded_rate;
1719}
1720
1721static long round_dsiescclk_rate(unsigned long rate)
1722{
1723	u32 div;
1724	unsigned long src_rate;
1725	long rounded_rate;
1726
1727	src_rate = clock_rate(PRCMU_TVCLK);
1728	div = clock_divider(src_rate, rate);
1729	rounded_rate = (src_rate / min(div, (u32)255));
1730
1731	return rounded_rate;
1732}
1733
1734long prcmu_round_clock_rate(u8 clock, unsigned long rate)
1735{
1736	if (clock < PRCMU_NUM_REG_CLOCKS)
1737		return round_clock_rate(clock, rate);
1738	else if (clock == PRCMU_ARMSS)
1739		return round_armss_rate(rate);
1740	else if (clock == PRCMU_PLLDSI)
1741		return round_plldsi_rate(rate);
1742	else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1743		return round_dsiclk_rate(rate);
1744	else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1745		return round_dsiescclk_rate(rate);
1746	else
1747		return (long)prcmu_clock_rate(clock);
1748}
1749
1750static void set_clock_rate(u8 clock, unsigned long rate)
1751{
1752	u32 val;
1753	u32 div;
1754	unsigned long src_rate;
1755	unsigned long flags;
1756
1757	spin_lock_irqsave(&clk_mgt_lock, flags);
1758
1759	/* Grab the HW semaphore. */
1760	while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1761		cpu_relax();
1762
1763	val = readl(prcmu_base + clk_mgt[clock].offset);
1764	src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1765		clk_mgt[clock].branch);
1766	div = clock_divider(src_rate, rate);
1767	if (val & PRCM_CLK_MGT_CLK38) {
1768		if (clk_mgt[clock].clk38div) {
1769			if (div > 1)
1770				val |= PRCM_CLK_MGT_CLK38DIV;
1771			else
1772				val &= ~PRCM_CLK_MGT_CLK38DIV;
1773		}
1774	} else if (clock == PRCMU_SGACLK) {
1775		val &= ~(PRCM_CLK_MGT_CLKPLLDIV_MASK |
1776			PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN);
1777		if (div == 3) {
1778			u64 r = (src_rate * 10);
1779
1780			(void)do_div(r, 25);
1781			if (r <= rate) {
1782				val |= PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN;
1783				div = 0;
1784			}
1785		}
1786		val |= min(div, (u32)31);
1787	} else {
1788		val &= ~PRCM_CLK_MGT_CLKPLLDIV_MASK;
1789		val |= min(div, (u32)31);
1790	}
1791	writel(val, prcmu_base + clk_mgt[clock].offset);
1792
1793	/* Release the HW semaphore. */
1794	writel(0, PRCM_SEM);
1795
1796	spin_unlock_irqrestore(&clk_mgt_lock, flags);
1797}
1798
1799static int set_armss_rate(unsigned long rate)
1800{
1801	unsigned long freq;
1802	u8 opps[] = { ARM_EXTCLK, ARM_50_OPP, ARM_100_OPP, ARM_MAX_OPP };
1803	const unsigned long *freqs;
1804	int nfreqs;
1805	int i;
1806
1807	if (fw_info.version.project == PRCMU_FW_PROJECT_U8520) {
1808		freqs = db8520_armss_freqs;
1809		nfreqs = ARRAY_SIZE(db8520_armss_freqs);
1810	} else {
1811		freqs = db8500_armss_freqs;
1812		nfreqs = ARRAY_SIZE(db8500_armss_freqs);
1813	}
1814
1815	/* Find the corresponding arm opp from the cpufreq table. */
1816	for (i = 0; i < nfreqs; i++) {
1817		freq = freqs[i];
1818		if (rate == freq)
1819			break;
1820	}
1821
1822	if (rate != freq)
1823		return -EINVAL;
1824
1825	/* Set the new arm opp. */
1826	pr_debug("SET ARM OPP 0x%02x\n", opps[i]);
1827	return db8500_prcmu_set_arm_opp(opps[i]);
1828}
1829
1830static int set_plldsi_rate(unsigned long rate)
1831{
1832	unsigned long src_rate;
1833	unsigned long rem;
1834	u32 pll_freq = 0;
1835	u32 r;
1836
1837	src_rate = clock_rate(PRCMU_HDMICLK);
1838	rem = rate;
1839
1840	for (r = 7; (rem > 0) && (r > 0); r--) {
1841		u64 d;
1842		u64 hwrate;
1843
1844		d = (r * rate);
1845		(void)do_div(d, src_rate);
1846		if (d < 6)
1847			d = 6;
1848		else if (d > 255)
1849			d = 255;
1850		hwrate = (d * src_rate);
1851		if (((2 * hwrate) < (r * MIN_PLL_VCO_RATE)) ||
1852			((r * MAX_PLL_VCO_RATE) < (2 * hwrate)))
1853			continue;
1854		(void)do_div(hwrate, r);
1855		if (rate < hwrate) {
1856			if (pll_freq == 0)
1857				pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
1858					(r << PRCM_PLL_FREQ_R_SHIFT));
1859			break;
1860		}
1861		if ((rate - hwrate) < rem) {
1862			rem = (rate - hwrate);
1863			pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
1864				(r << PRCM_PLL_FREQ_R_SHIFT));
1865		}
1866	}
1867	if (pll_freq == 0)
1868		return -EINVAL;
1869
1870	pll_freq |= (1 << PRCM_PLL_FREQ_N_SHIFT);
1871	writel(pll_freq, PRCM_PLLDSI_FREQ);
1872
1873	return 0;
1874}
1875
1876static void set_dsiclk_rate(u8 n, unsigned long rate)
1877{
1878	u32 val;
1879	u32 div;
1880
1881	div = clock_divider(pll_rate(PRCM_PLLDSI_FREQ,
1882			clock_rate(PRCMU_HDMICLK), PLL_RAW), rate);
1883
1884	dsiclk[n].divsel = (div == 1) ? PRCM_DSI_PLLOUT_SEL_PHI :
1885			   (div == 2) ? PRCM_DSI_PLLOUT_SEL_PHI_2 :
1886			   /* else */	PRCM_DSI_PLLOUT_SEL_PHI_4;
1887
1888	val = readl(PRCM_DSI_PLLOUT_SEL);
1889	val &= ~dsiclk[n].divsel_mask;
1890	val |= (dsiclk[n].divsel << dsiclk[n].divsel_shift);
1891	writel(val, PRCM_DSI_PLLOUT_SEL);
1892}
1893
1894static void set_dsiescclk_rate(u8 n, unsigned long rate)
1895{
1896	u32 val;
1897	u32 div;
1898
1899	div = clock_divider(clock_rate(PRCMU_TVCLK), rate);
1900	val = readl(PRCM_DSITVCLK_DIV);
1901	val &= ~dsiescclk[n].div_mask;
1902	val |= (min(div, (u32)255) << dsiescclk[n].div_shift);
1903	writel(val, PRCM_DSITVCLK_DIV);
1904}
1905
1906int prcmu_set_clock_rate(u8 clock, unsigned long rate)
1907{
1908	if (clock < PRCMU_NUM_REG_CLOCKS)
1909		set_clock_rate(clock, rate);
1910	else if (clock == PRCMU_ARMSS)
1911		return set_armss_rate(rate);
1912	else if (clock == PRCMU_PLLDSI)
1913		return set_plldsi_rate(rate);
1914	else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1915		set_dsiclk_rate((clock - PRCMU_DSI0CLK), rate);
1916	else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1917		set_dsiescclk_rate((clock - PRCMU_DSI0ESCCLK), rate);
1918	return 0;
1919}
1920
1921int db8500_prcmu_config_esram0_deep_sleep(u8 state)
1922{
1923	if ((state > ESRAM0_DEEP_SLEEP_STATE_RET) ||
1924	    (state < ESRAM0_DEEP_SLEEP_STATE_OFF))
1925		return -EINVAL;
1926
1927	mutex_lock(&mb4_transfer.lock);
1928
1929	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
1930		cpu_relax();
1931
1932	writeb(MB4H_MEM_ST, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
1933	writeb(((DDR_PWR_STATE_OFFHIGHLAT << 4) | DDR_PWR_STATE_ON),
1934	       (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE));
1935	writeb(DDR_PWR_STATE_ON,
1936	       (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE));
1937	writeb(state, (tcdm_base + PRCM_REQ_MB4_ESRAM0_ST));
1938
1939	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
1940	wait_for_completion(&mb4_transfer.work);
1941
1942	mutex_unlock(&mb4_transfer.lock);
1943
1944	return 0;
1945}
1946
1947int db8500_prcmu_config_hotdog(u8 threshold)
1948{
1949	mutex_lock(&mb4_transfer.lock);
1950
1951	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
1952		cpu_relax();
1953
1954	writeb(threshold, (tcdm_base + PRCM_REQ_MB4_HOTDOG_THRESHOLD));
1955	writeb(MB4H_HOTDOG, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
1956
1957	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
1958	wait_for_completion(&mb4_transfer.work);
1959
1960	mutex_unlock(&mb4_transfer.lock);
1961
1962	return 0;
1963}
1964
1965int db8500_prcmu_config_hotmon(u8 low, u8 high)
1966{
1967	mutex_lock(&mb4_transfer.lock);
1968
1969	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
1970		cpu_relax();
1971
1972	writeb(low, (tcdm_base + PRCM_REQ_MB4_HOTMON_LOW));
1973	writeb(high, (tcdm_base + PRCM_REQ_MB4_HOTMON_HIGH));
1974	writeb((HOTMON_CONFIG_LOW | HOTMON_CONFIG_HIGH),
1975		(tcdm_base + PRCM_REQ_MB4_HOTMON_CONFIG));
1976	writeb(MB4H_HOTMON, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
1977
1978	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
1979	wait_for_completion(&mb4_transfer.work);
1980
1981	mutex_unlock(&mb4_transfer.lock);
1982
1983	return 0;
1984}
1985EXPORT_SYMBOL_GPL(db8500_prcmu_config_hotmon);
1986
1987static int config_hot_period(u16 val)
1988{
1989	mutex_lock(&mb4_transfer.lock);
1990
1991	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
1992		cpu_relax();
1993
1994	writew(val, (tcdm_base + PRCM_REQ_MB4_HOT_PERIOD));
1995	writeb(MB4H_HOT_PERIOD, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
1996
1997	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
1998	wait_for_completion(&mb4_transfer.work);
1999
2000	mutex_unlock(&mb4_transfer.lock);
2001
2002	return 0;
2003}
2004
2005int db8500_prcmu_start_temp_sense(u16 cycles32k)
2006{
2007	if (cycles32k == 0xFFFF)
2008		return -EINVAL;
2009
2010	return config_hot_period(cycles32k);
2011}
2012EXPORT_SYMBOL_GPL(db8500_prcmu_start_temp_sense);
2013
2014int db8500_prcmu_stop_temp_sense(void)
2015{
2016	return config_hot_period(0xFFFF);
2017}
2018EXPORT_SYMBOL_GPL(db8500_prcmu_stop_temp_sense);
2019
2020static int prcmu_a9wdog(u8 cmd, u8 d0, u8 d1, u8 d2, u8 d3)
2021{
2022
2023	mutex_lock(&mb4_transfer.lock);
2024
2025	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2026		cpu_relax();
2027
2028	writeb(d0, (tcdm_base + PRCM_REQ_MB4_A9WDOG_0));
2029	writeb(d1, (tcdm_base + PRCM_REQ_MB4_A9WDOG_1));
2030	writeb(d2, (tcdm_base + PRCM_REQ_MB4_A9WDOG_2));
2031	writeb(d3, (tcdm_base + PRCM_REQ_MB4_A9WDOG_3));
2032
2033	writeb(cmd, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2034
2035	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2036	wait_for_completion(&mb4_transfer.work);
2037
2038	mutex_unlock(&mb4_transfer.lock);
2039
2040	return 0;
2041
2042}
2043
2044int db8500_prcmu_config_a9wdog(u8 num, bool sleep_auto_off)
2045{
2046	BUG_ON(num == 0 || num > 0xf);
2047	return prcmu_a9wdog(MB4H_A9WDOG_CONF, num, 0, 0,
2048			    sleep_auto_off ? A9WDOG_AUTO_OFF_EN :
2049			    A9WDOG_AUTO_OFF_DIS);
2050}
2051EXPORT_SYMBOL(db8500_prcmu_config_a9wdog);
2052
2053int db8500_prcmu_enable_a9wdog(u8 id)
2054{
2055	return prcmu_a9wdog(MB4H_A9WDOG_EN, id, 0, 0, 0);
2056}
2057EXPORT_SYMBOL(db8500_prcmu_enable_a9wdog);
2058
2059int db8500_prcmu_disable_a9wdog(u8 id)
2060{
2061	return prcmu_a9wdog(MB4H_A9WDOG_DIS, id, 0, 0, 0);
2062}
2063EXPORT_SYMBOL(db8500_prcmu_disable_a9wdog);
2064
2065int db8500_prcmu_kick_a9wdog(u8 id)
2066{
2067	return prcmu_a9wdog(MB4H_A9WDOG_KICK, id, 0, 0, 0);
2068}
2069EXPORT_SYMBOL(db8500_prcmu_kick_a9wdog);
2070
2071/*
2072 * timeout is 28 bit, in ms.
2073 */
2074int db8500_prcmu_load_a9wdog(u8 id, u32 timeout)
2075{
2076	return prcmu_a9wdog(MB4H_A9WDOG_LOAD,
2077			    (id & A9WDOG_ID_MASK) |
2078			    /*
2079			     * Put the lowest 28 bits of timeout at
2080			     * offset 4. Four first bits are used for id.
2081			     */
2082			    (u8)((timeout << 4) & 0xf0),
2083			    (u8)((timeout >> 4) & 0xff),
2084			    (u8)((timeout >> 12) & 0xff),
2085			    (u8)((timeout >> 20) & 0xff));
2086}
2087EXPORT_SYMBOL(db8500_prcmu_load_a9wdog);
2088
2089/**
2090 * prcmu_abb_read() - Read register value(s) from the ABB.
2091 * @slave:	The I2C slave address.
2092 * @reg:	The (start) register address.
2093 * @value:	The read out value(s).
2094 * @size:	The number of registers to read.
2095 *
2096 * Reads register value(s) from the ABB.
2097 * @size has to be 1 for the current firmware version.
2098 */
2099int prcmu_abb_read(u8 slave, u8 reg, u8 *value, u8 size)
2100{
2101	int r;
2102
2103	if (size != 1)
2104		return -EINVAL;
2105
2106	mutex_lock(&mb5_transfer.lock);
2107
2108	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
2109		cpu_relax();
2110
2111	writeb(0, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
2112	writeb(PRCMU_I2C_READ(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2113	writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2114	writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2115	writeb(0, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2116
2117	writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
2118
2119	if (!wait_for_completion_timeout(&mb5_transfer.work,
2120				msecs_to_jiffies(20000))) {
2121		pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2122			__func__);
2123		r = -EIO;
2124	} else {
2125		r = ((mb5_transfer.ack.status == I2C_RD_OK) ? 0 : -EIO);
2126	}
2127
2128	if (!r)
2129		*value = mb5_transfer.ack.value;
2130
2131	mutex_unlock(&mb5_transfer.lock);
2132
2133	return r;
2134}
2135
2136/**
2137 * prcmu_abb_write_masked() - Write masked register value(s) to the ABB.
2138 * @slave:	The I2C slave address.
2139 * @reg:	The (start) register address.
2140 * @value:	The value(s) to write.
2141 * @mask:	The mask(s) to use.
2142 * @size:	The number of registers to write.
2143 *
2144 * Writes masked register value(s) to the ABB.
2145 * For each @value, only the bits set to 1 in the corresponding @mask
2146 * will be written. The other bits are not changed.
2147 * @size has to be 1 for the current firmware version.
2148 */
2149int prcmu_abb_write_masked(u8 slave, u8 reg, u8 *value, u8 *mask, u8 size)
2150{
2151	int r;
2152
2153	if (size != 1)
2154		return -EINVAL;
2155
2156	mutex_lock(&mb5_transfer.lock);
2157
2158	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
2159		cpu_relax();
2160
2161	writeb(~*mask, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
2162	writeb(PRCMU_I2C_WRITE(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2163	writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2164	writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2165	writeb(*value, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2166
2167	writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
2168
2169	if (!wait_for_completion_timeout(&mb5_transfer.work,
2170				msecs_to_jiffies(20000))) {
2171		pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2172			__func__);
2173		r = -EIO;
2174	} else {
2175		r = ((mb5_transfer.ack.status == I2C_WR_OK) ? 0 : -EIO);
2176	}
2177
2178	mutex_unlock(&mb5_transfer.lock);
2179
2180	return r;
2181}
2182
2183/**
2184 * prcmu_abb_write() - Write register value(s) to the ABB.
2185 * @slave:	The I2C slave address.
2186 * @reg:	The (start) register address.
2187 * @value:	The value(s) to write.
2188 * @size:	The number of registers to write.
2189 *
2190 * Writes register value(s) to the ABB.
2191 * @size has to be 1 for the current firmware version.
2192 */
2193int prcmu_abb_write(u8 slave, u8 reg, u8 *value, u8 size)
2194{
2195	u8 mask = ~0;
2196
2197	return prcmu_abb_write_masked(slave, reg, value, &mask, size);
2198}
2199
2200/**
2201 * prcmu_ac_wake_req - should be called whenever ARM wants to wakeup Modem
2202 */
2203int prcmu_ac_wake_req(void)
2204{
2205	u32 val;
2206	int ret = 0;
2207
2208	mutex_lock(&mb0_transfer.ac_wake_lock);
2209
2210	val = readl(PRCM_HOSTACCESS_REQ);
2211	if (val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ)
2212		goto unlock_and_return;
2213
2214	atomic_set(&ac_wake_req_state, 1);
2215
2216	/*
2217	 * Force Modem Wake-up before hostaccess_req ping-pong.
2218	 * It prevents Modem to enter in Sleep while acking the hostaccess
2219	 * request. The 31us delay has been calculated by HWI.
2220	 */
2221	val |= PRCM_HOSTACCESS_REQ_WAKE_REQ;
2222	writel(val, PRCM_HOSTACCESS_REQ);
2223
2224	udelay(31);
2225
2226	val |= PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ;
2227	writel(val, PRCM_HOSTACCESS_REQ);
2228
2229	if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
2230			msecs_to_jiffies(5000))) {
2231		pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2232			__func__);
2233		ret = -EFAULT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2234	}
2235
2236unlock_and_return:
2237	mutex_unlock(&mb0_transfer.ac_wake_lock);
2238	return ret;
2239}
2240
2241/**
2242 * prcmu_ac_sleep_req - called when ARM no longer needs to talk to modem
2243 */
2244void prcmu_ac_sleep_req(void)
2245{
2246	u32 val;
2247
2248	mutex_lock(&mb0_transfer.ac_wake_lock);
2249
2250	val = readl(PRCM_HOSTACCESS_REQ);
2251	if (!(val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ))
2252		goto unlock_and_return;
2253
2254	writel((val & ~PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ),
2255		PRCM_HOSTACCESS_REQ);
2256
2257	if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
2258			msecs_to_jiffies(5000))) {
2259		pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2260			__func__);
2261	}
2262
2263	atomic_set(&ac_wake_req_state, 0);
2264
2265unlock_and_return:
2266	mutex_unlock(&mb0_transfer.ac_wake_lock);
2267}
2268
2269bool db8500_prcmu_is_ac_wake_requested(void)
2270{
2271	return (atomic_read(&ac_wake_req_state) != 0);
2272}
2273
2274/**
2275 * db8500_prcmu_system_reset - System reset
2276 *
2277 * Saves the reset reason code and then sets the APE_SOFTRST register which
2278 * fires interrupt to fw
2279 *
2280 * @reset_code: The reason for system reset
2281 */
2282void db8500_prcmu_system_reset(u16 reset_code)
2283{
2284	writew(reset_code, (tcdm_base + PRCM_SW_RST_REASON));
2285	writel(1, PRCM_APE_SOFTRST);
2286}
2287
2288/**
2289 * db8500_prcmu_get_reset_code - Retrieve SW reset reason code
2290 *
2291 * Retrieves the reset reason code stored by prcmu_system_reset() before
2292 * last restart.
2293 */
2294u16 db8500_prcmu_get_reset_code(void)
2295{
2296	return readw(tcdm_base + PRCM_SW_RST_REASON);
2297}
2298
2299/**
2300 * db8500_prcmu_reset_modem - ask the PRCMU to reset modem
2301 */
2302void db8500_prcmu_modem_reset(void)
2303{
2304	mutex_lock(&mb1_transfer.lock);
2305
2306	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
2307		cpu_relax();
2308
2309	writeb(MB1H_RESET_MODEM, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
2310	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
2311	wait_for_completion(&mb1_transfer.work);
2312
2313	/*
2314	 * No need to check return from PRCMU as modem should go in reset state
2315	 * This state is already managed by upper layer
2316	 */
2317
2318	mutex_unlock(&mb1_transfer.lock);
2319}
2320
2321static void ack_dbb_wakeup(void)
2322{
2323	unsigned long flags;
2324
2325	spin_lock_irqsave(&mb0_transfer.lock, flags);
2326
2327	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
2328		cpu_relax();
2329
2330	writeb(MB0H_READ_WAKEUP_ACK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
2331	writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
2332
2333	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2334}
2335
2336static inline void print_unknown_header_warning(u8 n, u8 header)
2337{
2338	pr_warn("prcmu: Unknown message header (%d) in mailbox %d\n",
2339		header, n);
2340}
2341
2342static bool read_mailbox_0(void)
2343{
2344	bool r;
2345	u32 ev;
2346	unsigned int n;
2347	u8 header;
2348
2349	header = readb(tcdm_base + PRCM_MBOX_HEADER_ACK_MB0);
2350	switch (header) {
2351	case MB0H_WAKEUP_EXE:
2352	case MB0H_WAKEUP_SLEEP:
2353		if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
2354			ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_1_8500);
2355		else
2356			ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_0_8500);
2357
2358		if (ev & (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK))
2359			complete(&mb0_transfer.ac_wake_work);
2360		if (ev & WAKEUP_BIT_SYSCLK_OK)
2361			complete(&mb3_transfer.sysclk_work);
2362
2363		ev &= mb0_transfer.req.dbb_irqs;
2364
2365		for (n = 0; n < NUM_PRCMU_WAKEUPS; n++) {
2366			if (ev & prcmu_irq_bit[n])
2367				generic_handle_irq(irq_find_mapping(db8500_irq_domain, n));
2368		}
2369		r = true;
2370		break;
2371	default:
2372		print_unknown_header_warning(0, header);
2373		r = false;
2374		break;
2375	}
2376	writel(MBOX_BIT(0), PRCM_ARM_IT1_CLR);
2377	return r;
2378}
2379
2380static bool read_mailbox_1(void)
2381{
2382	mb1_transfer.ack.header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1);
2383	mb1_transfer.ack.arm_opp = readb(tcdm_base +
2384		PRCM_ACK_MB1_CURRENT_ARM_OPP);
2385	mb1_transfer.ack.ape_opp = readb(tcdm_base +
2386		PRCM_ACK_MB1_CURRENT_APE_OPP);
2387	mb1_transfer.ack.ape_voltage_status = readb(tcdm_base +
2388		PRCM_ACK_MB1_APE_VOLTAGE_STATUS);
2389	writel(MBOX_BIT(1), PRCM_ARM_IT1_CLR);
2390	complete(&mb1_transfer.work);
2391	return false;
2392}
2393
2394static bool read_mailbox_2(void)
2395{
2396	mb2_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB2_DPS_STATUS);
2397	writel(MBOX_BIT(2), PRCM_ARM_IT1_CLR);
2398	complete(&mb2_transfer.work);
2399	return false;
2400}
2401
2402static bool read_mailbox_3(void)
2403{
2404	writel(MBOX_BIT(3), PRCM_ARM_IT1_CLR);
2405	return false;
2406}
2407
2408static bool read_mailbox_4(void)
2409{
2410	u8 header;
2411	bool do_complete = true;
2412
2413	header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB4);
2414	switch (header) {
2415	case MB4H_MEM_ST:
2416	case MB4H_HOTDOG:
2417	case MB4H_HOTMON:
2418	case MB4H_HOT_PERIOD:
2419	case MB4H_A9WDOG_CONF:
2420	case MB4H_A9WDOG_EN:
2421	case MB4H_A9WDOG_DIS:
2422	case MB4H_A9WDOG_LOAD:
2423	case MB4H_A9WDOG_KICK:
2424		break;
2425	default:
2426		print_unknown_header_warning(4, header);
2427		do_complete = false;
2428		break;
2429	}
2430
2431	writel(MBOX_BIT(4), PRCM_ARM_IT1_CLR);
2432
2433	if (do_complete)
2434		complete(&mb4_transfer.work);
2435
2436	return false;
2437}
2438
2439static bool read_mailbox_5(void)
2440{
2441	mb5_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB5_I2C_STATUS);
2442	mb5_transfer.ack.value = readb(tcdm_base + PRCM_ACK_MB5_I2C_VAL);
2443	writel(MBOX_BIT(5), PRCM_ARM_IT1_CLR);
2444	complete(&mb5_transfer.work);
2445	return false;
2446}
2447
2448static bool read_mailbox_6(void)
2449{
2450	writel(MBOX_BIT(6), PRCM_ARM_IT1_CLR);
2451	return false;
2452}
2453
2454static bool read_mailbox_7(void)
2455{
2456	writel(MBOX_BIT(7), PRCM_ARM_IT1_CLR);
2457	return false;
2458}
2459
2460static bool (* const read_mailbox[NUM_MB])(void) = {
2461	read_mailbox_0,
2462	read_mailbox_1,
2463	read_mailbox_2,
2464	read_mailbox_3,
2465	read_mailbox_4,
2466	read_mailbox_5,
2467	read_mailbox_6,
2468	read_mailbox_7
2469};
2470
2471static irqreturn_t prcmu_irq_handler(int irq, void *data)
2472{
2473	u32 bits;
2474	u8 n;
2475	irqreturn_t r;
2476
2477	bits = (readl(PRCM_ARM_IT1_VAL) & ALL_MBOX_BITS);
2478	if (unlikely(!bits))
2479		return IRQ_NONE;
2480
2481	r = IRQ_HANDLED;
2482	for (n = 0; bits; n++) {
2483		if (bits & MBOX_BIT(n)) {
2484			bits -= MBOX_BIT(n);
2485			if (read_mailbox[n]())
2486				r = IRQ_WAKE_THREAD;
2487		}
2488	}
2489	return r;
2490}
2491
2492static irqreturn_t prcmu_irq_thread_fn(int irq, void *data)
2493{
2494	ack_dbb_wakeup();
2495	return IRQ_HANDLED;
2496}
2497
2498static void prcmu_mask_work(struct work_struct *work)
2499{
2500	unsigned long flags;
2501
2502	spin_lock_irqsave(&mb0_transfer.lock, flags);
2503
2504	config_wakeups();
2505
2506	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2507}
2508
2509static void prcmu_irq_mask(struct irq_data *d)
2510{
2511	unsigned long flags;
2512
2513	spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2514
2515	mb0_transfer.req.dbb_irqs &= ~prcmu_irq_bit[d->hwirq];
2516
2517	spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2518
2519	if (d->irq != IRQ_PRCMU_CA_SLEEP)
2520		schedule_work(&mb0_transfer.mask_work);
2521}
2522
2523static void prcmu_irq_unmask(struct irq_data *d)
2524{
2525	unsigned long flags;
2526
2527	spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2528
2529	mb0_transfer.req.dbb_irqs |= prcmu_irq_bit[d->hwirq];
2530
2531	spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2532
2533	if (d->irq != IRQ_PRCMU_CA_SLEEP)
2534		schedule_work(&mb0_transfer.mask_work);
2535}
2536
2537static void noop(struct irq_data *d)
2538{
2539}
2540
2541static struct irq_chip prcmu_irq_chip = {
2542	.name		= "prcmu",
2543	.irq_disable	= prcmu_irq_mask,
2544	.irq_ack	= noop,
2545	.irq_mask	= prcmu_irq_mask,
2546	.irq_unmask	= prcmu_irq_unmask,
2547};
2548
2549static char *fw_project_name(u32 project)
2550{
2551	switch (project) {
2552	case PRCMU_FW_PROJECT_U8500:
2553		return "U8500";
2554	case PRCMU_FW_PROJECT_U8400:
2555		return "U8400";
2556	case PRCMU_FW_PROJECT_U9500:
2557		return "U9500";
2558	case PRCMU_FW_PROJECT_U8500_MBB:
2559		return "U8500 MBB";
2560	case PRCMU_FW_PROJECT_U8500_C1:
2561		return "U8500 C1";
2562	case PRCMU_FW_PROJECT_U8500_C2:
2563		return "U8500 C2";
2564	case PRCMU_FW_PROJECT_U8500_C3:
2565		return "U8500 C3";
2566	case PRCMU_FW_PROJECT_U8500_C4:
2567		return "U8500 C4";
2568	case PRCMU_FW_PROJECT_U9500_MBL:
2569		return "U9500 MBL";
2570	case PRCMU_FW_PROJECT_U8500_MBL:
2571		return "U8500 MBL";
2572	case PRCMU_FW_PROJECT_U8500_MBL2:
2573		return "U8500 MBL2";
2574	case PRCMU_FW_PROJECT_U8520:
2575		return "U8520 MBL";
2576	case PRCMU_FW_PROJECT_U8420:
2577		return "U8420";
2578	case PRCMU_FW_PROJECT_U8420_SYSCLK:
2579		return "U8420-sysclk";
2580	case PRCMU_FW_PROJECT_U9540:
2581		return "U9540";
2582	case PRCMU_FW_PROJECT_A9420:
2583		return "A9420";
2584	case PRCMU_FW_PROJECT_L8540:
2585		return "L8540";
2586	case PRCMU_FW_PROJECT_L8580:
2587		return "L8580";
2588	default:
2589		return "Unknown";
2590	}
2591}
2592
2593static int db8500_irq_map(struct irq_domain *d, unsigned int virq,
2594				irq_hw_number_t hwirq)
2595{
2596	irq_set_chip_and_handler(virq, &prcmu_irq_chip,
2597				handle_simple_irq);
2598
2599	return 0;
2600}
2601
2602static const struct irq_domain_ops db8500_irq_ops = {
2603	.map    = db8500_irq_map,
2604	.xlate  = irq_domain_xlate_twocell,
2605};
2606
2607static int db8500_irq_init(struct device_node *np)
2608{
2609	int i;
2610
2611	db8500_irq_domain = irq_domain_add_simple(
2612		np, NUM_PRCMU_WAKEUPS, 0,
2613		&db8500_irq_ops, NULL);
2614
2615	if (!db8500_irq_domain) {
2616		pr_err("Failed to create irqdomain\n");
2617		return -ENOSYS;
2618	}
2619
2620	/* All wakeups will be used, so create mappings for all */
2621	for (i = 0; i < NUM_PRCMU_WAKEUPS; i++)
2622		irq_create_mapping(db8500_irq_domain, i);
2623
2624	return 0;
2625}
2626
2627static void dbx500_fw_version_init(struct device_node *np)
2628{
2629	void __iomem *tcpm_base;
2630	u32 version;
2631
2632	tcpm_base = of_iomap(np, 1);
2633	if (!tcpm_base) {
2634		pr_err("no prcmu tcpm mem region provided\n");
2635		return;
2636	}
2637
2638	version = readl(tcpm_base + DB8500_PRCMU_FW_VERSION_OFFSET);
2639	fw_info.version.project = (version & 0xFF);
2640	fw_info.version.api_version = (version >> 8) & 0xFF;
2641	fw_info.version.func_version = (version >> 16) & 0xFF;
2642	fw_info.version.errata = (version >> 24) & 0xFF;
2643	strncpy(fw_info.version.project_name,
2644		fw_project_name(fw_info.version.project),
2645		PRCMU_FW_PROJECT_NAME_LEN);
2646	fw_info.valid = true;
2647	pr_info("PRCMU firmware: %s(%d), version %d.%d.%d\n",
2648		fw_info.version.project_name,
2649		fw_info.version.project,
2650		fw_info.version.api_version,
2651		fw_info.version.func_version,
2652		fw_info.version.errata);
2653	iounmap(tcpm_base);
2654}
2655
2656void __init db8500_prcmu_early_init(void)
2657{
2658	/*
2659	 * This is a temporary remap to bring up the clocks. It is
2660	 * subsequently replaces with a real remap. After the merge of
2661	 * the mailbox subsystem all of this early code goes away, and the
2662	 * clock driver can probe independently. An early initcall will
2663	 * still be needed, but it can be diverted into drivers/clk/ux500.
2664	 */
2665	struct device_node *np;
2666
2667	np = of_find_compatible_node(NULL, NULL, "stericsson,db8500-prcmu");
2668	prcmu_base = of_iomap(np, 0);
2669	if (!prcmu_base) {
2670		of_node_put(np);
2671		pr_err("%s: ioremap() of prcmu registers failed!\n", __func__);
2672		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
2673	}
2674	dbx500_fw_version_init(np);
2675	of_node_put(np);
2676
2677	spin_lock_init(&mb0_transfer.lock);
2678	spin_lock_init(&mb0_transfer.dbb_irqs_lock);
2679	mutex_init(&mb0_transfer.ac_wake_lock);
2680	init_completion(&mb0_transfer.ac_wake_work);
2681	mutex_init(&mb1_transfer.lock);
2682	init_completion(&mb1_transfer.work);
2683	mb1_transfer.ape_opp = APE_NO_CHANGE;
2684	mutex_init(&mb2_transfer.lock);
2685	init_completion(&mb2_transfer.work);
2686	spin_lock_init(&mb2_transfer.auto_pm_lock);
2687	spin_lock_init(&mb3_transfer.lock);
2688	mutex_init(&mb3_transfer.sysclk_lock);
2689	init_completion(&mb3_transfer.sysclk_work);
2690	mutex_init(&mb4_transfer.lock);
2691	init_completion(&mb4_transfer.work);
2692	mutex_init(&mb5_transfer.lock);
2693	init_completion(&mb5_transfer.work);
2694
2695	INIT_WORK(&mb0_transfer.mask_work, prcmu_mask_work);
 
