Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * raid5.c : Multiple Devices driver for Linux
4 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
5 * Copyright (C) 1999, 2000 Ingo Molnar
6 * Copyright (C) 2002, 2003 H. Peter Anvin
7 *
8 * RAID-4/5/6 management functions.
9 * Thanks to Penguin Computing for making the RAID-6 development possible
10 * by donating a test server!
11 */
12
13/*
14 * BITMAP UNPLUGGING:
15 *
16 * The sequencing for updating the bitmap reliably is a little
17 * subtle (and I got it wrong the first time) so it deserves some
18 * explanation.
19 *
20 * We group bitmap updates into batches. Each batch has a number.
21 * We may write out several batches at once, but that isn't very important.
22 * conf->seq_write is the number of the last batch successfully written.
23 * conf->seq_flush is the number of the last batch that was closed to
24 * new additions.
25 * When we discover that we will need to write to any block in a stripe
26 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
27 * the number of the batch it will be in. This is seq_flush+1.
28 * When we are ready to do a write, if that batch hasn't been written yet,
29 * we plug the array and queue the stripe for later.
30 * When an unplug happens, we increment bm_flush, thus closing the current
31 * batch.
32 * When we notice that bm_flush > bm_write, we write out all pending updates
33 * to the bitmap, and advance bm_write to where bm_flush was.
34 * This may occasionally write a bit out twice, but is sure never to
35 * miss any bits.
36 */
37
38#include <linux/blkdev.h>
39#include <linux/kthread.h>
40#include <linux/raid/pq.h>
41#include <linux/async_tx.h>
42#include <linux/module.h>
43#include <linux/async.h>
44#include <linux/seq_file.h>
45#include <linux/cpu.h>
46#include <linux/slab.h>
47#include <linux/ratelimit.h>
48#include <linux/nodemask.h>
49
50#include <trace/events/block.h>
51#include <linux/list_sort.h>
52
53#include "md.h"
54#include "raid5.h"
55#include "raid0.h"
56#include "md-bitmap.h"
57#include "raid5-log.h"
58
59#define UNSUPPORTED_MDDEV_FLAGS (1L << MD_FAILFAST_SUPPORTED)
60
61#define cpu_to_group(cpu) cpu_to_node(cpu)
62#define ANY_GROUP NUMA_NO_NODE
63
64static bool devices_handle_discard_safely = false;
65module_param(devices_handle_discard_safely, bool, 0644);
66MODULE_PARM_DESC(devices_handle_discard_safely,
67 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
68static struct workqueue_struct *raid5_wq;
69
70static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
71{
72 int hash = (sect >> RAID5_STRIPE_SHIFT(conf)) & HASH_MASK;
73 return &conf->stripe_hashtbl[hash];
74}
75
76static inline int stripe_hash_locks_hash(struct r5conf *conf, sector_t sect)
77{
78 return (sect >> RAID5_STRIPE_SHIFT(conf)) & STRIPE_HASH_LOCKS_MASK;
79}
80
81static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
82{
83 spin_lock_irq(conf->hash_locks + hash);
84 spin_lock(&conf->device_lock);
85}
86
87static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
88{
89 spin_unlock(&conf->device_lock);
90 spin_unlock_irq(conf->hash_locks + hash);
91}
92
93static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
94{
95 int i;
96 spin_lock_irq(conf->hash_locks);
97 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
98 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
99 spin_lock(&conf->device_lock);
100}
101
102static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
103{
104 int i;
105 spin_unlock(&conf->device_lock);
106 for (i = NR_STRIPE_HASH_LOCKS - 1; i; i--)
107 spin_unlock(conf->hash_locks + i);
108 spin_unlock_irq(conf->hash_locks);
109}
110
111/* Find first data disk in a raid6 stripe */
112static inline int raid6_d0(struct stripe_head *sh)
113{
114 if (sh->ddf_layout)
115 /* ddf always start from first device */
116 return 0;
117 /* md starts just after Q block */
118 if (sh->qd_idx == sh->disks - 1)
119 return 0;
120 else
121 return sh->qd_idx + 1;
122}
123static inline int raid6_next_disk(int disk, int raid_disks)
124{
125 disk++;
126 return (disk < raid_disks) ? disk : 0;
127}
128
129/* When walking through the disks in a raid5, starting at raid6_d0,
130 * We need to map each disk to a 'slot', where the data disks are slot
131 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
132 * is raid_disks-1. This help does that mapping.
133 */
134static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
135 int *count, int syndrome_disks)
136{
137 int slot = *count;
138
139 if (sh->ddf_layout)
140 (*count)++;
141 if (idx == sh->pd_idx)
142 return syndrome_disks;
143 if (idx == sh->qd_idx)
144 return syndrome_disks + 1;
145 if (!sh->ddf_layout)
146 (*count)++;
147 return slot;
148}
149
150static void print_raid5_conf (struct r5conf *conf);
151
152static int stripe_operations_active(struct stripe_head *sh)
153{
154 return sh->check_state || sh->reconstruct_state ||
155 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
156 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
157}
158
159static bool stripe_is_lowprio(struct stripe_head *sh)
160{
161 return (test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) ||
162 test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) &&
163 !test_bit(STRIPE_R5C_CACHING, &sh->state);
164}
165
166static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
167{
168 struct r5conf *conf = sh->raid_conf;
169 struct r5worker_group *group;
170 int thread_cnt;
171 int i, cpu = sh->cpu;
172
173 if (!cpu_online(cpu)) {
174 cpu = cpumask_any(cpu_online_mask);
175 sh->cpu = cpu;
176 }
177
178 if (list_empty(&sh->lru)) {
179 struct r5worker_group *group;
180 group = conf->worker_groups + cpu_to_group(cpu);
181 if (stripe_is_lowprio(sh))
182 list_add_tail(&sh->lru, &group->loprio_list);
183 else
184 list_add_tail(&sh->lru, &group->handle_list);
185 group->stripes_cnt++;
186 sh->group = group;
187 }
188
189 if (conf->worker_cnt_per_group == 0) {
190 md_wakeup_thread(conf->mddev->thread);
191 return;
192 }
193
194 group = conf->worker_groups + cpu_to_group(sh->cpu);
195
196 group->workers[0].working = true;
197 /* at least one worker should run to avoid race */
198 queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
199
200 thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
201 /* wakeup more workers */
202 for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
203 if (group->workers[i].working == false) {
204 group->workers[i].working = true;
205 queue_work_on(sh->cpu, raid5_wq,
206 &group->workers[i].work);
207 thread_cnt--;
208 }
209 }
210}
211
212static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
213 struct list_head *temp_inactive_list)
214{
215 int i;
216 int injournal = 0; /* number of date pages with R5_InJournal */
217
218 BUG_ON(!list_empty(&sh->lru));
219 BUG_ON(atomic_read(&conf->active_stripes)==0);
220
221 if (r5c_is_writeback(conf->log))
222 for (i = sh->disks; i--; )
223 if (test_bit(R5_InJournal, &sh->dev[i].flags))
224 injournal++;
225 /*
226 * In the following cases, the stripe cannot be released to cached
227 * lists. Therefore, we make the stripe write out and set
228 * STRIPE_HANDLE:
229 * 1. when quiesce in r5c write back;
230 * 2. when resync is requested fot the stripe.
231 */
232 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) ||
233 (conf->quiesce && r5c_is_writeback(conf->log) &&
234 !test_bit(STRIPE_HANDLE, &sh->state) && injournal != 0)) {
235 if (test_bit(STRIPE_R5C_CACHING, &sh->state))
236 r5c_make_stripe_write_out(sh);
237 set_bit(STRIPE_HANDLE, &sh->state);
238 }
239
240 if (test_bit(STRIPE_HANDLE, &sh->state)) {
241 if (test_bit(STRIPE_DELAYED, &sh->state) &&
242 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
243 list_add_tail(&sh->lru, &conf->delayed_list);
244 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
245 sh->bm_seq - conf->seq_write > 0)
246 list_add_tail(&sh->lru, &conf->bitmap_list);
247 else {
248 clear_bit(STRIPE_DELAYED, &sh->state);
249 clear_bit(STRIPE_BIT_DELAY, &sh->state);
250 if (conf->worker_cnt_per_group == 0) {
251 if (stripe_is_lowprio(sh))
252 list_add_tail(&sh->lru,
253 &conf->loprio_list);
254 else
255 list_add_tail(&sh->lru,
256 &conf->handle_list);
257 } else {
258 raid5_wakeup_stripe_thread(sh);
259 return;
260 }
261 }
262 md_wakeup_thread(conf->mddev->thread);
263 } else {
264 BUG_ON(stripe_operations_active(sh));
265 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
266 if (atomic_dec_return(&conf->preread_active_stripes)
267 < IO_THRESHOLD)
268 md_wakeup_thread(conf->mddev->thread);
269 atomic_dec(&conf->active_stripes);
270 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
271 if (!r5c_is_writeback(conf->log))
272 list_add_tail(&sh->lru, temp_inactive_list);
273 else {
274 WARN_ON(test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags));
275 if (injournal == 0)
276 list_add_tail(&sh->lru, temp_inactive_list);
277 else if (injournal == conf->raid_disks - conf->max_degraded) {
278 /* full stripe */
279 if (!test_and_set_bit(STRIPE_R5C_FULL_STRIPE, &sh->state))
280 atomic_inc(&conf->r5c_cached_full_stripes);
281 if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state))
282 atomic_dec(&conf->r5c_cached_partial_stripes);
283 list_add_tail(&sh->lru, &conf->r5c_full_stripe_list);
284 r5c_check_cached_full_stripe(conf);
285 } else
286 /*
287 * STRIPE_R5C_PARTIAL_STRIPE is set in
288 * r5c_try_caching_write(). No need to
289 * set it again.
290 */
291 list_add_tail(&sh->lru, &conf->r5c_partial_stripe_list);
292 }
293 }
294 }
295}
296
297static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
298 struct list_head *temp_inactive_list)
299{
300 if (atomic_dec_and_test(&sh->count))
301 do_release_stripe(conf, sh, temp_inactive_list);
302}
303
304/*
305 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
306 *
307 * Be careful: Only one task can add/delete stripes from temp_inactive_list at
308 * given time. Adding stripes only takes device lock, while deleting stripes
309 * only takes hash lock.
310 */
311static void release_inactive_stripe_list(struct r5conf *conf,
312 struct list_head *temp_inactive_list,
313 int hash)
314{
315 int size;
316 bool do_wakeup = false;
317 unsigned long flags;
318
319 if (hash == NR_STRIPE_HASH_LOCKS) {
320 size = NR_STRIPE_HASH_LOCKS;
321 hash = NR_STRIPE_HASH_LOCKS - 1;
322 } else
323 size = 1;
324 while (size) {
325 struct list_head *list = &temp_inactive_list[size - 1];
326
327 /*
328 * We don't hold any lock here yet, raid5_get_active_stripe() might
329 * remove stripes from the list
330 */
331 if (!list_empty_careful(list)) {
332 spin_lock_irqsave(conf->hash_locks + hash, flags);
333 if (list_empty(conf->inactive_list + hash) &&
334 !list_empty(list))
335 atomic_dec(&conf->empty_inactive_list_nr);
336 list_splice_tail_init(list, conf->inactive_list + hash);
337 do_wakeup = true;
338 spin_unlock_irqrestore(conf->hash_locks + hash, flags);
339 }
340 size--;
341 hash--;
342 }
343
344 if (do_wakeup) {
345 wake_up(&conf->wait_for_stripe);
346 if (atomic_read(&conf->active_stripes) == 0)
347 wake_up(&conf->wait_for_quiescent);
348 if (conf->retry_read_aligned)
349 md_wakeup_thread(conf->mddev->thread);
350 }
351}
352
353/* should hold conf->device_lock already */
354static int release_stripe_list(struct r5conf *conf,
355 struct list_head *temp_inactive_list)
356{
357 struct stripe_head *sh, *t;
358 int count = 0;
359 struct llist_node *head;
360
361 head = llist_del_all(&conf->released_stripes);
362 head = llist_reverse_order(head);
363 llist_for_each_entry_safe(sh, t, head, release_list) {
364 int hash;
365
366 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
367 smp_mb();
368 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
369 /*
370 * Don't worry the bit is set here, because if the bit is set
371 * again, the count is always > 1. This is true for
372 * STRIPE_ON_UNPLUG_LIST bit too.
373 */
374 hash = sh->hash_lock_index;
375 __release_stripe(conf, sh, &temp_inactive_list[hash]);
376 count++;
377 }
378
379 return count;
380}
381
382void raid5_release_stripe(struct stripe_head *sh)
383{
384 struct r5conf *conf = sh->raid_conf;
385 unsigned long flags;
386 struct list_head list;
387 int hash;
388 bool wakeup;
389
390 /* Avoid release_list until the last reference.
391 */
392 if (atomic_add_unless(&sh->count, -1, 1))
393 return;
394
395 if (unlikely(!conf->mddev->thread) ||
396 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
397 goto slow_path;
398 wakeup = llist_add(&sh->release_list, &conf->released_stripes);
399 if (wakeup)
400 md_wakeup_thread(conf->mddev->thread);
401 return;
402slow_path:
403 /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
404 if (atomic_dec_and_lock_irqsave(&sh->count, &conf->device_lock, flags)) {
405 INIT_LIST_HEAD(&list);
406 hash = sh->hash_lock_index;
407 do_release_stripe(conf, sh, &list);
408 spin_unlock_irqrestore(&conf->device_lock, flags);
409 release_inactive_stripe_list(conf, &list, hash);
410 }
411}
412
413static inline void remove_hash(struct stripe_head *sh)
414{
415 pr_debug("remove_hash(), stripe %llu\n",
416 (unsigned long long)sh->sector);
417
418 hlist_del_init(&sh->hash);
419}
420
421static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
422{
423 struct hlist_head *hp = stripe_hash(conf, sh->sector);
424
425 pr_debug("insert_hash(), stripe %llu\n",
426 (unsigned long long)sh->sector);
427
428 hlist_add_head(&sh->hash, hp);
429}
430
431/* find an idle stripe, make sure it is unhashed, and return it. */
432static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
433{
434 struct stripe_head *sh = NULL;
435 struct list_head *first;
436
437 if (list_empty(conf->inactive_list + hash))
438 goto out;
439 first = (conf->inactive_list + hash)->next;
440 sh = list_entry(first, struct stripe_head, lru);
441 list_del_init(first);
442 remove_hash(sh);
443 atomic_inc(&conf->active_stripes);
444 BUG_ON(hash != sh->hash_lock_index);
445 if (list_empty(conf->inactive_list + hash))
446 atomic_inc(&conf->empty_inactive_list_nr);
447out:
448 return sh;
449}
450
451static void shrink_buffers(struct stripe_head *sh)
452{
453 struct page *p;
454 int i;
455 int num = sh->raid_conf->pool_size;
456
457 for (i = 0; i < num ; i++) {
458 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
459 p = sh->dev[i].page;
460 if (!p)
461 continue;
462 sh->dev[i].page = NULL;
463 put_page(p);
464 }
465}
466
467static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
468{
469 int i;
470 int num = sh->raid_conf->pool_size;
471
472 for (i = 0; i < num; i++) {
473 struct page *page;
474
475 if (!(page = alloc_page(gfp))) {
476 return 1;
477 }
478 sh->dev[i].page = page;
479 sh->dev[i].orig_page = page;
480 }
481
482 return 0;
483}
484
485static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
486 struct stripe_head *sh);
487
488static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
489{
490 struct r5conf *conf = sh->raid_conf;
491 int i, seq;
492
493 BUG_ON(atomic_read(&sh->count) != 0);
494 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
495 BUG_ON(stripe_operations_active(sh));
496 BUG_ON(sh->batch_head);
497
498 pr_debug("init_stripe called, stripe %llu\n",
499 (unsigned long long)sector);
500retry:
501 seq = read_seqcount_begin(&conf->gen_lock);
502 sh->generation = conf->generation - previous;
503 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
504 sh->sector = sector;
505 stripe_set_idx(sector, conf, previous, sh);
506 sh->state = 0;
507
508 for (i = sh->disks; i--; ) {
509 struct r5dev *dev = &sh->dev[i];
510
511 if (dev->toread || dev->read || dev->towrite || dev->written ||
512 test_bit(R5_LOCKED, &dev->flags)) {
513 pr_err("sector=%llx i=%d %p %p %p %p %d\n",
514 (unsigned long long)sh->sector, i, dev->toread,
515 dev->read, dev->towrite, dev->written,
516 test_bit(R5_LOCKED, &dev->flags));
517 WARN_ON(1);
518 }
519 dev->flags = 0;
520 dev->sector = raid5_compute_blocknr(sh, i, previous);
521 }
522 if (read_seqcount_retry(&conf->gen_lock, seq))
523 goto retry;
524 sh->overwrite_disks = 0;
525 insert_hash(conf, sh);
526 sh->cpu = smp_processor_id();
527 set_bit(STRIPE_BATCH_READY, &sh->state);
528}
529
530static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
531 short generation)
532{
533 struct stripe_head *sh;
534
535 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
536 hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
537 if (sh->sector == sector && sh->generation == generation)
538 return sh;
539 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
540 return NULL;
541}
542
543/*
544 * Need to check if array has failed when deciding whether to:
545 * - start an array
546 * - remove non-faulty devices
547 * - add a spare
548 * - allow a reshape
549 * This determination is simple when no reshape is happening.
550 * However if there is a reshape, we need to carefully check
551 * both the before and after sections.
552 * This is because some failed devices may only affect one
553 * of the two sections, and some non-in_sync devices may
554 * be insync in the section most affected by failed devices.
555 */
556int raid5_calc_degraded(struct r5conf *conf)
557{
558 int degraded, degraded2;
559 int i;
560
561 rcu_read_lock();
562 degraded = 0;
563 for (i = 0; i < conf->previous_raid_disks; i++) {
564 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
565 if (rdev && test_bit(Faulty, &rdev->flags))
566 rdev = rcu_dereference(conf->disks[i].replacement);
567 if (!rdev || test_bit(Faulty, &rdev->flags))
568 degraded++;
569 else if (test_bit(In_sync, &rdev->flags))
570 ;
571 else
572 /* not in-sync or faulty.
573 * If the reshape increases the number of devices,
574 * this is being recovered by the reshape, so
575 * this 'previous' section is not in_sync.
576 * If the number of devices is being reduced however,
577 * the device can only be part of the array if
578 * we are reverting a reshape, so this section will
579 * be in-sync.
580 */
581 if (conf->raid_disks >= conf->previous_raid_disks)
582 degraded++;
583 }
584 rcu_read_unlock();
585 if (conf->raid_disks == conf->previous_raid_disks)
586 return degraded;
587 rcu_read_lock();
588 degraded2 = 0;
589 for (i = 0; i < conf->raid_disks; i++) {
590 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
591 if (rdev && test_bit(Faulty, &rdev->flags))
592 rdev = rcu_dereference(conf->disks[i].replacement);
593 if (!rdev || test_bit(Faulty, &rdev->flags))
594 degraded2++;
595 else if (test_bit(In_sync, &rdev->flags))
596 ;
597 else
598 /* not in-sync or faulty.
599 * If reshape increases the number of devices, this
600 * section has already been recovered, else it
601 * almost certainly hasn't.
602 */
603 if (conf->raid_disks <= conf->previous_raid_disks)
604 degraded2++;
605 }
606 rcu_read_unlock();
607 if (degraded2 > degraded)
608 return degraded2;
609 return degraded;
610}
611
612static int has_failed(struct r5conf *conf)
613{
614 int degraded;
615
616 if (conf->mddev->reshape_position == MaxSector)
617 return conf->mddev->degraded > conf->max_degraded;
618
619 degraded = raid5_calc_degraded(conf);
620 if (degraded > conf->max_degraded)
621 return 1;
622 return 0;
623}
624
625struct stripe_head *
626raid5_get_active_stripe(struct r5conf *conf, sector_t sector,
627 int previous, int noblock, int noquiesce)
628{
629 struct stripe_head *sh;
630 int hash = stripe_hash_locks_hash(conf, sector);
631 int inc_empty_inactive_list_flag;
632
633 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
634
635 spin_lock_irq(conf->hash_locks + hash);
636
637 do {
638 wait_event_lock_irq(conf->wait_for_quiescent,
639 conf->quiesce == 0 || noquiesce,
640 *(conf->hash_locks + hash));
641 sh = __find_stripe(conf, sector, conf->generation - previous);
642 if (!sh) {
643 if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
644 sh = get_free_stripe(conf, hash);
645 if (!sh && !test_bit(R5_DID_ALLOC,
646 &conf->cache_state))
647 set_bit(R5_ALLOC_MORE,
648 &conf->cache_state);
649 }
650 if (noblock && sh == NULL)
651 break;
652
653 r5c_check_stripe_cache_usage(conf);
654 if (!sh) {
655 set_bit(R5_INACTIVE_BLOCKED,
656 &conf->cache_state);
657 r5l_wake_reclaim(conf->log, 0);
658 wait_event_lock_irq(
659 conf->wait_for_stripe,
660 !list_empty(conf->inactive_list + hash) &&
661 (atomic_read(&conf->active_stripes)
662 < (conf->max_nr_stripes * 3 / 4)
663 || !test_bit(R5_INACTIVE_BLOCKED,
664 &conf->cache_state)),
665 *(conf->hash_locks + hash));
666 clear_bit(R5_INACTIVE_BLOCKED,
667 &conf->cache_state);
668 } else {
669 init_stripe(sh, sector, previous);
670 atomic_inc(&sh->count);
671 }
672 } else if (!atomic_inc_not_zero(&sh->count)) {
673 spin_lock(&conf->device_lock);
674 if (!atomic_read(&sh->count)) {
675 if (!test_bit(STRIPE_HANDLE, &sh->state))
676 atomic_inc(&conf->active_stripes);
677 BUG_ON(list_empty(&sh->lru) &&
678 !test_bit(STRIPE_EXPANDING, &sh->state));
679 inc_empty_inactive_list_flag = 0;
680 if (!list_empty(conf->inactive_list + hash))
681 inc_empty_inactive_list_flag = 1;
682 list_del_init(&sh->lru);
683 if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
684 atomic_inc(&conf->empty_inactive_list_nr);
685 if (sh->group) {
686 sh->group->stripes_cnt--;
687 sh->group = NULL;
688 }
689 }
690 atomic_inc(&sh->count);
691 spin_unlock(&conf->device_lock);
692 }
693 } while (sh == NULL);
694
695 spin_unlock_irq(conf->hash_locks + hash);
696 return sh;
697}
698
699static bool is_full_stripe_write(struct stripe_head *sh)
700{
701 BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
702 return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
703}
704
705static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
706 __acquires(&sh1->stripe_lock)
707 __acquires(&sh2->stripe_lock)
708{
709 if (sh1 > sh2) {
710 spin_lock_irq(&sh2->stripe_lock);
711 spin_lock_nested(&sh1->stripe_lock, 1);
712 } else {
713 spin_lock_irq(&sh1->stripe_lock);
714 spin_lock_nested(&sh2->stripe_lock, 1);
715 }
716}
717
718static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
719 __releases(&sh1->stripe_lock)
720 __releases(&sh2->stripe_lock)
721{
722 spin_unlock(&sh1->stripe_lock);
723 spin_unlock_irq(&sh2->stripe_lock);
724}
725
726/* Only freshly new full stripe normal write stripe can be added to a batch list */
727static bool stripe_can_batch(struct stripe_head *sh)
728{
729 struct r5conf *conf = sh->raid_conf;
730
731 if (raid5_has_log(conf) || raid5_has_ppl(conf))
732 return false;
733 return test_bit(STRIPE_BATCH_READY, &sh->state) &&
734 !test_bit(STRIPE_BITMAP_PENDING, &sh->state) &&
735 is_full_stripe_write(sh);
736}
737
738/* we only do back search */
739static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh)
740{
741 struct stripe_head *head;
742 sector_t head_sector, tmp_sec;
743 int hash;
744 int dd_idx;
745 int inc_empty_inactive_list_flag;
746
747 /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
748 tmp_sec = sh->sector;
749 if (!sector_div(tmp_sec, conf->chunk_sectors))
750 return;
751 head_sector = sh->sector - RAID5_STRIPE_SECTORS(conf);
752
753 hash = stripe_hash_locks_hash(conf, head_sector);
754 spin_lock_irq(conf->hash_locks + hash);
755 head = __find_stripe(conf, head_sector, conf->generation);
756 if (head && !atomic_inc_not_zero(&head->count)) {
757 spin_lock(&conf->device_lock);
758 if (!atomic_read(&head->count)) {
759 if (!test_bit(STRIPE_HANDLE, &head->state))
760 atomic_inc(&conf->active_stripes);
761 BUG_ON(list_empty(&head->lru) &&
762 !test_bit(STRIPE_EXPANDING, &head->state));
763 inc_empty_inactive_list_flag = 0;
764 if (!list_empty(conf->inactive_list + hash))
765 inc_empty_inactive_list_flag = 1;
766 list_del_init(&head->lru);
767 if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
768 atomic_inc(&conf->empty_inactive_list_nr);
769 if (head->group) {
770 head->group->stripes_cnt--;
771 head->group = NULL;
772 }
773 }
774 atomic_inc(&head->count);
775 spin_unlock(&conf->device_lock);
776 }
777 spin_unlock_irq(conf->hash_locks + hash);
778
779 if (!head)
780 return;
781 if (!stripe_can_batch(head))
782 goto out;
783
784 lock_two_stripes(head, sh);
785 /* clear_batch_ready clear the flag */
786 if (!stripe_can_batch(head) || !stripe_can_batch(sh))
787 goto unlock_out;
788
789 if (sh->batch_head)
790 goto unlock_out;
791
792 dd_idx = 0;
793 while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
794 dd_idx++;
795 if (head->dev[dd_idx].towrite->bi_opf != sh->dev[dd_idx].towrite->bi_opf ||
796 bio_op(head->dev[dd_idx].towrite) != bio_op(sh->dev[dd_idx].towrite))
797 goto unlock_out;
798
799 if (head->batch_head) {
800 spin_lock(&head->batch_head->batch_lock);
801 /* This batch list is already running */
802 if (!stripe_can_batch(head)) {
803 spin_unlock(&head->batch_head->batch_lock);
804 goto unlock_out;
805 }
806 /*
807 * We must assign batch_head of this stripe within the
808 * batch_lock, otherwise clear_batch_ready of batch head
809 * stripe could clear BATCH_READY bit of this stripe and
810 * this stripe->batch_head doesn't get assigned, which
811 * could confuse clear_batch_ready for this stripe
812 */
813 sh->batch_head = head->batch_head;
814
815 /*
816 * at this point, head's BATCH_READY could be cleared, but we
817 * can still add the stripe to batch list
818 */
819 list_add(&sh->batch_list, &head->batch_list);
820 spin_unlock(&head->batch_head->batch_lock);
821 } else {
822 head->batch_head = head;
823 sh->batch_head = head->batch_head;
824 spin_lock(&head->batch_lock);
825 list_add_tail(&sh->batch_list, &head->batch_list);
826 spin_unlock(&head->batch_lock);
827 }
828
829 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
830 if (atomic_dec_return(&conf->preread_active_stripes)
831 < IO_THRESHOLD)
832 md_wakeup_thread(conf->mddev->thread);
833
834 if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
835 int seq = sh->bm_seq;
836 if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
837 sh->batch_head->bm_seq > seq)
838 seq = sh->batch_head->bm_seq;
839 set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
840 sh->batch_head->bm_seq = seq;
841 }
842
843 atomic_inc(&sh->count);
844unlock_out:
845 unlock_two_stripes(head, sh);
846out:
847 raid5_release_stripe(head);
848}
849
850/* Determine if 'data_offset' or 'new_data_offset' should be used
851 * in this stripe_head.
852 */
853static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
854{
855 sector_t progress = conf->reshape_progress;
856 /* Need a memory barrier to make sure we see the value
857 * of conf->generation, or ->data_offset that was set before
858 * reshape_progress was updated.
859 */
860 smp_rmb();
861 if (progress == MaxSector)
862 return 0;
863 if (sh->generation == conf->generation - 1)
864 return 0;
865 /* We are in a reshape, and this is a new-generation stripe,
866 * so use new_data_offset.
867 */
868 return 1;
869}
870
871static void dispatch_bio_list(struct bio_list *tmp)
872{
873 struct bio *bio;
874
875 while ((bio = bio_list_pop(tmp)))
876 submit_bio_noacct(bio);
877}
878
879static int cmp_stripe(void *priv, struct list_head *a, struct list_head *b)
880{
881 const struct r5pending_data *da = list_entry(a,
882 struct r5pending_data, sibling);
883 const struct r5pending_data *db = list_entry(b,
884 struct r5pending_data, sibling);
885 if (da->sector > db->sector)
886 return 1;
887 if (da->sector < db->sector)
888 return -1;
889 return 0;
890}
891
892static void dispatch_defer_bios(struct r5conf *conf, int target,
893 struct bio_list *list)
894{
895 struct r5pending_data *data;
896 struct list_head *first, *next = NULL;
897 int cnt = 0;
898
899 if (conf->pending_data_cnt == 0)
900 return;
901
902 list_sort(NULL, &conf->pending_list, cmp_stripe);
903
904 first = conf->pending_list.next;
905
906 /* temporarily move the head */
907 if (conf->next_pending_data)
908 list_move_tail(&conf->pending_list,
909 &conf->next_pending_data->sibling);
910
911 while (!list_empty(&conf->pending_list)) {
912 data = list_first_entry(&conf->pending_list,
913 struct r5pending_data, sibling);
914 if (&data->sibling == first)
915 first = data->sibling.next;
916 next = data->sibling.next;
917
918 bio_list_merge(list, &data->bios);
919 list_move(&data->sibling, &conf->free_list);
920 cnt++;
921 if (cnt >= target)
922 break;
923 }
924 conf->pending_data_cnt -= cnt;
925 BUG_ON(conf->pending_data_cnt < 0 || cnt < target);
926
927 if (next != &conf->pending_list)
928 conf->next_pending_data = list_entry(next,
929 struct r5pending_data, sibling);
930 else
931 conf->next_pending_data = NULL;
932 /* list isn't empty */
933 if (first != &conf->pending_list)
934 list_move_tail(&conf->pending_list, first);
935}
936
937static void flush_deferred_bios(struct r5conf *conf)
938{
939 struct bio_list tmp = BIO_EMPTY_LIST;
940
941 if (conf->pending_data_cnt == 0)
942 return;
943
944 spin_lock(&conf->pending_bios_lock);
945 dispatch_defer_bios(conf, conf->pending_data_cnt, &tmp);
946 BUG_ON(conf->pending_data_cnt != 0);
947 spin_unlock(&conf->pending_bios_lock);
948
949 dispatch_bio_list(&tmp);
950}
951
952static void defer_issue_bios(struct r5conf *conf, sector_t sector,
953 struct bio_list *bios)
954{
955 struct bio_list tmp = BIO_EMPTY_LIST;
956 struct r5pending_data *ent;
957
958 spin_lock(&conf->pending_bios_lock);
959 ent = list_first_entry(&conf->free_list, struct r5pending_data,
960 sibling);
961 list_move_tail(&ent->sibling, &conf->pending_list);
962 ent->sector = sector;
963 bio_list_init(&ent->bios);
964 bio_list_merge(&ent->bios, bios);
965 conf->pending_data_cnt++;
966 if (conf->pending_data_cnt >= PENDING_IO_MAX)
967 dispatch_defer_bios(conf, PENDING_IO_ONE_FLUSH, &tmp);
968
969 spin_unlock(&conf->pending_bios_lock);
970
971 dispatch_bio_list(&tmp);
972}
973
974static void
975raid5_end_read_request(struct bio *bi);
976static void
977raid5_end_write_request(struct bio *bi);
978
979static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
980{
981 struct r5conf *conf = sh->raid_conf;
982 int i, disks = sh->disks;
983 struct stripe_head *head_sh = sh;
984 struct bio_list pending_bios = BIO_EMPTY_LIST;
985 bool should_defer;
986
987 might_sleep();
988
989 if (log_stripe(sh, s) == 0)
990 return;
991
992 should_defer = conf->batch_bio_dispatch && conf->group_cnt;
993
994 for (i = disks; i--; ) {
995 int op, op_flags = 0;
996 int replace_only = 0;
997 struct bio *bi, *rbi;
998 struct md_rdev *rdev, *rrdev = NULL;
999
1000 sh = head_sh;
1001 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
1002 op = REQ_OP_WRITE;
1003 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
1004 op_flags = REQ_FUA;
1005 if (test_bit(R5_Discard, &sh->dev[i].flags))
1006 op = REQ_OP_DISCARD;
1007 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
1008 op = REQ_OP_READ;
1009 else if (test_and_clear_bit(R5_WantReplace,
1010 &sh->dev[i].flags)) {
1011 op = REQ_OP_WRITE;
1012 replace_only = 1;
1013 } else
1014 continue;
1015 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
1016 op_flags |= REQ_SYNC;
1017
1018again:
1019 bi = &sh->dev[i].req;
1020 rbi = &sh->dev[i].rreq; /* For writing to replacement */
1021
1022 rcu_read_lock();
1023 rrdev = rcu_dereference(conf->disks[i].replacement);
1024 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
1025 rdev = rcu_dereference(conf->disks[i].rdev);
1026 if (!rdev) {
1027 rdev = rrdev;
1028 rrdev = NULL;
1029 }
1030 if (op_is_write(op)) {
1031 if (replace_only)
1032 rdev = NULL;
1033 if (rdev == rrdev)
1034 /* We raced and saw duplicates */
1035 rrdev = NULL;
1036 } else {
1037 if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
1038 rdev = rrdev;
1039 rrdev = NULL;
1040 }
1041
1042 if (rdev && test_bit(Faulty, &rdev->flags))
1043 rdev = NULL;
1044 if (rdev)
1045 atomic_inc(&rdev->nr_pending);
1046 if (rrdev && test_bit(Faulty, &rrdev->flags))
1047 rrdev = NULL;
1048 if (rrdev)
1049 atomic_inc(&rrdev->nr_pending);
1050 rcu_read_unlock();
1051
1052 /* We have already checked bad blocks for reads. Now
1053 * need to check for writes. We never accept write errors
1054 * on the replacement, so we don't to check rrdev.
1055 */
1056 while (op_is_write(op) && rdev &&
1057 test_bit(WriteErrorSeen, &rdev->flags)) {
1058 sector_t first_bad;
1059 int bad_sectors;
1060 int bad = is_badblock(rdev, sh->sector, RAID5_STRIPE_SECTORS(conf),
1061 &first_bad, &bad_sectors);
1062 if (!bad)
1063 break;
1064
1065 if (bad < 0) {
1066 set_bit(BlockedBadBlocks, &rdev->flags);
1067 if (!conf->mddev->external &&
1068 conf->mddev->sb_flags) {
1069 /* It is very unlikely, but we might
1070 * still need to write out the
1071 * bad block log - better give it
1072 * a chance*/
1073 md_check_recovery(conf->mddev);
1074 }
1075 /*
1076 * Because md_wait_for_blocked_rdev
1077 * will dec nr_pending, we must
1078 * increment it first.
1079 */
1080 atomic_inc(&rdev->nr_pending);
1081 md_wait_for_blocked_rdev(rdev, conf->mddev);
1082 } else {
1083 /* Acknowledged bad block - skip the write */
1084 rdev_dec_pending(rdev, conf->mddev);
1085 rdev = NULL;
1086 }
1087 }
1088
1089 if (rdev) {
1090 if (s->syncing || s->expanding || s->expanded
1091 || s->replacing)
1092 md_sync_acct(rdev->bdev, RAID5_STRIPE_SECTORS(conf));
1093
1094 set_bit(STRIPE_IO_STARTED, &sh->state);
1095
1096 bio_set_dev(bi, rdev->bdev);
1097 bio_set_op_attrs(bi, op, op_flags);
1098 bi->bi_end_io = op_is_write(op)
1099 ? raid5_end_write_request
1100 : raid5_end_read_request;
1101 bi->bi_private = sh;
1102
1103 pr_debug("%s: for %llu schedule op %d on disc %d\n",
1104 __func__, (unsigned long long)sh->sector,
1105 bi->bi_opf, i);
1106 atomic_inc(&sh->count);
1107 if (sh != head_sh)
1108 atomic_inc(&head_sh->count);
1109 if (use_new_offset(conf, sh))
1110 bi->bi_iter.bi_sector = (sh->sector
1111 + rdev->new_data_offset);
1112 else
1113 bi->bi_iter.bi_sector = (sh->sector
1114 + rdev->data_offset);
1115 if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1116 bi->bi_opf |= REQ_NOMERGE;
1117
1118 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1119 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1120
1121 if (!op_is_write(op) &&
1122 test_bit(R5_InJournal, &sh->dev[i].flags))
1123 /*
1124 * issuing read for a page in journal, this
1125 * must be preparing for prexor in rmw; read
1126 * the data into orig_page
1127 */
1128 sh->dev[i].vec.bv_page = sh->dev[i].orig_page;
1129 else
1130 sh->dev[i].vec.bv_page = sh->dev[i].page;
1131 bi->bi_vcnt = 1;
1132 bi->bi_io_vec[0].bv_len = RAID5_STRIPE_SIZE(conf);
1133 bi->bi_io_vec[0].bv_offset = 0;
1134 bi->bi_iter.bi_size = RAID5_STRIPE_SIZE(conf);
1135 bi->bi_write_hint = sh->dev[i].write_hint;
1136 if (!rrdev)
1137 sh->dev[i].write_hint = RWH_WRITE_LIFE_NOT_SET;
1138 /*
1139 * If this is discard request, set bi_vcnt 0. We don't
1140 * want to confuse SCSI because SCSI will replace payload
1141 */
1142 if (op == REQ_OP_DISCARD)
1143 bi->bi_vcnt = 0;
1144 if (rrdev)
1145 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
1146
1147 if (conf->mddev->gendisk)
1148 trace_block_bio_remap(bi->bi_disk->queue,
1149 bi, disk_devt(conf->mddev->gendisk),
1150 sh->dev[i].sector);
1151 if (should_defer && op_is_write(op))
1152 bio_list_add(&pending_bios, bi);
1153 else
1154 submit_bio_noacct(bi);
1155 }
1156 if (rrdev) {
1157 if (s->syncing || s->expanding || s->expanded
1158 || s->replacing)
1159 md_sync_acct(rrdev->bdev, RAID5_STRIPE_SECTORS(conf));
1160
1161 set_bit(STRIPE_IO_STARTED, &sh->state);
1162
1163 bio_set_dev(rbi, rrdev->bdev);
1164 bio_set_op_attrs(rbi, op, op_flags);
1165 BUG_ON(!op_is_write(op));
1166 rbi->bi_end_io = raid5_end_write_request;
1167 rbi->bi_private = sh;
1168
1169 pr_debug("%s: for %llu schedule op %d on "
1170 "replacement disc %d\n",
1171 __func__, (unsigned long long)sh->sector,
1172 rbi->bi_opf, i);
1173 atomic_inc(&sh->count);
1174 if (sh != head_sh)
1175 atomic_inc(&head_sh->count);
1176 if (use_new_offset(conf, sh))
1177 rbi->bi_iter.bi_sector = (sh->sector
1178 + rrdev->new_data_offset);
1179 else
1180 rbi->bi_iter.bi_sector = (sh->sector
1181 + rrdev->data_offset);
1182 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1183 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1184 sh->dev[i].rvec.bv_page = sh->dev[i].page;
1185 rbi->bi_vcnt = 1;
1186 rbi->bi_io_vec[0].bv_len = RAID5_STRIPE_SIZE(conf);
1187 rbi->bi_io_vec[0].bv_offset = 0;
1188 rbi->bi_iter.bi_size = RAID5_STRIPE_SIZE(conf);
1189 rbi->bi_write_hint = sh->dev[i].write_hint;
1190 sh->dev[i].write_hint = RWH_WRITE_LIFE_NOT_SET;
1191 /*
1192 * If this is discard request, set bi_vcnt 0. We don't
1193 * want to confuse SCSI because SCSI will replace payload
1194 */
1195 if (op == REQ_OP_DISCARD)
1196 rbi->bi_vcnt = 0;
1197 if (conf->mddev->gendisk)
1198 trace_block_bio_remap(rbi->bi_disk->queue,
1199 rbi, disk_devt(conf->mddev->gendisk),
1200 sh->dev[i].sector);
1201 if (should_defer && op_is_write(op))
1202 bio_list_add(&pending_bios, rbi);
1203 else
1204 submit_bio_noacct(rbi);
1205 }
1206 if (!rdev && !rrdev) {
1207 if (op_is_write(op))
1208 set_bit(STRIPE_DEGRADED, &sh->state);
1209 pr_debug("skip op %d on disc %d for sector %llu\n",
1210 bi->bi_opf, i, (unsigned long long)sh->sector);
1211 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1212 set_bit(STRIPE_HANDLE, &sh->state);
1213 }
1214
1215 if (!head_sh->batch_head)
1216 continue;
1217 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1218 batch_list);
1219 if (sh != head_sh)
1220 goto again;
1221 }
1222
1223 if (should_defer && !bio_list_empty(&pending_bios))
1224 defer_issue_bios(conf, head_sh->sector, &pending_bios);
1225}
1226
1227static struct dma_async_tx_descriptor *
1228async_copy_data(int frombio, struct bio *bio, struct page **page,
1229 sector_t sector, struct dma_async_tx_descriptor *tx,
1230 struct stripe_head *sh, int no_skipcopy)
1231{
1232 struct bio_vec bvl;
1233 struct bvec_iter iter;
1234 struct page *bio_page;
1235 int page_offset;
1236 struct async_submit_ctl submit;
1237 enum async_tx_flags flags = 0;
1238 struct r5conf *conf = sh->raid_conf;
1239
1240 if (bio->bi_iter.bi_sector >= sector)
1241 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
1242 else
1243 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
1244
1245 if (frombio)
1246 flags |= ASYNC_TX_FENCE;
1247 init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1248
1249 bio_for_each_segment(bvl, bio, iter) {
1250 int len = bvl.bv_len;
1251 int clen;
1252 int b_offset = 0;
1253
1254 if (page_offset < 0) {
1255 b_offset = -page_offset;
1256 page_offset += b_offset;
1257 len -= b_offset;
1258 }
1259
1260 if (len > 0 && page_offset + len > RAID5_STRIPE_SIZE(conf))
1261 clen = RAID5_STRIPE_SIZE(conf) - page_offset;
1262 else
1263 clen = len;
1264
1265 if (clen > 0) {
1266 b_offset += bvl.bv_offset;
1267 bio_page = bvl.bv_page;
1268 if (frombio) {
1269 if (conf->skip_copy &&
1270 b_offset == 0 && page_offset == 0 &&
1271 clen == RAID5_STRIPE_SIZE(conf) &&
1272 !no_skipcopy)
1273 *page = bio_page;
1274 else
1275 tx = async_memcpy(*page, bio_page, page_offset,
1276 b_offset, clen, &submit);
1277 } else
1278 tx = async_memcpy(bio_page, *page, b_offset,
1279 page_offset, clen, &submit);
1280 }
1281 /* chain the operations */
1282 submit.depend_tx = tx;
1283
1284 if (clen < len) /* hit end of page */
1285 break;
1286 page_offset += len;
1287 }
1288
1289 return tx;
1290}
1291
1292static void ops_complete_biofill(void *stripe_head_ref)
1293{
1294 struct stripe_head *sh = stripe_head_ref;
1295 int i;
1296 struct r5conf *conf = sh->raid_conf;
1297
1298 pr_debug("%s: stripe %llu\n", __func__,
1299 (unsigned long long)sh->sector);
1300
1301 /* clear completed biofills */
1302 for (i = sh->disks; i--; ) {
1303 struct r5dev *dev = &sh->dev[i];
1304
1305 /* acknowledge completion of a biofill operation */
1306 /* and check if we need to reply to a read request,
1307 * new R5_Wantfill requests are held off until
1308 * !STRIPE_BIOFILL_RUN
1309 */
1310 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1311 struct bio *rbi, *rbi2;
1312
1313 BUG_ON(!dev->read);
1314 rbi = dev->read;
1315 dev->read = NULL;
1316 while (rbi && rbi->bi_iter.bi_sector <
1317 dev->sector + RAID5_STRIPE_SECTORS(conf)) {
1318 rbi2 = r5_next_bio(conf, rbi, dev->sector);
1319 bio_endio(rbi);
1320 rbi = rbi2;
1321 }
1322 }
1323 }
1324 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1325
1326 set_bit(STRIPE_HANDLE, &sh->state);
1327 raid5_release_stripe(sh);
1328}
1329
1330static void ops_run_biofill(struct stripe_head *sh)
1331{
1332 struct dma_async_tx_descriptor *tx = NULL;
1333 struct async_submit_ctl submit;
1334 int i;
1335 struct r5conf *conf = sh->raid_conf;
1336
1337 BUG_ON(sh->batch_head);
1338 pr_debug("%s: stripe %llu\n", __func__,
1339 (unsigned long long)sh->sector);
1340
1341 for (i = sh->disks; i--; ) {
1342 struct r5dev *dev = &sh->dev[i];
1343 if (test_bit(R5_Wantfill, &dev->flags)) {
1344 struct bio *rbi;
1345 spin_lock_irq(&sh->stripe_lock);
1346 dev->read = rbi = dev->toread;
1347 dev->toread = NULL;
1348 spin_unlock_irq(&sh->stripe_lock);
1349 while (rbi && rbi->bi_iter.bi_sector <
1350 dev->sector + RAID5_STRIPE_SECTORS(conf)) {
1351 tx = async_copy_data(0, rbi, &dev->page,
1352 dev->sector, tx, sh, 0);
1353 rbi = r5_next_bio(conf, rbi, dev->sector);
1354 }
1355 }
1356 }
1357
1358 atomic_inc(&sh->count);
1359 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1360 async_trigger_callback(&submit);
1361}
1362
1363static void mark_target_uptodate(struct stripe_head *sh, int target)
1364{
1365 struct r5dev *tgt;
1366
1367 if (target < 0)
1368 return;
1369
1370 tgt = &sh->dev[target];
1371 set_bit(R5_UPTODATE, &tgt->flags);
1372 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1373 clear_bit(R5_Wantcompute, &tgt->flags);
1374}
1375
1376static void ops_complete_compute(void *stripe_head_ref)
1377{
1378 struct stripe_head *sh = stripe_head_ref;
1379
1380 pr_debug("%s: stripe %llu\n", __func__,
1381 (unsigned long long)sh->sector);
1382
1383 /* mark the computed target(s) as uptodate */
1384 mark_target_uptodate(sh, sh->ops.target);
1385 mark_target_uptodate(sh, sh->ops.target2);
1386
1387 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1388 if (sh->check_state == check_state_compute_run)
1389 sh->check_state = check_state_compute_result;
1390 set_bit(STRIPE_HANDLE, &sh->state);
1391 raid5_release_stripe(sh);
1392}
1393
1394/* return a pointer to the address conversion region of the scribble buffer */
1395static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1396{
1397 return percpu->scribble + i * percpu->scribble_obj_size;
1398}
1399
1400/* return a pointer to the address conversion region of the scribble buffer */
1401static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1402 struct raid5_percpu *percpu, int i)
1403{
1404 return (void *) (to_addr_page(percpu, i) + sh->disks + 2);
1405}
1406
1407static struct dma_async_tx_descriptor *
1408ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1409{
1410 int disks = sh->disks;
1411 struct page **xor_srcs = to_addr_page(percpu, 0);
1412 int target = sh->ops.target;
1413 struct r5dev *tgt = &sh->dev[target];
1414 struct page *xor_dest = tgt->page;
1415 int count = 0;
1416 struct dma_async_tx_descriptor *tx;
1417 struct async_submit_ctl submit;
1418 int i;
1419
1420 BUG_ON(sh->batch_head);
1421
1422 pr_debug("%s: stripe %llu block: %d\n",
1423 __func__, (unsigned long long)sh->sector, target);
1424 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1425
1426 for (i = disks; i--; )
1427 if (i != target)
1428 xor_srcs[count++] = sh->dev[i].page;
1429
1430 atomic_inc(&sh->count);
1431
1432 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1433 ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
1434 if (unlikely(count == 1))
1435 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0,
1436 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1437 else
1438 tx = async_xor(xor_dest, xor_srcs, 0, count,
1439 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1440
1441 return tx;
1442}
1443
1444/* set_syndrome_sources - populate source buffers for gen_syndrome
1445 * @srcs - (struct page *) array of size sh->disks
1446 * @sh - stripe_head to parse
1447 *
1448 * Populates srcs in proper layout order for the stripe and returns the
1449 * 'count' of sources to be used in a call to async_gen_syndrome. The P
1450 * destination buffer is recorded in srcs[count] and the Q destination
1451 * is recorded in srcs[count+1]].
1452 */
1453static int set_syndrome_sources(struct page **srcs,
1454 struct stripe_head *sh,
1455 int srctype)
1456{
1457 int disks = sh->disks;
1458 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1459 int d0_idx = raid6_d0(sh);
1460 int count;
1461 int i;
1462
1463 for (i = 0; i < disks; i++)
1464 srcs[i] = NULL;
1465
1466 count = 0;
1467 i = d0_idx;
1468 do {
1469 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1470 struct r5dev *dev = &sh->dev[i];
1471
1472 if (i == sh->qd_idx || i == sh->pd_idx ||
1473 (srctype == SYNDROME_SRC_ALL) ||
1474 (srctype == SYNDROME_SRC_WANT_DRAIN &&
1475 (test_bit(R5_Wantdrain, &dev->flags) ||
1476 test_bit(R5_InJournal, &dev->flags))) ||
1477 (srctype == SYNDROME_SRC_WRITTEN &&
1478 (dev->written ||
1479 test_bit(R5_InJournal, &dev->flags)))) {
1480 if (test_bit(R5_InJournal, &dev->flags))
1481 srcs[slot] = sh->dev[i].orig_page;
1482 else
1483 srcs[slot] = sh->dev[i].page;
1484 }
1485 i = raid6_next_disk(i, disks);
1486 } while (i != d0_idx);
1487
1488 return syndrome_disks;
1489}
1490
1491static struct dma_async_tx_descriptor *
1492ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1493{
1494 int disks = sh->disks;
1495 struct page **blocks = to_addr_page(percpu, 0);
1496 int target;
1497 int qd_idx = sh->qd_idx;
1498 struct dma_async_tx_descriptor *tx;
1499 struct async_submit_ctl submit;
1500 struct r5dev *tgt;
1501 struct page *dest;
1502 int i;
1503 int count;
1504
1505 BUG_ON(sh->batch_head);
1506 if (sh->ops.target < 0)
1507 target = sh->ops.target2;
1508 else if (sh->ops.target2 < 0)
1509 target = sh->ops.target;
1510 else
1511 /* we should only have one valid target */
1512 BUG();
1513 BUG_ON(target < 0);
1514 pr_debug("%s: stripe %llu block: %d\n",
1515 __func__, (unsigned long long)sh->sector, target);
1516
1517 tgt = &sh->dev[target];
1518 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1519 dest = tgt->page;
1520
1521 atomic_inc(&sh->count);
1522
1523 if (target == qd_idx) {
1524 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1525 blocks[count] = NULL; /* regenerating p is not necessary */
1526 BUG_ON(blocks[count+1] != dest); /* q should already be set */
1527 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1528 ops_complete_compute, sh,
1529 to_addr_conv(sh, percpu, 0));
1530 tx = async_gen_syndrome(blocks, 0, count+2,
1531 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1532 } else {
1533 /* Compute any data- or p-drive using XOR */
1534 count = 0;
1535 for (i = disks; i-- ; ) {
1536 if (i == target || i == qd_idx)
1537 continue;
1538 blocks[count++] = sh->dev[i].page;
1539 }
1540
1541 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1542 NULL, ops_complete_compute, sh,
1543 to_addr_conv(sh, percpu, 0));
1544 tx = async_xor(dest, blocks, 0, count,
1545 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1546 }
1547
1548 return tx;
1549}
1550
1551static struct dma_async_tx_descriptor *
1552ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1553{
1554 int i, count, disks = sh->disks;
1555 int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1556 int d0_idx = raid6_d0(sh);
1557 int faila = -1, failb = -1;
1558 int target = sh->ops.target;
1559 int target2 = sh->ops.target2;
1560 struct r5dev *tgt = &sh->dev[target];
1561 struct r5dev *tgt2 = &sh->dev[target2];
1562 struct dma_async_tx_descriptor *tx;
1563 struct page **blocks = to_addr_page(percpu, 0);
1564 struct async_submit_ctl submit;
1565
1566 BUG_ON(sh->batch_head);
1567 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1568 __func__, (unsigned long long)sh->sector, target, target2);
1569 BUG_ON(target < 0 || target2 < 0);
1570 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1571 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1572
1573 /* we need to open-code set_syndrome_sources to handle the
1574 * slot number conversion for 'faila' and 'failb'
1575 */
1576 for (i = 0; i < disks ; i++)
1577 blocks[i] = NULL;
1578 count = 0;
1579 i = d0_idx;
1580 do {
1581 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1582
1583 blocks[slot] = sh->dev[i].page;
1584
1585 if (i == target)
1586 faila = slot;
1587 if (i == target2)
1588 failb = slot;
1589 i = raid6_next_disk(i, disks);
1590 } while (i != d0_idx);
1591
1592 BUG_ON(faila == failb);
1593 if (failb < faila)
1594 swap(faila, failb);
1595 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1596 __func__, (unsigned long long)sh->sector, faila, failb);
1597
1598 atomic_inc(&sh->count);
1599
1600 if (failb == syndrome_disks+1) {
1601 /* Q disk is one of the missing disks */
1602 if (faila == syndrome_disks) {
1603 /* Missing P+Q, just recompute */
1604 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1605 ops_complete_compute, sh,
1606 to_addr_conv(sh, percpu, 0));
1607 return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1608 RAID5_STRIPE_SIZE(sh->raid_conf),
1609 &submit);
1610 } else {
1611 struct page *dest;
1612 int data_target;
1613 int qd_idx = sh->qd_idx;
1614
1615 /* Missing D+Q: recompute D from P, then recompute Q */
1616 if (target == qd_idx)
1617 data_target = target2;
1618 else
1619 data_target = target;
1620
1621 count = 0;
1622 for (i = disks; i-- ; ) {
1623 if (i == data_target || i == qd_idx)
1624 continue;
1625 blocks[count++] = sh->dev[i].page;
1626 }
1627 dest = sh->dev[data_target].page;
1628 init_async_submit(&submit,
1629 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1630 NULL, NULL, NULL,
1631 to_addr_conv(sh, percpu, 0));
1632 tx = async_xor(dest, blocks, 0, count,
1633 RAID5_STRIPE_SIZE(sh->raid_conf),
1634 &submit);
1635
1636 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1637 init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1638 ops_complete_compute, sh,
1639 to_addr_conv(sh, percpu, 0));
1640 return async_gen_syndrome(blocks, 0, count+2,
1641 RAID5_STRIPE_SIZE(sh->raid_conf),
1642 &submit);
1643 }
1644 } else {
1645 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1646 ops_complete_compute, sh,
1647 to_addr_conv(sh, percpu, 0));
1648 if (failb == syndrome_disks) {
1649 /* We're missing D+P. */
1650 return async_raid6_datap_recov(syndrome_disks+2,
1651 RAID5_STRIPE_SIZE(sh->raid_conf),
1652 faila,
1653 blocks, &submit);
1654 } else {
1655 /* We're missing D+D. */
1656 return async_raid6_2data_recov(syndrome_disks+2,
1657 RAID5_STRIPE_SIZE(sh->raid_conf),
1658 faila, failb,
1659 blocks, &submit);
1660 }
1661 }
1662}
1663
1664static void ops_complete_prexor(void *stripe_head_ref)
1665{
1666 struct stripe_head *sh = stripe_head_ref;
1667
1668 pr_debug("%s: stripe %llu\n", __func__,
1669 (unsigned long long)sh->sector);
1670
1671 if (r5c_is_writeback(sh->raid_conf->log))
1672 /*
1673 * raid5-cache write back uses orig_page during prexor.