 
 
 
 
 
 
 
 
 
2696}
2697
2698static void init_prcm_registers(void)
2699{
2700	u32 val;
2701
2702	val = readl(PRCM_A9PL_FORCE_CLKEN);
2703	val &= ~(PRCM_A9PL_FORCE_CLKEN_PRCM_A9PL_FORCE_CLKEN |
2704		PRCM_A9PL_FORCE_CLKEN_PRCM_A9AXI_FORCE_CLKEN);
2705	writel(val, (PRCM_A9PL_FORCE_CLKEN));
2706}
2707
2708/*
2709 * Power domain switches (ePODs) modeled as regulators for the DB8500 SoC
2710 */
2711static struct regulator_consumer_supply db8500_vape_consumers[] = {
2712	REGULATOR_SUPPLY("v-ape", NULL),
2713	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.0"),
2714	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.1"),
2715	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.2"),
2716	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.3"),
2717	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.4"),
2718	/* "v-mmc" changed to "vcore" in the mainline kernel */
2719	REGULATOR_SUPPLY("vcore", "sdi0"),
2720	REGULATOR_SUPPLY("vcore", "sdi1"),
2721	REGULATOR_SUPPLY("vcore", "sdi2"),
2722	REGULATOR_SUPPLY("vcore", "sdi3"),
2723	REGULATOR_SUPPLY("vcore", "sdi4"),
2724	REGULATOR_SUPPLY("v-dma", "dma40.0"),
2725	REGULATOR_SUPPLY("v-ape", "ab8500-usb.0"),
2726	/* "v-uart" changed to "vcore" in the mainline kernel */
2727	REGULATOR_SUPPLY("vcore", "uart0"),
2728	REGULATOR_SUPPLY("vcore", "uart1"),
2729	REGULATOR_SUPPLY("vcore", "uart2"),
2730	REGULATOR_SUPPLY("v-ape", "nmk-ske-keypad.0"),
2731	REGULATOR_SUPPLY("v-hsi", "ste_hsi.0"),
2732	REGULATOR_SUPPLY("vddvario", "smsc911x.0"),
2733};
2734
2735static struct regulator_consumer_supply db8500_vsmps2_consumers[] = {
2736	REGULATOR_SUPPLY("musb_1v8", "ab8500-usb.0"),
2737	/* AV8100 regulator */
2738	REGULATOR_SUPPLY("hdmi_1v8", "0-0070"),
2739};
2740
2741static struct regulator_consumer_supply db8500_b2r2_mcde_consumers[] = {
2742	REGULATOR_SUPPLY("vsupply", "b2r2_bus"),
2743	REGULATOR_SUPPLY("vsupply", "mcde"),
2744};
2745
2746/* SVA MMDSP regulator switch */
2747static struct regulator_consumer_supply db8500_svammdsp_consumers[] = {
2748	REGULATOR_SUPPLY("sva-mmdsp", "cm_control"),
2749};
2750
2751/* SVA pipe regulator switch */
2752static struct regulator_consumer_supply db8500_svapipe_consumers[] = {
2753	REGULATOR_SUPPLY("sva-pipe", "cm_control"),
2754};
2755
2756/* SIA MMDSP regulator switch */
2757static struct regulator_consumer_supply db8500_siammdsp_consumers[] = {
2758	REGULATOR_SUPPLY("sia-mmdsp", "cm_control"),
2759};
2760
2761/* SIA pipe regulator switch */
2762static struct regulator_consumer_supply db8500_siapipe_consumers[] = {
2763	REGULATOR_SUPPLY("sia-pipe", "cm_control"),
2764};
2765
2766static struct regulator_consumer_supply db8500_sga_consumers[] = {
2767	REGULATOR_SUPPLY("v-mali", NULL),
2768};
2769
2770/* ESRAM1 and 2 regulator switch */
2771static struct regulator_consumer_supply db8500_esram12_consumers[] = {
2772	REGULATOR_SUPPLY("esram12", "cm_control"),
2773};
2774
2775/* ESRAM3 and 4 regulator switch */
2776static struct regulator_consumer_supply db8500_esram34_consumers[] = {
2777	REGULATOR_SUPPLY("v-esram34", "mcde"),
2778	REGULATOR_SUPPLY("esram34", "cm_control"),
2779	REGULATOR_SUPPLY("lcla_esram", "dma40.0"),
2780};
2781
2782static struct regulator_init_data db8500_regulators[DB8500_NUM_REGULATORS] = {
2783	[DB8500_REGULATOR_VAPE] = {
2784		.constraints = {
2785			.name = "db8500-vape",
2786			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2787			.always_on = true,
2788		},
2789		.consumer_supplies = db8500_vape_consumers,
2790		.num_consumer_supplies = ARRAY_SIZE(db8500_vape_consumers),
2791	},
2792	[DB8500_REGULATOR_VARM] = {
2793		.constraints = {
2794			.name = "db8500-varm",
2795			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2796		},
2797	},
2798	[DB8500_REGULATOR_VMODEM] = {
2799		.constraints = {
2800			.name = "db8500-vmodem",
2801			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2802		},
2803	},
2804	[DB8500_REGULATOR_VPLL] = {
2805		.constraints = {
2806			.name = "db8500-vpll",
2807			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2808		},
2809	},
2810	[DB8500_REGULATOR_VSMPS1] = {
2811		.constraints = {
2812			.name = "db8500-vsmps1",
2813			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2814		},
2815	},
2816	[DB8500_REGULATOR_VSMPS2] = {
2817		.constraints = {
2818			.name = "db8500-vsmps2",
2819			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2820		},
2821		.consumer_supplies = db8500_vsmps2_consumers,
2822		.num_consumer_supplies = ARRAY_SIZE(db8500_vsmps2_consumers),
2823	},
2824	[DB8500_REGULATOR_VSMPS3] = {
2825		.constraints = {
2826			.name = "db8500-vsmps3",
2827			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2828		},
2829	},
2830	[DB8500_REGULATOR_VRF1] = {
2831		.constraints = {
2832			.name = "db8500-vrf1",
2833			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2834		},
2835	},
2836	[DB8500_REGULATOR_SWITCH_SVAMMDSP] = {
2837		/* dependency to u8500-vape is handled outside regulator framework */
2838		.constraints = {
2839			.name = "db8500-sva-mmdsp",
2840			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2841		},
2842		.consumer_supplies = db8500_svammdsp_consumers,
2843		.num_consumer_supplies = ARRAY_SIZE(db8500_svammdsp_consumers),
2844	},
2845	[DB8500_REGULATOR_SWITCH_SVAMMDSPRET] = {
2846		.constraints = {
2847			/* "ret" means "retention" */
2848			.name = "db8500-sva-mmdsp-ret",
2849			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2850		},
2851	},
2852	[DB8500_REGULATOR_SWITCH_SVAPIPE] = {
2853		/* dependency to u8500-vape is handled outside regulator framework */
2854		.constraints = {
2855			.name = "db8500-sva-pipe",
2856			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2857		},
2858		.consumer_supplies = db8500_svapipe_consumers,
2859		.num_consumer_supplies = ARRAY_SIZE(db8500_svapipe_consumers),
2860	},
2861	[DB8500_REGULATOR_SWITCH_SIAMMDSP] = {
2862		/* dependency to u8500-vape is handled outside regulator framework */
2863		.constraints = {
2864			.name = "db8500-sia-mmdsp",
2865			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2866		},
2867		.consumer_supplies = db8500_siammdsp_consumers,
2868		.num_consumer_supplies = ARRAY_SIZE(db8500_siammdsp_consumers),
2869	},
2870	[DB8500_REGULATOR_SWITCH_SIAMMDSPRET] = {
2871		.constraints = {
2872			.name = "db8500-sia-mmdsp-ret",
2873			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2874		},
2875	},
2876	[DB8500_REGULATOR_SWITCH_SIAPIPE] = {
2877		/* dependency to u8500-vape is handled outside regulator framework */
2878		.constraints = {
2879			.name = "db8500-sia-pipe",
2880			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2881		},
2882		.consumer_supplies = db8500_siapipe_consumers,
2883		.num_consumer_supplies = ARRAY_SIZE(db8500_siapipe_consumers),
2884	},
2885	[DB8500_REGULATOR_SWITCH_SGA] = {
2886		.supply_regulator = "db8500-vape",
2887		.constraints = {
2888			.name = "db8500-sga",
2889			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2890		},
2891		.consumer_supplies = db8500_sga_consumers,
2892		.num_consumer_supplies = ARRAY_SIZE(db8500_sga_consumers),
2893
2894	},
2895	[DB8500_REGULATOR_SWITCH_B2R2_MCDE] = {
2896		.supply_regulator = "db8500-vape",
2897		.constraints = {
2898			.name = "db8500-b2r2-mcde",
2899			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2900		},
2901		.consumer_supplies = db8500_b2r2_mcde_consumers,
2902		.num_consumer_supplies = ARRAY_SIZE(db8500_b2r2_mcde_consumers),
2903	},
2904	[DB8500_REGULATOR_SWITCH_ESRAM12] = {
2905		/*
2906		 * esram12 is set in retention and supplied by Vsafe when Vape is off,
2907		 * no need to hold Vape
2908		 */
2909		.constraints = {
2910			.name = "db8500-esram12",
2911			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2912		},
2913		.consumer_supplies = db8500_esram12_consumers,
2914		.num_consumer_supplies = ARRAY_SIZE(db8500_esram12_consumers),
2915	},
2916	[DB8500_REGULATOR_SWITCH_ESRAM12RET] = {
2917		.constraints = {
2918			.name = "db8500-esram12-ret",
2919			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2920		},
2921	},
2922	[DB8500_REGULATOR_SWITCH_ESRAM34] = {
2923		/*
2924		 * esram34 is set in retention and supplied by Vsafe when Vape is off,
2925		 * no need to hold Vape
2926		 */
2927		.constraints = {
2928			.name = "db8500-esram34",
2929			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2930		},
2931		.consumer_supplies = db8500_esram34_consumers,
2932		.num_consumer_supplies = ARRAY_SIZE(db8500_esram34_consumers),
2933	},
2934	[DB8500_REGULATOR_SWITCH_ESRAM34RET] = {
2935		.constraints = {
2936			.name = "db8500-esram34-ret",
2937			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2938		},
2939	},
2940};
2941
2942static struct ux500_wdt_data db8500_wdt_pdata = {
2943	.timeout = 600, /* 10 minutes */
2944	.has_28_bits_resolution = true,
2945};
2946
2947static const struct mfd_cell common_prcmu_devs[] = {
2948	{
2949		.name = "ux500_wdt",
2950		.platform_data = &db8500_wdt_pdata,
2951		.pdata_size = sizeof(db8500_wdt_pdata),
2952		.id = -1,
2953	},
2954};
2955
2956static const struct mfd_cell db8500_prcmu_devs[] = {
2957	OF_MFD_CELL("db8500-prcmu-regulators", NULL,
2958		    &db8500_regulators, sizeof(db8500_regulators), 0,
2959		    "stericsson,db8500-prcmu-regulator"),
2960	OF_MFD_CELL("cpuidle-dbx500",
2961		    NULL, NULL, 0, 0, "stericsson,cpuidle-dbx500"),
2962	OF_MFD_CELL("db8500-thermal",
2963		    NULL, NULL, 0, 0, "stericsson,db8500-thermal"),
2964};
2965
2966static int db8500_prcmu_register_ab8500(struct device *parent)
2967{
2968	struct device_node *np;
2969	struct resource ab850x_resource;
2970	const struct mfd_cell ab8500_cell = {
2971		.name = "ab8500-core",
2972		.of_compatible = "stericsson,ab8500",
2973		.id = AB8500_VERSION_AB8500,
2974		.resources = &ab850x_resource,
2975		.num_resources = 1,
2976	};
2977	const struct mfd_cell ab8505_cell = {
2978		.name = "ab8505-core",
2979		.of_compatible = "stericsson,ab8505",
2980		.id = AB8500_VERSION_AB8505,
2981		.resources = &ab850x_resource,
2982		.num_resources = 1,
2983	};
2984	const struct mfd_cell *ab850x_cell;
2985
2986	if (!parent->of_node)
2987		return -ENODEV;
2988
2989	/* Look up the device node, sneak the IRQ out of it */
2990	for_each_child_of_node(parent->of_node, np) {
2991		if (of_device_is_compatible(np, ab8500_cell.of_compatible)) {
2992			ab850x_cell = &ab8500_cell;
2993			break;
2994		}
2995		if (of_device_is_compatible(np, ab8505_cell.of_compatible)) {
2996			ab850x_cell = &ab8505_cell;
2997			break;
2998		}
2999	}
3000	if (!np) {
3001		dev_info(parent, "could not find AB850X node in the device tree\n");
3002		return -ENODEV;
3003	}
3004	of_irq_to_resource_table(np, &ab850x_resource, 1);
3005
3006	return mfd_add_devices(parent, 0, ab850x_cell, 1, NULL, 0, NULL);
3007}
3008
3009static int db8500_prcmu_probe(struct platform_device *pdev)
3010{
3011	struct device_node *np = pdev->dev.of_node;
3012	int irq = 0, err = 0;
3013	struct resource *res;
3014
3015	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "prcmu");
3016	if (!res) {
3017		dev_err(&pdev->dev, "no prcmu memory region provided\n");
3018		return -EINVAL;
3019	}
3020	prcmu_base = devm_ioremap(&pdev->dev, res->start, resource_size(res));
3021	if (!prcmu_base) {
3022		dev_err(&pdev->dev,
3023			"failed to ioremap prcmu register memory\n");
3024		return -ENOMEM;
3025	}
3026	init_prcm_registers();
3027	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "prcmu-tcdm");
3028	if (!res) {
3029		dev_err(&pdev->dev, "no prcmu tcdm region provided\n");
3030		return -EINVAL;
3031	}
3032	tcdm_base = devm_ioremap(&pdev->dev, res->start,
3033			resource_size(res));
3034	if (!tcdm_base) {
3035		dev_err(&pdev->dev,
3036			"failed to ioremap prcmu-tcdm register memory\n");
3037		return -ENOMEM;
3038	}
3039
3040	/* Clean up the mailbox interrupts after pre-kernel code. */
3041	writel(ALL_MBOX_BITS, PRCM_ARM_IT1_CLR);
3042
3043	irq = platform_get_irq(pdev, 0);
3044	if (irq <= 0)
3045		return irq;
 