1674 * After prexor, it is time to free orig_page
1675 */
1676 r5c_release_extra_page(sh);
1677}
1678
1679static struct dma_async_tx_descriptor *
1680ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1681 struct dma_async_tx_descriptor *tx)
1682{
1683 int disks = sh->disks;
1684 struct page **xor_srcs = to_addr_page(percpu, 0);
1685 int count = 0, pd_idx = sh->pd_idx, i;
1686 struct async_submit_ctl submit;
1687
1688 /* existing parity data subtracted */
1689 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1690
1691 BUG_ON(sh->batch_head);
1692 pr_debug("%s: stripe %llu\n", __func__,
1693 (unsigned long long)sh->sector);
1694
1695 for (i = disks; i--; ) {
1696 struct r5dev *dev = &sh->dev[i];
1697 /* Only process blocks that are known to be uptodate */
1698 if (test_bit(R5_InJournal, &dev->flags))
1699 xor_srcs[count++] = dev->orig_page;
1700 else if (test_bit(R5_Wantdrain, &dev->flags))
1701 xor_srcs[count++] = dev->page;
1702 }
1703
1704 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1705 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1706 tx = async_xor(xor_dest, xor_srcs, 0, count,
1707 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1708
1709 return tx;
1710}
1711
1712static struct dma_async_tx_descriptor *
1713ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1714 struct dma_async_tx_descriptor *tx)
1715{
1716 struct page **blocks = to_addr_page(percpu, 0);
1717 int count;
1718 struct async_submit_ctl submit;
1719
1720 pr_debug("%s: stripe %llu\n", __func__,
1721 (unsigned long long)sh->sector);
1722
1723 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN);
1724
1725 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1726 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1727 tx = async_gen_syndrome(blocks, 0, count+2,
1728 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1729
1730 return tx;
1731}
1732
1733static struct dma_async_tx_descriptor *
1734ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1735{
1736 struct r5conf *conf = sh->raid_conf;
1737 int disks = sh->disks;
1738 int i;
1739 struct stripe_head *head_sh = sh;
1740
1741 pr_debug("%s: stripe %llu\n", __func__,
1742 (unsigned long long)sh->sector);
1743
1744 for (i = disks; i--; ) {
1745 struct r5dev *dev;
1746 struct bio *chosen;
1747
1748 sh = head_sh;
1749 if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
1750 struct bio *wbi;
1751
1752again:
1753 dev = &sh->dev[i];
1754 /*
1755 * clear R5_InJournal, so when rewriting a page in
1756 * journal, it is not skipped by r5l_log_stripe()
1757 */
1758 clear_bit(R5_InJournal, &dev->flags);
1759 spin_lock_irq(&sh->stripe_lock);
1760 chosen = dev->towrite;
1761 dev->towrite = NULL;
1762 sh->overwrite_disks = 0;
1763 BUG_ON(dev->written);
1764 wbi = dev->written = chosen;
1765 spin_unlock_irq(&sh->stripe_lock);
1766 WARN_ON(dev->page != dev->orig_page);
1767
1768 while (wbi && wbi->bi_iter.bi_sector <
1769 dev->sector + RAID5_STRIPE_SECTORS(conf)) {
1770 if (wbi->bi_opf & REQ_FUA)
1771 set_bit(R5_WantFUA, &dev->flags);
1772 if (wbi->bi_opf & REQ_SYNC)
1773 set_bit(R5_SyncIO, &dev->flags);
1774 if (bio_op(wbi) == REQ_OP_DISCARD)
1775 set_bit(R5_Discard, &dev->flags);
1776 else {
1777 tx = async_copy_data(1, wbi, &dev->page,
1778 dev->sector, tx, sh,
1779 r5c_is_writeback(conf->log));
1780 if (dev->page != dev->orig_page &&
1781 !r5c_is_writeback(conf->log)) {
1782 set_bit(R5_SkipCopy, &dev->flags);
1783 clear_bit(R5_UPTODATE, &dev->flags);
1784 clear_bit(R5_OVERWRITE, &dev->flags);
1785 }
1786 }
1787 wbi = r5_next_bio(conf, wbi, dev->sector);
1788 }
1789
1790 if (head_sh->batch_head) {
1791 sh = list_first_entry(&sh->batch_list,
1792 struct stripe_head,
1793 batch_list);
1794 if (sh == head_sh)
1795 continue;
1796 goto again;
1797 }
1798 }
1799 }
1800
1801 return tx;
1802}
1803
1804static void ops_complete_reconstruct(void *stripe_head_ref)
1805{
1806 struct stripe_head *sh = stripe_head_ref;
1807 int disks = sh->disks;
1808 int pd_idx = sh->pd_idx;
1809 int qd_idx = sh->qd_idx;
1810 int i;
1811 bool fua = false, sync = false, discard = false;
1812
1813 pr_debug("%s: stripe %llu\n", __func__,
1814 (unsigned long long)sh->sector);
1815
1816 for (i = disks; i--; ) {
1817 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1818 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1819 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1820 }
1821
1822 for (i = disks; i--; ) {
1823 struct r5dev *dev = &sh->dev[i];
1824
1825 if (dev->written || i == pd_idx || i == qd_idx) {
1826 if (!discard && !test_bit(R5_SkipCopy, &dev->flags)) {
1827 set_bit(R5_UPTODATE, &dev->flags);
1828 if (test_bit(STRIPE_EXPAND_READY, &sh->state))
1829 set_bit(R5_Expanded, &dev->flags);
1830 }
1831 if (fua)
1832 set_bit(R5_WantFUA, &dev->flags);
1833 if (sync)
1834 set_bit(R5_SyncIO, &dev->flags);
1835 }
1836 }
1837
1838 if (sh->reconstruct_state == reconstruct_state_drain_run)
1839 sh->reconstruct_state = reconstruct_state_drain_result;
1840 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1841 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1842 else {
1843 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1844 sh->reconstruct_state = reconstruct_state_result;
1845 }
1846
1847 set_bit(STRIPE_HANDLE, &sh->state);
1848 raid5_release_stripe(sh);
1849}
1850
1851static void
1852ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1853 struct dma_async_tx_descriptor *tx)
1854{
1855 int disks = sh->disks;
1856 struct page **xor_srcs;
1857 struct async_submit_ctl submit;
1858 int count, pd_idx = sh->pd_idx, i;
1859 struct page *xor_dest;
1860 int prexor = 0;
1861 unsigned long flags;
1862 int j = 0;
1863 struct stripe_head *head_sh = sh;
1864 int last_stripe;
1865
1866 pr_debug("%s: stripe %llu\n", __func__,
1867 (unsigned long long)sh->sector);
1868
1869 for (i = 0; i < sh->disks; i++) {
1870 if (pd_idx == i)
1871 continue;
1872 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1873 break;
1874 }
1875 if (i >= sh->disks) {
1876 atomic_inc(&sh->count);
1877 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1878 ops_complete_reconstruct(sh);
1879 return;
1880 }
1881again:
1882 count = 0;
1883 xor_srcs = to_addr_page(percpu, j);
1884 /* check if prexor is active which means only process blocks
1885 * that are part of a read-modify-write (written)
1886 */
1887 if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1888 prexor = 1;
1889 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1890 for (i = disks; i--; ) {
1891 struct r5dev *dev = &sh->dev[i];
1892 if (head_sh->dev[i].written ||
1893 test_bit(R5_InJournal, &head_sh->dev[i].flags))
1894 xor_srcs[count++] = dev->page;
1895 }
1896 } else {
1897 xor_dest = sh->dev[pd_idx].page;
1898 for (i = disks; i--; ) {
1899 struct r5dev *dev = &sh->dev[i];
1900 if (i != pd_idx)
1901 xor_srcs[count++] = dev->page;
1902 }
1903 }
1904
1905 /* 1/ if we prexor'd then the dest is reused as a source
1906 * 2/ if we did not prexor then we are redoing the parity
1907 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1908 * for the synchronous xor case
1909 */
1910 last_stripe = !head_sh->batch_head ||
1911 list_first_entry(&sh->batch_list,
1912 struct stripe_head, batch_list) == head_sh;
1913 if (last_stripe) {
1914 flags = ASYNC_TX_ACK |
1915 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1916
1917 atomic_inc(&head_sh->count);
1918 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
1919 to_addr_conv(sh, percpu, j));
1920 } else {
1921 flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
1922 init_async_submit(&submit, flags, tx, NULL, NULL,
1923 to_addr_conv(sh, percpu, j));
1924 }
1925
1926 if (unlikely(count == 1))
1927 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0,
1928 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1929 else
1930 tx = async_xor(xor_dest, xor_srcs, 0, count,
1931 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1932 if (!last_stripe) {
1933 j++;
1934 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1935 batch_list);
1936 goto again;
1937 }
1938}
1939
1940static void
1941ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1942 struct dma_async_tx_descriptor *tx)
1943{
1944 struct async_submit_ctl submit;
1945 struct page **blocks;
1946 int count, i, j = 0;
1947 struct stripe_head *head_sh = sh;
1948 int last_stripe;
1949 int synflags;
1950 unsigned long txflags;
1951
1952 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1953
1954 for (i = 0; i < sh->disks; i++) {
1955 if (sh->pd_idx == i || sh->qd_idx == i)
1956 continue;
1957 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1958 break;
1959 }
1960 if (i >= sh->disks) {
1961 atomic_inc(&sh->count);
1962 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1963 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1964 ops_complete_reconstruct(sh);
1965 return;
1966 }
1967
1968again:
1969 blocks = to_addr_page(percpu, j);
1970
1971 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1972 synflags = SYNDROME_SRC_WRITTEN;
1973 txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
1974 } else {
1975 synflags = SYNDROME_SRC_ALL;
1976 txflags = ASYNC_TX_ACK;
1977 }
1978
1979 count = set_syndrome_sources(blocks, sh, synflags);
1980 last_stripe = !head_sh->batch_head ||
1981 list_first_entry(&sh->batch_list,
1982 struct stripe_head, batch_list) == head_sh;
1983
1984 if (last_stripe) {
1985 atomic_inc(&head_sh->count);
1986 init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
1987 head_sh, to_addr_conv(sh, percpu, j));
1988 } else
1989 init_async_submit(&submit, 0, tx, NULL, NULL,
1990 to_addr_conv(sh, percpu, j));
1991 tx = async_gen_syndrome(blocks, 0, count+2,
1992 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1993 if (!last_stripe) {
1994 j++;
1995 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1996 batch_list);
1997 goto again;
1998 }
1999}
2000
2001static void ops_complete_check(void *stripe_head_ref)
2002{
2003 struct stripe_head *sh = stripe_head_ref;
2004
2005 pr_debug("%s: stripe %llu\n", __func__,
2006 (unsigned long long)sh->sector);
2007
2008 sh->check_state = check_state_check_result;
2009 set_bit(STRIPE_HANDLE, &sh->state);
2010 raid5_release_stripe(sh);
2011}
2012
2013static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
2014{
2015 int disks = sh->disks;
2016 int pd_idx = sh->pd_idx;
2017 int qd_idx = sh->qd_idx;
2018 struct page *xor_dest;
2019 struct page **xor_srcs = to_addr_page(percpu, 0);
2020 struct dma_async_tx_descriptor *tx;
2021 struct async_submit_ctl submit;
2022 int count;
2023 int i;
2024
2025 pr_debug("%s: stripe %llu\n", __func__,
2026 (unsigned long long)sh->sector);
2027
2028 BUG_ON(sh->batch_head);
2029 count = 0;
2030 xor_dest = sh->dev[pd_idx].page;
2031 xor_srcs[count++] = xor_dest;
2032 for (i = disks; i--; ) {
2033 if (i == pd_idx || i == qd_idx)
2034 continue;
2035 xor_srcs[count++] = sh->dev[i].page;
2036 }
2037
2038 init_async_submit(&submit, 0, NULL, NULL, NULL,
2039 to_addr_conv(sh, percpu, 0));
2040 tx = async_xor_val(xor_dest, xor_srcs, 0, count,
2041 RAID5_STRIPE_SIZE(sh->raid_conf),
2042 &sh->ops.zero_sum_result, &submit);
2043
2044 atomic_inc(&sh->count);
2045 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
2046 tx = async_trigger_callback(&submit);
2047}
2048
2049static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
2050{
2051 struct page **srcs = to_addr_page(percpu, 0);
2052 struct async_submit_ctl submit;
2053 int count;
2054
2055 pr_debug("%s: stripe %llu checkp: %d\n", __func__,
2056 (unsigned long long)sh->sector, checkp);
2057
2058 BUG_ON(sh->batch_head);
2059 count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL);
2060 if (!checkp)
2061 srcs[count] = NULL;
2062
2063 atomic_inc(&sh->count);
2064 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
2065 sh, to_addr_conv(sh, percpu, 0));
2066 async_syndrome_val(srcs, 0, count+2,
2067 RAID5_STRIPE_SIZE(sh->raid_conf),
2068 &sh->ops.zero_sum_result, percpu->spare_page, &submit);
2069}
2070
2071static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
2072{
2073 int overlap_clear = 0, i, disks = sh->disks;
2074 struct dma_async_tx_descriptor *tx = NULL;
2075 struct r5conf *conf = sh->raid_conf;
2076 int level = conf->level;
2077 struct raid5_percpu *percpu;
2078 unsigned long cpu;
2079
2080 cpu = get_cpu();
2081 percpu = per_cpu_ptr(conf->percpu, cpu);
2082 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
2083 ops_run_biofill(sh);
2084 overlap_clear++;
2085 }
2086
2087 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
2088 if (level < 6)
2089 tx = ops_run_compute5(sh, percpu);
2090 else {
2091 if (sh->ops.target2 < 0 || sh->ops.target < 0)
2092 tx = ops_run_compute6_1(sh, percpu);
2093 else
2094 tx = ops_run_compute6_2(sh, percpu);
2095 }
2096 /* terminate the chain if reconstruct is not set to be run */
2097 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
2098 async_tx_ack(tx);
2099 }
2100
2101 if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
2102 if (level < 6)
2103 tx = ops_run_prexor5(sh, percpu, tx);
2104 else
2105 tx = ops_run_prexor6(sh, percpu, tx);
2106 }
2107
2108 if (test_bit(STRIPE_OP_PARTIAL_PARITY, &ops_request))
2109 tx = ops_run_partial_parity(sh, percpu, tx);
2110
2111 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
2112 tx = ops_run_biodrain(sh, tx);
2113 overlap_clear++;
2114 }
2115
2116 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
2117 if (level < 6)
2118 ops_run_reconstruct5(sh, percpu, tx);
2119 else
2120 ops_run_reconstruct6(sh, percpu, tx);
2121 }
2122
2123 if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
2124 if (sh->check_state == check_state_run)
2125 ops_run_check_p(sh, percpu);
2126 else if (sh->check_state == check_state_run_q)
2127 ops_run_check_pq(sh, percpu, 0);
2128 else if (sh->check_state == check_state_run_pq)
2129 ops_run_check_pq(sh, percpu, 1);
2130 else
2131 BUG();
2132 }
2133
2134 if (overlap_clear && !sh->batch_head)
2135 for (i = disks; i--; ) {
2136 struct r5dev *dev = &sh->dev[i];
2137 if (test_and_clear_bit(R5_Overlap, &dev->flags))
2138 wake_up(&sh->raid_conf->wait_for_overlap);
2139 }
2140 put_cpu();
2141}
2142
2143static void free_stripe(struct kmem_cache *sc, struct stripe_head *sh)
2144{
2145 if (sh->ppl_page)
2146 __free_page(sh->ppl_page);
2147 kmem_cache_free(sc, sh);
2148}
2149
2150static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp,
2151 int disks, struct r5conf *conf)
2152{
2153 struct stripe_head *sh;
2154 int i;
2155
2156 sh = kmem_cache_zalloc(sc, gfp);
2157 if (sh) {
2158 spin_lock_init(&sh->stripe_lock);
2159 spin_lock_init(&sh->batch_lock);
2160 INIT_LIST_HEAD(&sh->batch_list);
2161 INIT_LIST_HEAD(&sh->lru);
2162 INIT_LIST_HEAD(&sh->r5c);
2163 INIT_LIST_HEAD(&sh->log_list);
2164 atomic_set(&sh->count, 1);
2165 sh->raid_conf = conf;
2166 sh->log_start = MaxSector;
2167 for (i = 0; i < disks; i++) {
2168 struct r5dev *dev = &sh->dev[i];
2169
2170 bio_init(&dev->req, &dev->vec, 1);
2171 bio_init(&dev->rreq, &dev->rvec, 1);
2172 }
2173
2174 if (raid5_has_ppl(conf)) {
2175 sh->ppl_page = alloc_page(gfp);
2176 if (!sh->ppl_page) {
2177 free_stripe(sc, sh);
2178 sh = NULL;
2179 }
2180 }
2181 }
2182 return sh;
2183}
2184static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
2185{
2186 struct stripe_head *sh;
2187
2188 sh = alloc_stripe(conf->slab_cache, gfp, conf->pool_size, conf);
2189 if (!sh)
2190 return 0;
2191
2192 if (grow_buffers(sh, gfp)) {
2193 shrink_buffers(sh);
2194 free_stripe(conf->slab_cache, sh);
2195 return 0;
2196 }
2197 sh->hash_lock_index =
2198 conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
2199 /* we just created an active stripe so... */
2200 atomic_inc(&conf->active_stripes);
2201
2202 raid5_release_stripe(sh);
2203 conf->max_nr_stripes++;
2204 return 1;
2205}
2206
2207static int grow_stripes(struct r5conf *conf, int num)
2208{
2209 struct kmem_cache *sc;
2210 size_t namelen = sizeof(conf->cache_name[0]);
2211 int devs = max(conf->raid_disks, conf->previous_raid_disks);
2212
2213 if (conf->mddev->gendisk)
2214 snprintf(conf->cache_name[0], namelen,
2215 "raid%d-%s", conf->level, mdname(conf->mddev));
2216 else
2217 snprintf(conf->cache_name[0], namelen,
2218 "raid%d-%p", conf->level, conf->mddev);
2219 snprintf(conf->cache_name[1], namelen, "%.27s-alt", conf->cache_name[0]);
2220
2221 conf->active_name = 0;
2222 sc = kmem_cache_create(conf->cache_name[conf->active_name],
2223 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
2224 0, 0, NULL);
2225 if (!sc)
2226 return 1;
2227 conf->slab_cache = sc;
2228 conf->pool_size = devs;
2229 while (num--)
2230 if (!grow_one_stripe(conf, GFP_KERNEL))
2231 return 1;
2232
2233 return 0;
2234}
2235
2236/**
2237 * scribble_alloc - allocate percpu scribble buffer for required size
2238 * of the scribble region
2239 * @percpu: from for_each_present_cpu() of the caller
2240 * @num: total number of disks in the array
2241 * @cnt: scribble objs count for required size of the scribble region
2242 *
2243 * The scribble buffer size must be enough to contain:
2244 * 1/ a struct page pointer for each device in the array +2
2245 * 2/ room to convert each entry in (1) to its corresponding dma
2246 * (dma_map_page()) or page (page_address()) address.
2247 *
2248 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2249 * calculate over all devices (not just the data blocks), using zeros in place
2250 * of the P and Q blocks.
2251 */
2252static int scribble_alloc(struct raid5_percpu *percpu,
2253 int num, int cnt)
2254{
2255 size_t obj_size =
2256 sizeof(struct page *) * (num+2) +
2257 sizeof(addr_conv_t) * (num+2);
2258 void *scribble;
2259
2260 /*
2261 * If here is in raid array suspend context, it is in memalloc noio
2262 * context as well, there is no potential recursive memory reclaim
2263 * I/Os with the GFP_KERNEL flag.
2264 */
2265 scribble = kvmalloc_array(cnt, obj_size, GFP_KERNEL);
2266 if (!scribble)
2267 return -ENOMEM;
2268
2269 kvfree(percpu->scribble);
2270
2271 percpu->scribble = scribble;
2272 percpu->scribble_obj_size = obj_size;
2273 return 0;
2274}
2275
2276static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2277{
2278 unsigned long cpu;
2279 int err = 0;
2280
2281 /*
2282 * Never shrink. And mddev_suspend() could deadlock if this is called
2283 * from raid5d. In that case, scribble_disks and scribble_sectors
2284 * should equal to new_disks and new_sectors
2285 */
2286 if (conf->scribble_disks >= new_disks &&
2287 conf->scribble_sectors >= new_sectors)
2288 return 0;
2289 mddev_suspend(conf->mddev);
2290 get_online_cpus();
2291
2292 for_each_present_cpu(cpu) {
2293 struct raid5_percpu *percpu;
2294
2295 percpu = per_cpu_ptr(conf->percpu, cpu);
2296 err = scribble_alloc(percpu, new_disks,
2297 new_sectors / RAID5_STRIPE_SECTORS(conf));
2298 if (err)
2299 break;
2300 }
2301
2302 put_online_cpus();
2303 mddev_resume(conf->mddev);
2304 if (!err) {
2305 conf->scribble_disks = new_disks;
2306 conf->scribble_sectors = new_sectors;
2307 }
2308 return err;
2309}
2310
2311static int resize_stripes(struct r5conf *conf, int newsize)
2312{
2313 /* Make all the stripes able to hold 'newsize' devices.
2314 * New slots in each stripe get 'page' set to a new page.
2315 *
2316 * This happens in stages:
2317 * 1/ create a new kmem_cache and allocate the required number of
2318 * stripe_heads.
2319 * 2/ gather all the old stripe_heads and transfer the pages across
2320 * to the new stripe_heads. This will have the side effect of
2321 * freezing the array as once all stripe_heads have been collected,
2322 * no IO will be possible. Old stripe heads are freed once their
2323 * pages have been transferred over, and the old kmem_cache is
2324 * freed when all stripes are done.
2325 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
2326 * we simple return a failure status - no need to clean anything up.
2327 * 4/ allocate new pages for the new slots in the new stripe_heads.
2328 * If this fails, we don't bother trying the shrink the
2329 * stripe_heads down again, we just leave them as they are.
2330 * As each stripe_head is processed the new one is released into
2331 * active service.
2332 *
2333 * Once step2 is started, we cannot afford to wait for a write,
2334 * so we use GFP_NOIO allocations.
2335 */
2336 struct stripe_head *osh, *nsh;
2337 LIST_HEAD(newstripes);
2338 struct disk_info *ndisks;
2339 int err = 0;
2340 struct kmem_cache *sc;
2341 int i;
2342 int hash, cnt;
2343
2344 md_allow_write(conf->mddev);
2345
2346 /* Step 1 */
2347 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2348 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
2349 0, 0, NULL);
2350 if (!sc)
2351 return -ENOMEM;
2352
2353 /* Need to ensure auto-resizing doesn't interfere */
2354 mutex_lock(&conf->cache_size_mutex);
2355
2356 for (i = conf->max_nr_stripes; i; i--) {
2357 nsh = alloc_stripe(sc, GFP_KERNEL, newsize, conf);
2358 if (!nsh)
2359 break;
2360
2361 list_add(&nsh->lru, &newstripes);
2362 }
2363 if (i) {
2364 /* didn't get enough, give up */
2365 while (!list_empty(&newstripes)) {
2366 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2367 list_del(&nsh->lru);
2368 free_stripe(sc, nsh);
2369 }
2370 kmem_cache_destroy(sc);
2371 mutex_unlock(&conf->cache_size_mutex);
2372 return -ENOMEM;
2373 }
2374 /* Step 2 - Must use GFP_NOIO now.
2375 * OK, we have enough stripes, start collecting inactive
2376 * stripes and copying them over
2377 */
2378 hash = 0;
2379 cnt = 0;
2380 list_for_each_entry(nsh, &newstripes, lru) {
2381 lock_device_hash_lock(conf, hash);
2382 wait_event_cmd(conf->wait_for_stripe,
2383 !list_empty(conf->inactive_list + hash),
2384 unlock_device_hash_lock(conf, hash),
2385 lock_device_hash_lock(conf, hash));
2386 osh = get_free_stripe(conf, hash);
2387 unlock_device_hash_lock(conf, hash);
2388
2389 for(i=0; i<conf->pool_size; i++) {
2390 nsh->dev[i].page = osh->dev[i].page;
2391 nsh->dev[i].orig_page = osh->dev[i].page;
2392 }
2393 nsh->hash_lock_index = hash;
2394 free_stripe(conf->slab_cache, osh);
2395 cnt++;
2396 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2397 !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2398 hash++;
2399 cnt = 0;
2400 }
2401 }
2402 kmem_cache_destroy(conf->slab_cache);
2403
2404 /* Step 3.
2405 * At this point, we are holding all the stripes so the array
2406 * is completely stalled, so now is a good time to resize
2407 * conf->disks and the scribble region
2408 */
2409 ndisks = kcalloc(newsize, sizeof(struct disk_info), GFP_NOIO);
2410 if (ndisks) {
2411 for (i = 0; i < conf->pool_size; i++)
2412 ndisks[i] = conf->disks[i];
2413
2414 for (i = conf->pool_size; i < newsize; i++) {
2415 ndisks[i].extra_page = alloc_page(GFP_NOIO);
2416 if (!ndisks[i].extra_page)
2417 err = -ENOMEM;
2418 }
2419
2420 if (err) {
2421 for (i = conf->pool_size; i < newsize; i++)
2422 if (ndisks[i].extra_page)
2423 put_page(ndisks[i].extra_page);
2424 kfree(ndisks);
2425 } else {
2426 kfree(conf->disks);
2427 conf->disks = ndisks;
2428 }
2429 } else
2430 err = -ENOMEM;
2431
2432 mutex_unlock(&conf->cache_size_mutex);
2433
2434 conf->slab_cache = sc;
2435 conf->active_name = 1-conf->active_name;
2436
2437 /* Step 4, return new stripes to service */
2438 while(!list_empty(&newstripes)) {
2439 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2440 list_del_init(&nsh->lru);
2441
2442 for (i=conf->raid_disks; i < newsize; i++)
2443 if (nsh->dev[i].page == NULL) {
2444 struct page *p = alloc_page(GFP_NOIO);
2445 nsh->dev[i].page = p;
2446 nsh->dev[i].orig_page = p;
2447 if (!p)
2448 err = -ENOMEM;
2449 }
2450 raid5_release_stripe(nsh);
2451 }
2452 /* critical section pass, GFP_NOIO no longer needed */
2453
2454 if (!err)
2455 conf->pool_size = newsize;
2456 return err;
2457}
2458
2459static int drop_one_stripe(struct r5conf *conf)
2460{
2461 struct stripe_head *sh;
2462 int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK;
2463
2464 spin_lock_irq(conf->hash_locks + hash);
2465 sh = get_free_stripe(conf, hash);
2466 spin_unlock_irq(conf->hash_locks + hash);
2467 if (!sh)
2468 return 0;
2469 BUG_ON(atomic_read(&sh->count));
2470 shrink_buffers(sh);
2471 free_stripe(conf->slab_cache, sh);
2472 atomic_dec(&conf->active_stripes);
2473 conf->max_nr_stripes--;
2474 return 1;
2475}
2476
2477static void shrink_stripes(struct r5conf *conf)
2478{
2479 while (conf->max_nr_stripes &&
2480 drop_one_stripe(conf))
2481 ;
2482
2483 kmem_cache_destroy(conf->slab_cache);
2484 conf->slab_cache = NULL;
2485}
2486
2487static void raid5_end_read_request(struct bio * bi)
2488{
2489 struct stripe_head *sh = bi->bi_private;
2490 struct r5conf *conf = sh->raid_conf;
2491 int disks = sh->disks, i;
2492 char b[BDEVNAME_SIZE];
2493 struct md_rdev *rdev = NULL;
2494 sector_t s;
2495
2496 for (i=0 ; i<disks; i++)
2497 if (bi == &sh->dev[i].req)
2498 break;
2499
2500 pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
2501 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2502 bi->bi_status);
2503 if (i == disks) {
2504 bio_reset(bi);
2505 BUG();
2506 return;
2507 }
2508 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2509 /* If replacement finished while this request was outstanding,
2510 * 'replacement' might be NULL already.
2511 * In that case it moved down to 'rdev'.
2512 * rdev is not removed until all requests are finished.
2513 */
2514 rdev = conf->disks[i].replacement;
2515 if (!rdev)
2516 rdev = conf->disks[i].rdev;
2517
2518 if (use_new_offset(conf, sh))
2519 s = sh->sector + rdev->new_data_offset;
2520 else
2521 s = sh->sector + rdev->data_offset;
2522 if (!bi->bi_status) {
2523 set_bit(R5_UPTODATE, &sh->dev[i].flags);
2524 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2525 /* Note that this cannot happen on a
2526 * replacement device. We just fail those on
2527 * any error
2528 */
2529 pr_info_ratelimited(
2530 "md/raid:%s: read error corrected (%lu sectors at %llu on %s)\n",
2531 mdname(conf->mddev), RAID5_STRIPE_SECTORS(conf),
2532 (unsigned long long)s,
2533 bdevname(rdev->bdev, b));
2534 atomic_add(RAID5_STRIPE_SECTORS(conf), &rdev->corrected_errors);
2535 clear_bit(R5_ReadError, &sh->dev[i].flags);
2536 clear_bit(R5_ReWrite, &sh->dev[i].flags);
2537 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2538 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2539
2540 if (test_bit(R5_InJournal, &sh->dev[i].flags))
2541 /*
2542 * end read for a page in journal, this
2543 * must be preparing for prexor in rmw
2544 */
2545 set_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags);
2546
2547 if (atomic_read(&rdev->read_errors))
2548 atomic_set(&rdev->read_errors, 0);
2549 } else {
2550 const char *bdn = bdevname(rdev->bdev, b);
2551 int retry = 0;
2552 int set_bad = 0;
2553
2554 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2555 if (!(bi->bi_status == BLK_STS_PROTECTION))
2556 atomic_inc(&rdev->read_errors);
2557 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2558 pr_warn_ratelimited(
2559 "md/raid:%s: read error on replacement device (sector %llu on %s).\n",
2560 mdname(conf->mddev),
2561 (unsigned long long)s,
2562 bdn);
2563 else if (conf->mddev->degraded >= conf->max_degraded) {
2564 set_bad = 1;
2565 pr_warn_ratelimited(
2566 "md/raid:%s: read error not correctable (sector %llu on %s).\n",
2567 mdname(conf->mddev),
2568 (unsigned long long)s,
2569 bdn);
2570 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2571 /* Oh, no!!! */
2572 set_bad = 1;
2573 pr_warn_ratelimited(
2574 "md/raid:%s: read error NOT corrected!! (sector %llu on %s).\n",
2575 mdname(conf->mddev),
2576 (unsigned long long)s,
2577 bdn);
2578 } else if (atomic_read(&rdev->read_errors)
2579 > conf->max_nr_stripes) {
2580 if (!test_bit(Faulty, &rdev->flags)) {
2581 pr_warn("md/raid:%s: %d read_errors > %d stripes\n",
2582 mdname(conf->mddev),
2583 atomic_read(&rdev->read_errors),
2584 conf->max_nr_stripes);
2585 pr_warn("md/raid:%s: Too many read errors, failing device %s.\n",
2586 mdname(conf->mddev), bdn);
2587 }
2588 } else
2589 retry = 1;
2590 if (set_bad && test_bit(In_sync, &rdev->flags)
2591 && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2592 retry = 1;
2593 if (retry)
2594 if (sh->qd_idx >= 0 && sh->pd_idx == i)
2595 set_bit(R5_ReadError, &sh->dev[i].flags);
2596 else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2597 set_bit(R5_ReadError, &sh->dev[i].flags);
2598 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2599 } else
2600 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2601 else {
2602 clear_bit(R5_ReadError, &sh->dev[i].flags);
2603 clear_bit(R5_ReWrite, &sh->dev[i].flags);
2604 if (!(set_bad
2605 && test_bit(In_sync, &rdev->flags)
2606 && rdev_set_badblocks(
2607 rdev, sh->sector, RAID5_STRIPE_SECTORS(conf), 0)))
2608 md_error(conf->mddev, rdev);
2609 }
2610 }
2611 rdev_dec_pending(rdev, conf->mddev);
2612 bio_reset(bi);
2613 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2614 set_bit(STRIPE_HANDLE, &sh->state);
2615 raid5_release_stripe(sh);
2616}
2617
2618static void raid5_end_write_request(struct bio *bi)
2619{
2620 struct stripe_head *sh = bi->bi_private;
2621 struct r5conf *conf = sh->raid_conf;
2622 int disks = sh->disks, i;
2623 struct md_rdev *rdev;
2624 sector_t first_bad;
2625 int bad_sectors;
2626 int replacement = 0;
2627
2628 for (i = 0 ; i < disks; i++) {
2629 if (bi == &sh->dev[i].req) {
2630 rdev = conf->disks[i].rdev;
2631 break;
2632 }
2633 if (bi == &sh->dev[i].rreq) {
2634 rdev = conf->disks[i].replacement;
2635 if (rdev)
2636 replacement = 1;
2637 else
2638 /* rdev was removed and 'replacement'
2639 * replaced it. rdev is not removed
2640 * until all requests are finished.
2641 */
2642 rdev = conf->disks[i].rdev;
2643 break;
2644 }
2645 }
2646 pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
2647 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2648 bi->bi_status);
2649 if (i == disks) {
2650 bio_reset(bi);
2651 BUG();
2652 return;
2653 }
2654
2655 if (replacement) {
2656 if (bi->bi_status)
2657 md_error(conf->mddev, rdev);
2658 else if (is_badblock(rdev, sh->sector,
2659 RAID5_STRIPE_SECTORS(conf),
2660 &first_bad, &bad_sectors))
2661 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2662 } else {
2663 if (bi->bi_status) {
2664 set_bit(STRIPE_DEGRADED, &sh->state);
2665 set_bit(WriteErrorSeen, &rdev->flags);
2666 set_bit(R5_WriteError, &sh->dev[i].flags);
2667 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2668 set_bit(MD_RECOVERY_NEEDED,
2669 &rdev->mddev->recovery);
2670 } else if (is_badblock(rdev, sh->sector,
2671 RAID5_STRIPE_SECTORS(conf),
2672 &first_bad, &bad_sectors)) {
2673 set_bit(R5_MadeGood, &sh->dev[i].flags);
2674 if (test_bit(R5_ReadError, &sh->dev[i].flags))
2675 /* That was a successful write so make
2676 * sure it looks like we already did
2677 * a re-write.
2678 */
2679 set_bit(R5_ReWrite, &sh->dev[i].flags);
2680 }
2681 }
2682 rdev_dec_pending(rdev, conf->mddev);
2683
2684 if (sh->batch_head && bi->bi_status && !replacement)
2685 set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2686
2687 bio_reset(bi);
2688 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2689 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2690 set_bit(STRIPE_HANDLE, &sh->state);
2691 raid5_release_stripe(sh);
2692
2693 if (sh->batch_head && sh != sh->batch_head)
2694 raid5_release_stripe(sh->batch_head);
2695}
2696
2697static void raid5_error(struct mddev *mddev, struct md_rdev *rdev)
2698{
2699 char b[BDEVNAME_SIZE];
2700 struct r5conf *conf = mddev->private;
2701 unsigned long flags;
2702 pr_debug("raid456: error called\n");
2703
2704 spin_lock_irqsave(&conf->device_lock, flags);
2705
2706 if (test_bit(In_sync, &rdev->flags) &&
2707 mddev->degraded == conf->max_degraded) {
2708 /*
2709 * Don't allow to achieve failed state
2710 * Don't try to recover this device
2711 */
2712 conf->recovery_disabled = mddev->recovery_disabled;
2713 spin_unlock_irqrestore(&conf->device_lock, flags);
2714 return;
2715 }
2716
2717 set_bit(Faulty, &rdev->flags);
2718 clear_bit(In_sync, &rdev->flags);
2719 mddev->degraded = raid5_calc_degraded(conf);
2720 spin_unlock_irqrestore(&conf->device_lock, flags);
2721 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2722
2723 set_bit(Blocked, &rdev->flags);
2724 set_mask_bits(&mddev->sb_flags, 0,
2725 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
2726 pr_crit("md/raid:%s: Disk failure on %s, disabling device.\n"
2727 "md/raid:%s: Operation continuing on %d devices.\n",
2728 mdname(mddev),
2729 bdevname(rdev->bdev, b),
2730 mdname(mddev),
2731 conf->raid_disks - mddev->degraded);
2732 r5c_update_on_rdev_error(mddev, rdev);
2733}
2734
2735/*
2736 * Input: a 'big' sector number,
2737 * Output: index of the data and parity disk, and the sector # in them.
2738 */
2739sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2740 int previous, int *dd_idx,
2741 struct stripe_head *sh)
2742{
2743 sector_t stripe, stripe2;
2744 sector_t chunk_number;
2745 unsigned int chunk_offset;
2746 int pd_idx, qd_idx;
2747 int ddf_layout = 0;
2748 sector_t new_sector;
2749 int algorithm = previous ? conf->prev_algo
2750 : conf->algorithm;
2751 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2752 : conf->chunk_sectors;
2753 int raid_disks = previous ? conf->previous_raid_disks
2754 : conf->raid_disks;
2755 int data_disks = raid_disks - conf->max_degraded;
2756
2757 /* First compute the information on this sector */
2758
2759 /*
2760 * Compute the chunk number and the sector offset inside the chunk
2761 */
2762 chunk_offset = sector_div(r_sector, sectors_per_chunk);
2763 chunk_number = r_sector;
2764
2765 /*
2766 * Compute the stripe number
2767 */
2768 stripe = chunk_number;
2769 *dd_idx = sector_div(stripe, data_disks);
2770 stripe2 = stripe;
2771 /*
2772 * Select the parity disk based on the user selected algorithm.
2773 */
2774 pd_idx = qd_idx = -1;
2775 switch(conf->level) {
2776 case 4:
2777 pd_idx = data_disks;
2778 break;
2779 case 5:
2780 switch (algorithm) {
2781 case ALGORITHM_LEFT_ASYMMETRIC:
2782 pd_idx = data_disks - sector_div(stripe2, raid_disks);
2783 if (*dd_idx >= pd_idx)
2784 (*dd_idx)++;
2785 break;
2786 case ALGORITHM_RIGHT_ASYMMETRIC:
2787 pd_idx = sector_div(stripe2, raid_disks);
2788 if (*dd_idx >= pd_idx)
2789 (*dd_idx)++;
2790 break;
2791 case ALGORITHM_LEFT_SYMMETRIC:
2792 pd_idx = data_disks - sector_div(stripe2, raid_disks);
2793 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2794 break;
2795 case ALGORITHM_RIGHT_SYMMETRIC:
2796 pd_idx = sector_div(stripe2, raid_disks);
2797 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2798 break;
2799 case ALGORITHM_PARITY_0:
2800 pd_idx = 0;
2801 (*dd_idx)++;
2802 break;
2803 case ALGORITHM_PARITY_N:
2804 pd_idx = data_disks;
2805 break;
2806 default:
2807 BUG();
2808 }
2809 break;
2810 case 6:
2811
2812 switch (algorithm) {
2813 case ALGORITHM_LEFT_ASYMMETRIC:
2814 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2815 qd_idx = pd_idx + 1;
2816 if (pd_idx == raid_disks-1) {
2817 (*dd_idx)++; /* Q D D D P */
2818 qd_idx = 0;
2819 } else if (*dd_idx >= pd_idx)
2820 (*dd_idx) += 2; /* D D P Q D */
2821 break;
2822 case ALGORITHM_RIGHT_ASYMMETRIC:
2823 pd_idx = sector_div(stripe2, raid_disks);
2824 qd_idx = pd_idx + 1;
2825 if (pd_idx == raid_disks-1) {
2826 (*dd_idx)++; /* Q D D D P */
2827 qd_idx = 0;
2828 } else if (*dd_idx >= pd_idx)
2829 (*dd_idx) += 2; /* D D P Q D */
2830 break;
2831 case ALGORITHM_LEFT_SYMMETRIC:
2832 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2833 qd_idx = (pd_idx + 1) % raid_disks;
2834 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2835 break;
2836 case ALGORITHM_RIGHT_SYMMETRIC:
2837 pd_idx = sector_div(stripe2, raid_disks);
2838 qd_idx = (pd_idx + 1) % raid_disks;
2839 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2840 break;
2841
2842 case ALGORITHM_PARITY_0:
2843 pd_idx = 0;
2844 qd_idx = 1;
2845 (*dd_idx) += 2;
2846 break;
2847 case ALGORITHM_PARITY_N:
2848 pd_idx = data_disks;
2849 qd_idx = data_disks + 1;
2850 break;
2851
2852 case ALGORITHM_ROTATING_ZERO_RESTART:
2853 /* Exactly the same as RIGHT_ASYMMETRIC, but or
2854 * of blocks for computing Q is different.
2855 */
2856 pd_idx = sector_div(stripe2, raid_disks);
2857 qd_idx = pd_idx + 1;
2858 if (pd_idx == raid_disks-1) {
2859 (*dd_idx)++; /* Q D D D P */
2860 qd_idx = 0;
2861 } else if (*dd_idx >= pd_idx)
2862 (*dd_idx) += 2; /* D D P Q D */
2863 ddf_layout = 1;
2864 break;
2865
2866 case ALGORITHM_ROTATING_N_RESTART:
2867 /* Same a left_asymmetric, by first stripe is
2868 * D D D P Q rather than
2869 * Q D D D P
2870 */
2871 stripe2 += 1;
2872 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2873 qd_idx = pd_idx + 1;
2874 if (pd_idx == raid_disks-1) {
2875 (*dd_idx)++; /* Q D D D P */
2876 qd_idx = 0;
2877 } else if (*dd_idx >= pd_idx)
2878 (*dd_idx) += 2; /* D D P Q D */
2879 ddf_layout = 1;
2880 break;
2881
2882 case ALGORITHM_ROTATING_N_CONTINUE:
2883 /* Same as left_symmetric but Q is before P */
2884 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2885 qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2886 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2887 ddf_layout = 1;
2888 break;
2889
2890 case ALGORITHM_LEFT_ASYMMETRIC_6:
2891 /* RAID5 left_asymmetric, with Q on last device */
2892 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2893 if (*dd_idx >= pd_idx)
2894 (*dd_idx)++;
2895 qd_idx = raid_disks - 1;
2896 break;
2897
2898 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2899 pd_idx = sector_div(stripe2, raid_disks-1);
2900 if (*dd_idx >= pd_idx)
2901 (*dd_idx)++;
2902 qd_idx = raid_disks - 1;
2903 break;
2904
2905 case ALGORITHM_LEFT_SYMMETRIC_6:
2906 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2907 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2908 qd_idx = raid_disks - 1;
2909 break;
2910
2911 case ALGORITHM_RIGHT_SYMMETRIC_6:
2912 pd_idx = sector_div(stripe2, raid_disks-1);
2913 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2914 qd_idx = raid_disks - 1;
2915 break;
2916
2917 case ALGORITHM_PARITY_0_6:
2918 pd_idx = 0;
2919 (*dd_idx)++;
2920 qd_idx = raid_disks - 1;
2921 break;
2922
2923 default:
2924 BUG();
2925 }
2926 break;
2927 }
2928
2929 if (sh) {
2930 sh->pd_idx = pd_idx;
2931 sh->qd_idx = qd_idx;
2932 sh->ddf_layout = ddf_layout;
2933 }
2934 /*
2935 * Finally, compute the new sector number
2936 */
2937 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2938 return new_sector;
2939}
2940
2941sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous)
2942{
2943 struct r5conf *conf = sh->raid_conf;
2944 int raid_disks = sh->disks;
2945 int data_disks = raid_disks - conf->max_degraded;
2946 sector_t new_sector = sh->sector, check;
2947 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2948 : conf->chunk_sectors;
2949 int algorithm = previous ? conf->prev_algo
2950 : conf->algorithm;
2951 sector_t stripe;
2952 int chunk_offset;
2953 sector_t chunk_number;
2954 int dummy1, dd_idx = i;
2955 sector_t r_sector;
2956 struct stripe_head sh2;
2957
2958 chunk_offset = sector_div(new_sector, sectors_per_chunk);
2959 stripe = new_sector;
2960
2961 if (i == sh->pd_idx)
2962 return 0;
2963 switch(conf->level) {
2964 case 4: break;
2965 case 5:
2966 switch (algorithm) {
2967 case ALGORITHM_LEFT_ASYMMETRIC:
2968 case ALGORITHM_RIGHT_ASYMMETRIC:
2969 if (i > sh->pd_idx)
2970 i--;
2971 break;
2972 case ALGORITHM_LEFT_SYMMETRIC:
2973 case ALGORITHM_RIGHT_SYMMETRIC:
2974 if (i < sh->pd_idx)
2975 i += raid_disks;
2976 i -= (sh->pd_idx + 1);
2977 break;
2978 case ALGORITHM_PARITY_0:
2979 i -= 1;
2980 break;
2981 case ALGORITHM_PARITY_N:
2982 break;
2983 default:
2984 BUG();
2985 }
2986 break;
2987 case 6:
2988 if (i == sh->qd_idx)
2989 return 0; /* It is the Q disk */
2990 switch (algorithm) {
2991 case ALGORITHM_LEFT_ASYMMETRIC:
2992 case ALGORITHM_RIGHT_ASYMMETRIC:
2993 case ALGORITHM_ROTATING_ZERO_RESTART:
2994 case ALGORITHM_ROTATING_N_RESTART:
2995 if (sh->pd_idx == raid_disks-1)
2996 i--; /* Q D D D P */
2997 else if (i > sh->pd_idx)
2998 i -= 2; /* D D P Q D */
2999 break;
3000 case ALGORITHM_LEFT_SYMMETRIC:
3001 case ALGORITHM_RIGHT_SYMMETRIC:
3002 if (sh->pd_idx == raid_disks-1)
3003 i--; /* Q D D D P */
3004 else {
3005 /* D D P Q D */
3006 if (i < sh->pd_idx)
3007 i += raid_disks;
3008 i -= (sh->pd_idx + 2);
3009 }
3010 break;
3011 case ALGORITHM_PARITY_0:
3012 i -= 2;
3013 break;
3014 case ALGORITHM_PARITY_N:
3015 break;
3016 case ALGORITHM_ROTATING_N_CONTINUE:
3017 /* Like left_symmetric, but P is before Q */
3018 if (sh->pd_idx == 0)
3019 i--; /* P D D D Q */
3020 else {
3021 /* D D Q P D */
3022 if (i < sh->pd_idx)
3023 i += raid_disks;
3024 i -= (sh->pd_idx + 1);
3025 }
3026 break;
3027 case ALGORITHM_LEFT_ASYMMETRIC_6:
3028 case ALGORITHM_RIGHT_ASYMMETRIC_6:
3029 if (i > sh->pd_idx)
3030 i--;
3031 break;
3032 case ALGORITHM_LEFT_SYMMETRIC_6:
3033 case ALGORITHM_RIGHT_SYMMETRIC_6:
3034 if (i < sh->pd_idx)
3035 i += data_disks + 1;
3036 i -= (sh->pd_idx + 1);
3037 break;
3038 case ALGORITHM_PARITY_0_6:
3039 i -= 1;
3040 break;
3041 default:
3042 BUG();
3043 }
3044 break;
3045 }
3046
3047 chunk_number = stripe * data_disks + i;
3048 r_sector = chunk_number * sectors_per_chunk + chunk_offset;
3049
3050 check = raid5_compute_sector(conf, r_sector,
3051 previous, &dummy1, &sh2);
3052 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
3053 || sh2.qd_idx != sh->qd_idx) {
3054 pr_warn("md/raid:%s: compute_blocknr: map not correct\n",
3055 mdname(conf->mddev));
3056 return 0;
3057 }
3058 return r_sector;
3059}
3060
3061/*
3062 * There are cases where we want handle_stripe_dirtying() and
3063 * schedule_reconstruction() to delay towrite to some dev of a stripe.
3064 *
3065 * This function checks whether we want to delay the towrite. Specifically,
3066 * we delay the towrite when:
3067 *
3068 * 1. degraded stripe has a non-overwrite to the missing dev, AND this
3069 * stripe has data in journal (for other devices).
3070 *
3071 * In this case, when reading data for the non-overwrite dev, it is
3072 * necessary to handle complex rmw of write back cache (prexor with
3073 * orig_page, and xor with page). To keep read path simple, we would
3074 * like to flush data in journal to RAID disks first, so complex rmw
3075 * is handled in the write patch (handle_stripe_dirtying).
3076 *
3077 * 2. when journal space is critical (R5C_LOG_CRITICAL=1)
3078 *
3079 * It is important to be able to flush all stripes in raid5-cache.
3080 * Therefore, we need reserve some space on the journal device for
3081 * these flushes. If flush operation includes pending writes to the
3082 * stripe, we need to reserve (conf->raid_disk + 1) pages per stripe
3083 * for the flush out. If we exclude these pending writes from flush
3084 * operation, we only need (conf->max_degraded + 1) pages per stripe.
3085 * Therefore, excluding pending writes in these cases enables more
3086 * efficient use of the journal device.
3087 *
3088 * Note: To make sure the stripe makes progress, we only delay
3089 * towrite for stripes with data already in journal (injournal > 0).
3090 * When LOG_CRITICAL, stripes with injournal == 0 will be sent to
3091 * no_space_stripes list.
3092 *
3093 * 3. during journal failure
3094 * In journal failure, we try to flush all cached data to raid disks
3095 * based on data in stripe cache. The array is read-only to upper
3096 * layers, so we would skip all pending writes.
3097 *
3098 */
3099static inline bool delay_towrite(struct r5conf *conf,
3100 struct r5dev *dev,
3101 struct stripe_head_state *s)
3102{
3103 /* case 1 above */
3104 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3105 !test_bit(R5_Insync, &dev->flags) && s->injournal)
3106 return true;
3107 /* case 2 above */
3108 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
3109 s->injournal > 0)
3110 return true;
3111 /* case 3 above */
3112 if (s->log_failed && s->injournal)
3113 return true;
3114 return false;
3115}
3116
3117static void
3118schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
3119 int rcw, int expand)
3120{
3121 int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
3122 struct r5conf *conf = sh->raid_conf;
3123 int level = conf->level;
3124
3125 if (rcw) {
3126 /*
3127 * In some cases, handle_stripe_dirtying initially decided to
3128 * run rmw and allocates extra page for prexor. However, rcw is
3129 * cheaper later on. We need to free the extra page now,
3130 * because we won't be able to do that in ops_complete_prexor().
3131 */
3132 r5c_release_extra_page(sh);
3133
3134 for (i = disks; i--; ) {
3135 struct r5dev *dev = &sh->dev[i];
3136
3137 if (dev->towrite && !delay_towrite(conf, dev, s)) {
3138 set_bit(R5_LOCKED, &dev->flags);
3139 set_bit(R5_Wantdrain, &dev->flags);
3140 if (!expand)
3141 clear_bit(R5_UPTODATE, &dev->flags);
3142 s->locked++;
3143 } else if (test_bit(R5_InJournal, &dev->flags)) {
3144 set_bit(R5_LOCKED, &dev->flags);
3145 s->locked++;
3146 }
3147 }
3148 /* if we are not expanding this is a proper write request, and
3149 * there will be bios with new data to be drained into the
3150 * stripe cache
3151 */
3152 if (!expand) {
3153 if (!s->locked)
3154 /* False alarm, nothing to do */
3155 return;
3156 sh->reconstruct_state = reconstruct_state_drain_run;
3157 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3158 } else
3159 sh->reconstruct_state = reconstruct_state_run;
3160
3161 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3162
3163 if (s->locked + conf->max_degraded == disks)
3164 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
3165 atomic_inc(&conf->pending_full_writes);
3166 } else {
3167 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
3168 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
3169 BUG_ON(level == 6 &&
3170 (!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
3171 test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
3172
3173 for (i = disks; i--; ) {
3174 struct r5dev *dev = &sh->dev[i];
3175 if (i == pd_idx || i == qd_idx)
3176 continue;
3177
3178 if (dev->towrite &&
3179 (test_bit(R5_UPTODATE, &dev->flags) ||
3180 test_bit(R5_Wantcompute, &dev->flags))) {
3181 set_bit(R5_Wantdrain, &dev->flags);
3182 set_bit(R5_LOCKED, &dev->flags);
3183 clear_bit(R5_UPTODATE, &dev->flags);
3184 s->locked++;
3185 } else if (test_bit(R5_InJournal, &dev->flags)) {
3186 set_bit(R5_LOCKED, &dev->flags);
3187 s->locked++;
3188 }
3189 }
3190 if (!s->locked)
3191 /* False alarm - nothing to do */
3192 return;
3193 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
3194 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
3195 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3196 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3197 }
3198
3199 /* keep the parity disk(s) locked while asynchronous operations
3200 * are in flight
3201 */
3202 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
3203 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3204 s->locked++;
3205
3206 if (level == 6) {
3207 int qd_idx = sh->qd_idx;
3208 struct r5dev *dev = &sh->dev[qd_idx];
3209
3210 set_bit(R5_LOCKED, &dev->flags);
3211 clear_bit(R5_UPTODATE, &dev->flags);
3212 s->locked++;
3213 }
3214
3215 if (raid5_has_ppl(sh->raid_conf) && sh->ppl_page &&
3216 test_bit(STRIPE_OP_BIODRAIN, &s->ops_request) &&
3217 !test_bit(STRIPE_FULL_WRITE, &sh->state) &&
3218 test_bit(R5_Insync, &sh->dev[pd_idx].flags))
3219 set_bit(STRIPE_OP_PARTIAL_PARITY, &s->ops_request);
3220
3221 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
3222 __func__, (unsigned long long)sh->sector,
3223 s->locked, s->ops_request);
3224}
3225
3226/*
3227 * Each stripe/dev can have one or more bion attached.
3228 * toread/towrite point to the first in a chain.
3229 * The bi_next chain must be in order.
3230 */
3231static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx,
3232 int forwrite, int previous)
3233{
3234 struct bio **bip;
3235 struct r5conf *conf = sh->raid_conf;
3236 int firstwrite=0;
3237
3238 pr_debug("adding bi b#%llu to stripe s#%llu\n",
3239 (unsigned long long)bi->bi_iter.bi_sector,
3240 (unsigned long long)sh->sector);
3241
3242 spin_lock_irq(&sh->stripe_lock);
3243 sh->dev[dd_idx].write_hint = bi->bi_write_hint;
3244 /* Don't allow new IO added to stripes in batch list */
3245 if (sh->batch_head)
3246 goto overlap;
3247 if (forwrite) {
3248 bip = &sh->dev[dd_idx].towrite;
3249 if (*bip == NULL)
3250 firstwrite = 1;
3251 } else
3252 bip = &sh->dev[dd_idx].toread;
3253 while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
3254 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
3255 goto overlap;
3256 bip = & (*bip)->bi_next;
3257 }
3258 if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
3259 goto overlap;
3260
3261 if (forwrite && raid5_has_ppl(conf)) {
3262 /*
3263 * With PPL only writes to consecutive data chunks within a
3264 * stripe are allowed because for a single stripe_head we can
3265 * only have one PPL entry at a time, which describes one data
3266 * range. Not really an overlap, but wait_for_overlap can be
3267 * used to handle this.
3268 */
3269 sector_t sector;
3270 sector_t first = 0;
3271 sector_t last = 0;
3272 int count = 0;
3273 int i;
3274
3275 for (i = 0; i < sh->disks; i++) {
3276 if (i != sh->pd_idx &&
3277 (i == dd_idx || sh->dev[i].towrite)) {
3278 sector = sh->dev[i].sector;
3279 if (count == 0 || sector < first)
3280 first = sector;
3281 if (sector > last)
3282 last = sector;
3283 count++;
3284 }
3285 }
3286
3287 if (first + conf->chunk_sectors * (count - 1) != last)
3288 goto overlap;
3289 }
3290
3291 if (!forwrite || previous)
3292 clear_bit(STRIPE_BATCH_READY, &sh->state);
3293
3294 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
3295 if (*bip)
3296 bi->bi_next = *bip;
3297 *bip = bi;
3298 bio_inc_remaining(bi);
3299 md_write_inc(conf->mddev, bi);
3300
3301 if (forwrite) {
3302 /* check if page is covered */
3303 sector_t sector = sh->dev[dd_idx].sector;
3304 for (bi=sh->dev[dd_idx].towrite;
3305 sector < sh->dev[dd_idx].sector + RAID5_STRIPE_SECTORS(conf) &&
3306 bi && bi->bi_iter.bi_sector <= sector;
3307 bi = r5_next_bio(conf, bi, sh->dev[dd_idx].sector)) {
3308 if (bio_end_sector(bi) >= sector)
3309 sector = bio_end_sector(bi);
3310 }
3311 if (sector >= sh->dev[dd_idx].sector + RAID5_STRIPE_SECTORS(conf))
3312 if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
3313 sh->overwrite_disks++;
3314 }
3315
3316 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
3317 (unsigned long long)(*bip)->bi_iter.bi_sector,
3318 (unsigned long long)sh->sector, dd_idx);
3319
3320 if (conf->mddev->bitmap && firstwrite) {
3321 /* Cannot hold spinlock over bitmap_startwrite,
3322 * but must ensure this isn't added to a batch until
3323 * we have added to the bitmap and set bm_seq.
3324 * So set STRIPE_BITMAP_PENDING to prevent
3325 * batching.
3326 * If multiple add_stripe_bio() calls race here they
3327 * much all set STRIPE_BITMAP_PENDING. So only the first one
3328 * to complete "bitmap_startwrite" gets to set
3329 * STRIPE_BIT_DELAY. This is important as once a stripe
3330 * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3331 * any more.
3332 */
3333 set_bit(STRIPE_BITMAP_PENDING, &sh->state);
3334 spin_unlock_irq(&sh->stripe_lock);
3335 md_bitmap_startwrite(conf->mddev->bitmap, sh->sector,
3336 RAID5_STRIPE_SECTORS(conf), 0);
3337 spin_lock_irq(&sh->stripe_lock);
3338 clear_bit(STRIPE_BITMAP_PENDING, &sh->state);
3339 if (!sh->batch_head) {
3340 sh->bm_seq = conf->seq_flush+1;
3341 set_bit(STRIPE_BIT_DELAY, &sh->state);
3342 }
3343 }
3344 spin_unlock_irq(&sh->stripe_lock);
3345
3346 if (stripe_can_batch(sh))
3347 stripe_add_to_batch_list(conf, sh);
3348 return 1;
3349
3350 overlap:
3351 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
3352 spin_unlock_irq(&sh->stripe_lock);
3353 return 0;
3354}
3355
3356static void end_reshape(struct r5conf *conf);
3357
3358static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
3359 struct stripe_head *sh)
3360{
3361 int sectors_per_chunk =
3362 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
3363 int dd_idx;
3364 int chunk_offset = sector_div(stripe, sectors_per_chunk);
3365 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
3366
3367 raid5_compute_sector(conf,
3368 stripe * (disks - conf->max_degraded)
3369 *sectors_per_chunk + chunk_offset,
3370 previous,
3371 &dd_idx, sh);
3372}
3373
3374static void
3375handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
3376 struct stripe_head_state *s, int disks)
3377{
3378 int i;
3379 BUG_ON(sh->batch_head);
3380 for (i = disks; i--; ) {
3381 struct bio *bi;
3382 int bitmap_end = 0;
3383
3384 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3385 struct md_rdev *rdev;
3386 rcu_read_lock();
3387 rdev = rcu_dereference(conf->disks[i].rdev);
3388 if (rdev && test_bit(In_sync, &rdev->flags) &&
3389 !test_bit(Faulty, &rdev->flags))
3390 atomic_inc(&rdev->nr_pending);
3391 else
3392 rdev = NULL;
3393 rcu_read_unlock();
3394 if (rdev) {
3395 if (!rdev_set_badblocks(
3396 rdev,
3397 sh->sector,
3398 RAID5_STRIPE_SECTORS(conf), 0))
3399 md_error(conf->mddev, rdev);
3400 rdev_dec_pending(rdev, conf->mddev);
3401 }
3402 }
3403 spin_lock_irq(&sh->stripe_lock);
3404 /* fail all writes first */
3405 bi = sh->dev[i].towrite;
3406 sh->dev[i].towrite = NULL;
3407 sh->overwrite_disks = 0;
3408 spin_unlock_irq(&sh->stripe_lock);
3409 if (bi)
3410 bitmap_end = 1;
3411
3412 log_stripe_write_finished(sh);
3413
3414 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3415 wake_up(&conf->wait_for_overlap);
3416
3417 while (bi && bi->bi_iter.bi_sector <
3418 sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) {
3419 struct bio *nextbi = r5_next_bio(conf, bi, sh->dev[i].sector);
3420
3421 md_write_end(conf->mddev);
3422 bio_io_error(bi);
3423 bi = nextbi;
3424 }
3425 if (bitmap_end)
3426 md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3427 RAID5_STRIPE_SECTORS(conf), 0, 0);
3428 bitmap_end = 0;
3429 /* and fail all 'written' */
3430 bi = sh->dev[i].written;
3431 sh->dev[i].written = NULL;
3432 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3433 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3434 sh->dev[i].page = sh->dev[i].orig_page;
3435 }
3436
3437 if (bi) bitmap_end = 1;
3438 while (bi && bi->bi_iter.bi_sector <
3439 sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) {
3440 struct bio *bi2 = r5_next_bio(conf, bi, sh->dev[i].sector);
3441
3442 md_write_end(conf->mddev);
3443 bio_io_error(bi);
3444 bi = bi2;
3445 }
3446
3447 /* fail any reads if this device is non-operational and
3448 * the data has not reached the cache yet.
3449 */
3450 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
3451 s->failed > conf->max_degraded &&
3452 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3453 test_bit(R5_ReadError, &sh->dev[i].flags))) {
3454 spin_lock_irq(&sh->stripe_lock);
3455 bi = sh->dev[i].toread;
3456 sh->dev[i].toread = NULL;
3457 spin_unlock_irq(&sh->stripe_lock);
3458 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3459 wake_up(&conf->wait_for_overlap);
3460 if (bi)
3461 s->to_read--;
3462 while (bi && bi->bi_iter.bi_sector <
3463 sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) {
3464 struct bio *nextbi =
3465 r5_next_bio(conf, bi, sh->dev[i].sector);
3466
3467 bio_io_error(bi);
3468 bi = nextbi;
3469 }
3470 }
3471 if (bitmap_end)
3472 md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3473 RAID5_STRIPE_SECTORS(conf), 0, 0);
3474 /* If we were in the middle of a write the parity block might
3475 * still be locked - so just clear all R5_LOCKED flags
3476 */
3477 clear_bit(R5_LOCKED, &sh->dev[i].flags);
3478 }
3479 s->to_write = 0;
3480 s->written = 0;
3481
3482 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3483 if (atomic_dec_and_test(&conf->pending_full_writes))
3484 md_wakeup_thread(conf->mddev->thread);
3485}
3486
3487static void
3488handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
3489 struct stripe_head_state *s)
3490{
3491 int abort = 0;
3492 int i;
3493
3494 BUG_ON(sh->batch_head);
3495 clear_bit(STRIPE_SYNCING, &sh->state);
3496 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3497 wake_up(&conf->wait_for_overlap);
3498 s->syncing = 0;
3499 s->replacing = 0;
3500 /* There is nothing more to do for sync/check/repair.
3501 * Don't even need to abort as that is handled elsewhere
3502 * if needed, and not always wanted e.g. if there is a known
3503 * bad block here.
3504 * For recover/replace we need to record a bad block on all
3505 * non-sync devices, or abort the recovery
3506 */
3507 if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3508 /* During recovery devices cannot be removed, so
3509 * locking and refcounting of rdevs is not needed
3510 */
3511 rcu_read_lock();
3512 for (i = 0; i < conf->raid_disks; i++) {
3513 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
3514 if (rdev
3515 && !test_bit(Faulty, &rdev->flags)
3516 && !test_bit(In_sync, &rdev->flags)
3517 && !rdev_set_badblocks(rdev, sh->sector,
3518 RAID5_STRIPE_SECTORS(conf), 0))
3519 abort = 1;
3520 rdev = rcu_dereference(conf->disks[i].replacement);
3521 if (rdev
3522 && !test_bit(Faulty, &rdev->flags)
3523 && !test_bit(In_sync, &rdev->flags)
3524 && !rdev_set_badblocks(rdev, sh->sector,
3525 RAID5_STRIPE_SECTORS(conf), 0))
3526 abort = 1;
3527 }
3528 rcu_read_unlock();
3529 if (abort)
3530 conf->recovery_disabled =
3531 conf->mddev->recovery_disabled;
3532 }
3533 md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), !abort);
3534}
3535
3536static int want_replace(struct stripe_head *sh, int disk_idx)
3537{
3538 struct md_rdev *rdev;
3539 int rv = 0;
3540
3541 rcu_read_lock();
3542 rdev = rcu_dereference(sh->raid_conf->disks[disk_idx].replacement);
3543 if (rdev
3544 && !test_bit(Faulty, &rdev->flags)
3545 && !test_bit(In_sync, &rdev->flags)
3546 && (rdev->recovery_offset <= sh->sector
3547 || rdev->mddev->recovery_cp <= sh->sector))
3548 rv = 1;
3549 rcu_read_unlock();
3550 return rv;
3551}
3552
3553static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3554 int disk_idx, int disks)
3555{
3556 struct r5dev *dev = &sh->dev[disk_idx];
3557 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3558 &sh->dev[s->failed_num[1]] };
3559 int i;
3560 bool force_rcw = (sh->raid_conf->rmw_level == PARITY_DISABLE_RMW);
3561
3562
3563 if (test_bit(R5_LOCKED, &dev->flags) ||
3564 test_bit(R5_UPTODATE, &dev->flags))
3565 /* No point reading this as we already have it or have
3566 * decided to get it.
3567 */
3568 return 0;
3569
3570 if (dev->toread ||
3571 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3572 /* We need this block to directly satisfy a request */
3573 return 1;
3574
3575 if (s->syncing || s->expanding ||
3576 (s->replacing && want_replace(sh, disk_idx)))
3577 /* When syncing, or expanding we read everything.
3578 * When replacing, we need the replaced block.
3579 */
3580 return 1;
3581
3582 if ((s->failed >= 1 && fdev[0]->toread) ||
3583 (s->failed >= 2 && fdev[1]->toread))
3584 /* If we want to read from a failed device, then
3585 * we need to actually read every other device.
3586 */
3587 return 1;
3588
3589 /* Sometimes neither read-modify-write nor reconstruct-write
3590 * cycles can work. In those cases we read every block we
3591 * can. Then the parity-update is certain to have enough to
3592 * work with.
3593 * This can only be a problem when we need to write something,
3594 * and some device has failed. If either of those tests
3595 * fail we need look no further.
3596 */
3597 if (!s->failed || !s->to_write)
3598 return 0;
3599
3600 if (test_bit(R5_Insync, &dev->flags) &&
3601 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3602 /* Pre-reads at not permitted until after short delay
3603 * to gather multiple requests. However if this
3604 * device is no Insync, the block could only be computed
3605 * and there is no need to delay that.
3606 */
3607 return 0;
3608
3609 for (i = 0; i < s->failed && i < 2; i++) {
3610 if (fdev[i]->towrite &&
3611 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3612 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3613 /* If we have a partial write to a failed
3614 * device, then we will need to reconstruct
3615 * the content of that device, so all other
3616 * devices must be read.
3617 */
3618 return 1;
3619
3620 if (s->failed >= 2 &&
3621 (fdev[i]->towrite ||
3622 s->failed_num[i] == sh->pd_idx ||
3623 s->failed_num[i] == sh->qd_idx) &&
3624 !test_bit(R5_UPTODATE, &fdev[i]->flags))
3625 /* In max degraded raid6, If the failed disk is P, Q,
3626 * or we want to read the failed disk, we need to do
3627 * reconstruct-write.
3628 */
3629 force_rcw = true;
3630 }
3631
3632 /* If we are forced to do a reconstruct-write, because parity
3633 * cannot be trusted and we are currently recovering it, there
3634 * is extra need to be careful.
3635 * If one of the devices that we would need to read, because
3636 * it is not being overwritten (and maybe not written at all)
3637 * is missing/faulty, then we need to read everything we can.
3638 */
3639 if (!force_rcw &&
3640 sh->sector < sh->raid_conf->mddev->recovery_cp)
3641 /* reconstruct-write isn't being forced */
3642 return 0;
3643 for (i = 0; i < s->failed && i < 2; i++) {
3644 if (s->failed_num[i] != sh->pd_idx &&
3645 s->failed_num[i] != sh->qd_idx &&
3646 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3647 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3648 return 1;
3649 }
3650
3651 return 0;
3652}
3653
3654/* fetch_block - checks the given member device to see if its data needs
3655 * to be read or computed to satisfy a request.
3656 *
3657 * Returns 1 when no more member devices need to be checked, otherwise returns
3658 * 0 to tell the loop in handle_stripe_fill to continue
3659 */
3660static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3661 int disk_idx, int disks)
3662{
3663 struct r5dev *dev = &sh->dev[disk_idx];
3664
3665 /* is the data in this block needed, and can we get it? */
3666 if (need_this_block(sh, s, disk_idx, disks)) {
3667 /* we would like to get this block, possibly by computing it,
3668 * otherwise read it if the backing disk is insync
3669 */
3670 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3671 BUG_ON(test_bit(R5_Wantread, &dev->flags));
3672 BUG_ON(sh->batch_head);
3673
3674 /*
3675 * In the raid6 case if the only non-uptodate disk is P
3676 * then we already trusted P to compute the other failed
3677 * drives. It is safe to compute rather than re-read P.
3678 * In other cases we only compute blocks from failed
3679 * devices, otherwise check/repair might fail to detect
3680 * a real inconsistency.
3681 */
3682
3683 if ((s->uptodate == disks - 1) &&
3684 ((sh->qd_idx >= 0 && sh->pd_idx == disk_idx) ||
3685 (s->failed && (disk_idx == s->failed_num[0] ||
3686 disk_idx == s->failed_num[1])))) {
3687 /* have disk failed, and we're requested to fetch it;
3688 * do compute it
3689 */
3690 pr_debug("Computing stripe %llu block %d\n",
3691 (unsigned long long)sh->sector, disk_idx);
3692 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3693 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3694 set_bit(R5_Wantcompute, &dev->flags);
3695 sh->ops.target = disk_idx;
3696 sh->ops.target2 = -1; /* no 2nd target */
3697 s->req_compute = 1;
3698 /* Careful: from this point on 'uptodate' is in the eye
3699 * of raid_run_ops which services 'compute' operations
3700 * before writes. R5_Wantcompute flags a block that will
3701 * be R5_UPTODATE by the time it is needed for a
3702 * subsequent operation.
3703 */
3704 s->uptodate++;
3705 return 1;
3706 } else if (s->uptodate == disks-2 && s->failed >= 2) {
3707 /* Computing 2-failure is *very* expensive; only
3708 * do it if failed >= 2
3709 */
3710 int other;
3711 for (other = disks; other--; ) {
3712 if (other == disk_idx)
3713 continue;
3714 if (!test_bit(R5_UPTODATE,
3715 &sh->dev[other].flags))
3716 break;
3717 }
3718 BUG_ON(other < 0);
3719 pr_debug("Computing stripe %llu blocks %d,%d\n",
3720 (unsigned long long)sh->sector,
3721 disk_idx, other);
3722 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3723 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3724 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3725 set_bit(R5_Wantcompute, &sh->dev[other].flags);
3726 sh->ops.target = disk_idx;
3727 sh->ops.target2 = other;
3728 s->uptodate += 2;
3729 s->req_compute = 1;
3730 return 1;
3731 } else if (test_bit(R5_Insync, &dev->flags)) {
3732 set_bit(R5_LOCKED, &dev->flags);
3733 set_bit(R5_Wantread, &dev->flags);
3734 s->locked++;
3735 pr_debug("Reading block %d (sync=%d)\n",
3736 disk_idx, s->syncing);
3737 }
3738 }
3739
3740 return 0;
3741}
3742
3743/*
3744 * handle_stripe_fill - read or compute data to satisfy pending requests.
3745 */
3746static void handle_stripe_fill(struct stripe_head *sh,
3747 struct stripe_head_state *s,
3748 int disks)
3749{
3750 int i;
3751
3752 /* look for blocks to read/compute, skip this if a compute
3753 * is already in flight, or if the stripe contents are in the
3754 * midst of changing due to a write
3755 */
3756 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3757 !sh->reconstruct_state) {
3758
3759 /*
3760 * For degraded stripe with data in journal, do not handle
3761 * read requests yet, instead, flush the stripe to raid
3762 * disks first, this avoids handling complex rmw of write
3763 * back cache (prexor with orig_page, and then xor with
3764 * page) in the read path
3765 */
3766 if (s->injournal && s->failed) {
3767 if (test_bit(STRIPE_R5C_CACHING, &sh->state))
3768 r5c_make_stripe_write_out(sh);
3769 goto out;
3770 }
3771
3772 for (i = disks; i--; )
3773 if (fetch_block(sh, s, i, disks))
3774 break;
3775 }
3776out:
3777 set_bit(STRIPE_HANDLE, &sh->state);
3778}
3779
3780static void break_stripe_batch_list(struct stripe_head *head_sh,
3781 unsigned long handle_flags);
3782/* handle_stripe_clean_event
3783 * any written block on an uptodate or failed drive can be returned.
3784 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3785 * never LOCKED, so we don't need to test 'failed' directly.
3786 */
3787static void handle_stripe_clean_event(struct r5conf *conf,
3788 struct stripe_head *sh, int disks)
3789{
3790 int i;
3791 struct r5dev *dev;
3792 int discard_pending = 0;
3793 struct stripe_head *head_sh = sh;
3794 bool do_endio = false;
3795
3796 for (i = disks; i--; )
3797 if (sh->dev[i].written) {
3798 dev = &sh->dev[i];
3799 if (!test_bit(R5_LOCKED, &dev->flags) &&
3800 (test_bit(R5_UPTODATE, &dev->flags) ||
3801 test_bit(R5_Discard, &dev->flags) ||
3802 test_bit(R5_SkipCopy, &dev->flags))) {
3803 /* We can return any write requests */
3804 struct bio *wbi, *wbi2;
3805 pr_debug("Return write for disc %d\n", i);
3806 if (test_and_clear_bit(R5_Discard, &dev->flags))
3807 clear_bit(R5_UPTODATE, &dev->flags);
3808 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3809 WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
3810 }
3811 do_endio = true;
3812
3813returnbi:
3814 dev->page = dev->orig_page;
3815 wbi = dev->written;
3816 dev->written = NULL;
3817 while (wbi && wbi->bi_iter.bi_sector <
3818 dev->sector + RAID5_STRIPE_SECTORS(conf)) {
3819 wbi2 = r5_next_bio(conf, wbi, dev->sector);
3820 md_write_end(conf->mddev);
3821 bio_endio(wbi);
3822 wbi = wbi2;
3823 }
3824 md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3825 RAID5_STRIPE_SECTORS(conf),
3826 !test_bit(STRIPE_DEGRADED, &sh->state),
3827 0);
3828 if (head_sh->batch_head) {
3829 sh = list_first_entry(&sh->batch_list,
3830 struct stripe_head,
3831 batch_list);
3832 if (sh != head_sh) {
3833 dev = &sh->dev[i];
3834 goto returnbi;
3835 }
3836 }
3837 sh = head_sh;
3838 dev = &sh->dev[i];
3839 } else if (test_bit(R5_Discard, &dev->flags))
3840 discard_pending = 1;
3841 }
3842
3843 log_stripe_write_finished(sh);
3844
3845 if (!discard_pending &&
3846 test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
3847 int hash;
3848 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3849 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3850 if (sh->qd_idx >= 0) {
3851 clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3852 clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3853 }
3854 /* now that discard is done we can proceed with any sync */
3855 clear_bit(STRIPE_DISCARD, &sh->state);
3856 /*
3857 * SCSI discard will change some bio fields and the stripe has
3858 * no updated data, so remove it from hash list and the stripe
3859 * will be reinitialized
3860 */
3861unhash:
3862 hash = sh->hash_lock_index;
3863 spin_lock_irq(conf->hash_locks + hash);
3864 remove_hash(sh);
3865 spin_unlock_irq(conf->hash_locks + hash);
3866 if (head_sh->batch_head) {
3867 sh = list_first_entry(&sh->batch_list,
3868 struct stripe_head, batch_list);
3869 if (sh != head_sh)
3870 goto unhash;
3871 }
3872 sh = head_sh;
3873
3874 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3875 set_bit(STRIPE_HANDLE, &sh->state);
3876
3877 }
3878
3879 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3880 if (atomic_dec_and_test(&conf->pending_full_writes))
3881 md_wakeup_thread(conf->mddev->thread);
3882
3883 if (head_sh->batch_head && do_endio)
3884 break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
3885}
3886
3887/*
3888 * For RMW in write back cache, we need extra page in prexor to store the
3889 * old data. This page is stored in dev->orig_page.
3890 *
3891 * This function checks whether we have data for prexor. The exact logic
3892 * is:
3893 * R5_UPTODATE && (!R5_InJournal || R5_OrigPageUPTDODATE)
3894 */
3895static inline bool uptodate_for_rmw(struct r5dev *dev)
3896{
3897 return (test_bit(R5_UPTODATE, &dev->flags)) &&
3898 (!test_bit(R5_InJournal, &dev->flags) ||
3899 test_bit(R5_OrigPageUPTDODATE, &dev->flags));
3900}
3901
3902static int handle_stripe_dirtying(struct r5conf *conf,
3903 struct stripe_head *sh,
3904 struct stripe_head_state *s,
3905 int disks)
3906{
3907 int rmw = 0, rcw = 0, i;
3908 sector_t recovery_cp = conf->mddev->recovery_cp;
3909
3910 /* Check whether resync is now happening or should start.
3911 * If yes, then the array is dirty (after unclean shutdown or
3912 * initial creation), so parity in some stripes might be inconsistent.
3913 * In this case, we need to always do reconstruct-write, to ensure
3914 * that in case of drive failure or read-error correction, we
3915 * generate correct data from the parity.
3916 */
3917 if (conf->rmw_level == PARITY_DISABLE_RMW ||
3918 (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
3919 s->failed == 0)) {
3920 /* Calculate the real rcw later - for now make it
3921 * look like rcw is cheaper
3922 */
3923 rcw = 1; rmw = 2;
3924 pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
3925 conf->rmw_level, (unsigned long long)recovery_cp,
3926 (unsigned long long)sh->sector);
3927 } else for (i = disks; i--; ) {
3928 /* would I have to read this buffer for read_modify_write */
3929 struct r5dev *dev = &sh->dev[i];
3930 if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
3931 i == sh->pd_idx || i == sh->qd_idx ||
3932 test_bit(R5_InJournal, &dev->flags)) &&
3933 !test_bit(R5_LOCKED, &dev->flags) &&
3934 !(uptodate_for_rmw(dev) ||
3935 test_bit(R5_Wantcompute, &dev->flags))) {
3936 if (test_bit(R5_Insync, &dev->flags))
3937 rmw++;
3938 else
3939 rmw += 2*disks; /* cannot read it */
3940 }
3941 /* Would I have to read this buffer for reconstruct_write */
3942 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3943 i != sh->pd_idx && i != sh->qd_idx &&
3944 !test_bit(R5_LOCKED, &dev->flags) &&
3945 !(test_bit(R5_UPTODATE, &dev->flags) ||
3946 test_bit(R5_Wantcompute, &dev->flags))) {
3947 if (test_bit(R5_Insync, &dev->flags))
3948 rcw++;
3949 else
3950 rcw += 2*disks;
3951 }
3952 }
3953
3954 pr_debug("for sector %llu state 0x%lx, rmw=%d rcw=%d\n",
3955 (unsigned long long)sh->sector, sh->state, rmw, rcw);
3956 set_bit(STRIPE_HANDLE, &sh->state);
3957 if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_PREFER_RMW)) && rmw > 0) {
3958 /* prefer read-modify-write, but need to get some data */
3959 if (conf->mddev->queue)
3960 blk_add_trace_msg(conf->mddev->queue,
3961 "raid5 rmw %llu %d",
3962 (unsigned long long)sh->sector, rmw);
3963 for (i = disks; i--; ) {
3964 struct r5dev *dev = &sh->dev[i];
3965 if (test_bit(R5_InJournal, &dev->flags) &&
3966 dev->page == dev->orig_page &&
3967 !test_bit(R5_LOCKED, &sh->dev[sh->pd_idx].flags)) {
3968 /* alloc page for prexor */
3969 struct page *p = alloc_page(GFP_NOIO);
3970
3971 if (p) {
3972 dev->orig_page = p;
3973 continue;
3974 }
3975
3976 /*
3977 * alloc_page() failed, try use
3978 * disk_info->extra_page
3979 */
3980 if (!test_and_set_bit(R5C_EXTRA_PAGE_IN_USE,
3981 &conf->cache_state)) {
3982 r5c_use_extra_page(sh);
3983 break;
3984 }
3985
3986 /* extra_page in use, add to delayed_list */
3987 set_bit(STRIPE_DELAYED, &sh->state);
3988 s->waiting_extra_page = 1;
3989 return -EAGAIN;
3990 }
3991 }
3992
3993 for (i = disks; i--; ) {
3994 struct r5dev *dev = &sh->dev[i];
3995 if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
3996 i == sh->pd_idx || i == sh->qd_idx ||
3997 test_bit(R5_InJournal, &dev->flags)) &&
3998 !test_bit(R5_LOCKED, &dev->flags) &&
3999 !(uptodate_for_rmw(dev) ||
4000 test_bit(R5_Wantcompute, &dev->flags)) &&
4001 test_bit(R5_Insync, &dev->flags)) {
4002 if (test_bit(STRIPE_PREREAD_ACTIVE,
4003 &sh->state)) {
4004 pr_debug("Read_old block %d for r-m-w\n",
4005 i);
4006 set_bit(R5_LOCKED, &dev->flags);
4007 set_bit(R5_Wantread, &dev->flags);
4008 s->locked++;
4009 } else
4010 set_bit(STRIPE_DELAYED, &sh->state);
4011 }
4012 }
4013 }
4014 if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_PREFER_RMW)) && rcw > 0) {
4015 /* want reconstruct write, but need to get some data */
4016 int qread =0;
4017 rcw = 0;
4018 for (i = disks; i--; ) {
4019 struct r5dev *dev = &sh->dev[i];
4020 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
4021 i != sh->pd_idx && i != sh->qd_idx &&
4022 !test_bit(R5_LOCKED, &dev->flags) &&
4023 !(test_bit(R5_UPTODATE, &dev->flags) ||
4024 test_bit(R5_Wantcompute, &dev->flags))) {
4025 rcw++;
4026 if (test_bit(R5_Insync, &dev->flags) &&
4027 test_bit(STRIPE_PREREAD_ACTIVE,
4028 &sh->state)) {
4029 pr_debug("Read_old block "
4030 "%d for Reconstruct\n", i);
4031 set_bit(R5_LOCKED, &dev->flags);
4032 set_bit(R5_Wantread, &dev->flags);
4033 s->locked++;
4034 qread++;
4035 } else
4036 set_bit(STRIPE_DELAYED, &sh->state);
4037 }
4038 }
4039 if (rcw && conf->mddev->queue)
4040 blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
4041 (unsigned long long)sh->sector,
4042 rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
4043 }
4044
4045 if (rcw > disks && rmw > disks &&
4046 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4047 set_bit(STRIPE_DELAYED, &sh->state);
4048
4049 /* now if nothing is locked, and if we have enough data,
4050 * we can start a write request
4051 */
4052 /* since handle_stripe can be called at any time we need to handle the
4053 * case where a compute block operation has been submitted and then a
4054 * subsequent call wants to start a write request. raid_run_ops only
4055 * handles the case where compute block and reconstruct are requested
4056 * simultaneously. If this is not the case then new writes need to be
4057 * held off until the compute completes.
4058 */
4059 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
4060 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
4061 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
4062 schedule_reconstruction(sh, s, rcw == 0, 0);
4063 return 0;
4064}
4065
4066static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
4067 struct stripe_head_state *s, int disks)
4068{
4069 struct r5dev *dev = NULL;
4070
4071 BUG_ON(sh->batch_head);
4072 set_bit(STRIPE_HANDLE, &sh->state);
4073
4074 switch (sh->check_state) {
4075 case check_state_idle:
4076 /* start a new check operation if there are no failures */
4077 if (s->failed == 0) {
4078 BUG_ON(s->uptodate != disks);
4079 sh->check_state = check_state_run;
4080 set_bit(STRIPE_OP_CHECK, &s->ops_request);
4081 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
4082 s->uptodate--;
4083 break;
4084 }
4085 dev = &sh->dev[s->failed_num[0]];
4086 fallthrough;
4087 case check_state_compute_result:
4088 sh->check_state = check_state_idle;
4089 if (!dev)
4090 dev = &sh->dev[sh->pd_idx];
4091
4092 /* check that a write has not made the stripe insync */
4093 if (test_bit(STRIPE_INSYNC, &sh->state))
4094 break;
4095
4096 /* either failed parity check, or recovery is happening */
4097 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
4098 BUG_ON(s->uptodate != disks);
4099
4100 set_bit(R5_LOCKED, &dev->flags);
4101 s->locked++;
4102 set_bit(R5_Wantwrite, &dev->flags);
4103
4104 clear_bit(STRIPE_DEGRADED, &sh->state);
4105 set_bit(STRIPE_INSYNC, &sh->state);
4106 break;
4107 case check_state_run:
4108 break; /* we will be called again upon completion */
4109 case check_state_check_result:
4110 sh->check_state = check_state_idle;
4111
4112 /* if a failure occurred during the check operation, leave
4113 * STRIPE_INSYNC not set and let the stripe be handled again
4114 */
4115 if (s->failed)
4116 break;
4117
4118 /* handle a successful check operation, if parity is correct
4119 * we are done. Otherwise update the mismatch count and repair
4120 * parity if !MD_RECOVERY_CHECK
4121 */
4122 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
4123 /* parity is correct (on disc,
4124 * not in buffer any more)
4125 */
4126 set_bit(STRIPE_INSYNC, &sh->state);
4127 else {
4128 atomic64_add(RAID5_STRIPE_SECTORS(conf), &conf->mddev->resync_mismatches);
4129 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
4130 /* don't try to repair!! */
4131 set_bit(STRIPE_INSYNC, &sh->state);
4132 pr_warn_ratelimited("%s: mismatch sector in range "
4133 "%llu-%llu\n", mdname(conf->mddev),
4134 (unsigned long long) sh->sector,
4135 (unsigned long long) sh->sector +
4136 RAID5_STRIPE_SECTORS(conf));
4137 } else {
4138 sh->check_state = check_state_compute_run;
4139 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4140 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4141 set_bit(R5_Wantcompute,
4142 &sh->dev[sh->pd_idx].flags);
4143 sh->ops.target = sh->pd_idx;
4144 sh->ops.target2 = -1;
4145 s->uptodate++;
4146 }
4147 }
4148 break;
4149 case check_state_compute_run:
4150 break;
4151 default:
4152 pr_err("%s: unknown check_state: %d sector: %llu\n",
4153 __func__, sh->check_state,
4154 (unsigned long long) sh->sector);
4155 BUG();
4156 }
4157}
4158
4159static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
4160 struct stripe_head_state *s,
4161 int disks)
4162{
4163 int pd_idx = sh->pd_idx;
4164 int qd_idx = sh->qd_idx;
4165 struct r5dev *dev;
4166
4167 BUG_ON(sh->batch_head);
4168 set_bit(STRIPE_HANDLE, &sh->state);
4169
4170 BUG_ON(s->failed > 2);
4171
4172 /* Want to check and possibly repair P and Q.
4173 * However there could be one 'failed' device, in which
4174 * case we can only check one of them, possibly using the
4175 * other to generate missing data
4176 */
4177
4178 switch (sh->check_state) {
4179 case check_state_idle:
4180 /* start a new check operation if there are < 2 failures */
4181 if (s->failed == s->q_failed) {
4182 /* The only possible failed device holds Q, so it
4183 * makes sense to check P (If anything else were failed,
4184 * we would have used P to recreate it).
4185 */
4186 sh->check_state = check_state_run;
4187 }
4188 if (!s->q_failed && s->failed < 2) {
4189 /* Q is not failed, and we didn't use it to generate
4190 * anything, so it makes sense to check it
4191 */
4192 if (sh->check_state == check_state_run)
4193 sh->check_state = check_state_run_pq;
4194 else
4195 sh->check_state = check_state_run_q;
4196 }
4197
4198 /* discard potentially stale zero_sum_result */
4199 sh->ops.zero_sum_result = 0;
4200
4201 if (sh->check_state == check_state_run) {
4202 /* async_xor_zero_sum destroys the contents of P */
4203 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
4204 s->uptodate--;
4205 }
4206 if (sh->check_state >= check_state_run &&
4207 sh->check_state <= check_state_run_pq) {
4208 /* async_syndrome_zero_sum preserves P and Q, so
4209 * no need to mark them !uptodate here
4210 */
4211 set_bit(STRIPE_OP_CHECK, &s->ops_request);
4212 break;
4213 }
4214
4215 /* we have 2-disk failure */
4216 BUG_ON(s->failed != 2);
4217 fallthrough;
4218 case check_state_compute_result:
4219 sh->check_state = check_state_idle;
4220
4221 /* check that a write has not made the stripe insync */
4222 if (test_bit(STRIPE_INSYNC, &sh->state))
4223 break;
4224
4225 /* now write out any block on a failed drive,
4226 * or P or Q if they were recomputed
4227 */
4228 dev = NULL;
4229 if (s->failed == 2) {
4230 dev = &sh->dev[s->failed_num[1]];
4231 s->locked++;
4232 set_bit(R5_LOCKED, &dev->flags);
4233 set_bit(R5_Wantwrite, &dev->flags);
4234 }
4235 if (s->failed >= 1) {
4236 dev = &sh->dev[s->failed_num[0]];
4237 s->locked++;
4238 set_bit(R5_LOCKED, &dev->flags);
4239 set_bit(R5_Wantwrite, &dev->flags);
4240 }
4241 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4242 dev = &sh->dev[pd_idx];
4243 s->locked++;
4244 set_bit(R5_LOCKED, &dev->flags);
4245 set_bit(R5_Wantwrite, &dev->flags);
4246 }
4247 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4248 dev = &sh->dev[qd_idx];
4249 s->locked++;
4250 set_bit(R5_LOCKED, &dev->flags);
4251 set_bit(R5_Wantwrite, &dev->flags);
4252 }
4253 if (WARN_ONCE(dev && !test_bit(R5_UPTODATE, &dev->flags),
4254 "%s: disk%td not up to date\n",
4255 mdname(conf->mddev),
4256 dev - (struct r5dev *) &sh->dev)) {
4257 clear_bit(R5_LOCKED, &dev->flags);
4258 clear_bit(R5_Wantwrite, &dev->flags);
4259 s->locked--;
4260 }
4261 clear_bit(STRIPE_DEGRADED, &sh->state);
4262
4263 set_bit(STRIPE_INSYNC, &sh->state);
4264 break;
4265 case check_state_run:
4266 case check_state_run_q:
4267 case check_state_run_pq:
4268 break; /* we will be called again upon completion */
4269 case check_state_check_result:
4270 sh->check_state = check_state_idle;
4271
4272 /* handle a successful check operation, if parity is correct
4273 * we are done. Otherwise update the mismatch count and repair
4274 * parity if !MD_RECOVERY_CHECK
4275 */
4276 if (sh->ops.zero_sum_result == 0) {
4277 /* both parities are correct */
4278 if (!s->failed)
4279 set_bit(STRIPE_INSYNC, &sh->state);
4280 else {
4281 /* in contrast to the raid5 case we can validate
4282 * parity, but still have a failure to write
4283 * back
4284 */
4285 sh->check_state = check_state_compute_result;
4286 /* Returning at this point means that we may go
4287 * off and bring p and/or q uptodate again so
4288 * we make sure to check zero_sum_result again
4289 * to verify if p or q need writeback
4290 */
4291 }
4292 } else {
4293 atomic64_add(RAID5_STRIPE_SECTORS(conf), &conf->mddev->resync_mismatches);
4294 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
4295 /* don't try to repair!! */
4296 set_bit(STRIPE_INSYNC, &sh->state);
4297 pr_warn_ratelimited("%s: mismatch sector in range "
4298 "%llu-%llu\n", mdname(conf->mddev),
4299 (unsigned long long) sh->sector,
4300 (unsigned long long) sh->sector +
4301 RAID5_STRIPE_SECTORS(conf));
4302 } else {
4303 int *target = &sh->ops.target;
4304
4305 sh->ops.target = -1;
4306 sh->ops.target2 = -1;
4307 sh->check_state = check_state_compute_run;
4308 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4309 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4310 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4311 set_bit(R5_Wantcompute,
4312 &sh->dev[pd_idx].flags);
4313 *target = pd_idx;
4314 target = &sh->ops.target2;
4315 s->uptodate++;
4316 }
4317 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4318 set_bit(R5_Wantcompute,
4319 &sh->dev[qd_idx].flags);
4320 *target = qd_idx;
4321 s->uptodate++;
4322 }
4323 }
4324 }
4325 break;
4326 case check_state_compute_run:
4327 break;
4328 default:
4329 pr_warn("%s: unknown check_state: %d sector: %llu\n",
4330 __func__, sh->check_state,
4331 (unsigned long long) sh->sector);
4332 BUG();
4333 }
4334}
4335
4336static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
4337{
4338 int i;
4339
4340 /* We have read all the blocks in this stripe and now we need to
4341 * copy some of them into a target stripe for expand.
4342 */
4343 struct dma_async_tx_descriptor *tx = NULL;
4344 BUG_ON(sh->batch_head);
4345 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4346 for (i = 0; i < sh->disks; i++)
4347 if (i != sh->pd_idx && i != sh->qd_idx) {
4348 int dd_idx, j;
4349 struct stripe_head *sh2;
4350 struct async_submit_ctl submit;
4351
4352 sector_t bn = raid5_compute_blocknr(sh, i, 1);
4353 sector_t s = raid5_compute_sector(conf, bn, 0,
4354 &dd_idx, NULL);
4355 sh2 = raid5_get_active_stripe(conf, s, 0, 1, 1);
4356 if (sh2 == NULL)
4357 /* so far only the early blocks of this stripe
4358 * have been requested. When later blocks
4359 * get requested, we will try again
4360 */
4361 continue;
4362 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
4363 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
4364 /* must have already done this block */
4365 raid5_release_stripe(sh2);
4366 continue;
4367 }
4368
4369 /* place all the copies on one channel */
4370 init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
4371 tx = async_memcpy(sh2->dev[dd_idx].page,
4372 sh->dev[i].page, 0, 0, RAID5_STRIPE_SIZE(conf),
4373 &submit);
4374
4375 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
4376 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
4377 for (j = 0; j < conf->raid_disks; j++)
4378 if (j != sh2->pd_idx &&
4379 j != sh2->qd_idx &&
4380 !test_bit(R5_Expanded, &sh2->dev[j].flags))
4381 break;
4382 if (j == conf->raid_disks) {
4383 set_bit(STRIPE_EXPAND_READY, &sh2->state);
4384 set_bit(STRIPE_HANDLE, &sh2->state);
4385 }
4386 raid5_release_stripe(sh2);
4387
4388 }
4389 /* done submitting copies, wait for them to complete */
4390 async_tx_quiesce(&tx);
4391}
4392
4393/*
4394 * handle_stripe - do things to a stripe.
4395 *
4396 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
4397 * state of various bits to see what needs to be done.
4398 * Possible results:
4399 * return some read requests which now have data
4400 * return some write requests which are safely on storage
4401 * schedule a read on some buffers
4402 * schedule a write of some buffers
4403 * return confirmation of parity correctness
4404 *
4405 */
4406
4407static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
4408{
4409 struct r5conf *conf = sh->raid_conf;
4410 int disks = sh->disks;
4411 struct r5dev *dev;
4412 int i;
4413 int do_recovery = 0;
4414
4415 memset(s, 0, sizeof(*s));
4416
4417 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
4418 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
4419 s->failed_num[0] = -1;
4420 s->failed_num[1] = -1;
4421 s->log_failed = r5l_log_disk_error(conf);
4422
4423 /* Now to look around and see what can be done */
4424 rcu_read_lock();
4425 for (i=disks; i--; ) {
4426 struct md_rdev *rdev;
4427 sector_t first_bad;
4428 int bad_sectors;
4429 int is_bad = 0;
4430
4431 dev = &sh->dev[i];
4432
4433 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
4434 i, dev->flags,
4435 dev->toread, dev->towrite, dev->written);
4436 /* maybe we can reply to a read
4437 *
4438 * new wantfill requests are only permitted while
4439 * ops_complete_biofill is guaranteed to be inactive
4440 */
4441 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4442 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4443 set_bit(R5_Wantfill, &dev->flags);
4444
4445 /* now count some things */
4446 if (test_bit(R5_LOCKED, &dev->flags))
4447 s->locked++;
4448 if (test_bit(R5_UPTODATE, &dev->flags))
4449 s->uptodate++;
4450 if (test_bit(R5_Wantcompute, &dev->flags)) {
4451 s->compute++;
4452 BUG_ON(s->compute > 2);
4453 }
4454
4455 if (test_bit(R5_Wantfill, &dev->flags))
4456 s->to_fill++;
4457 else if (dev->toread)
4458 s->to_read++;
4459 if (dev->towrite) {
4460 s->to_write++;
4461 if (!test_bit(R5_OVERWRITE, &dev->flags))
4462 s->non_overwrite++;
4463 }
4464 if (dev->written)
4465 s->written++;
4466 /* Prefer to use the replacement for reads, but only
4467 * if it is recovered enough and has no bad blocks.
4468 */
4469 rdev = rcu_dereference(conf->disks[i].replacement);
4470 if (rdev && !test_bit(Faulty, &rdev->flags) &&
4471 rdev->recovery_offset >= sh->sector + RAID5_STRIPE_SECTORS(conf) &&
4472 !is_badblock(rdev, sh->sector, RAID5_STRIPE_SECTORS(conf),
4473 &first_bad, &bad_sectors))
4474 set_bit(R5_ReadRepl, &dev->flags);
4475 else {
4476 if (rdev && !test_bit(Faulty, &rdev->flags))
4477 set_bit(R5_NeedReplace, &dev->flags);
4478 else
4479 clear_bit(R5_NeedReplace, &dev->flags);
4480 rdev = rcu_dereference(conf->disks[i].rdev);
4481 clear_bit(R5_ReadRepl, &dev->flags);
4482 }
4483 if (rdev && test_bit(Faulty, &rdev->flags))
4484 rdev = NULL;
4485 if (rdev) {
4486 is_bad = is_badblock(rdev, sh->sector, RAID5_STRIPE_SECTORS(conf),
4487 &first_bad, &bad_sectors);
4488 if (s->blocked_rdev == NULL
4489 && (test_bit(Blocked, &rdev->flags)
4490 || is_bad < 0)) {
4491 if (is_bad < 0)
4492 set_bit(BlockedBadBlocks,
4493 &rdev->flags);
4494 s->blocked_rdev = rdev;
4495 atomic_inc(&rdev->nr_pending);
4496 }
4497 }
4498 clear_bit(R5_Insync, &dev->flags);
4499 if (!rdev)
4500 /* Not in-sync */;
4501 else if (is_bad) {
4502 /* also not in-sync */
4503 if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4504 test_bit(R5_UPTODATE, &dev->flags)) {
4505 /* treat as in-sync, but with a read error
4506 * which we can now try to correct
4507 */
4508 set_bit(R5_Insync, &dev->flags);
4509 set_bit(R5_ReadError, &dev->flags);
4510 }
4511 } else if (test_bit(In_sync, &rdev->flags))
4512 set_bit(R5_Insync, &dev->flags);
4513 else if (sh->sector + RAID5_STRIPE_SECTORS(conf) <= rdev->recovery_offset)
4514 /* in sync if before recovery_offset */
4515 set_bit(R5_Insync, &dev->flags);
4516 else if (test_bit(R5_UPTODATE, &dev->flags) &&
4517 test_bit(R5_Expanded, &dev->flags))
4518 /* If we've reshaped into here, we assume it is Insync.
4519 * We will shortly update recovery_offset to make
4520 * it official.
4521 */
4522 set_bit(R5_Insync, &dev->flags);
4523
4524 if (test_bit(R5_WriteError, &dev->flags)) {
4525 /* This flag does not apply to '.replacement'
4526 * only to .rdev, so make sure to check that*/
4527 struct md_rdev *rdev2 = rcu_dereference(
4528 conf->disks[i].rdev);
4529 if (rdev2 == rdev)
4530 clear_bit(R5_Insync, &dev->flags);
4531 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4532 s->handle_bad_blocks = 1;
4533 atomic_inc(&rdev2->nr_pending);
4534 } else
4535 clear_bit(R5_WriteError, &dev->flags);
4536 }
4537 if (test_bit(R5_MadeGood, &dev->flags)) {
4538 /* This flag does not apply to '.replacement'
4539 * only to .rdev, so make sure to check that*/
4540 struct md_rdev *rdev2 = rcu_dereference(
4541 conf->disks[i].rdev);
4542 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4543 s->handle_bad_blocks = 1;
4544 atomic_inc(&rdev2->nr_pending);
4545 } else
4546 clear_bit(R5_MadeGood, &dev->flags);
4547 }
4548 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4549 struct md_rdev *rdev2 = rcu_dereference(
4550 conf->disks[i].replacement);
4551 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4552 s->handle_bad_blocks = 1;
4553 atomic_inc(&rdev2->nr_pending);
4554 } else
4555 clear_bit(R5_MadeGoodRepl, &dev->flags);
4556 }
4557 if (!test_bit(R5_Insync, &dev->flags)) {
4558 /* The ReadError flag will just be confusing now */
4559 clear_bit(R5_ReadError, &dev->flags);
4560 clear_bit(R5_ReWrite, &dev->flags);
4561 }
4562 if (test_bit(R5_ReadError, &dev->flags))
4563 clear_bit(R5_Insync, &dev->flags);
4564 if (!test_bit(R5_Insync, &dev->flags)) {
4565 if (s->failed < 2)
4566 s->failed_num[s->failed] = i;
4567 s->failed++;
4568 if (rdev && !test_bit(Faulty, &rdev->flags))
4569 do_recovery = 1;
4570 else if (!rdev) {
4571 rdev = rcu_dereference(
4572 conf->disks[i].replacement);
4573 if (rdev && !test_bit(Faulty, &rdev->flags))
4574 do_recovery = 1;
4575 }
4576 }
4577
4578 if (test_bit(R5_InJournal, &dev->flags))
4579 s->injournal++;
4580 if (test_bit(R5_InJournal, &dev->flags) && dev->written)
4581 s->just_cached++;
4582 }
4583 if (test_bit(STRIPE_SYNCING, &sh->state)) {
4584 /* If there is a failed device being replaced,
4585 * we must be recovering.
4586 * else if we are after recovery_cp, we must be syncing
4587 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4588 * else we can only be replacing
4589 * sync and recovery both need to read all devices, and so
4590 * use the same flag.
4591 */
4592 if (do_recovery ||
4593 sh->sector >= conf->mddev->recovery_cp ||
4594 test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
4595 s->syncing = 1;
4596 else
4597 s->replacing = 1;
4598 }
4599 rcu_read_unlock();
4600}
4601
4602/*
4603 * Return '1' if this is a member of batch, or '0' if it is a lone stripe or
4604 * a head which can now be handled.
4605 */
4606static int clear_batch_ready(struct stripe_head *sh)
4607{
4608 struct stripe_head *tmp;
4609 if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
4610 return (sh->batch_head && sh->batch_head != sh);
4611 spin_lock(&sh->stripe_lock);
4612 if (!sh->batch_head) {
4613 spin_unlock(&sh->stripe_lock);
4614 return 0;
4615 }
4616
4617 /*
4618 * this stripe could be added to a batch list before we check
4619 * BATCH_READY, skips it
4620 */
4621 if (sh->batch_head != sh) {
4622 spin_unlock(&sh->stripe_lock);
4623 return 1;
4624 }
4625 spin_lock(&sh->batch_lock);
4626 list_for_each_entry(tmp, &sh->batch_list, batch_list)
4627 clear_bit(STRIPE_BATCH_READY, &tmp->state);
4628 spin_unlock(&sh->batch_lock);
4629 spin_unlock(&sh->stripe_lock);
4630
4631 /*
4632 * BATCH_READY is cleared, no new stripes can be added.
4633 * batch_list can be accessed without lock
4634 */
4635 return 0;
4636}
4637
4638static void break_stripe_batch_list(struct stripe_head *head_sh,
4639 unsigned long handle_flags)
4640{
4641 struct stripe_head *sh, *next;
4642 int i;
4643 int do_wakeup = 0;
4644
4645 list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4646
4647 list_del_init(&sh->batch_list);
4648
4649 WARN_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
4650 (1 << STRIPE_SYNCING) |
4651 (1 << STRIPE_REPLACED) |
4652 (1 << STRIPE_DELAYED) |
4653 (1 << STRIPE_BIT_DELAY) |
4654 (1 << STRIPE_FULL_WRITE) |
4655 (1 << STRIPE_BIOFILL_RUN) |
4656 (1 << STRIPE_COMPUTE_RUN) |
4657 (1 << STRIPE_DISCARD) |
4658 (1 << STRIPE_BATCH_READY) |
4659 (1 << STRIPE_BATCH_ERR) |
4660 (1 << STRIPE_BITMAP_PENDING)),
4661 "stripe state: %lx\n", sh->state);
4662 WARN_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
4663 (1 << STRIPE_REPLACED)),
4664 "head stripe state: %lx\n", head_sh->state);
4665
4666 set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
4667 (1 << STRIPE_PREREAD_ACTIVE) |
4668 (1 << STRIPE_DEGRADED) |
4669 (1 << STRIPE_ON_UNPLUG_LIST)),
4670 head_sh->state & (1 << STRIPE_INSYNC));
4671
4672 sh->check_state = head_sh->check_state;
4673 sh->reconstruct_state = head_sh->reconstruct_state;
4674 spin_lock_irq(&sh->stripe_lock);
4675 sh->batch_head = NULL;
4676 spin_unlock_irq(&sh->stripe_lock);
4677 for (i = 0; i < sh->disks; i++) {
4678 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
4679 do_wakeup = 1;
4680 sh->dev[i].flags = head_sh->dev[i].flags &
4681 (~((1 << R5_WriteError) | (1 << R5_Overlap)));
4682 }
4683 if (handle_flags == 0 ||
4684 sh->state & handle_flags)
4685 set_bit(STRIPE_HANDLE, &sh->state);
4686 raid5_release_stripe(sh);
4687 }
4688 spin_lock_irq(&head_sh->stripe_lock);
4689 head_sh->batch_head = NULL;
4690 spin_unlock_irq(&head_sh->stripe_lock);
4691 for (i = 0; i < head_sh->disks; i++)
4692 if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
4693 do_wakeup = 1;
4694 if (head_sh->state & handle_flags)
4695 set_bit(STRIPE_HANDLE, &head_sh->state);
4696
4697 if (do_wakeup)
4698 wake_up(&head_sh->raid_conf->wait_for_overlap);
4699}
4700
4701static void handle_stripe(struct stripe_head *sh)
4702{
4703 struct stripe_head_state s;
4704 struct r5conf *conf = sh->raid_conf;
4705 int i;
4706 int prexor;
4707 int disks = sh->disks;
4708 struct r5dev *pdev, *qdev;
4709
4710 clear_bit(STRIPE_HANDLE, &sh->state);
4711
4712 /*
4713 * handle_stripe should not continue handle the batched stripe, only
4714 * the head of batch list or lone stripe can continue. Otherwise we
4715 * could see break_stripe_batch_list warns about the STRIPE_ACTIVE
4716 * is set for the batched stripe.
4717 */
4718 if (clear_batch_ready(sh))
4719 return;
4720
4721 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
4722 /* already being handled, ensure it gets handled
4723 * again when current action finishes */
4724 set_bit(STRIPE_HANDLE, &sh->state);
4725 return;
4726 }
4727
4728 if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
4729 break_stripe_batch_list(sh, 0);
4730
4731 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
4732 spin_lock(&sh->stripe_lock);
4733 /*
4734 * Cannot process 'sync' concurrently with 'discard'.
4735 * Flush data in r5cache before 'sync'.
4736 */
4737 if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) &&
4738 !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) &&
4739 !test_bit(STRIPE_DISCARD, &sh->state) &&
4740 test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4741 set_bit(STRIPE_SYNCING, &sh->state);
4742 clear_bit(STRIPE_INSYNC, &sh->state);
4743 clear_bit(STRIPE_REPLACED, &sh->state);
4744 }
4745 spin_unlock(&sh->stripe_lock);
4746 }
4747 clear_bit(STRIPE_DELAYED, &sh->state);
4748
4749 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4750 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4751 (unsigned long long)sh->sector, sh->state,
4752 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4753 sh->check_state, sh->reconstruct_state);
4754
4755 analyse_stripe(sh, &s);
4756
4757 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
4758 goto finish;
4759
4760 if (s.handle_bad_blocks ||
4761 test_bit(MD_SB_CHANGE_PENDING, &conf->mddev->sb_flags)) {
4762 set_bit(STRIPE_HANDLE, &sh->state);
4763 goto finish;
4764 }
4765
4766 if (unlikely(s.blocked_rdev)) {
4767 if (s.syncing || s.expanding || s.expanded ||
4768 s.replacing || s.to_write || s.written) {
4769 set_bit(STRIPE_HANDLE, &sh->state);
4770 goto finish;
4771 }
4772 /* There is nothing for the blocked_rdev to block */
4773 rdev_dec_pending(s.blocked_rdev, conf->mddev);
4774 s.blocked_rdev = NULL;
4775 }
4776
4777 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4778 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4779 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4780 }
4781
4782 pr_debug("locked=%d uptodate=%d to_read=%d"
4783 " to_write=%d failed=%d failed_num=%d,%d\n",
4784 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4785 s.failed_num[0], s.failed_num[1]);
4786 /*
4787 * check if the array has lost more than max_degraded devices and,
4788 * if so, some requests might need to be failed.
4789 *
4790 * When journal device failed (log_failed), we will only process
4791 * the stripe if there is data need write to raid disks
4792 */
4793 if (s.failed > conf->max_degraded ||
4794 (s.log_failed && s.injournal == 0)) {
4795 sh->check_state = 0;
4796 sh->reconstruct_state = 0;
4797 break_stripe_batch_list(sh, 0);
4798 if (s.to_read+s.to_write+s.written)
4799 handle_failed_stripe(conf, sh, &s, disks);
4800 if (s.syncing + s.replacing)
4801 handle_failed_sync(conf, sh, &s);
4802 }
4803
4804 /* Now we check to see if any write operations have recently
4805 * completed
4806 */
4807 prexor = 0;
4808 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
4809 prexor = 1;
4810 if (sh->reconstruct_state == reconstruct_state_drain_result ||
4811 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
4812 sh->reconstruct_state = reconstruct_state_idle;
4813
4814 /* All the 'written' buffers and the parity block are ready to
4815 * be written back to disk
4816 */
4817 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
4818 !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
4819 BUG_ON(sh->qd_idx >= 0 &&
4820 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
4821 !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
4822 for (i = disks; i--; ) {
4823 struct r5dev *dev = &sh->dev[i];
4824 if (test_bit(R5_LOCKED, &dev->flags) &&
4825 (i == sh->pd_idx || i == sh->qd_idx ||
4826 dev->written || test_bit(R5_InJournal,
4827 &dev->flags))) {
4828 pr_debug("Writing block %d\n", i);
4829 set_bit(R5_Wantwrite, &dev->flags);
4830 if (prexor)
4831 continue;
4832 if (s.failed > 1)
4833 continue;
4834 if (!test_bit(R5_Insync, &dev->flags) ||
4835 ((i == sh->pd_idx || i == sh->qd_idx) &&
4836 s.failed == 0))
4837 set_bit(STRIPE_INSYNC, &sh->state);
4838 }
4839 }
4840 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4841 s.dec_preread_active = 1;
4842 }
4843
4844 /*
4845 * might be able to return some write requests if the parity blocks
4846 * are safe, or on a failed drive
4847 */
4848 pdev = &sh->dev[sh->pd_idx];
4849 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
4850 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
4851 qdev = &sh->dev[sh->qd_idx];
4852 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
4853 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
4854 || conf->level < 6;
4855
4856 if (s.written &&
4857 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
4858 && !test_bit(R5_LOCKED, &pdev->flags)
4859 && (test_bit(R5_UPTODATE, &pdev->flags) ||
4860 test_bit(R5_Discard, &pdev->flags))))) &&
4861 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
4862 && !test_bit(R5_LOCKED, &qdev->flags)
4863 && (test_bit(R5_UPTODATE, &qdev->flags) ||
4864 test_bit(R5_Discard, &qdev->flags))))))
4865 handle_stripe_clean_event(conf, sh, disks);
4866
4867 if (s.just_cached)
4868 r5c_handle_cached_data_endio(conf, sh, disks);
4869 log_stripe_write_finished(sh);
4870
4871 /* Now we might consider reading some blocks, either to check/generate
4872 * parity, or to satisfy requests
4873 * or to load a block that is being partially written.
4874 */
4875 if (s.to_read || s.non_overwrite
4876 || (s.to_write && s.failed)
4877 || (s.syncing && (s.uptodate + s.compute < disks))
4878 || s.replacing
4879 || s.expanding)
4880 handle_stripe_fill(sh, &s, disks);
4881
4882 /*
4883 * When the stripe finishes full journal write cycle (write to journal
4884 * and raid disk), this is the clean up procedure so it is ready for
4885 * next operation.
4886 */
4887 r5c_finish_stripe_write_out(conf, sh, &s);
4888
4889 /*
4890 * Now to consider new write requests, cache write back and what else,
4891 * if anything should be read. We do not handle new writes when:
4892 * 1/ A 'write' operation (copy+xor) is already in flight.
4893 * 2/ A 'check' operation is in flight, as it may clobber the parity
4894 * block.
4895 * 3/ A r5c cache log write is in flight.
4896 */
4897
4898 if (!sh->reconstruct_state && !sh->check_state && !sh->log_io) {
4899 if (!r5c_is_writeback(conf->log)) {
4900 if (s.to_write)
4901 handle_stripe_dirtying(conf, sh, &s, disks);
4902 } else { /* write back cache */
4903 int ret = 0;
4904
4905 /* First, try handle writes in caching phase */
4906 if (s.to_write)
4907 ret = r5c_try_caching_write(conf, sh, &s,
4908 disks);
4909 /*
4910 * If caching phase failed: ret == -EAGAIN
4911 * OR
4912 * stripe under reclaim: !caching && injournal
4913 *
4914 * fall back to handle_stripe_dirtying()
4915 */
4916 if (ret == -EAGAIN ||
4917 /* stripe under reclaim: !caching && injournal */
4918 (!test_bit(STRIPE_R5C_CACHING, &sh->state) &&
4919 s.injournal > 0)) {
4920 ret = handle_stripe_dirtying(conf, sh, &s,
4921 disks);
4922 if (ret == -EAGAIN)
4923 goto finish;
4924 }
4925 }
4926 }
4927
4928 /* maybe we need to check and possibly fix the parity for this stripe
4929 * Any reads will already have been scheduled, so we just see if enough
4930 * data is available. The parity check is held off while parity
4931 * dependent operations are in flight.
4932 */
4933 if (sh->check_state ||
4934 (s.syncing && s.locked == 0 &&
4935 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4936 !test_bit(STRIPE_INSYNC, &sh->state))) {
4937 if (conf->level == 6)
4938 handle_parity_checks6(conf, sh, &s, disks);
4939 else
4940 handle_parity_checks5(conf, sh, &s, disks);
4941 }
4942
4943 if ((s.replacing || s.syncing) && s.locked == 0
4944 && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
4945 && !test_bit(STRIPE_REPLACED, &sh->state)) {
4946 /* Write out to replacement devices where possible */
4947 for (i = 0; i < conf->raid_disks; i++)
4948 if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
4949 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
4950 set_bit(R5_WantReplace, &sh->dev[i].flags);
4951 set_bit(R5_LOCKED, &sh->dev[i].flags);
4952 s.locked++;
4953 }
4954 if (s.replacing)
4955 set_bit(STRIPE_INSYNC, &sh->state);
4956 set_bit(STRIPE_REPLACED, &sh->state);
4957 }
4958 if ((s.syncing || s.replacing) && s.locked == 0 &&
4959 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4960 test_bit(STRIPE_INSYNC, &sh->state)) {
4961 md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), 1);
4962 clear_bit(STRIPE_SYNCING, &sh->state);
4963 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
4964 wake_up(&conf->wait_for_overlap);
4965 }
4966
4967 /* If the failed drives are just a ReadError, then we might need
4968 * to progress the repair/check process
4969 */
4970 if (s.failed <= conf->max_degraded && !conf->mddev->ro)
4971 for (i = 0; i < s.failed; i++) {
4972 struct r5dev *dev = &sh->dev[s.failed_num[i]];
4973 if (test_bit(R5_ReadError, &dev->flags)
4974 && !test_bit(R5_LOCKED, &dev->flags)
4975 && test_bit(R5_UPTODATE, &dev->flags)
4976 ) {
4977 if (!test_bit(R5_ReWrite, &dev->flags)) {
4978 set_bit(R5_Wantwrite, &dev->flags);
4979 set_bit(R5_ReWrite, &dev->flags);
4980 } else
4981 /* let's read it back */
4982 set_bit(R5_Wantread, &dev->flags);
4983 set_bit(R5_LOCKED, &dev->flags);
4984 s.locked++;
4985 }
4986 }
4987
4988 /* Finish reconstruct operations initiated by the expansion process */
4989 if (sh->reconstruct_state == reconstruct_state_result) {
4990 struct stripe_head *sh_src
4991 = raid5_get_active_stripe(conf, sh->sector, 1, 1, 1);
4992 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
4993 /* sh cannot be written until sh_src has been read.
4994 * so arrange for sh to be delayed a little
4995 */
4996 set_bit(STRIPE_DELAYED, &sh->state);
4997 set_bit(STRIPE_HANDLE, &sh->state);
4998 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
4999 &sh_src->state))
5000 atomic_inc(&conf->preread_active_stripes);
5001 raid5_release_stripe(sh_src);
5002 goto finish;
5003 }
5004 if (sh_src)
5005 raid5_release_stripe(sh_src);
5006
5007 sh->reconstruct_state = reconstruct_state_idle;
5008 clear_bit(STRIPE_EXPANDING, &sh->state);
5009 for (i = conf->raid_disks; i--; ) {
5010 set_bit(R5_Wantwrite, &sh->dev[i].flags);
5011 set_bit(R5_LOCKED, &sh->dev[i].flags);
5012 s.locked++;
5013 }
5014 }
5015
5016 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
5017 !sh->reconstruct_state) {
5018 /* Need to write out all blocks after computing parity */
5019 sh->disks = conf->raid_disks;
5020 stripe_set_idx(sh->sector, conf, 0, sh);
5021 schedule_reconstruction(sh, &s, 1, 1);
5022 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
5023 clear_bit(STRIPE_EXPAND_READY, &sh->state);
5024 atomic_dec(&conf->reshape_stripes);
5025 wake_up(&conf->wait_for_overlap);
5026 md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), 1);
5027 }
5028
5029 if (s.expanding && s.locked == 0 &&
5030 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
5031 handle_stripe_expansion(conf, sh);
5032
5033finish:
5034 /* wait for this device to become unblocked */
5035 if (unlikely(s.blocked_rdev)) {
5036 if (conf->mddev->external)
5037 md_wait_for_blocked_rdev(s.blocked_rdev,
5038 conf->mddev);
5039 else
5040 /* Internal metadata will immediately
5041 * be written by raid5d, so we don't
5042 * need to wait here.
5043 */
5044 rdev_dec_pending(s.blocked_rdev,
5045 conf->mddev);
5046 }
5047
5048 if (s.handle_bad_blocks)
5049 for (i = disks; i--; ) {
5050 struct md_rdev *rdev;
5051 struct r5dev *dev = &sh->dev[i];
5052 if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
5053 /* We own a safe reference to the rdev */
5054 rdev = conf->disks[i].rdev;
5055 if (!rdev_set_badblocks(rdev, sh->sector,
5056 RAID5_STRIPE_SECTORS(conf), 0))
5057 md_error(conf->mddev, rdev);
5058 rdev_dec_pending(rdev, conf->mddev);
5059 }
5060 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
5061 rdev = conf->disks[i].rdev;
5062 rdev_clear_badblocks(rdev, sh->sector,
5063 RAID5_STRIPE_SECTORS(conf), 0);
5064 rdev_dec_pending(rdev, conf->mddev);
5065 }
5066 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
5067 rdev = conf->disks[i].replacement;
5068 if (!rdev)
5069 /* rdev have been moved down */
5070 rdev = conf->disks[i].rdev;
5071 rdev_clear_badblocks(rdev, sh->sector,
5072 RAID5_STRIPE_SECTORS(conf), 0);
5073 rdev_dec_pending(rdev, conf->mddev);
5074 }
5075 }
5076
5077 if (s.ops_request)
5078 raid_run_ops(sh, s.ops_request);
5079
5080 ops_run_io(sh, &s);
5081
5082 if (s.dec_preread_active) {
5083 /* We delay this until after ops_run_io so that if make_request
5084 * is waiting on a flush, it won't continue until the writes
5085 * have actually been submitted.
5086 */
5087 atomic_dec(&conf->preread_active_stripes);
5088 if (atomic_read(&conf->preread_active_stripes) <
5089 IO_THRESHOLD)
5090 md_wakeup_thread(conf->mddev->thread);
5091 }
5092
5093 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
5094}
5095
5096static void raid5_activate_delayed(struct r5conf *conf)
5097{
5098 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
5099 while (!list_empty(&conf->delayed_list)) {
5100 struct list_head *l = conf->delayed_list.next;
5101 struct stripe_head *sh;
5102 sh = list_entry(l, struct stripe_head, lru);
5103 list_del_init(l);
5104 clear_bit(STRIPE_DELAYED, &sh->state);
5105 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5106 atomic_inc(&conf->preread_active_stripes);
5107 list_add_tail(&sh->lru, &conf->hold_list);
5108 raid5_wakeup_stripe_thread(sh);
5109 }
5110 }
5111}
5112
5113static void activate_bit_delay(struct r5conf *conf,
5114 struct list_head *temp_inactive_list)
5115{
5116 /* device_lock is held */
5117 struct list_head head;
5118 list_add(&head, &conf->bitmap_list);
5119 list_del_init(&conf->bitmap_list);
5120 while (!list_empty(&head)) {
5121 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
5122 int hash;
5123 list_del_init(&sh->lru);
5124 atomic_inc(&sh->count);
5125 hash = sh->hash_lock_index;
5126 __release_stripe(conf, sh, &temp_inactive_list[hash]);
5127 }
5128}
5129
5130static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
5131{
5132 struct r5conf *conf = mddev->private;
5133 sector_t sector = bio->bi_iter.bi_sector;
5134 unsigned int chunk_sectors;
5135 unsigned int bio_sectors = bio_sectors(bio);
5136
5137 WARN_ON_ONCE(bio->bi_partno);
5138
5139 chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors);
5140 return chunk_sectors >=
5141 ((sector & (chunk_sectors - 1)) + bio_sectors);
5142}
5143
5144/*
5145 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
5146 * later sampled by raid5d.
5147 */
5148static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
5149{
5150 unsigned long flags;
5151
5152 spin_lock_irqsave(&conf->device_lock, flags);
5153
5154 bi->bi_next = conf->retry_read_aligned_list;
5155 conf->retry_read_aligned_list = bi;
5156
5157 spin_unlock_irqrestore(&conf->device_lock, flags);
5158 md_wakeup_thread(conf->mddev->thread);
5159}
5160
5161static struct bio *remove_bio_from_retry(struct r5conf *conf,
5162 unsigned int *offset)
5163{
5164 struct bio *bi;
5165
5166 bi = conf->retry_read_aligned;
5167 if (bi) {
5168 *offset = conf->retry_read_offset;
5169 conf->retry_read_aligned = NULL;
5170 return bi;
5171 }
5172 bi = conf->retry_read_aligned_list;
5173 if(bi) {
5174 conf->retry_read_aligned_list = bi->bi_next;
5175 bi->bi_next = NULL;
5176 *offset = 0;
5177 }
5178
5179 return bi;
5180}
5181
5182/*
5183 * The "raid5_align_endio" should check if the read succeeded and if it
5184 * did, call bio_endio on the original bio (having bio_put the new bio
5185 * first).
5186 * If the read failed..
5187 */
5188static void raid5_align_endio(struct bio *bi)
5189{
5190 struct bio* raid_bi = bi->bi_private;
5191 struct mddev *mddev;
5192 struct r5conf *conf;
5193 struct md_rdev *rdev;
5194 blk_status_t error = bi->bi_status;
5195
5196 bio_put(bi);
5197
5198 rdev = (void*)raid_bi->bi_next;
5199 raid_bi->bi_next = NULL;
5200 mddev = rdev->mddev;
5201 conf = mddev->private;
5202
5203 rdev_dec_pending(rdev, conf->mddev);
5204
5205 if (!error) {
5206 bio_endio(raid_bi);
5207 if (atomic_dec_and_test(&conf->active_aligned_reads))
5208 wake_up(&conf->wait_for_quiescent);
5209 return;
5210 }
5211
5212 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
5213
5214 add_bio_to_retry(raid_bi, conf);
5215}
5216
5217static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio)
5218{
5219 struct r5conf *conf = mddev->private;
5220 int dd_idx;
5221 struct bio* align_bi;
5222 struct md_rdev *rdev;
5223 sector_t end_sector;
5224
5225 if (!in_chunk_boundary(mddev, raid_bio)) {
5226 pr_debug("%s: non aligned\n", __func__);
5227 return 0;
5228 }
5229 /*
5230 * use bio_clone_fast to make a copy of the bio
5231 */
5232 align_bi = bio_clone_fast(raid_bio, GFP_NOIO, &mddev->bio_set);
5233 if (!align_bi)
5234 return 0;
5235 /*
5236 * set bi_end_io to a new function, and set bi_private to the
5237 * original bio.
5238 */
5239 align_bi->bi_end_io = raid5_align_endio;
5240 align_bi->bi_private = raid_bio;
5241 /*
5242 * compute position
5243 */
5244 align_bi->bi_iter.bi_sector =
5245 raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
5246 0, &dd_idx, NULL);
5247
5248 end_sector = bio_end_sector(align_bi);
5249 rcu_read_lock();
5250 rdev = rcu_dereference(conf->disks[dd_idx].replacement);
5251 if (!rdev || test_bit(Faulty, &rdev->flags) ||
5252 rdev->recovery_offset < end_sector) {
5253 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
5254 if (rdev &&
5255 (test_bit(Faulty, &rdev->flags) ||
5256 !(test_bit(In_sync, &rdev->flags) ||
5257 rdev->recovery_offset >= end_sector)))
5258 rdev = NULL;
5259 }
5260
5261 if (r5c_big_stripe_cached(conf, align_bi->bi_iter.bi_sector)) {
5262 rcu_read_unlock();
5263 bio_put(align_bi);
5264 return 0;
5265 }
5266
5267 if (rdev) {
5268 sector_t first_bad;
5269 int bad_sectors;
5270
5271 atomic_inc(&rdev->nr_pending);
5272 rcu_read_unlock();
5273 raid_bio->bi_next = (void*)rdev;
5274 bio_set_dev(align_bi, rdev->bdev);
5275
5276 if (is_badblock(rdev, align_bi->bi_iter.bi_sector,
5277 bio_sectors(align_bi),
5278 &first_bad, &bad_sectors)) {
5279 bio_put(align_bi);
5280 rdev_dec_pending(rdev, mddev);
5281 return 0;
5282 }
5283
5284 /* No reshape active, so we can trust rdev->data_offset */
5285 align_bi->bi_iter.bi_sector += rdev->data_offset;
5286
5287 spin_lock_irq(&conf->device_lock);
5288 wait_event_lock_irq(conf->wait_for_quiescent,
5289 conf->quiesce == 0,
5290 conf->device_lock);
5291 atomic_inc(&conf->active_aligned_reads);
5292 spin_unlock_irq(&conf->device_lock);
5293
5294 if (mddev->gendisk)
5295 trace_block_bio_remap(align_bi->bi_disk->queue,
5296 align_bi, disk_devt(mddev->gendisk),
5297 raid_bio->bi_iter.bi_sector);
5298 submit_bio_noacct(align_bi);
5299 return 1;
5300 } else {
5301 rcu_read_unlock();
5302 bio_put(align_bi);
5303 return 0;
5304 }
5305}
5306
5307static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio)
5308{
5309 struct bio *split;
5310 sector_t sector = raid_bio->bi_iter.bi_sector;
5311 unsigned chunk_sects = mddev->chunk_sectors;
5312 unsigned sectors = chunk_sects - (sector & (chunk_sects-1));
5313
5314 if (sectors < bio_sectors(raid_bio)) {
5315 struct r5conf *conf = mddev->private;
5316 split = bio_split(raid_bio, sectors, GFP_NOIO, &conf->bio_split);
5317 bio_chain(split, raid_bio);
5318 submit_bio_noacct(raid_bio);
5319 raid_bio = split;
5320 }
5321
5322 if (!raid5_read_one_chunk(mddev, raid_bio))
5323 return raid_bio;
5324
5325 return NULL;
5326}
5327
5328/* __get_priority_stripe - get the next stripe to process
5329 *
5330 * Full stripe writes are allowed to pass preread active stripes up until
5331 * the bypass_threshold is exceeded. In general the bypass_count
5332 * increments when the handle_list is handled before the hold_list; however, it
5333 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
5334 * stripe with in flight i/o. The bypass_count will be reset when the
5335 * head of the hold_list has changed, i.e. the head was promoted to the
5336 * handle_list.