 
3046
3047	err = request_threaded_irq(irq, prcmu_irq_handler,
3048	        prcmu_irq_thread_fn, IRQF_NO_SUSPEND, "prcmu", NULL);
3049	if (err < 0) {
3050		pr_err("prcmu: Failed to allocate IRQ_DB8500_PRCMU1.\n");
3051		return err;
 
3052	}
3053
3054	db8500_irq_init(np);
3055
3056	prcmu_config_esram0_deep_sleep(ESRAM0_DEEP_SLEEP_STATE_RET);
3057
3058	err = mfd_add_devices(&pdev->dev, 0, common_prcmu_devs,
3059			      ARRAY_SIZE(common_prcmu_devs), NULL, 0, db8500_irq_domain);
3060	if (err) {
3061		pr_err("prcmu: Failed to add subdevices\n");
3062		return err;
3063	}
3064
3065	/* TODO: Remove restriction when clk definitions are available. */
3066	if (!of_machine_is_compatible("st-ericsson,u8540")) {
3067		err = mfd_add_devices(&pdev->dev, 0, db8500_prcmu_devs,
3068				      ARRAY_SIZE(db8500_prcmu_devs), NULL, 0,
3069				      db8500_irq_domain);
3070		if (err) {
3071			mfd_remove_devices(&pdev->dev);
3072			pr_err("prcmu: Failed to add subdevices\n");
3073			return err;
3074		}
3075	}
3076
3077	err = db8500_prcmu_register_ab8500(&pdev->dev);
3078	if (err) {
3079		mfd_remove_devices(&pdev->dev);
3080		pr_err("prcmu: Failed to add ab8500 subdevice\n");
3081		return err;
3082	}
3083
3084	pr_info("DB8500 PRCMU initialized\n");
 
 
3085	return err;
3086}
3087static const struct of_device_id db8500_prcmu_match[] = {
3088	{ .compatible = "stericsson,db8500-prcmu"},
3089	{ },
3090};
3091
3092static struct platform_driver db8500_prcmu_driver = {
3093	.driver = {
3094		.name = "db8500-prcmu",
3095		.of_match_table = db8500_prcmu_match,
3096	},
3097	.probe = db8500_prcmu_probe,
3098};
3099
3100static int __init db8500_prcmu_init(void)
3101{
3102	return platform_driver_register(&db8500_prcmu_driver);
3103}
3104core_initcall(db8500_prcmu_init);
 
 
 
 
 
v3.5.6
 
   1/*
 
 
   2 * Copyright (C) STMicroelectronics 2009
   3 * Copyright (C) ST-Ericsson SA 2010
   4 *
   5 * License Terms: GNU General Public License v2
   6 * Author: Kumar Sanghvi <kumar.sanghvi@stericsson.com>
   7 * Author: Sundar Iyer <sundar.iyer@stericsson.com>
   8 * Author: Mattias Nilsson <mattias.i.nilsson@stericsson.com>
   9 *
  10 * U8500 PRCM Unit interface driver
  11 *
  12 */
  13#include <linux/module.h>
 
  14#include <linux/kernel.h>
  15#include <linux/delay.h>
  16#include <linux/errno.h>
  17#include <linux/err.h>
  18#include <linux/spinlock.h>
  19#include <linux/io.h>
  20#include <linux/slab.h>
  21#include <linux/mutex.h>
  22#include <linux/completion.h>
  23#include <linux/irq.h>
  24#include <linux/jiffies.h>
  25#include <linux/bitops.h>
  26#include <linux/fs.h>
 
 
 
  27#include <linux/platform_device.h>
  28#include <linux/uaccess.h>
  29#include <linux/mfd/core.h>
  30#include <linux/mfd/dbx500-prcmu.h>
 
  31#include <linux/regulator/db8500-prcmu.h>
  32#include <linux/regulator/machine.h>
  33#include <asm/hardware/gic.h>
  34#include <mach/hardware.h>
  35#include <mach/irqs.h>
  36#include <mach/db8500-regs.h>
  37#include <mach/id.h>
  38#include "dbx500-prcmu-regs.h"
  39
  40/* Offset for the firmware version within the TCPM */
  41#define PRCMU_FW_VERSION_OFFSET 0xA4
  42
  43/* Index of different voltages to be used when accessing AVSData */
  44#define PRCM_AVS_BASE		0x2FC
  45#define PRCM_AVS_VBB_RET	(PRCM_AVS_BASE + 0x0)
  46#define PRCM_AVS_VBB_MAX_OPP	(PRCM_AVS_BASE + 0x1)
  47#define PRCM_AVS_VBB_100_OPP	(PRCM_AVS_BASE + 0x2)
  48#define PRCM_AVS_VBB_50_OPP	(PRCM_AVS_BASE + 0x3)
  49#define PRCM_AVS_VARM_MAX_OPP	(PRCM_AVS_BASE + 0x4)
  50#define PRCM_AVS_VARM_100_OPP	(PRCM_AVS_BASE + 0x5)
  51#define PRCM_AVS_VARM_50_OPP	(PRCM_AVS_BASE + 0x6)
  52#define PRCM_AVS_VARM_RET	(PRCM_AVS_BASE + 0x7)
  53#define PRCM_AVS_VAPE_100_OPP	(PRCM_AVS_BASE + 0x8)
  54#define PRCM_AVS_VAPE_50_OPP	(PRCM_AVS_BASE + 0x9)
  55#define PRCM_AVS_VMOD_100_OPP	(PRCM_AVS_BASE + 0xA)
  56#define PRCM_AVS_VMOD_50_OPP	(PRCM_AVS_BASE + 0xB)
  57#define PRCM_AVS_VSAFE		(PRCM_AVS_BASE + 0xC)
  58
  59#define PRCM_AVS_VOLTAGE		0
  60#define PRCM_AVS_VOLTAGE_MASK		0x3f
  61#define PRCM_AVS_ISSLOWSTARTUP		6
  62#define PRCM_AVS_ISSLOWSTARTUP_MASK	(1 << PRCM_AVS_ISSLOWSTARTUP)
  63#define PRCM_AVS_ISMODEENABLE		7
  64#define PRCM_AVS_ISMODEENABLE_MASK	(1 << PRCM_AVS_ISMODEENABLE)
  65
  66#define PRCM_BOOT_STATUS	0xFFF
  67#define PRCM_ROMCODE_A2P	0xFFE
  68#define PRCM_ROMCODE_P2A	0xFFD
  69#define PRCM_XP70_CUR_PWR_STATE 0xFFC      /* 4 BYTES */
  70
  71#define PRCM_SW_RST_REASON 0xFF8 /* 2 bytes */
  72
  73#define _PRCM_MBOX_HEADER		0xFE8 /* 16 bytes */
  74#define PRCM_MBOX_HEADER_REQ_MB0	(_PRCM_MBOX_HEADER + 0x0)
  75#define PRCM_MBOX_HEADER_REQ_MB1	(_PRCM_MBOX_HEADER + 0x1)
  76#define PRCM_MBOX_HEADER_REQ_MB2	(_PRCM_MBOX_HEADER + 0x2)
  77#define PRCM_MBOX_HEADER_REQ_MB3	(_PRCM_MBOX_HEADER + 0x3)
  78#define PRCM_MBOX_HEADER_REQ_MB4	(_PRCM_MBOX_HEADER + 0x4)
  79#define PRCM_MBOX_HEADER_REQ_MB5	(_PRCM_MBOX_HEADER + 0x5)
  80#define PRCM_MBOX_HEADER_ACK_MB0	(_PRCM_MBOX_HEADER + 0x8)
  81
  82/* Req Mailboxes */
  83#define PRCM_REQ_MB0 0xFDC /* 12 bytes  */
  84#define PRCM_REQ_MB1 0xFD0 /* 12 bytes  */
  85#define PRCM_REQ_MB2 0xFC0 /* 16 bytes  */
  86#define PRCM_REQ_MB3 0xE4C /* 372 bytes  */
  87#define PRCM_REQ_MB4 0xE48 /* 4 bytes  */
  88#define PRCM_REQ_MB5 0xE44 /* 4 bytes  */
  89
  90/* Ack Mailboxes */
  91#define PRCM_ACK_MB0 0xE08 /* 52 bytes  */
  92#define PRCM_ACK_MB1 0xE04 /* 4 bytes */
  93#define PRCM_ACK_MB2 0xE00 /* 4 bytes */
  94#define PRCM_ACK_MB3 0xDFC /* 4 bytes */
  95#define PRCM_ACK_MB4 0xDF8 /* 4 bytes */
  96#define PRCM_ACK_MB5 0xDF4 /* 4 bytes */
  97
  98/* Mailbox 0 headers */
  99#define MB0H_POWER_STATE_TRANS		0
 100#define MB0H_CONFIG_WAKEUPS_EXE		1
 101#define MB0H_READ_WAKEUP_ACK		3
 102#define MB0H_CONFIG_WAKEUPS_SLEEP	4
 103
 104#define MB0H_WAKEUP_EXE 2
 105#define MB0H_WAKEUP_SLEEP 5
 106
 107/* Mailbox 0 REQs */
 108#define PRCM_REQ_MB0_AP_POWER_STATE	(PRCM_REQ_MB0 + 0x0)
 109#define PRCM_REQ_MB0_AP_PLL_STATE	(PRCM_REQ_MB0 + 0x1)
 110#define PRCM_REQ_MB0_ULP_CLOCK_STATE	(PRCM_REQ_MB0 + 0x2)
 111#define PRCM_REQ_MB0_DO_NOT_WFI		(PRCM_REQ_MB0 + 0x3)
 112#define PRCM_REQ_MB0_WAKEUP_8500	(PRCM_REQ_MB0 + 0x4)
 113#define PRCM_REQ_MB0_WAKEUP_4500	(PRCM_REQ_MB0 + 0x8)
 114
 115/* Mailbox 0 ACKs */
 116#define PRCM_ACK_MB0_AP_PWRSTTR_STATUS	(PRCM_ACK_MB0 + 0x0)
 117#define PRCM_ACK_MB0_READ_POINTER	(PRCM_ACK_MB0 + 0x1)
 118#define PRCM_ACK_MB0_WAKEUP_0_8500	(PRCM_ACK_MB0 + 0x4)
 119#define PRCM_ACK_MB0_WAKEUP_0_4500	(PRCM_ACK_MB0 + 0x8)
 120#define PRCM_ACK_MB0_WAKEUP_1_8500	(PRCM_ACK_MB0 + 0x1C)
 121#define PRCM_ACK_MB0_WAKEUP_1_4500	(PRCM_ACK_MB0 + 0x20)
 122#define PRCM_ACK_MB0_EVENT_4500_NUMBERS	20
 123
 124/* Mailbox 1 headers */
 125#define MB1H_ARM_APE_OPP 0x0
 126#define MB1H_RESET_MODEM 0x2
 127#define MB1H_REQUEST_APE_OPP_100_VOLT 0x3
 128#define MB1H_RELEASE_APE_OPP_100_VOLT 0x4
 129#define MB1H_RELEASE_USB_WAKEUP 0x5
 130#define MB1H_PLL_ON_OFF 0x6
 131
 132/* Mailbox 1 Requests */
 133#define PRCM_REQ_MB1_ARM_OPP			(PRCM_REQ_MB1 + 0x0)
 134#define PRCM_REQ_MB1_APE_OPP			(PRCM_REQ_MB1 + 0x1)
 135#define PRCM_REQ_MB1_PLL_ON_OFF			(PRCM_REQ_MB1 + 0x4)
 136#define PLL_SOC0_OFF	0x1
 137#define PLL_SOC0_ON	0x2
 138#define PLL_SOC1_OFF	0x4
 139#define PLL_SOC1_ON	0x8
 140
 141/* Mailbox 1 ACKs */
 142#define PRCM_ACK_MB1_CURRENT_ARM_OPP	(PRCM_ACK_MB1 + 0x0)
 143#define PRCM_ACK_MB1_CURRENT_APE_OPP	(PRCM_ACK_MB1 + 0x1)
 144#define PRCM_ACK_MB1_APE_VOLTAGE_STATUS	(PRCM_ACK_MB1 + 0x2)
 145#define PRCM_ACK_MB1_DVFS_STATUS	(PRCM_ACK_MB1 + 0x3)
 146
 147/* Mailbox 2 headers */
 148#define MB2H_DPS	0x0
 149#define MB2H_AUTO_PWR	0x1
 150
 151/* Mailbox 2 REQs */
 152#define PRCM_REQ_MB2_SVA_MMDSP		(PRCM_REQ_MB2 + 0x0)
 153#define PRCM_REQ_MB2_SVA_PIPE		(PRCM_REQ_MB2 + 0x1)
 154#define PRCM_REQ_MB2_SIA_MMDSP		(PRCM_REQ_MB2 + 0x2)
 155#define PRCM_REQ_MB2_SIA_PIPE		(PRCM_REQ_MB2 + 0x3)
 156#define PRCM_REQ_MB2_SGA		(PRCM_REQ_MB2 + 0x4)
 157#define PRCM_REQ_MB2_B2R2_MCDE		(PRCM_REQ_MB2 + 0x5)
 158#define PRCM_REQ_MB2_ESRAM12		(PRCM_REQ_MB2 + 0x6)
 159#define PRCM_REQ_MB2_ESRAM34		(PRCM_REQ_MB2 + 0x7)
 160#define PRCM_REQ_MB2_AUTO_PM_SLEEP	(PRCM_REQ_MB2 + 0x8)
 161#define PRCM_REQ_MB2_AUTO_PM_IDLE	(PRCM_REQ_MB2 + 0xC)
 162
 163/* Mailbox 2 ACKs */
 164#define PRCM_ACK_MB2_DPS_STATUS (PRCM_ACK_MB2 + 0x0)
 165#define HWACC_PWR_ST_OK 0xFE
 166
 167/* Mailbox 3 headers */
 168#define MB3H_ANC	0x0
 169#define MB3H_SIDETONE	0x1
 170#define MB3H_SYSCLK	0xE
 171
 172/* Mailbox 3 Requests */
 173#define PRCM_REQ_MB3_ANC_FIR_COEFF	(PRCM_REQ_MB3 + 0x0)
 174#define PRCM_REQ_MB3_ANC_IIR_COEFF	(PRCM_REQ_MB3 + 0x20)
 175#define PRCM_REQ_MB3_ANC_SHIFTER	(PRCM_REQ_MB3 + 0x60)
 176#define PRCM_REQ_MB3_ANC_WARP		(PRCM_REQ_MB3 + 0x64)
 177#define PRCM_REQ_MB3_SIDETONE_FIR_GAIN	(PRCM_REQ_MB3 + 0x68)
 178#define PRCM_REQ_MB3_SIDETONE_FIR_COEFF	(PRCM_REQ_MB3 + 0x6C)
 179#define PRCM_REQ_MB3_SYSCLK_MGT		(PRCM_REQ_MB3 + 0x16C)
 180
 181/* Mailbox 4 headers */
 182#define MB4H_DDR_INIT	0x0
 183#define MB4H_MEM_ST	0x1
 184#define MB4H_HOTDOG	0x12
 185#define MB4H_HOTMON	0x13
 186#define MB4H_HOT_PERIOD	0x14
 187#define MB4H_A9WDOG_CONF 0x16
 188#define MB4H_A9WDOG_EN   0x17
 189#define MB4H_A9WDOG_DIS  0x18
 190#define MB4H_A9WDOG_LOAD 0x19
 191#define MB4H_A9WDOG_KICK 0x20
 192
 193/* Mailbox 4 Requests */
 194#define PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE	(PRCM_REQ_MB4 + 0x0)
 195#define PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE	(PRCM_REQ_MB4 + 0x1)
 196#define PRCM_REQ_MB4_ESRAM0_ST			(PRCM_REQ_MB4 + 0x3)
 197#define PRCM_REQ_MB4_HOTDOG_THRESHOLD		(PRCM_REQ_MB4 + 0x0)
 198#define PRCM_REQ_MB4_HOTMON_LOW			(PRCM_REQ_MB4 + 0x0)
 199#define PRCM_REQ_MB4_HOTMON_HIGH		(PRCM_REQ_MB4 + 0x1)
 200#define PRCM_REQ_MB4_HOTMON_CONFIG		(PRCM_REQ_MB4 + 0x2)
 201#define PRCM_REQ_MB4_HOT_PERIOD			(PRCM_REQ_MB4 + 0x0)
 202#define HOTMON_CONFIG_LOW			BIT(0)
 203#define HOTMON_CONFIG_HIGH			BIT(1)
 204#define PRCM_REQ_MB4_A9WDOG_0			(PRCM_REQ_MB4 + 0x0)
 205#define PRCM_REQ_MB4_A9WDOG_1			(PRCM_REQ_MB4 + 0x1)
 206#define PRCM_REQ_MB4_A9WDOG_2			(PRCM_REQ_MB4 + 0x2)
 207#define PRCM_REQ_MB4_A9WDOG_3			(PRCM_REQ_MB4 + 0x3)
 208#define A9WDOG_AUTO_OFF_EN			BIT(7)
 209#define A9WDOG_AUTO_OFF_DIS			0
 210#define A9WDOG_ID_MASK				0xf
 211
 212/* Mailbox 5 Requests */
 213#define PRCM_REQ_MB5_I2C_SLAVE_OP	(PRCM_REQ_MB5 + 0x0)
 214#define PRCM_REQ_MB5_I2C_HW_BITS	(PRCM_REQ_MB5 + 0x1)
 215#define PRCM_REQ_MB5_I2C_REG		(PRCM_REQ_MB5 + 0x2)
 216#define PRCM_REQ_MB5_I2C_VAL		(PRCM_REQ_MB5 + 0x3)
 217#define PRCMU_I2C_WRITE(slave) \
 218	(((slave) << 1) | (cpu_is_u8500v2() ? BIT(6) : 0))
 219#define PRCMU_I2C_READ(slave) \
 220	(((slave) << 1) | BIT(0) | (cpu_is_u8500v2() ? BIT(6) : 0))
 221#define PRCMU_I2C_STOP_EN		BIT(3)
 222
 223/* Mailbox 5 ACKs */
 224#define PRCM_ACK_MB5_I2C_STATUS	(PRCM_ACK_MB5 + 0x1)
 225#define PRCM_ACK_MB5_I2C_VAL	(PRCM_ACK_MB5 + 0x3)
 226#define I2C_WR_OK 0x1
 227#define I2C_RD_OK 0x2
 228
 229#define NUM_MB 8
 230#define MBOX_BIT BIT
 231#define ALL_MBOX_BITS (MBOX_BIT(NUM_MB) - 1)
 232
 233/*
 234 * Wakeups/IRQs
 235 */
 236
 237#define WAKEUP_BIT_RTC BIT(0)
 238#define WAKEUP_BIT_RTT0 BIT(1)
 239#define WAKEUP_BIT_RTT1 BIT(2)
 240#define WAKEUP_BIT_HSI0 BIT(3)
 241#define WAKEUP_BIT_HSI1 BIT(4)
 242#define WAKEUP_BIT_CA_WAKE BIT(5)
 243#define WAKEUP_BIT_USB BIT(6)
 244#define WAKEUP_BIT_ABB BIT(7)
 245#define WAKEUP_BIT_ABB_FIFO BIT(8)
 246#define WAKEUP_BIT_SYSCLK_OK BIT(9)
 247#define WAKEUP_BIT_CA_SLEEP BIT(10)
 248#define WAKEUP_BIT_AC_WAKE_ACK BIT(11)
 249#define WAKEUP_BIT_SIDE_TONE_OK BIT(12)
 250#define WAKEUP_BIT_ANC_OK BIT(13)
 251#define WAKEUP_BIT_SW_ERROR BIT(14)
 252#define WAKEUP_BIT_AC_SLEEP_ACK BIT(15)
 253#define WAKEUP_BIT_ARM BIT(17)
 254#define WAKEUP_BIT_HOTMON_LOW BIT(18)
 255#define WAKEUP_BIT_HOTMON_HIGH BIT(19)
 256#define WAKEUP_BIT_MODEM_SW_RESET_REQ BIT(20)
 257#define WAKEUP_BIT_GPIO0 BIT(23)
 258#define WAKEUP_BIT_GPIO1 BIT(24)
 259#define WAKEUP_BIT_GPIO2 BIT(25)
 260#define WAKEUP_BIT_GPIO3 BIT(26)
 261#define WAKEUP_BIT_GPIO4 BIT(27)
 262#define WAKEUP_BIT_GPIO5 BIT(28)
 263#define WAKEUP_BIT_GPIO6 BIT(29)
 264#define WAKEUP_BIT_GPIO7 BIT(30)
 265#define WAKEUP_BIT_GPIO8 BIT(31)
 266
 267static struct {
 268	bool valid;
 269	struct prcmu_fw_version version;
 270} fw_info;
 271
 