5337 */
5338static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
5339{
5340 struct stripe_head *sh, *tmp;
5341 struct list_head *handle_list = NULL;
5342 struct r5worker_group *wg;
5343 bool second_try = !r5c_is_writeback(conf->log) &&
5344 !r5l_log_disk_error(conf);
5345 bool try_loprio = test_bit(R5C_LOG_TIGHT, &conf->cache_state) ||
5346 r5l_log_disk_error(conf);
5347
5348again:
5349 wg = NULL;
5350 sh = NULL;
5351 if (conf->worker_cnt_per_group == 0) {
5352 handle_list = try_loprio ? &conf->loprio_list :
5353 &conf->handle_list;
5354 } else if (group != ANY_GROUP) {
5355 handle_list = try_loprio ? &conf->worker_groups[group].loprio_list :
5356 &conf->worker_groups[group].handle_list;
5357 wg = &conf->worker_groups[group];
5358 } else {
5359 int i;
5360 for (i = 0; i < conf->group_cnt; i++) {
5361 handle_list = try_loprio ? &conf->worker_groups[i].loprio_list :
5362 &conf->worker_groups[i].handle_list;
5363 wg = &conf->worker_groups[i];
5364 if (!list_empty(handle_list))
5365 break;
5366 }
5367 }
5368
5369 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
5370 __func__,
5371 list_empty(handle_list) ? "empty" : "busy",
5372 list_empty(&conf->hold_list) ? "empty" : "busy",
5373 atomic_read(&conf->pending_full_writes), conf->bypass_count);
5374
5375 if (!list_empty(handle_list)) {
5376 sh = list_entry(handle_list->next, typeof(*sh), lru);
5377
5378 if (list_empty(&conf->hold_list))
5379 conf->bypass_count = 0;
5380 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
5381 if (conf->hold_list.next == conf->last_hold)
5382 conf->bypass_count++;
5383 else {
5384 conf->last_hold = conf->hold_list.next;
5385 conf->bypass_count -= conf->bypass_threshold;
5386 if (conf->bypass_count < 0)
5387 conf->bypass_count = 0;
5388 }
5389 }
5390 } else if (!list_empty(&conf->hold_list) &&
5391 ((conf->bypass_threshold &&
5392 conf->bypass_count > conf->bypass_threshold) ||
5393 atomic_read(&conf->pending_full_writes) == 0)) {
5394
5395 list_for_each_entry(tmp, &conf->hold_list, lru) {
5396 if (conf->worker_cnt_per_group == 0 ||
5397 group == ANY_GROUP ||
5398 !cpu_online(tmp->cpu) ||
5399 cpu_to_group(tmp->cpu) == group) {
5400 sh = tmp;
5401 break;
5402 }
5403 }
5404
5405 if (sh) {
5406 conf->bypass_count -= conf->bypass_threshold;
5407 if (conf->bypass_count < 0)
5408 conf->bypass_count = 0;
5409 }
5410 wg = NULL;
5411 }
5412
5413 if (!sh) {
5414 if (second_try)
5415 return NULL;
5416 second_try = true;
5417 try_loprio = !try_loprio;
5418 goto again;
5419 }
5420
5421 if (wg) {
5422 wg->stripes_cnt--;
5423 sh->group = NULL;
5424 }
5425 list_del_init(&sh->lru);
5426 BUG_ON(atomic_inc_return(&sh->count) != 1);
5427 return sh;
5428}
5429
5430struct raid5_plug_cb {
5431 struct blk_plug_cb cb;
5432 struct list_head list;
5433 struct list_head temp_inactive_list[NR_STRIPE_HASH_LOCKS];
5434};
5435
5436static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
5437{
5438 struct raid5_plug_cb *cb = container_of(
5439 blk_cb, struct raid5_plug_cb, cb);
5440 struct stripe_head *sh;
5441 struct mddev *mddev = cb->cb.data;
5442 struct r5conf *conf = mddev->private;
5443 int cnt = 0;
5444 int hash;
5445
5446 if (cb->list.next && !list_empty(&cb->list)) {
5447 spin_lock_irq(&conf->device_lock);
5448 while (!list_empty(&cb->list)) {
5449 sh = list_first_entry(&cb->list, struct stripe_head, lru);
5450 list_del_init(&sh->lru);
5451 /*
5452 * avoid race release_stripe_plug() sees
5453 * STRIPE_ON_UNPLUG_LIST clear but the stripe
5454 * is still in our list
5455 */
5456 smp_mb__before_atomic();
5457 clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
5458 /*
5459 * STRIPE_ON_RELEASE_LIST could be set here. In that
5460 * case, the count is always > 1 here
5461 */
5462 hash = sh->hash_lock_index;
5463 __release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
5464 cnt++;
5465 }
5466 spin_unlock_irq(&conf->device_lock);
5467 }
5468 release_inactive_stripe_list(conf, cb->temp_inactive_list,
5469 NR_STRIPE_HASH_LOCKS);
5470 if (mddev->queue)
5471 trace_block_unplug(mddev->queue, cnt, !from_schedule);
5472 kfree(cb);
5473}
5474
5475static void release_stripe_plug(struct mddev *mddev,
5476 struct stripe_head *sh)
5477{
5478 struct blk_plug_cb *blk_cb = blk_check_plugged(
5479 raid5_unplug, mddev,
5480 sizeof(struct raid5_plug_cb));
5481 struct raid5_plug_cb *cb;
5482
5483 if (!blk_cb) {
5484 raid5_release_stripe(sh);
5485 return;
5486 }
5487
5488 cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5489
5490 if (cb->list.next == NULL) {
5491 int i;
5492 INIT_LIST_HEAD(&cb->list);
5493 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5494 INIT_LIST_HEAD(cb->temp_inactive_list + i);
5495 }
5496
5497 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5498 list_add_tail(&sh->lru, &cb->list);
5499 else
5500 raid5_release_stripe(sh);
5501}
5502
5503static void make_discard_request(struct mddev *mddev, struct bio *bi)
5504{
5505 struct r5conf *conf = mddev->private;
5506 sector_t logical_sector, last_sector;
5507 struct stripe_head *sh;
5508 int stripe_sectors;
5509
5510 if (mddev->reshape_position != MaxSector)
5511 /* Skip discard while reshape is happening */
5512 return;
5513
5514 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1);
5515 last_sector = bio_end_sector(bi);
5516
5517 bi->bi_next = NULL;
5518
5519 stripe_sectors = conf->chunk_sectors *
5520 (conf->raid_disks - conf->max_degraded);
5521 logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5522 stripe_sectors);
5523 sector_div(last_sector, stripe_sectors);
5524
5525 logical_sector *= conf->chunk_sectors;
5526 last_sector *= conf->chunk_sectors;
5527
5528 for (; logical_sector < last_sector;
5529 logical_sector += RAID5_STRIPE_SECTORS(conf)) {
5530 DEFINE_WAIT(w);
5531 int d;
5532 again:
5533 sh = raid5_get_active_stripe(conf, logical_sector, 0, 0, 0);
5534 prepare_to_wait(&conf->wait_for_overlap, &w,
5535 TASK_UNINTERRUPTIBLE);
5536 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5537 if (test_bit(STRIPE_SYNCING, &sh->state)) {
5538 raid5_release_stripe(sh);
5539 schedule();
5540 goto again;
5541 }
5542 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5543 spin_lock_irq(&sh->stripe_lock);
5544 for (d = 0; d < conf->raid_disks; d++) {
5545 if (d == sh->pd_idx || d == sh->qd_idx)
5546 continue;
5547 if (sh->dev[d].towrite || sh->dev[d].toread) {
5548 set_bit(R5_Overlap, &sh->dev[d].flags);
5549 spin_unlock_irq(&sh->stripe_lock);
5550 raid5_release_stripe(sh);
5551 schedule();
5552 goto again;
5553 }
5554 }
5555 set_bit(STRIPE_DISCARD, &sh->state);
5556 finish_wait(&conf->wait_for_overlap, &w);
5557 sh->overwrite_disks = 0;
5558 for (d = 0; d < conf->raid_disks; d++) {
5559 if (d == sh->pd_idx || d == sh->qd_idx)
5560 continue;
5561 sh->dev[d].towrite = bi;
5562 set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5563 bio_inc_remaining(bi);
5564 md_write_inc(mddev, bi);
5565 sh->overwrite_disks++;
5566 }
5567 spin_unlock_irq(&sh->stripe_lock);
5568 if (conf->mddev->bitmap) {
5569 for (d = 0;
5570 d < conf->raid_disks - conf->max_degraded;
5571 d++)
5572 md_bitmap_startwrite(mddev->bitmap,
5573 sh->sector,
5574 RAID5_STRIPE_SECTORS(conf),
5575 0);
5576 sh->bm_seq = conf->seq_flush + 1;
5577 set_bit(STRIPE_BIT_DELAY, &sh->state);
5578 }
5579
5580 set_bit(STRIPE_HANDLE, &sh->state);
5581 clear_bit(STRIPE_DELAYED, &sh->state);
5582 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5583 atomic_inc(&conf->preread_active_stripes);
5584 release_stripe_plug(mddev, sh);
5585 }
5586
5587 bio_endio(bi);
5588}
5589
5590static bool raid5_make_request(struct mddev *mddev, struct bio * bi)
5591{
5592 struct r5conf *conf = mddev->private;
5593 int dd_idx;
5594 sector_t new_sector;
5595 sector_t logical_sector, last_sector;
5596 struct stripe_head *sh;
5597 const int rw = bio_data_dir(bi);
5598 DEFINE_WAIT(w);
5599 bool do_prepare;
5600 bool do_flush = false;
5601
5602 if (unlikely(bi->bi_opf & REQ_PREFLUSH)) {
5603 int ret = log_handle_flush_request(conf, bi);
5604
5605 if (ret == 0)
5606 return true;
5607 if (ret == -ENODEV) {
5608 if (md_flush_request(mddev, bi))
5609 return true;
5610 }
5611 /* ret == -EAGAIN, fallback */
5612 /*
5613 * if r5l_handle_flush_request() didn't clear REQ_PREFLUSH,
5614 * we need to flush journal device
5615 */
5616 do_flush = bi->bi_opf & REQ_PREFLUSH;
5617 }
5618
5619 if (!md_write_start(mddev, bi))
5620 return false;
5621 /*
5622 * If array is degraded, better not do chunk aligned read because
5623 * later we might have to read it again in order to reconstruct
5624 * data on failed drives.
5625 */
5626 if (rw == READ && mddev->degraded == 0 &&
5627 mddev->reshape_position == MaxSector) {
5628 bi = chunk_aligned_read(mddev, bi);
5629 if (!bi)
5630 return true;
5631 }
5632
5633 if (unlikely(bio_op(bi) == REQ_OP_DISCARD)) {
5634 make_discard_request(mddev, bi);
5635 md_write_end(mddev);
5636 return true;
5637 }
5638
5639 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1);
5640 last_sector = bio_end_sector(bi);
5641 bi->bi_next = NULL;
5642
5643 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
5644 for (; logical_sector < last_sector; logical_sector += RAID5_STRIPE_SECTORS(conf)) {
5645 int previous;
5646 int seq;
5647
5648 do_prepare = false;
5649 retry:
5650 seq = read_seqcount_begin(&conf->gen_lock);
5651 previous = 0;
5652 if (do_prepare)
5653 prepare_to_wait(&conf->wait_for_overlap, &w,
5654 TASK_UNINTERRUPTIBLE);
5655 if (unlikely(conf->reshape_progress != MaxSector)) {
5656 /* spinlock is needed as reshape_progress may be
5657 * 64bit on a 32bit platform, and so it might be
5658 * possible to see a half-updated value
5659 * Of course reshape_progress could change after
5660 * the lock is dropped, so once we get a reference
5661 * to the stripe that we think it is, we will have
5662 * to check again.
5663 */
5664 spin_lock_irq(&conf->device_lock);
5665 if (mddev->reshape_backwards
5666 ? logical_sector < conf->reshape_progress
5667 : logical_sector >= conf->reshape_progress) {
5668 previous = 1;
5669 } else {
5670 if (mddev->reshape_backwards
5671 ? logical_sector < conf->reshape_safe
5672 : logical_sector >= conf->reshape_safe) {
5673 spin_unlock_irq(&conf->device_lock);
5674 schedule();
5675 do_prepare = true;
5676 goto retry;
5677 }
5678 }
5679 spin_unlock_irq(&conf->device_lock);
5680 }
5681
5682 new_sector = raid5_compute_sector(conf, logical_sector,
5683 previous,
5684 &dd_idx, NULL);
5685 pr_debug("raid456: raid5_make_request, sector %llu logical %llu\n",
5686 (unsigned long long)new_sector,
5687 (unsigned long long)logical_sector);
5688
5689 sh = raid5_get_active_stripe(conf, new_sector, previous,
5690 (bi->bi_opf & REQ_RAHEAD), 0);
5691 if (sh) {
5692 if (unlikely(previous)) {
5693 /* expansion might have moved on while waiting for a
5694 * stripe, so we must do the range check again.
5695 * Expansion could still move past after this
5696 * test, but as we are holding a reference to
5697 * 'sh', we know that if that happens,
5698 * STRIPE_EXPANDING will get set and the expansion
5699 * won't proceed until we finish with the stripe.
5700 */
5701 int must_retry = 0;
5702 spin_lock_irq(&conf->device_lock);
5703 if (mddev->reshape_backwards
5704 ? logical_sector >= conf->reshape_progress
5705 : logical_sector < conf->reshape_progress)
5706 /* mismatch, need to try again */
5707 must_retry = 1;
5708 spin_unlock_irq(&conf->device_lock);
5709 if (must_retry) {
5710 raid5_release_stripe(sh);
5711 schedule();
5712 do_prepare = true;
5713 goto retry;
5714 }
5715 }
5716 if (read_seqcount_retry(&conf->gen_lock, seq)) {
5717 /* Might have got the wrong stripe_head
5718 * by accident
5719 */
5720 raid5_release_stripe(sh);
5721 goto retry;
5722 }
5723
5724 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
5725 !add_stripe_bio(sh, bi, dd_idx, rw, previous)) {
5726 /* Stripe is busy expanding or
5727 * add failed due to overlap. Flush everything
5728 * and wait a while
5729 */
5730 md_wakeup_thread(mddev->thread);
5731 raid5_release_stripe(sh);
5732 schedule();
5733 do_prepare = true;
5734 goto retry;
5735 }
5736 if (do_flush) {
5737 set_bit(STRIPE_R5C_PREFLUSH, &sh->state);
5738 /* we only need flush for one stripe */
5739 do_flush = false;
5740 }
5741
5742 set_bit(STRIPE_HANDLE, &sh->state);
5743 clear_bit(STRIPE_DELAYED, &sh->state);
5744 if ((!sh->batch_head || sh == sh->batch_head) &&
5745 (bi->bi_opf & REQ_SYNC) &&
5746 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5747 atomic_inc(&conf->preread_active_stripes);
5748 release_stripe_plug(mddev, sh);
5749 } else {
5750 /* cannot get stripe for read-ahead, just give-up */
5751 bi->bi_status = BLK_STS_IOERR;
5752 break;
5753 }
5754 }
5755 finish_wait(&conf->wait_for_overlap, &w);
5756
5757 if (rw == WRITE)
5758 md_write_end(mddev);
5759 bio_endio(bi);
5760 return true;
5761}
5762
5763static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
5764
5765static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5766{
5767 /* reshaping is quite different to recovery/resync so it is
5768 * handled quite separately ... here.
5769 *
5770 * On each call to sync_request, we gather one chunk worth of
5771 * destination stripes and flag them as expanding.
5772 * Then we find all the source stripes and request reads.
5773 * As the reads complete, handle_stripe will copy the data
5774 * into the destination stripe and release that stripe.
5775 */
5776 struct r5conf *conf = mddev->private;
5777 struct stripe_head *sh;
5778 struct md_rdev *rdev;
5779 sector_t first_sector, last_sector;
5780 int raid_disks = conf->previous_raid_disks;
5781 int data_disks = raid_disks - conf->max_degraded;
5782 int new_data_disks = conf->raid_disks - conf->max_degraded;
5783 int i;
5784 int dd_idx;
5785 sector_t writepos, readpos, safepos;
5786 sector_t stripe_addr;
5787 int reshape_sectors;
5788 struct list_head stripes;
5789 sector_t retn;
5790
5791 if (sector_nr == 0) {
5792 /* If restarting in the middle, skip the initial sectors */
5793 if (mddev->reshape_backwards &&
5794 conf->reshape_progress < raid5_size(mddev, 0, 0)) {
5795 sector_nr = raid5_size(mddev, 0, 0)
5796 - conf->reshape_progress;
5797 } else if (mddev->reshape_backwards &&
5798 conf->reshape_progress == MaxSector) {
5799 /* shouldn't happen, but just in case, finish up.*/
5800 sector_nr = MaxSector;
5801 } else if (!mddev->reshape_backwards &&
5802 conf->reshape_progress > 0)
5803 sector_nr = conf->reshape_progress;
5804 sector_div(sector_nr, new_data_disks);
5805 if (sector_nr) {
5806 mddev->curr_resync_completed = sector_nr;
5807 sysfs_notify_dirent_safe(mddev->sysfs_completed);
5808 *skipped = 1;
5809 retn = sector_nr;
5810 goto finish;
5811 }
5812 }
5813
5814 /* We need to process a full chunk at a time.
5815 * If old and new chunk sizes differ, we need to process the
5816 * largest of these
5817 */
5818
5819 reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors);
5820
5821 /* We update the metadata at least every 10 seconds, or when
5822 * the data about to be copied would over-write the source of
5823 * the data at the front of the range. i.e. one new_stripe
5824 * along from reshape_progress new_maps to after where
5825 * reshape_safe old_maps to
5826 */
5827 writepos = conf->reshape_progress;
5828 sector_div(writepos, new_data_disks);
5829 readpos = conf->reshape_progress;
5830 sector_div(readpos, data_disks);
5831 safepos = conf->reshape_safe;
5832 sector_div(safepos, data_disks);
5833 if (mddev->reshape_backwards) {
5834 BUG_ON(writepos < reshape_sectors);
5835 writepos -= reshape_sectors;
5836 readpos += reshape_sectors;
5837 safepos += reshape_sectors;
5838 } else {
5839 writepos += reshape_sectors;
5840 /* readpos and safepos are worst-case calculations.
5841 * A negative number is overly pessimistic, and causes
5842 * obvious problems for unsigned storage. So clip to 0.
5843 */
5844 readpos -= min_t(sector_t, reshape_sectors, readpos);
5845 safepos -= min_t(sector_t, reshape_sectors, safepos);
5846 }
5847
5848 /* Having calculated the 'writepos' possibly use it
5849 * to set 'stripe_addr' which is where we will write to.
5850 */
5851 if (mddev->reshape_backwards) {
5852 BUG_ON(conf->reshape_progress == 0);
5853 stripe_addr = writepos;
5854 BUG_ON((mddev->dev_sectors &
5855 ~((sector_t)reshape_sectors - 1))
5856 - reshape_sectors - stripe_addr
5857 != sector_nr);
5858 } else {
5859 BUG_ON(writepos != sector_nr + reshape_sectors);
5860 stripe_addr = sector_nr;
5861 }
5862
5863 /* 'writepos' is the most advanced device address we might write.
5864 * 'readpos' is the least advanced device address we might read.
5865 * 'safepos' is the least address recorded in the metadata as having
5866 * been reshaped.
5867 * If there is a min_offset_diff, these are adjusted either by
5868 * increasing the safepos/readpos if diff is negative, or
5869 * increasing writepos if diff is positive.
5870 * If 'readpos' is then behind 'writepos', there is no way that we can
5871 * ensure safety in the face of a crash - that must be done by userspace
5872 * making a backup of the data. So in that case there is no particular
5873 * rush to update metadata.
5874 * Otherwise if 'safepos' is behind 'writepos', then we really need to
5875 * update the metadata to advance 'safepos' to match 'readpos' so that
5876 * we can be safe in the event of a crash.
5877 * So we insist on updating metadata if safepos is behind writepos and
5878 * readpos is beyond writepos.
5879 * In any case, update the metadata every 10 seconds.
5880 * Maybe that number should be configurable, but I'm not sure it is
5881 * worth it.... maybe it could be a multiple of safemode_delay???
5882 */
5883 if (conf->min_offset_diff < 0) {
5884 safepos += -conf->min_offset_diff;
5885 readpos += -conf->min_offset_diff;
5886 } else
5887 writepos += conf->min_offset_diff;
5888
5889 if ((mddev->reshape_backwards
5890 ? (safepos > writepos && readpos < writepos)
5891 : (safepos < writepos && readpos > writepos)) ||
5892 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
5893 /* Cannot proceed until we've updated the superblock... */
5894 wait_event(conf->wait_for_overlap,
5895 atomic_read(&conf->reshape_stripes)==0
5896 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5897 if (atomic_read(&conf->reshape_stripes) != 0)
5898 return 0;
5899 mddev->reshape_position = conf->reshape_progress;
5900 mddev->curr_resync_completed = sector_nr;
5901 if (!mddev->reshape_backwards)
5902 /* Can update recovery_offset */
5903 rdev_for_each(rdev, mddev)
5904 if (rdev->raid_disk >= 0 &&
5905 !test_bit(Journal, &rdev->flags) &&
5906 !test_bit(In_sync, &rdev->flags) &&
5907 rdev->recovery_offset < sector_nr)
5908 rdev->recovery_offset = sector_nr;
5909
5910 conf->reshape_checkpoint = jiffies;
5911 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
5912 md_wakeup_thread(mddev->thread);
5913 wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
5914 test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5915 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5916 return 0;
5917 spin_lock_irq(&conf->device_lock);
5918 conf->reshape_safe = mddev->reshape_position;
5919 spin_unlock_irq(&conf->device_lock);
5920 wake_up(&conf->wait_for_overlap);
5921 sysfs_notify_dirent_safe(mddev->sysfs_completed);
5922 }
5923
5924 INIT_LIST_HEAD(&stripes);
5925 for (i = 0; i < reshape_sectors; i += RAID5_STRIPE_SECTORS(conf)) {
5926 int j;
5927 int skipped_disk = 0;
5928 sh = raid5_get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
5929 set_bit(STRIPE_EXPANDING, &sh->state);
5930 atomic_inc(&conf->reshape_stripes);
5931 /* If any of this stripe is beyond the end of the old
5932 * array, then we need to zero those blocks
5933 */
5934 for (j=sh->disks; j--;) {
5935 sector_t s;
5936 if (j == sh->pd_idx)
5937 continue;
5938 if (conf->level == 6 &&
5939 j == sh->qd_idx)
5940 continue;
5941 s = raid5_compute_blocknr(sh, j, 0);
5942 if (s < raid5_size(mddev, 0, 0)) {
5943 skipped_disk = 1;
5944 continue;
5945 }
5946 memset(page_address(sh->dev[j].page), 0, RAID5_STRIPE_SIZE(conf));
5947 set_bit(R5_Expanded, &sh->dev[j].flags);
5948 set_bit(R5_UPTODATE, &sh->dev[j].flags);
5949 }
5950 if (!skipped_disk) {
5951 set_bit(STRIPE_EXPAND_READY, &sh->state);
5952 set_bit(STRIPE_HANDLE, &sh->state);
5953 }
5954 list_add(&sh->lru, &stripes);
5955 }
5956 spin_lock_irq(&conf->device_lock);
5957 if (mddev->reshape_backwards)
5958 conf->reshape_progress -= reshape_sectors * new_data_disks;
5959 else
5960 conf->reshape_progress += reshape_sectors * new_data_disks;
5961 spin_unlock_irq(&conf->device_lock);
5962 /* Ok, those stripe are ready. We can start scheduling
5963 * reads on the source stripes.
5964 * The source stripes are determined by mapping the first and last
5965 * block on the destination stripes.
5966 */
5967 first_sector =
5968 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
5969 1, &dd_idx, NULL);
5970 last_sector =
5971 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
5972 * new_data_disks - 1),
5973 1, &dd_idx, NULL);
5974 if (last_sector >= mddev->dev_sectors)
5975 last_sector = mddev->dev_sectors - 1;
5976 while (first_sector <= last_sector) {
5977 sh = raid5_get_active_stripe(conf, first_sector, 1, 0, 1);
5978 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
5979 set_bit(STRIPE_HANDLE, &sh->state);
5980 raid5_release_stripe(sh);
5981 first_sector += RAID5_STRIPE_SECTORS(conf);
5982 }
5983 /* Now that the sources are clearly marked, we can release
5984 * the destination stripes
5985 */
5986 while (!list_empty(&stripes)) {
5987 sh = list_entry(stripes.next, struct stripe_head, lru);
5988 list_del_init(&sh->lru);
5989 raid5_release_stripe(sh);
5990 }
5991 /* If this takes us to the resync_max point where we have to pause,
5992 * then we need to write out the superblock.
5993 */
5994 sector_nr += reshape_sectors;
5995 retn = reshape_sectors;
5996finish:
5997 if (mddev->curr_resync_completed > mddev->resync_max ||
5998 (sector_nr - mddev->curr_resync_completed) * 2
5999 >= mddev->resync_max - mddev->curr_resync_completed) {
6000 /* Cannot proceed until we've updated the superblock... */
6001 wait_event(conf->wait_for_overlap,
6002 atomic_read(&conf->reshape_stripes) == 0
6003 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6004 if (atomic_read(&conf->reshape_stripes) != 0)
6005 goto ret;
6006 mddev->reshape_position = conf->reshape_progress;
6007 mddev->curr_resync_completed = sector_nr;
6008 if (!mddev->reshape_backwards)
6009 /* Can update recovery_offset */
6010 rdev_for_each(rdev, mddev)
6011 if (rdev->raid_disk >= 0 &&
6012 !test_bit(Journal, &rdev->flags) &&
6013 !test_bit(In_sync, &rdev->flags) &&
6014 rdev->recovery_offset < sector_nr)
6015 rdev->recovery_offset = sector_nr;
6016 conf->reshape_checkpoint = jiffies;
6017 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
6018 md_wakeup_thread(mddev->thread);
6019 wait_event(mddev->sb_wait,
6020 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)
6021 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6022 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6023 goto ret;
6024 spin_lock_irq(&conf->device_lock);
6025 conf->reshape_safe = mddev->reshape_position;
6026 spin_unlock_irq(&conf->device_lock);
6027 wake_up(&conf->wait_for_overlap);
6028 sysfs_notify_dirent_safe(mddev->sysfs_completed);
6029 }
6030ret:
6031 return retn;
6032}
6033
6034static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr,
6035 int *skipped)
6036{
6037 struct r5conf *conf = mddev->private;
6038 struct stripe_head *sh;
6039 sector_t max_sector = mddev->dev_sectors;
6040 sector_t sync_blocks;
6041 int still_degraded = 0;
6042 int i;
6043
6044 if (sector_nr >= max_sector) {
6045 /* just being told to finish up .. nothing much to do */
6046
6047 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
6048 end_reshape(conf);
6049 return 0;
6050 }
6051
6052 if (mddev->curr_resync < max_sector) /* aborted */
6053 md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
6054 &sync_blocks, 1);
6055 else /* completed sync */
6056 conf->fullsync = 0;
6057 md_bitmap_close_sync(mddev->bitmap);
6058
6059 return 0;
6060 }
6061
6062 /* Allow raid5_quiesce to complete */
6063 wait_event(conf->wait_for_overlap, conf->quiesce != 2);
6064
6065 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6066 return reshape_request(mddev, sector_nr, skipped);
6067
6068 /* No need to check resync_max as we never do more than one
6069 * stripe, and as resync_max will always be on a chunk boundary,
6070 * if the check in md_do_sync didn't fire, there is no chance
6071 * of overstepping resync_max here
6072 */
6073
6074 /* if there is too many failed drives and we are trying
6075 * to resync, then assert that we are finished, because there is
6076 * nothing we can do.
6077 */
6078 if (mddev->degraded >= conf->max_degraded &&
6079 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6080 sector_t rv = mddev->dev_sectors - sector_nr;
6081 *skipped = 1;
6082 return rv;
6083 }
6084 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
6085 !conf->fullsync &&
6086 !md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
6087 sync_blocks >= RAID5_STRIPE_SECTORS(conf)) {
6088 /* we can skip this block, and probably more */
6089 do_div(sync_blocks, RAID5_STRIPE_SECTORS(conf));
6090 *skipped = 1;
6091 /* keep things rounded to whole stripes */
6092 return sync_blocks * RAID5_STRIPE_SECTORS(conf);
6093 }
6094
6095 md_bitmap_cond_end_sync(mddev->bitmap, sector_nr, false);
6096
6097 sh = raid5_get_active_stripe(conf, sector_nr, 0, 1, 0);
6098 if (sh == NULL) {
6099 sh = raid5_get_active_stripe(conf, sector_nr, 0, 0, 0);
6100 /* make sure we don't swamp the stripe cache if someone else
6101 * is trying to get access
6102 */
6103 schedule_timeout_uninterruptible(1);
6104 }
6105 /* Need to check if array will still be degraded after recovery/resync
6106 * Note in case of > 1 drive failures it's possible we're rebuilding
6107 * one drive while leaving another faulty drive in array.
6108 */
6109 rcu_read_lock();
6110 for (i = 0; i < conf->raid_disks; i++) {
6111 struct md_rdev *rdev = READ_ONCE(conf->disks[i].rdev);
6112
6113 if (rdev == NULL || test_bit(Faulty, &rdev->flags))
6114 still_degraded = 1;
6115 }
6116 rcu_read_unlock();
6117
6118 md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
6119
6120 set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
6121 set_bit(STRIPE_HANDLE, &sh->state);
6122
6123 raid5_release_stripe(sh);
6124
6125 return RAID5_STRIPE_SECTORS(conf);
6126}
6127
6128static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio,
6129 unsigned int offset)
6130{
6131 /* We may not be able to submit a whole bio at once as there
6132 * may not be enough stripe_heads available.
6133 * We cannot pre-allocate enough stripe_heads as we may need
6134 * more than exist in the cache (if we allow ever large chunks).
6135 * So we do one stripe head at a time and record in
6136 * ->bi_hw_segments how many have been done.
6137 *
6138 * We *know* that this entire raid_bio is in one chunk, so
6139 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
6140 */
6141 struct stripe_head *sh;
6142 int dd_idx;
6143 sector_t sector, logical_sector, last_sector;
6144 int scnt = 0;
6145 int handled = 0;
6146
6147 logical_sector = raid_bio->bi_iter.bi_sector &
6148 ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1);
6149 sector = raid5_compute_sector(conf, logical_sector,
6150 0, &dd_idx, NULL);
6151 last_sector = bio_end_sector(raid_bio);
6152
6153 for (; logical_sector < last_sector;
6154 logical_sector += RAID5_STRIPE_SECTORS(conf),
6155 sector += RAID5_STRIPE_SECTORS(conf),
6156 scnt++) {
6157
6158 if (scnt < offset)
6159 /* already done this stripe */
6160 continue;
6161
6162 sh = raid5_get_active_stripe(conf, sector, 0, 1, 1);
6163
6164 if (!sh) {
6165 /* failed to get a stripe - must wait */
6166 conf->retry_read_aligned = raid_bio;
6167 conf->retry_read_offset = scnt;
6168 return handled;
6169 }
6170
6171 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
6172 raid5_release_stripe(sh);
6173 conf->retry_read_aligned = raid_bio;
6174 conf->retry_read_offset = scnt;
6175 return handled;
6176 }
6177
6178 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
6179 handle_stripe(sh);
6180 raid5_release_stripe(sh);
6181 handled++;
6182 }
6183
6184 bio_endio(raid_bio);
6185
6186 if (atomic_dec_and_test(&conf->active_aligned_reads))
6187 wake_up(&conf->wait_for_quiescent);
6188 return handled;
6189}
6190
6191static int handle_active_stripes(struct r5conf *conf, int group,
6192 struct r5worker *worker,
6193 struct list_head *temp_inactive_list)
6194 __releases(&conf->device_lock)
6195 __acquires(&conf->device_lock)
6196{
6197 struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
6198 int i, batch_size = 0, hash;
6199 bool release_inactive = false;
6200
6201 while (batch_size < MAX_STRIPE_BATCH &&
6202 (sh = __get_priority_stripe(conf, group)) != NULL)
6203 batch[batch_size++] = sh;
6204
6205 if (batch_size == 0) {
6206 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6207 if (!list_empty(temp_inactive_list + i))
6208 break;
6209 if (i == NR_STRIPE_HASH_LOCKS) {
6210 spin_unlock_irq(&conf->device_lock);
6211 log_flush_stripe_to_raid(conf);
6212 spin_lock_irq(&conf->device_lock);
6213 return batch_size;
6214 }
6215 release_inactive = true;
6216 }
6217 spin_unlock_irq(&conf->device_lock);
6218
6219 release_inactive_stripe_list(conf, temp_inactive_list,
6220 NR_STRIPE_HASH_LOCKS);
6221
6222 r5l_flush_stripe_to_raid(conf->log);
6223 if (release_inactive) {
6224 spin_lock_irq(&conf->device_lock);
6225 return 0;
6226 }
6227
6228 for (i = 0; i < batch_size; i++)
6229 handle_stripe(batch[i]);
6230 log_write_stripe_run(conf);
6231
6232 cond_resched();
6233
6234 spin_lock_irq(&conf->device_lock);
6235 for (i = 0; i < batch_size; i++) {
6236 hash = batch[i]->hash_lock_index;
6237 __release_stripe(conf, batch[i], &temp_inactive_list[hash]);
6238 }
6239 return batch_size;
6240}
6241
6242static void raid5_do_work(struct work_struct *work)
6243{
6244 struct r5worker *worker = container_of(work, struct r5worker, work);
6245 struct r5worker_group *group = worker->group;
6246 struct r5conf *conf = group->conf;
6247 struct mddev *mddev = conf->mddev;
6248 int group_id = group - conf->worker_groups;
6249 int handled;
6250 struct blk_plug plug;
6251
6252 pr_debug("+++ raid5worker active\n");
6253
6254 blk_start_plug(&plug);
6255 handled = 0;
6256 spin_lock_irq(&conf->device_lock);
6257 while (1) {
6258 int batch_size, released;
6259
6260 released = release_stripe_list(conf, worker->temp_inactive_list);
6261
6262 batch_size = handle_active_stripes(conf, group_id, worker,
6263 worker->temp_inactive_list);
6264 worker->working = false;
6265 if (!batch_size && !released)
6266 break;
6267 handled += batch_size;
6268 wait_event_lock_irq(mddev->sb_wait,
6269 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags),
6270 conf->device_lock);
6271 }
6272 pr_debug("%d stripes handled\n", handled);
6273
6274 spin_unlock_irq(&conf->device_lock);
6275
6276 flush_deferred_bios(conf);
6277
6278 r5l_flush_stripe_to_raid(conf->log);
6279
6280 async_tx_issue_pending_all();
6281 blk_finish_plug(&plug);
6282
6283 pr_debug("--- raid5worker inactive\n");
6284}
6285
6286/*
6287 * This is our raid5 kernel thread.
6288 *
6289 * We scan the hash table for stripes which can be handled now.
6290 * During the scan, completed stripes are saved for us by the interrupt
6291 * handler, so that they will not have to wait for our next wakeup.
6292 */
6293static void raid5d(struct md_thread *thread)
6294{
6295 struct mddev *mddev = thread->mddev;
6296 struct r5conf *conf = mddev->private;
6297 int handled;
6298 struct blk_plug plug;
6299
6300 pr_debug("+++ raid5d active\n");
6301
6302 md_check_recovery(mddev);
6303
6304 blk_start_plug(&plug);
6305 handled = 0;
6306 spin_lock_irq(&conf->device_lock);
6307 while (1) {
6308 struct bio *bio;
6309 int batch_size, released;
6310 unsigned int offset;
6311
6312 released = release_stripe_list(conf, conf->temp_inactive_list);
6313 if (released)
6314 clear_bit(R5_DID_ALLOC, &conf->cache_state);
6315
6316 if (
6317 !list_empty(&conf->bitmap_list)) {
6318 /* Now is a good time to flush some bitmap updates */
6319 conf->seq_flush++;
6320 spin_unlock_irq(&conf->device_lock);
6321 md_bitmap_unplug(mddev->bitmap);
6322 spin_lock_irq(&conf->device_lock);
6323 conf->seq_write = conf->seq_flush;
6324 activate_bit_delay(conf, conf->temp_inactive_list);
6325 }
6326 raid5_activate_delayed(conf);
6327
6328 while ((bio = remove_bio_from_retry(conf, &offset))) {
6329 int ok;
6330 spin_unlock_irq(&conf->device_lock);
6331 ok = retry_aligned_read(conf, bio, offset);
6332 spin_lock_irq(&conf->device_lock);
6333 if (!ok)
6334 break;
6335 handled++;
6336 }
6337
6338 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
6339 conf->temp_inactive_list);
6340 if (!batch_size && !released)
6341 break;
6342 handled += batch_size;
6343
6344 if (mddev->sb_flags & ~(1 << MD_SB_CHANGE_PENDING)) {
6345 spin_unlock_irq(&conf->device_lock);
6346 md_check_recovery(mddev);
6347 spin_lock_irq(&conf->device_lock);
6348 }
6349 }
6350 pr_debug("%d stripes handled\n", handled);
6351
6352 spin_unlock_irq(&conf->device_lock);
6353 if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) &&
6354 mutex_trylock(&conf->cache_size_mutex)) {
6355 grow_one_stripe(conf, __GFP_NOWARN);
6356 /* Set flag even if allocation failed. This helps
6357 * slow down allocation requests when mem is short
6358 */
6359 set_bit(R5_DID_ALLOC, &conf->cache_state);
6360 mutex_unlock(&conf->cache_size_mutex);
6361 }
6362
6363 flush_deferred_bios(conf);
6364
6365 r5l_flush_stripe_to_raid(conf->log);
6366
6367 async_tx_issue_pending_all();
6368 blk_finish_plug(&plug);
6369
6370 pr_debug("--- raid5d inactive\n");
6371}
6372
6373static ssize_t
6374raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
6375{
6376 struct r5conf *conf;
6377 int ret = 0;
6378 spin_lock(&mddev->lock);
6379 conf = mddev->private;
6380 if (conf)
6381 ret = sprintf(page, "%d\n", conf->min_nr_stripes);
6382 spin_unlock(&mddev->lock);
6383 return ret;
6384}
6385
6386int
6387raid5_set_cache_size(struct mddev *mddev, int size)
6388{
6389 int result = 0;
6390 struct r5conf *conf = mddev->private;
6391
6392 if (size <= 16 || size > 32768)
6393 return -EINVAL;
6394
6395 conf->min_nr_stripes = size;
6396 mutex_lock(&conf->cache_size_mutex);
6397 while (size < conf->max_nr_stripes &&
6398 drop_one_stripe(conf))
6399 ;
6400 mutex_unlock(&conf->cache_size_mutex);
6401
6402 md_allow_write(mddev);
6403
6404 mutex_lock(&conf->cache_size_mutex);
6405 while (size > conf->max_nr_stripes)
6406 if (!grow_one_stripe(conf, GFP_KERNEL)) {
6407 conf->min_nr_stripes = conf->max_nr_stripes;
6408 result = -ENOMEM;
6409 break;
6410 }
6411 mutex_unlock(&conf->cache_size_mutex);
6412
6413 return result;
6414}
6415EXPORT_SYMBOL(raid5_set_cache_size);
6416
6417static ssize_t
6418raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
6419{
6420 struct r5conf *conf;
6421 unsigned long new;
6422 int err;
6423
6424 if (len >= PAGE_SIZE)
6425 return -EINVAL;
6426 if (kstrtoul(page, 10, &new))
6427 return -EINVAL;
6428 err = mddev_lock(mddev);
6429 if (err)
6430 return err;
6431 conf = mddev->private;
6432 if (!conf)
6433 err = -ENODEV;
6434 else
6435 err = raid5_set_cache_size(mddev, new);
6436 mddev_unlock(mddev);
6437
6438 return err ?: len;
6439}
6440
6441static struct md_sysfs_entry
6442raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
6443 raid5_show_stripe_cache_size,
6444 raid5_store_stripe_cache_size);
6445
6446static ssize_t
6447raid5_show_rmw_level(struct mddev *mddev, char *page)
6448{
6449 struct r5conf *conf = mddev->private;
6450 if (conf)
6451 return sprintf(page, "%d\n", conf->rmw_level);
6452 else
6453 return 0;
6454}
6455
6456static ssize_t
6457raid5_store_rmw_level(struct mddev *mddev, const char *page, size_t len)
6458{
6459 struct r5conf *conf = mddev->private;
6460 unsigned long new;
6461
6462 if (!conf)
6463 return -ENODEV;
6464
6465 if (len >= PAGE_SIZE)
6466 return -EINVAL;
6467
6468 if (kstrtoul(page, 10, &new))
6469 return -EINVAL;
6470
6471 if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
6472 return -EINVAL;
6473
6474 if (new != PARITY_DISABLE_RMW &&
6475 new != PARITY_ENABLE_RMW &&
6476 new != PARITY_PREFER_RMW)
6477 return -EINVAL;
6478
6479 conf->rmw_level = new;
6480 return len;
6481}
6482
6483static struct md_sysfs_entry
6484raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
6485 raid5_show_rmw_level,
6486 raid5_store_rmw_level);
6487
6488static ssize_t
6489raid5_show_stripe_size(struct mddev *mddev, char *page)
6490{
6491 struct r5conf *conf;
6492 int ret = 0;
6493
6494 spin_lock(&mddev->lock);
6495 conf = mddev->private;
6496 if (conf)
6497 ret = sprintf(page, "%lu\n", RAID5_STRIPE_SIZE(conf));
6498 spin_unlock(&mddev->lock);
6499 return ret;
6500}
6501
6502#if PAGE_SIZE != DEFAULT_STRIPE_SIZE
6503static ssize_t
6504raid5_store_stripe_size(struct mddev *mddev, const char *page, size_t len)
6505{
6506 struct r5conf *conf;
6507 unsigned long new;
6508 int err;
6509
6510 if (len >= PAGE_SIZE)
6511 return -EINVAL;
6512 if (kstrtoul(page, 10, &new))
6513 return -EINVAL;
6514
6515 /*
6516 * The value should not be bigger than PAGE_SIZE. It requires to
6517 * be multiple of DEFAULT_STRIPE_SIZE and the value should be power
6518 * of two.
6519 */
6520 if (new % DEFAULT_STRIPE_SIZE != 0 ||
6521 new > PAGE_SIZE || new == 0 ||
6522 new != roundup_pow_of_two(new))
6523 return -EINVAL;
6524
6525 err = mddev_lock(mddev);
6526 if (err)
6527 return err;
6528
6529 conf = mddev->private;
6530 if (!conf) {
6531 err = -ENODEV;
6532 goto out_unlock;
6533 }
6534
6535 if (new == conf->stripe_size)
6536 goto out_unlock;
6537
6538 pr_debug("md/raid: change stripe_size from %lu to %lu\n",
6539 conf->stripe_size, new);
6540
6541 mddev_suspend(mddev);
6542 conf->stripe_size = new;
6543 conf->stripe_shift = ilog2(new) - 9;
6544 conf->stripe_sectors = new >> 9;
6545 mddev_resume(mddev);
6546
6547out_unlock:
6548 mddev_unlock(mddev);
6549 return err ?: len;
6550}
6551
6552static struct md_sysfs_entry
6553raid5_stripe_size = __ATTR(stripe_size, 0644,
6554 raid5_show_stripe_size,
6555 raid5_store_stripe_size);
6556#else
6557static struct md_sysfs_entry
6558raid5_stripe_size = __ATTR(stripe_size, 0444,
6559 raid5_show_stripe_size,
6560 NULL);
6561#endif
6562
6563static ssize_t
6564raid5_show_preread_threshold(struct mddev *mddev, char *page)
6565{
6566 struct r5conf *conf;
6567 int ret = 0;
6568 spin_lock(&mddev->lock);
6569 conf = mddev->private;
6570 if (conf)
6571 ret = sprintf(page, "%d\n", conf->bypass_threshold);
6572 spin_unlock(&mddev->lock);
6573 return ret;
6574}
6575
6576static ssize_t
6577raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
6578{
6579 struct r5conf *conf;
6580 unsigned long new;
6581 int err;
6582
6583 if (len >= PAGE_SIZE)
6584 return -EINVAL;
6585 if (kstrtoul(page, 10, &new))
6586 return -EINVAL;
6587
6588 err = mddev_lock(mddev);
6589 if (err)
6590 return err;
6591 conf = mddev->private;
6592 if (!conf)
6593 err = -ENODEV;
6594 else if (new > conf->min_nr_stripes)
6595 err = -EINVAL;
6596 else
6597 conf->bypass_threshold = new;
6598 mddev_unlock(mddev);
6599 return err ?: len;
6600}
6601
6602static struct md_sysfs_entry
6603raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
6604 S_IRUGO | S_IWUSR,
6605 raid5_show_preread_threshold,
6606 raid5_store_preread_threshold);
6607
6608static ssize_t
6609raid5_show_skip_copy(struct mddev *mddev, char *page)
6610{
6611 struct r5conf *conf;
6612 int ret = 0;
6613 spin_lock(&mddev->lock);
6614 conf = mddev->private;
6615 if (conf)
6616 ret = sprintf(page, "%d\n", conf->skip_copy);
6617 spin_unlock(&mddev->lock);
6618 return ret;
6619}
6620
6621static ssize_t
6622raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
6623{
6624 struct r5conf *conf;
6625 unsigned long new;
6626 int err;
6627
6628 if (len >= PAGE_SIZE)
6629 return -EINVAL;
6630 if (kstrtoul(page, 10, &new))
6631 return -EINVAL;
6632 new = !!new;
6633
6634 err = mddev_lock(mddev);
6635 if (err)
6636 return err;
6637 conf = mddev->private;
6638 if (!conf)
6639 err = -ENODEV;
6640 else if (new != conf->skip_copy) {
6641 mddev_suspend(mddev);
6642 conf->skip_copy = new;
6643 if (new)
6644 mddev->queue->backing_dev_info->capabilities |=
6645 BDI_CAP_STABLE_WRITES;
6646 else
6647 mddev->queue->backing_dev_info->capabilities &=
6648 ~BDI_CAP_STABLE_WRITES;
6649 mddev_resume(mddev);
6650 }
6651 mddev_unlock(mddev);
6652 return err ?: len;
6653}
6654
6655static struct md_sysfs_entry
6656raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
6657 raid5_show_skip_copy,
6658 raid5_store_skip_copy);
6659
6660static ssize_t
6661stripe_cache_active_show(struct mddev *mddev, char *page)
6662{
6663 struct r5conf *conf = mddev->private;
6664 if (conf)
6665 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
6666 else
6667 return 0;
6668}
6669
6670static struct md_sysfs_entry
6671raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
6672
6673static ssize_t
6674raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
6675{
6676 struct r5conf *conf;
6677 int ret = 0;
6678 spin_lock(&mddev->lock);
6679 conf = mddev->private;
6680 if (conf)
6681 ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
6682 spin_unlock(&mddev->lock);
6683 return ret;
6684}
6685
6686static int alloc_thread_groups(struct r5conf *conf, int cnt,
6687 int *group_cnt,
6688 struct r5worker_group **worker_groups);
6689static ssize_t
6690raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
6691{
6692 struct r5conf *conf;
6693 unsigned int new;
6694 int err;
6695 struct r5worker_group *new_groups, *old_groups;
6696 int group_cnt;
6697
6698 if (len >= PAGE_SIZE)
6699 return -EINVAL;
6700 if (kstrtouint(page, 10, &new))
6701 return -EINVAL;
6702 /* 8192 should be big enough */
6703 if (new > 8192)
6704 return -EINVAL;
6705
6706 err = mddev_lock(mddev);
6707 if (err)
6708 return err;
6709 conf = mddev->private;
6710 if (!conf)
6711 err = -ENODEV;
6712 else if (new != conf->worker_cnt_per_group) {
6713 mddev_suspend(mddev);
6714
6715 old_groups = conf->worker_groups;
6716 if (old_groups)
6717 flush_workqueue(raid5_wq);
6718
6719 err = alloc_thread_groups(conf, new, &group_cnt, &new_groups);
6720 if (!err) {
6721 spin_lock_irq(&conf->device_lock);
6722 conf->group_cnt = group_cnt;
6723 conf->worker_cnt_per_group = new;
6724 conf->worker_groups = new_groups;
6725 spin_unlock_irq(&conf->device_lock);
6726
6727 if (old_groups)
6728 kfree(old_groups[0].workers);
6729 kfree(old_groups);
6730 }
6731 mddev_resume(mddev);
6732 }
6733 mddev_unlock(mddev);
6734
6735 return err ?: len;
6736}
6737
6738static struct md_sysfs_entry
6739raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
6740 raid5_show_group_thread_cnt,
6741 raid5_store_group_thread_cnt);
6742
6743static struct attribute *raid5_attrs[] = {
6744 &raid5_stripecache_size.attr,
6745 &raid5_stripecache_active.attr,
6746 &raid5_preread_bypass_threshold.attr,
6747 &raid5_group_thread_cnt.attr,
6748 &raid5_skip_copy.attr,
6749 &raid5_rmw_level.attr,
6750 &raid5_stripe_size.attr,
6751 &r5c_journal_mode.attr,
6752 &ppl_write_hint.attr,
6753 NULL,
6754};
6755static struct attribute_group raid5_attrs_group = {
6756 .name = NULL,
6757 .attrs = raid5_attrs,
6758};
6759
6760static int alloc_thread_groups(struct r5conf *conf, int cnt, int *group_cnt,
6761 struct r5worker_group **worker_groups)
6762{
6763 int i, j, k;
6764 ssize_t size;
6765 struct r5worker *workers;
6766
6767 if (cnt == 0) {
6768 *group_cnt = 0;
6769 *worker_groups = NULL;
6770 return 0;
6771 }
6772 *group_cnt = num_possible_nodes();
6773 size = sizeof(struct r5worker) * cnt;
6774 workers = kcalloc(size, *group_cnt, GFP_NOIO);
6775 *worker_groups = kcalloc(*group_cnt, sizeof(struct r5worker_group),
6776 GFP_NOIO);
6777 if (!*worker_groups || !workers) {
6778 kfree(workers);
6779 kfree(*worker_groups);
6780 return -ENOMEM;
6781 }
6782
6783 for (i = 0; i < *group_cnt; i++) {
6784 struct r5worker_group *group;
6785
6786 group = &(*worker_groups)[i];
6787 INIT_LIST_HEAD(&group->handle_list);
6788 INIT_LIST_HEAD(&group->loprio_list);
6789 group->conf = conf;
6790 group->workers = workers + i * cnt;
6791
6792 for (j = 0; j < cnt; j++) {
6793 struct r5worker *worker = group->workers + j;
6794 worker->group = group;
6795 INIT_WORK(&worker->work, raid5_do_work);
6796
6797 for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
6798 INIT_LIST_HEAD(worker->temp_inactive_list + k);
6799 }
6800 }
6801
6802 return 0;
6803}
6804
6805static void free_thread_groups(struct r5conf *conf)
6806{
6807 if (conf->worker_groups)
6808 kfree(conf->worker_groups[0].workers);
6809 kfree(conf->worker_groups);
6810 conf->worker_groups = NULL;
6811}
6812
6813static sector_t
6814raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
6815{
6816 struct r5conf *conf = mddev->private;
6817
6818 if (!sectors)
6819 sectors = mddev->dev_sectors;
6820 if (!raid_disks)
6821 /* size is defined by the smallest of previous and new size */
6822 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
6823
6824 sectors &= ~((sector_t)conf->chunk_sectors - 1);
6825 sectors &= ~((sector_t)conf->prev_chunk_sectors - 1);
6826 return sectors * (raid_disks - conf->max_degraded);
6827}
6828
6829static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6830{
6831 safe_put_page(percpu->spare_page);
6832 percpu->spare_page = NULL;
6833 kvfree(percpu->scribble);
6834 percpu->scribble = NULL;
6835}
6836
6837static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6838{
6839 if (conf->level == 6 && !percpu->spare_page) {
6840 percpu->spare_page = alloc_page(GFP_KERNEL);
6841 if (!percpu->spare_page)
6842 return -ENOMEM;
6843 }
6844
6845 if (scribble_alloc(percpu,
6846 max(conf->raid_disks,
6847 conf->previous_raid_disks),
6848 max(conf->chunk_sectors,
6849 conf->prev_chunk_sectors)
6850 / RAID5_STRIPE_SECTORS(conf))) {
6851 free_scratch_buffer(conf, percpu);
6852 return -ENOMEM;
6853 }
6854
6855 return 0;
6856}
6857
6858static int raid456_cpu_dead(unsigned int cpu, struct hlist_node *node)
6859{
6860 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
6861
6862 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6863 return 0;
6864}
6865
6866static void raid5_free_percpu(struct r5conf *conf)
6867{
6868 if (!conf->percpu)
6869 return;
6870
6871 cpuhp_state_remove_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
6872 free_percpu(conf->percpu);
6873}
6874
6875static void free_conf(struct r5conf *conf)
6876{
6877 int i;
6878
6879 log_exit(conf);
6880
6881 unregister_shrinker(&conf->shrinker);
6882 free_thread_groups(conf);
6883 shrink_stripes(conf);
6884 raid5_free_percpu(conf);
6885 for (i = 0; i < conf->pool_size; i++)
6886 if (conf->disks[i].extra_page)
6887 put_page(conf->disks[i].extra_page);
6888 kfree(conf->disks);
6889 bioset_exit(&conf->bio_split);
6890 kfree(conf->stripe_hashtbl);
6891 kfree(conf->pending_data);
6892 kfree(conf);
6893}
6894
6895static int raid456_cpu_up_prepare(unsigned int cpu, struct hlist_node *node)
6896{
6897 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
6898 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
6899
6900 if (alloc_scratch_buffer(conf, percpu)) {
6901 pr_warn("%s: failed memory allocation for cpu%u\n",
6902 __func__, cpu);
6903 return -ENOMEM;
6904 }
6905 return 0;
6906}
6907
6908static int raid5_alloc_percpu(struct r5conf *conf)
6909{
6910 int err = 0;
6911
6912 conf->percpu = alloc_percpu(struct raid5_percpu);
6913 if (!conf->percpu)
6914 return -ENOMEM;
6915
6916 err = cpuhp_state_add_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
6917 if (!err) {
6918 conf->scribble_disks = max(conf->raid_disks,
6919 conf->previous_raid_disks);
6920 conf->scribble_sectors = max(conf->chunk_sectors,
6921 conf->prev_chunk_sectors);
6922 }
6923 return err;
6924}
6925
6926static unsigned long raid5_cache_scan(struct shrinker *shrink,
6927 struct shrink_control *sc)
6928{
6929 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6930 unsigned long ret = SHRINK_STOP;
6931
6932 if (mutex_trylock(&conf->cache_size_mutex)) {
6933 ret= 0;
6934 while (ret < sc->nr_to_scan &&
6935 conf->max_nr_stripes > conf->min_nr_stripes) {
6936 if (drop_one_stripe(conf) == 0) {
6937 ret = SHRINK_STOP;
6938 break;
6939 }
6940 ret++;
6941 }
6942 mutex_unlock(&conf->cache_size_mutex);
6943 }
6944 return ret;
6945}
6946
6947static unsigned long raid5_cache_count(struct shrinker *shrink,
6948 struct shrink_control *sc)
6949{
6950 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6951
6952 if (conf->max_nr_stripes < conf->min_nr_stripes)
6953 /* unlikely, but not impossible */
6954 return 0;
6955 return conf->max_nr_stripes - conf->min_nr_stripes;
6956}
6957
6958static struct r5conf *setup_conf(struct mddev *mddev)
6959{
6960 struct r5conf *conf;
6961 int raid_disk, memory, max_disks;
6962 struct md_rdev *rdev;
6963 struct disk_info *disk;
6964 char pers_name[6];
6965 int i;
6966 int group_cnt;
6967 struct r5worker_group *new_group;
6968 int ret;
6969
6970 if (mddev->new_level != 5
6971 && mddev->new_level != 4
6972 && mddev->new_level != 6) {
6973 pr_warn("md/raid:%s: raid level not set to 4/5/6 (%d)\n",
6974 mdname(mddev), mddev->new_level);
6975 return ERR_PTR(-EIO);
6976 }
6977 if ((mddev->new_level == 5
6978 && !algorithm_valid_raid5(mddev->new_layout)) ||
6979 (mddev->new_level == 6
6980 && !algorithm_valid_raid6(mddev->new_layout))) {
6981 pr_warn("md/raid:%s: layout %d not supported\n",
6982 mdname(mddev), mddev->new_layout);
6983 return ERR_PTR(-EIO);
6984 }
6985 if (mddev->new_level == 6 && mddev->raid_disks < 4) {
6986 pr_warn("md/raid:%s: not enough configured devices (%d, minimum 4)\n",
6987 mdname(mddev), mddev->raid_disks);
6988 return ERR_PTR(-EINVAL);
6989 }
6990
6991 if (!mddev->new_chunk_sectors ||
6992 (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
6993 !is_power_of_2(mddev->new_chunk_sectors)) {
6994 pr_warn("md/raid:%s: invalid chunk size %d\n",
6995 mdname(mddev), mddev->new_chunk_sectors << 9);
6996 return ERR_PTR(-EINVAL);
6997 }
6998
6999 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
7000 if (conf == NULL)
7001 goto abort;
7002
7003#if PAGE_SIZE != DEFAULT_STRIPE_SIZE
7004 conf->stripe_size = DEFAULT_STRIPE_SIZE;
7005 conf->stripe_shift = ilog2(DEFAULT_STRIPE_SIZE) - 9;
7006 conf->stripe_sectors = DEFAULT_STRIPE_SIZE >> 9;
7007#endif
7008 INIT_LIST_HEAD(&conf->free_list);
7009 INIT_LIST_HEAD(&conf->pending_list);
7010 conf->pending_data = kcalloc(PENDING_IO_MAX,
7011 sizeof(struct r5pending_data),
7012 GFP_KERNEL);
7013 if (!conf->pending_data)
7014 goto abort;
7015 for (i = 0; i < PENDING_IO_MAX; i++)
7016 list_add(&conf->pending_data[i].sibling, &conf->free_list);
7017 /* Don't enable multi-threading by default*/
7018 if (!alloc_thread_groups(conf, 0, &group_cnt, &new_group)) {
7019 conf->group_cnt = group_cnt;
7020 conf->worker_cnt_per_group = 0;
7021 conf->worker_groups = new_group;
7022 } else
7023 goto abort;
7024 spin_lock_init(&conf->device_lock);
7025 seqcount_spinlock_init(&conf->gen_lock, &conf->device_lock);
7026 mutex_init(&conf->cache_size_mutex);
7027 init_waitqueue_head(&conf->wait_for_quiescent);
7028 init_waitqueue_head(&conf->wait_for_stripe);
7029 init_waitqueue_head(&conf->wait_for_overlap);
7030 INIT_LIST_HEAD(&conf->handle_list);
7031 INIT_LIST_HEAD(&conf->loprio_list);
7032 INIT_LIST_HEAD(&conf->hold_list);
7033 INIT_LIST_HEAD(&conf->delayed_list);
7034 INIT_LIST_HEAD(&conf->bitmap_list);
7035 init_llist_head(&conf->released_stripes);
7036 atomic_set(&conf->active_stripes, 0);
7037 atomic_set(&conf->preread_active_stripes, 0);
7038 atomic_set(&conf->active_aligned_reads, 0);
7039 spin_lock_init(&conf->pending_bios_lock);
7040 conf->batch_bio_dispatch = true;
7041 rdev_for_each(rdev, mddev) {
7042 if (test_bit(Journal, &rdev->flags))
7043 continue;
7044 if (blk_queue_nonrot(bdev_get_queue(rdev->bdev))) {
7045 conf->batch_bio_dispatch = false;
7046 break;
7047 }
7048 }
7049
7050 conf->bypass_threshold = BYPASS_THRESHOLD;
7051 conf->recovery_disabled = mddev->recovery_disabled - 1;
7052
7053 conf->raid_disks = mddev->raid_disks;
7054 if (mddev->reshape_position == MaxSector)
7055 conf->previous_raid_disks = mddev->raid_disks;
7056 else
7057 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
7058 max_disks = max(conf->raid_disks, conf->previous_raid_disks);
7059
7060 conf->disks = kcalloc(max_disks, sizeof(struct disk_info),
7061 GFP_KERNEL);
7062
7063 if (!conf->disks)
7064 goto abort;
7065
7066 for (i = 0; i < max_disks; i++) {
7067 conf->disks[i].extra_page = alloc_page(GFP_KERNEL);
7068 if (!conf->disks[i].extra_page)
7069 goto abort;
7070 }
7071
7072 ret = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
7073 if (ret)
7074 goto abort;
7075 conf->mddev = mddev;
7076
7077 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
7078 goto abort;
7079
7080 /* We init hash_locks[0] separately to that it can be used
7081 * as the reference lock in the spin_lock_nest_lock() call
7082 * in lock_all_device_hash_locks_irq in order to convince
7083 * lockdep that we know what we are doing.
7084 */
7085 spin_lock_init(conf->hash_locks);
7086 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
7087 spin_lock_init(conf->hash_locks + i);
7088
7089 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
7090 INIT_LIST_HEAD(conf->inactive_list + i);
7091
7092 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
7093 INIT_LIST_HEAD(conf->temp_inactive_list + i);
7094
7095 atomic_set(&conf->r5c_cached_full_stripes, 0);
7096 INIT_LIST_HEAD(&conf->r5c_full_stripe_list);
7097 atomic_set(&conf->r5c_cached_partial_stripes, 0);
7098 INIT_LIST_HEAD(&conf->r5c_partial_stripe_list);
7099 atomic_set(&conf->r5c_flushing_full_stripes, 0);
7100 atomic_set(&conf->r5c_flushing_partial_stripes, 0);
7101
7102 conf->level = mddev->new_level;
7103 conf->chunk_sectors = mddev->new_chunk_sectors;
7104 if (raid5_alloc_percpu(conf) != 0)
7105 goto abort;
7106
7107 pr_debug("raid456: run(%s) called.\n", mdname(mddev));
7108
7109 rdev_for_each(rdev, mddev) {
7110 raid_disk = rdev->raid_disk;
7111 if (raid_disk >= max_disks
7112 || raid_disk < 0 || test_bit(Journal, &rdev->flags))
7113 continue;
7114 disk = conf->disks + raid_disk;
7115
7116 if (test_bit(Replacement, &rdev->flags)) {
7117 if (disk->replacement)
7118 goto abort;
7119 disk->replacement = rdev;
7120 } else {
7121 if (disk->rdev)
7122 goto abort;
7123 disk->rdev = rdev;
7124 }
7125
7126 if (test_bit(In_sync, &rdev->flags)) {
7127 char b[BDEVNAME_SIZE];
7128 pr_info("md/raid:%s: device %s operational as raid disk %d\n",
7129 mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
7130 } else if (rdev->saved_raid_disk != raid_disk)
7131 /* Cannot rely on bitmap to complete recovery */
7132 conf->fullsync = 1;
7133 }
7134
7135 conf->level = mddev->new_level;
7136 if (conf->level == 6) {
7137 conf->max_degraded = 2;
7138 if (raid6_call.xor_syndrome)
7139 conf->rmw_level = PARITY_ENABLE_RMW;
7140 else
7141 conf->rmw_level = PARITY_DISABLE_RMW;
7142 } else {
7143 conf->max_degraded = 1;
7144 conf->rmw_level = PARITY_ENABLE_RMW;
7145 }
7146 conf->algorithm = mddev->new_layout;
7147 conf->reshape_progress = mddev->reshape_position;
7148 if (conf->reshape_progress != MaxSector) {
7149 conf->prev_chunk_sectors = mddev->chunk_sectors;
7150 conf->prev_algo = mddev->layout;
7151 } else {
7152 conf->prev_chunk_sectors = conf->chunk_sectors;
7153 conf->prev_algo = conf->algorithm;
7154 }
7155
7156 conf->min_nr_stripes = NR_STRIPES;
7157 if (mddev->reshape_position != MaxSector) {
7158 int stripes = max_t(int,
7159 ((mddev->chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4,
7160 ((mddev->new_chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4);
7161 conf->min_nr_stripes = max(NR_STRIPES, stripes);
7162 if (conf->min_nr_stripes != NR_STRIPES)
7163 pr_info("md/raid:%s: force stripe size %d for reshape\n",
7164 mdname(mddev), conf->min_nr_stripes);
7165 }
7166 memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
7167 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
7168 atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
7169 if (grow_stripes(conf, conf->min_nr_stripes)) {
7170 pr_warn("md/raid:%s: couldn't allocate %dkB for buffers\n",
7171 mdname(mddev), memory);
7172 goto abort;
7173 } else
7174 pr_debug("md/raid:%s: allocated %dkB\n", mdname(mddev), memory);
7175 /*
7176 * Losing a stripe head costs more than the time to refill it,
7177 * it reduces the queue depth and so can hurt throughput.
7178 * So set it rather large, scaled by number of devices.
7179 */
7180 conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
7181 conf->shrinker.scan_objects = raid5_cache_scan;
7182 conf->shrinker.count_objects = raid5_cache_count;
7183 conf->shrinker.batch = 128;
7184 conf->shrinker.flags = 0;
7185 if (register_shrinker(&conf->shrinker)) {
7186 pr_warn("md/raid:%s: couldn't register shrinker.\n",
7187 mdname(mddev));
7188 goto abort;
7189 }
7190
7191 sprintf(pers_name, "raid%d", mddev->new_level);
7192 conf->thread = md_register_thread(raid5d, mddev, pers_name);
7193 if (!conf->thread) {
7194 pr_warn("md/raid:%s: couldn't allocate thread.\n",
7195 mdname(mddev));
7196 goto abort;
7197 }
7198
7199 return conf;
7200
7201 abort:
7202 if (conf) {
7203 free_conf(conf);
7204 return ERR_PTR(-EIO);
7205 } else
7206 return ERR_PTR(-ENOMEM);
7207}
7208
7209static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
7210{
7211 switch (algo) {
7212 case ALGORITHM_PARITY_0:
7213 if (raid_disk < max_degraded)
7214 return 1;
7215 break;
7216 case ALGORITHM_PARITY_N:
7217 if (raid_disk >= raid_disks - max_degraded)
7218 return 1;
7219 break;
7220 case ALGORITHM_PARITY_0_6:
7221 if (raid_disk == 0 ||
7222 raid_disk == raid_disks - 1)
7223 return 1;
7224 break;
7225 case ALGORITHM_LEFT_ASYMMETRIC_6:
7226 case ALGORITHM_RIGHT_ASYMMETRIC_6:
7227 case ALGORITHM_LEFT_SYMMETRIC_6:
7228 case ALGORITHM_RIGHT_SYMMETRIC_6:
7229 if (raid_disk == raid_disks - 1)
7230 return 1;
7231 }
7232 return 0;
7233}
7234
7235static int raid5_run(struct mddev *mddev)
7236{
7237 struct r5conf *conf;
7238 int working_disks = 0;
7239 int dirty_parity_disks = 0;
7240 struct md_rdev *rdev;
7241 struct md_rdev *journal_dev = NULL;
7242 sector_t reshape_offset = 0;
7243 int i;
7244 long long min_offset_diff = 0;
7245 int first = 1;
7246
7247 if (mddev_init_writes_pending(mddev) < 0)
7248 return -ENOMEM;
7249
7250 if (mddev->recovery_cp != MaxSector)
7251 pr_notice("md/raid:%s: not clean -- starting background reconstruction\n",
7252 mdname(mddev));
7253
7254 rdev_for_each(rdev, mddev) {
7255 long long diff;
7256
7257 if (test_bit(Journal, &rdev->flags)) {
7258 journal_dev = rdev;
7259 continue;
7260 }
7261 if (rdev->raid_disk < 0)
7262 continue;
7263 diff = (rdev->new_data_offset - rdev->data_offset);
7264 if (first) {
7265 min_offset_diff = diff;
7266 first = 0;
7267 } else if (mddev->reshape_backwards &&
7268 diff < min_offset_diff)
7269 min_offset_diff = diff;
7270 else if (!mddev->reshape_backwards &&
7271 diff > min_offset_diff)
7272 min_offset_diff = diff;
7273 }
7274
7275 if ((test_bit(MD_HAS_JOURNAL, &mddev->flags) || journal_dev) &&
7276 (mddev->bitmap_info.offset || mddev->bitmap_info.file)) {
7277 pr_notice("md/raid:%s: array cannot have both journal and bitmap\n",
7278 mdname(mddev));
7279 return -EINVAL;
7280 }
7281
7282 if (mddev->reshape_position != MaxSector) {
7283 /* Check that we can continue the reshape.
7284 * Difficulties arise if the stripe we would write to
7285 * next is at or after the stripe we would read from next.
7286 * For a reshape that changes the number of devices, this
7287 * is only possible for a very short time, and mdadm makes
7288 * sure that time appears to have past before assembling
7289 * the array. So we fail if that time hasn't passed.
7290 * For a reshape that keeps the number of devices the same
7291 * mdadm must be monitoring the reshape can keeping the
7292 * critical areas read-only and backed up. It will start
7293 * the array in read-only mode, so we check for that.
7294 */
7295 sector_t here_new, here_old;
7296 int old_disks;
7297 int max_degraded = (mddev->level == 6 ? 2 : 1);
7298 int chunk_sectors;
7299 int new_data_disks;
7300
7301 if (journal_dev) {
7302 pr_warn("md/raid:%s: don't support reshape with journal - aborting.\n",
7303 mdname(mddev));
7304 return -EINVAL;
7305 }
7306
7307 if (mddev->new_level != mddev->level) {
7308 pr_warn("md/raid:%s: unsupported reshape required - aborting.\n",
7309 mdname(mddev));
7310 return -EINVAL;
7311 }
7312 old_disks = mddev->raid_disks - mddev->delta_disks;
7313 /* reshape_position must be on a new-stripe boundary, and one
7314 * further up in new geometry must map after here in old
7315 * geometry.
7316 * If the chunk sizes are different, then as we perform reshape
7317 * in units of the largest of the two, reshape_position needs
7318 * be a multiple of the largest chunk size times new data disks.
7319 */
7320 here_new = mddev->reshape_position;
7321 chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors);
7322 new_data_disks = mddev->raid_disks - max_degraded;
7323 if (sector_div(here_new, chunk_sectors * new_data_disks)) {
7324 pr_warn("md/raid:%s: reshape_position not on a stripe boundary\n",
7325 mdname(mddev));
7326 return -EINVAL;
7327 }
7328 reshape_offset = here_new * chunk_sectors;
7329 /* here_new is the stripe we will write to */
7330 here_old = mddev->reshape_position;
7331 sector_div(here_old, chunk_sectors * (old_disks-max_degraded));
7332 /* here_old is the first stripe that we might need to read
7333 * from */
7334 if (mddev->delta_disks == 0) {
7335 /* We cannot be sure it is safe to start an in-place
7336 * reshape. It is only safe if user-space is monitoring
7337 * and taking constant backups.
7338 * mdadm always starts a situation like this in
7339 * readonly mode so it can take control before
7340 * allowing any writes. So just check for that.
7341 */
7342 if (abs(min_offset_diff) >= mddev->chunk_sectors &&
7343 abs(min_offset_diff) >= mddev->new_chunk_sectors)
7344 /* not really in-place - so OK */;
7345 else if (mddev->ro == 0) {
7346 pr_warn("md/raid:%s: in-place reshape must be started in read-only mode - aborting\n",
7347 mdname(mddev));
7348 return -EINVAL;
7349 }
7350 } else if (mddev->reshape_backwards
7351 ? (here_new * chunk_sectors + min_offset_diff <=
7352 here_old * chunk_sectors)
7353 : (here_new * chunk_sectors >=
7354 here_old * chunk_sectors + (-min_offset_diff))) {
7355 /* Reading from the same stripe as writing to - bad */
7356 pr_warn("md/raid:%s: reshape_position too early for auto-recovery - aborting.\n",
7357 mdname(mddev));
7358 return -EINVAL;
7359 }
7360 pr_debug("md/raid:%s: reshape will continue\n", mdname(mddev));
7361 /* OK, we should be able to continue; */
7362 } else {
7363 BUG_ON(mddev->level != mddev->new_level);
7364 BUG_ON(mddev->layout != mddev->new_layout);
7365 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
7366 BUG_ON(mddev->delta_disks != 0);
7367 }
7368
7369 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) &&
7370 test_bit(MD_HAS_PPL, &mddev->flags)) {
7371 pr_warn("md/raid:%s: using journal device and PPL not allowed - disabling PPL\n",
7372 mdname(mddev));
7373 clear_bit(MD_HAS_PPL, &mddev->flags);
7374 clear_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags);
7375 }
7376
7377 if (mddev->private == NULL)
7378 conf = setup_conf(mddev);
7379 else
7380 conf = mddev->private;
7381
7382 if (IS_ERR(conf))
7383 return PTR_ERR(conf);
7384
7385 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
7386 if (!journal_dev) {
7387 pr_warn("md/raid:%s: journal disk is missing, force array readonly\n",
7388 mdname(mddev));
7389 mddev->ro = 1;
7390 set_disk_ro(mddev->gendisk, 1);
7391 } else if (mddev->recovery_cp == MaxSector)
7392 set_bit(MD_JOURNAL_CLEAN, &mddev->flags);
7393 }
7394
7395 conf->min_offset_diff = min_offset_diff;
7396 mddev->thread = conf->thread;
7397 conf->thread = NULL;
7398 mddev->private = conf;
7399
7400 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
7401 i++) {
7402 rdev = conf->disks[i].rdev;
7403 if (!rdev && conf->disks[i].replacement) {
7404 /* The replacement is all we have yet */
7405 rdev = conf->disks[i].replacement;
7406 conf->disks[i].replacement = NULL;
7407 clear_bit(Replacement, &rdev->flags);
7408 conf->disks[i].rdev = rdev;
7409 }
7410 if (!rdev)
7411 continue;
7412 if (conf->disks[i].replacement &&
7413 conf->reshape_progress != MaxSector) {
7414 /* replacements and reshape simply do not mix. */
7415 pr_warn("md: cannot handle concurrent replacement and reshape.\n");
7416 goto abort;
7417 }
7418 if (test_bit(In_sync, &rdev->flags)) {
7419 working_disks++;
7420 continue;
7421 }
7422 /* This disc is not fully in-sync. However if it
7423 * just stored parity (beyond the recovery_offset),
7424 * when we don't need to be concerned about the
7425 * array being dirty.
7426 * When reshape goes 'backwards', we never have
7427 * partially completed devices, so we only need
7428 * to worry about reshape going forwards.
7429 */
7430 /* Hack because v0.91 doesn't store recovery_offset properly. */
7431 if (mddev->major_version == 0 &&
7432 mddev->minor_version > 90)
7433 rdev->recovery_offset = reshape_offset;
7434
7435 if (rdev->recovery_offset < reshape_offset) {
7436 /* We need to check old and new layout */
7437 if (!only_parity(rdev->raid_disk,
7438 conf->algorithm,
7439 conf->raid_disks,
7440 conf->max_degraded))
7441 continue;
7442 }
7443 if (!only_parity(rdev->raid_disk,
7444 conf->prev_algo,
7445 conf->previous_raid_disks,
7446 conf->max_degraded))
7447 continue;
7448 dirty_parity_disks++;
7449 }
7450
7451 /*
7452 * 0 for a fully functional array, 1 or 2 for a degraded array.
7453 */
7454 mddev->degraded = raid5_calc_degraded(conf);
7455
7456 if (has_failed(conf)) {
7457 pr_crit("md/raid:%s: not enough operational devices (%d/%d failed)\n",
7458 mdname(mddev), mddev->degraded, conf->raid_disks);
7459 goto abort;
7460 }
7461
7462 /* device size must be a multiple of chunk size */
7463 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
7464 mddev->resync_max_sectors = mddev->dev_sectors;
7465
7466 if (mddev->degraded > dirty_parity_disks &&
7467 mddev->recovery_cp != MaxSector) {
7468 if (test_bit(MD_HAS_PPL, &mddev->flags))
7469 pr_crit("md/raid:%s: starting dirty degraded array with PPL.\n",
7470 mdname(mddev));
7471 else if (mddev->ok_start_degraded)
7472 pr_crit("md/raid:%s: starting dirty degraded array - data corruption possible.\n",
7473 mdname(mddev));
7474 else {
7475 pr_crit("md/raid:%s: cannot start dirty degraded array.\n",
7476 mdname(mddev));
7477 goto abort;
7478 }
7479 }
7480
7481 pr_info("md/raid:%s: raid level %d active with %d out of %d devices, algorithm %d\n",
7482 mdname(mddev), conf->level,
7483 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
7484 mddev->new_layout);
7485
7486 print_raid5_conf(conf);
7487
7488 if (conf->reshape_progress != MaxSector) {
7489 conf->reshape_safe = conf->reshape_progress;
7490 atomic_set(&conf->reshape_stripes, 0);
7491 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7492 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7493 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7494 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7495 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7496 "reshape");
7497 if (!mddev->sync_thread)
7498 goto abort;
7499 }
7500
7501 /* Ok, everything is just fine now */
7502 if (mddev->to_remove == &raid5_attrs_group)
7503 mddev->to_remove = NULL;
7504 else if (mddev->kobj.sd &&
7505 sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
7506 pr_warn("raid5: failed to create sysfs attributes for %s\n",
7507 mdname(mddev));
7508 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7509
7510 if (mddev->queue) {
7511 int chunk_size;
7512 /* read-ahead size must cover two whole stripes, which
7513 * is 2 * (datadisks) * chunksize where 'n' is the
7514 * number of raid devices
7515 */
7516 int data_disks = conf->previous_raid_disks - conf->max_degraded;
7517 int stripe = data_disks *
7518 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
7519 if (mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
7520 mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
7521
7522 chunk_size = mddev->chunk_sectors << 9;
7523 blk_queue_io_min(mddev->queue, chunk_size);
7524 blk_queue_io_opt(mddev->queue, chunk_size *
7525 (conf->raid_disks - conf->max_degraded));
7526 mddev->queue->limits.raid_partial_stripes_expensive = 1;
7527 /*
7528 * We can only discard a whole stripe. It doesn't make sense to
7529 * discard data disk but write parity disk
7530 */
7531 stripe = stripe * PAGE_SIZE;
7532 /* Round up to power of 2, as discard handling
7533 * currently assumes that */
7534 while ((stripe-1) & stripe)
7535 stripe = (stripe | (stripe-1)) + 1;
7536 mddev->queue->limits.discard_alignment = stripe;
7537 mddev->queue->limits.discard_granularity = stripe;
7538
7539 blk_queue_max_write_same_sectors(mddev->queue, 0);
7540 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
7541
7542 rdev_for_each(rdev, mddev) {
7543 disk_stack_limits(mddev->gendisk, rdev->bdev,
7544 rdev->data_offset << 9);
7545 disk_stack_limits(mddev->gendisk, rdev->bdev,
7546 rdev->new_data_offset << 9);
7547 }
7548
7549 /*
7550 * zeroing is required, otherwise data
7551 * could be lost. Consider a scenario: discard a stripe
7552 * (the stripe could be inconsistent if
7553 * discard_zeroes_data is 0); write one disk of the
7554 * stripe (the stripe could be inconsistent again
7555 * depending on which disks are used to calculate
7556 * parity); the disk is broken; The stripe data of this
7557 * disk is lost.
7558 *
7559 * We only allow DISCARD if the sysadmin has confirmed that
7560 * only safe devices are in use by setting a module parameter.
7561 * A better idea might be to turn DISCARD into WRITE_ZEROES
7562 * requests, as that is required to be safe.
7563 */
7564 if (devices_handle_discard_safely &&
7565 mddev->queue->limits.max_discard_sectors >= (stripe >> 9) &&
7566 mddev->queue->limits.discard_granularity >= stripe)
7567 blk_queue_flag_set(QUEUE_FLAG_DISCARD,
7568 mddev->queue);
7569 else
7570 blk_queue_flag_clear(QUEUE_FLAG_DISCARD,
7571 mddev->queue);
7572
7573 blk_queue_max_hw_sectors(mddev->queue, UINT_MAX);
7574 }
7575
7576 if (log_init(conf, journal_dev, raid5_has_ppl(conf)))
7577 goto abort;
7578
7579 return 0;
7580abort:
7581 md_unregister_thread(&mddev->thread);
7582 print_raid5_conf(conf);
7583 free_conf(conf);
7584 mddev->private = NULL;
7585 pr_warn("md/raid:%s: failed to run raid set.\n", mdname(mddev));
7586 return -EIO;
7587}
7588
7589static void raid5_free(struct mddev *mddev, void *priv)
7590{
7591 struct r5conf *conf = priv;
7592
7593 free_conf(conf);
7594 mddev->to_remove = &raid5_attrs_group;
7595}
7596
7597static void raid5_status(struct seq_file *seq, struct mddev *mddev)
7598{
7599 struct r5conf *conf = mddev->private;
7600 int i;
7601
7602 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
7603 conf->chunk_sectors / 2, mddev->layout);
7604 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
7605 rcu_read_lock();
7606 for (i = 0; i < conf->raid_disks; i++) {
7607 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
7608 seq_printf (seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
7609 }
7610 rcu_read_unlock();
7611 seq_printf (seq, "]");
7612}
7613
7614static void print_raid5_conf (struct r5conf *conf)
7615{
7616 int i;
7617 struct disk_info *tmp;
7618
7619 pr_debug("RAID conf printout:\n");
7620 if (!conf) {
7621 pr_debug("(conf==NULL)\n");
7622 return;
7623 }
7624 pr_debug(" --- level:%d rd:%d wd:%d\n", conf->level,
7625 conf->raid_disks,
7626 conf->raid_disks - conf->mddev->degraded);
7627
7628 for (i = 0; i < conf->raid_disks; i++) {
7629 char b[BDEVNAME_SIZE];
7630 tmp = conf->disks + i;
7631 if (tmp->rdev)
7632 pr_debug(" disk %d, o:%d, dev:%s\n",
7633 i, !test_bit(Faulty, &tmp->rdev->flags),
7634 bdevname(tmp->rdev->bdev, b));
7635 }
7636}
7637
7638static int raid5_spare_active(struct mddev *mddev)
7639{
7640 int i;
7641 struct r5conf *conf = mddev->private;
7642 struct disk_info *tmp;
7643 int count = 0;
7644 unsigned long flags;
7645
7646 for (i = 0; i < conf->raid_disks; i++) {
7647 tmp = conf->disks + i;
7648 if (tmp->replacement
7649 && tmp->replacement->recovery_offset == MaxSector
7650 && !test_bit(Faulty, &tmp->replacement->flags)
7651 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
7652 /* Replacement has just become active. */
7653 if (!tmp->rdev
7654 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
7655 count++;
7656 if (tmp->rdev) {
7657 /* Replaced device not technically faulty,
7658 * but we need to be sure it gets removed
7659 * and never re-added.
7660 */
7661 set_bit(Faulty, &tmp->rdev->flags);
7662 sysfs_notify_dirent_safe(
7663 tmp->rdev->sysfs_state);
7664 }
7665 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
7666 } else if (tmp->rdev
7667 && tmp->rdev->recovery_offset == MaxSector
7668 && !test_bit(Faulty, &tmp->rdev->flags)
7669 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
7670 count++;
7671 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
7672 }
7673 }
7674 spin_lock_irqsave(&conf->device_lock, flags);
7675 mddev->degraded = raid5_calc_degraded(conf);
7676 spin_unlock_irqrestore(&conf->device_lock, flags);
7677 print_raid5_conf(conf);
7678 return count;
7679}
7680
7681static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
7682{
7683 struct r5conf *conf = mddev->private;
7684 int err = 0;
7685 int number = rdev->raid_disk;
7686 struct md_rdev **rdevp;
7687 struct disk_info *p = conf->disks + number;
7688
7689 print_raid5_conf(conf);
7690 if (test_bit(Journal, &rdev->flags) && conf->log) {
7691 /*
7692 * we can't wait pending write here, as this is called in
7693 * raid5d, wait will deadlock.
7694 * neilb: there is no locking about new writes here,
7695 * so this cannot be safe.
7696 */
7697 if (atomic_read(&conf->active_stripes) ||
7698 atomic_read(&conf->r5c_cached_full_stripes) ||
7699 atomic_read(&conf->r5c_cached_partial_stripes)) {
7700 return -EBUSY;
7701 }
7702 log_exit(conf);
7703 return 0;
7704 }
7705 if (rdev == p->rdev)
7706 rdevp = &p->rdev;
7707 else if (rdev == p->replacement)
7708 rdevp = &p->replacement;
7709 else
7710 return 0;
7711
7712 if (number >= conf->raid_disks &&
7713 conf->reshape_progress == MaxSector)
7714 clear_bit(In_sync, &rdev->flags);
7715
7716 if (test_bit(In_sync, &rdev->flags) ||
7717 atomic_read(&rdev->nr_pending)) {
7718 err = -EBUSY;
7719 goto abort;
7720 }
7721 /* Only remove non-faulty devices if recovery
7722 * isn't possible.
7723 */
7724 if (!test_bit(Faulty, &rdev->flags) &&
7725 mddev->recovery_disabled != conf->recovery_disabled &&
7726 !has_failed(conf) &&
7727 (!p->replacement || p->replacement == rdev) &&
7728 number < conf->raid_disks) {
7729 err = -EBUSY;
7730 goto abort;
7731 }
7732 *rdevp = NULL;
7733 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
7734 synchronize_rcu();
7735 if (atomic_read(&rdev->nr_pending)) {
7736 /* lost the race, try later */
7737 err = -EBUSY;
7738 *rdevp = rdev;
7739 }
7740 }
7741 if (!err) {
7742 err = log_modify(conf, rdev, false);
7743 if (err)
7744 goto abort;
7745 }
7746 if (p->replacement) {
7747 /* We must have just cleared 'rdev' */
7748 p->rdev = p->replacement;
7749 clear_bit(Replacement, &p->replacement->flags);
7750 smp_mb(); /* Make sure other CPUs may see both as identical
7751 * but will never see neither - if they are careful
7752 */
7753 p->replacement = NULL;
7754
7755 if (!err)
7756 err = log_modify(conf, p->rdev, true);
7757 }
7758
7759 clear_bit(WantReplacement, &rdev->flags);
7760abort:
7761
7762 print_raid5_conf(conf);
7763 return err;
7764}
7765
7766static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
7767{
7768 struct r5conf *conf = mddev->private;
7769 int ret, err = -EEXIST;
7770 int disk;
7771 struct disk_info *p;
7772 int first = 0;
7773 int last = conf->raid_disks - 1;
7774
7775 if (test_bit(Journal, &rdev->flags)) {
7776 if (conf->log)
7777 return -EBUSY;
7778
7779 rdev->raid_disk = 0;
7780 /*
7781 * The array is in readonly mode if journal is missing, so no
7782 * write requests running. We should be safe
7783 */
7784 ret = log_init(conf, rdev, false);
7785 if (ret)
7786 return ret;
7787
7788 ret = r5l_start(conf->log);
7789 if (ret)
7790 return ret;
7791
7792 return 0;
7793 }
7794 if (mddev->recovery_disabled == conf->recovery_disabled)
7795 return -EBUSY;
7796
7797 if (rdev->saved_raid_disk < 0 && has_failed(conf))
7798 /* no point adding a device */
7799 return -EINVAL;
7800
7801 if (rdev->raid_disk >= 0)
7802 first = last = rdev->raid_disk;
7803
7804 /*
7805 * find the disk ... but prefer rdev->saved_raid_disk
7806 * if possible.
7807 */
7808 if (rdev->saved_raid_disk >= 0 &&
7809 rdev->saved_raid_disk >= first &&
7810 conf->disks[rdev->saved_raid_disk].rdev == NULL)
7811 first = rdev->saved_raid_disk;
7812
7813 for (disk = first; disk <= last; disk++) {
7814 p = conf->disks + disk;
7815 if (p->rdev == NULL) {
7816 clear_bit(In_sync, &rdev->flags);
7817 rdev->raid_disk = disk;
7818 if (rdev->saved_raid_disk != disk)
7819 conf->fullsync = 1;
7820 rcu_assign_pointer(p->rdev, rdev);
7821
7822 err = log_modify(conf, rdev, true);
7823
7824 goto out;
7825 }
7826 }
7827 for (disk = first; disk <= last; disk++) {
7828 p = conf->disks + disk;
7829 if (test_bit(WantReplacement, &p->rdev->flags) &&
7830 p->replacement == NULL) {
7831 clear_bit(In_sync, &rdev->flags);
7832 set_bit(Replacement, &rdev->flags);
7833 rdev->raid_disk = disk;
7834 err = 0;
7835 conf->fullsync = 1;
7836 rcu_assign_pointer(p->replacement, rdev);
7837 break;
7838 }
7839 }
7840out:
7841 print_raid5_conf(conf);
7842 return err;
7843}
7844
7845static int raid5_resize(struct mddev *mddev, sector_t sectors)
7846{
7847 /* no resync is happening, and there is enough space
7848 * on all devices, so we can resize.
7849 * We need to make sure resync covers any new space.
7850 * If the array is shrinking we should possibly wait until
7851 * any io in the removed space completes, but it hardly seems
7852 * worth it.
7853 */
7854 sector_t newsize;
7855 struct r5conf *conf = mddev->private;
7856
7857 if (raid5_has_log(conf) || raid5_has_ppl(conf))
7858 return -EINVAL;
7859 sectors &= ~((sector_t)conf->chunk_sectors - 1);
7860 newsize = raid5_size(mddev, sectors, mddev->raid_disks);
7861 if (mddev->external_size &&
7862 mddev->array_sectors > newsize)
7863 return -EINVAL;
7864 if (mddev->bitmap) {
7865 int ret = md_bitmap_resize(mddev->bitmap, sectors, 0, 0);
7866 if (ret)
7867 return ret;
7868 }
7869 md_set_array_sectors(mddev, newsize);
7870 if (sectors > mddev->dev_sectors &&
7871 mddev->recovery_cp > mddev->dev_sectors) {
7872 mddev->recovery_cp = mddev->dev_sectors;
7873 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7874 }
7875 mddev->dev_sectors = sectors;
7876 mddev->resync_max_sectors = sectors;
7877 return 0;
7878}
7879
7880static int check_stripe_cache(struct mddev *mddev)
7881{
7882 /* Can only proceed if there are plenty of stripe_heads.
7883 * We need a minimum of one full stripe,, and for sensible progress
7884 * it is best to have about 4 times that.
7885 * If we require 4 times, then the default 256 4K stripe_heads will
7886 * allow for chunk sizes up to 256K, which is probably OK.
7887 * If the chunk size is greater, user-space should request more
7888 * stripe_heads first.
7889 */
7890 struct r5conf *conf = mddev->private;
7891 if (((mddev->chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4
7892 > conf->min_nr_stripes ||
7893 ((mddev->new_chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4
7894 > conf->min_nr_stripes) {
7895 pr_warn("md/raid:%s: reshape: not enough stripes. Needed %lu\n",
7896 mdname(mddev),
7897 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
7898 / RAID5_STRIPE_SIZE(conf))*4);
7899 return 0;
7900 }
7901 return 1;
7902}
7903
7904static int check_reshape(struct mddev *mddev)
7905{
7906 struct r5conf *conf = mddev->private;
7907
7908 if (raid5_has_log(conf) || raid5_has_ppl(conf))
7909 return -EINVAL;
7910 if (mddev->delta_disks == 0 &&
7911 mddev->new_layout == mddev->layout &&
7912 mddev->new_chunk_sectors == mddev->chunk_sectors)
7913 return 0; /* nothing to do */
7914 if (has_failed(conf))
7915 return -EINVAL;
7916 if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
7917 /* We might be able to shrink, but the devices must
7918 * be made bigger first.
7919 * For raid6, 4 is the minimum size.
7920 * Otherwise 2 is the minimum
7921 */
7922 int min = 2;
7923 if (mddev->level == 6)
7924 min = 4;
7925 if (mddev->raid_disks + mddev->delta_disks < min)
7926 return -EINVAL;
7927 }
7928
7929 if (!check_stripe_cache(mddev))
7930 return -ENOSPC;
7931
7932 if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
7933 mddev->delta_disks > 0)
7934 if (resize_chunks(conf,
7935 conf->previous_raid_disks
7936 + max(0, mddev->delta_disks),
7937 max(mddev->new_chunk_sectors,
7938 mddev->chunk_sectors)
7939 ) < 0)
7940 return -ENOMEM;
7941
7942 if (conf->previous_raid_disks + mddev->delta_disks <= conf->pool_size)
7943 return 0; /* never bother to shrink */
7944 return resize_stripes(conf, (conf->previous_raid_disks
7945 + mddev->delta_disks));
7946}
7947
7948static int raid5_start_reshape(struct mddev *mddev)
7949{
7950 struct r5conf *conf = mddev->private;
7951 struct md_rdev *rdev;
7952 int spares = 0;
7953 unsigned long flags;
7954
7955 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
7956 return -EBUSY;
7957
7958 if (!check_stripe_cache(mddev))
7959 return -ENOSPC;
7960
7961 if (has_failed(conf))
7962 return -EINVAL;
7963
7964 rdev_for_each(rdev, mddev) {
7965 if (!test_bit(In_sync, &rdev->flags)
7966 && !test_bit(Faulty, &rdev->flags))
7967 spares++;
7968 }
7969
7970 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
7971 /* Not enough devices even to make a degraded array
7972 * of that size
7973 */
7974 return -EINVAL;
7975
7976 /* Refuse to reduce size of the array. Any reductions in
7977 * array size must be through explicit setting of array_size
7978 * attribute.
7979 */
7980 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
7981 < mddev->array_sectors) {
7982 pr_warn("md/raid:%s: array size must be reduced before number of disks\n",
7983 mdname(mddev));
7984 return -EINVAL;
7985 }
7986
7987 atomic_set(&conf->reshape_stripes, 0);
7988 spin_lock_irq(&conf->device_lock);
7989 write_seqcount_begin(&conf->gen_lock);
7990 conf->previous_raid_disks = conf->raid_disks;
7991 conf->raid_disks += mddev->delta_disks;
7992 conf->prev_chunk_sectors = conf->chunk_sectors;
7993 conf->chunk_sectors = mddev->new_chunk_sectors;
7994 conf->prev_algo = conf->algorithm;
7995 conf->algorithm = mddev->new_layout;
7996 conf->generation++;
7997 /* Code that selects data_offset needs to see the generation update
7998 * if reshape_progress has been set - so a memory barrier needed.
7999 */
8000 smp_mb();
8001 if (mddev->reshape_backwards)
8002 conf->reshape_progress = raid5_size(mddev, 0, 0);
8003 else
8004 conf->reshape_progress = 0;
8005 conf->reshape_safe = conf->reshape_progress;
8006 write_seqcount_end(&conf->gen_lock);
8007 spin_unlock_irq(&conf->device_lock);
8008
8009 /* Now make sure any requests that proceeded on the assumption
8010 * the reshape wasn't running - like Discard or Read - have
8011 * completed.
8012 */
8013 mddev_suspend(mddev);
8014 mddev_resume(mddev);
8015
8016 /* Add some new drives, as many as will fit.
8017 * We know there are enough to make the newly sized array work.
8018 * Don't add devices if we are reducing the number of
8019 * devices in the array. This is because it is not possible
8020 * to correctly record the "partially reconstructed" state of
8021 * such devices during the reshape and confusion could result.
8022 */
8023 if (mddev->delta_disks >= 0) {
8024 rdev_for_each(rdev, mddev)
8025 if (rdev->raid_disk < 0 &&
8026 !test_bit(Faulty, &rdev->flags)) {
8027 if (raid5_add_disk(mddev, rdev) == 0) {
8028 if (rdev->raid_disk
8029 >= conf->previous_raid_disks)
8030 set_bit(In_sync, &rdev->flags);
8031 else
8032 rdev->recovery_offset = 0;
8033
8034 /* Failure here is OK */
8035 sysfs_link_rdev(mddev, rdev);
8036 }
8037 } else if (rdev->raid_disk >= conf->previous_raid_disks
8038 && !test_bit(Faulty, &rdev->flags)) {
8039 /* This is a spare that was manually added */
8040 set_bit(In_sync, &rdev->flags);
8041 }
8042
8043 /* When a reshape changes the number of devices,
8044 * ->degraded is measured against the larger of the
8045 * pre and post number of devices.
8046 */
8047 spin_lock_irqsave(&conf->device_lock, flags);
8048 mddev->degraded = raid5_calc_degraded(conf);
8049 spin_unlock_irqrestore(&conf->device_lock, flags);
8050 }
8051 mddev->raid_disks = conf->raid_disks;
8052 mddev->reshape_position = conf->reshape_progress;
8053 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
8054
8055 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8056 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8057 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
8058 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8059 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8060 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
8061 "reshape");
8062 if (!mddev->sync_thread) {
8063 mddev->recovery = 0;
8064 spin_lock_irq(&conf->device_lock);
8065 write_seqcount_begin(&conf->gen_lock);
8066 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
8067 mddev->new_chunk_sectors =
8068 conf->chunk_sectors = conf->prev_chunk_sectors;
8069 mddev->new_layout = conf->algorithm = conf->prev_algo;
8070 rdev_for_each(rdev, mddev)
8071 rdev->new_data_offset = rdev->data_offset;
8072 smp_wmb();
8073 conf->generation --;
8074 conf->reshape_progress = MaxSector;
8075 mddev->reshape_position = MaxSector;
8076 write_seqcount_end(&conf->gen_lock);
8077 spin_unlock_irq(&conf->device_lock);
8078 return -EAGAIN;
8079 }
8080 conf->reshape_checkpoint = jiffies;
8081 md_wakeup_thread(mddev->sync_thread);
8082 md_new_event(mddev);
8083 return 0;
8084}
8085
8086/* This is called from the reshape thread and should make any
8087 * changes needed in 'conf'
8088 */
8089static void end_reshape(struct r5conf *conf)
8090{
8091
8092 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
8093 struct md_rdev *rdev;
8094
8095 spin_lock_irq(&conf->device_lock);
8096 conf->previous_raid_disks = conf->raid_disks;
8097 md_finish_reshape(conf->mddev);
8098 smp_wmb();
8099 conf->reshape_progress = MaxSector;
8100 conf->mddev->reshape_position = MaxSector;
8101 rdev_for_each(rdev, conf->mddev)
8102 if (rdev->raid_disk >= 0 &&
8103 !test_bit(Journal, &rdev->flags) &&
8104 !test_bit(In_sync, &rdev->flags))
8105 rdev->recovery_offset = MaxSector;
8106 spin_unlock_irq(&conf->device_lock);
8107 wake_up(&conf->wait_for_overlap);
8108
8109 /* read-ahead size must cover two whole stripes, which is
8110 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
8111 */
8112 if (conf->mddev->queue) {
8113 int data_disks = conf->raid_disks - conf->max_degraded;
8114 int stripe = data_disks * ((conf->chunk_sectors << 9)
8115 / PAGE_SIZE);
8116 if (conf->mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
8117 conf->mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
8118 }
8119 }
8120}
8121
8122/* This is called from the raid5d thread with mddev_lock held.
8123 * It makes config changes to the device.
8124 */
8125static void raid5_finish_reshape(struct mddev *mddev)
8126{
8127 struct r5conf *conf = mddev->private;
8128
8129 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8130
8131 if (mddev->delta_disks <= 0) {
8132 int d;
8133 spin_lock_irq(&conf->device_lock);
8134 mddev->degraded = raid5_calc_degraded(conf);
8135 spin_unlock_irq(&conf->device_lock);
8136 for (d = conf->raid_disks ;
8137 d < conf->raid_disks - mddev->delta_disks;
8138 d++) {
8139 struct md_rdev *rdev = conf->disks[d].rdev;
8140 if (rdev)
8141 clear_bit(In_sync, &rdev->flags);
8142 rdev = conf->disks[d].replacement;
8143 if (rdev)
8144 clear_bit(In_sync, &rdev->flags);
8145 }
8146 }
8147 mddev->layout = conf->algorithm;
8148 mddev->chunk_sectors = conf->chunk_sectors;
8149 mddev->reshape_position = MaxSector;
8150 mddev->delta_disks = 0;
8151 mddev->reshape_backwards = 0;
8152 }
8153}
8154
8155static void raid5_quiesce(struct mddev *mddev, int quiesce)
8156{
8157 struct r5conf *conf = mddev->private;
8158
8159 if (quiesce) {
8160 /* stop all writes */
8161 lock_all_device_hash_locks_irq(conf);
8162 /* '2' tells resync/reshape to pause so that all
8163 * active stripes can drain
8164 */
8165 r5c_flush_cache(conf, INT_MAX);
8166 conf->quiesce = 2;
8167 wait_event_cmd(conf->wait_for_quiescent,
8168 atomic_read(&conf->active_stripes) == 0 &&
8169 atomic_read(&conf->active_aligned_reads) == 0,
8170 unlock_all_device_hash_locks_irq(conf),
8171 lock_all_device_hash_locks_irq(conf));
8172 conf->quiesce = 1;
8173 unlock_all_device_hash_locks_irq(conf);
8174 /* allow reshape to continue */
8175 wake_up(&conf->wait_for_overlap);
8176 } else {
8177 /* re-enable writes */
8178 lock_all_device_hash_locks_irq(conf);
8179 conf->quiesce = 0;
8180 wake_up(&conf->wait_for_quiescent);
8181 wake_up(&conf->wait_for_overlap);
8182 unlock_all_device_hash_locks_irq(conf);
8183 }
8184 log_quiesce(conf, quiesce);
8185}
8186
8187static void *raid45_takeover_raid0(struct mddev *mddev, int level)
8188{
8189 struct r0conf *raid0_conf = mddev->private;
8190 sector_t sectors;
8191
8192 /* for raid0 takeover only one zone is supported */
8193 if (raid0_conf->nr_strip_zones > 1) {
8194 pr_warn("md/raid:%s: cannot takeover raid0 with more than one zone.\n",
8195 mdname(mddev));
8196 return ERR_PTR(-EINVAL);
8197 }
8198
8199 sectors = raid0_conf->strip_zone[0].zone_end;
8200 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
8201 mddev->dev_sectors = sectors;
8202 mddev->new_level = level;
8203 mddev->new_layout = ALGORITHM_PARITY_N;
8204 mddev->new_chunk_sectors = mddev->chunk_sectors;
8205 mddev->raid_disks += 1;
8206 mddev->delta_disks = 1;
8207 /* make sure it will be not marked as dirty */
8208 mddev->recovery_cp = MaxSector;
8209
8210 return setup_conf(mddev);
8211}
8212
8213static void *raid5_takeover_raid1(struct mddev *mddev)
8214{
8215 int chunksect;
8216 void *ret;
8217
8218 if (mddev->raid_disks != 2 ||
8219 mddev->degraded > 1)
8220 return ERR_PTR(-EINVAL);
8221
8222 /* Should check if there are write-behind devices? */
8223
8224 chunksect = 64*2; /* 64K by default */
8225
8226 /* The array must be an exact multiple of chunksize */
8227 while (chunksect && (mddev->array_sectors & (chunksect-1)))
8228 chunksect >>= 1;
8229
8230 if ((chunksect<<9) < RAID5_STRIPE_SIZE((struct r5conf *)mddev->private))
8231 /* array size does not allow a suitable chunk size */
8232 return ERR_PTR(-EINVAL);
8233
8234 mddev->new_level = 5;
8235 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
8236 mddev->new_chunk_sectors = chunksect;
8237
8238 ret = setup_conf(mddev);
8239 if (!IS_ERR(ret))
8240 mddev_clear_unsupported_flags(mddev,
8241 UNSUPPORTED_MDDEV_FLAGS);
8242 return ret;
8243}
8244
8245static void *raid5_takeover_raid6(struct mddev *mddev)
8246{
8247 int new_layout;
8248
8249 switch (mddev->layout) {
8250 case ALGORITHM_LEFT_ASYMMETRIC_6:
8251 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
8252 break;
8253 case ALGORITHM_RIGHT_ASYMMETRIC_6:
8254 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
8255 break;
8256 case ALGORITHM_LEFT_SYMMETRIC_6:
8257 new_layout = ALGORITHM_LEFT_SYMMETRIC;
8258 break;
8259 case ALGORITHM_RIGHT_SYMMETRIC_6:
8260 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
8261 break;
8262 case ALGORITHM_PARITY_0_6:
8263 new_layout = ALGORITHM_PARITY_0;
8264 break;
8265 case ALGORITHM_PARITY_N:
8266 new_layout = ALGORITHM_PARITY_N;
8267 break;
8268 default:
8269 return ERR_PTR(-EINVAL);
8270 }
8271 mddev->new_level = 5;
8272 mddev->new_layout = new_layout;
8273 mddev->delta_disks = -1;
8274 mddev->raid_disks -= 1;
8275 return setup_conf(mddev);
8276}
8277
8278static int raid5_check_reshape(struct mddev *mddev)
8279{
8280 /* For a 2-drive array, the layout and chunk size can be changed
8281 * immediately as not restriping is needed.
8282 * For larger arrays we record the new value - after validation
8283 * to be used by a reshape pass.
8284 */
8285 struct r5conf *conf = mddev->private;
8286 int new_chunk = mddev->new_chunk_sectors;
8287
8288 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
8289 return -EINVAL;
8290 if (new_chunk > 0) {
8291 if (!is_power_of_2(new_chunk))
8292 return -EINVAL;
8293 if (new_chunk < (PAGE_SIZE>>9))
8294 return -EINVAL;
8295 if (mddev->array_sectors & (new_chunk-1))
8296 /* not factor of array size */
8297 return -EINVAL;
8298 }
8299
8300 /* They look valid */
8301
8302 if (mddev->raid_disks == 2) {
8303 /* can make the change immediately */
8304 if (mddev->new_layout >= 0) {
8305 conf->algorithm = mddev->new_layout;
8306 mddev->layout = mddev->new_layout;
8307 }
8308 if (new_chunk > 0) {
8309 conf->chunk_sectors = new_chunk ;
8310 mddev->chunk_sectors = new_chunk;
8311 }
8312 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
8313 md_wakeup_thread(mddev->thread);
8314 }
8315 return check_reshape(mddev);
8316}
8317
8318static int raid6_check_reshape(struct mddev *mddev)
8319{
8320 int new_chunk = mddev->new_chunk_sectors;
8321
8322 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
8323 return -EINVAL;
8324 if (new_chunk > 0) {
8325 if (!is_power_of_2(new_chunk))
8326 return -EINVAL;
8327 if (new_chunk < (PAGE_SIZE >> 9))
8328 return -EINVAL;
8329 if (mddev->array_sectors & (new_chunk-1))
8330 /* not factor of array size */
8331 return -EINVAL;
8332 }
8333
8334 /* They look valid */
8335 return check_reshape(mddev);
8336}
8337
8338static void *raid5_takeover(struct mddev *mddev)
8339{
8340 /* raid5 can take over:
8341 * raid0 - if there is only one strip zone - make it a raid4 layout
8342 * raid1 - if there are two drives. We need to know the chunk size
8343 * raid4 - trivial - just use a raid4 layout.
8344 * raid6 - Providing it is a *_6 layout
8345 */
8346 if (mddev->level == 0)
8347 return raid45_takeover_raid0(mddev, 5);
8348 if (mddev->level == 1)
8349 return raid5_takeover_raid1(mddev);
8350 if (mddev->level == 4) {
8351 mddev->new_layout = ALGORITHM_PARITY_N;
8352 mddev->new_level = 5;
8353 return setup_conf(mddev);
8354 }
8355 if (mddev->level == 6)
8356 return raid5_takeover_raid6(mddev);
8357
8358 return ERR_PTR(-EINVAL);
8359}
8360
8361static void *raid4_takeover(struct mddev *mddev)
8362{
8363 /* raid4 can take over:
8364 * raid0 - if there is only one strip zone
8365 * raid5 - if layout is right
8366 */
8367 if (mddev->level == 0)
8368 return raid45_takeover_raid0(mddev, 4);
8369 if (mddev->level == 5 &&
8370 mddev->layout == ALGORITHM_PARITY_N) {
8371 mddev->new_layout = 0;
8372 mddev->new_level = 4;
8373 return setup_conf(mddev);
8374 }
8375 return ERR_PTR(-EINVAL);
8376}
8377
8378static struct md_personality raid5_personality;
8379
8380static void *raid6_takeover(struct mddev *mddev)
8381{
8382 /* Currently can only take over a raid5. We map the
8383 * personality to an equivalent raid6 personality
8384 * with the Q block at the end.
8385 */
8386 int new_layout;
8387
8388 if (mddev->pers != &raid5_personality)
8389 return ERR_PTR(-EINVAL);
8390 if (mddev->degraded > 1)
8391 return ERR_PTR(-EINVAL);
8392 if (mddev->raid_disks > 253)
8393 return ERR_PTR(-EINVAL);
8394 if (mddev->raid_disks < 3)
8395 return ERR_PTR(-EINVAL);
8396
8397 switch (mddev->layout) {
8398 case ALGORITHM_LEFT_ASYMMETRIC:
8399 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
8400 break;
8401 case ALGORITHM_RIGHT_ASYMMETRIC:
8402 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
8403 break;
8404 case ALGORITHM_LEFT_SYMMETRIC:
8405 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
8406 break;
8407 case ALGORITHM_RIGHT_SYMMETRIC:
8408 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
8409 break;
8410 case ALGORITHM_PARITY_0:
8411 new_layout = ALGORITHM_PARITY_0_6;
8412 break;
8413 case ALGORITHM_PARITY_N:
8414 new_layout = ALGORITHM_PARITY_N;
8415 break;
8416 default:
8417 return ERR_PTR(-EINVAL);
8418 }
8419 mddev->new_level = 6;
8420 mddev->new_layout = new_layout;
8421 mddev->delta_disks = 1;
8422 mddev->raid_disks += 1;
8423 return setup_conf(mddev);
8424}
8425
8426static int raid5_change_consistency_policy(struct mddev *mddev, const char *buf)
8427{
8428 struct r5conf *conf;
8429 int err;
8430
8431 err = mddev_lock(mddev);
8432 if (err)
8433 return err;
8434 conf = mddev->private;
8435 if (!conf) {
8436 mddev_unlock(mddev);
8437 return -ENODEV;
8438 }
8439
8440 if (strncmp(buf, "ppl", 3) == 0) {
8441 /* ppl only works with RAID 5 */
8442 if (!raid5_has_ppl(conf) && conf->level == 5) {
8443 err = log_init(conf, NULL, true);
8444 if (!err) {
8445 err = resize_stripes(conf, conf->pool_size);
8446 if (err)
8447 log_exit(conf);
8448 }
8449 } else
8450 err = -EINVAL;
8451 } else if (strncmp(buf, "resync", 6) == 0) {
8452 if (raid5_has_ppl(conf)) {
8453 mddev_suspend(mddev);
8454 log_exit(conf);
8455 mddev_resume(mddev);
8456 err = resize_stripes(conf, conf->pool_size);
8457 } else if (test_bit(MD_HAS_JOURNAL, &conf->mddev->flags) &&
8458 r5l_log_disk_error(conf)) {
8459 bool journal_dev_exists = false;
8460 struct md_rdev *rdev;
8461
8462 rdev_for_each(rdev, mddev)
8463 if (test_bit(Journal, &rdev->flags)) {
8464 journal_dev_exists = true;
8465 break;
8466 }
8467
8468 if (!journal_dev_exists) {
8469 mddev_suspend(mddev);
8470 clear_bit(MD_HAS_JOURNAL, &mddev->flags);
8471 mddev_resume(mddev);
8472 } else /* need remove journal device first */
8473 err = -EBUSY;
8474 } else
8475 err = -EINVAL;
8476 } else {
8477 err = -EINVAL;
8478 }
8479
8480 if (!err)
8481 md_update_sb(mddev, 1);
8482
8483 mddev_unlock(mddev);
8484
8485 return err;
8486}
8487
8488static int raid5_start(struct mddev *mddev)
8489{
8490 struct r5conf *conf = mddev->private;
8491
8492 return r5l_start(conf->log);
8493}
8494
8495static struct md_personality raid6_personality =
8496{
8497 .name = "raid6",
8498 .level = 6,
8499 .owner = THIS_MODULE,
8500 .make_request = raid5_make_request,
8501 .run = raid5_run,
8502 .start = raid5_start,
8503 .free = raid5_free,
8504 .status = raid5_status,
8505 .error_handler = raid5_error,
8506 .hot_add_disk = raid5_add_disk,
8507 .hot_remove_disk= raid5_remove_disk,
8508 .spare_active = raid5_spare_active,
8509 .sync_request = raid5_sync_request,
8510 .resize = raid5_resize,
8511 .size = raid5_size,
8512 .check_reshape = raid6_check_reshape,
8513 .start_reshape = raid5_start_reshape,
8514 .finish_reshape = raid5_finish_reshape,
8515 .quiesce = raid5_quiesce,
8516 .takeover = raid6_takeover,
8517 .change_consistency_policy = raid5_change_consistency_policy,
8518};
8519static struct md_personality raid5_personality =
8520{
8521 .name = "raid5",
8522 .level = 5,
8523 .owner = THIS_MODULE,
8524 .make_request = raid5_make_request,
8525 .run = raid5_run,
8526 .start = raid5_start,
8527 .free = raid5_free,
8528 .status = raid5_status,
8529 .error_handler = raid5_error,
8530 .hot_add_disk = raid5_add_disk,
8531 .hot_remove_disk= raid5_remove_disk,
8532 .spare_active = raid5_spare_active,
8533 .sync_request = raid5_sync_request,
8534 .resize = raid5_resize,
8535 .size = raid5_size,
8536 .check_reshape = raid5_check_reshape,
8537 .start_reshape = raid5_start_reshape,
8538 .finish_reshape = raid5_finish_reshape,
8539 .quiesce = raid5_quiesce,
8540 .takeover = raid5_takeover,
8541 .change_consistency_policy = raid5_change_consistency_policy,
8542};
8543
8544static struct md_personality raid4_personality =
8545{
8546 .name = "raid4",
8547 .level = 4,
8548 .owner = THIS_MODULE,
8549 .make_request = raid5_make_request,
8550 .run = raid5_run,
8551 .start = raid5_start,
8552 .free = raid5_free,
8553 .status = raid5_status,
8554 .error_handler = raid5_error,
8555 .hot_add_disk = raid5_add_disk,
8556 .hot_remove_disk= raid5_remove_disk,
8557 .spare_active = raid5_spare_active,
8558 .sync_request = raid5_sync_request,
8559 .resize = raid5_resize,
8560 .size = raid5_size,
8561 .check_reshape = raid5_check_reshape,
8562 .start_reshape = raid5_start_reshape,
8563 .finish_reshape = raid5_finish_reshape,
8564 .quiesce = raid5_quiesce,
8565 .takeover = raid4_takeover,
8566 .change_consistency_policy = raid5_change_consistency_policy,
8567};
8568
8569static int __init raid5_init(void)
8570{
8571 int ret;
8572
8573 raid5_wq = alloc_workqueue("raid5wq",
8574 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
8575 if (!raid5_wq)
8576 return -ENOMEM;
8577
8578 ret = cpuhp_setup_state_multi(CPUHP_MD_RAID5_PREPARE,
8579 "md/raid5:prepare",
8580 raid456_cpu_up_prepare,
8581 raid456_cpu_dead);
8582 if (ret) {
8583 destroy_workqueue(raid5_wq);
8584 return ret;
8585 }
8586 register_md_personality(&raid6_personality);
8587 register_md_personality(&raid5_personality);
8588 register_md_personality(&raid4_personality);
8589 return 0;
8590}
8591
8592static void raid5_exit(void)
8593{
8594 unregister_md_personality(&raid6_personality);
8595 unregister_md_personality(&raid5_personality);
8596 unregister_md_personality(&raid4_personality);
8597 cpuhp_remove_multi_state(CPUHP_MD_RAID5_PREPARE);
8598 destroy_workqueue(raid5_wq);
8599}
8600
8601module_init(raid5_init);
8602module_exit(raid5_exit);
8603MODULE_LICENSE("GPL");
8604MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
8605MODULE_ALIAS("md-personality-4"); /* RAID5 */
8606MODULE_ALIAS("md-raid5");
8607MODULE_ALIAS("md-raid4");
8608MODULE_ALIAS("md-level-5");
8609MODULE_ALIAS("md-level-4");
8610MODULE_ALIAS("md-personality-8"); /* RAID6 */
8611MODULE_ALIAS("md-raid6");
8612MODULE_ALIAS("md-level-6");
8613
8614/* This used to be two separate modules, they were: */
8615MODULE_ALIAS("raid5");
8616MODULE_ALIAS("raid6");
1/*
2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
5 * Copyright (C) 2002, 2003 H. Peter Anvin
6 *
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
21/*
22 * BITMAP UNPLUGGING:
23 *
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
27 *
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->seq_write is the number of the last batch successfully written.
31 * conf->seq_flush is the number of the last batch that was closed to
32 * new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is seq_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 * batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
44 */
45
46#include <linux/blkdev.h>
47#include <linux/kthread.h>
48#include <linux/raid/pq.h>
49#include <linux/async_tx.h>
50#include <linux/module.h>
51#include <linux/async.h>
52#include <linux/seq_file.h>
53#include <linux/cpu.h>
54#include <linux/slab.h>
55#include <linux/ratelimit.h>
56#include "md.h"
57#include "raid5.h"
58#include "raid0.h"
59#include "bitmap.h"
60
61/*
62 * Stripe cache
63 */
64
65#define NR_STRIPES 256
66#define STRIPE_SIZE PAGE_SIZE
67#define STRIPE_SHIFT (PAGE_SHIFT - 9)
68#define STRIPE_SECTORS (STRIPE_SIZE>>9)
69#define IO_THRESHOLD 1
70#define BYPASS_THRESHOLD 1
71#define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
72#define HASH_MASK (NR_HASH - 1)
73
74static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
75{
76 int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
77 return &conf->stripe_hashtbl[hash];
78}
79
80/* bio's attached to a stripe+device for I/O are linked together in bi_sector
81 * order without overlap. There may be several bio's per stripe+device, and
82 * a bio could span several devices.
83 * When walking this list for a particular stripe+device, we must never proceed
84 * beyond a bio that extends past this device, as the next bio might no longer
85 * be valid.
86 * This function is used to determine the 'next' bio in the list, given the sector
87 * of the current stripe+device
88 */
89static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
90{
91 int sectors = bio->bi_size >> 9;
92 if (bio->bi_sector + sectors < sector + STRIPE_SECTORS)
93 return bio->bi_next;
94 else
95 return NULL;
96}
97
98/*
99 * We maintain a biased count of active stripes in the bottom 16 bits of
100 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
101 */
102static inline int raid5_bi_phys_segments(struct bio *bio)
103{
104 return bio->bi_phys_segments & 0xffff;
105}
106
107static inline int raid5_bi_hw_segments(struct bio *bio)
108{
109 return (bio->bi_phys_segments >> 16) & 0xffff;
110}
111
112static inline int raid5_dec_bi_phys_segments(struct bio *bio)
113{
114 --bio->bi_phys_segments;
115 return raid5_bi_phys_segments(bio);
116}
117
118static inline int raid5_dec_bi_hw_segments(struct bio *bio)
119{
120 unsigned short val = raid5_bi_hw_segments(bio);
121
122 --val;
123 bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
124 return val;
125}
126
127static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
128{
129 bio->bi_phys_segments = raid5_bi_phys_segments(bio) | (cnt << 16);
130}
131
132/* Find first data disk in a raid6 stripe */
133static inline int raid6_d0(struct stripe_head *sh)
134{
135 if (sh->ddf_layout)
136 /* ddf always start from first device */
137 return 0;
138 /* md starts just after Q block */
139 if (sh->qd_idx == sh->disks - 1)
140 return 0;
141 else
142 return sh->qd_idx + 1;
143}
144static inline int raid6_next_disk(int disk, int raid_disks)
145{
146 disk++;
147 return (disk < raid_disks) ? disk : 0;
148}
149
150/* When walking through the disks in a raid5, starting at raid6_d0,
151 * We need to map each disk to a 'slot', where the data disks are slot
152 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
153 * is raid_disks-1. This help does that mapping.
154 */
155static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
156 int *count, int syndrome_disks)
157{
158 int slot = *count;
159
160 if (sh->ddf_layout)
161 (*count)++;
162 if (idx == sh->pd_idx)
163 return syndrome_disks;
164 if (idx == sh->qd_idx)
165 return syndrome_disks + 1;
166 if (!sh->ddf_layout)
167 (*count)++;
168 return slot;
169}
170
171static void return_io(struct bio *return_bi)
172{
173 struct bio *bi = return_bi;
174 while (bi) {
175
176 return_bi = bi->bi_next;
177 bi->bi_next = NULL;
178 bi->bi_size = 0;
179 bio_endio(bi, 0);
180 bi = return_bi;
181 }
182}
183
184static void print_raid5_conf (struct r5conf *conf);
185
186static int stripe_operations_active(struct stripe_head *sh)
187{
188 return sh->check_state || sh->reconstruct_state ||
189 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
190 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
191}
192
193static void __release_stripe(struct r5conf *conf, struct stripe_head *sh)
194{
195 if (atomic_dec_and_test(&sh->count)) {
196 BUG_ON(!list_empty(&sh->lru));
197 BUG_ON(atomic_read(&conf->active_stripes)==0);
198 if (test_bit(STRIPE_HANDLE, &sh->state)) {
199 if (test_bit(STRIPE_DELAYED, &sh->state) &&
200 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
201 list_add_tail(&sh->lru, &conf->delayed_list);
202 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
203 sh->bm_seq - conf->seq_write > 0)
204 list_add_tail(&sh->lru, &conf->bitmap_list);
205 else {
206 clear_bit(STRIPE_DELAYED, &sh->state);
207 clear_bit(STRIPE_BIT_DELAY, &sh->state);
208 list_add_tail(&sh->lru, &conf->handle_list);
209 }
210 md_wakeup_thread(conf->mddev->thread);
211 } else {
212 BUG_ON(stripe_operations_active(sh));
213 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
214 if (atomic_dec_return(&conf->preread_active_stripes)
215 < IO_THRESHOLD)
216 md_wakeup_thread(conf->mddev->thread);
217 atomic_dec(&conf->active_stripes);
218 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
219 list_add_tail(&sh->lru, &conf->inactive_list);
220 wake_up(&conf->wait_for_stripe);
221 if (conf->retry_read_aligned)
222 md_wakeup_thread(conf->mddev->thread);
223 }
224 }
225 }
226}
227
228static void release_stripe(struct stripe_head *sh)
229{
230 struct r5conf *conf = sh->raid_conf;
231 unsigned long flags;
232
233 spin_lock_irqsave(&conf->device_lock, flags);
234 __release_stripe(conf, sh);
235 spin_unlock_irqrestore(&conf->device_lock, flags);
236}
237
238static inline void remove_hash(struct stripe_head *sh)
239{
240 pr_debug("remove_hash(), stripe %llu\n",
241 (unsigned long long)sh->sector);
242
243 hlist_del_init(&sh->hash);
244}
245
246static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
247{
248 struct hlist_head *hp = stripe_hash(conf, sh->sector);
249
250 pr_debug("insert_hash(), stripe %llu\n",
251 (unsigned long long)sh->sector);
252
253 hlist_add_head(&sh->hash, hp);
254}
255
256
257/* find an idle stripe, make sure it is unhashed, and return it. */
258static struct stripe_head *get_free_stripe(struct r5conf *conf)
259{
260 struct stripe_head *sh = NULL;
261 struct list_head *first;
262
263 if (list_empty(&conf->inactive_list))
264 goto out;
265 first = conf->inactive_list.next;
266 sh = list_entry(first, struct stripe_head, lru);
267 list_del_init(first);
268 remove_hash(sh);
269 atomic_inc(&conf->active_stripes);
270out:
271 return sh;
272}
273
274static void shrink_buffers(struct stripe_head *sh)
275{
276 struct page *p;
277 int i;
278 int num = sh->raid_conf->pool_size;
279
280 for (i = 0; i < num ; i++) {
281 p = sh->dev[i].page;
282 if (!p)
283 continue;
284 sh->dev[i].page = NULL;
285 put_page(p);
286 }
287}
288
289static int grow_buffers(struct stripe_head *sh)
290{
291 int i;
292 int num = sh->raid_conf->pool_size;
293
294 for (i = 0; i < num; i++) {
295 struct page *page;
296
297 if (!(page = alloc_page(GFP_KERNEL))) {
298 return 1;
299 }
300 sh->dev[i].page = page;
301 }
302 return 0;
303}
304
305static void raid5_build_block(struct stripe_head *sh, int i, int previous);
306static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
307 struct stripe_head *sh);
308
309static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
310{
311 struct r5conf *conf = sh->raid_conf;
312 int i;
313
314 BUG_ON(atomic_read(&sh->count) != 0);
315 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
316 BUG_ON(stripe_operations_active(sh));
317
318 pr_debug("init_stripe called, stripe %llu\n",
319 (unsigned long long)sh->sector);
320
321 remove_hash(sh);
322
323 sh->generation = conf->generation - previous;
324 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
325 sh->sector = sector;
326 stripe_set_idx(sector, conf, previous, sh);
327 sh->state = 0;
328
329
330 for (i = sh->disks; i--; ) {
331 struct r5dev *dev = &sh->dev[i];
332
333 if (dev->toread || dev->read || dev->towrite || dev->written ||
334 test_bit(R5_LOCKED, &dev->flags)) {
335 printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
336 (unsigned long long)sh->sector, i, dev->toread,
337 dev->read, dev->towrite, dev->written,
338 test_bit(R5_LOCKED, &dev->flags));
339 WARN_ON(1);
340 }
341 dev->flags = 0;
342 raid5_build_block(sh, i, previous);
343 }
344 insert_hash(conf, sh);
345}
346
347static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
348 short generation)
349{
350 struct stripe_head *sh;
351 struct hlist_node *hn;
352
353 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
354 hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
355 if (sh->sector == sector && sh->generation == generation)
356 return sh;
357 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
358 return NULL;
359}
360
361/*
362 * Need to check if array has failed when deciding whether to:
363 * - start an array
364 * - remove non-faulty devices
365 * - add a spare
366 * - allow a reshape
367 * This determination is simple when no reshape is happening.
368 * However if there is a reshape, we need to carefully check
369 * both the before and after sections.
370 * This is because some failed devices may only affect one
371 * of the two sections, and some non-in_sync devices may
372 * be insync in the section most affected by failed devices.
373 */
374static int calc_degraded(struct r5conf *conf)
375{
376 int degraded, degraded2;
377 int i;
378
379 rcu_read_lock();
380 degraded = 0;
381 for (i = 0; i < conf->previous_raid_disks; i++) {
382 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
383 if (rdev && test_bit(Faulty, &rdev->flags))
384 rdev = rcu_dereference(conf->disks[i].replacement);
385 if (!rdev || test_bit(Faulty, &rdev->flags))
386 degraded++;
387 else if (test_bit(In_sync, &rdev->flags))
388 ;
389 else
390 /* not in-sync or faulty.
391 * If the reshape increases the number of devices,
392 * this is being recovered by the reshape, so
393 * this 'previous' section is not in_sync.
394 * If the number of devices is being reduced however,
395 * the device can only be part of the array if
396 * we are reverting a reshape, so this section will
397 * be in-sync.
398 */
399 if (conf->raid_disks >= conf->previous_raid_disks)
400 degraded++;
401 }
402 rcu_read_unlock();
403 if (conf->raid_disks == conf->previous_raid_disks)
404 return degraded;
405 rcu_read_lock();
406 degraded2 = 0;
407 for (i = 0; i < conf->raid_disks; i++) {
408 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
409 if (rdev && test_bit(Faulty, &rdev->flags))
410 rdev = rcu_dereference(conf->disks[i].replacement);
411 if (!rdev || test_bit(Faulty, &rdev->flags))
412 degraded2++;
413 else if (test_bit(In_sync, &rdev->flags))
414 ;
415 else
416 /* not in-sync or faulty.
417 * If reshape increases the number of devices, this
418 * section has already been recovered, else it
419 * almost certainly hasn't.
420 */
421 if (conf->raid_disks <= conf->previous_raid_disks)
422 degraded2++;
423 }
424 rcu_read_unlock();
425 if (degraded2 > degraded)
426 return degraded2;
427 return degraded;
428}
429
430static int has_failed(struct r5conf *conf)
431{
432 int degraded;
433
434 if (conf->mddev->reshape_position == MaxSector)
435 return conf->mddev->degraded > conf->max_degraded;
436
437 degraded = calc_degraded(conf);
438 if (degraded > conf->max_degraded)
439 return 1;
440 return 0;
441}
442
443static struct stripe_head *
444get_active_stripe(struct r5conf *conf, sector_t sector,
445 int previous, int noblock, int noquiesce)
446{
447 struct stripe_head *sh;
448
449 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
450
451 spin_lock_irq(&conf->device_lock);
452
453 do {
454 wait_event_lock_irq(conf->wait_for_stripe,
455 conf->quiesce == 0 || noquiesce,
456 conf->device_lock, /* nothing */);
457 sh = __find_stripe(conf, sector, conf->generation - previous);
458 if (!sh) {
459 if (!conf->inactive_blocked)
460 sh = get_free_stripe(conf);
461 if (noblock && sh == NULL)
462 break;
463 if (!sh) {
464 conf->inactive_blocked = 1;
465 wait_event_lock_irq(conf->wait_for_stripe,
466 !list_empty(&conf->inactive_list) &&
467 (atomic_read(&conf->active_stripes)
468 < (conf->max_nr_stripes *3/4)
469 || !conf->inactive_blocked),
470 conf->device_lock,
471 );
472 conf->inactive_blocked = 0;
473 } else
474 init_stripe(sh, sector, previous);
475 } else {
476 if (atomic_read(&sh->count)) {
477 BUG_ON(!list_empty(&sh->lru)
478 && !test_bit(STRIPE_EXPANDING, &sh->state));
479 } else {
480 if (!test_bit(STRIPE_HANDLE, &sh->state))
481 atomic_inc(&conf->active_stripes);
482 if (list_empty(&sh->lru) &&
483 !test_bit(STRIPE_EXPANDING, &sh->state))
484 BUG();
485 list_del_init(&sh->lru);
486 }
487 }
488 } while (sh == NULL);
489
490 if (sh)
491 atomic_inc(&sh->count);
492
493 spin_unlock_irq(&conf->device_lock);
494 return sh;
495}
496
497/* Determine if 'data_offset' or 'new_data_offset' should be used
498 * in this stripe_head.
499 */
500static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
501{
502 sector_t progress = conf->reshape_progress;
503 /* Need a memory barrier to make sure we see the value
504 * of conf->generation, or ->data_offset that was set before
505 * reshape_progress was updated.
506 */
507 smp_rmb();
508 if (progress == MaxSector)
509 return 0;
510 if (sh->generation == conf->generation - 1)
511 return 0;
512 /* We are in a reshape, and this is a new-generation stripe,
513 * so use new_data_offset.