 
 272/*
 273 * This vector maps irq numbers to the bits in the bit field used in
 274 * communication with the PRCMU firmware.
 275 *
 276 * The reason for having this is to keep the irq numbers contiguous even though
 277 * the bits in the bit field are not. (The bits also have a tendency to move
 278 * around, to further complicate matters.)
 279 */
 280#define IRQ_INDEX(_name) ((IRQ_PRCMU_##_name) - IRQ_PRCMU_BASE)
 281#define IRQ_ENTRY(_name)[IRQ_INDEX(_name)] = (WAKEUP_BIT_##_name)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 282static u32 prcmu_irq_bit[NUM_PRCMU_WAKEUPS] = {
 283	IRQ_ENTRY(RTC),
 284	IRQ_ENTRY(RTT0),
 285	IRQ_ENTRY(RTT1),
 286	IRQ_ENTRY(HSI0),
 287	IRQ_ENTRY(HSI1),
 288	IRQ_ENTRY(CA_WAKE),
 289	IRQ_ENTRY(USB),
 290	IRQ_ENTRY(ABB),
 291	IRQ_ENTRY(ABB_FIFO),
 292	IRQ_ENTRY(CA_SLEEP),
 293	IRQ_ENTRY(ARM),
 294	IRQ_ENTRY(HOTMON_LOW),
 295	IRQ_ENTRY(HOTMON_HIGH),
 296	IRQ_ENTRY(MODEM_SW_RESET_REQ),
 297	IRQ_ENTRY(GPIO0),
 298	IRQ_ENTRY(GPIO1),
 299	IRQ_ENTRY(GPIO2),
 300	IRQ_ENTRY(GPIO3),
 301	IRQ_ENTRY(GPIO4),
 302	IRQ_ENTRY(GPIO5),
 303	IRQ_ENTRY(GPIO6),
 304	IRQ_ENTRY(GPIO7),
 305	IRQ_ENTRY(GPIO8)
 306};
 307
 308#define VALID_WAKEUPS (BIT(NUM_PRCMU_WAKEUP_INDICES) - 1)
 309#define WAKEUP_ENTRY(_name)[PRCMU_WAKEUP_INDEX_##_name] = (WAKEUP_BIT_##_name)
 310static u32 prcmu_wakeup_bit[NUM_PRCMU_WAKEUP_INDICES] = {
 311	WAKEUP_ENTRY(RTC),
 312	WAKEUP_ENTRY(RTT0),
 313	WAKEUP_ENTRY(RTT1),
 314	WAKEUP_ENTRY(HSI0),
 315	WAKEUP_ENTRY(HSI1),
 316	WAKEUP_ENTRY(USB),
 317	WAKEUP_ENTRY(ABB),
 318	WAKEUP_ENTRY(ABB_FIFO),
 319	WAKEUP_ENTRY(ARM)
 320};
 321
 322/*
 323 * mb0_transfer - state needed for mailbox 0 communication.
 324 * @lock:		The transaction lock.
 325 * @dbb_events_lock:	A lock used to handle concurrent access to (parts of)
 326 *			the request data.
 327 * @mask_work:		Work structure used for (un)masking wakeup interrupts.
 328 * @req:		Request data that need to persist between requests.
 329 */
 330static struct {
 331	spinlock_t lock;
 332	spinlock_t dbb_irqs_lock;
 333	struct work_struct mask_work;
 334	struct mutex ac_wake_lock;
 335	struct completion ac_wake_work;
 336	struct {
 337		u32 dbb_irqs;
 338		u32 dbb_wakeups;
 339		u32 abb_events;
 340	} req;
 341} mb0_transfer;
 342
 343/*
 344 * mb1_transfer - state needed for mailbox 1 communication.
 345 * @lock:	The transaction lock.
 346 * @work:	The transaction completion structure.
 347 * @ape_opp:	The current APE OPP.
 348 * @ack:	Reply ("acknowledge") data.
 349 */
 350static struct {
 351	struct mutex lock;
 352	struct completion work;
 353	u8 ape_opp;
 354	struct {
 355		u8 header;
 356		u8 arm_opp;
 357		u8 ape_opp;
 358		u8 ape_voltage_status;
 359	} ack;
 360} mb1_transfer;
 361
 362/*
 363 * mb2_transfer - state needed for mailbox 2 communication.
 364 * @lock:            The transaction lock.
 365 * @work:            The transaction completion structure.
 366 * @auto_pm_lock:    The autonomous power management configuration lock.
 367 * @auto_pm_enabled: A flag indicating whether autonomous PM is enabled.
 368 * @req:             Request data that need to persist between requests.
 369 * @ack:             Reply ("acknowledge") data.
 370 */
 371static struct {
 372	struct mutex lock;
 373	struct completion work;
 374	spinlock_t auto_pm_lock;
 375	bool auto_pm_enabled;
 376	struct {
 377		u8 status;
 378	} ack;
 379} mb2_transfer;
 380
 381/*
 382 * mb3_transfer - state needed for mailbox 3 communication.
 383 * @lock:		The request lock.
 384 * @sysclk_lock:	A lock used to handle concurrent sysclk requests.
 385 * @sysclk_work:	Work structure used for sysclk requests.
 386 */
 387static struct {
 388	spinlock_t lock;
 389	struct mutex sysclk_lock;
 390	struct completion sysclk_work;
 391} mb3_transfer;
 392
 393/*
 394 * mb4_transfer - state needed for mailbox 4 communication.
 395 * @lock:	The transaction lock.
 396 * @work:	The transaction completion structure.
 397 */
 398static struct {
 399	struct mutex lock;
 400	struct completion work;
 401} mb4_transfer;
 402
 403/*
 404 * mb5_transfer - state needed for mailbox 5 communication.
 405 * @lock:	The transaction lock.
 406 * @work:	The transaction completion structure.
 407 * @ack:	Reply ("acknowledge") data.
 408 */
 409static struct {
 410	struct mutex lock;
 411	struct completion work;
 412	struct {
 413		u8 status;
 414		u8 value;
 415	} ack;
 416} mb5_transfer;
 417
 418static atomic_t ac_wake_req_state = ATOMIC_INIT(0);
 419
 420/* Spinlocks */
 421static DEFINE_SPINLOCK(prcmu_lock);
 422static DEFINE_SPINLOCK(clkout_lock);
 423
 424/* Global var to runtime determine TCDM base for v2 or v1 */
 425static __iomem void *tcdm_base;
 
 426
 427struct clk_mgt {
 428	void __iomem *reg;
 429	u32 pllsw;
 430	int branch;
 431	bool clk38div;
 432};
 433
 434enum {
 435	PLL_RAW,
 436	PLL_FIX,
 437	PLL_DIV
 438};
 439
 440static DEFINE_SPINLOCK(clk_mgt_lock);
 441
 442#define CLK_MGT_ENTRY(_name, _branch, _clk38div)[PRCMU_##_name] = \
 443	{ (PRCM_##_name##_MGT), 0 , _branch, _clk38div}
 444struct clk_mgt clk_mgt[PRCMU_NUM_REG_CLOCKS] = {
 445	CLK_MGT_ENTRY(SGACLK, PLL_DIV, false),
 446	CLK_MGT_ENTRY(UARTCLK, PLL_FIX, true),
 447	CLK_MGT_ENTRY(MSP02CLK, PLL_FIX, true),
 448	CLK_MGT_ENTRY(MSP1CLK, PLL_FIX, true),
 449	CLK_MGT_ENTRY(I2CCLK, PLL_FIX, true),
 450	CLK_MGT_ENTRY(SDMMCCLK, PLL_DIV, true),
 451	CLK_MGT_ENTRY(SLIMCLK, PLL_FIX, true),
 452	CLK_MGT_ENTRY(PER1CLK, PLL_DIV, true),
 453	CLK_MGT_ENTRY(PER2CLK, PLL_DIV, true),
 454	CLK_MGT_ENTRY(PER3CLK, PLL_DIV, true),
 455	CLK_MGT_ENTRY(PER5CLK, PLL_DIV, true),
 456	CLK_MGT_ENTRY(PER6CLK, PLL_DIV, true),
 457	CLK_MGT_ENTRY(PER7CLK, PLL_DIV, true),
 458	CLK_MGT_ENTRY(LCDCLK, PLL_FIX, true),
 459	CLK_MGT_ENTRY(BMLCLK, PLL_DIV, true),
 460	CLK_MGT_ENTRY(HSITXCLK, PLL_DIV, true),
 461	CLK_MGT_ENTRY(HSIRXCLK, PLL_DIV, true),
 462	CLK_MGT_ENTRY(HDMICLK, PLL_FIX, false),
 463	CLK_MGT_ENTRY(APEATCLK, PLL_DIV, true),
 464	CLK_MGT_ENTRY(APETRACECLK, PLL_DIV, true),
 465	CLK_MGT_ENTRY(MCDECLK, PLL_DIV, true),
 466	CLK_MGT_ENTRY(IPI2CCLK, PLL_FIX, true),
 467	CLK_MGT_ENTRY(DSIALTCLK, PLL_FIX, false),
 468	CLK_MGT_ENTRY(DMACLK, PLL_DIV, true),
 469	CLK_MGT_ENTRY(B2R2CLK, PLL_DIV, true),
 470	CLK_MGT_ENTRY(TVCLK, PLL_FIX, true),
 471	CLK_MGT_ENTRY(SSPCLK, PLL_FIX, true),
 472	CLK_MGT_ENTRY(RNGCLK, PLL_FIX, true),
 473	CLK_MGT_ENTRY(UICCCLK, PLL_FIX, false),
 474};
 475
 476struct dsiclk {
 477	u32 divsel_mask;
 478	u32 divsel_shift;
 479	u32 divsel;
 480};
 481
 482static struct dsiclk dsiclk[2] = {
 483	{
 484		.divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_MASK,
 485		.divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_SHIFT,
 486		.divsel = PRCM_DSI_PLLOUT_SEL_PHI,
 487	},
 488	{
 489		.divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_MASK,
 490		.divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_SHIFT,
 491		.divsel = PRCM_DSI_PLLOUT_SEL_PHI,
 492	}
 493};
 494
 495struct dsiescclk {
 496	u32 en;
 497	u32 div_mask;
 498	u32 div_shift;
 499};
 500
 501static struct dsiescclk dsiescclk[3] = {
 502	{
 503		.en = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_EN,
 504		.div_mask = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_MASK,
 505		.div_shift = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_SHIFT,
 506	},
 507	{
 508		.en = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_EN,
 509		.div_mask = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_MASK,
 510		.div_shift = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_SHIFT,
 511	},
 512	{
 513		.en = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_EN,
 514		.div_mask = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_MASK,
 515		.div_shift = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_SHIFT,
 516	}
 517};
 518
 519/*
 520* Used by MCDE to setup all necessary PRCMU registers
 521*/
 522#define PRCMU_RESET_DSIPLL		0x00004000
 523#define PRCMU_UNCLAMP_DSIPLL		0x00400800
 524
 525#define PRCMU_CLK_PLL_DIV_SHIFT		0
 526#define PRCMU_CLK_PLL_SW_SHIFT		5
 527#define PRCMU_CLK_38			(1 << 9)
 528#define PRCMU_CLK_38_SRC		(1 << 10)
 529#define PRCMU_CLK_38_DIV		(1 << 11)
 530
 531/* PLLDIV=12, PLLSW=4 (PLLDDR) */
 532#define PRCMU_DSI_CLOCK_SETTING		0x0000008C
 533
 534/* DPI 50000000 Hz */
 535#define PRCMU_DPI_CLOCK_SETTING		((1 << PRCMU_CLK_PLL_SW_SHIFT) | \
 536					  (16 << PRCMU_CLK_PLL_DIV_SHIFT))
 537#define PRCMU_DSI_LP_CLOCK_SETTING	0x00000E00
 538
 539/* D=101, N=1, R=4, SELDIV2=0 */
 540#define PRCMU_PLLDSI_FREQ_SETTING	0x00040165
 541
 542#define PRCMU_ENABLE_PLLDSI		0x00000001
 543#define PRCMU_DISABLE_PLLDSI		0x00000000
 544#define PRCMU_RELEASE_RESET_DSS		0x0000400C
 545#define PRCMU_DSI_PLLOUT_SEL_SETTING	0x00000202
 546/* ESC clk, div0=1, div1=1, div2=3 */
 547#define PRCMU_ENABLE_ESCAPE_CLOCK_DIV	0x07030101
 548#define PRCMU_DISABLE_ESCAPE_CLOCK_DIV	0x00030101
 549#define PRCMU_DSI_RESET_SW		0x00000007
 550
 551#define PRCMU_PLLDSI_LOCKP_LOCKED	0x3
 552
 553int db8500_prcmu_enable_dsipll(void)
 554{
 555	int i;
 556
 557	/* Clear DSIPLL_RESETN */
 558	writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_CLR);
 559	/* Unclamp DSIPLL in/out */
 560	writel(PRCMU_UNCLAMP_DSIPLL, PRCM_MMIP_LS_CLAMP_CLR);
 561
 562	/* Set DSI PLL FREQ */
 563	writel(PRCMU_PLLDSI_FREQ_SETTING, PRCM_PLLDSI_FREQ);
 564	writel(PRCMU_DSI_PLLOUT_SEL_SETTING, PRCM_DSI_PLLOUT_SEL);
 565	/* Enable Escape clocks */
 566	writel(PRCMU_ENABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
 567
 568	/* Start DSI PLL */
 569	writel(PRCMU_ENABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
 570	/* Reset DSI PLL */
 571	writel(PRCMU_DSI_RESET_SW, PRCM_DSI_SW_RESET);
 572	for (i = 0; i < 10; i++) {
 573		if ((readl(PRCM_PLLDSI_LOCKP) & PRCMU_PLLDSI_LOCKP_LOCKED)
 574					== PRCMU_PLLDSI_LOCKP_LOCKED)
 575			break;
 576		udelay(100);
 577	}
 578	/* Set DSIPLL_RESETN */
 579	writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_SET);
 580	return 0;
 581}
 582
 583int db8500_prcmu_disable_dsipll(void)
 584{
 585	/* Disable dsi pll */
 586	writel(PRCMU_DISABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
 587	/* Disable  escapeclock */
 588	writel(PRCMU_DISABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
 589	return 0;
 590}
 591
 592int db8500_prcmu_set_display_clocks(void)
 593{
 594	unsigned long flags;
 595
 596	spin_lock_irqsave(&clk_mgt_lock, flags);
 597
 598	/* Grab the HW semaphore. */
 599	while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
 600		cpu_relax();
 601
 602	writel(PRCMU_DSI_CLOCK_SETTING, PRCM_HDMICLK_MGT);
 603	writel(PRCMU_DSI_LP_CLOCK_SETTING, PRCM_TVCLK_MGT);
 604	writel(PRCMU_DPI_CLOCK_SETTING, PRCM_LCDCLK_MGT);
 605
 606	/* Release the HW semaphore. */
 607	writel(0, PRCM_SEM);
 608
 609	spin_unlock_irqrestore(&clk_mgt_lock, flags);
 610
 611	return 0;
 612}
 613
 614u32 db8500_prcmu_read(unsigned int reg)
 615{
 616	return readl(_PRCMU_BASE + reg);
 617}
 618
 619void db8500_prcmu_write(unsigned int reg, u32 value)
 620{
 621	unsigned long flags;
 622
 623	spin_lock_irqsave(&prcmu_lock, flags);
 624	writel(value, (_PRCMU_BASE + reg));
 625	spin_unlock_irqrestore(&prcmu_lock, flags);
 626}
 627
 628void db8500_prcmu_write_masked(unsigned int reg, u32 mask, u32 value)
 629{
 630	u32 val;
 631	unsigned long flags;
 632
 633	spin_lock_irqsave(&prcmu_lock, flags);
 634	val = readl(_PRCMU_BASE + reg);
 635	val = ((val & ~mask) | (value & mask));
 636	writel(val, (_PRCMU_BASE + reg));
 637	spin_unlock_irqrestore(&prcmu_lock, flags);
 638}
 639
 640struct prcmu_fw_version *prcmu_get_fw_version(void)
 641{
 642	return fw_info.valid ? &fw_info.version : NULL;
 643}
 644
 