514 */
515 return 1;
516}
517
518static void
519raid5_end_read_request(struct bio *bi, int error);
520static void
521raid5_end_write_request(struct bio *bi, int error);
522
523static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
524{
525 struct r5conf *conf = sh->raid_conf;
526 int i, disks = sh->disks;
527
528 might_sleep();
529
530 for (i = disks; i--; ) {
531 int rw;
532 int replace_only = 0;
533 struct bio *bi, *rbi;
534 struct md_rdev *rdev, *rrdev = NULL;
535 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
536 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
537 rw = WRITE_FUA;
538 else
539 rw = WRITE;
540 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
541 rw = READ;
542 else if (test_and_clear_bit(R5_WantReplace,
543 &sh->dev[i].flags)) {
544 rw = WRITE;
545 replace_only = 1;
546 } else
547 continue;
548 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
549 rw |= REQ_SYNC;
550
551 bi = &sh->dev[i].req;
552 rbi = &sh->dev[i].rreq; /* For writing to replacement */
553
554 bi->bi_rw = rw;
555 rbi->bi_rw = rw;
556 if (rw & WRITE) {
557 bi->bi_end_io = raid5_end_write_request;
558 rbi->bi_end_io = raid5_end_write_request;
559 } else
560 bi->bi_end_io = raid5_end_read_request;
561
562 rcu_read_lock();
563 rrdev = rcu_dereference(conf->disks[i].replacement);
564 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
565 rdev = rcu_dereference(conf->disks[i].rdev);
566 if (!rdev) {
567 rdev = rrdev;
568 rrdev = NULL;
569 }
570 if (rw & WRITE) {
571 if (replace_only)
572 rdev = NULL;
573 if (rdev == rrdev)
574 /* We raced and saw duplicates */
575 rrdev = NULL;
576 } else {
577 if (test_bit(R5_ReadRepl, &sh->dev[i].flags) && rrdev)
578 rdev = rrdev;
579 rrdev = NULL;
580 }
581
582 if (rdev && test_bit(Faulty, &rdev->flags))
583 rdev = NULL;
584 if (rdev)
585 atomic_inc(&rdev->nr_pending);
586 if (rrdev && test_bit(Faulty, &rrdev->flags))
587 rrdev = NULL;
588 if (rrdev)
589 atomic_inc(&rrdev->nr_pending);
590 rcu_read_unlock();
591
592 /* We have already checked bad blocks for reads. Now
593 * need to check for writes. We never accept write errors
594 * on the replacement, so we don't to check rrdev.
595 */
596 while ((rw & WRITE) && rdev &&
597 test_bit(WriteErrorSeen, &rdev->flags)) {
598 sector_t first_bad;
599 int bad_sectors;
600 int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
601 &first_bad, &bad_sectors);
602 if (!bad)
603 break;
604
605 if (bad < 0) {
606 set_bit(BlockedBadBlocks, &rdev->flags);
607 if (!conf->mddev->external &&
608 conf->mddev->flags) {
609 /* It is very unlikely, but we might
610 * still need to write out the
611 * bad block log - better give it
612 * a chance*/
613 md_check_recovery(conf->mddev);
614 }
615 /*
616 * Because md_wait_for_blocked_rdev
617 * will dec nr_pending, we must
618 * increment it first.
619 */
620 atomic_inc(&rdev->nr_pending);
621 md_wait_for_blocked_rdev(rdev, conf->mddev);
622 } else {
623 /* Acknowledged bad block - skip the write */
624 rdev_dec_pending(rdev, conf->mddev);
625 rdev = NULL;
626 }
627 }
628
629 if (rdev) {
630 if (s->syncing || s->expanding || s->expanded
631 || s->replacing)
632 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
633
634 set_bit(STRIPE_IO_STARTED, &sh->state);
635
636 bi->bi_bdev = rdev->bdev;
637 pr_debug("%s: for %llu schedule op %ld on disc %d\n",
638 __func__, (unsigned long long)sh->sector,
639 bi->bi_rw, i);
640 atomic_inc(&sh->count);
641 if (use_new_offset(conf, sh))
642 bi->bi_sector = (sh->sector
643 + rdev->new_data_offset);
644 else
645 bi->bi_sector = (sh->sector
646 + rdev->data_offset);
647 bi->bi_flags = 1 << BIO_UPTODATE;
648 bi->bi_idx = 0;
649 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
650 bi->bi_io_vec[0].bv_offset = 0;
651 bi->bi_size = STRIPE_SIZE;
652 bi->bi_next = NULL;
653 if (rrdev)
654 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
655 generic_make_request(bi);
656 }
657 if (rrdev) {
658 if (s->syncing || s->expanding || s->expanded
659 || s->replacing)
660 md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
661
662 set_bit(STRIPE_IO_STARTED, &sh->state);
663
664 rbi->bi_bdev = rrdev->bdev;
665 pr_debug("%s: for %llu schedule op %ld on "
666 "replacement disc %d\n",
667 __func__, (unsigned long long)sh->sector,
668 rbi->bi_rw, i);
669 atomic_inc(&sh->count);
670 if (use_new_offset(conf, sh))
671 rbi->bi_sector = (sh->sector
672 + rrdev->new_data_offset);
673 else
674 rbi->bi_sector = (sh->sector
675 + rrdev->data_offset);
676 rbi->bi_flags = 1 << BIO_UPTODATE;
677 rbi->bi_idx = 0;
678 rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
679 rbi->bi_io_vec[0].bv_offset = 0;
680 rbi->bi_size = STRIPE_SIZE;
681 rbi->bi_next = NULL;
682 generic_make_request(rbi);
683 }
684 if (!rdev && !rrdev) {
685 if (rw & WRITE)
686 set_bit(STRIPE_DEGRADED, &sh->state);
687 pr_debug("skip op %ld on disc %d for sector %llu\n",
688 bi->bi_rw, i, (unsigned long long)sh->sector);
689 clear_bit(R5_LOCKED, &sh->dev[i].flags);
690 set_bit(STRIPE_HANDLE, &sh->state);
691 }
692 }
693}
694
695static struct dma_async_tx_descriptor *
696async_copy_data(int frombio, struct bio *bio, struct page *page,
697 sector_t sector, struct dma_async_tx_descriptor *tx)
698{
699 struct bio_vec *bvl;
700 struct page *bio_page;
701 int i;
702 int page_offset;
703 struct async_submit_ctl submit;
704 enum async_tx_flags flags = 0;
705
706 if (bio->bi_sector >= sector)
707 page_offset = (signed)(bio->bi_sector - sector) * 512;
708 else
709 page_offset = (signed)(sector - bio->bi_sector) * -512;
710
711 if (frombio)
712 flags |= ASYNC_TX_FENCE;
713 init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
714
715 bio_for_each_segment(bvl, bio, i) {
716 int len = bvl->bv_len;
717 int clen;
718 int b_offset = 0;
719
720 if (page_offset < 0) {
721 b_offset = -page_offset;
722 page_offset += b_offset;
723 len -= b_offset;
724 }
725
726 if (len > 0 && page_offset + len > STRIPE_SIZE)
727 clen = STRIPE_SIZE - page_offset;
728 else
729 clen = len;
730
731 if (clen > 0) {
732 b_offset += bvl->bv_offset;
733 bio_page = bvl->bv_page;
734 if (frombio)
735 tx = async_memcpy(page, bio_page, page_offset,
736 b_offset, clen, &submit);
737 else
738 tx = async_memcpy(bio_page, page, b_offset,
739 page_offset, clen, &submit);
740 }
741 /* chain the operations */
742 submit.depend_tx = tx;
743
744 if (clen < len) /* hit end of page */
745 break;
746 page_offset += len;
747 }
748
749 return tx;
750}
751
752static void ops_complete_biofill(void *stripe_head_ref)
753{
754 struct stripe_head *sh = stripe_head_ref;
755 struct bio *return_bi = NULL;
756 struct r5conf *conf = sh->raid_conf;
757 int i;
758
759 pr_debug("%s: stripe %llu\n", __func__,
760 (unsigned long long)sh->sector);
761
762 /* clear completed biofills */
763 spin_lock_irq(&conf->device_lock);
764 for (i = sh->disks; i--; ) {
765 struct r5dev *dev = &sh->dev[i];
766
767 /* acknowledge completion of a biofill operation */
768 /* and check if we need to reply to a read request,
769 * new R5_Wantfill requests are held off until
770 * !STRIPE_BIOFILL_RUN
771 */
772 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
773 struct bio *rbi, *rbi2;
774
775 BUG_ON(!dev->read);
776 rbi = dev->read;
777 dev->read = NULL;
778 while (rbi && rbi->bi_sector <
779 dev->sector + STRIPE_SECTORS) {
780 rbi2 = r5_next_bio(rbi, dev->sector);
781 if (!raid5_dec_bi_phys_segments(rbi)) {
782 rbi->bi_next = return_bi;
783 return_bi = rbi;
784 }
785 rbi = rbi2;
786 }
787 }
788 }
789 spin_unlock_irq(&conf->device_lock);
790 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
791
792 return_io(return_bi);
793
794 set_bit(STRIPE_HANDLE, &sh->state);
795 release_stripe(sh);
796}
797
798static void ops_run_biofill(struct stripe_head *sh)
799{
800 struct dma_async_tx_descriptor *tx = NULL;
801 struct r5conf *conf = sh->raid_conf;
802 struct async_submit_ctl submit;
803 int i;
804
805 pr_debug("%s: stripe %llu\n", __func__,
806 (unsigned long long)sh->sector);
807
808 for (i = sh->disks; i--; ) {
809 struct r5dev *dev = &sh->dev[i];
810 if (test_bit(R5_Wantfill, &dev->flags)) {
811 struct bio *rbi;
812 spin_lock_irq(&conf->device_lock);
813 dev->read = rbi = dev->toread;
814 dev->toread = NULL;
815 spin_unlock_irq(&conf->device_lock);
816 while (rbi && rbi->bi_sector <
817 dev->sector + STRIPE_SECTORS) {
818 tx = async_copy_data(0, rbi, dev->page,
819 dev->sector, tx);
820 rbi = r5_next_bio(rbi, dev->sector);
821 }
822 }
823 }
824
825 atomic_inc(&sh->count);
826 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
827 async_trigger_callback(&submit);
828}
829
830static void mark_target_uptodate(struct stripe_head *sh, int target)
831{
832 struct r5dev *tgt;
833
834 if (target < 0)
835 return;
836
837 tgt = &sh->dev[target];
838 set_bit(R5_UPTODATE, &tgt->flags);
839 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
840 clear_bit(R5_Wantcompute, &tgt->flags);
841}
842
843static void ops_complete_compute(void *stripe_head_ref)
844{
845 struct stripe_head *sh = stripe_head_ref;
846
847 pr_debug("%s: stripe %llu\n", __func__,
848 (unsigned long long)sh->sector);
849
850 /* mark the computed target(s) as uptodate */
851 mark_target_uptodate(sh, sh->ops.target);
852 mark_target_uptodate(sh, sh->ops.target2);
853
854 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
855 if (sh->check_state == check_state_compute_run)
856 sh->check_state = check_state_compute_result;
857 set_bit(STRIPE_HANDLE, &sh->state);
858 release_stripe(sh);
859}
860
861/* return a pointer to the address conversion region of the scribble buffer */
862static addr_conv_t *to_addr_conv(struct stripe_head *sh,
863 struct raid5_percpu *percpu)
864{
865 return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
866}
867
868static struct dma_async_tx_descriptor *
869ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
870{
871 int disks = sh->disks;
872 struct page **xor_srcs = percpu->scribble;
873 int target = sh->ops.target;
874 struct r5dev *tgt = &sh->dev[target];
875 struct page *xor_dest = tgt->page;
876 int count = 0;
877 struct dma_async_tx_descriptor *tx;
878 struct async_submit_ctl submit;
879 int i;
880
881 pr_debug("%s: stripe %llu block: %d\n",
882 __func__, (unsigned long long)sh->sector, target);
883 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
884
885 for (i = disks; i--; )
886 if (i != target)
887 xor_srcs[count++] = sh->dev[i].page;
888
889 atomic_inc(&sh->count);
890
891 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
892 ops_complete_compute, sh, to_addr_conv(sh, percpu));
893 if (unlikely(count == 1))
894 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
895 else
896 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
897
898 return tx;
899}
900
901/* set_syndrome_sources - populate source buffers for gen_syndrome
902 * @srcs - (struct page *) array of size sh->disks
903 * @sh - stripe_head to parse
904 *
905 * Populates srcs in proper layout order for the stripe and returns the
906 * 'count' of sources to be used in a call to async_gen_syndrome. The P
907 * destination buffer is recorded in srcs[count] and the Q destination
908 * is recorded in srcs[count+1]].
909 */
910static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
911{
912 int disks = sh->disks;
913 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
914 int d0_idx = raid6_d0(sh);
915 int count;
916 int i;
917
918 for (i = 0; i < disks; i++)
919 srcs[i] = NULL;
920
921 count = 0;
922 i = d0_idx;
923 do {
924 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
925
926 srcs[slot] = sh->dev[i].page;
927 i = raid6_next_disk(i, disks);
928 } while (i != d0_idx);
929
930 return syndrome_disks;
931}
932
933static struct dma_async_tx_descriptor *
934ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
935{
936 int disks = sh->disks;
937 struct page **blocks = percpu->scribble;
938 int target;
939 int qd_idx = sh->qd_idx;
940 struct dma_async_tx_descriptor *tx;
941 struct async_submit_ctl submit;
942 struct r5dev *tgt;
943 struct page *dest;
944 int i;
945 int count;
946
947 if (sh->ops.target < 0)
948 target = sh->ops.target2;
949 else if (sh->ops.target2 < 0)
950 target = sh->ops.target;
951 else
952 /* we should only have one valid target */
953 BUG();
954 BUG_ON(target < 0);
955 pr_debug("%s: stripe %llu block: %d\n",
956 __func__, (unsigned long long)sh->sector, target);
957
958 tgt = &sh->dev[target];
959 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
960 dest = tgt->page;
961
962 atomic_inc(&sh->count);
963
964 if (target == qd_idx) {
965 count = set_syndrome_sources(blocks, sh);
966 blocks[count] = NULL; /* regenerating p is not necessary */
967 BUG_ON(blocks[count+1] != dest); /* q should already be set */
968 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
969 ops_complete_compute, sh,
970 to_addr_conv(sh, percpu));
971 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
972 } else {
973 /* Compute any data- or p-drive using XOR */
974 count = 0;
975 for (i = disks; i-- ; ) {
976 if (i == target || i == qd_idx)
977 continue;
978 blocks[count++] = sh->dev[i].page;
979 }
980
981 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
982 NULL, ops_complete_compute, sh,
983 to_addr_conv(sh, percpu));
984 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
985 }
986
987 return tx;
988}
989
990static struct dma_async_tx_descriptor *
991ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
992{
993 int i, count, disks = sh->disks;
994 int syndrome_disks = sh->ddf_layout ? disks : disks-2;
995 int d0_idx = raid6_d0(sh);
996 int faila = -1, failb = -1;
997 int target = sh->ops.target;
998 int target2 = sh->ops.target2;
999 struct r5dev *tgt = &sh->dev[target];
1000 struct r5dev *tgt2 = &sh->dev[target2];
1001 struct dma_async_tx_descriptor *tx;
1002 struct page **blocks = percpu->scribble;
1003 struct async_submit_ctl submit;
1004
1005 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1006 __func__, (unsigned long long)sh->sector, target, target2);
1007 BUG_ON(target < 0 || target2 < 0);
1008 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1009 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1010
1011 /* we need to open-code set_syndrome_sources to handle the
1012 * slot number conversion for 'faila' and 'failb'
1013 */
1014 for (i = 0; i < disks ; i++)
1015 blocks[i] = NULL;
1016 count = 0;
1017 i = d0_idx;
1018 do {
1019 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1020
1021 blocks[slot] = sh->dev[i].page;
1022
1023 if (i == target)
1024 faila = slot;
1025 if (i == target2)
1026 failb = slot;
1027 i = raid6_next_disk(i, disks);
1028 } while (i != d0_idx);
1029
1030 BUG_ON(faila == failb);
1031 if (failb < faila)
1032 swap(faila, failb);
1033 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1034 __func__, (unsigned long long)sh->sector, faila, failb);
1035
1036 atomic_inc(&sh->count);
1037
1038 if (failb == syndrome_disks+1) {
1039 /* Q disk is one of the missing disks */
1040 if (faila == syndrome_disks) {
1041 /* Missing P+Q, just recompute */
1042 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1043 ops_complete_compute, sh,
1044 to_addr_conv(sh, percpu));
1045 return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1046 STRIPE_SIZE, &submit);
1047 } else {
1048 struct page *dest;
1049 int data_target;
1050 int qd_idx = sh->qd_idx;
1051
1052 /* Missing D+Q: recompute D from P, then recompute Q */
1053 if (target == qd_idx)
1054 data_target = target2;
1055 else
1056 data_target = target;
1057
1058 count = 0;
1059 for (i = disks; i-- ; ) {
1060 if (i == data_target || i == qd_idx)
1061 continue;
1062 blocks[count++] = sh->dev[i].page;
1063 }
1064 dest = sh->dev[data_target].page;
1065 init_async_submit(&submit,
1066 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1067 NULL, NULL, NULL,
1068 to_addr_conv(sh, percpu));
1069 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1070 &submit);
1071
1072 count = set_syndrome_sources(blocks, sh);
1073 init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1074 ops_complete_compute, sh,
1075 to_addr_conv(sh, percpu));
1076 return async_gen_syndrome(blocks, 0, count+2,
1077 STRIPE_SIZE, &submit);
1078 }
1079 } else {
1080 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1081 ops_complete_compute, sh,
1082 to_addr_conv(sh, percpu));
1083 if (failb == syndrome_disks) {
1084 /* We're missing D+P. */
1085 return async_raid6_datap_recov(syndrome_disks+2,
1086 STRIPE_SIZE, faila,
1087 blocks, &submit);
1088 } else {
1089 /* We're missing D+D. */
1090 return async_raid6_2data_recov(syndrome_disks+2,
1091 STRIPE_SIZE, faila, failb,
1092 blocks, &submit);
1093 }
1094 }
1095}
1096
1097
1098static void ops_complete_prexor(void *stripe_head_ref)
1099{
1100 struct stripe_head *sh = stripe_head_ref;
1101
1102 pr_debug("%s: stripe %llu\n", __func__,
1103 (unsigned long long)sh->sector);
1104}
1105
1106static struct dma_async_tx_descriptor *
1107ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
1108 struct dma_async_tx_descriptor *tx)
1109{
1110 int disks = sh->disks;
1111 struct page **xor_srcs = percpu->scribble;
1112 int count = 0, pd_idx = sh->pd_idx, i;
1113 struct async_submit_ctl submit;
1114
1115 /* existing parity data subtracted */
1116 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1117
1118 pr_debug("%s: stripe %llu\n", __func__,
1119 (unsigned long long)sh->sector);
1120
1121 for (i = disks; i--; ) {
1122 struct r5dev *dev = &sh->dev[i];
1123 /* Only process blocks that are known to be uptodate */
1124 if (test_bit(R5_Wantdrain, &dev->flags))
1125 xor_srcs[count++] = dev->page;
1126 }
1127
1128 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1129 ops_complete_prexor, sh, to_addr_conv(sh, percpu));
1130 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1131
1132 return tx;
1133}
1134
1135static struct dma_async_tx_descriptor *
1136ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1137{
1138 int disks = sh->disks;
1139 int i;
1140
1141 pr_debug("%s: stripe %llu\n", __func__,
1142 (unsigned long long)sh->sector);
1143
1144 for (i = disks; i--; ) {
1145 struct r5dev *dev = &sh->dev[i];
1146 struct bio *chosen;
1147
1148 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
1149 struct bio *wbi;
1150
1151 spin_lock_irq(&sh->raid_conf->device_lock);
1152 chosen = dev->towrite;
1153 dev->towrite = NULL;
1154 BUG_ON(dev->written);
1155 wbi = dev->written = chosen;
1156 spin_unlock_irq(&sh->raid_conf->device_lock);
1157
1158 while (wbi && wbi->bi_sector <
1159 dev->sector + STRIPE_SECTORS) {
1160 if (wbi->bi_rw & REQ_FUA)
1161 set_bit(R5_WantFUA, &dev->flags);
1162 if (wbi->bi_rw & REQ_SYNC)
1163 set_bit(R5_SyncIO, &dev->flags);
1164 tx = async_copy_data(1, wbi, dev->page,
1165 dev->sector, tx);
1166 wbi = r5_next_bio(wbi, dev->sector);
1167 }
1168 }
1169 }
1170
1171 return tx;
1172}
1173
1174static void ops_complete_reconstruct(void *stripe_head_ref)
1175{
1176 struct stripe_head *sh = stripe_head_ref;
1177 int disks = sh->disks;
1178 int pd_idx = sh->pd_idx;
1179 int qd_idx = sh->qd_idx;
1180 int i;
1181 bool fua = false, sync = false;
1182
1183 pr_debug("%s: stripe %llu\n", __func__,
1184 (unsigned long long)sh->sector);
1185
1186 for (i = disks; i--; ) {
1187 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1188 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1189 }
1190
1191 for (i = disks; i--; ) {
1192 struct r5dev *dev = &sh->dev[i];
1193
1194 if (dev->written || i == pd_idx || i == qd_idx) {
1195 set_bit(R5_UPTODATE, &dev->flags);
1196 if (fua)
1197 set_bit(R5_WantFUA, &dev->flags);
1198 if (sync)
1199 set_bit(R5_SyncIO, &dev->flags);
1200 }
1201 }
1202
1203 if (sh->reconstruct_state == reconstruct_state_drain_run)
1204 sh->reconstruct_state = reconstruct_state_drain_result;
1205 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1206 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1207 else {
1208 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1209 sh->reconstruct_state = reconstruct_state_result;
1210 }
1211
1212 set_bit(STRIPE_HANDLE, &sh->state);
1213 release_stripe(sh);
1214}
1215
1216static void
1217ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1218 struct dma_async_tx_descriptor *tx)
1219{
1220 int disks = sh->disks;
1221 struct page **xor_srcs = percpu->scribble;
1222 struct async_submit_ctl submit;
1223 int count = 0, pd_idx = sh->pd_idx, i;
1224 struct page *xor_dest;
1225 int prexor = 0;
1226 unsigned long flags;
1227
1228 pr_debug("%s: stripe %llu\n", __func__,
1229 (unsigned long long)sh->sector);
1230
1231 /* check if prexor is active which means only process blocks
1232 * that are part of a read-modify-write (written)
1233 */
1234 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1235 prexor = 1;
1236 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1237 for (i = disks; i--; ) {
1238 struct r5dev *dev = &sh->dev[i];
1239 if (dev->written)
1240 xor_srcs[count++] = dev->page;
1241 }
1242 } else {
1243 xor_dest = sh->dev[pd_idx].page;
1244 for (i = disks; i--; ) {
1245 struct r5dev *dev = &sh->dev[i];
1246 if (i != pd_idx)
1247 xor_srcs[count++] = dev->page;
1248 }
1249 }
1250
1251 /* 1/ if we prexor'd then the dest is reused as a source
1252 * 2/ if we did not prexor then we are redoing the parity
1253 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1254 * for the synchronous xor case
1255 */
1256 flags = ASYNC_TX_ACK |
1257 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1258
1259 atomic_inc(&sh->count);
1260
1261 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1262 to_addr_conv(sh, percpu));
1263 if (unlikely(count == 1))
1264 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1265 else
1266 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1267}
1268
1269static void
1270ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1271 struct dma_async_tx_descriptor *tx)
1272{
1273 struct async_submit_ctl submit;
1274 struct page **blocks = percpu->scribble;
1275 int count;
1276
1277 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1278
1279 count = set_syndrome_sources(blocks, sh);
1280
1281 atomic_inc(&sh->count);
1282
1283 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1284 sh, to_addr_conv(sh, percpu));
1285 async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1286}
1287
1288static void ops_complete_check(void *stripe_head_ref)
1289{
1290 struct stripe_head *sh = stripe_head_ref;
1291
1292 pr_debug("%s: stripe %llu\n", __func__,
1293 (unsigned long long)sh->sector);
1294
1295 sh->check_state = check_state_check_result;
1296 set_bit(STRIPE_HANDLE, &sh->state);
1297 release_stripe(sh);
1298}
1299
1300static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1301{
1302 int disks = sh->disks;
1303 int pd_idx = sh->pd_idx;
1304 int qd_idx = sh->qd_idx;
1305 struct page *xor_dest;
1306 struct page **xor_srcs = percpu->scribble;
1307 struct dma_async_tx_descriptor *tx;
1308 struct async_submit_ctl submit;
1309 int count;
1310 int i;
1311
1312 pr_debug("%s: stripe %llu\n", __func__,
1313 (unsigned long long)sh->sector);
1314
1315 count = 0;
1316 xor_dest = sh->dev[pd_idx].page;
1317 xor_srcs[count++] = xor_dest;
1318 for (i = disks; i--; ) {
1319 if (i == pd_idx || i == qd_idx)
1320 continue;
1321 xor_srcs[count++] = sh->dev[i].page;
1322 }
1323
1324 init_async_submit(&submit, 0, NULL, NULL, NULL,
1325 to_addr_conv(sh, percpu));
1326 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1327 &sh->ops.zero_sum_result, &submit);
1328
1329 atomic_inc(&sh->count);
1330 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1331 tx = async_trigger_callback(&submit);
1332}
1333
1334static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1335{
1336 struct page **srcs = percpu->scribble;
1337 struct async_submit_ctl submit;
1338 int count;
1339
1340 pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1341 (unsigned long long)sh->sector, checkp);
1342
1343 count = set_syndrome_sources(srcs, sh);
1344 if (!checkp)
1345 srcs[count] = NULL;
1346
1347 atomic_inc(&sh->count);
1348 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1349 sh, to_addr_conv(sh, percpu));
1350 async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1351 &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1352}
1353
1354static void __raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1355{
1356 int overlap_clear = 0, i, disks = sh->disks;
1357 struct dma_async_tx_descriptor *tx = NULL;
1358 struct r5conf *conf = sh->raid_conf;
1359 int level = conf->level;
1360 struct raid5_percpu *percpu;
1361 unsigned long cpu;
1362
1363 cpu = get_cpu();
1364 percpu = per_cpu_ptr(conf->percpu, cpu);
1365 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1366 ops_run_biofill(sh);
1367 overlap_clear++;
1368 }
1369
1370 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1371 if (level < 6)
1372 tx = ops_run_compute5(sh, percpu);
1373 else {
1374 if (sh->ops.target2 < 0 || sh->ops.target < 0)
1375 tx = ops_run_compute6_1(sh, percpu);
1376 else
1377 tx = ops_run_compute6_2(sh, percpu);
1378 }
1379 /* terminate the chain if reconstruct is not set to be run */
1380 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1381 async_tx_ack(tx);
1382 }
1383
1384 if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1385 tx = ops_run_prexor(sh, percpu, tx);
1386
1387 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1388 tx = ops_run_biodrain(sh, tx);
1389 overlap_clear++;
1390 }
1391
1392 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1393 if (level < 6)
1394 ops_run_reconstruct5(sh, percpu, tx);
1395 else
1396 ops_run_reconstruct6(sh, percpu, tx);
1397 }
1398
1399 if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1400 if (sh->check_state == check_state_run)
1401 ops_run_check_p(sh, percpu);
1402 else if (sh->check_state == check_state_run_q)
1403 ops_run_check_pq(sh, percpu, 0);
1404 else if (sh->check_state == check_state_run_pq)
1405 ops_run_check_pq(sh, percpu, 1);
1406 else
1407 BUG();
1408 }
1409
1410 if (overlap_clear)
1411 for (i = disks; i--; ) {
1412 struct r5dev *dev = &sh->dev[i];
1413 if (test_and_clear_bit(R5_Overlap, &dev->flags))
1414 wake_up(&sh->raid_conf->wait_for_overlap);
1415 }
1416 put_cpu();
1417}
1418
1419#ifdef CONFIG_MULTICORE_RAID456
1420static void async_run_ops(void *param, async_cookie_t cookie)
1421{
1422 struct stripe_head *sh = param;
1423 unsigned long ops_request = sh->ops.request;
1424
1425 clear_bit_unlock(STRIPE_OPS_REQ_PENDING, &sh->state);
1426 wake_up(&sh->ops.wait_for_ops);
1427
1428 __raid_run_ops(sh, ops_request);
1429 release_stripe(sh);
1430}
1431
1432static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1433{
1434 /* since handle_stripe can be called outside of raid5d context
1435 * we need to ensure sh->ops.request is de-staged before another
1436 * request arrives
1437 */
1438 wait_event(sh->ops.wait_for_ops,
1439 !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING, &sh->state));
1440 sh->ops.request = ops_request;
1441
1442 atomic_inc(&sh->count);
1443 async_schedule(async_run_ops, sh);
1444}
1445#else
1446#define raid_run_ops __raid_run_ops
1447#endif
1448
1449static int grow_one_stripe(struct r5conf *conf)
1450{
1451 struct stripe_head *sh;
1452 sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
1453 if (!sh)
1454 return 0;
1455
1456 sh->raid_conf = conf;
1457 #ifdef CONFIG_MULTICORE_RAID456
1458 init_waitqueue_head(&sh->ops.wait_for_ops);
1459 #endif
1460
1461 if (grow_buffers(sh)) {
1462 shrink_buffers(sh);
1463 kmem_cache_free(conf->slab_cache, sh);
1464 return 0;
1465 }
1466 /* we just created an active stripe so... */
1467 atomic_set(&sh->count, 1);
1468 atomic_inc(&conf->active_stripes);
1469 INIT_LIST_HEAD(&sh->lru);
1470 release_stripe(sh);
1471 return 1;
1472}
1473
1474static int grow_stripes(struct r5conf *conf, int num)
1475{
1476 struct kmem_cache *sc;
1477 int devs = max(conf->raid_disks, conf->previous_raid_disks);
1478
1479 if (conf->mddev->gendisk)
1480 sprintf(conf->cache_name[0],
1481 "raid%d-%s", conf->level, mdname(conf->mddev));
1482 else
1483 sprintf(conf->cache_name[0],
1484 "raid%d-%p", conf->level, conf->mddev);
1485 sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
1486
1487 conf->active_name = 0;
1488 sc = kmem_cache_create(conf->cache_name[conf->active_name],
1489 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1490 0, 0, NULL);
1491 if (!sc)
1492 return 1;
1493 conf->slab_cache = sc;
1494 conf->pool_size = devs;
1495 while (num--)
1496 if (!grow_one_stripe(conf))
1497 return 1;
1498 return 0;
1499}
1500
1501/**
1502 * scribble_len - return the required size of the scribble region
1503 * @num - total number of disks in the array
1504 *
1505 * The size must be enough to contain:
1506 * 1/ a struct page pointer for each device in the array +2
1507 * 2/ room to convert each entry in (1) to its corresponding dma
1508 * (dma_map_page()) or page (page_address()) address.
1509 *
1510 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1511 * calculate over all devices (not just the data blocks), using zeros in place
1512 * of the P and Q blocks.
1513 */
1514static size_t scribble_len(int num)
1515{
1516 size_t len;
1517
1518 len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1519
1520 return len;
1521}
1522
1523static int resize_stripes(struct r5conf *conf, int newsize)
1524{
1525 /* Make all the stripes able to hold 'newsize' devices.
1526 * New slots in each stripe get 'page' set to a new page.
1527 *
1528 * This happens in stages:
1529 * 1/ create a new kmem_cache and allocate the required number of
1530 * stripe_heads.
1531 * 2/ gather all the old stripe_heads and tranfer the pages across
1532 * to the new stripe_heads. This will have the side effect of
1533 * freezing the array as once all stripe_heads have been collected,
1534 * no IO will be possible. Old stripe heads are freed once their
1535 * pages have been transferred over, and the old kmem_cache is
1536 * freed when all stripes are done.
1537 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
1538 * we simple return a failre status - no need to clean anything up.
1539 * 4/ allocate new pages for the new slots in the new stripe_heads.
1540 * If this fails, we don't bother trying the shrink the
1541 * stripe_heads down again, we just leave them as they are.
1542 * As each stripe_head is processed the new one is released into
1543 * active service.
1544 *
1545 * Once step2 is started, we cannot afford to wait for a write,
1546 * so we use GFP_NOIO allocations.
1547 */
1548 struct stripe_head *osh, *nsh;
1549 LIST_HEAD(newstripes);
1550 struct disk_info *ndisks;
1551 unsigned long cpu;
1552 int err;
1553 struct kmem_cache *sc;
1554 int i;
1555
1556 if (newsize <= conf->pool_size)
1557 return 0; /* never bother to shrink */
1558
1559 err = md_allow_write(conf->mddev);
1560 if (err)
1561 return err;
1562
1563 /* Step 1 */
1564 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1565 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1566 0, 0, NULL);
1567 if (!sc)
1568 return -ENOMEM;
1569
1570 for (i = conf->max_nr_stripes; i; i--) {
1571 nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
1572 if (!nsh)
1573 break;
1574
1575 nsh->raid_conf = conf;
1576 #ifdef CONFIG_MULTICORE_RAID456
1577 init_waitqueue_head(&nsh->ops.wait_for_ops);
1578 #endif
1579
1580 list_add(&nsh->lru, &newstripes);
1581 }
1582 if (i) {
1583 /* didn't get enough, give up */
1584 while (!list_empty(&newstripes)) {
1585 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1586 list_del(&nsh->lru);
1587 kmem_cache_free(sc, nsh);
1588 }
1589 kmem_cache_destroy(sc);
1590 return -ENOMEM;
1591 }
1592 /* Step 2 - Must use GFP_NOIO now.
1593 * OK, we have enough stripes, start collecting inactive
1594 * stripes and copying them over
1595 */
1596 list_for_each_entry(nsh, &newstripes, lru) {
1597 spin_lock_irq(&conf->device_lock);
1598 wait_event_lock_irq(conf->wait_for_stripe,
1599 !list_empty(&conf->inactive_list),
1600 conf->device_lock,
1601 );
1602 osh = get_free_stripe(conf);
1603 spin_unlock_irq(&conf->device_lock);
1604 atomic_set(&nsh->count, 1);
1605 for(i=0; i<conf->pool_size; i++)
1606 nsh->dev[i].page = osh->dev[i].page;
1607 for( ; i<newsize; i++)
1608 nsh->dev[i].page = NULL;
1609 kmem_cache_free(conf->slab_cache, osh);
1610 }
1611 kmem_cache_destroy(conf->slab_cache);
1612
1613 /* Step 3.
1614 * At this point, we are holding all the stripes so the array
1615 * is completely stalled, so now is a good time to resize
1616 * conf->disks and the scribble region
1617 */
1618 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1619 if (ndisks) {
1620 for (i=0; i<conf->raid_disks; i++)
1621 ndisks[i] = conf->disks[i];
1622 kfree(conf->disks);
1623 conf->disks = ndisks;
1624 } else
1625 err = -ENOMEM;
1626
1627 get_online_cpus();
1628 conf->scribble_len = scribble_len(newsize);
1629 for_each_present_cpu(cpu) {
1630 struct raid5_percpu *percpu;
1631 void *scribble;
1632
1633 percpu = per_cpu_ptr(conf->percpu, cpu);
1634 scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1635
1636 if (scribble) {
1637 kfree(percpu->scribble);
1638 percpu->scribble = scribble;
1639 } else {
1640 err = -ENOMEM;
1641 break;
1642 }
1643 }
1644 put_online_cpus();
1645
1646 /* Step 4, return new stripes to service */
1647 while(!list_empty(&newstripes)) {
1648 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1649 list_del_init(&nsh->lru);
1650
1651 for (i=conf->raid_disks; i < newsize; i++)
1652 if (nsh->dev[i].page == NULL) {
1653 struct page *p = alloc_page(GFP_NOIO);
1654 nsh->dev[i].page = p;
1655 if (!p)
1656 err = -ENOMEM;
1657 }
1658 release_stripe(nsh);
1659 }
1660 /* critical section pass, GFP_NOIO no longer needed */
1661
1662 conf->slab_cache = sc;
1663 conf->active_name = 1-conf->active_name;
1664 conf->pool_size = newsize;
1665 return err;
1666}
1667
1668static int drop_one_stripe(struct r5conf *conf)
1669{
1670 struct stripe_head *sh;
1671
1672 spin_lock_irq(&conf->device_lock);
1673 sh = get_free_stripe(conf);
1674 spin_unlock_irq(&conf->device_lock);
1675 if (!sh)
1676 return 0;
1677 BUG_ON(atomic_read(&sh->count));
1678 shrink_buffers(sh);
1679 kmem_cache_free(conf->slab_cache, sh);
1680 atomic_dec(&conf->active_stripes);
1681 return 1;
1682}
1683
1684static void shrink_stripes(struct r5conf *conf)
1685{
1686 while (drop_one_stripe(conf))
1687 ;
1688
1689 if (conf->slab_cache)
1690 kmem_cache_destroy(conf->slab_cache);
1691 conf->slab_cache = NULL;
1692}
1693
1694static void raid5_end_read_request(struct bio * bi, int error)
1695{
1696 struct stripe_head *sh = bi->bi_private;
1697 struct r5conf *conf = sh->raid_conf;
1698 int disks = sh->disks, i;
1699 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1700 char b[BDEVNAME_SIZE];
1701 struct md_rdev *rdev = NULL;
1702 sector_t s;
1703
1704 for (i=0 ; i<disks; i++)
1705 if (bi == &sh->dev[i].req)
1706 break;
1707
1708 pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1709 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1710 uptodate);
1711 if (i == disks) {
1712 BUG();
1713 return;
1714 }
1715 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
1716 /* If replacement finished while this request was outstanding,
1717 * 'replacement' might be NULL already.
1718 * In that case it moved down to 'rdev'.
1719 * rdev is not removed until all requests are finished.
1720 */
1721 rdev = conf->disks[i].replacement;
1722 if (!rdev)
1723 rdev = conf->disks[i].rdev;
1724
1725 if (use_new_offset(conf, sh))
1726 s = sh->sector + rdev->new_data_offset;
1727 else
1728 s = sh->sector + rdev->data_offset;
1729 if (uptodate) {
1730 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1731 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1732 /* Note that this cannot happen on a
1733 * replacement device. We just fail those on
1734 * any error
1735 */
1736 printk_ratelimited(
1737 KERN_INFO
1738 "md/raid:%s: read error corrected"
1739 " (%lu sectors at %llu on %s)\n",
1740 mdname(conf->mddev), STRIPE_SECTORS,
1741 (unsigned long long)s,
1742 bdevname(rdev->bdev, b));
1743 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
1744 clear_bit(R5_ReadError, &sh->dev[i].flags);
1745 clear_bit(R5_ReWrite, &sh->dev[i].flags);
1746 }
1747 if (atomic_read(&rdev->read_errors))
1748 atomic_set(&rdev->read_errors, 0);
1749 } else {
1750 const char *bdn = bdevname(rdev->bdev, b);
1751 int retry = 0;
1752 int set_bad = 0;
1753
1754 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1755 atomic_inc(&rdev->read_errors);
1756 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
1757 printk_ratelimited(
1758 KERN_WARNING
1759 "md/raid:%s: read error on replacement device "
1760 "(sector %llu on %s).\n",
1761 mdname(conf->mddev),
1762 (unsigned long long)s,
1763 bdn);
1764 else if (conf->mddev->degraded >= conf->max_degraded) {
1765 set_bad = 1;
1766 printk_ratelimited(
1767 KERN_WARNING
1768 "md/raid:%s: read error not correctable "
1769 "(sector %llu on %s).\n",
1770 mdname(conf->mddev),
1771 (unsigned long long)s,
1772 bdn);
1773 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
1774 /* Oh, no!!! */
1775 set_bad = 1;
1776 printk_ratelimited(
1777 KERN_WARNING
1778 "md/raid:%s: read error NOT corrected!! "
1779 "(sector %llu on %s).\n",
1780 mdname(conf->mddev),
1781 (unsigned long long)s,
1782 bdn);
1783 } else if (atomic_read(&rdev->read_errors)
1784 > conf->max_nr_stripes)
1785 printk(KERN_WARNING
1786 "md/raid:%s: Too many read errors, failing device %s.\n",
1787 mdname(conf->mddev), bdn);
1788 else
1789 retry = 1;
1790 if (retry)
1791 set_bit(R5_ReadError, &sh->dev[i].flags);
1792 else {
1793 clear_bit(R5_ReadError, &sh->dev[i].flags);
1794 clear_bit(R5_ReWrite, &sh->dev[i].flags);
1795 if (!(set_bad
1796 && test_bit(In_sync, &rdev->flags)
1797 && rdev_set_badblocks(
1798 rdev, sh->sector, STRIPE_SECTORS, 0)))
1799 md_error(conf->mddev, rdev);
1800 }
1801 }
1802 rdev_dec_pending(rdev, conf->mddev);
1803 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1804 set_bit(STRIPE_HANDLE, &sh->state);
1805 release_stripe(sh);
1806}
1807
1808static void raid5_end_write_request(struct bio *bi, int error)
1809{
1810 struct stripe_head *sh = bi->bi_private;
1811 struct r5conf *conf = sh->raid_conf;
1812 int disks = sh->disks, i;
1813 struct md_rdev *uninitialized_var(rdev);
1814 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1815 sector_t first_bad;
1816 int bad_sectors;
1817 int replacement = 0;
1818
1819 for (i = 0 ; i < disks; i++) {
1820 if (bi == &sh->dev[i].req) {
1821 rdev = conf->disks[i].rdev;
1822 break;
1823 }
1824 if (bi == &sh->dev[i].rreq) {
1825 rdev = conf->disks[i].replacement;
1826 if (rdev)
1827 replacement = 1;
1828 else
1829 /* rdev was removed and 'replacement'
1830 * replaced it. rdev is not removed
1831 * until all requests are finished.
1832 */
1833 rdev = conf->disks[i].rdev;
1834 break;
1835 }
1836 }
1837 pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1838 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1839 uptodate);
1840 if (i == disks) {
1841 BUG();
1842 return;
1843 }
1844
1845 if (replacement) {
1846 if (!uptodate)
1847 md_error(conf->mddev, rdev);
1848 else if (is_badblock(rdev, sh->sector,
1849 STRIPE_SECTORS,
1850 &first_bad, &bad_sectors))
1851 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
1852 } else {
1853 if (!uptodate) {
1854 set_bit(WriteErrorSeen, &rdev->flags);
1855 set_bit(R5_WriteError, &sh->dev[i].flags);
1856 if (!test_and_set_bit(WantReplacement, &rdev->flags))
1857 set_bit(MD_RECOVERY_NEEDED,
1858 &rdev->mddev->recovery);
1859 } else if (is_badblock(rdev, sh->sector,
1860 STRIPE_SECTORS,
1861 &first_bad, &bad_sectors))
1862 set_bit(R5_MadeGood, &sh->dev[i].flags);
1863 }
1864 rdev_dec_pending(rdev, conf->mddev);
1865
1866 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
1867 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1868 set_bit(STRIPE_HANDLE, &sh->state);
1869 release_stripe(sh);
1870}
1871
1872static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
1873
1874static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1875{
1876 struct r5dev *dev = &sh->dev[i];
1877
1878 bio_init(&dev->req);
1879 dev->req.bi_io_vec = &dev->vec;
1880 dev->req.bi_vcnt++;
1881 dev->req.bi_max_vecs++;
1882 dev->req.bi_private = sh;
1883 dev->vec.bv_page = dev->page;
1884
1885 bio_init(&dev->rreq);
1886 dev->rreq.bi_io_vec = &dev->rvec;
1887 dev->rreq.bi_vcnt++;
1888 dev->rreq.bi_max_vecs++;
1889 dev->rreq.bi_private = sh;
1890 dev->rvec.bv_page = dev->page;
1891
1892 dev->flags = 0;
1893 dev->sector = compute_blocknr(sh, i, previous);
1894}
1895
1896static void error(struct mddev *mddev, struct md_rdev *rdev)
1897{
1898 char b[BDEVNAME_SIZE];
1899 struct r5conf *conf = mddev->private;
1900 unsigned long flags;
1901 pr_debug("raid456: error called\n");
1902
1903 spin_lock_irqsave(&conf->device_lock, flags);
1904 clear_bit(In_sync, &rdev->flags);
1905 mddev->degraded = calc_degraded(conf);
1906 spin_unlock_irqrestore(&conf->device_lock, flags);
1907 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1908
1909 set_bit(Blocked, &rdev->flags);
1910 set_bit(Faulty, &rdev->flags);
1911 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1912 printk(KERN_ALERT
1913 "md/raid:%s: Disk failure on %s, disabling device.\n"
1914 "md/raid:%s: Operation continuing on %d devices.\n",
1915 mdname(mddev),
1916 bdevname(rdev->bdev, b),
1917 mdname(mddev),
1918 conf->raid_disks - mddev->degraded);
1919}
1920
1921/*
1922 * Input: a 'big' sector number,
1923 * Output: index of the data and parity disk, and the sector # in them.
1924 */
1925static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
1926 int previous, int *dd_idx,
1927 struct stripe_head *sh)
1928{
1929 sector_t stripe, stripe2;
1930 sector_t chunk_number;
1931 unsigned int chunk_offset;
1932 int pd_idx, qd_idx;
1933 int ddf_layout = 0;
1934 sector_t new_sector;
1935 int algorithm = previous ? conf->prev_algo
1936 : conf->algorithm;
1937 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1938 : conf->chunk_sectors;
1939 int raid_disks = previous ? conf->previous_raid_disks
1940 : conf->raid_disks;
1941 int data_disks = raid_disks - conf->max_degraded;
1942
1943 /* First compute the information on this sector */
1944
1945 /*
1946 * Compute the chunk number and the sector offset inside the chunk
1947 */
1948 chunk_offset = sector_div(r_sector, sectors_per_chunk);
1949 chunk_number = r_sector;
1950
1951 /*
1952 * Compute the stripe number
1953 */
1954 stripe = chunk_number;
1955 *dd_idx = sector_div(stripe, data_disks);
1956 stripe2 = stripe;
1957 /*
1958 * Select the parity disk based on the user selected algorithm.
1959 */
1960 pd_idx = qd_idx = -1;
1961 switch(conf->level) {
1962 case 4:
1963 pd_idx = data_disks;
1964 break;
1965 case 5:
1966 switch (algorithm) {
1967 case ALGORITHM_LEFT_ASYMMETRIC:
1968 pd_idx = data_disks - sector_div(stripe2, raid_disks);
1969 if (*dd_idx >= pd_idx)
1970 (*dd_idx)++;
1971 break;
1972 case ALGORITHM_RIGHT_ASYMMETRIC:
1973 pd_idx = sector_div(stripe2, raid_disks);
1974 if (*dd_idx >= pd_idx)
1975 (*dd_idx)++;
1976 break;
1977 case ALGORITHM_LEFT_SYMMETRIC:
1978 pd_idx = data_disks - sector_div(stripe2, raid_disks);
1979 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1980 break;
1981 case ALGORITHM_RIGHT_SYMMETRIC:
1982 pd_idx = sector_div(stripe2, raid_disks);
1983 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1984 break;
1985 case ALGORITHM_PARITY_0:
1986 pd_idx = 0;
1987 (*dd_idx)++;
1988 break;
1989 case ALGORITHM_PARITY_N:
1990 pd_idx = data_disks;
1991 break;
1992 default:
1993 BUG();
1994 }
1995 break;
1996 case 6:
1997
1998 switch (algorithm) {
1999 case ALGORITHM_LEFT_ASYMMETRIC:
2000 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2001 qd_idx = pd_idx + 1;
2002 if (pd_idx == raid_disks-1) {
2003 (*dd_idx)++; /* Q D D D P */
2004 qd_idx = 0;
2005 } else if (*dd_idx >= pd_idx)
2006 (*dd_idx) += 2; /* D D P Q D */
2007 break;
2008 case ALGORITHM_RIGHT_ASYMMETRIC:
2009 pd_idx = sector_div(stripe2, raid_disks);
2010 qd_idx = pd_idx + 1;
2011 if (pd_idx == raid_disks-1) {
2012 (*dd_idx)++; /* Q D D D P */
2013 qd_idx = 0;
2014 } else if (*dd_idx >= pd_idx)
2015 (*dd_idx) += 2; /* D D P Q D */
2016 break;
2017 case ALGORITHM_LEFT_SYMMETRIC:
2018 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2019 qd_idx = (pd_idx + 1) % raid_disks;
2020 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2021 break;
2022 case ALGORITHM_RIGHT_SYMMETRIC:
2023 pd_idx = sector_div(stripe2, raid_disks);
2024 qd_idx = (pd_idx + 1) % raid_disks;
2025 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2026 break;
2027
2028 case ALGORITHM_PARITY_0:
2029 pd_idx = 0;
2030 qd_idx = 1;
2031 (*dd_idx) += 2;
2032 break;
2033 case ALGORITHM_PARITY_N:
2034 pd_idx = data_disks;
2035 qd_idx = data_disks + 1;
2036 break;
2037
2038 case ALGORITHM_ROTATING_ZERO_RESTART:
2039 /* Exactly the same as RIGHT_ASYMMETRIC, but or
2040 * of blocks for computing Q is different.
2041 */
2042 pd_idx = sector_div(stripe2, raid_disks);
2043 qd_idx = pd_idx + 1;
2044 if (pd_idx == raid_disks-1) {
2045 (*dd_idx)++; /* Q D D D P */
2046 qd_idx = 0;
2047 } else if (*dd_idx >= pd_idx)
2048 (*dd_idx) += 2; /* D D P Q D */
2049 ddf_layout = 1;
2050 break;
2051
2052 case ALGORITHM_ROTATING_N_RESTART:
2053 /* Same a left_asymmetric, by first stripe is
2054 * D D D P Q rather than
2055 * Q D D D P
2056 */
2057 stripe2 += 1;
2058 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2059 qd_idx = pd_idx + 1;
2060 if (pd_idx == raid_disks-1) {
2061 (*dd_idx)++; /* Q D D D P */
2062 qd_idx = 0;
2063 } else if (*dd_idx >= pd_idx)
2064 (*dd_idx) += 2; /* D D P Q D */
2065 ddf_layout = 1;
2066 break;
2067
2068 case ALGORITHM_ROTATING_N_CONTINUE:
2069 /* Same as left_symmetric but Q is before P */
2070 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2071 qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2072 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2073 ddf_layout = 1;
2074 break;
2075
2076 case ALGORITHM_LEFT_ASYMMETRIC_6:
2077 /* RAID5 left_asymmetric, with Q on last device */
2078 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2079 if (*dd_idx >= pd_idx)
2080 (*dd_idx)++;
2081 qd_idx = raid_disks - 1;
2082 break;
2083
2084 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2085 pd_idx = sector_div(stripe2, raid_disks-1);
2086 if (*dd_idx >= pd_idx)
2087 (*dd_idx)++;
2088 qd_idx = raid_disks - 1;
2089 break;
2090
2091 case ALGORITHM_LEFT_SYMMETRIC_6:
2092 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2093 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2094 qd_idx = raid_disks - 1;
2095 break;
2096
2097 case ALGORITHM_RIGHT_SYMMETRIC_6:
2098 pd_idx = sector_div(stripe2, raid_disks-1);
2099 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2100 qd_idx = raid_disks - 1;
2101 break;
2102
2103 case ALGORITHM_PARITY_0_6:
2104 pd_idx = 0;
2105 (*dd_idx)++;
2106 qd_idx = raid_disks - 1;
2107 break;
2108
2109 default:
2110 BUG();
2111 }
2112 break;
2113 }
2114
2115 if (sh) {
2116 sh->pd_idx = pd_idx;
2117 sh->qd_idx = qd_idx;
2118 sh->ddf_layout = ddf_layout;
2119 }
2120 /*
2121 * Finally, compute the new sector number
2122 */
2123 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2124 return new_sector;
2125}
2126
2127
2128static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
2129{
2130 struct r5conf *conf = sh->raid_conf;
2131 int raid_disks = sh->disks;
2132 int data_disks = raid_disks - conf->max_degraded;
2133 sector_t new_sector = sh->sector, check;
2134 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2135 : conf->chunk_sectors;
2136 int algorithm = previous ? conf->prev_algo
2137 : conf->algorithm;
2138 sector_t stripe;
2139 int chunk_offset;
2140 sector_t chunk_number;
2141 int dummy1, dd_idx = i;
2142 sector_t r_sector;
2143 struct stripe_head sh2;
2144
2145
2146 chunk_offset = sector_div(new_sector, sectors_per_chunk);
2147 stripe = new_sector;
2148
2149 if (i == sh->pd_idx)
2150 return 0;
2151 switch(conf->level) {
2152 case 4: break;
2153 case 5:
2154 switch (algorithm) {
2155 case ALGORITHM_LEFT_ASYMMETRIC:
2156 case ALGORITHM_RIGHT_ASYMMETRIC:
2157 if (i > sh->pd_idx)
2158 i--;
2159 break;
2160 case ALGORITHM_LEFT_SYMMETRIC:
2161 case ALGORITHM_RIGHT_SYMMETRIC:
2162 if (i < sh->pd_idx)
2163 i += raid_disks;
2164 i -= (sh->pd_idx + 1);
2165 break;
2166 case ALGORITHM_PARITY_0:
2167 i -= 1;
2168 break;
2169 case ALGORITHM_PARITY_N:
2170 break;
2171 default:
2172 BUG();
2173 }
2174 break;
2175 case 6:
2176 if (i == sh->qd_idx)
2177 return 0; /* It is the Q disk */
2178 switch (algorithm) {
2179 case ALGORITHM_LEFT_ASYMMETRIC:
2180 case ALGORITHM_RIGHT_ASYMMETRIC:
2181 case ALGORITHM_ROTATING_ZERO_RESTART:
2182 case ALGORITHM_ROTATING_N_RESTART:
2183 if (sh->pd_idx == raid_disks-1)
2184 i--; /* Q D D D P */
2185 else if (i > sh->pd_idx)
2186 i -= 2; /* D D P Q D */
2187 break;
2188 case ALGORITHM_LEFT_SYMMETRIC:
2189 case ALGORITHM_RIGHT_SYMMETRIC:
2190 if (sh->pd_idx == raid_disks-1)
2191 i--; /* Q D D D P */
2192 else {
2193 /* D D P Q D */
2194 if (i < sh->pd_idx)
2195 i += raid_disks;
2196 i -= (sh->pd_idx + 2);
2197 }
2198 break;
2199 case ALGORITHM_PARITY_0:
2200 i -= 2;
2201 break;
2202 case ALGORITHM_PARITY_N:
2203 break;
2204 case ALGORITHM_ROTATING_N_CONTINUE:
2205 /* Like left_symmetric, but P is before Q */
2206 if (sh->pd_idx == 0)
2207 i--; /* P D D D Q */
2208 else {
2209 /* D D Q P D */
2210 if (i < sh->pd_idx)
2211 i += raid_disks;
2212 i -= (sh->pd_idx + 1);
2213 }
2214 break;
2215 case ALGORITHM_LEFT_ASYMMETRIC_6:
2216 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2217 if (i > sh->pd_idx)
2218 i--;
2219 break;
2220 case ALGORITHM_LEFT_SYMMETRIC_6:
2221 case ALGORITHM_RIGHT_SYMMETRIC_6:
2222 if (i < sh->pd_idx)
2223 i += data_disks + 1;
2224 i -= (sh->pd_idx + 1);
2225 break;
2226 case ALGORITHM_PARITY_0_6:
2227 i -= 1;
2228 break;
2229 default:
2230 BUG();
2231 }
2232 break;
2233 }
2234
2235 chunk_number = stripe * data_disks + i;
2236 r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2237
2238 check = raid5_compute_sector(conf, r_sector,
2239 previous, &dummy1, &sh2);
2240 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2241 || sh2.qd_idx != sh->qd_idx) {
2242 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2243 mdname(conf->mddev));
2244 return 0;
2245 }
2246 return r_sector;
2247}
2248
2249
2250static void
2251schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2252 int rcw, int expand)
2253{
2254 int i, pd_idx = sh->pd_idx, disks = sh->disks;
2255 struct r5conf *conf = sh->raid_conf;
2256 int level = conf->level;
2257
2258 if (rcw) {
2259 /* if we are not expanding this is a proper write request, and
2260 * there will be bios with new data to be drained into the
2261 * stripe cache
2262 */
2263 if (!expand) {
2264 sh->reconstruct_state = reconstruct_state_drain_run;
2265 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2266 } else
2267 sh->reconstruct_state = reconstruct_state_run;
2268
2269 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2270
2271 for (i = disks; i--; ) {
2272 struct r5dev *dev = &sh->dev[i];
2273
2274 if (dev->towrite) {
2275 set_bit(R5_LOCKED, &dev->flags);
2276 set_bit(R5_Wantdrain, &dev->flags);
2277 if (!expand)
2278 clear_bit(R5_UPTODATE, &dev->flags);
2279 s->locked++;
2280 }
2281 }
2282 if (s->locked + conf->max_degraded == disks)
2283 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2284 atomic_inc(&conf->pending_full_writes);
2285 } else {
2286 BUG_ON(level == 6);
2287 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2288 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2289
2290 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2291 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2292 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2293 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2294
2295 for (i = disks; i--; ) {
2296 struct r5dev *dev = &sh->dev[i];
2297 if (i == pd_idx)
2298 continue;
2299
2300 if (dev->towrite &&
2301 (test_bit(R5_UPTODATE, &dev->flags) ||
2302 test_bit(R5_Wantcompute, &dev->flags))) {
2303 set_bit(R5_Wantdrain, &dev->flags);
2304 set_bit(R5_LOCKED, &dev->flags);
2305 clear_bit(R5_UPTODATE, &dev->flags);
2306 s->locked++;
2307 }
2308 }
2309 }
2310
2311 /* keep the parity disk(s) locked while asynchronous operations
2312 * are in flight
2313 */
2314 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2315 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2316 s->locked++;
2317
2318 if (level == 6) {
2319 int qd_idx = sh->qd_idx;
2320 struct r5dev *dev = &sh->dev[qd_idx];
2321
2322 set_bit(R5_LOCKED, &dev->flags);
2323 clear_bit(R5_UPTODATE, &dev->flags);
2324 s->locked++;
2325 }
2326
2327 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2328 __func__, (unsigned long long)sh->sector,
2329 s->locked, s->ops_request);
2330}
2331
2332/*
2333 * Each stripe/dev can have one or more bion attached.
2334 * toread/towrite point to the first in a chain.
2335 * The bi_next chain must be in order.
2336 */
2337static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2338{
2339 struct bio **bip;
2340 struct r5conf *conf = sh->raid_conf;
2341 int firstwrite=0;
2342
2343 pr_debug("adding bi b#%llu to stripe s#%llu\n",
2344 (unsigned long long)bi->bi_sector,
2345 (unsigned long long)sh->sector);
2346
2347
2348 spin_lock_irq(&conf->device_lock);
2349 if (forwrite) {
2350 bip = &sh->dev[dd_idx].towrite;
2351 if (*bip == NULL && sh->dev[dd_idx].written == NULL)
2352 firstwrite = 1;
2353 } else
2354 bip = &sh->dev[dd_idx].toread;
2355 while (*bip && (*bip)->bi_sector < bi->bi_sector) {
2356 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
2357 goto overlap;
2358 bip = & (*bip)->bi_next;
2359 }
2360 if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
2361 goto overlap;
2362
2363 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2364 if (*bip)
2365 bi->bi_next = *bip;
2366 *bip = bi;
2367 bi->bi_phys_segments++;
2368
2369 if (forwrite) {
2370 /* check if page is covered */
2371 sector_t sector = sh->dev[dd_idx].sector;
2372 for (bi=sh->dev[dd_idx].towrite;
2373 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2374 bi && bi->bi_sector <= sector;
2375 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2376 if (bi->bi_sector + (bi->bi_size>>9) >= sector)
2377 sector = bi->bi_sector + (bi->bi_size>>9);
2378 }
2379 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2380 set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2381 }
2382 spin_unlock_irq(&conf->device_lock);
2383
2384 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2385 (unsigned long long)(*bip)->bi_sector,
2386 (unsigned long long)sh->sector, dd_idx);
2387
2388 if (conf->mddev->bitmap && firstwrite) {
2389 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2390 STRIPE_SECTORS, 0);
2391 sh->bm_seq = conf->seq_flush+1;
2392 set_bit(STRIPE_BIT_DELAY, &sh->state);
2393 }
2394 return 1;
2395
2396 overlap:
2397 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2398 spin_unlock_irq(&conf->device_lock);
2399 return 0;
2400}
2401
2402static void end_reshape(struct r5conf *conf);
2403
2404static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
2405 struct stripe_head *sh)
2406{
2407 int sectors_per_chunk =
2408 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2409 int dd_idx;
2410 int chunk_offset = sector_div(stripe, sectors_per_chunk);
2411 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2412
2413 raid5_compute_sector(conf,
2414 stripe * (disks - conf->max_degraded)
2415 *sectors_per_chunk + chunk_offset,
2416 previous,
2417 &dd_idx, sh);
2418}
2419
2420static void
2421handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
2422 struct stripe_head_state *s, int disks,
2423 struct bio **return_bi)
2424{
2425 int i;
2426 for (i = disks; i--; ) {
2427 struct bio *bi;
2428 int bitmap_end = 0;
2429
2430 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2431 struct md_rdev *rdev;
2432 rcu_read_lock();
2433 rdev = rcu_dereference(conf->disks[i].rdev);
2434 if (rdev && test_bit(In_sync, &rdev->flags))
2435 atomic_inc(&rdev->nr_pending);
2436 else
2437 rdev = NULL;
2438 rcu_read_unlock();
2439 if (rdev) {
2440 if (!rdev_set_badblocks(
2441 rdev,
2442 sh->sector,
2443 STRIPE_SECTORS, 0))
2444 md_error(conf->mddev, rdev);
2445 rdev_dec_pending(rdev, conf->mddev);
2446 }
2447 }
2448 spin_lock_irq(&conf->device_lock);
2449 /* fail all writes first */
2450 bi = sh->dev[i].towrite;
2451 sh->dev[i].towrite = NULL;
2452 if (bi) {
2453 s->to_write--;
2454 bitmap_end = 1;
2455 }
2456
2457 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2458 wake_up(&conf->wait_for_overlap);
2459
2460 while (bi && bi->bi_sector <
2461 sh->dev[i].sector + STRIPE_SECTORS) {
2462 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2463 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2464 if (!raid5_dec_bi_phys_segments(bi)) {
2465 md_write_end(conf->mddev);
2466 bi->bi_next = *return_bi;
2467 *return_bi = bi;
2468 }
2469 bi = nextbi;
2470 }
2471 /* and fail all 'written' */
2472 bi = sh->dev[i].written;
2473 sh->dev[i].written = NULL;
2474 if (bi) bitmap_end = 1;
2475 while (bi && bi->bi_sector <
2476 sh->dev[i].sector + STRIPE_SECTORS) {
2477 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2478 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2479 if (!raid5_dec_bi_phys_segments(bi)) {
2480 md_write_end(conf->mddev);
2481 bi->bi_next = *return_bi;
2482 *return_bi = bi;
2483 }
2484 bi = bi2;
2485 }
2486
2487 /* fail any reads if this device is non-operational and
2488 * the data has not reached the cache yet.
2489 */
2490 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2491 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2492 test_bit(R5_ReadError, &sh->dev[i].flags))) {
2493 bi = sh->dev[i].toread;
2494 sh->dev[i].toread = NULL;
2495 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2496 wake_up(&conf->wait_for_overlap);
2497 if (bi) s->to_read--;
2498 while (bi && bi->bi_sector <
2499 sh->dev[i].sector + STRIPE_SECTORS) {
2500 struct bio *nextbi =
2501 r5_next_bio(bi, sh->dev[i].sector);
2502 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2503 if (!raid5_dec_bi_phys_segments(bi)) {
2504 bi->bi_next = *return_bi;
2505 *return_bi = bi;
2506 }
2507 bi = nextbi;
2508 }
2509 }
2510 spin_unlock_irq(&conf->device_lock);
2511 if (bitmap_end)
2512 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2513 STRIPE_SECTORS, 0, 0);
2514 /* If we were in the middle of a write the parity block might
2515 * still be locked - so just clear all R5_LOCKED flags
2516 */
2517 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2518 }
2519
2520 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2521 if (atomic_dec_and_test(&conf->pending_full_writes))
2522 md_wakeup_thread(conf->mddev->thread);
2523}
2524
2525static void
2526handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
2527 struct stripe_head_state *s)
2528{
2529 int abort = 0;
2530 int i;
2531
2532 clear_bit(STRIPE_SYNCING, &sh->state);
2533 s->syncing = 0;
2534 s->replacing = 0;
2535 /* There is nothing more to do for sync/check/repair.
2536 * Don't even need to abort as that is handled elsewhere
2537 * if needed, and not always wanted e.g. if there is a known
2538 * bad block here.
2539 * For recover/replace we need to record a bad block on all
2540 * non-sync devices, or abort the recovery
2541 */
2542 if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
2543 /* During recovery devices cannot be removed, so
2544 * locking and refcounting of rdevs is not needed
2545 */
2546 for (i = 0; i < conf->raid_disks; i++) {
2547 struct md_rdev *rdev = conf->disks[i].rdev;
2548 if (rdev
2549 && !test_bit(Faulty, &rdev->flags)
2550 && !test_bit(In_sync, &rdev->flags)
2551 && !rdev_set_badblocks(rdev, sh->sector,
2552 STRIPE_SECTORS, 0))
2553 abort = 1;
2554 rdev = conf->disks[i].replacement;
2555 if (rdev
2556 && !test_bit(Faulty, &rdev->flags)
2557 && !test_bit(In_sync, &rdev->flags)
2558 && !rdev_set_badblocks(rdev, sh->sector,
2559 STRIPE_SECTORS, 0))
2560 abort = 1;
2561 }
2562 if (abort)
2563 conf->recovery_disabled =
2564 conf->mddev->recovery_disabled;
2565 }
2566 md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
2567}
2568
2569static int want_replace(struct stripe_head *sh, int disk_idx)
2570{
2571 struct md_rdev *rdev;
2572 int rv = 0;
2573 /* Doing recovery so rcu locking not required */
2574 rdev = sh->raid_conf->disks[disk_idx].replacement;
2575 if (rdev
2576 && !test_bit(Faulty, &rdev->flags)
2577 && !test_bit(In_sync, &rdev->flags)
2578 && (rdev->recovery_offset <= sh->sector
2579 || rdev->mddev->recovery_cp <= sh->sector))
2580 rv = 1;
2581
2582 return rv;
2583}
2584
2585/* fetch_block - checks the given member device to see if its data needs
2586 * to be read or computed to satisfy a request.
2587 *
2588 * Returns 1 when no more member devices need to be checked, otherwise returns
2589 * 0 to tell the loop in handle_stripe_fill to continue
2590 */
2591static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
2592 int disk_idx, int disks)
2593{
2594 struct r5dev *dev = &sh->dev[disk_idx];
2595 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
2596 &sh->dev[s->failed_num[1]] };
2597
2598 /* is the data in this block needed, and can we get it? */
2599 if (!test_bit(R5_LOCKED, &dev->flags) &&
2600 !test_bit(R5_UPTODATE, &dev->flags) &&
2601 (dev->toread ||
2602 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2603 s->syncing || s->expanding ||
2604 (s->replacing && want_replace(sh, disk_idx)) ||
2605 (s->failed >= 1 && fdev[0]->toread) ||
2606 (s->failed >= 2 && fdev[1]->toread) ||
2607 (sh->raid_conf->level <= 5 && s->failed && fdev[0]->towrite &&
2608 !test_bit(R5_OVERWRITE, &fdev[0]->flags)) ||
2609 (sh->raid_conf->level == 6 && s->failed && s->to_write))) {
2610 /* we would like to get this block, possibly by computing it,
2611 * otherwise read it if the backing disk is insync
2612 */
2613 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2614 BUG_ON(test_bit(R5_Wantread, &dev->flags));
2615 if ((s->uptodate == disks - 1) &&
2616 (s->failed && (disk_idx == s->failed_num[0] ||
2617 disk_idx == s->failed_num[1]))) {
2618 /* have disk failed, and we're requested to fetch it;
2619 * do compute it
2620 */
2621 pr_debug("Computing stripe %llu block %d\n",
2622 (unsigned long long)sh->sector, disk_idx);
2623 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2624 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2625 set_bit(R5_Wantcompute, &dev->flags);
2626 sh->ops.target = disk_idx;
2627 sh->ops.target2 = -1; /* no 2nd target */
2628 s->req_compute = 1;
2629 /* Careful: from this point on 'uptodate' is in the eye
2630 * of raid_run_ops which services 'compute' operations
2631 * before writes. R5_Wantcompute flags a block that will
2632 * be R5_UPTODATE by the time it is needed for a
2633 * subsequent operation.
2634 */
2635 s->uptodate++;
2636 return 1;
2637 } else if (s->uptodate == disks-2 && s->failed >= 2) {
2638 /* Computing 2-failure is *very* expensive; only
2639 * do it if failed >= 2
2640 */
2641 int other;
2642 for (other = disks; other--; ) {
2643 if (other == disk_idx)
2644 continue;
2645 if (!test_bit(R5_UPTODATE,
2646 &sh->dev[other].flags))
2647 break;
2648 }
2649 BUG_ON(other < 0);
2650 pr_debug("Computing stripe %llu blocks %d,%d\n",
2651 (unsigned long long)sh->sector,
2652 disk_idx, other);
2653 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2654 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2655 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2656 set_bit(R5_Wantcompute, &sh->dev[other].flags);
2657 sh->ops.target = disk_idx;
2658 sh->ops.target2 = other;
2659 s->uptodate += 2;
2660 s->req_compute = 1;
2661 return 1;
2662 } else if (test_bit(R5_Insync, &dev->flags)) {
2663 set_bit(R5_LOCKED, &dev->flags);
2664 set_bit(R5_Wantread, &dev->flags);
2665 s->locked++;
2666 pr_debug("Reading block %d (sync=%d)\n",
2667 disk_idx, s->syncing);
2668 }
2669 }
2670
2671 return 0;
2672}
2673
2674/**
2675 * handle_stripe_fill - read or compute data to satisfy pending requests.
2676 */
2677static void handle_stripe_fill(struct stripe_head *sh,
2678 struct stripe_head_state *s,
2679 int disks)
2680{
2681 int i;
2682
2683 /* look for blocks to read/compute, skip this if a compute
2684 * is already in flight, or if the stripe contents are in the
2685 * midst of changing due to a write
2686 */
2687 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2688 !sh->reconstruct_state)
2689 for (i = disks; i--; )
2690 if (fetch_block(sh, s, i, disks))
2691 break;
2692 set_bit(STRIPE_HANDLE, &sh->state);
2693}
2694
2695
2696/* handle_stripe_clean_event
2697 * any written block on an uptodate or failed drive can be returned.
2698 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2699 * never LOCKED, so we don't need to test 'failed' directly.
2700 */
2701static void handle_stripe_clean_event(struct r5conf *conf,
2702 struct stripe_head *sh, int disks, struct bio **return_bi)
2703{
2704 int i;
2705 struct r5dev *dev;
2706
2707 for (i = disks; i--; )
2708 if (sh->dev[i].written) {
2709 dev = &sh->dev[i];
2710 if (!test_bit(R5_LOCKED, &dev->flags) &&
2711 test_bit(R5_UPTODATE, &dev->flags)) {
2712 /* We can return any write requests */
2713 struct bio *wbi, *wbi2;
2714 int bitmap_end = 0;
2715 pr_debug("Return write for disc %d\n", i);
2716 spin_lock_irq(&conf->device_lock);
2717 wbi = dev->written;
2718 dev->written = NULL;
2719 while (wbi && wbi->bi_sector <
2720 dev->sector + STRIPE_SECTORS) {
2721 wbi2 = r5_next_bio(wbi, dev->sector);
2722 if (!raid5_dec_bi_phys_segments(wbi)) {
2723 md_write_end(conf->mddev);
2724 wbi->bi_next = *return_bi;
2725 *return_bi = wbi;
2726 }
2727 wbi = wbi2;
2728 }
2729 if (dev->towrite == NULL)
2730 bitmap_end = 1;
2731 spin_unlock_irq(&conf->device_lock);
2732 if (bitmap_end)
2733 bitmap_endwrite(conf->mddev->bitmap,
2734 sh->sector,
2735 STRIPE_SECTORS,
2736 !test_bit(STRIPE_DEGRADED, &sh->state),
2737 0);
2738 }
2739 }
2740
2741 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2742 if (atomic_dec_and_test(&conf->pending_full_writes))
2743 md_wakeup_thread(conf->mddev->thread);
2744}
2745
2746static void handle_stripe_dirtying(struct r5conf *conf,
2747 struct stripe_head *sh,
2748 struct stripe_head_state *s,
2749 int disks)
2750{
2751 int rmw = 0, rcw = 0, i;
2752 if (conf->max_degraded == 2) {
2753 /* RAID6 requires 'rcw' in current implementation
2754 * Calculate the real rcw later - for now fake it
2755 * look like rcw is cheaper
2756 */
2757 rcw = 1; rmw = 2;
2758 } else for (i = disks; i--; ) {
2759 /* would I have to read this buffer for read_modify_write */
2760 struct r5dev *dev = &sh->dev[i];
2761 if ((dev->towrite || i == sh->pd_idx) &&
2762 !test_bit(R5_LOCKED, &dev->flags) &&
2763 !(test_bit(R5_UPTODATE, &dev->flags) ||
2764 test_bit(R5_Wantcompute, &dev->flags))) {
2765 if (test_bit(R5_Insync, &dev->flags))
2766 rmw++;
2767 else
2768 rmw += 2*disks; /* cannot read it */
2769 }
2770 /* Would I have to read this buffer for reconstruct_write */
2771 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2772 !test_bit(R5_LOCKED, &dev->flags) &&
2773 !(test_bit(R5_UPTODATE, &dev->flags) ||
2774 test_bit(R5_Wantcompute, &dev->flags))) {
2775 if (test_bit(R5_Insync, &dev->flags)) rcw++;
2776 else
2777 rcw += 2*disks;
2778 }
2779 }
2780 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2781 (unsigned long long)sh->sector, rmw, rcw);
2782 set_bit(STRIPE_HANDLE, &sh->state);
2783 if (rmw < rcw && rmw > 0)
2784 /* prefer read-modify-write, but need to get some data */
2785 for (i = disks; i--; ) {
2786 struct r5dev *dev = &sh->dev[i];
2787 if ((dev->towrite || i == sh->pd_idx) &&
2788 !test_bit(R5_LOCKED, &dev->flags) &&
2789 !(test_bit(R5_UPTODATE, &dev->flags) ||
2790 test_bit(R5_Wantcompute, &dev->flags)) &&
2791 test_bit(R5_Insync, &dev->flags)) {
2792 if (
2793 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2794 pr_debug("Read_old block "
2795 "%d for r-m-w\n", i);
2796 set_bit(R5_LOCKED, &dev->flags);
2797 set_bit(R5_Wantread, &dev->flags);
2798 s->locked++;
2799 } else {
2800 set_bit(STRIPE_DELAYED, &sh->state);
2801 set_bit(STRIPE_HANDLE, &sh->state);
2802 }
2803 }
2804 }
2805 if (rcw <= rmw && rcw > 0) {
2806 /* want reconstruct write, but need to get some data */
2807 rcw = 0;
2808 for (i = disks; i--; ) {
2809 struct r5dev *dev = &sh->dev[i];
2810 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2811 i != sh->pd_idx && i != sh->qd_idx &&
2812 !test_bit(R5_LOCKED, &dev->flags) &&
2813 !(test_bit(R5_UPTODATE, &dev->flags) ||
2814 test_bit(R5_Wantcompute, &dev->flags))) {
2815 rcw++;
2816 if (!test_bit(R5_Insync, &dev->flags))
2817 continue; /* it's a failed drive */
2818 if (
2819 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2820 pr_debug("Read_old block "
2821 "%d for Reconstruct\n", i);
2822 set_bit(R5_LOCKED, &dev->flags);
2823 set_bit(R5_Wantread, &dev->flags);
2824 s->locked++;
2825 } else {
2826 set_bit(STRIPE_DELAYED, &sh->state);
2827 set_bit(STRIPE_HANDLE, &sh->state);
2828 }
2829 }
2830 }
2831 }
2832 /* now if nothing is locked, and if we have enough data,
2833 * we can start a write request
2834 */
2835 /* since handle_stripe can be called at any time we need to handle the
2836 * case where a compute block operation has been submitted and then a
2837 * subsequent call wants to start a write request. raid_run_ops only
2838 * handles the case where compute block and reconstruct are requested
2839 * simultaneously. If this is not the case then new writes need to be
2840 * held off until the compute completes.
2841 */
2842 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2843 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2844 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2845 schedule_reconstruction(sh, s, rcw == 0, 0);
2846}
2847
2848static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
2849 struct stripe_head_state *s, int disks)
2850{
2851 struct r5dev *dev = NULL;
2852
2853 set_bit(STRIPE_HANDLE, &sh->state);
2854
2855 switch (sh->check_state) {
2856 case check_state_idle:
2857 /* start a new check operation if there are no failures */
2858 if (s->failed == 0) {
2859 BUG_ON(s->uptodate != disks);
2860 sh->check_state = check_state_run;
2861 set_bit(STRIPE_OP_CHECK, &s->ops_request);
2862 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2863 s->uptodate--;
2864 break;
2865 }
2866 dev = &sh->dev[s->failed_num[0]];
2867 /* fall through */
2868 case check_state_compute_result:
2869 sh->check_state = check_state_idle;
2870 if (!dev)
2871 dev = &sh->dev[sh->pd_idx];
2872
2873 /* check that a write has not made the stripe insync */
2874 if (test_bit(STRIPE_INSYNC, &sh->state))
2875 break;
2876
2877 /* either failed parity check, or recovery is happening */
2878 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2879 BUG_ON(s->uptodate != disks);
2880
2881 set_bit(R5_LOCKED, &dev->flags);
2882 s->locked++;
2883 set_bit(R5_Wantwrite, &dev->flags);
2884
2885 clear_bit(STRIPE_DEGRADED, &sh->state);
2886 set_bit(STRIPE_INSYNC, &sh->state);
2887 break;
2888 case check_state_run:
2889 break; /* we will be called again upon completion */
2890 case check_state_check_result:
2891 sh->check_state = check_state_idle;
2892
2893 /* if a failure occurred during the check operation, leave
2894 * STRIPE_INSYNC not set and let the stripe be handled again
2895 */
2896 if (s->failed)
2897 break;
2898
2899 /* handle a successful check operation, if parity is correct
2900 * we are done. Otherwise update the mismatch count and repair
2901 * parity if !MD_RECOVERY_CHECK
2902 */
2903 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
2904 /* parity is correct (on disc,
2905 * not in buffer any more)
2906 */
2907 set_bit(STRIPE_INSYNC, &sh->state);
2908 else {
2909 conf->mddev->resync_mismatches += STRIPE_SECTORS;
2910 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2911 /* don't try to repair!! */
2912 set_bit(STRIPE_INSYNC, &sh->state);
2913 else {
2914 sh->check_state = check_state_compute_run;
2915 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2916 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2917 set_bit(R5_Wantcompute,
2918 &sh->dev[sh->pd_idx].flags);
2919 sh->ops.target = sh->pd_idx;
2920 sh->ops.target2 = -1;
2921 s->uptodate++;
2922 }
2923 }
2924 break;
2925 case check_state_compute_run:
2926 break;
2927 default:
2928 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2929 __func__, sh->check_state,
2930 (unsigned long long) sh->sector);
2931 BUG();
2932 }
2933}
2934
2935
2936static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
2937 struct stripe_head_state *s,
2938 int disks)
2939{
2940 int pd_idx = sh->pd_idx;
2941 int qd_idx = sh->qd_idx;
2942 struct r5dev *dev;
2943
2944 set_bit(STRIPE_HANDLE, &sh->state);
2945
2946 BUG_ON(s->failed > 2);
2947
2948 /* Want to check and possibly repair P and Q.
2949 * However there could be one 'failed' device, in which
2950 * case we can only check one of them, possibly using the
2951 * other to generate missing data
2952 */
2953
2954 switch (sh->check_state) {
2955 case check_state_idle:
2956 /* start a new check operation if there are < 2 failures */
2957 if (s->failed == s->q_failed) {
2958 /* The only possible failed device holds Q, so it
2959 * makes sense to check P (If anything else were failed,
2960 * we would have used P to recreate it).
2961 */
2962 sh->check_state = check_state_run;
2963 }
2964 if (!s->q_failed && s->failed < 2) {
2965 /* Q is not failed, and we didn't use it to generate
2966 * anything, so it makes sense to check it
2967 */
2968 if (sh->check_state == check_state_run)
2969 sh->check_state = check_state_run_pq;
2970 else
2971 sh->check_state = check_state_run_q;
2972 }
2973
2974 /* discard potentially stale zero_sum_result */
2975 sh->ops.zero_sum_result = 0;
2976
2977 if (sh->check_state == check_state_run) {
2978 /* async_xor_zero_sum destroys the contents of P */
2979 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2980 s->uptodate--;
2981 }
2982 if (sh->check_state >= check_state_run &&
2983 sh->check_state <= check_state_run_pq) {
2984 /* async_syndrome_zero_sum preserves P and Q, so
2985 * no need to mark them !uptodate here
2986 */
2987 set_bit(STRIPE_OP_CHECK, &s->ops_request);
2988 break;
2989 }
2990
2991 /* we have 2-disk failure */
2992 BUG_ON(s->failed != 2);
2993 /* fall through */
2994 case check_state_compute_result:
2995 sh->check_state = check_state_idle;
2996
2997 /* check that a write has not made the stripe insync */
2998 if (test_bit(STRIPE_INSYNC, &sh->state))
2999 break;
3000
3001 /* now write out any block on a failed drive,
3002 * or P or Q if they were recomputed
3003 */
3004 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
3005 if (s->failed == 2) {
3006 dev = &sh->dev[s->failed_num[1]];
3007 s->locked++;
3008 set_bit(R5_LOCKED, &dev->flags);
3009 set_bit(R5_Wantwrite, &dev->flags);
3010 }
3011 if (s->failed >= 1) {
3012 dev = &sh->dev[s->failed_num[0]];
3013 s->locked++;
3014 set_bit(R5_LOCKED, &dev->flags);
3015 set_bit(R5_Wantwrite, &dev->flags);
3016 }
3017 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3018 dev = &sh->dev[pd_idx];
3019 s->locked++;
3020 set_bit(R5_LOCKED, &dev->flags);
3021 set_bit(R5_Wantwrite, &dev->flags);
3022 }
3023 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3024 dev = &sh->dev[qd_idx];
3025 s->locked++;
3026 set_bit(R5_LOCKED, &dev->flags);
3027 set_bit(R5_Wantwrite, &dev->flags);
3028 }
3029 clear_bit(STRIPE_DEGRADED, &sh->state);
3030
3031 set_bit(STRIPE_INSYNC, &sh->state);
3032 break;
3033 case check_state_run:
3034 case check_state_run_q:
3035 case check_state_run_pq:
3036 break; /* we will be called again upon completion */
3037 case check_state_check_result:
3038 sh->check_state = check_state_idle;
3039
3040 /* handle a successful check operation, if parity is correct
3041 * we are done. Otherwise update the mismatch count and repair
3042 * parity if !MD_RECOVERY_CHECK
3043 */
3044 if (sh->ops.zero_sum_result == 0) {
3045 /* both parities are correct */
3046 if (!s->failed)
3047 set_bit(STRIPE_INSYNC, &sh->state);
3048 else {
3049 /* in contrast to the raid5 case we can validate
3050 * parity, but still have a failure to write
3051 * back
3052 */
3053 sh->check_state = check_state_compute_result;
3054 /* Returning at this point means that we may go
3055 * off and bring p and/or q uptodate again so
3056 * we make sure to check zero_sum_result again
3057 * to verify if p or q need writeback
3058 */
3059 }
3060 } else {
3061 conf->mddev->resync_mismatches += STRIPE_SECTORS;
3062 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3063 /* don't try to repair!! */
3064 set_bit(STRIPE_INSYNC, &sh->state);
3065 else {
3066 int *target = &sh->ops.target;
3067
3068 sh->ops.target = -1;
3069 sh->ops.target2 = -1;
3070 sh->check_state = check_state_compute_run;
3071 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3072 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3073 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3074 set_bit(R5_Wantcompute,
3075 &sh->dev[pd_idx].flags);
3076 *target = pd_idx;
3077 target = &sh->ops.target2;
3078 s->uptodate++;
3079 }
3080 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3081 set_bit(R5_Wantcompute,
3082 &sh->dev[qd_idx].flags);
3083 *target = qd_idx;
3084 s->uptodate++;
3085 }
3086 }
3087 }
3088 break;
3089 case check_state_compute_run:
3090 break;
3091 default:
3092 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3093 __func__, sh->check_state,
3094 (unsigned long long) sh->sector);
3095 BUG();
3096 }
3097}
3098
3099static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3100{
3101 int i;
3102
3103 /* We have read all the blocks in this stripe and now we need to
3104 * copy some of them into a target stripe for expand.
3105 */
3106 struct dma_async_tx_descriptor *tx = NULL;
3107 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3108 for (i = 0; i < sh->disks; i++)
3109 if (i != sh->pd_idx && i != sh->qd_idx) {
3110 int dd_idx, j;
3111 struct stripe_head *sh2;
3112 struct async_submit_ctl submit;
3113
3114 sector_t bn = compute_blocknr(sh, i, 1);
3115 sector_t s = raid5_compute_sector(conf, bn, 0,
3116 &dd_idx, NULL);
3117 sh2 = get_active_stripe(conf, s, 0, 1, 1);
3118 if (sh2 == NULL)
3119 /* so far only the early blocks of this stripe
3120 * have been requested. When later blocks
3121 * get requested, we will try again
3122 */
3123 continue;
3124 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3125 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3126 /* must have already done this block */
3127 release_stripe(sh2);
3128 continue;
3129 }
3130
3131 /* place all the copies on one channel */
3132 init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
3133 tx = async_memcpy(sh2->dev[dd_idx].page,
3134 sh->dev[i].page, 0, 0, STRIPE_SIZE,
3135 &submit);
3136
3137 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3138 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3139 for (j = 0; j < conf->raid_disks; j++)
3140 if (j != sh2->pd_idx &&
3141 j != sh2->qd_idx &&
3142 !test_bit(R5_Expanded, &sh2->dev[j].flags))
3143 break;
3144 if (j == conf->raid_disks) {
3145 set_bit(STRIPE_EXPAND_READY, &sh2->state);
3146 set_bit(STRIPE_HANDLE, &sh2->state);
3147 }
3148 release_stripe(sh2);
3149
3150 }
3151 /* done submitting copies, wait for them to complete */
3152 if (tx) {
3153 async_tx_ack(tx);
3154 dma_wait_for_async_tx(tx);
3155 }
3156}
3157
3158/*
3159 * handle_stripe - do things to a stripe.
3160 *
3161 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
3162 * state of various bits to see what needs to be done.
3163 * Possible results:
3164 * return some read requests which now have data
3165 * return some write requests which are safely on storage
3166 * schedule a read on some buffers
3167 * schedule a write of some buffers
3168 * return confirmation of parity correctness
3169 *
3170 */
3171
3172static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
3173{
3174 struct r5conf *conf = sh->raid_conf;
3175 int disks = sh->disks;
3176 struct r5dev *dev;
3177 int i;
3178 int do_recovery = 0;
3179
3180 memset(s, 0, sizeof(*s));
3181
3182 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3183 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3184 s->failed_num[0] = -1;
3185 s->failed_num[1] = -1;
3186
3187 /* Now to look around and see what can be done */
3188 rcu_read_lock();
3189 spin_lock_irq(&conf->device_lock);
3190 for (i=disks; i--; ) {
3191 struct md_rdev *rdev;
3192 sector_t first_bad;
3193 int bad_sectors;
3194 int is_bad = 0;
3195
3196 dev = &sh->dev[i];
3197
3198 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3199 i, dev->flags,
3200 dev->toread, dev->towrite, dev->written);
3201 /* maybe we can reply to a read
3202 *
3203 * new wantfill requests are only permitted while
3204 * ops_complete_biofill is guaranteed to be inactive
3205 */
3206 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3207 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3208 set_bit(R5_Wantfill, &dev->flags);
3209
3210 /* now count some things */
3211 if (test_bit(R5_LOCKED, &dev->flags))
3212 s->locked++;
3213 if (test_bit(R5_UPTODATE, &dev->flags))
3214 s->uptodate++;
3215 if (test_bit(R5_Wantcompute, &dev->flags)) {
3216 s->compute++;
3217 BUG_ON(s->compute > 2);
3218 }
3219
3220 if (test_bit(R5_Wantfill, &dev->flags))
3221 s->to_fill++;
3222 else if (dev->toread)
3223 s->to_read++;
3224 if (dev->towrite) {
3225 s->to_write++;
3226 if (!test_bit(R5_OVERWRITE, &dev->flags))
3227 s->non_overwrite++;
3228 }
3229 if (dev->written)
3230 s->written++;
3231 /* Prefer to use the replacement for reads, but only
3232 * if it is recovered enough and has no bad blocks.
3233 */
3234 rdev = rcu_dereference(conf->disks[i].replacement);
3235 if (rdev && !test_bit(Faulty, &rdev->flags) &&
3236 rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
3237 !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3238 &first_bad, &bad_sectors))
3239 set_bit(R5_ReadRepl, &dev->flags);
3240 else {
3241 if (rdev)
3242 set_bit(R5_NeedReplace, &dev->flags);
3243 rdev = rcu_dereference(conf->disks[i].rdev);
3244 clear_bit(R5_ReadRepl, &dev->flags);
3245 }
3246 if (rdev && test_bit(Faulty, &rdev->flags))
3247 rdev = NULL;
3248 if (rdev) {
3249 is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3250 &first_bad, &bad_sectors);
3251 if (s->blocked_rdev == NULL
3252 && (test_bit(Blocked, &rdev->flags)
3253 || is_bad < 0)) {
3254 if (is_bad < 0)
3255 set_bit(BlockedBadBlocks,
3256 &rdev->flags);
3257 s->blocked_rdev = rdev;
3258 atomic_inc(&rdev->nr_pending);
3259 }
3260 }
3261 clear_bit(R5_Insync, &dev->flags);
3262 if (!rdev)
3263 /* Not in-sync */;
3264 else if (is_bad) {
3265 /* also not in-sync */
3266 if (!test_bit(WriteErrorSeen, &rdev->flags) &&
3267 test_bit(R5_UPTODATE, &dev->flags)) {
3268 /* treat as in-sync, but with a read error
3269 * which we can now try to correct
3270 */
3271 set_bit(R5_Insync, &dev->flags);
3272 set_bit(R5_ReadError, &dev->flags);
3273 }
3274 } else if (test_bit(In_sync, &rdev->flags))
3275 set_bit(R5_Insync, &dev->flags);
3276 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3277 /* in sync if before recovery_offset */
3278 set_bit(R5_Insync, &dev->flags);
3279 else if (test_bit(R5_UPTODATE, &dev->flags) &&
3280 test_bit(R5_Expanded, &dev->flags))
3281 /* If we've reshaped into here, we assume it is Insync.
3282 * We will shortly update recovery_offset to make
3283 * it official.
3284 */
3285 set_bit(R5_Insync, &dev->flags);
3286
3287 if (rdev && test_bit(R5_WriteError, &dev->flags)) {
3288 /* This flag does not apply to '.replacement'
3289 * only to .rdev, so make sure to check that*/
3290 struct md_rdev *rdev2 = rcu_dereference(
3291 conf->disks[i].rdev);
3292 if (rdev2 == rdev)
3293 clear_bit(R5_Insync, &dev->flags);
3294 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3295 s->handle_bad_blocks = 1;
3296 atomic_inc(&rdev2->nr_pending);
3297 } else
3298 clear_bit(R5_WriteError, &dev->flags);
3299 }
3300 if (rdev && test_bit(R5_MadeGood, &dev->flags)) {
3301 /* This flag does not apply to '.replacement'
3302 * only to .rdev, so make sure to check that*/
3303 struct md_rdev *rdev2 = rcu_dereference(
3304 conf->disks[i].rdev);
3305 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3306 s->handle_bad_blocks = 1;
3307 atomic_inc(&rdev2->nr_pending);
3308 } else
3309 clear_bit(R5_MadeGood, &dev->flags);
3310 }
3311 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
3312 struct md_rdev *rdev2 = rcu_dereference(
3313 conf->disks[i].replacement);
3314 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3315 s->handle_bad_blocks = 1;
3316 atomic_inc(&rdev2->nr_pending);
3317 } else
3318 clear_bit(R5_MadeGoodRepl, &dev->flags);
3319 }
3320 if (!test_bit(R5_Insync, &dev->flags)) {
3321 /* The ReadError flag will just be confusing now */
3322 clear_bit(R5_ReadError, &dev->flags);
3323 clear_bit(R5_ReWrite, &dev->flags);
3324 }
3325 if (test_bit(R5_ReadError, &dev->flags))
3326 clear_bit(R5_Insync, &dev->flags);
3327 if (!test_bit(R5_Insync, &dev->flags)) {
3328 if (s->failed < 2)
3329 s->failed_num[s->failed] = i;
3330 s->failed++;
3331 if (rdev && !test_bit(Faulty, &rdev->flags))
3332 do_recovery = 1;
3333 }
3334 }
3335 spin_unlock_irq(&conf->device_lock);
3336 if (test_bit(STRIPE_SYNCING, &sh->state)) {
3337 /* If there is a failed device being replaced,
3338 * we must be recovering.
3339 * else if we are after recovery_cp, we must be syncing
3340 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
3341 * else we can only be replacing
3342 * sync and recovery both need to read all devices, and so
3343 * use the same flag.
3344 */
3345 if (do_recovery ||
3346 sh->sector >= conf->mddev->recovery_cp ||
3347 test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
3348 s->syncing = 1;
3349 else
3350 s->replacing = 1;
3351 }
3352 rcu_read_unlock();
3353}
3354
3355static void handle_stripe(struct stripe_head *sh)
3356{
3357 struct stripe_head_state s;
3358 struct r5conf *conf = sh->raid_conf;
3359 int i;
3360 int prexor;
3361 int disks = sh->disks;
3362 struct r5dev *pdev, *qdev;
3363
3364 clear_bit(STRIPE_HANDLE, &sh->state);
3365 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
3366 /* already being handled, ensure it gets handled
3367 * again when current action finishes */
3368 set_bit(STRIPE_HANDLE, &sh->state);
3369 return;
3370 }
3371
3372 if (test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3373 set_bit(STRIPE_SYNCING, &sh->state);
3374 clear_bit(STRIPE_INSYNC, &sh->state);
3375 }
3376 clear_bit(STRIPE_DELAYED, &sh->state);
3377
3378 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3379 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3380 (unsigned long long)sh->sector, sh->state,
3381 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
3382 sh->check_state, sh->reconstruct_state);
3383
3384 analyse_stripe(sh, &s);
3385
3386 if (s.handle_bad_blocks) {
3387 set_bit(STRIPE_HANDLE, &sh->state);
3388 goto finish;
3389 }
3390
3391 if (unlikely(s.blocked_rdev)) {
3392 if (s.syncing || s.expanding || s.expanded ||
3393 s.replacing || s.to_write || s.written) {
3394 set_bit(STRIPE_HANDLE, &sh->state);
3395 goto finish;
3396 }
3397 /* There is nothing for the blocked_rdev to block */
3398 rdev_dec_pending(s.blocked_rdev, conf->mddev);
3399 s.blocked_rdev = NULL;
3400 }
3401
3402 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3403 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3404 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3405 }
3406
3407 pr_debug("locked=%d uptodate=%d to_read=%d"
3408 " to_write=%d failed=%d failed_num=%d,%d\n",
3409 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3410 s.failed_num[0], s.failed_num[1]);
3411 /* check if the array has lost more than max_degraded devices and,
3412 * if so, some requests might need to be failed.
3413 */
3414 if (s.failed > conf->max_degraded) {
3415 sh->check_state = 0;
3416 sh->reconstruct_state = 0;
3417 if (s.to_read+s.to_write+s.written)
3418 handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
3419 if (s.syncing + s.replacing)
3420 handle_failed_sync(conf, sh, &s);
3421 }
3422
3423 /*
3424 * might be able to return some write requests if the parity blocks
3425 * are safe, or on a failed drive
3426 */
3427 pdev = &sh->dev[sh->pd_idx];
3428 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
3429 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
3430 qdev = &sh->dev[sh->qd_idx];
3431 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
3432 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
3433 || conf->level < 6;
3434
3435 if (s.written &&
3436 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3437 && !test_bit(R5_LOCKED, &pdev->flags)
3438 && test_bit(R5_UPTODATE, &pdev->flags)))) &&
3439 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3440 && !test_bit(R5_LOCKED, &qdev->flags)
3441 && test_bit(R5_UPTODATE, &qdev->flags)))))
3442 handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
3443
3444 /* Now we might consider reading some blocks, either to check/generate
3445 * parity, or to satisfy requests
3446 * or to load a block that is being partially written.
3447 */
3448 if (s.to_read || s.non_overwrite
3449 || (conf->level == 6 && s.to_write && s.failed)
3450 || (s.syncing && (s.uptodate + s.compute < disks))
3451 || s.replacing
3452 || s.expanding)
3453 handle_stripe_fill(sh, &s, disks);
3454
3455 /* Now we check to see if any write operations have recently
3456 * completed
3457 */
3458 prexor = 0;
3459 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3460 prexor = 1;
3461 if (sh->reconstruct_state == reconstruct_state_drain_result ||
3462 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3463 sh->reconstruct_state = reconstruct_state_idle;
3464
3465 /* All the 'written' buffers and the parity block are ready to
3466 * be written back to disk
3467 */
3468 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
3469 BUG_ON(sh->qd_idx >= 0 &&
3470 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags));
3471 for (i = disks; i--; ) {
3472 struct r5dev *dev = &sh->dev[i];
3473 if (test_bit(R5_LOCKED, &dev->flags) &&
3474 (i == sh->pd_idx || i == sh->qd_idx ||
3475 dev->written)) {
3476 pr_debug("Writing block %d\n", i);
3477 set_bit(R5_Wantwrite, &dev->flags);
3478 if (prexor)
3479 continue;
3480 if (!test_bit(R5_Insync, &dev->flags) ||
3481 ((i == sh->pd_idx || i == sh->qd_idx) &&
3482 s.failed == 0))
3483 set_bit(STRIPE_INSYNC, &sh->state);
3484 }
3485 }
3486 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3487 s.dec_preread_active = 1;
3488 }
3489
3490 /* Now to consider new write requests and what else, if anything
3491 * should be read. We do not handle new writes when:
3492 * 1/ A 'write' operation (copy+xor) is already in flight.
3493 * 2/ A 'check' operation is in flight, as it may clobber the parity
3494 * block.
3495 */
3496 if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3497 handle_stripe_dirtying(conf, sh, &s, disks);
3498
3499 /* maybe we need to check and possibly fix the parity for this stripe
3500 * Any reads will already have been scheduled, so we just see if enough
3501 * data is available. The parity check is held off while parity
3502 * dependent operations are in flight.
3503 */
3504 if (sh->check_state ||
3505 (s.syncing && s.locked == 0 &&
3506 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3507 !test_bit(STRIPE_INSYNC, &sh->state))) {
3508 if (conf->level == 6)
3509 handle_parity_checks6(conf, sh, &s, disks);
3510 else
3511 handle_parity_checks5(conf, sh, &s, disks);
3512 }
3513
3514 if (s.replacing && s.locked == 0
3515 && !test_bit(STRIPE_INSYNC, &sh->state)) {
3516 /* Write out to replacement devices where possible */
3517 for (i = 0; i < conf->raid_disks; i++)
3518 if (test_bit(R5_UPTODATE, &sh->dev[i].flags) &&
3519 test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
3520 set_bit(R5_WantReplace, &sh->dev[i].flags);
3521 set_bit(R5_LOCKED, &sh->dev[i].flags);
3522 s.locked++;
3523 }
3524 set_bit(STRIPE_INSYNC, &sh->state);
3525 }
3526 if ((s.syncing || s.replacing) && s.locked == 0 &&
3527 test_bit(STRIPE_INSYNC, &sh->state)) {
3528 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3529 clear_bit(STRIPE_SYNCING, &sh->state);
3530 }
3531
3532 /* If the failed drives are just a ReadError, then we might need
3533 * to progress the repair/check process
3534 */
3535 if (s.failed <= conf->max_degraded && !conf->mddev->ro)
3536 for (i = 0; i < s.failed; i++) {
3537 struct r5dev *dev = &sh->dev[s.failed_num[i]];
3538 if (test_bit(R5_ReadError, &dev->flags)
3539 && !test_bit(R5_LOCKED, &dev->flags)
3540 && test_bit(R5_UPTODATE, &dev->flags)
3541 ) {
3542 if (!test_bit(R5_ReWrite, &dev->flags)) {
3543 set_bit(R5_Wantwrite, &dev->flags);
3544 set_bit(R5_ReWrite, &dev->flags);
3545 set_bit(R5_LOCKED, &dev->flags);
3546 s.locked++;
3547 } else {
3548 /* let's read it back */
3549 set_bit(R5_Wantread, &dev->flags);
3550 set_bit(R5_LOCKED, &dev->flags);
3551 s.locked++;
3552 }
3553 }
3554 }
3555
3556
3557 /* Finish reconstruct operations initiated by the expansion process */
3558 if (sh->reconstruct_state == reconstruct_state_result) {
3559 struct stripe_head *sh_src
3560 = get_active_stripe(conf, sh->sector, 1, 1, 1);
3561 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
3562 /* sh cannot be written until sh_src has been read.
3563 * so arrange for sh to be delayed a little
3564 */
3565 set_bit(STRIPE_DELAYED, &sh->state);
3566 set_bit(STRIPE_HANDLE, &sh->state);
3567 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3568 &sh_src->state))
3569 atomic_inc(&conf->preread_active_stripes);
3570 release_stripe(sh_src);
3571 goto finish;
3572 }
3573 if (sh_src)
3574 release_stripe(sh_src);
3575
3576 sh->reconstruct_state = reconstruct_state_idle;
3577 clear_bit(STRIPE_EXPANDING, &sh->state);
3578 for (i = conf->raid_disks; i--; ) {
3579 set_bit(R5_Wantwrite, &sh->dev[i].flags);
3580 set_bit(R5_LOCKED, &sh->dev[i].flags);
3581 s.locked++;
3582 }
3583 }
3584
3585 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3586 !sh->reconstruct_state) {
3587 /* Need to write out all blocks after computing parity */
3588 sh->disks = conf->raid_disks;
3589 stripe_set_idx(sh->sector, conf, 0, sh);
3590 schedule_reconstruction(sh, &s, 1, 1);
3591 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3592 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3593 atomic_dec(&conf->reshape_stripes);
3594 wake_up(&conf->wait_for_overlap);
3595 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3596 }
3597
3598 if (s.expanding && s.locked == 0 &&
3599 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3600 handle_stripe_expansion(conf, sh);
3601
3602finish:
3603 /* wait for this device to become unblocked */
3604 if (unlikely(s.blocked_rdev)) {
3605 if (conf->mddev->external)
3606 md_wait_for_blocked_rdev(s.blocked_rdev,
3607 conf->mddev);
3608 else
3609 /* Internal metadata will immediately
3610 * be written by raid5d, so we don't
3611 * need to wait here.
3612 */
3613 rdev_dec_pending(s.blocked_rdev,
3614 conf->mddev);
3615 }
3616
3617 if (s.handle_bad_blocks)
3618 for (i = disks; i--; ) {
3619 struct md_rdev *rdev;
3620 struct r5dev *dev = &sh->dev[i];
3621 if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
3622 /* We own a safe reference to the rdev */
3623 rdev = conf->disks[i].rdev;
3624 if (!rdev_set_badblocks(rdev, sh->sector,
3625 STRIPE_SECTORS, 0))
3626 md_error(conf->mddev, rdev);
3627 rdev_dec_pending(rdev, conf->mddev);
3628 }
3629 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
3630 rdev = conf->disks[i].rdev;
3631 rdev_clear_badblocks(rdev, sh->sector,
3632 STRIPE_SECTORS, 0);
3633 rdev_dec_pending(rdev, conf->mddev);
3634 }
3635 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
3636 rdev = conf->disks[i].replacement;
3637 if (!rdev)
3638 /* rdev have been moved down */
3639 rdev = conf->disks[i].rdev;
3640 rdev_clear_badblocks(rdev, sh->sector,
3641 STRIPE_SECTORS, 0);
3642 rdev_dec_pending(rdev, conf->mddev);
3643 }
3644 }
3645
3646 if (s.ops_request)
3647 raid_run_ops(sh, s.ops_request);
3648
3649 ops_run_io(sh, &s);
3650
3651 if (s.dec_preread_active) {
3652 /* We delay this until after ops_run_io so that if make_request
3653 * is waiting on a flush, it won't continue until the writes
3654 * have actually been submitted.
3655 */
3656 atomic_dec(&conf->preread_active_stripes);
3657 if (atomic_read(&conf->preread_active_stripes) <
3658 IO_THRESHOLD)
3659 md_wakeup_thread(conf->mddev->thread);
3660 }
3661
3662 return_io(s.return_bi);
3663
3664 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
3665}
3666
3667static void raid5_activate_delayed(struct r5conf *conf)
3668{
3669 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3670 while (!list_empty(&conf->delayed_list)) {
3671 struct list_head *l = conf->delayed_list.next;
3672 struct stripe_head *sh;
3673 sh = list_entry(l, struct stripe_head, lru);
3674 list_del_init(l);
3675 clear_bit(STRIPE_DELAYED, &sh->state);
3676 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3677 atomic_inc(&conf->preread_active_stripes);
3678 list_add_tail(&sh->lru, &conf->hold_list);
3679 }
3680 }
3681}
3682
3683static void activate_bit_delay(struct r5conf *conf)
3684{
3685 /* device_lock is held */
3686 struct list_head head;
3687 list_add(&head, &conf->bitmap_list);
3688 list_del_init(&conf->bitmap_list);
3689 while (!list_empty(&head)) {
3690 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3691 list_del_init(&sh->lru);
3692 atomic_inc(&sh->count);
3693 __release_stripe(conf, sh);
3694 }
3695}
3696
3697int md_raid5_congested(struct mddev *mddev, int bits)
3698{
3699 struct r5conf *conf = mddev->private;
3700
3701 /* No difference between reads and writes. Just check
3702 * how busy the stripe_cache is
3703 */
3704
3705 if (conf->inactive_blocked)
3706 return 1;
3707 if (conf->quiesce)
3708 return 1;
3709 if (list_empty_careful(&conf->inactive_list))
3710 return 1;
3711
3712 return 0;
3713}
3714EXPORT_SYMBOL_GPL(md_raid5_congested);
3715
3716static int raid5_congested(void *data, int bits)
3717{
3718 struct mddev *mddev = data;
3719
3720 return mddev_congested(mddev, bits) ||
3721 md_raid5_congested(mddev, bits);
3722}
3723
3724/* We want read requests to align with chunks where possible,
3725 * but write requests don't need to.
3726 */
3727static int raid5_mergeable_bvec(struct request_queue *q,
3728 struct bvec_merge_data *bvm,
3729 struct bio_vec *biovec)
3730{
3731 struct mddev *mddev = q->queuedata;
3732 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3733 int max;
3734 unsigned int chunk_sectors = mddev->chunk_sectors;
3735 unsigned int bio_sectors = bvm->bi_size >> 9;
3736
3737 if ((bvm->bi_rw & 1) == WRITE)
3738 return biovec->bv_len; /* always allow writes to be mergeable */
3739
3740 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3741 chunk_sectors = mddev->new_chunk_sectors;
3742 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3743 if (max < 0) max = 0;
3744 if (max <= biovec->bv_len && bio_sectors == 0)
3745 return biovec->bv_len;
3746 else
3747 return max;
3748}
3749
3750
3751static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
3752{
3753 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3754 unsigned int chunk_sectors = mddev->chunk_sectors;
3755 unsigned int bio_sectors = bio->bi_size >> 9;
3756
3757 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3758 chunk_sectors = mddev->new_chunk_sectors;
3759 return chunk_sectors >=
3760 ((sector & (chunk_sectors - 1)) + bio_sectors);
3761}
3762
3763/*
3764 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
3765 * later sampled by raid5d.
3766 */
3767static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
3768{
3769 unsigned long flags;
3770
3771 spin_lock_irqsave(&conf->device_lock, flags);
3772
3773 bi->bi_next = conf->retry_read_aligned_list;
3774 conf->retry_read_aligned_list = bi;
3775
3776 spin_unlock_irqrestore(&conf->device_lock, flags);
3777 md_wakeup_thread(conf->mddev->thread);
3778}
3779
3780
3781static struct bio *remove_bio_from_retry(struct r5conf *conf)
3782{
3783 struct bio *bi;
3784
3785 bi = conf->retry_read_aligned;
3786 if (bi) {
3787 conf->retry_read_aligned = NULL;
3788 return bi;
3789 }
3790 bi = conf->retry_read_aligned_list;
3791 if(bi) {
3792 conf->retry_read_aligned_list = bi->bi_next;
3793 bi->bi_next = NULL;
3794 /*
3795 * this sets the active strip count to 1 and the processed
3796 * strip count to zero (upper 8 bits)
3797 */
3798 bi->bi_phys_segments = 1; /* biased count of active stripes */
3799 }
3800
3801 return bi;
3802}
3803
3804
3805/*
3806 * The "raid5_align_endio" should check if the read succeeded and if it
3807 * did, call bio_endio on the original bio (having bio_put the new bio
3808 * first).
3809 * If the read failed..
3810 */
3811static void raid5_align_endio(struct bio *bi, int error)
3812{
3813 struct bio* raid_bi = bi->bi_private;
3814 struct mddev *mddev;
3815 struct r5conf *conf;
3816 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3817 struct md_rdev *rdev;
3818
3819 bio_put(bi);
3820
3821 rdev = (void*)raid_bi->bi_next;
3822 raid_bi->bi_next = NULL;
3823 mddev = rdev->mddev;
3824 conf = mddev->private;
3825
3826 rdev_dec_pending(rdev, conf->mddev);
3827
3828 if (!error && uptodate) {
3829 bio_endio(raid_bi, 0);
3830 if (atomic_dec_and_test(&conf->active_aligned_reads))
3831 wake_up(&conf->wait_for_stripe);
3832 return;
3833 }
3834
3835
3836 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3837
3838 add_bio_to_retry(raid_bi, conf);
3839}
3840
3841static int bio_fits_rdev(struct bio *bi)
3842{
3843 struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3844
3845 if ((bi->bi_size>>9) > queue_max_sectors(q))
3846 return 0;
3847 blk_recount_segments(q, bi);
3848 if (bi->bi_phys_segments > queue_max_segments(q))
3849 return 0;
3850
3851 if (q->merge_bvec_fn)
3852 /* it's too hard to apply the merge_bvec_fn at this stage,
3853 * just just give up
3854 */
3855 return 0;
3856
3857 return 1;
3858}
3859
3860
3861static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio)
3862{
3863 struct r5conf *conf = mddev->private;
3864 int dd_idx;
3865 struct bio* align_bi;
3866 struct md_rdev *rdev;
3867 sector_t end_sector;
3868
3869 if (!in_chunk_boundary(mddev, raid_bio)) {
3870 pr_debug("chunk_aligned_read : non aligned\n");
3871 return 0;
3872 }
3873 /*
3874 * use bio_clone_mddev to make a copy of the bio
3875 */
3876 align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
3877 if (!align_bi)
3878 return 0;
3879 /*
3880 * set bi_end_io to a new function, and set bi_private to the
3881 * original bio.
3882 */
3883 align_bi->bi_end_io = raid5_align_endio;
3884 align_bi->bi_private = raid_bio;
3885 /*
3886 * compute position
3887 */
3888 align_bi->bi_sector = raid5_compute_sector(conf, raid_bio->bi_sector,
3889 0,
3890 &dd_idx, NULL);
3891
3892 end_sector = align_bi->bi_sector + (align_bi->bi_size >> 9);
3893 rcu_read_lock();
3894 rdev = rcu_dereference(conf->disks[dd_idx].replacement);
3895 if (!rdev || test_bit(Faulty, &rdev->flags) ||
3896 rdev->recovery_offset < end_sector) {
3897 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3898 if (rdev &&
3899 (test_bit(Faulty, &rdev->flags) ||
3900 !(test_bit(In_sync, &rdev->flags) ||
3901 rdev->recovery_offset >= end_sector)))
3902 rdev = NULL;
3903 }
3904 if (rdev) {
3905 sector_t first_bad;
3906 int bad_sectors;
3907
3908 atomic_inc(&rdev->nr_pending);
3909 rcu_read_unlock();
3910 raid_bio->bi_next = (void*)rdev;
3911 align_bi->bi_bdev = rdev->bdev;
3912 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3913
3914 if (!bio_fits_rdev(align_bi) ||
3915 is_badblock(rdev, align_bi->bi_sector, align_bi->bi_size>>9,
3916 &first_bad, &bad_sectors)) {
3917 /* too big in some way, or has a known bad block */
3918 bio_put(align_bi);
3919 rdev_dec_pending(rdev, mddev);
3920 return 0;
3921 }
3922
3923 /* No reshape active, so we can trust rdev->data_offset */
3924 align_bi->bi_sector += rdev->data_offset;
3925
3926 spin_lock_irq(&conf->device_lock);
3927 wait_event_lock_irq(conf->wait_for_stripe,
3928 conf->quiesce == 0,
3929 conf->device_lock, /* nothing */);
3930 atomic_inc(&conf->active_aligned_reads);
3931 spin_unlock_irq(&conf->device_lock);
3932
3933 generic_make_request(align_bi);
3934 return 1;
3935 } else {
3936 rcu_read_unlock();
3937 bio_put(align_bi);
3938 return 0;
3939 }
3940}
3941
3942/* __get_priority_stripe - get the next stripe to process
3943 *
3944 * Full stripe writes are allowed to pass preread active stripes up until
3945 * the bypass_threshold is exceeded. In general the bypass_count
3946 * increments when the handle_list is handled before the hold_list; however, it
3947 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3948 * stripe with in flight i/o. The bypass_count will be reset when the
3949 * head of the hold_list has changed, i.e. the head was promoted to the
3950 * handle_list.
3951 */
3952static struct stripe_head *__get_priority_stripe(struct r5conf *conf)
3953{
3954 struct stripe_head *sh;
3955
3956 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3957 __func__,
3958 list_empty(&conf->handle_list) ? "empty" : "busy",
3959 list_empty(&conf->hold_list) ? "empty" : "busy",
3960 atomic_read(&conf->pending_full_writes), conf->bypass_count);
3961
3962 if (!list_empty(&conf->handle_list)) {
3963 sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3964
3965 if (list_empty(&conf->hold_list))
3966 conf->bypass_count = 0;
3967 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3968 if (conf->hold_list.next == conf->last_hold)
3969 conf->bypass_count++;
3970 else {
3971 conf->last_hold = conf->hold_list.next;
3972 conf->bypass_count -= conf->bypass_threshold;
3973 if (conf->bypass_count < 0)
3974 conf->bypass_count = 0;
3975 }
3976 }
3977 } else if (!list_empty(&conf->hold_list) &&
3978 ((conf->bypass_threshold &&
3979 conf->bypass_count > conf->bypass_threshold) ||
3980 atomic_read(&conf->pending_full_writes) == 0)) {
3981 sh = list_entry(conf->hold_list.next,
3982 typeof(*sh), lru);
3983 conf->bypass_count -= conf->bypass_threshold;
3984 if (conf->bypass_count < 0)
3985 conf->bypass_count = 0;
3986 } else
3987 return NULL;
3988
3989 list_del_init(&sh->lru);
3990 atomic_inc(&sh->count);
3991 BUG_ON(atomic_read(&sh->count) != 1);
3992 return sh;
3993}
3994
3995static void make_request(struct mddev *mddev, struct bio * bi)
3996{
3997 struct r5conf *conf = mddev->private;
3998 int dd_idx;
3999 sector_t new_sector;
4000 sector_t logical_sector, last_sector;
4001 struct stripe_head *sh;
4002 const int rw = bio_data_dir(bi);
4003 int remaining;
4004
4005 if (unlikely(bi->bi_rw & REQ_FLUSH)) {
4006 md_flush_request(mddev, bi);
4007 return;
4008 }
4009
4010 md_write_start(mddev, bi);
4011
4012 if (rw == READ &&
4013 mddev->reshape_position == MaxSector &&
4014 chunk_aligned_read(mddev,bi))
4015 return;
4016
4017 logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4018 last_sector = bi->bi_sector + (bi->bi_size>>9);
4019 bi->bi_next = NULL;
4020 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
4021
4022 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
4023 DEFINE_WAIT(w);
4024 int previous;
4025
4026 retry:
4027 previous = 0;
4028 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
4029 if (unlikely(conf->reshape_progress != MaxSector)) {
4030 /* spinlock is needed as reshape_progress may be
4031 * 64bit on a 32bit platform, and so it might be
4032 * possible to see a half-updated value
4033 * Of course reshape_progress could change after
4034 * the lock is dropped, so once we get a reference
4035 * to the stripe that we think it is, we will have
4036 * to check again.
4037 */
4038 spin_lock_irq(&conf->device_lock);
4039 if (mddev->reshape_backwards
4040 ? logical_sector < conf->reshape_progress
4041 : logical_sector >= conf->reshape_progress) {
4042 previous = 1;
4043 } else {
4044 if (mddev->reshape_backwards
4045 ? logical_sector < conf->reshape_safe
4046 : logical_sector >= conf->reshape_safe) {
4047 spin_unlock_irq(&conf->device_lock);
4048 schedule();
4049 goto retry;
4050 }
4051 }
4052 spin_unlock_irq(&conf->device_lock);
4053 }
4054
4055 new_sector = raid5_compute_sector(conf, logical_sector,
4056 previous,
4057 &dd_idx, NULL);
4058 pr_debug("raid456: make_request, sector %llu logical %llu\n",
4059 (unsigned long long)new_sector,
4060 (unsigned long long)logical_sector);
4061
4062 sh = get_active_stripe(conf, new_sector, previous,
4063 (bi->bi_rw&RWA_MASK), 0);
4064 if (sh) {
4065 if (unlikely(previous)) {
4066 /* expansion might have moved on while waiting for a
4067 * stripe, so we must do the range check again.
4068 * Expansion could still move past after this
4069 * test, but as we are holding a reference to
4070 * 'sh', we know that if that happens,
4071 * STRIPE_EXPANDING will get set and the expansion
4072 * won't proceed until we finish with the stripe.
4073 */
4074 int must_retry = 0;
4075 spin_lock_irq(&conf->device_lock);
4076 if (mddev->reshape_backwards
4077 ? logical_sector >= conf->reshape_progress
4078 : logical_sector < conf->reshape_progress)
4079 /* mismatch, need to try again */
4080 must_retry = 1;
4081 spin_unlock_irq(&conf->device_lock);
4082 if (must_retry) {
4083 release_stripe(sh);
4084 schedule();
4085 goto retry;
4086 }
4087 }
4088
4089 if (rw == WRITE &&
4090 logical_sector >= mddev->suspend_lo &&
4091 logical_sector < mddev->suspend_hi) {
4092 release_stripe(sh);
4093 /* As the suspend_* range is controlled by
4094 * userspace, we want an interruptible
4095 * wait.
4096 */
4097 flush_signals(current);
4098 prepare_to_wait(&conf->wait_for_overlap,
4099 &w, TASK_INTERRUPTIBLE);
4100 if (logical_sector >= mddev->suspend_lo &&
4101 logical_sector < mddev->suspend_hi)
4102 schedule();
4103 goto retry;
4104 }
4105
4106 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
4107 !add_stripe_bio(sh, bi, dd_idx, rw)) {
4108 /* Stripe is busy expanding or
4109 * add failed due to overlap. Flush everything
4110 * and wait a while
4111 */
4112 md_wakeup_thread(mddev->thread);
4113 release_stripe(sh);
4114 schedule();
4115 goto retry;
4116 }
4117 finish_wait(&conf->wait_for_overlap, &w);
4118 set_bit(STRIPE_HANDLE, &sh->state);
4119 clear_bit(STRIPE_DELAYED, &sh->state);
4120 if ((bi->bi_rw & REQ_SYNC) &&
4121 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4122 atomic_inc(&conf->preread_active_stripes);
4123 mddev_check_plugged(mddev);
4124 release_stripe(sh);
4125 } else {
4126 /* cannot get stripe for read-ahead, just give-up */
4127 clear_bit(BIO_UPTODATE, &bi->bi_flags);
4128 finish_wait(&conf->wait_for_overlap, &w);
4129 break;
4130 }
4131 }
4132
4133 spin_lock_irq(&conf->device_lock);
4134 remaining = raid5_dec_bi_phys_segments(bi);
4135 spin_unlock_irq(&conf->device_lock);
4136 if (remaining == 0) {
4137
4138 if ( rw == WRITE )
4139 md_write_end(mddev);
4140
4141 bio_endio(bi, 0);
4142 }
4143}
4144
4145static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
4146
4147static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
4148{
4149 /* reshaping is quite different to recovery/resync so it is
4150 * handled quite separately ... here.
4151 *
4152 * On each call to sync_request, we gather one chunk worth of
4153 * destination stripes and flag them as expanding.
4154 * Then we find all the source stripes and request reads.
4155 * As the reads complete, handle_stripe will copy the data
4156 * into the destination stripe and release that stripe.
4157 */
4158 struct r5conf *conf = mddev->private;
4159 struct stripe_head *sh;
4160 sector_t first_sector, last_sector;
4161 int raid_disks = conf->previous_raid_disks;
4162 int data_disks = raid_disks - conf->max_degraded;
4163 int new_data_disks = conf->raid_disks - conf->max_degraded;
4164 int i;
4165 int dd_idx;
4166 sector_t writepos, readpos, safepos;
4167 sector_t stripe_addr;
4168 int reshape_sectors;
4169 struct list_head stripes;
4170
4171 if (sector_nr == 0) {
4172 /* If restarting in the middle, skip the initial sectors */
4173 if (mddev->reshape_backwards &&
4174 conf->reshape_progress < raid5_size(mddev, 0, 0)) {
4175 sector_nr = raid5_size(mddev, 0, 0)
4176 - conf->reshape_progress;
4177 } else if (!mddev->reshape_backwards &&
4178 conf->reshape_progress > 0)
4179 sector_nr = conf->reshape_progress;
4180 sector_div(sector_nr, new_data_disks);
4181 if (sector_nr) {
4182 mddev->curr_resync_completed = sector_nr;
4183 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4184 *skipped = 1;
4185 return sector_nr;
4186 }
4187 }
4188
4189 /* We need to process a full chunk at a time.
4190 * If old and new chunk sizes differ, we need to process the
4191 * largest of these
4192 */
4193 if (mddev->new_chunk_sectors > mddev->chunk_sectors)
4194 reshape_sectors = mddev->new_chunk_sectors;
4195 else
4196 reshape_sectors = mddev->chunk_sectors;
4197
4198 /* We update the metadata at least every 10 seconds, or when
4199 * the data about to be copied would over-write the source of
4200 * the data at the front of the range. i.e. one new_stripe
4201 * along from reshape_progress new_maps to after where
4202 * reshape_safe old_maps to
4203 */
4204 writepos = conf->reshape_progress;
4205 sector_div(writepos, new_data_disks);
4206 readpos = conf->reshape_progress;
4207 sector_div(readpos, data_disks);
4208 safepos = conf->reshape_safe;
4209 sector_div(safepos, data_disks);
4210 if (mddev->reshape_backwards) {
4211 writepos -= min_t(sector_t, reshape_sectors, writepos);
4212 readpos += reshape_sectors;
4213 safepos += reshape_sectors;
4214 } else {
4215 writepos += reshape_sectors;
4216 readpos -= min_t(sector_t, reshape_sectors, readpos);
4217 safepos -= min_t(sector_t, reshape_sectors, safepos);
4218 }
4219
4220 /* Having calculated the 'writepos' possibly use it
4221 * to set 'stripe_addr' which is where we will write to.
4222 */
4223 if (mddev->reshape_backwards) {
4224 BUG_ON(conf->reshape_progress == 0);
4225 stripe_addr = writepos;
4226 BUG_ON((mddev->dev_sectors &
4227 ~((sector_t)reshape_sectors - 1))
4228 - reshape_sectors - stripe_addr
4229 != sector_nr);
4230 } else {
4231 BUG_ON(writepos != sector_nr + reshape_sectors);
4232 stripe_addr = sector_nr;
4233 }
4234
4235 /* 'writepos' is the most advanced device address we might write.
4236 * 'readpos' is the least advanced device address we might read.
4237 * 'safepos' is the least address recorded in the metadata as having
4238 * been reshaped.
4239 * If there is a min_offset_diff, these are adjusted either by
4240 * increasing the safepos/readpos if diff is negative, or
4241 * increasing writepos if diff is positive.
4242 * If 'readpos' is then behind 'writepos', there is no way that we can
4243 * ensure safety in the face of a crash - that must be done by userspace
4244 * making a backup of the data. So in that case there is no particular
4245 * rush to update metadata.
4246 * Otherwise if 'safepos' is behind 'writepos', then we really need to
4247 * update the metadata to advance 'safepos' to match 'readpos' so that
4248 * we can be safe in the event of a crash.
4249 * So we insist on updating metadata if safepos is behind writepos and
4250 * readpos is beyond writepos.
4251 * In any case, update the metadata every 10 seconds.
4252 * Maybe that number should be configurable, but I'm not sure it is
4253 * worth it.... maybe it could be a multiple of safemode_delay???