 
 
 
 
 
 
 
 645bool prcmu_has_arm_maxopp(void)
 646{
 647	return (readb(tcdm_base + PRCM_AVS_VARM_MAX_OPP) &
 648		PRCM_AVS_ISMODEENABLE_MASK) == PRCM_AVS_ISMODEENABLE_MASK;
 649}
 650
 651/**
 652 * prcmu_get_boot_status - PRCMU boot status checking
 653 * Returns: the current PRCMU boot status
 654 */
 655int prcmu_get_boot_status(void)
 656{
 657	return readb(tcdm_base + PRCM_BOOT_STATUS);
 658}
 659
 660/**
 661 * prcmu_set_rc_a2p - This function is used to run few power state sequences
 662 * @val: Value to be set, i.e. transition requested
 663 * Returns: 0 on success, -EINVAL on invalid argument
 664 *
 665 * This function is used to run the following power state sequences -
 666 * any state to ApReset,  ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
 667 */
 668int prcmu_set_rc_a2p(enum romcode_write val)
 669{
 670	if (val < RDY_2_DS || val > RDY_2_XP70_RST)
 671		return -EINVAL;
 672	writeb(val, (tcdm_base + PRCM_ROMCODE_A2P));
 673	return 0;
 674}
 675
 676/**
 677 * prcmu_get_rc_p2a - This function is used to get power state sequences
 678 * Returns: the power transition that has last happened
 679 *
 680 * This function can return the following transitions-
 681 * any state to ApReset,  ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
 682 */
 683enum romcode_read prcmu_get_rc_p2a(void)
 684{
 685	return readb(tcdm_base + PRCM_ROMCODE_P2A);
 686}
 687
 688/**
 689 * prcmu_get_current_mode - Return the current XP70 power mode
 690 * Returns: Returns the current AP(ARM) power mode: init,
 691 * apBoot, apExecute, apDeepSleep, apSleep, apIdle, apReset
 692 */
 693enum ap_pwrst prcmu_get_xp70_current_state(void)
 694{
 695	return readb(tcdm_base + PRCM_XP70_CUR_PWR_STATE);
 696}
 697
 698/**
 699 * prcmu_config_clkout - Configure one of the programmable clock outputs.
 700 * @clkout:	The CLKOUT number (0 or 1).
 701 * @source:	The clock to be used (one of the PRCMU_CLKSRC_*).
 702 * @div:	The divider to be applied.
 703 *
 704 * Configures one of the programmable clock outputs (CLKOUTs).
 705 * @div should be in the range [1,63] to request a configuration, or 0 to
 706 * inform that the configuration is no longer requested.
 707 */
 708int prcmu_config_clkout(u8 clkout, u8 source, u8 div)
 709{
 710	static int requests[2];
 711	int r = 0;
 712	unsigned long flags;
 713	u32 val;
 714	u32 bits;
 715	u32 mask;
 716	u32 div_mask;
 717
 718	BUG_ON(clkout > 1);
 719	BUG_ON(div > 63);
 720	BUG_ON((clkout == 0) && (source > PRCMU_CLKSRC_CLK009));
 721
 722	if (!div && !requests[clkout])
 723		return -EINVAL;
 724
 725	switch (clkout) {
 726	case 0:
 727		div_mask = PRCM_CLKOCR_CLKODIV0_MASK;
 728		mask = (PRCM_CLKOCR_CLKODIV0_MASK | PRCM_CLKOCR_CLKOSEL0_MASK);
 729		bits = ((source << PRCM_CLKOCR_CLKOSEL0_SHIFT) |
 730			(div << PRCM_CLKOCR_CLKODIV0_SHIFT));
 731		break;
 732	case 1:
 733		div_mask = PRCM_CLKOCR_CLKODIV1_MASK;
 734		mask = (PRCM_CLKOCR_CLKODIV1_MASK | PRCM_CLKOCR_CLKOSEL1_MASK |
 735			PRCM_CLKOCR_CLK1TYPE);
 736		bits = ((source << PRCM_CLKOCR_CLKOSEL1_SHIFT) |
 737			(div << PRCM_CLKOCR_CLKODIV1_SHIFT));
 738		break;
 739	}
 740	bits &= mask;
 741
 742	spin_lock_irqsave(&clkout_lock, flags);
 743
 744	val = readl(PRCM_CLKOCR);
 745	if (val & div_mask) {
 746		if (div) {
 747			if ((val & mask) != bits) {
 748				r = -EBUSY;
 749				goto unlock_and_return;
 750			}
 751		} else {
 752			if ((val & mask & ~div_mask) != bits) {
 753				r = -EINVAL;
 754				goto unlock_and_return;
 755			}
 756		}
 757	}
 758	writel((bits | (val & ~mask)), PRCM_CLKOCR);
 759	requests[clkout] += (div ? 1 : -1);
 760
 761unlock_and_return:
 762	spin_unlock_irqrestore(&clkout_lock, flags);
 763
 764	return r;
 765}
 766
 767int db8500_prcmu_set_power_state(u8 state, bool keep_ulp_clk, bool keep_ap_pll)
 768{
 769	unsigned long flags;
 770
 771	BUG_ON((state < PRCMU_AP_SLEEP) || (PRCMU_AP_DEEP_IDLE < state));
 772
 773	spin_lock_irqsave(&mb0_transfer.lock, flags);
 774
 775	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
 776		cpu_relax();
 777
 778	writeb(MB0H_POWER_STATE_TRANS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
 779	writeb(state, (tcdm_base + PRCM_REQ_MB0_AP_POWER_STATE));
 780	writeb((keep_ap_pll ? 1 : 0), (tcdm_base + PRCM_REQ_MB0_AP_PLL_STATE));
 781	writeb((keep_ulp_clk ? 1 : 0),
 782		(tcdm_base + PRCM_REQ_MB0_ULP_CLOCK_STATE));
 783	writeb(0, (tcdm_base + PRCM_REQ_MB0_DO_NOT_WFI));
 784	writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
 785
 786	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
 787
 788	return 0;
 789}
 790
 791u8 db8500_prcmu_get_power_state_result(void)
 792{
 793	return readb(tcdm_base + PRCM_ACK_MB0_AP_PWRSTTR_STATUS);
 794}
 795
 796/* This function decouple the gic from the prcmu */
 797int db8500_prcmu_gic_decouple(void)
 798{
 799	u32 val = readl(PRCM_A9_MASK_REQ);
 800
 801	/* Set bit 0 register value to 1 */
 802	writel(val | PRCM_A9_MASK_REQ_PRCM_A9_MASK_REQ,
 803	       PRCM_A9_MASK_REQ);
 804
 805	/* Make sure the register is updated */
 806	readl(PRCM_A9_MASK_REQ);
 807
 808	/* Wait a few cycles for the gic mask completion */
 809	udelay(1);
 810
 811	return 0;
 812}
 813
 814/* This function recouple the gic with the prcmu */
 815int db8500_prcmu_gic_recouple(void)
 816{
 817	u32 val = readl(PRCM_A9_MASK_REQ);
 818
 819	/* Set bit 0 register value to 0 */
 820	writel(val & ~PRCM_A9_MASK_REQ_PRCM_A9_MASK_REQ, PRCM_A9_MASK_REQ);
 821
 822	return 0;
 823}
 824
 825#define PRCMU_GIC_NUMBER_REGS 5
 826
 827/*
 828 * This function checks if there are pending irq on the gic. It only
 829 * makes sense if the gic has been decoupled before with the
 830 * db8500_prcmu_gic_decouple function. Disabling an interrupt only
 831 * disables the forwarding of the interrupt to any CPU interface. It
 832 * does not prevent the interrupt from changing state, for example
 833 * becoming pending, or active and pending if it is already
 834 * active. Hence, we have to check the interrupt is pending *and* is
 835 * active.
 836 */
 837bool db8500_prcmu_gic_pending_irq(void)
 838{
 839	u32 pr; /* Pending register */
 840	u32 er; /* Enable register */
 841	void __iomem *dist_base = __io_address(U8500_GIC_DIST_BASE);
 842	int i;
 843
 844        /* 5 registers. STI & PPI not skipped */
 845	for (i = 0; i < PRCMU_GIC_NUMBER_REGS; i++) {
 846
 847		pr = readl_relaxed(dist_base + GIC_DIST_PENDING_SET + i * 4);
 848		er = readl_relaxed(dist_base + GIC_DIST_ENABLE_SET + i * 4);
 849
 850		if (pr & er)
 851			return true; /* There is a pending interrupt */
 852	}
 853
 854	return false;
 855}
 856
 857/*
 858 * This function checks if there are pending interrupt on the
 859 * prcmu which has been delegated to monitor the irqs with the
 860 * db8500_prcmu_copy_gic_settings function.
 861 */
 862bool db8500_prcmu_pending_irq(void)
 863{
 864	u32 it, im;
 865	int i;
 866
 867	for (i = 0; i < PRCMU_GIC_NUMBER_REGS - 1; i++) {
 868		it = readl(PRCM_ARMITVAL31TO0 + i * 4);
 869		im = readl(PRCM_ARMITMSK31TO0 + i * 4);
 870		if (it & im)
 871			return true; /* There is a pending interrupt */
 872	}
 873
 874	return false;
 875}
 876
 877/*
 878 * This function checks if the specified cpu is in in WFI. It's usage
 879 * makes sense only if the gic is decoupled with the db8500_prcmu_gic_decouple
 880 * function. Of course passing smp_processor_id() to this function will
 881 * always return false...
 882 */
 883bool db8500_prcmu_is_cpu_in_wfi(int cpu)
 884{
 885	return readl(PRCM_ARM_WFI_STANDBY) & cpu ? PRCM_ARM_WFI_STANDBY_WFI1 :
 886		     PRCM_ARM_WFI_STANDBY_WFI0;
 887}
 888
 889/*
 890 * This function copies the gic SPI settings to the prcmu in order to
 891 * monitor them and abort/finish the retention/off sequence or state.
 892 */
 893int db8500_prcmu_copy_gic_settings(void)
 894{
 895	u32 er; /* Enable register */
 896	void __iomem *dist_base = __io_address(U8500_GIC_DIST_BASE);
 897	int i;
 898
 899        /* We skip the STI and PPI */
 900	for (i = 0; i < PRCMU_GIC_NUMBER_REGS - 1; i++) {
 901		er = readl_relaxed(dist_base +
 902				   GIC_DIST_ENABLE_SET + (i + 1) * 4);
 903		writel(er, PRCM_ARMITMSK31TO0 + i * 4);
 904	}
 905
 906	return 0;
 907}
 908
 909/* This function should only be called while mb0_transfer.lock is held. */
 910static void config_wakeups(void)
 911{
 912	const u8 header[2] = {
 913		MB0H_CONFIG_WAKEUPS_EXE,
 914		MB0H_CONFIG_WAKEUPS_SLEEP
 915	};
 916	static u32 last_dbb_events;
 917	static u32 last_abb_events;
 918	u32 dbb_events;
 919	u32 abb_events;
 920	unsigned int i;
 921
 922	dbb_events = mb0_transfer.req.dbb_irqs | mb0_transfer.req.dbb_wakeups;
 923	dbb_events |= (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK);
 924
 925	abb_events = mb0_transfer.req.abb_events;
 926
 927	if ((dbb_events == last_dbb_events) && (abb_events == last_abb_events))
 928		return;
 929
 930	for (i = 0; i < 2; i++) {
 931		while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
 932			cpu_relax();
 933		writel(dbb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_8500));
 934		writel(abb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_4500));
 935		writeb(header[i], (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
 936		writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
 937	}
 938	last_dbb_events = dbb_events;
 939	last_abb_events = abb_events;
 940}
 941
 942void db8500_prcmu_enable_wakeups(u32 wakeups)
 943{
 944	unsigned long flags;
 945	u32 bits;
 946	int i;
 947
 948	BUG_ON(wakeups != (wakeups & VALID_WAKEUPS));
 949
 950	for (i = 0, bits = 0; i < NUM_PRCMU_WAKEUP_INDICES; i++) {
 951		if (wakeups & BIT(i))
 952			bits |= prcmu_wakeup_bit[i];
 953	}
 954
 955	spin_lock_irqsave(&mb0_transfer.lock, flags);
 956
 957	mb0_transfer.req.dbb_wakeups = bits;
 958	config_wakeups();
 959
 960	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
 961}
 962
 963void db8500_prcmu_config_abb_event_readout(u32 abb_events)
 964{
 965	unsigned long flags;
 966
 967	spin_lock_irqsave(&mb0_transfer.lock, flags);
 968
 969	mb0_transfer.req.abb_events = abb_events;
 970	config_wakeups();
 971
 972	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
 973}
 974
 975void db8500_prcmu_get_abb_event_buffer(void __iomem **buf)
 976{
 977	if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
 978		*buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_1_4500);
 979	else
 980		*buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_0_4500);
 981}
 982
 983/**
 984 * db8500_prcmu_set_arm_opp - set the appropriate ARM OPP
 985 * @opp: The new ARM operating point to which transition is to be made
 986 * Returns: 0 on success, non-zero on failure
 987 *
 988 * This function sets the the operating point of the ARM.
 989 */
 990int db8500_prcmu_set_arm_opp(u8 opp)
 991{
 992	int r;
 993
 994	if (opp < ARM_NO_CHANGE || opp > ARM_EXTCLK)
 995		return -EINVAL;
 996
 997	r = 0;
 998
 999	mutex_lock(&mb1_transfer.lock);
1000
1001	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1002		cpu_relax();
1003
1004	writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1005	writeb(opp, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
1006	writeb(APE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_APE_OPP));
1007
1008	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1009	wait_for_completion(&mb1_transfer.work);
1010
1011	if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
1012		(mb1_transfer.ack.arm_opp != opp))
1013		r = -EIO;
1014
1015	mutex_unlock(&mb1_transfer.lock);
1016
1017	return r;
1018}
1019
1020/**
1021 * db8500_prcmu_get_arm_opp - get the current ARM OPP
1022 *
1023 * Returns: the current ARM OPP
1024 */
1025int db8500_prcmu_get_arm_opp(void)
1026{
1027	return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_ARM_OPP);
1028}
1029
1030/**
1031 * db8500_prcmu_get_ddr_opp - get the current DDR OPP
1032 *
1033 * Returns: the current DDR OPP
1034 */
1035int db8500_prcmu_get_ddr_opp(void)
1036{
1037	return readb(PRCM_DDR_SUBSYS_APE_MINBW);
1038}
1039
1040/**
1041 * db8500_set_ddr_opp - set the appropriate DDR OPP
1042 * @opp: The new DDR operating point to which transition is to be made
1043 * Returns: 0 on success, non-zero on failure
1044 *
1045 * This function sets the operating point of the DDR.
1046 */
1047int db8500_prcmu_set_ddr_opp(u8 opp)
1048{
1049	if (opp < DDR_100_OPP || opp > DDR_25_OPP)
1050		return -EINVAL;
1051	/* Changing the DDR OPP can hang the hardware pre-v21 */
1052	if (cpu_is_u8500v20_or_later() && !cpu_is_u8500v20())
1053		writeb(opp, PRCM_DDR_SUBSYS_APE_MINBW);
1054
1055	return 0;
1056}
1057
1058/* Divide the frequency of certain clocks by 2 for APE_50_PARTLY_25_OPP. */
1059static void request_even_slower_clocks(bool enable)
1060{
1061	void __iomem *clock_reg[] = {
1062		PRCM_ACLK_MGT,
1063		PRCM_DMACLK_MGT
1064	};
1065	unsigned long flags;
1066	unsigned int i;
1067
1068	spin_lock_irqsave(&clk_mgt_lock, flags);
1069
1070	/* Grab the HW semaphore. */
1071	while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1072		cpu_relax();
1073
1074	for (i = 0; i < ARRAY_SIZE(clock_reg); i++) {
1075		u32 val;
1076		u32 div;
1077
1078		val = readl(clock_reg[i]);
1079		div = (val & PRCM_CLK_MGT_CLKPLLDIV_MASK);
1080		if (enable) {
1081			if ((div <= 1) || (div > 15)) {
1082				pr_err("prcmu: Bad clock divider %d in %s\n",
1083					div, __func__);
1084				goto unlock_and_return;
1085			}
1086			div <<= 1;
1087		} else {
1088			if (div <= 2)
1089				goto unlock_and_return;
1090			div >>= 1;
1091		}
1092		val = ((val & ~PRCM_CLK_MGT_CLKPLLDIV_MASK) |
1093			(div & PRCM_CLK_MGT_CLKPLLDIV_MASK));
1094		writel(val, clock_reg[i]);
1095	}
1096
1097unlock_and_return:
1098	/* Release the HW semaphore. */
1099	writel(0, PRCM_SEM);
1100
1101	spin_unlock_irqrestore(&clk_mgt_lock, flags);
1102}
1103
1104/**
1105 * db8500_set_ape_opp - set the appropriate APE OPP
1106 * @opp: The new APE operating point to which transition is to be made
1107 * Returns: 0 on success, non-zero on failure
1108 *
1109 * This function sets the operating point of the APE.
1110 */
1111int db8500_prcmu_set_ape_opp(u8 opp)
1112{
1113	int r = 0;
1114
1115	if (opp == mb1_transfer.ape_opp)
1116		return 0;
1117
1118	mutex_lock(&mb1_transfer.lock);
1119
1120	if (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)
1121		request_even_slower_clocks(false);
1122
1123	if ((opp != APE_100_OPP) && (mb1_transfer.ape_opp != APE_100_OPP))
1124		goto skip_message;
1125
1126	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1127		cpu_relax();
1128
1129	writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1130	writeb(ARM_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
1131	writeb(((opp == APE_50_PARTLY_25_OPP) ? APE_50_OPP : opp),
1132		(tcdm_base + PRCM_REQ_MB1_APE_OPP));
1133
1134	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1135	wait_for_completion(&mb1_transfer.work);
1136
1137	if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
1138		(mb1_transfer.ack.ape_opp != opp))
1139		r = -EIO;
1140
1141skip_message:
1142	if ((!r && (opp == APE_50_PARTLY_25_OPP)) ||
1143		(r && (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)))
1144		request_even_slower_clocks(true);
1145	if (!r)
1146		mb1_transfer.ape_opp = opp;
1147
1148	mutex_unlock(&mb1_transfer.lock);
1149
1150	return r;
1151}
1152
1153/**
1154 * db8500_prcmu_get_ape_opp - get the current APE OPP
1155 *
1156 * Returns: the current APE OPP
1157 */
1158int db8500_prcmu_get_ape_opp(void)
1159{
1160	return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_APE_OPP);
1161}
1162
1163/**
1164 * prcmu_request_ape_opp_100_voltage - Request APE OPP 100% voltage
1165 * @enable: true to request the higher voltage, false to drop a request.
1166 *
1167 * Calls to this function to enable and disable requests must be balanced.
1168 */
1169int prcmu_request_ape_opp_100_voltage(bool enable)
1170{
1171	int r = 0;
1172	u8 header;
1173	static unsigned int requests;
1174
1175	mutex_lock(&mb1_transfer.lock);
1176
1177	if (enable) {
1178		if (0 != requests++)
1179			goto unlock_and_return;
1180		header = MB1H_REQUEST_APE_OPP_100_VOLT;
1181	} else {
1182		if (requests == 0) {
1183			r = -EIO;
1184			goto unlock_and_return;
1185		} else if (1 != requests--) {
1186			goto unlock_and_return;
1187		}
1188		header = MB1H_RELEASE_APE_OPP_100_VOLT;
1189	}
1190
1191	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1192		cpu_relax();
1193
1194	writeb(header, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1195
1196	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1197	wait_for_completion(&mb1_transfer.work);
1198
1199	if ((mb1_transfer.ack.header != header) ||
1200		((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1201		r = -EIO;
1202
1203unlock_and_return:
1204	mutex_unlock(&mb1_transfer.lock);
1205
1206	return r;
1207}
1208
1209/**
1210 * prcmu_release_usb_wakeup_state - release the state required by a USB wakeup
1211 *
1212 * This function releases the power state requirements of a USB wakeup.
1213 */
1214int prcmu_release_usb_wakeup_state(void)
1215{
1216	int r = 0;
1217
1218	mutex_lock(&mb1_transfer.lock);
1219
1220	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1221		cpu_relax();
1222
1223	writeb(MB1H_RELEASE_USB_WAKEUP,
1224		(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1225
1226	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1227	wait_for_completion(&mb1_transfer.work);
1228
1229	if ((mb1_transfer.ack.header != MB1H_RELEASE_USB_WAKEUP) ||
1230		((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1231		r = -EIO;
1232
1233	mutex_unlock(&mb1_transfer.lock);
1234
1235	return r;
1236}
1237
1238static int request_pll(u8 clock, bool enable)
1239{
1240	int r = 0;
1241
1242	if (clock == PRCMU_PLLSOC0)
1243		clock = (enable ? PLL_SOC0_ON : PLL_SOC0_OFF);
1244	else if (clock == PRCMU_PLLSOC1)
1245		clock = (enable ? PLL_SOC1_ON : PLL_SOC1_OFF);
1246	else
1247		return -EINVAL;
1248
1249	mutex_lock(&mb1_transfer.lock);
1250
1251	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1252		cpu_relax();
1253
1254	writeb(MB1H_PLL_ON_OFF, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1255	writeb(clock, (tcdm_base + PRCM_REQ_MB1_PLL_ON_OFF));
1256
1257	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1258	wait_for_completion(&mb1_transfer.work);
1259
1260	if (mb1_transfer.ack.header != MB1H_PLL_ON_OFF)
1261		r = -EIO;
1262
1263	mutex_unlock(&mb1_transfer.lock);
1264
1265	return r;
1266}
1267
1268/**
1269 * db8500_prcmu_set_epod - set the state of a EPOD (power domain)
1270 * @epod_id: The EPOD to set
1271 * @epod_state: The new EPOD state
1272 *
1273 * This function sets the state of a EPOD (power domain). It may not be called
1274 * from interrupt context.
1275 */
1276int db8500_prcmu_set_epod(u16 epod_id, u8 epod_state)
1277{
1278	int r = 0;
1279	bool ram_retention = false;
1280	int i;
1281
1282	/* check argument */
1283	BUG_ON(epod_id >= NUM_EPOD_ID);
1284
1285	/* set flag if retention is possible */
1286	switch (epod_id) {
1287	case EPOD_ID_SVAMMDSP:
1288	case EPOD_ID_SIAMMDSP:
1289	case EPOD_ID_ESRAM12:
1290	case EPOD_ID_ESRAM34:
1291		ram_retention = true;
1292		break;
1293	}
1294
1295	/* check argument */
1296	BUG_ON(epod_state > EPOD_STATE_ON);
1297	BUG_ON(epod_state == EPOD_STATE_RAMRET && !ram_retention);
1298
1299	/* get lock */
1300	mutex_lock(&mb2_transfer.lock);
1301
1302	/* wait for mailbox */
1303	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(2))
1304		cpu_relax();
1305
1306	/* fill in mailbox */
1307	for (i = 0; i < NUM_EPOD_ID; i++)
1308		writeb(EPOD_STATE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB2 + i));
1309	writeb(epod_state, (tcdm_base + PRCM_REQ_MB2 + epod_id));
1310
1311	writeb(MB2H_DPS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB2));
1312
1313	writel(MBOX_BIT(2), PRCM_MBOX_CPU_SET);
1314
1315	/*
1316	 * The current firmware version does not handle errors correctly,
1317	 * and we cannot recover if there is an error.
1318	 * This is expected to change when the firmware is updated.
1319	 */
1320	if (!wait_for_completion_timeout(&mb2_transfer.work,
1321			msecs_to_jiffies(20000))) {
1322		pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1323			__func__);
1324		r = -EIO;
1325		goto unlock_and_return;
1326	}
1327
1328	if (mb2_transfer.ack.status != HWACC_PWR_ST_OK)
1329		r = -EIO;
1330
1331unlock_and_return:
1332	mutex_unlock(&mb2_transfer.lock);
1333	return r;
1334}
1335
1336/**
1337 * prcmu_configure_auto_pm - Configure autonomous power management.
1338 * @sleep: Configuration for ApSleep.
1339 * @idle:  Configuration for ApIdle.
1340 */
1341void prcmu_configure_auto_pm(struct prcmu_auto_pm_config *sleep,
1342	struct prcmu_auto_pm_config *idle)
1343{
1344	u32 sleep_cfg;
1345	u32 idle_cfg;
1346	unsigned long flags;
1347
1348	BUG_ON((sleep == NULL) || (idle == NULL));
1349
1350	sleep_cfg = (sleep->sva_auto_pm_enable & 0xF);
1351	sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_auto_pm_enable & 0xF));
1352	sleep_cfg = ((sleep_cfg << 8) | (sleep->sva_power_on & 0xFF));
1353	sleep_cfg = ((sleep_cfg << 8) | (sleep->sia_power_on & 0xFF));
1354	sleep_cfg = ((sleep_cfg << 4) | (sleep->sva_policy & 0xF));
1355	sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_policy & 0xF));
1356
1357	idle_cfg = (idle->sva_auto_pm_enable & 0xF);
1358	idle_cfg = ((idle_cfg << 4) | (idle->sia_auto_pm_enable & 0xF));
1359	idle_cfg = ((idle_cfg << 8) | (idle->sva_power_on & 0xFF));
1360	idle_cfg = ((idle_cfg << 8) | (idle->sia_power_on & 0xFF));
1361	idle_cfg = ((idle_cfg << 4) | (idle->sva_policy & 0xF));
1362	idle_cfg = ((idle_cfg << 4) | (idle->sia_policy & 0xF));
1363
1364	spin_lock_irqsave(&mb2_transfer.auto_pm_lock, flags);
1365
1366	/*
1367	 * The autonomous power management configuration is done through
1368	 * fields in mailbox 2, but these fields are only used as shared
1369	 * variables - i.e. there is no need to send a message.
1370	 */
1371	writel(sleep_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_SLEEP));
1372	writel(idle_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_IDLE));
1373
1374	mb2_transfer.auto_pm_enabled =
1375		((sleep->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1376		 (sleep->sia_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1377		 (idle->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1378		 (idle->sia_auto_pm_enable == PRCMU_AUTO_PM_ON));
1379
1380	spin_unlock_irqrestore(&mb2_transfer.auto_pm_lock, flags);
1381}
1382EXPORT_SYMBOL(prcmu_configure_auto_pm);
1383
1384bool prcmu_is_auto_pm_enabled(void)
1385{
1386	return mb2_transfer.auto_pm_enabled;
1387}
1388
1389static int request_sysclk(bool enable)
1390{
1391	int r;
1392	unsigned long flags;
1393
1394	r = 0;
1395
1396	mutex_lock(&mb3_transfer.sysclk_lock);
1397
1398	spin_lock_irqsave(&mb3_transfer.lock, flags);
1399
1400	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(3))
1401		cpu_relax();
1402
1403	writeb((enable ? ON : OFF), (tcdm_base + PRCM_REQ_MB3_SYSCLK_MGT));
1404
1405	writeb(MB3H_SYSCLK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB3));
1406	writel(MBOX_BIT(3), PRCM_MBOX_CPU_SET);
1407
1408	spin_unlock_irqrestore(&mb3_transfer.lock, flags);
1409
1410	/*
1411	 * The firmware only sends an ACK if we want to enable the
1412	 * SysClk, and it succeeds.
1413	 */
1414	if (enable && !wait_for_completion_timeout(&mb3_transfer.sysclk_work,
1415			msecs_to_jiffies(20000))) {
1416		pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1417			__func__);
1418		r = -EIO;
1419	}
1420
1421	mutex_unlock(&mb3_transfer.sysclk_lock);
1422
1423	return r;
1424}
1425
1426static int request_timclk(bool enable)
1427{
1428	u32 val = (PRCM_TCR_DOZE_MODE | PRCM_TCR_TENSEL_MASK);
 
 
 
 
 
 
 
 
 
 
1429
1430	if (!enable)
1431		val |= PRCM_TCR_STOP_TIMERS;
 
 
 
1432	writel(val, PRCM_TCR);
1433
1434	return 0;
1435}
1436
1437static int request_clock(u8 clock, bool enable)
1438{
1439	u32 val;
1440	unsigned long flags;
1441
1442	spin_lock_irqsave(&clk_mgt_lock, flags);
1443
1444	/* Grab the HW semaphore. */
1445	while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1446		cpu_relax();
1447
1448	val = readl(clk_mgt[clock].reg);
1449	if (enable) {
1450		val |= (PRCM_CLK_MGT_CLKEN | clk_mgt[clock].pllsw);
1451	} else {
1452		clk_mgt[clock].pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1453		val &= ~(PRCM_CLK_MGT_CLKEN | PRCM_CLK_MGT_CLKPLLSW_MASK);
1454	}
1455	writel(val, clk_mgt[clock].reg);
1456
1457	/* Release the HW semaphore. */
1458	writel(0, PRCM_SEM);
1459
1460	spin_unlock_irqrestore(&clk_mgt_lock, flags);
1461
1462	return 0;
1463}
1464
1465static int request_sga_clock(u8 clock, bool enable)
1466{
1467	u32 val;
1468	int ret;
1469
1470	if (enable) {
1471		val = readl(PRCM_CGATING_BYPASS);
1472		writel(val | PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1473	}
1474
1475	ret = request_clock(clock, enable);
1476
1477	if (!ret && !enable) {
1478		val = readl(PRCM_CGATING_BYPASS);
1479		writel(val & ~PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1480	}
1481
1482	return ret;
1483}
1484
1485static inline bool plldsi_locked(void)
1486{
1487	return (readl(PRCM_PLLDSI_LOCKP) &
1488		(PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1489		 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3)) ==
1490		(PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1491		 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3);
1492}
1493
1494static int request_plldsi(bool enable)
1495{
1496	int r = 0;
1497	u32 val;
1498
1499	writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1500		PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI), (enable ?
1501		PRCM_MMIP_LS_CLAMP_CLR : PRCM_MMIP_LS_CLAMP_SET));
1502
1503	val = readl(PRCM_PLLDSI_ENABLE);
1504	if (enable)
1505		val |= PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1506	else
1507		val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1508	writel(val, PRCM_PLLDSI_ENABLE);
1509
1510	if (enable) {
1511		unsigned int i;
1512		bool locked = plldsi_locked();
1513
1514		for (i = 10; !locked && (i > 0); --i) {
1515			udelay(100);
1516			locked = plldsi_locked();
1517		}
1518		if (locked) {
1519			writel(PRCM_APE_RESETN_DSIPLL_RESETN,
1520				PRCM_APE_RESETN_SET);
1521		} else {
1522			writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1523				PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI),
1524				PRCM_MMIP_LS_CLAMP_SET);
1525			val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1526			writel(val, PRCM_PLLDSI_ENABLE);
1527			r = -EAGAIN;
1528		}
1529	} else {
1530		writel(PRCM_APE_RESETN_DSIPLL_RESETN, PRCM_APE_RESETN_CLR);
1531	}
1532	return r;
1533}
1534
1535static int request_dsiclk(u8 n, bool enable)
1536{
1537	u32 val;
1538
1539	val = readl(PRCM_DSI_PLLOUT_SEL);
1540	val &= ~dsiclk[n].divsel_mask;
1541	val |= ((enable ? dsiclk[n].divsel : PRCM_DSI_PLLOUT_SEL_OFF) <<
1542		dsiclk[n].divsel_shift);
1543	writel(val, PRCM_DSI_PLLOUT_SEL);
1544	return 0;
1545}
1546
1547static int request_dsiescclk(u8 n, bool enable)
1548{
1549	u32 val;
1550
1551	val = readl(PRCM_DSITVCLK_DIV);
1552	enable ? (val |= dsiescclk[n].en) : (val &= ~dsiescclk[n].en);
1553	writel(val, PRCM_DSITVCLK_DIV);
1554	return 0;
1555}
1556
1557/**
1558 * db8500_prcmu_request_clock() - Request for a clock to be enabled or disabled.
1559 * @clock:      The clock for which the request is made.
1560 * @enable:     Whether the clock should be enabled (true) or disabled (false).
1561 *
1562 * This function should only be used by the clock implementation.
1563 * Do not use it from any other place!
1564 */
1565int db8500_prcmu_request_clock(u8 clock, bool enable)
1566{
1567	if (clock == PRCMU_SGACLK)
1568		return request_sga_clock(clock, enable);
1569	else if (clock < PRCMU_NUM_REG_CLOCKS)
1570		return request_clock(clock, enable);
1571	else if (clock == PRCMU_TIMCLK)
1572		return request_timclk(enable);
1573	else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1574		return request_dsiclk((clock - PRCMU_DSI0CLK), enable);
1575	else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1576		return request_dsiescclk((clock - PRCMU_DSI0ESCCLK), enable);
1577	else if (clock == PRCMU_PLLDSI)
1578		return request_plldsi(enable);
1579	else if (clock == PRCMU_SYSCLK)
1580		return request_sysclk(enable);
1581	else if ((clock == PRCMU_PLLSOC0) || (clock == PRCMU_PLLSOC1))
1582		return request_pll(clock, enable);
1583	else
1584		return -EINVAL;
1585}
1586
1587static unsigned long pll_rate(void __iomem *reg, unsigned long src_rate,
1588	int branch)
1589{
1590	u64 rate;
1591	u32 val;
1592	u32 d;
1593	u32 div = 1;
1594
1595	val = readl(reg);
1596
1597	rate = src_rate;
1598	rate *= ((val & PRCM_PLL_FREQ_D_MASK) >> PRCM_PLL_FREQ_D_SHIFT);
1599
1600	d = ((val & PRCM_PLL_FREQ_N_MASK) >> PRCM_PLL_FREQ_N_SHIFT);
1601	if (d > 1)
1602		div *= d;
1603
1604	d = ((val & PRCM_PLL_FREQ_R_MASK) >> PRCM_PLL_FREQ_R_SHIFT);
1605	if (d > 1)
1606		div *= d;
1607
1608	if (val & PRCM_PLL_FREQ_SELDIV2)
1609		div *= 2;
1610
1611	if ((branch == PLL_FIX) || ((branch == PLL_DIV) &&
1612		(val & PRCM_PLL_FREQ_DIV2EN) &&
1613		((reg == PRCM_PLLSOC0_FREQ) ||
 
1614		 (reg == PRCM_PLLDDR_FREQ))))
1615		div *= 2;
1616
1617	(void)do_div(rate, div);
1618
1619	return (unsigned long)rate;
1620}
1621
1622#define ROOT_CLOCK_RATE 38400000
1623
1624static unsigned long clock_rate(u8 clock)
1625{
1626	u32 val;
1627	u32 pllsw;
1628	unsigned long rate = ROOT_CLOCK_RATE;
1629
1630	val = readl(clk_mgt[clock].reg);
1631
1632	if (val & PRCM_CLK_MGT_CLK38) {
1633		if (clk_mgt[clock].clk38div && (val & PRCM_CLK_MGT_CLK38DIV))
1634			rate /= 2;
1635		return rate;
1636	}
1637
1638	val |= clk_mgt[clock].pllsw;
1639	pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1640
1641	if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1642		rate = pll_rate(PRCM_PLLSOC0_FREQ, rate, clk_mgt[clock].branch);
1643	else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1644		rate = pll_rate(PRCM_PLLSOC1_FREQ, rate, clk_mgt[clock].branch);
1645	else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_DDR)
1646		rate = pll_rate(PRCM_PLLDDR_FREQ, rate, clk_mgt[clock].branch);
1647	else
1648		return 0;
1649
1650	if ((clock == PRCMU_SGACLK) &&
1651		(val & PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN)) {
1652		u64 r = (rate * 10);
1653
1654		(void)do_div(r, 25);
1655		return (unsigned long)r;
1656	}
1657	val &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1658	if (val)
1659		return rate / val;
1660	else
1661		return 0;
1662}
1663
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1664static unsigned long dsiclk_rate(u8 n)
1665{
1666	u32 divsel;
1667	u32 div = 1;
1668
1669	divsel = readl(PRCM_DSI_PLLOUT_SEL);
1670	divsel = ((divsel & dsiclk[n].divsel_mask) >> dsiclk[n].divsel_shift);
1671
1672	if (divsel == PRCM_DSI_PLLOUT_SEL_OFF)
1673		divsel = dsiclk[n].divsel;
 
 
1674
1675	switch (divsel) {
1676	case PRCM_DSI_PLLOUT_SEL_PHI_4:
1677		div *= 2;
 
1678	case PRCM_DSI_PLLOUT_SEL_PHI_2:
1679		div *= 2;
 
1680	case PRCM_DSI_PLLOUT_SEL_PHI:
1681		return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1682			PLL_RAW) / div;
1683	default:
1684		return 0;
1685	}
1686}
1687
1688static unsigned long dsiescclk_rate(u8 n)
1689{
1690	u32 div;
1691
1692	div = readl(PRCM_DSITVCLK_DIV);
1693	div = ((div & dsiescclk[n].div_mask) >> (dsiescclk[n].div_shift));
1694	return clock_rate(PRCMU_TVCLK) / max((u32)1, div);
1695}
1696
1697unsigned long prcmu_clock_rate(u8 clock)
1698{
1699	if (clock < PRCMU_NUM_REG_CLOCKS)
1700		return clock_rate(clock);
1701	else if (clock == PRCMU_TIMCLK)
1702		return ROOT_CLOCK_RATE / 16;
 
1703	else if (clock == PRCMU_SYSCLK)
1704		return ROOT_CLOCK_RATE;
1705	else if (clock == PRCMU_PLLSOC0)
1706		return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1707	else if (clock == PRCMU_PLLSOC1)
1708		return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
 
 
1709	else if (clock == PRCMU_PLLDDR)
1710		return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1711	else if (clock == PRCMU_PLLDSI)
1712		return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1713			PLL_RAW);
1714	else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1715		return dsiclk_rate(clock - PRCMU_DSI0CLK);
1716	else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1717		return dsiescclk_rate(clock - PRCMU_DSI0ESCCLK);
1718	else
1719		return 0;
1720}
1721
1722static unsigned long clock_source_rate(u32 clk_mgt_val, int branch)
1723{
1724	if (clk_mgt_val & PRCM_CLK_MGT_CLK38)
1725		return ROOT_CLOCK_RATE;
1726	clk_mgt_val &= PRCM_CLK_MGT_CLKPLLSW_MASK;
1727	if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1728		return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, branch);
1729	else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1730		return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, branch);
1731	else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_DDR)
1732		return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, branch);
1733	else
1734		return 0;
1735}
1736
1737static u32 clock_divider(unsigned long src_rate, unsigned long rate)
1738{
1739	u32 div;
1740
1741	div = (src_rate / rate);
1742	if (div == 0)
1743		return 1;
1744	if (rate < (src_rate / div))
1745		div++;
1746	return div;
1747}
1748
1749static long round_clock_rate(u8 clock, unsigned long rate)
1750{
1751	u32 val;
1752	u32 div;
1753	unsigned long src_rate;
1754	long rounded_rate;
1755
1756	val = readl(clk_mgt[clock].reg);
1757	src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1758		clk_mgt[clock].branch);
1759	div = clock_divider(src_rate, rate);
1760	if (val & PRCM_CLK_MGT_CLK38) {
1761		if (clk_mgt[clock].clk38div) {
1762			if (div > 2)
1763				div = 2;
1764		} else {
1765			div = 1;
1766		}
1767	} else if ((clock == PRCMU_SGACLK) && (div == 3)) {
1768		u64 r = (src_rate * 10);
1769
1770		(void)do_div(r, 25);
1771		if (r <= rate)
1772			return (unsigned long)r;
1773	}
1774	rounded_rate = (src_rate / min(div, (u32)31));
1775
1776	return rounded_rate;
1777}
1778
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1779#define MIN_PLL_VCO_RATE 600000000ULL
1780#define MAX_PLL_VCO_RATE 1680640000ULL
1781
1782static long round_plldsi_rate(unsigned long rate)
1783{
1784	long rounded_rate = 0;
1785	unsigned long src_rate;
1786	unsigned long rem;
1787	u32 r;
1788
1789	src_rate = clock_rate(PRCMU_HDMICLK);
1790	rem = rate;
1791
1792	for (r = 7; (rem > 0) && (r > 0); r--) {
1793		u64 d;
1794
1795		d = (r * rate);
1796		(void)do_div(d, src_rate);
1797		if (d < 6)
1798			d = 6;
1799		else if (d > 255)
1800			d = 255;
1801		d *= src_rate;
1802		if (((2 * d) < (r * MIN_PLL_VCO_RATE)) ||
1803			((r * MAX_PLL_VCO_RATE) < (2 * d)))
1804			continue;
1805		(void)do_div(d, r);
1806		if (rate < d) {
1807			if (rounded_rate == 0)
1808				rounded_rate = (long)d;
1809			break;
1810		}
1811		if ((rate - d) < rem) {
1812			rem = (rate - d);
1813			rounded_rate = (long)d;
1814		}
1815	}
1816	return rounded_rate;
1817}
1818
1819static long round_dsiclk_rate(unsigned long rate)
1820{
1821	u32 div;
1822	unsigned long src_rate;
1823	long rounded_rate;
1824
1825	src_rate = pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1826		PLL_RAW);
1827	div = clock_divider(src_rate, rate);
1828	rounded_rate = (src_rate / ((div > 2) ? 4 : div));
1829
1830	return rounded_rate;
1831}
1832
1833static long round_dsiescclk_rate(unsigned long rate)
1834{
1835	u32 div;
1836	unsigned long src_rate;
1837	long rounded_rate;
1838
1839	src_rate = clock_rate(PRCMU_TVCLK);
1840	div = clock_divider(src_rate, rate);
1841	rounded_rate = (src_rate / min(div, (u32)255));
1842
1843	return rounded_rate;
1844}
1845
1846long prcmu_round_clock_rate(u8 clock, unsigned long rate)
1847{
1848	if (clock < PRCMU_NUM_REG_CLOCKS)
1849		return round_clock_rate(clock, rate);
 
 
1850	else if (clock == PRCMU_PLLDSI)
1851		return round_plldsi_rate(rate);
1852	else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1853		return round_dsiclk_rate(rate);
1854	else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1855		return round_dsiescclk_rate(rate);
1856	else
1857		return (long)prcmu_clock_rate(clock);
1858}
1859
1860static void set_clock_rate(u8 clock, unsigned long rate)
1861{
1862	u32 val;
1863	u32 div;
1864	unsigned long src_rate;
1865	unsigned long flags;
1866
1867	spin_lock_irqsave(&clk_mgt_lock, flags);
1868
1869	/* Grab the HW semaphore. */
1870	while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1871		cpu_relax();
1872
1873	val = readl(clk_mgt[clock].reg);
1874	src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1875		clk_mgt[clock].branch);
1876	div = clock_divider(src_rate, rate);
1877	if (val & PRCM_CLK_MGT_CLK38) {
1878		if (clk_mgt[clock].clk38div) {
1879			if (div > 1)
1880				val |= PRCM_CLK_MGT_CLK38DIV;
1881			else
1882				val &= ~PRCM_CLK_MGT_CLK38DIV;
1883		}
1884	} else if (clock == PRCMU_SGACLK) {
1885		val &= ~(PRCM_CLK_MGT_CLKPLLDIV_MASK |
1886			PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN);
1887		if (div == 3) {
1888			u64 r = (src_rate * 10);
1889
1890			(void)do_div(r, 25);
1891			if (r <= rate) {
1892				val |= PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN;
1893				div = 0;
1894			}
1895		}
1896		val |= min(div, (u32)31);
1897	} else {
1898		val &= ~PRCM_CLK_MGT_CLKPLLDIV_MASK;
1899		val |= min(div, (u32)31);
1900	}
1901	writel(val, clk_mgt[clock].reg);
1902
1903	/* Release the HW semaphore. */
1904	writel(0, PRCM_SEM);
1905
1906	spin_unlock_irqrestore(&clk_mgt_lock, flags);
1907}
1908
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1909static int set_plldsi_rate(unsigned long rate)
1910{
1911	unsigned long src_rate;
1912	unsigned long rem;
1913	u32 pll_freq = 0;
1914	u32 r;
1915
1916	src_rate = clock_rate(PRCMU_HDMICLK);
1917	rem = rate;
1918
1919	for (r = 7; (rem > 0) && (r > 0); r--) {
1920		u64 d;
1921		u64 hwrate;
1922
1923		d = (r * rate);
1924		(void)do_div(d, src_rate);
1925		if (d < 6)
1926			d = 6;
1927		else if (d > 255)
1928			d = 255;
1929		hwrate = (d * src_rate);
1930		if (((2 * hwrate) < (r * MIN_PLL_VCO_RATE)) ||
1931			((r * MAX_PLL_VCO_RATE) < (2 * hwrate)))
1932			continue;
1933		(void)do_div(hwrate, r);
1934		if (rate < hwrate) {
1935			if (pll_freq == 0)
1936				pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
1937					(r << PRCM_PLL_FREQ_R_SHIFT));
1938			break;
1939		}
1940		if ((rate - hwrate) < rem) {
1941			rem = (rate - hwrate);
1942			pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
1943				(r << PRCM_PLL_FREQ_R_SHIFT));
1944		}
1945	}
1946	if (pll_freq == 0)
1947		return -EINVAL;
1948
1949	pll_freq |= (1 << PRCM_PLL_FREQ_N_SHIFT);
1950	writel(pll_freq, PRCM_PLLDSI_FREQ);
1951
1952	return 0;
1953}
1954
1955static void set_dsiclk_rate(u8 n, unsigned long rate)
1956{
1957	u32 val;
1958	u32 div;
1959
1960	div = clock_divider(pll_rate(PRCM_PLLDSI_FREQ,
1961			clock_rate(PRCMU_HDMICLK), PLL_RAW), rate);
1962
1963	dsiclk[n].divsel = (div == 1) ? PRCM_DSI_PLLOUT_SEL_PHI :
1964			   (div == 2) ? PRCM_DSI_PLLOUT_SEL_PHI_2 :
1965			   /* else */	PRCM_DSI_PLLOUT_SEL_PHI_4;
1966
1967	val = readl(PRCM_DSI_PLLOUT_SEL);
1968	val &= ~dsiclk[n].divsel_mask;
1969	val |= (dsiclk[n].divsel << dsiclk[n].divsel_shift);
1970	writel(val, PRCM_DSI_PLLOUT_SEL);
1971}
1972
1973static void set_dsiescclk_rate(u8 n, unsigned long rate)
1974{
1975	u32 val;
1976	u32 div;
1977
1978	div = clock_divider(clock_rate(PRCMU_TVCLK), rate);
1979	val = readl(PRCM_DSITVCLK_DIV);
1980	val &= ~dsiescclk[n].div_mask;
1981	val |= (min(div, (u32)255) << dsiescclk[n].div_shift);
1982	writel(val, PRCM_DSITVCLK_DIV);
1983}
1984
1985int prcmu_set_clock_rate(u8 clock, unsigned long rate)
1986{
1987	if (clock < PRCMU_NUM_REG_CLOCKS)
1988		set_clock_rate(clock, rate);
 
 
1989	else if (clock == PRCMU_PLLDSI)
1990		return set_plldsi_rate(rate);
1991	else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1992		set_dsiclk_rate((clock - PRCMU_DSI0CLK), rate);
1993	else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1994		set_dsiescclk_rate((clock - PRCMU_DSI0ESCCLK), rate);
1995	return 0;
1996}
1997
1998int db8500_prcmu_config_esram0_deep_sleep(u8 state)
1999{
2000	if ((state > ESRAM0_DEEP_SLEEP_STATE_RET) ||
2001	    (state < ESRAM0_DEEP_SLEEP_STATE_OFF))
2002		return -EINVAL;
2003
2004	mutex_lock(&mb4_transfer.lock);
2005
2006	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2007		cpu_relax();
2008
2009	writeb(MB4H_MEM_ST, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2010	writeb(((DDR_PWR_STATE_OFFHIGHLAT << 4) | DDR_PWR_STATE_ON),
2011	       (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE));
2012	writeb(DDR_PWR_STATE_ON,
2013	       (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE));
2014	writeb(state, (tcdm_base + PRCM_REQ_MB4_ESRAM0_ST));
2015
2016	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2017	wait_for_completion(&mb4_transfer.work);
2018
2019	mutex_unlock(&mb4_transfer.lock);
2020
2021	return 0;
2022}
2023
2024int db8500_prcmu_config_hotdog(u8 threshold)
2025{
2026	mutex_lock(&mb4_transfer.lock);
2027
2028	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2029		cpu_relax();
2030
2031	writeb(threshold, (tcdm_base + PRCM_REQ_MB4_HOTDOG_THRESHOLD));
2032	writeb(MB4H_HOTDOG, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2033
2034	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2035	wait_for_completion(&mb4_transfer.work);
2036
2037	mutex_unlock(&mb4_transfer.lock);
2038
2039	return 0;
2040}
2041
2042int db8500_prcmu_config_hotmon(u8 low, u8 high)
2043{
2044	mutex_lock(&mb4_transfer.lock);
2045
2046	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2047		cpu_relax();
2048
2049	writeb(low, (tcdm_base + PRCM_REQ_MB4_HOTMON_LOW));
2050	writeb(high, (tcdm_base + PRCM_REQ_MB4_HOTMON_HIGH));
2051	writeb((HOTMON_CONFIG_LOW | HOTMON_CONFIG_HIGH),
2052		(tcdm_base + PRCM_REQ_MB4_HOTMON_CONFIG));
2053	writeb(MB4H_HOTMON, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2054
2055	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2056	wait_for_completion(&mb4_transfer.work);
2057
2058	mutex_unlock(&mb4_transfer.lock);
2059
2060	return 0;
2061}
 
2062
2063static int config_hot_period(u16 val)
2064{
2065	mutex_lock(&mb4_transfer.lock);
2066
2067	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2068		cpu_relax();
2069
2070	writew(val, (tcdm_base + PRCM_REQ_MB4_HOT_PERIOD));
2071	writeb(MB4H_HOT_PERIOD, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2072
2073	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2074	wait_for_completion(&mb4_transfer.work);
2075
2076	mutex_unlock(&mb4_transfer.lock);
2077
2078	return 0;
2079}
2080
2081int db8500_prcmu_start_temp_sense(u16 cycles32k)
2082{
2083	if (cycles32k == 0xFFFF)
2084		return -EINVAL;
2085
2086	return config_hot_period(cycles32k);
2087}
 
2088
2089int db8500_prcmu_stop_temp_sense(void)
2090{
2091	return config_hot_period(0xFFFF);
2092}
 
2093
2094static int prcmu_a9wdog(u8 cmd, u8 d0, u8 d1, u8 d2, u8 d3)
2095{
2096
2097	mutex_lock(&mb4_transfer.lock);
2098
2099	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2100		cpu_relax();
2101
2102	writeb(d0, (tcdm_base + PRCM_REQ_MB4_A9WDOG_0));
2103	writeb(d1, (tcdm_base + PRCM_REQ_MB4_A9WDOG_1));
2104	writeb(d2, (tcdm_base + PRCM_REQ_MB4_A9WDOG_2));
2105	writeb(d3, (tcdm_base + PRCM_REQ_MB4_A9WDOG_3));
2106
2107	writeb(cmd, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2108
2109	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2110	wait_for_completion(&mb4_transfer.work);
2111
2112	mutex_unlock(&mb4_transfer.lock);
2113
2114	return 0;
2115
2116}
2117
2118int db8500_prcmu_config_a9wdog(u8 num, bool sleep_auto_off)
2119{
2120	BUG_ON(num == 0 || num > 0xf);
2121	return prcmu_a9wdog(MB4H_A9WDOG_CONF, num, 0, 0,
2122			    sleep_auto_off ? A9WDOG_AUTO_OFF_EN :
2123			    A9WDOG_AUTO_OFF_DIS);
2124}
 
2125
2126int db8500_prcmu_enable_a9wdog(u8 id)
2127{
2128	return prcmu_a9wdog(MB4H_A9WDOG_EN, id, 0, 0, 0);
2129}
 
2130
2131int db8500_prcmu_disable_a9wdog(u8 id)
2132{
2133	return prcmu_a9wdog(MB4H_A9WDOG_DIS, id, 0, 0, 0);
2134}
 
2135
2136int db8500_prcmu_kick_a9wdog(u8 id)
2137{
2138	return prcmu_a9wdog(MB4H_A9WDOG_KICK, id, 0, 0, 0);
2139}
 
2140
2141/*
2142 * timeout is 28 bit, in ms.
2143 */
2144int db8500_prcmu_load_a9wdog(u8 id, u32 timeout)
2145{
2146	return prcmu_a9wdog(MB4H_A9WDOG_LOAD,
2147			    (id & A9WDOG_ID_MASK) |
2148			    /*
2149			     * Put the lowest 28 bits of timeout at
2150			     * offset 4. Four first bits are used for id.
2151			     */
2152			    (u8)((timeout << 4) & 0xf0),
2153			    (u8)((timeout >> 4) & 0xff),
2154			    (u8)((timeout >> 12) & 0xff),
2155			    (u8)((timeout >> 20) & 0xff));
2156}
 
2157
2158/**
2159 * prcmu_abb_read() - Read register value(s) from the ABB.
2160 * @slave:	The I2C slave address.
2161 * @reg:	The (start) register address.
2162 * @value:	The read out value(s).
2163 * @size:	The number of registers to read.
2164 *
2165 * Reads register value(s) from the ABB.
2166 * @size has to be 1 for the current firmware version.
2167 */
2168int prcmu_abb_read(u8 slave, u8 reg, u8 *value, u8 size)
2169{
2170	int r;
2171
2172	if (size != 1)
2173		return -EINVAL;
2174
2175	mutex_lock(&mb5_transfer.lock);
2176
2177	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
2178		cpu_relax();
2179
2180	writeb(0, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
2181	writeb(PRCMU_I2C_READ(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2182	writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2183	writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2184	writeb(0, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2185
2186	writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
2187
2188	if (!wait_for_completion_timeout(&mb5_transfer.work,
2189				msecs_to_jiffies(20000))) {
2190		pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2191			__func__);
2192		r = -EIO;
2193	} else {
2194		r = ((mb5_transfer.ack.status == I2C_RD_OK) ? 0 : -EIO);
2195	}
2196
2197	if (!r)
2198		*value = mb5_transfer.ack.value;
2199
2200	mutex_unlock(&mb5_transfer.lock);
2201
2202	return r;
2203}
2204
2205/**
2206 * prcmu_abb_write_masked() - Write masked register value(s) to the ABB.
2207 * @slave:	The I2C slave address.
2208 * @reg:	The (start) register address.
2209 * @value:	The value(s) to write.
2210 * @mask:	The mask(s) to use.
2211 * @size:	The number of registers to write.
2212 *
2213 * Writes masked register value(s) to the ABB.
2214 * For each @value, only the bits set to 1 in the corresponding @mask
2215 * will be written. The other bits are not changed.
2216 * @size has to be 1 for the current firmware version.
2217 */
2218int prcmu_abb_write_masked(u8 slave, u8 reg, u8 *value, u8 *mask, u8 size)
2219{
2220	int r;
2221
2222	if (size != 1)
2223		return -EINVAL;
2224
2225	mutex_lock(&mb5_transfer.lock);
2226
2227	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
2228		cpu_relax();
2229
2230	writeb(~*mask, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
2231	writeb(PRCMU_I2C_WRITE(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2232	writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2233	writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2234	writeb(*value, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2235
2236	writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
2237
2238	if (!wait_for_completion_timeout(&mb5_transfer.work,
2239				msecs_to_jiffies(20000))) {
2240		pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2241			__func__);
2242		r = -EIO;
2243	} else {
2244		r = ((mb5_transfer.ack.status == I2C_WR_OK) ? 0 : -EIO);
2245	}
2246
2247	mutex_unlock(&mb5_transfer.lock);
2248
2249	return r;
2250}
2251
2252/**
2253 * prcmu_abb_write() - Write register value(s) to the ABB.
2254 * @slave:	The I2C slave address.
2255 * @reg:	The (start) register address.
2256 * @value:	The value(s) to write.
2257 * @size:	The number of registers to write.
2258 *
2259 * Writes register value(s) to the ABB.
2260 * @size has to be 1 for the current firmware version.
2261 */
2262int prcmu_abb_write(u8 slave, u8 reg, u8 *value, u8 size)
2263{
2264	u8 mask = ~0;
2265
2266	return prcmu_abb_write_masked(slave, reg, value, &mask, size);
2267}
2268
2269/**
2270 * prcmu_ac_wake_req - should be called whenever ARM wants to wakeup Modem
2271 */
2272void prcmu_ac_wake_req(void)
2273{
2274	u32 val;
2275	u32 status;
2276
2277	mutex_lock(&mb0_transfer.ac_wake_lock);
2278
2279	val = readl(PRCM_HOSTACCESS_REQ);
2280	if (val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ)
2281		goto unlock_and_return;
2282
2283	atomic_set(&ac_wake_req_state, 1);
2284
2285retry:
2286	writel((val | PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ), PRCM_HOSTACCESS_REQ);
 
 
 
 
 
 
 
 
 
 
2287
2288	if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
2289			msecs_to_jiffies(5000))) {
2290		pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2291			__func__);
2292		goto unlock_and_return;
2293	}
2294
2295	/*
2296	 * The modem can generate an AC_WAKE_ACK, and then still go to sleep.
2297	 * As a workaround, we wait, and then check that the modem is indeed
2298	 * awake (in terms of the value of the PRCM_MOD_AWAKE_STATUS
2299	 * register, which may not be the whole truth).
2300	 */
2301	udelay(400);
2302	status = (readl(PRCM_MOD_AWAKE_STATUS) & BITS(0, 2));
2303	if (status != (PRCM_MOD_AWAKE_STATUS_PRCM_MOD_AAPD_AWAKE |
2304			PRCM_MOD_AWAKE_STATUS_PRCM_MOD_COREPD_AWAKE)) {
2305		pr_err("prcmu: %s received ack, but modem not awake (0x%X).\n",
2306			__func__, status);
2307		udelay(1200);
2308		writel(val, PRCM_HOSTACCESS_REQ);
2309		if (wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
2310				msecs_to_jiffies(5000)))
2311			goto retry;
2312		pr_crit("prcmu: %s timed out (5 s) waiting for AC_SLEEP_ACK.\n",
2313			__func__);
2314	}
2315
2316unlock_and_return:
2317	mutex_unlock(&mb0_transfer.ac_wake_lock);
 
2318}
2319
2320/**
2321 * prcmu_ac_sleep_req - called when ARM no longer needs to talk to modem
2322 */
2323void prcmu_ac_sleep_req()
2324{
2325	u32 val;
2326
2327	mutex_lock(&mb0_transfer.ac_wake_lock);
2328
2329	val = readl(PRCM_HOSTACCESS_REQ);
2330	if (!(val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ))
2331		goto unlock_and_return;
2332
2333	writel((val & ~PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ),
2334		PRCM_HOSTACCESS_REQ);
2335
2336	if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
2337			msecs_to_jiffies(5000))) {
2338		pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2339			__func__);
2340	}
2341
2342	atomic_set(&ac_wake_req_state, 0);
2343
2344unlock_and_return:
2345	mutex_unlock(&mb0_transfer.ac_wake_lock);
2346}
2347
2348bool db8500_prcmu_is_ac_wake_requested(void)
2349{
2350	return (atomic_read(&ac_wake_req_state) != 0);
2351}
2352
2353/**
2354 * db8500_prcmu_system_reset - System reset
2355 *
2356 * Saves the reset reason code and then sets the APE_SOFTRST register which
2357 * fires interrupt to fw
 
 
2358 */
2359void db8500_prcmu_system_reset(u16 reset_code)
2360{
2361	writew(reset_code, (tcdm_base + PRCM_SW_RST_REASON));
2362	writel(1, PRCM_APE_SOFTRST);
2363}
2364
2365/**
2366 * db8500_prcmu_get_reset_code - Retrieve SW reset reason code
2367 *
2368 * Retrieves the reset reason code stored by prcmu_system_reset() before
2369 * last restart.
2370 */
2371u16 db8500_prcmu_get_reset_code(void)
2372{
2373	return readw(tcdm_base + PRCM_SW_RST_REASON);
2374}
2375
2376/**
2377 * db8500_prcmu_reset_modem - ask the PRCMU to reset modem
2378 */
2379void db8500_prcmu_modem_reset(void)
2380{
2381	mutex_lock(&mb1_transfer.lock);
2382
2383	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
2384		cpu_relax();
2385
2386	writeb(MB1H_RESET_MODEM, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
2387	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
2388	wait_for_completion(&mb1_transfer.work);
2389
2390	/*
2391	 * No need to check return from PRCMU as modem should go in reset state
2392	 * This state is already managed by upper layer
2393	 */
2394
2395	mutex_unlock(&mb1_transfer.lock);
2396}
2397
2398static void ack_dbb_wakeup(void)
2399{
2400	unsigned long flags;
2401
2402	spin_lock_irqsave(&mb0_transfer.lock, flags);
2403
2404	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
2405		cpu_relax();
2406
2407	writeb(MB0H_READ_WAKEUP_ACK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
2408	writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
2409
2410	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2411}
2412
2413static inline void print_unknown_header_warning(u8 n, u8 header)
2414{
2415	pr_warning("prcmu: Unknown message header (%d) in mailbox %d.\n",
2416		header, n);
2417}
2418
2419static bool read_mailbox_0(void)
2420{
2421	bool r;
2422	u32 ev;
2423	unsigned int n;
2424	u8 header;
2425
2426	header = readb(tcdm_base + PRCM_MBOX_HEADER_ACK_MB0);
2427	switch (header) {
2428	case MB0H_WAKEUP_EXE:
2429	case MB0H_WAKEUP_SLEEP:
2430		if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
2431			ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_1_8500);
2432		else
2433			ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_0_8500);
2434
2435		if (ev & (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK))
2436			complete(&mb0_transfer.ac_wake_work);
2437		if (ev & WAKEUP_BIT_SYSCLK_OK)
2438			complete(&mb3_transfer.sysclk_work);
2439
2440		ev &= mb0_transfer.req.dbb_irqs;
2441
2442		for (n = 0; n < NUM_PRCMU_WAKEUPS; n++) {
2443			if (ev & prcmu_irq_bit[n])
2444				generic_handle_irq(IRQ_PRCMU_BASE + n);
2445		}
2446		r = true;
2447		break;
2448	default:
2449		print_unknown_header_warning(0, header);
2450		r = false;
2451		break;
2452	}
2453	writel(MBOX_BIT(0), PRCM_ARM_IT1_CLR);
2454	return r;
2455}
2456
2457static bool read_mailbox_1(void)
2458{
2459	mb1_transfer.ack.header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1);
2460	mb1_transfer.ack.arm_opp = readb(tcdm_base +
2461		PRCM_ACK_MB1_CURRENT_ARM_OPP);
2462	mb1_transfer.ack.ape_opp = readb(tcdm_base +
2463		PRCM_ACK_MB1_CURRENT_APE_OPP);
2464	mb1_transfer.ack.ape_voltage_status = readb(tcdm_base +
2465		PRCM_ACK_MB1_APE_VOLTAGE_STATUS);
2466	writel(MBOX_BIT(1), PRCM_ARM_IT1_CLR);
2467	complete(&mb1_transfer.work);
2468	return false;
2469}
2470
2471static bool read_mailbox_2(void)
2472{
2473	mb2_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB2_DPS_STATUS);
2474	writel(MBOX_BIT(2), PRCM_ARM_IT1_CLR);
2475	complete(&mb2_transfer.work);
2476	return false;
2477}
2478
2479static bool read_mailbox_3(void)
2480{
2481	writel(MBOX_BIT(3), PRCM_ARM_IT1_CLR);
2482	return false;
2483}
2484
2485static bool read_mailbox_4(void)
2486{
2487	u8 header;
2488	bool do_complete = true;
2489
2490	header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB4);
2491	switch (header) {
2492	case MB4H_MEM_ST:
2493	case MB4H_HOTDOG:
2494	case MB4H_HOTMON:
2495	case MB4H_HOT_PERIOD:
2496	case MB4H_A9WDOG_CONF:
2497	case MB4H_A9WDOG_EN:
2498	case MB4H_A9WDOG_DIS:
2499	case MB4H_A9WDOG_LOAD:
2500	case MB4H_A9WDOG_KICK:
2501		break;
2502	default:
2503		print_unknown_header_warning(4, header);
2504		do_complete = false;
2505		break;
2506	}
2507
2508	writel(MBOX_BIT(4), PRCM_ARM_IT1_CLR);
2509
2510	if (do_complete)
2511		complete(&mb4_transfer.work);
2512
2513	return false;
2514}
2515
2516static bool read_mailbox_5(void)
2517{
2518	mb5_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB5_I2C_STATUS);
2519	mb5_transfer.ack.value = readb(tcdm_base + PRCM_ACK_MB5_I2C_VAL);
2520	writel(MBOX_BIT(5), PRCM_ARM_IT1_CLR);
2521	complete(&mb5_transfer.work);
2522	return false;
2523}
2524
2525static bool read_mailbox_6(void)
2526{
2527	writel(MBOX_BIT(6), PRCM_ARM_IT1_CLR);
2528	return false;
2529}
2530
2531static bool read_mailbox_7(void)
2532{
2533	writel(MBOX_BIT(7), PRCM_ARM_IT1_CLR);
2534	return false;
2535}
2536
2537static bool (* const read_mailbox[NUM_MB])(void) = {
2538	read_mailbox_0,
2539	read_mailbox_1,
2540	read_mailbox_2,
2541	read_mailbox_3,
2542	read_mailbox_4,
2543	read_mailbox_5,
2544	read_mailbox_6,
2545	read_mailbox_7
2546};
2547
2548static irqreturn_t prcmu_irq_handler(int irq, void *data)
2549{
2550	u32 bits;
2551	u8 n;
2552	irqreturn_t r;
2553
2554	bits = (readl(PRCM_ARM_IT1_VAL) & ALL_MBOX_BITS);
2555	if (unlikely(!bits))
2556		return IRQ_NONE;
2557
2558	r = IRQ_HANDLED;
2559	for (n = 0; bits; n++) {
2560		if (bits & MBOX_BIT(n)) {
2561			bits -= MBOX_BIT(n);
2562			if (read_mailbox[n]())
2563				r = IRQ_WAKE_THREAD;
2564		}
2565	}
2566	return r;
2567}
2568
2569static irqreturn_t prcmu_irq_thread_fn(int irq, void *data)
2570{
2571	ack_dbb_wakeup();
2572	return IRQ_HANDLED;
2573}
2574
2575static void prcmu_mask_work(struct work_struct *work)
2576{
2577	unsigned long flags;
2578
2579	spin_lock_irqsave(&mb0_transfer.lock, flags);
2580
2581	config_wakeups();
2582
2583	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2584}
2585
2586static void prcmu_irq_mask(struct irq_data *d)
2587{
2588	unsigned long flags;
2589
2590	spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2591
2592	mb0_transfer.req.dbb_irqs &= ~prcmu_irq_bit[d->irq - IRQ_PRCMU_BASE];
2593
2594	spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2595
2596	if (d->irq != IRQ_PRCMU_CA_SLEEP)
2597		schedule_work(&mb0_transfer.mask_work);
2598}
2599
2600static void prcmu_irq_unmask(struct irq_data *d)
2601{
2602	unsigned long flags;
2603
2604	spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2605
2606	mb0_transfer.req.dbb_irqs |= prcmu_irq_bit[d->irq - IRQ_PRCMU_BASE];
2607
2608	spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2609
2610	if (d->irq != IRQ_PRCMU_CA_SLEEP)
2611		schedule_work(&mb0_transfer.mask_work);
2612}
2613
2614static void noop(struct irq_data *d)
2615{
2616}
2617
2618static struct irq_chip prcmu_irq_chip = {
2619	.name		= "prcmu",
2620	.irq_disable	= prcmu_irq_mask,
2621	.irq_ack	= noop,
2622	.irq_mask	= prcmu_irq_mask,
2623	.irq_unmask	= prcmu_irq_unmask,
2624};
2625
2626static char *fw_project_name(u8 project)
2627{
2628	switch (project) {
2629	case PRCMU_FW_PROJECT_U8500:
2630		return "U8500";
 
 
 
 
 
 
 
 
2631	case PRCMU_FW_PROJECT_U8500_C2:
2632		return "U8500 C2";
2633	case PRCMU_FW_PROJECT_U9500:
2634		return "U9500";
2635	case PRCMU_FW_PROJECT_U9500_C2:
2636		return "U9500 C2";
 
 
 
 
 
 
2637	case PRCMU_FW_PROJECT_U8520:
2638		return "U8520";
2639	case PRCMU_FW_PROJECT_U8420:
2640		return "U8420";
 
 
 
 
 
 
 
 
 
 
2641	default:
2642		return "Unknown";
2643	}
2644}
2645
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2646void __init db8500_prcmu_early_init(void)
2647{
2648	unsigned int i;
2649	if (cpu_is_u8500v2()) {
2650		void *tcpm_base = ioremap_nocache(U8500_PRCMU_TCPM_BASE, SZ_4K);
 
 
 
 
 
2651
2652		if (tcpm_base != NULL) {
2653			u32 version;
2654			version = readl(tcpm_base + PRCMU_FW_VERSION_OFFSET);
2655			fw_info.version.project = version & 0xFF;
2656			fw_info.version.api_version = (version >> 8) & 0xFF;
2657			fw_info.version.func_version = (version >> 16) & 0xFF;
2658			fw_info.version.errata = (version >> 24) & 0xFF;
2659			fw_info.valid = true;
2660			pr_info("PRCMU firmware: %s, version %d.%d.%d\n",
2661				fw_project_name(fw_info.version.project),
2662				(version >> 8) & 0xFF, (version >> 16) & 0xFF,
2663				(version >> 24) & 0xFF);
2664			iounmap(tcpm_base);
2665		}
2666
2667		tcdm_base = __io_address(U8500_PRCMU_TCDM_BASE);
2668	} else {
2669		pr_err("prcmu: Unsupported chip version\n");
2670		BUG();
2671	}
 
 
2672
2673	spin_lock_init(&mb0_transfer.lock);
2674	spin_lock_init(&mb0_transfer.dbb_irqs_lock);
2675	mutex_init(&mb0_transfer.ac_wake_lock);
2676	init_completion(&mb0_transfer.ac_wake_work);
2677	mutex_init(&mb1_transfer.lock);
2678	init_completion(&mb1_transfer.work);
2679	mb1_transfer.ape_opp = APE_NO_CHANGE;
2680	mutex_init(&mb2_transfer.lock);
2681	init_completion(&mb2_transfer.work);
2682	spin_lock_init(&mb2_transfer.auto_pm_lock);
2683	spin_lock_init(&mb3_transfer.lock);
2684	mutex_init(&mb3_transfer.sysclk_lock);
2685	init_completion(&mb3_transfer.sysclk_work);
2686	mutex_init(&mb4_transfer.lock);
2687	init_completion(&mb4_transfer.work);
2688	mutex_init(&mb5_transfer.lock);
2689	init_completion(&mb5_transfer.work);
2690
2691	INIT_WORK(&mb0_transfer.mask_work, prcmu_mask_work);
2692
2693	/* Initalize irqs. */
2694	for (i = 0; i < NUM_PRCMU_WAKEUPS; i++) {
2695		unsigned int irq;
2696
2697		irq = IRQ_PRCMU_BASE + i;
2698		irq_set_chip_and_handler(irq, &prcmu_irq_chip,
2699					 handle_simple_irq);
2700		set_irq_flags(irq, IRQF_VALID);
2701	}
2702}
2703
2704static void __init init_prcm_registers(void)
2705{
2706	u32 val;
2707
2708	val = readl(PRCM_A9PL_FORCE_CLKEN);
2709	val &= ~(PRCM_A9PL_FORCE_CLKEN_PRCM_A9PL_FORCE_CLKEN |
2710		PRCM_A9PL_FORCE_CLKEN_PRCM_A9AXI_FORCE_CLKEN);
2711	writel(val, (PRCM_A9PL_FORCE_CLKEN));
2712}
2713
2714/*
2715 * Power domain switches (ePODs) modeled as regulators for the DB8500 SoC
2716 */
2717static struct regulator_consumer_supply db8500_vape_consumers[] = {
2718	REGULATOR_SUPPLY("v-ape", NULL),
2719	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.0"),
2720	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.1"),
2721	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.2"),
2722	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.3"),
2723	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.4"),
2724	/* "v-mmc" changed to "vcore" in the mainline kernel */
2725	REGULATOR_SUPPLY("vcore", "sdi0"),
2726	REGULATOR_SUPPLY("vcore", "sdi1"),
2727	REGULATOR_SUPPLY("vcore", "sdi2"),
2728	REGULATOR_SUPPLY("vcore", "sdi3"),
2729	REGULATOR_SUPPLY("vcore", "sdi4"),
2730	REGULATOR_SUPPLY("v-dma", "dma40.0"),
2731	REGULATOR_SUPPLY("v-ape", "ab8500-usb.0"),
2732	/* "v-uart" changed to "vcore" in the mainline kernel */
2733	REGULATOR_SUPPLY("vcore", "uart0"),
2734	REGULATOR_SUPPLY("vcore", "uart1"),
2735	REGULATOR_SUPPLY("vcore", "uart2"),
2736	REGULATOR_SUPPLY("v-ape", "nmk-ske-keypad.0"),
2737	REGULATOR_SUPPLY("v-hsi", "ste_hsi.0"),
2738	REGULATOR_SUPPLY("vddvario", "smsc911x.0"),
2739};
2740
2741static struct regulator_consumer_supply db8500_vsmps2_consumers[] = {
2742	REGULATOR_SUPPLY("musb_1v8", "ab8500-usb.0"),
2743	/* AV8100 regulator */
2744	REGULATOR_SUPPLY("hdmi_1v8", "0-0070"),
2745};
2746
2747static struct regulator_consumer_supply db8500_b2r2_mcde_consumers[] = {
2748	REGULATOR_SUPPLY("vsupply", "b2r2_bus"),
2749	REGULATOR_SUPPLY("vsupply", "mcde"),
2750};
2751
2752/* SVA MMDSP regulator switch */
2753static struct regulator_consumer_supply db8500_svammdsp_consumers[] = {
2754	REGULATOR_SUPPLY("sva-mmdsp", "cm_control"),
2755};
2756
2757/* SVA pipe regulator switch */
2758static struct regulator_consumer_supply db8500_svapipe_consumers[] = {
2759	REGULATOR_SUPPLY("sva-pipe", "cm_control"),
2760};
2761
2762/* SIA MMDSP regulator switch */
2763static struct regulator_consumer_supply db8500_siammdsp_consumers[] = {
2764	REGULATOR_SUPPLY("sia-mmdsp", "cm_control"),
2765};
2766
2767/* SIA pipe regulator switch */
2768static struct regulator_consumer_supply db8500_siapipe_consumers[] = {
2769	REGULATOR_SUPPLY("sia-pipe", "cm_control"),
2770};
2771
2772static struct regulator_consumer_supply db8500_sga_consumers[] = {
2773	REGULATOR_SUPPLY("v-mali", NULL),
2774};
2775
2776/* ESRAM1 and 2 regulator switch */
2777static struct regulator_consumer_supply db8500_esram12_consumers[] = {
2778	REGULATOR_SUPPLY("esram12", "cm_control"),
2779};
2780
2781/* ESRAM3 and 4 regulator switch */
2782static struct regulator_consumer_supply db8500_esram34_consumers[] = {
2783	REGULATOR_SUPPLY("v-esram34", "mcde"),
2784	REGULATOR_SUPPLY("esram34", "cm_control"),
2785	REGULATOR_SUPPLY("lcla_esram", "dma40.0"),
2786};
2787
2788static struct regulator_init_data db8500_regulators[DB8500_NUM_REGULATORS] = {
2789	[DB8500_REGULATOR_VAPE] = {
2790		.constraints = {
2791			.name = "db8500-vape",
2792			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2793			.always_on = true,
2794		},
2795		.consumer_supplies = db8500_vape_consumers,
2796		.num_consumer_supplies = ARRAY_SIZE(db8500_vape_consumers),
2797	},
2798	[DB8500_REGULATOR_VARM] = {
2799		.constraints = {
2800			.name = "db8500-varm",
2801			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2802		},
2803	},
2804	[DB8500_REGULATOR_VMODEM] = {
2805		.constraints = {
2806			.name = "db8500-vmodem",
2807			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2808		},
2809	},
2810	[DB8500_REGULATOR_VPLL] = {
2811		.constraints = {
2812			.name = "db8500-vpll",
2813			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2814		},
2815	},
2816	[DB8500_REGULATOR_VSMPS1] = {
2817		.constraints = {
2818			.name = "db8500-vsmps1",
2819			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2820		},
2821	},
2822	[DB8500_REGULATOR_VSMPS2] = {
2823		.constraints = {
2824			.name = "db8500-vsmps2",
2825			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2826		},
2827		.consumer_supplies = db8500_vsmps2_consumers,
2828		.num_consumer_supplies = ARRAY_SIZE(db8500_vsmps2_consumers),
2829	},
2830	[DB8500_REGULATOR_VSMPS3] = {
2831		.constraints = {
2832			.name = "db8500-vsmps3",
2833			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2834		},
2835	},
2836	[DB8500_REGULATOR_VRF1] = {
2837		.constraints = {
2838			.name = "db8500-vrf1",
2839			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2840		},
2841	},
2842	[DB8500_REGULATOR_SWITCH_SVAMMDSP] = {
2843		/* dependency to u8500-vape is handled outside regulator framework */
2844		.constraints = {
2845			.name = "db8500-sva-mmdsp",
2846			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2847		},
2848		.consumer_supplies = db8500_svammdsp_consumers,
2849		.num_consumer_supplies = ARRAY_SIZE(db8500_svammdsp_consumers),
2850	},
2851	[DB8500_REGULATOR_SWITCH_SVAMMDSPRET] = {
2852		.constraints = {
2853			/* "ret" means "retention" */
2854			.name = "db8500-sva-mmdsp-ret",
2855			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2856		},
2857	},
2858	[DB8500_REGULATOR_SWITCH_SVAPIPE] = {
2859		/* dependency to u8500-vape is handled outside regulator framework */
2860		.constraints = {
2861			.name = "db8500-sva-pipe",
2862			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2863		},
2864		.consumer_supplies = db8500_svapipe_consumers,
2865		.num_consumer_supplies = ARRAY_SIZE(db8500_svapipe_consumers),
2866	},
2867	[DB8500_REGULATOR_SWITCH_SIAMMDSP] = {
2868		/* dependency to u8500-vape is handled outside regulator framework */
2869		.constraints = {
2870			.name = "db8500-sia-mmdsp",
2871			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2872		},
2873		.consumer_supplies = db8500_siammdsp_consumers,
2874		.num_consumer_supplies = ARRAY_SIZE(db8500_siammdsp_consumers),
2875	},
2876	[DB8500_REGULATOR_SWITCH_SIAMMDSPRET] = {
2877		.constraints = {
2878			.name = "db8500-sia-mmdsp-ret",
2879			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2880		},
2881	},
2882	[DB8500_REGULATOR_SWITCH_SIAPIPE] = {
2883		/* dependency to u8500-vape is handled outside regulator framework */
2884		.constraints = {
2885			.name = "db8500-sia-pipe",
2886			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2887		},
2888		.consumer_supplies = db8500_siapipe_consumers,
2889		.num_consumer_supplies = ARRAY_SIZE(db8500_siapipe_consumers),
2890	},
2891	[DB8500_REGULATOR_SWITCH_SGA] = {
2892		.supply_regulator = "db8500-vape",
2893		.constraints = {
2894			.name = "db8500-sga",
2895			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2896		},
2897		.consumer_supplies = db8500_sga_consumers,
2898		.num_consumer_supplies = ARRAY_SIZE(db8500_sga_consumers),
2899
2900	},
2901	[DB8500_REGULATOR_SWITCH_B2R2_MCDE] = {
2902		.supply_regulator = "db8500-vape",
2903		.constraints = {
2904			.name = "db8500-b2r2-mcde",
2905			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2906		},
2907		.consumer_supplies = db8500_b2r2_mcde_consumers,
2908		.num_consumer_supplies = ARRAY_SIZE(db8500_b2r2_mcde_consumers),
2909	},
2910	[DB8500_REGULATOR_SWITCH_ESRAM12] = {
2911		/*
2912		 * esram12 is set in retention and supplied by Vsafe when Vape is off,
2913		 * no need to hold Vape
2914		 */
2915		.constraints = {
2916			.name = "db8500-esram12",
2917			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2918		},
2919		.consumer_supplies = db8500_esram12_consumers,
2920		.num_consumer_supplies = ARRAY_SIZE(db8500_esram12_consumers),
2921	},
2922	[DB8500_REGULATOR_SWITCH_ESRAM12RET] = {
2923		.constraints = {
2924			.name = "db8500-esram12-ret",
2925			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2926		},
2927	},
2928	[DB8500_REGULATOR_SWITCH_ESRAM34] = {
2929		/*
2930		 * esram34 is set in retention and supplied by Vsafe when Vape is off,
2931		 * no need to hold Vape
2932		 */
2933		.constraints = {
2934			.name = "db8500-esram34",
2935			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2936		},
2937		.consumer_supplies = db8500_esram34_consumers,
2938		.num_consumer_supplies = ARRAY_SIZE(db8500_esram34_consumers),
2939	},
2940	[DB8500_REGULATOR_SWITCH_ESRAM34RET] = {
2941		.constraints = {
2942			.name = "db8500-esram34-ret",
2943			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2944		},
2945	},
2946};
2947
2948static struct mfd_cell db8500_prcmu_devs[] = {
2949	{
2950		.name = "db8500-prcmu-regulators",
2951		.platform_data = &db8500_regulators,
2952		.pdata_size = sizeof(db8500_regulators),
2953	},
2954	{
2955		.name = "cpufreq-u8500",
 
 
 
2956	},
2957};
2958
2959/**
2960 * prcmu_fw_init - arch init call for the Linux PRCMU fw init logic
2961 *
2962 */
2963static int __devinit db8500_prcmu_probe(struct platform_device *pdev)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2964{
2965	struct device_node *np = pdev->dev.of_node;
2966	int irq = 0, err = 0;
 
2967
2968	if (ux500_is_svp())
2969		return -ENODEV;
2970
 
 
 
 
 
 
 
 
2971	init_prcm_registers();
 
 
 
 
 
 
 
 
 
 
 
 
2972
2973	/* Clean up the mailbox interrupts after pre-kernel code. */
2974	writel(ALL_MBOX_BITS, PRCM_ARM_IT1_CLR);
2975
2976	if (np)
2977		irq = platform_get_irq(pdev, 0);
2978
2979	if (!np || irq <= 0)
2980		irq = IRQ_DB8500_PRCMU1;
2981
2982	err = request_threaded_irq(irq, prcmu_irq_handler,
2983	        prcmu_irq_thread_fn, IRQF_NO_SUSPEND, "prcmu", NULL);
2984	if (err < 0) {
2985		pr_err("prcmu: Failed to allocate IRQ_DB8500_PRCMU1.\n");
2986		err = -EBUSY;
2987		goto no_irq_return;
2988	}
2989
2990	if (cpu_is_u8500v20_or_later())
2991		prcmu_config_esram0_deep_sleep(ESRAM0_DEEP_SLEEP_STATE_RET);
 
 
 
 
 
 
 
 
2992
2993	if (!np) {
 
2994		err = mfd_add_devices(&pdev->dev, 0, db8500_prcmu_devs,
2995				ARRAY_SIZE(db8500_prcmu_devs), NULL, 0);
 
2996		if (err) {
 
2997			pr_err("prcmu: Failed to add subdevices\n");
2998			return err;
2999		}
3000	}
3001
 
 
 
 
 
 
 
3002	pr_info("DB8500 PRCMU initialized\n");
3003
3004no_irq_return:
3005	return err;
3006}
 
 
 
 
3007
3008static struct platform_driver db8500_prcmu_driver = {
3009	.driver = {
3010		.name = "db8500-prcmu",
3011		.owner = THIS_MODULE,
3012	},
3013	.probe = db8500_prcmu_probe,
3014};
3015
3016static int __init db8500_prcmu_init(void)
3017{
3018	return platform_driver_register(&db8500_prcmu_driver);
3019}
3020
3021arch_initcall(db8500_prcmu_init);
3022
3023MODULE_AUTHOR("Mattias Nilsson <mattias.i.nilsson@stericsson.com>");
3024MODULE_DESCRIPTION("DB8500 PRCM Unit driver");
3025MODULE_LICENSE("GPL v2");