4254 */
4255 if (conf->min_offset_diff < 0) {
4256 safepos += -conf->min_offset_diff;
4257 readpos += -conf->min_offset_diff;
4258 } else
4259 writepos += conf->min_offset_diff;
4260
4261 if ((mddev->reshape_backwards
4262 ? (safepos > writepos && readpos < writepos)
4263 : (safepos < writepos && readpos > writepos)) ||
4264 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4265 /* Cannot proceed until we've updated the superblock... */
4266 wait_event(conf->wait_for_overlap,
4267 atomic_read(&conf->reshape_stripes)==0);
4268 mddev->reshape_position = conf->reshape_progress;
4269 mddev->curr_resync_completed = sector_nr;
4270 conf->reshape_checkpoint = jiffies;
4271 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4272 md_wakeup_thread(mddev->thread);
4273 wait_event(mddev->sb_wait, mddev->flags == 0 ||
4274 kthread_should_stop());
4275 spin_lock_irq(&conf->device_lock);
4276 conf->reshape_safe = mddev->reshape_position;
4277 spin_unlock_irq(&conf->device_lock);
4278 wake_up(&conf->wait_for_overlap);
4279 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4280 }
4281
4282 INIT_LIST_HEAD(&stripes);
4283 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4284 int j;
4285 int skipped_disk = 0;
4286 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4287 set_bit(STRIPE_EXPANDING, &sh->state);
4288 atomic_inc(&conf->reshape_stripes);
4289 /* If any of this stripe is beyond the end of the old
4290 * array, then we need to zero those blocks
4291 */
4292 for (j=sh->disks; j--;) {
4293 sector_t s;
4294 if (j == sh->pd_idx)
4295 continue;
4296 if (conf->level == 6 &&
4297 j == sh->qd_idx)
4298 continue;
4299 s = compute_blocknr(sh, j, 0);
4300 if (s < raid5_size(mddev, 0, 0)) {
4301 skipped_disk = 1;
4302 continue;
4303 }
4304 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4305 set_bit(R5_Expanded, &sh->dev[j].flags);
4306 set_bit(R5_UPTODATE, &sh->dev[j].flags);
4307 }
4308 if (!skipped_disk) {
4309 set_bit(STRIPE_EXPAND_READY, &sh->state);
4310 set_bit(STRIPE_HANDLE, &sh->state);
4311 }
4312 list_add(&sh->lru, &stripes);
4313 }
4314 spin_lock_irq(&conf->device_lock);
4315 if (mddev->reshape_backwards)
4316 conf->reshape_progress -= reshape_sectors * new_data_disks;
4317 else
4318 conf->reshape_progress += reshape_sectors * new_data_disks;
4319 spin_unlock_irq(&conf->device_lock);
4320 /* Ok, those stripe are ready. We can start scheduling
4321 * reads on the source stripes.
4322 * The source stripes are determined by mapping the first and last
4323 * block on the destination stripes.
4324 */
4325 first_sector =
4326 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4327 1, &dd_idx, NULL);
4328 last_sector =
4329 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4330 * new_data_disks - 1),
4331 1, &dd_idx, NULL);
4332 if (last_sector >= mddev->dev_sectors)
4333 last_sector = mddev->dev_sectors - 1;
4334 while (first_sector <= last_sector) {
4335 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4336 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4337 set_bit(STRIPE_HANDLE, &sh->state);
4338 release_stripe(sh);
4339 first_sector += STRIPE_SECTORS;
4340 }
4341 /* Now that the sources are clearly marked, we can release
4342 * the destination stripes
4343 */
4344 while (!list_empty(&stripes)) {
4345 sh = list_entry(stripes.next, struct stripe_head, lru);
4346 list_del_init(&sh->lru);
4347 release_stripe(sh);
4348 }
4349 /* If this takes us to the resync_max point where we have to pause,
4350 * then we need to write out the superblock.
4351 */
4352 sector_nr += reshape_sectors;
4353 if ((sector_nr - mddev->curr_resync_completed) * 2
4354 >= mddev->resync_max - mddev->curr_resync_completed) {
4355 /* Cannot proceed until we've updated the superblock... */
4356 wait_event(conf->wait_for_overlap,
4357 atomic_read(&conf->reshape_stripes) == 0);
4358 mddev->reshape_position = conf->reshape_progress;
4359 mddev->curr_resync_completed = sector_nr;
4360 conf->reshape_checkpoint = jiffies;
4361 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4362 md_wakeup_thread(mddev->thread);
4363 wait_event(mddev->sb_wait,
4364 !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4365 || kthread_should_stop());
4366 spin_lock_irq(&conf->device_lock);
4367 conf->reshape_safe = mddev->reshape_position;
4368 spin_unlock_irq(&conf->device_lock);
4369 wake_up(&conf->wait_for_overlap);
4370 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4371 }
4372 return reshape_sectors;
4373}
4374
4375/* FIXME go_faster isn't used */
4376static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
4377{
4378 struct r5conf *conf = mddev->private;
4379 struct stripe_head *sh;
4380 sector_t max_sector = mddev->dev_sectors;
4381 sector_t sync_blocks;
4382 int still_degraded = 0;
4383 int i;
4384
4385 if (sector_nr >= max_sector) {
4386 /* just being told to finish up .. nothing much to do */
4387
4388 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
4389 end_reshape(conf);
4390 return 0;
4391 }
4392
4393 if (mddev->curr_resync < max_sector) /* aborted */
4394 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
4395 &sync_blocks, 1);
4396 else /* completed sync */
4397 conf->fullsync = 0;
4398 bitmap_close_sync(mddev->bitmap);
4399
4400 return 0;
4401 }
4402
4403 /* Allow raid5_quiesce to complete */
4404 wait_event(conf->wait_for_overlap, conf->quiesce != 2);
4405
4406 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4407 return reshape_request(mddev, sector_nr, skipped);
4408
4409 /* No need to check resync_max as we never do more than one
4410 * stripe, and as resync_max will always be on a chunk boundary,
4411 * if the check in md_do_sync didn't fire, there is no chance
4412 * of overstepping resync_max here
4413 */
4414
4415 /* if there is too many failed drives and we are trying
4416 * to resync, then assert that we are finished, because there is
4417 * nothing we can do.
4418 */
4419 if (mddev->degraded >= conf->max_degraded &&
4420 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4421 sector_t rv = mddev->dev_sectors - sector_nr;
4422 *skipped = 1;
4423 return rv;
4424 }
4425 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
4426 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
4427 !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
4428 /* we can skip this block, and probably more */
4429 sync_blocks /= STRIPE_SECTORS;
4430 *skipped = 1;
4431 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
4432 }
4433
4434 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
4435
4436 sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
4437 if (sh == NULL) {
4438 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
4439 /* make sure we don't swamp the stripe cache if someone else
4440 * is trying to get access
4441 */
4442 schedule_timeout_uninterruptible(1);
4443 }
4444 /* Need to check if array will still be degraded after recovery/resync
4445 * We don't need to check the 'failed' flag as when that gets set,
4446 * recovery aborts.
4447 */
4448 for (i = 0; i < conf->raid_disks; i++)
4449 if (conf->disks[i].rdev == NULL)
4450 still_degraded = 1;
4451
4452 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
4453
4454 set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
4455
4456 handle_stripe(sh);
4457 release_stripe(sh);
4458
4459 return STRIPE_SECTORS;
4460}
4461
4462static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
4463{
4464 /* We may not be able to submit a whole bio at once as there
4465 * may not be enough stripe_heads available.
4466 * We cannot pre-allocate enough stripe_heads as we may need
4467 * more than exist in the cache (if we allow ever large chunks).
4468 * So we do one stripe head at a time and record in
4469 * ->bi_hw_segments how many have been done.
4470 *
4471 * We *know* that this entire raid_bio is in one chunk, so
4472 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4473 */
4474 struct stripe_head *sh;
4475 int dd_idx;
4476 sector_t sector, logical_sector, last_sector;
4477 int scnt = 0;
4478 int remaining;
4479 int handled = 0;
4480
4481 logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4482 sector = raid5_compute_sector(conf, logical_sector,
4483 0, &dd_idx, NULL);
4484 last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
4485
4486 for (; logical_sector < last_sector;
4487 logical_sector += STRIPE_SECTORS,
4488 sector += STRIPE_SECTORS,
4489 scnt++) {
4490
4491 if (scnt < raid5_bi_hw_segments(raid_bio))
4492 /* already done this stripe */
4493 continue;
4494
4495 sh = get_active_stripe(conf, sector, 0, 1, 0);
4496
4497 if (!sh) {
4498 /* failed to get a stripe - must wait */
4499 raid5_set_bi_hw_segments(raid_bio, scnt);
4500 conf->retry_read_aligned = raid_bio;
4501 return handled;
4502 }
4503
4504 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
4505 release_stripe(sh);
4506 raid5_set_bi_hw_segments(raid_bio, scnt);
4507 conf->retry_read_aligned = raid_bio;
4508 return handled;
4509 }
4510
4511 handle_stripe(sh);
4512 release_stripe(sh);
4513 handled++;
4514 }
4515 spin_lock_irq(&conf->device_lock);
4516 remaining = raid5_dec_bi_phys_segments(raid_bio);
4517 spin_unlock_irq(&conf->device_lock);
4518 if (remaining == 0)
4519 bio_endio(raid_bio, 0);
4520 if (atomic_dec_and_test(&conf->active_aligned_reads))
4521 wake_up(&conf->wait_for_stripe);
4522 return handled;
4523}
4524
4525
4526/*
4527 * This is our raid5 kernel thread.
4528 *
4529 * We scan the hash table for stripes which can be handled now.
4530 * During the scan, completed stripes are saved for us by the interrupt
4531 * handler, so that they will not have to wait for our next wakeup.
4532 */
4533static void raid5d(struct mddev *mddev)
4534{
4535 struct stripe_head *sh;
4536 struct r5conf *conf = mddev->private;
4537 int handled;
4538 struct blk_plug plug;
4539
4540 pr_debug("+++ raid5d active\n");
4541
4542 md_check_recovery(mddev);
4543
4544 blk_start_plug(&plug);
4545 handled = 0;
4546 spin_lock_irq(&conf->device_lock);
4547 while (1) {
4548 struct bio *bio;
4549
4550 if (atomic_read(&mddev->plug_cnt) == 0 &&
4551 !list_empty(&conf->bitmap_list)) {
4552 /* Now is a good time to flush some bitmap updates */
4553 conf->seq_flush++;
4554 spin_unlock_irq(&conf->device_lock);
4555 bitmap_unplug(mddev->bitmap);
4556 spin_lock_irq(&conf->device_lock);
4557 conf->seq_write = conf->seq_flush;
4558 activate_bit_delay(conf);
4559 }
4560 if (atomic_read(&mddev->plug_cnt) == 0)
4561 raid5_activate_delayed(conf);
4562
4563 while ((bio = remove_bio_from_retry(conf))) {
4564 int ok;
4565 spin_unlock_irq(&conf->device_lock);
4566 ok = retry_aligned_read(conf, bio);
4567 spin_lock_irq(&conf->device_lock);
4568 if (!ok)
4569 break;
4570 handled++;
4571 }
4572
4573 sh = __get_priority_stripe(conf);
4574
4575 if (!sh)
4576 break;
4577 spin_unlock_irq(&conf->device_lock);
4578
4579 handled++;
4580 handle_stripe(sh);
4581 release_stripe(sh);
4582 cond_resched();
4583
4584 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
4585 md_check_recovery(mddev);
4586
4587 spin_lock_irq(&conf->device_lock);
4588 }
4589 pr_debug("%d stripes handled\n", handled);
4590
4591 spin_unlock_irq(&conf->device_lock);
4592
4593 async_tx_issue_pending_all();
4594 blk_finish_plug(&plug);
4595
4596 pr_debug("--- raid5d inactive\n");
4597}
4598
4599static ssize_t
4600raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
4601{
4602 struct r5conf *conf = mddev->private;
4603 if (conf)
4604 return sprintf(page, "%d\n", conf->max_nr_stripes);
4605 else
4606 return 0;
4607}
4608
4609int
4610raid5_set_cache_size(struct mddev *mddev, int size)
4611{
4612 struct r5conf *conf = mddev->private;
4613 int err;
4614
4615 if (size <= 16 || size > 32768)
4616 return -EINVAL;
4617 while (size < conf->max_nr_stripes) {
4618 if (drop_one_stripe(conf))
4619 conf->max_nr_stripes--;
4620 else
4621 break;
4622 }
4623 err = md_allow_write(mddev);
4624 if (err)
4625 return err;
4626 while (size > conf->max_nr_stripes) {
4627 if (grow_one_stripe(conf))
4628 conf->max_nr_stripes++;
4629 else break;
4630 }
4631 return 0;
4632}
4633EXPORT_SYMBOL(raid5_set_cache_size);
4634
4635static ssize_t
4636raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
4637{
4638 struct r5conf *conf = mddev->private;
4639 unsigned long new;
4640 int err;
4641
4642 if (len >= PAGE_SIZE)
4643 return -EINVAL;
4644 if (!conf)
4645 return -ENODEV;
4646
4647 if (strict_strtoul(page, 10, &new))
4648 return -EINVAL;
4649 err = raid5_set_cache_size(mddev, new);
4650 if (err)
4651 return err;
4652 return len;
4653}
4654
4655static struct md_sysfs_entry
4656raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4657 raid5_show_stripe_cache_size,
4658 raid5_store_stripe_cache_size);
4659
4660static ssize_t
4661raid5_show_preread_threshold(struct mddev *mddev, char *page)
4662{
4663 struct r5conf *conf = mddev->private;
4664 if (conf)
4665 return sprintf(page, "%d\n", conf->bypass_threshold);
4666 else
4667 return 0;
4668}
4669
4670static ssize_t
4671raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
4672{
4673 struct r5conf *conf = mddev->private;
4674 unsigned long new;
4675 if (len >= PAGE_SIZE)
4676 return -EINVAL;
4677 if (!conf)
4678 return -ENODEV;
4679
4680 if (strict_strtoul(page, 10, &new))
4681 return -EINVAL;
4682 if (new > conf->max_nr_stripes)
4683 return -EINVAL;
4684 conf->bypass_threshold = new;
4685 return len;
4686}
4687
4688static struct md_sysfs_entry
4689raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4690 S_IRUGO | S_IWUSR,
4691 raid5_show_preread_threshold,
4692 raid5_store_preread_threshold);
4693
4694static ssize_t
4695stripe_cache_active_show(struct mddev *mddev, char *page)
4696{
4697 struct r5conf *conf = mddev->private;
4698 if (conf)
4699 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4700 else
4701 return 0;
4702}
4703
4704static struct md_sysfs_entry
4705raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4706
4707static struct attribute *raid5_attrs[] = {
4708 &raid5_stripecache_size.attr,
4709 &raid5_stripecache_active.attr,
4710 &raid5_preread_bypass_threshold.attr,
4711 NULL,
4712};
4713static struct attribute_group raid5_attrs_group = {
4714 .name = NULL,
4715 .attrs = raid5_attrs,
4716};
4717
4718static sector_t
4719raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
4720{
4721 struct r5conf *conf = mddev->private;
4722
4723 if (!sectors)
4724 sectors = mddev->dev_sectors;
4725 if (!raid_disks)
4726 /* size is defined by the smallest of previous and new size */
4727 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
4728
4729 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
4730 sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
4731 return sectors * (raid_disks - conf->max_degraded);
4732}
4733
4734static void raid5_free_percpu(struct r5conf *conf)
4735{
4736 struct raid5_percpu *percpu;
4737 unsigned long cpu;
4738
4739 if (!conf->percpu)
4740 return;
4741
4742 get_online_cpus();
4743 for_each_possible_cpu(cpu) {
4744 percpu = per_cpu_ptr(conf->percpu, cpu);
4745 safe_put_page(percpu->spare_page);
4746 kfree(percpu->scribble);
4747 }
4748#ifdef CONFIG_HOTPLUG_CPU
4749 unregister_cpu_notifier(&conf->cpu_notify);
4750#endif
4751 put_online_cpus();
4752
4753 free_percpu(conf->percpu);
4754}
4755
4756static void free_conf(struct r5conf *conf)
4757{
4758 shrink_stripes(conf);
4759 raid5_free_percpu(conf);
4760 kfree(conf->disks);
4761 kfree(conf->stripe_hashtbl);
4762 kfree(conf);
4763}
4764
4765#ifdef CONFIG_HOTPLUG_CPU
4766static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
4767 void *hcpu)
4768{
4769 struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
4770 long cpu = (long)hcpu;
4771 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
4772
4773 switch (action) {
4774 case CPU_UP_PREPARE:
4775 case CPU_UP_PREPARE_FROZEN:
4776 if (conf->level == 6 && !percpu->spare_page)
4777 percpu->spare_page = alloc_page(GFP_KERNEL);
4778 if (!percpu->scribble)
4779 percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4780
4781 if (!percpu->scribble ||
4782 (conf->level == 6 && !percpu->spare_page)) {
4783 safe_put_page(percpu->spare_page);
4784 kfree(percpu->scribble);
4785 pr_err("%s: failed memory allocation for cpu%ld\n",
4786 __func__, cpu);
4787 return notifier_from_errno(-ENOMEM);
4788 }
4789 break;
4790 case CPU_DEAD:
4791 case CPU_DEAD_FROZEN:
4792 safe_put_page(percpu->spare_page);
4793 kfree(percpu->scribble);
4794 percpu->spare_page = NULL;
4795 percpu->scribble = NULL;
4796 break;
4797 default:
4798 break;
4799 }
4800 return NOTIFY_OK;
4801}
4802#endif
4803
4804static int raid5_alloc_percpu(struct r5conf *conf)
4805{
4806 unsigned long cpu;
4807 struct page *spare_page;
4808 struct raid5_percpu __percpu *allcpus;
4809 void *scribble;
4810 int err;
4811
4812 allcpus = alloc_percpu(struct raid5_percpu);
4813 if (!allcpus)
4814 return -ENOMEM;
4815 conf->percpu = allcpus;
4816
4817 get_online_cpus();
4818 err = 0;
4819 for_each_present_cpu(cpu) {
4820 if (conf->level == 6) {
4821 spare_page = alloc_page(GFP_KERNEL);
4822 if (!spare_page) {
4823 err = -ENOMEM;
4824 break;
4825 }
4826 per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
4827 }
4828 scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4829 if (!scribble) {
4830 err = -ENOMEM;
4831 break;
4832 }
4833 per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
4834 }
4835#ifdef CONFIG_HOTPLUG_CPU
4836 conf->cpu_notify.notifier_call = raid456_cpu_notify;
4837 conf->cpu_notify.priority = 0;
4838 if (err == 0)
4839 err = register_cpu_notifier(&conf->cpu_notify);
4840#endif
4841 put_online_cpus();
4842
4843 return err;
4844}
4845
4846static struct r5conf *setup_conf(struct mddev *mddev)
4847{
4848 struct r5conf *conf;
4849 int raid_disk, memory, max_disks;
4850 struct md_rdev *rdev;
4851 struct disk_info *disk;
4852 char pers_name[6];
4853
4854 if (mddev->new_level != 5
4855 && mddev->new_level != 4
4856 && mddev->new_level != 6) {
4857 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
4858 mdname(mddev), mddev->new_level);
4859 return ERR_PTR(-EIO);
4860 }
4861 if ((mddev->new_level == 5
4862 && !algorithm_valid_raid5(mddev->new_layout)) ||
4863 (mddev->new_level == 6
4864 && !algorithm_valid_raid6(mddev->new_layout))) {
4865 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
4866 mdname(mddev), mddev->new_layout);
4867 return ERR_PTR(-EIO);
4868 }
4869 if (mddev->new_level == 6 && mddev->raid_disks < 4) {
4870 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
4871 mdname(mddev), mddev->raid_disks);
4872 return ERR_PTR(-EINVAL);
4873 }
4874
4875 if (!mddev->new_chunk_sectors ||
4876 (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
4877 !is_power_of_2(mddev->new_chunk_sectors)) {
4878 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
4879 mdname(mddev), mddev->new_chunk_sectors << 9);
4880 return ERR_PTR(-EINVAL);
4881 }
4882
4883 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
4884 if (conf == NULL)
4885 goto abort;
4886 spin_lock_init(&conf->device_lock);
4887 init_waitqueue_head(&conf->wait_for_stripe);
4888 init_waitqueue_head(&conf->wait_for_overlap);
4889 INIT_LIST_HEAD(&conf->handle_list);
4890 INIT_LIST_HEAD(&conf->hold_list);
4891 INIT_LIST_HEAD(&conf->delayed_list);
4892 INIT_LIST_HEAD(&conf->bitmap_list);
4893 INIT_LIST_HEAD(&conf->inactive_list);
4894 atomic_set(&conf->active_stripes, 0);
4895 atomic_set(&conf->preread_active_stripes, 0);
4896 atomic_set(&conf->active_aligned_reads, 0);
4897 conf->bypass_threshold = BYPASS_THRESHOLD;
4898 conf->recovery_disabled = mddev->recovery_disabled - 1;
4899
4900 conf->raid_disks = mddev->raid_disks;
4901 if (mddev->reshape_position == MaxSector)
4902 conf->previous_raid_disks = mddev->raid_disks;
4903 else
4904 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4905 max_disks = max(conf->raid_disks, conf->previous_raid_disks);
4906 conf->scribble_len = scribble_len(max_disks);
4907
4908 conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
4909 GFP_KERNEL);
4910 if (!conf->disks)
4911 goto abort;
4912
4913 conf->mddev = mddev;
4914
4915 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
4916 goto abort;
4917
4918 conf->level = mddev->new_level;
4919 if (raid5_alloc_percpu(conf) != 0)
4920 goto abort;
4921
4922 pr_debug("raid456: run(%s) called.\n", mdname(mddev));
4923
4924 rdev_for_each(rdev, mddev) {
4925 raid_disk = rdev->raid_disk;
4926 if (raid_disk >= max_disks
4927 || raid_disk < 0)
4928 continue;
4929 disk = conf->disks + raid_disk;
4930
4931 if (test_bit(Replacement, &rdev->flags)) {
4932 if (disk->replacement)
4933 goto abort;
4934 disk->replacement = rdev;
4935 } else {
4936 if (disk->rdev)
4937 goto abort;
4938 disk->rdev = rdev;
4939 }
4940
4941 if (test_bit(In_sync, &rdev->flags)) {
4942 char b[BDEVNAME_SIZE];
4943 printk(KERN_INFO "md/raid:%s: device %s operational as raid"
4944 " disk %d\n",
4945 mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
4946 } else if (rdev->saved_raid_disk != raid_disk)
4947 /* Cannot rely on bitmap to complete recovery */
4948 conf->fullsync = 1;
4949 }
4950
4951 conf->chunk_sectors = mddev->new_chunk_sectors;
4952 conf->level = mddev->new_level;
4953 if (conf->level == 6)
4954 conf->max_degraded = 2;
4955 else
4956 conf->max_degraded = 1;
4957 conf->algorithm = mddev->new_layout;
4958 conf->max_nr_stripes = NR_STRIPES;
4959 conf->reshape_progress = mddev->reshape_position;
4960 if (conf->reshape_progress != MaxSector) {
4961 conf->prev_chunk_sectors = mddev->chunk_sectors;
4962 conf->prev_algo = mddev->layout;
4963 }
4964
4965 memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4966 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4967 if (grow_stripes(conf, conf->max_nr_stripes)) {
4968 printk(KERN_ERR
4969 "md/raid:%s: couldn't allocate %dkB for buffers\n",
4970 mdname(mddev), memory);
4971 goto abort;
4972 } else
4973 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
4974 mdname(mddev), memory);
4975
4976 sprintf(pers_name, "raid%d", mddev->new_level);
4977 conf->thread = md_register_thread(raid5d, mddev, pers_name);
4978 if (!conf->thread) {
4979 printk(KERN_ERR
4980 "md/raid:%s: couldn't allocate thread.\n",
4981 mdname(mddev));
4982 goto abort;
4983 }
4984
4985 return conf;
4986
4987 abort:
4988 if (conf) {
4989 free_conf(conf);
4990 return ERR_PTR(-EIO);
4991 } else
4992 return ERR_PTR(-ENOMEM);
4993}
4994
4995
4996static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
4997{
4998 switch (algo) {
4999 case ALGORITHM_PARITY_0:
5000 if (raid_disk < max_degraded)
5001 return 1;
5002 break;
5003 case ALGORITHM_PARITY_N:
5004 if (raid_disk >= raid_disks - max_degraded)
5005 return 1;
5006 break;
5007 case ALGORITHM_PARITY_0_6:
5008 if (raid_disk == 0 ||
5009 raid_disk == raid_disks - 1)
5010 return 1;
5011 break;
5012 case ALGORITHM_LEFT_ASYMMETRIC_6:
5013 case ALGORITHM_RIGHT_ASYMMETRIC_6:
5014 case ALGORITHM_LEFT_SYMMETRIC_6:
5015 case ALGORITHM_RIGHT_SYMMETRIC_6:
5016 if (raid_disk == raid_disks - 1)
5017 return 1;
5018 }
5019 return 0;
5020}
5021
5022static int run(struct mddev *mddev)
5023{
5024 struct r5conf *conf;
5025 int working_disks = 0;
5026 int dirty_parity_disks = 0;
5027 struct md_rdev *rdev;
5028 sector_t reshape_offset = 0;
5029 int i;
5030 long long min_offset_diff = 0;
5031 int first = 1;
5032
5033 if (mddev->recovery_cp != MaxSector)
5034 printk(KERN_NOTICE "md/raid:%s: not clean"
5035 " -- starting background reconstruction\n",
5036 mdname(mddev));
5037
5038 rdev_for_each(rdev, mddev) {
5039 long long diff;
5040 if (rdev->raid_disk < 0)
5041 continue;
5042 diff = (rdev->new_data_offset - rdev->data_offset);
5043 if (first) {
5044 min_offset_diff = diff;
5045 first = 0;
5046 } else if (mddev->reshape_backwards &&
5047 diff < min_offset_diff)
5048 min_offset_diff = diff;
5049 else if (!mddev->reshape_backwards &&
5050 diff > min_offset_diff)
5051 min_offset_diff = diff;
5052 }
5053
5054 if (mddev->reshape_position != MaxSector) {
5055 /* Check that we can continue the reshape.
5056 * Difficulties arise if the stripe we would write to
5057 * next is at or after the stripe we would read from next.
5058 * For a reshape that changes the number of devices, this
5059 * is only possible for a very short time, and mdadm makes
5060 * sure that time appears to have past before assembling
5061 * the array. So we fail if that time hasn't passed.
5062 * For a reshape that keeps the number of devices the same
5063 * mdadm must be monitoring the reshape can keeping the
5064 * critical areas read-only and backed up. It will start
5065 * the array in read-only mode, so we check for that.
5066 */
5067 sector_t here_new, here_old;
5068 int old_disks;
5069 int max_degraded = (mddev->level == 6 ? 2 : 1);
5070
5071 if (mddev->new_level != mddev->level) {
5072 printk(KERN_ERR "md/raid:%s: unsupported reshape "
5073 "required - aborting.\n",
5074 mdname(mddev));
5075 return -EINVAL;
5076 }
5077 old_disks = mddev->raid_disks - mddev->delta_disks;
5078 /* reshape_position must be on a new-stripe boundary, and one
5079 * further up in new geometry must map after here in old
5080 * geometry.
5081 */
5082 here_new = mddev->reshape_position;
5083 if (sector_div(here_new, mddev->new_chunk_sectors *
5084 (mddev->raid_disks - max_degraded))) {
5085 printk(KERN_ERR "md/raid:%s: reshape_position not "
5086 "on a stripe boundary\n", mdname(mddev));
5087 return -EINVAL;
5088 }
5089 reshape_offset = here_new * mddev->new_chunk_sectors;
5090 /* here_new is the stripe we will write to */
5091 here_old = mddev->reshape_position;
5092 sector_div(here_old, mddev->chunk_sectors *
5093 (old_disks-max_degraded));
5094 /* here_old is the first stripe that we might need to read
5095 * from */
5096 if (mddev->delta_disks == 0) {
5097 if ((here_new * mddev->new_chunk_sectors !=
5098 here_old * mddev->chunk_sectors)) {
5099 printk(KERN_ERR "md/raid:%s: reshape position is"
5100 " confused - aborting\n", mdname(mddev));
5101 return -EINVAL;
5102 }
5103 /* We cannot be sure it is safe to start an in-place
5104 * reshape. It is only safe if user-space is monitoring
5105 * and taking constant backups.
5106 * mdadm always starts a situation like this in
5107 * readonly mode so it can take control before
5108 * allowing any writes. So just check for that.
5109 */
5110 if (abs(min_offset_diff) >= mddev->chunk_sectors &&
5111 abs(min_offset_diff) >= mddev->new_chunk_sectors)
5112 /* not really in-place - so OK */;
5113 else if (mddev->ro == 0) {
5114 printk(KERN_ERR "md/raid:%s: in-place reshape "
5115 "must be started in read-only mode "
5116 "- aborting\n",
5117 mdname(mddev));
5118 return -EINVAL;
5119 }
5120 } else if (mddev->reshape_backwards
5121 ? (here_new * mddev->new_chunk_sectors + min_offset_diff <=
5122 here_old * mddev->chunk_sectors)
5123 : (here_new * mddev->new_chunk_sectors >=
5124 here_old * mddev->chunk_sectors + (-min_offset_diff))) {
5125 /* Reading from the same stripe as writing to - bad */
5126 printk(KERN_ERR "md/raid:%s: reshape_position too early for "
5127 "auto-recovery - aborting.\n",
5128 mdname(mddev));
5129 return -EINVAL;
5130 }
5131 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
5132 mdname(mddev));
5133 /* OK, we should be able to continue; */
5134 } else {
5135 BUG_ON(mddev->level != mddev->new_level);
5136 BUG_ON(mddev->layout != mddev->new_layout);
5137 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
5138 BUG_ON(mddev->delta_disks != 0);
5139 }
5140
5141 if (mddev->private == NULL)
5142 conf = setup_conf(mddev);
5143 else
5144 conf = mddev->private;
5145
5146 if (IS_ERR(conf))
5147 return PTR_ERR(conf);
5148
5149 conf->min_offset_diff = min_offset_diff;
5150 mddev->thread = conf->thread;
5151 conf->thread = NULL;
5152 mddev->private = conf;
5153
5154 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
5155 i++) {
5156 rdev = conf->disks[i].rdev;
5157 if (!rdev && conf->disks[i].replacement) {
5158 /* The replacement is all we have yet */
5159 rdev = conf->disks[i].replacement;
5160 conf->disks[i].replacement = NULL;
5161 clear_bit(Replacement, &rdev->flags);
5162 conf->disks[i].rdev = rdev;
5163 }
5164 if (!rdev)
5165 continue;
5166 if (conf->disks[i].replacement &&
5167 conf->reshape_progress != MaxSector) {
5168 /* replacements and reshape simply do not mix. */
5169 printk(KERN_ERR "md: cannot handle concurrent "
5170 "replacement and reshape.\n");
5171 goto abort;
5172 }
5173 if (test_bit(In_sync, &rdev->flags)) {
5174 working_disks++;
5175 continue;
5176 }
5177 /* This disc is not fully in-sync. However if it
5178 * just stored parity (beyond the recovery_offset),
5179 * when we don't need to be concerned about the
5180 * array being dirty.
5181 * When reshape goes 'backwards', we never have
5182 * partially completed devices, so we only need
5183 * to worry about reshape going forwards.
5184 */
5185 /* Hack because v0.91 doesn't store recovery_offset properly. */
5186 if (mddev->major_version == 0 &&
5187 mddev->minor_version > 90)
5188 rdev->recovery_offset = reshape_offset;
5189
5190 if (rdev->recovery_offset < reshape_offset) {
5191 /* We need to check old and new layout */
5192 if (!only_parity(rdev->raid_disk,
5193 conf->algorithm,
5194 conf->raid_disks,
5195 conf->max_degraded))
5196 continue;
5197 }
5198 if (!only_parity(rdev->raid_disk,
5199 conf->prev_algo,
5200 conf->previous_raid_disks,
5201 conf->max_degraded))
5202 continue;
5203 dirty_parity_disks++;
5204 }
5205
5206 /*
5207 * 0 for a fully functional array, 1 or 2 for a degraded array.
5208 */
5209 mddev->degraded = calc_degraded(conf);
5210
5211 if (has_failed(conf)) {
5212 printk(KERN_ERR "md/raid:%s: not enough operational devices"
5213 " (%d/%d failed)\n",
5214 mdname(mddev), mddev->degraded, conf->raid_disks);
5215 goto abort;
5216 }
5217
5218 /* device size must be a multiple of chunk size */
5219 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
5220 mddev->resync_max_sectors = mddev->dev_sectors;
5221
5222 if (mddev->degraded > dirty_parity_disks &&
5223 mddev->recovery_cp != MaxSector) {
5224 if (mddev->ok_start_degraded)
5225 printk(KERN_WARNING
5226 "md/raid:%s: starting dirty degraded array"
5227 " - data corruption possible.\n",
5228 mdname(mddev));
5229 else {
5230 printk(KERN_ERR
5231 "md/raid:%s: cannot start dirty degraded array.\n",
5232 mdname(mddev));
5233 goto abort;
5234 }
5235 }
5236
5237 if (mddev->degraded == 0)
5238 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
5239 " devices, algorithm %d\n", mdname(mddev), conf->level,
5240 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
5241 mddev->new_layout);
5242 else
5243 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
5244 " out of %d devices, algorithm %d\n",
5245 mdname(mddev), conf->level,
5246 mddev->raid_disks - mddev->degraded,
5247 mddev->raid_disks, mddev->new_layout);
5248
5249 print_raid5_conf(conf);
5250
5251 if (conf->reshape_progress != MaxSector) {
5252 conf->reshape_safe = conf->reshape_progress;
5253 atomic_set(&conf->reshape_stripes, 0);
5254 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5255 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5256 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5257 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5258 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5259 "reshape");
5260 }
5261
5262
5263 /* Ok, everything is just fine now */
5264 if (mddev->to_remove == &raid5_attrs_group)
5265 mddev->to_remove = NULL;
5266 else if (mddev->kobj.sd &&
5267 sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
5268 printk(KERN_WARNING
5269 "raid5: failed to create sysfs attributes for %s\n",
5270 mdname(mddev));
5271 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5272
5273 if (mddev->queue) {
5274 int chunk_size;
5275 /* read-ahead size must cover two whole stripes, which
5276 * is 2 * (datadisks) * chunksize where 'n' is the
5277 * number of raid devices
5278 */
5279 int data_disks = conf->previous_raid_disks - conf->max_degraded;
5280 int stripe = data_disks *
5281 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
5282 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5283 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5284
5285 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
5286
5287 mddev->queue->backing_dev_info.congested_data = mddev;
5288 mddev->queue->backing_dev_info.congested_fn = raid5_congested;
5289
5290 chunk_size = mddev->chunk_sectors << 9;
5291 blk_queue_io_min(mddev->queue, chunk_size);
5292 blk_queue_io_opt(mddev->queue, chunk_size *
5293 (conf->raid_disks - conf->max_degraded));
5294
5295 rdev_for_each(rdev, mddev) {
5296 disk_stack_limits(mddev->gendisk, rdev->bdev,
5297 rdev->data_offset << 9);
5298 disk_stack_limits(mddev->gendisk, rdev->bdev,
5299 rdev->new_data_offset << 9);
5300 }
5301 }
5302
5303 return 0;
5304abort:
5305 md_unregister_thread(&mddev->thread);
5306 print_raid5_conf(conf);
5307 free_conf(conf);
5308 mddev->private = NULL;
5309 printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
5310 return -EIO;
5311}
5312
5313static int stop(struct mddev *mddev)
5314{
5315 struct r5conf *conf = mddev->private;
5316
5317 md_unregister_thread(&mddev->thread);
5318 if (mddev->queue)
5319 mddev->queue->backing_dev_info.congested_fn = NULL;
5320 free_conf(conf);
5321 mddev->private = NULL;
5322 mddev->to_remove = &raid5_attrs_group;
5323 return 0;
5324}
5325
5326static void status(struct seq_file *seq, struct mddev *mddev)
5327{
5328 struct r5conf *conf = mddev->private;
5329 int i;
5330
5331 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
5332 mddev->chunk_sectors / 2, mddev->layout);
5333 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
5334 for (i = 0; i < conf->raid_disks; i++)
5335 seq_printf (seq, "%s",
5336 conf->disks[i].rdev &&
5337 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
5338 seq_printf (seq, "]");
5339}
5340
5341static void print_raid5_conf (struct r5conf *conf)
5342{
5343 int i;
5344 struct disk_info *tmp;
5345
5346 printk(KERN_DEBUG "RAID conf printout:\n");
5347 if (!conf) {
5348 printk("(conf==NULL)\n");
5349 return;
5350 }
5351 printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
5352 conf->raid_disks,
5353 conf->raid_disks - conf->mddev->degraded);
5354
5355 for (i = 0; i < conf->raid_disks; i++) {
5356 char b[BDEVNAME_SIZE];
5357 tmp = conf->disks + i;
5358 if (tmp->rdev)
5359 printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
5360 i, !test_bit(Faulty, &tmp->rdev->flags),
5361 bdevname(tmp->rdev->bdev, b));
5362 }
5363}
5364
5365static int raid5_spare_active(struct mddev *mddev)
5366{
5367 int i;
5368 struct r5conf *conf = mddev->private;
5369 struct disk_info *tmp;
5370 int count = 0;
5371 unsigned long flags;
5372
5373 for (i = 0; i < conf->raid_disks; i++) {
5374 tmp = conf->disks + i;
5375 if (tmp->replacement
5376 && tmp->replacement->recovery_offset == MaxSector
5377 && !test_bit(Faulty, &tmp->replacement->flags)
5378 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
5379 /* Replacement has just become active. */
5380 if (!tmp->rdev
5381 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
5382 count++;
5383 if (tmp->rdev) {
5384 /* Replaced device not technically faulty,
5385 * but we need to be sure it gets removed
5386 * and never re-added.
5387 */
5388 set_bit(Faulty, &tmp->rdev->flags);
5389 sysfs_notify_dirent_safe(
5390 tmp->rdev->sysfs_state);
5391 }
5392 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
5393 } else if (tmp->rdev
5394 && tmp->rdev->recovery_offset == MaxSector
5395 && !test_bit(Faulty, &tmp->rdev->flags)
5396 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
5397 count++;
5398 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
5399 }
5400 }
5401 spin_lock_irqsave(&conf->device_lock, flags);
5402 mddev->degraded = calc_degraded(conf);
5403 spin_unlock_irqrestore(&conf->device_lock, flags);
5404 print_raid5_conf(conf);
5405 return count;
5406}
5407
5408static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
5409{
5410 struct r5conf *conf = mddev->private;
5411 int err = 0;
5412 int number = rdev->raid_disk;
5413 struct md_rdev **rdevp;
5414 struct disk_info *p = conf->disks + number;
5415
5416 print_raid5_conf(conf);
5417 if (rdev == p->rdev)
5418 rdevp = &p->rdev;
5419 else if (rdev == p->replacement)
5420 rdevp = &p->replacement;
5421 else
5422 return 0;
5423
5424 if (number >= conf->raid_disks &&
5425 conf->reshape_progress == MaxSector)
5426 clear_bit(In_sync, &rdev->flags);
5427
5428 if (test_bit(In_sync, &rdev->flags) ||
5429 atomic_read(&rdev->nr_pending)) {
5430 err = -EBUSY;
5431 goto abort;
5432 }
5433 /* Only remove non-faulty devices if recovery
5434 * isn't possible.
5435 */
5436 if (!test_bit(Faulty, &rdev->flags) &&
5437 mddev->recovery_disabled != conf->recovery_disabled &&
5438 !has_failed(conf) &&
5439 (!p->replacement || p->replacement == rdev) &&
5440 number < conf->raid_disks) {
5441 err = -EBUSY;
5442 goto abort;
5443 }
5444 *rdevp = NULL;
5445 synchronize_rcu();
5446 if (atomic_read(&rdev->nr_pending)) {
5447 /* lost the race, try later */
5448 err = -EBUSY;
5449 *rdevp = rdev;
5450 } else if (p->replacement) {
5451 /* We must have just cleared 'rdev' */
5452 p->rdev = p->replacement;
5453 clear_bit(Replacement, &p->replacement->flags);
5454 smp_mb(); /* Make sure other CPUs may see both as identical
5455 * but will never see neither - if they are careful
5456 */
5457 p->replacement = NULL;
5458 clear_bit(WantReplacement, &rdev->flags);
5459 } else
5460 /* We might have just removed the Replacement as faulty-
5461 * clear the bit just in case
5462 */
5463 clear_bit(WantReplacement, &rdev->flags);
5464abort:
5465
5466 print_raid5_conf(conf);
5467 return err;
5468}
5469
5470static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
5471{
5472 struct r5conf *conf = mddev->private;
5473 int err = -EEXIST;
5474 int disk;
5475 struct disk_info *p;
5476 int first = 0;
5477 int last = conf->raid_disks - 1;
5478
5479 if (mddev->recovery_disabled == conf->recovery_disabled)
5480 return -EBUSY;
5481
5482 if (rdev->saved_raid_disk < 0 && has_failed(conf))
5483 /* no point adding a device */
5484 return -EINVAL;
5485
5486 if (rdev->raid_disk >= 0)
5487 first = last = rdev->raid_disk;
5488
5489 /*
5490 * find the disk ... but prefer rdev->saved_raid_disk
5491 * if possible.
5492 */
5493 if (rdev->saved_raid_disk >= 0 &&
5494 rdev->saved_raid_disk >= first &&
5495 conf->disks[rdev->saved_raid_disk].rdev == NULL)
5496 first = rdev->saved_raid_disk;
5497
5498 for (disk = first; disk <= last; disk++) {
5499 p = conf->disks + disk;
5500 if (p->rdev == NULL) {
5501 clear_bit(In_sync, &rdev->flags);
5502 rdev->raid_disk = disk;
5503 err = 0;
5504 if (rdev->saved_raid_disk != disk)
5505 conf->fullsync = 1;
5506 rcu_assign_pointer(p->rdev, rdev);
5507 goto out;
5508 }
5509 }
5510 for (disk = first; disk <= last; disk++) {
5511 p = conf->disks + disk;
5512 if (test_bit(WantReplacement, &p->rdev->flags) &&
5513 p->replacement == NULL) {
5514 clear_bit(In_sync, &rdev->flags);
5515 set_bit(Replacement, &rdev->flags);
5516 rdev->raid_disk = disk;
5517 err = 0;
5518 conf->fullsync = 1;
5519 rcu_assign_pointer(p->replacement, rdev);
5520 break;
5521 }
5522 }
5523out:
5524 print_raid5_conf(conf);
5525 return err;
5526}
5527
5528static int raid5_resize(struct mddev *mddev, sector_t sectors)
5529{
5530 /* no resync is happening, and there is enough space
5531 * on all devices, so we can resize.
5532 * We need to make sure resync covers any new space.
5533 * If the array is shrinking we should possibly wait until
5534 * any io in the removed space completes, but it hardly seems
5535 * worth it.
5536 */
5537 sector_t newsize;
5538 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5539 newsize = raid5_size(mddev, sectors, mddev->raid_disks);
5540 if (mddev->external_size &&
5541 mddev->array_sectors > newsize)
5542 return -EINVAL;
5543 if (mddev->bitmap) {
5544 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
5545 if (ret)
5546 return ret;
5547 }
5548 md_set_array_sectors(mddev, newsize);
5549 set_capacity(mddev->gendisk, mddev->array_sectors);
5550 revalidate_disk(mddev->gendisk);
5551 if (sectors > mddev->dev_sectors &&
5552 mddev->recovery_cp > mddev->dev_sectors) {
5553 mddev->recovery_cp = mddev->dev_sectors;
5554 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5555 }
5556 mddev->dev_sectors = sectors;
5557 mddev->resync_max_sectors = sectors;
5558 return 0;
5559}
5560
5561static int check_stripe_cache(struct mddev *mddev)
5562{
5563 /* Can only proceed if there are plenty of stripe_heads.
5564 * We need a minimum of one full stripe,, and for sensible progress
5565 * it is best to have about 4 times that.
5566 * If we require 4 times, then the default 256 4K stripe_heads will
5567 * allow for chunk sizes up to 256K, which is probably OK.
5568 * If the chunk size is greater, user-space should request more
5569 * stripe_heads first.
5570 */
5571 struct r5conf *conf = mddev->private;
5572 if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
5573 > conf->max_nr_stripes ||
5574 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
5575 > conf->max_nr_stripes) {
5576 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes. Needed %lu\n",
5577 mdname(mddev),
5578 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
5579 / STRIPE_SIZE)*4);
5580 return 0;
5581 }
5582 return 1;
5583}
5584
5585static int check_reshape(struct mddev *mddev)
5586{
5587 struct r5conf *conf = mddev->private;
5588
5589 if (mddev->delta_disks == 0 &&
5590 mddev->new_layout == mddev->layout &&
5591 mddev->new_chunk_sectors == mddev->chunk_sectors)
5592 return 0; /* nothing to do */
5593 if (has_failed(conf))
5594 return -EINVAL;
5595 if (mddev->delta_disks < 0) {
5596 /* We might be able to shrink, but the devices must
5597 * be made bigger first.
5598 * For raid6, 4 is the minimum size.
5599 * Otherwise 2 is the minimum
5600 */
5601 int min = 2;
5602 if (mddev->level == 6)
5603 min = 4;
5604 if (mddev->raid_disks + mddev->delta_disks < min)
5605 return -EINVAL;
5606 }
5607
5608 if (!check_stripe_cache(mddev))
5609 return -ENOSPC;
5610
5611 return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
5612}
5613
5614static int raid5_start_reshape(struct mddev *mddev)
5615{
5616 struct r5conf *conf = mddev->private;
5617 struct md_rdev *rdev;
5618 int spares = 0;
5619 unsigned long flags;
5620
5621 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5622 return -EBUSY;
5623
5624 if (!check_stripe_cache(mddev))
5625 return -ENOSPC;
5626
5627 if (has_failed(conf))
5628 return -EINVAL;
5629
5630 rdev_for_each(rdev, mddev) {
5631 if (!test_bit(In_sync, &rdev->flags)
5632 && !test_bit(Faulty, &rdev->flags))
5633 spares++;
5634 }
5635
5636 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
5637 /* Not enough devices even to make a degraded array
5638 * of that size
5639 */
5640 return -EINVAL;
5641
5642 /* Refuse to reduce size of the array. Any reductions in
5643 * array size must be through explicit setting of array_size
5644 * attribute.
5645 */
5646 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
5647 < mddev->array_sectors) {
5648 printk(KERN_ERR "md/raid:%s: array size must be reduced "
5649 "before number of disks\n", mdname(mddev));
5650 return -EINVAL;
5651 }
5652
5653 atomic_set(&conf->reshape_stripes, 0);
5654 spin_lock_irq(&conf->device_lock);
5655 conf->previous_raid_disks = conf->raid_disks;
5656 conf->raid_disks += mddev->delta_disks;
5657 conf->prev_chunk_sectors = conf->chunk_sectors;
5658 conf->chunk_sectors = mddev->new_chunk_sectors;
5659 conf->prev_algo = conf->algorithm;
5660 conf->algorithm = mddev->new_layout;
5661 conf->generation++;
5662 /* Code that selects data_offset needs to see the generation update
5663 * if reshape_progress has been set - so a memory barrier needed.
5664 */
5665 smp_mb();
5666 if (mddev->reshape_backwards)
5667 conf->reshape_progress = raid5_size(mddev, 0, 0);
5668 else
5669 conf->reshape_progress = 0;
5670 conf->reshape_safe = conf->reshape_progress;
5671 spin_unlock_irq(&conf->device_lock);
5672
5673 /* Add some new drives, as many as will fit.
5674 * We know there are enough to make the newly sized array work.
5675 * Don't add devices if we are reducing the number of
5676 * devices in the array. This is because it is not possible
5677 * to correctly record the "partially reconstructed" state of
5678 * such devices during the reshape and confusion could result.
5679 */
5680 if (mddev->delta_disks >= 0) {
5681 rdev_for_each(rdev, mddev)
5682 if (rdev->raid_disk < 0 &&
5683 !test_bit(Faulty, &rdev->flags)) {
5684 if (raid5_add_disk(mddev, rdev) == 0) {
5685 if (rdev->raid_disk
5686 >= conf->previous_raid_disks)
5687 set_bit(In_sync, &rdev->flags);
5688 else
5689 rdev->recovery_offset = 0;
5690
5691 if (sysfs_link_rdev(mddev, rdev))
5692 /* Failure here is OK */;
5693 }
5694 } else if (rdev->raid_disk >= conf->previous_raid_disks
5695 && !test_bit(Faulty, &rdev->flags)) {
5696 /* This is a spare that was manually added */
5697 set_bit(In_sync, &rdev->flags);
5698 }
5699
5700 /* When a reshape changes the number of devices,
5701 * ->degraded is measured against the larger of the
5702 * pre and post number of devices.
5703 */
5704 spin_lock_irqsave(&conf->device_lock, flags);
5705 mddev->degraded = calc_degraded(conf);
5706 spin_unlock_irqrestore(&conf->device_lock, flags);
5707 }
5708 mddev->raid_disks = conf->raid_disks;
5709 mddev->reshape_position = conf->reshape_progress;
5710 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5711
5712 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5713 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5714 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5715 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5716 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5717 "reshape");
5718 if (!mddev->sync_thread) {
5719 mddev->recovery = 0;
5720 spin_lock_irq(&conf->device_lock);
5721 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
5722 rdev_for_each(rdev, mddev)
5723 rdev->new_data_offset = rdev->data_offset;
5724 smp_wmb();
5725 conf->reshape_progress = MaxSector;
5726 mddev->reshape_position = MaxSector;
5727 spin_unlock_irq(&conf->device_lock);
5728 return -EAGAIN;
5729 }
5730 conf->reshape_checkpoint = jiffies;
5731 md_wakeup_thread(mddev->sync_thread);
5732 md_new_event(mddev);
5733 return 0;
5734}
5735
5736/* This is called from the reshape thread and should make any
5737 * changes needed in 'conf'
5738 */
5739static void end_reshape(struct r5conf *conf)
5740{
5741
5742 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
5743 struct md_rdev *rdev;
5744
5745 spin_lock_irq(&conf->device_lock);
5746 conf->previous_raid_disks = conf->raid_disks;
5747 rdev_for_each(rdev, conf->mddev)
5748 rdev->data_offset = rdev->new_data_offset;
5749 smp_wmb();
5750 conf->reshape_progress = MaxSector;
5751 spin_unlock_irq(&conf->device_lock);
5752 wake_up(&conf->wait_for_overlap);
5753
5754 /* read-ahead size must cover two whole stripes, which is
5755 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
5756 */
5757 if (conf->mddev->queue) {
5758 int data_disks = conf->raid_disks - conf->max_degraded;
5759 int stripe = data_disks * ((conf->chunk_sectors << 9)
5760 / PAGE_SIZE);
5761 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5762 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5763 }
5764 }
5765}
5766
5767/* This is called from the raid5d thread with mddev_lock held.
5768 * It makes config changes to the device.
5769 */
5770static void raid5_finish_reshape(struct mddev *mddev)
5771{
5772 struct r5conf *conf = mddev->private;
5773
5774 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5775
5776 if (mddev->delta_disks > 0) {
5777 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5778 set_capacity(mddev->gendisk, mddev->array_sectors);
5779 revalidate_disk(mddev->gendisk);
5780 } else {
5781 int d;
5782 spin_lock_irq(&conf->device_lock);
5783 mddev->degraded = calc_degraded(conf);
5784 spin_unlock_irq(&conf->device_lock);
5785 for (d = conf->raid_disks ;
5786 d < conf->raid_disks - mddev->delta_disks;
5787 d++) {
5788 struct md_rdev *rdev = conf->disks[d].rdev;
5789 if (rdev)
5790 clear_bit(In_sync, &rdev->flags);
5791 rdev = conf->disks[d].replacement;
5792 if (rdev)
5793 clear_bit(In_sync, &rdev->flags);
5794 }
5795 }
5796 mddev->layout = conf->algorithm;
5797 mddev->chunk_sectors = conf->chunk_sectors;
5798 mddev->reshape_position = MaxSector;
5799 mddev->delta_disks = 0;
5800 mddev->reshape_backwards = 0;
5801 }
5802}
5803
5804static void raid5_quiesce(struct mddev *mddev, int state)
5805{
5806 struct r5conf *conf = mddev->private;
5807
5808 switch(state) {
5809 case 2: /* resume for a suspend */
5810 wake_up(&conf->wait_for_overlap);
5811 break;
5812
5813 case 1: /* stop all writes */
5814 spin_lock_irq(&conf->device_lock);
5815 /* '2' tells resync/reshape to pause so that all
5816 * active stripes can drain
5817 */
5818 conf->quiesce = 2;
5819 wait_event_lock_irq(conf->wait_for_stripe,
5820 atomic_read(&conf->active_stripes) == 0 &&
5821 atomic_read(&conf->active_aligned_reads) == 0,
5822 conf->device_lock, /* nothing */);
5823 conf->quiesce = 1;
5824 spin_unlock_irq(&conf->device_lock);
5825 /* allow reshape to continue */
5826 wake_up(&conf->wait_for_overlap);
5827 break;
5828
5829 case 0: /* re-enable writes */
5830 spin_lock_irq(&conf->device_lock);
5831 conf->quiesce = 0;
5832 wake_up(&conf->wait_for_stripe);
5833 wake_up(&conf->wait_for_overlap);
5834 spin_unlock_irq(&conf->device_lock);
5835 break;
5836 }
5837}
5838
5839
5840static void *raid45_takeover_raid0(struct mddev *mddev, int level)
5841{
5842 struct r0conf *raid0_conf = mddev->private;
5843 sector_t sectors;
5844
5845 /* for raid0 takeover only one zone is supported */
5846 if (raid0_conf->nr_strip_zones > 1) {
5847 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
5848 mdname(mddev));
5849 return ERR_PTR(-EINVAL);
5850 }
5851
5852 sectors = raid0_conf->strip_zone[0].zone_end;
5853 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
5854 mddev->dev_sectors = sectors;
5855 mddev->new_level = level;
5856 mddev->new_layout = ALGORITHM_PARITY_N;
5857 mddev->new_chunk_sectors = mddev->chunk_sectors;
5858 mddev->raid_disks += 1;
5859 mddev->delta_disks = 1;
5860 /* make sure it will be not marked as dirty */
5861 mddev->recovery_cp = MaxSector;
5862
5863 return setup_conf(mddev);
5864}
5865
5866
5867static void *raid5_takeover_raid1(struct mddev *mddev)
5868{
5869 int chunksect;
5870
5871 if (mddev->raid_disks != 2 ||
5872 mddev->degraded > 1)
5873 return ERR_PTR(-EINVAL);
5874
5875 /* Should check if there are write-behind devices? */
5876
5877 chunksect = 64*2; /* 64K by default */
5878
5879 /* The array must be an exact multiple of chunksize */
5880 while (chunksect && (mddev->array_sectors & (chunksect-1)))
5881 chunksect >>= 1;
5882
5883 if ((chunksect<<9) < STRIPE_SIZE)
5884 /* array size does not allow a suitable chunk size */
5885 return ERR_PTR(-EINVAL);
5886
5887 mddev->new_level = 5;
5888 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
5889 mddev->new_chunk_sectors = chunksect;
5890
5891 return setup_conf(mddev);
5892}
5893
5894static void *raid5_takeover_raid6(struct mddev *mddev)
5895{
5896 int new_layout;
5897
5898 switch (mddev->layout) {
5899 case ALGORITHM_LEFT_ASYMMETRIC_6:
5900 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
5901 break;
5902 case ALGORITHM_RIGHT_ASYMMETRIC_6:
5903 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
5904 break;
5905 case ALGORITHM_LEFT_SYMMETRIC_6:
5906 new_layout = ALGORITHM_LEFT_SYMMETRIC;
5907 break;
5908 case ALGORITHM_RIGHT_SYMMETRIC_6:
5909 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
5910 break;
5911 case ALGORITHM_PARITY_0_6:
5912 new_layout = ALGORITHM_PARITY_0;
5913 break;
5914 case ALGORITHM_PARITY_N:
5915 new_layout = ALGORITHM_PARITY_N;
5916 break;
5917 default:
5918 return ERR_PTR(-EINVAL);
5919 }
5920 mddev->new_level = 5;
5921 mddev->new_layout = new_layout;
5922 mddev->delta_disks = -1;
5923 mddev->raid_disks -= 1;
5924 return setup_conf(mddev);
5925}
5926
5927
5928static int raid5_check_reshape(struct mddev *mddev)
5929{
5930 /* For a 2-drive array, the layout and chunk size can be changed
5931 * immediately as not restriping is needed.
5932 * For larger arrays we record the new value - after validation
5933 * to be used by a reshape pass.
5934 */
5935 struct r5conf *conf = mddev->private;
5936 int new_chunk = mddev->new_chunk_sectors;
5937
5938 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
5939 return -EINVAL;
5940 if (new_chunk > 0) {
5941 if (!is_power_of_2(new_chunk))
5942 return -EINVAL;
5943 if (new_chunk < (PAGE_SIZE>>9))
5944 return -EINVAL;
5945 if (mddev->array_sectors & (new_chunk-1))
5946 /* not factor of array size */
5947 return -EINVAL;
5948 }
5949
5950 /* They look valid */
5951
5952 if (mddev->raid_disks == 2) {
5953 /* can make the change immediately */
5954 if (mddev->new_layout >= 0) {
5955 conf->algorithm = mddev->new_layout;
5956 mddev->layout = mddev->new_layout;
5957 }
5958 if (new_chunk > 0) {
5959 conf->chunk_sectors = new_chunk ;
5960 mddev->chunk_sectors = new_chunk;
5961 }
5962 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5963 md_wakeup_thread(mddev->thread);
5964 }
5965 return check_reshape(mddev);
5966}
5967
5968static int raid6_check_reshape(struct mddev *mddev)
5969{
5970 int new_chunk = mddev->new_chunk_sectors;
5971
5972 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
5973 return -EINVAL;
5974 if (new_chunk > 0) {
5975 if (!is_power_of_2(new_chunk))
5976 return -EINVAL;
5977 if (new_chunk < (PAGE_SIZE >> 9))
5978 return -EINVAL;
5979 if (mddev->array_sectors & (new_chunk-1))
5980 /* not factor of array size */
5981 return -EINVAL;
5982 }
5983
5984 /* They look valid */
5985 return check_reshape(mddev);
5986}
5987
5988static void *raid5_takeover(struct mddev *mddev)
5989{
5990 /* raid5 can take over:
5991 * raid0 - if there is only one strip zone - make it a raid4 layout
5992 * raid1 - if there are two drives. We need to know the chunk size
5993 * raid4 - trivial - just use a raid4 layout.
5994 * raid6 - Providing it is a *_6 layout
5995 */
5996 if (mddev->level == 0)
5997 return raid45_takeover_raid0(mddev, 5);
5998 if (mddev->level == 1)
5999 return raid5_takeover_raid1(mddev);
6000 if (mddev->level == 4) {
6001 mddev->new_layout = ALGORITHM_PARITY_N;
6002 mddev->new_level = 5;
6003 return setup_conf(mddev);
6004 }
6005 if (mddev->level == 6)
6006 return raid5_takeover_raid6(mddev);
6007
6008 return ERR_PTR(-EINVAL);
6009}
6010
6011static void *raid4_takeover(struct mddev *mddev)
6012{
6013 /* raid4 can take over:
6014 * raid0 - if there is only one strip zone
6015 * raid5 - if layout is right
6016 */
6017 if (mddev->level == 0)
6018 return raid45_takeover_raid0(mddev, 4);
6019 if (mddev->level == 5 &&
6020 mddev->layout == ALGORITHM_PARITY_N) {
6021 mddev->new_layout = 0;
6022 mddev->new_level = 4;
6023 return setup_conf(mddev);
6024 }
6025 return ERR_PTR(-EINVAL);
6026}
6027
6028static struct md_personality raid5_personality;
6029
6030static void *raid6_takeover(struct mddev *mddev)
6031{
6032 /* Currently can only take over a raid5. We map the
6033 * personality to an equivalent raid6 personality
6034 * with the Q block at the end.
6035 */
6036 int new_layout;
6037
6038 if (mddev->pers != &raid5_personality)
6039 return ERR_PTR(-EINVAL);
6040 if (mddev->degraded > 1)
6041 return ERR_PTR(-EINVAL);
6042 if (mddev->raid_disks > 253)
6043 return ERR_PTR(-EINVAL);
6044 if (mddev->raid_disks < 3)
6045 return ERR_PTR(-EINVAL);
6046
6047 switch (mddev->layout) {
6048 case ALGORITHM_LEFT_ASYMMETRIC:
6049 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
6050 break;
6051 case ALGORITHM_RIGHT_ASYMMETRIC:
6052 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
6053 break;
6054 case ALGORITHM_LEFT_SYMMETRIC:
6055 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
6056 break;
6057 case ALGORITHM_RIGHT_SYMMETRIC:
6058 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
6059 break;
6060 case ALGORITHM_PARITY_0:
6061 new_layout = ALGORITHM_PARITY_0_6;
6062 break;
6063 case ALGORITHM_PARITY_N:
6064 new_layout = ALGORITHM_PARITY_N;
6065 break;
6066 default:
6067 return ERR_PTR(-EINVAL);
6068 }
6069 mddev->new_level = 6;
6070 mddev->new_layout = new_layout;
6071 mddev->delta_disks = 1;
6072 mddev->raid_disks += 1;
6073 return setup_conf(mddev);
6074}
6075
6076
6077static struct md_personality raid6_personality =
6078{
6079 .name = "raid6",
6080 .level = 6,
6081 .owner = THIS_MODULE,
6082 .make_request = make_request,
6083 .run = run,
6084 .stop = stop,
6085 .status = status,
6086 .error_handler = error,
6087 .hot_add_disk = raid5_add_disk,
6088 .hot_remove_disk= raid5_remove_disk,
6089 .spare_active = raid5_spare_active,
6090 .sync_request = sync_request,
6091 .resize = raid5_resize,
6092 .size = raid5_size,
6093 .check_reshape = raid6_check_reshape,
6094 .start_reshape = raid5_start_reshape,
6095 .finish_reshape = raid5_finish_reshape,
6096 .quiesce = raid5_quiesce,
6097 .takeover = raid6_takeover,
6098};
6099static struct md_personality raid5_personality =
6100{
6101 .name = "raid5",
6102 .level = 5,
6103 .owner = THIS_MODULE,
6104 .make_request = make_request,
6105 .run = run,
6106 .stop = stop,
6107 .status = status,
6108 .error_handler = error,
6109 .hot_add_disk = raid5_add_disk,
6110 .hot_remove_disk= raid5_remove_disk,
6111 .spare_active = raid5_spare_active,
6112 .sync_request = sync_request,
6113 .resize = raid5_resize,
6114 .size = raid5_size,
6115 .check_reshape = raid5_check_reshape,
6116 .start_reshape = raid5_start_reshape,
6117 .finish_reshape = raid5_finish_reshape,
6118 .quiesce = raid5_quiesce,
6119 .takeover = raid5_takeover,
6120};
6121
6122static struct md_personality raid4_personality =
6123{
6124 .name = "raid4",
6125 .level = 4,
6126 .owner = THIS_MODULE,
6127 .make_request = make_request,
6128 .run = run,
6129 .stop = stop,
6130 .status = status,
6131 .error_handler = error,
6132 .hot_add_disk = raid5_add_disk,
6133 .hot_remove_disk= raid5_remove_disk,
6134 .spare_active = raid5_spare_active,
6135 .sync_request = sync_request,
6136 .resize = raid5_resize,
6137 .size = raid5_size,
6138 .check_reshape = raid5_check_reshape,
6139 .start_reshape = raid5_start_reshape,
6140 .finish_reshape = raid5_finish_reshape,
6141 .quiesce = raid5_quiesce,
6142 .takeover = raid4_takeover,
6143};
6144
6145static int __init raid5_init(void)
6146{
6147 register_md_personality(&raid6_personality);
6148 register_md_personality(&raid5_personality);
6149 register_md_personality(&raid4_personality);
6150 return 0;
6151}
6152
6153static void raid5_exit(void)
6154{
6155 unregister_md_personality(&raid6_personality);
6156 unregister_md_personality(&raid5_personality);
6157 unregister_md_personality(&raid4_personality);
6158}
6159
6160module_init(raid5_init);
6161module_exit(raid5_exit);
6162MODULE_LICENSE("GPL");
6163MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
6164MODULE_ALIAS("md-personality-4"); /* RAID5 */
6165MODULE_ALIAS("md-raid5");
6166MODULE_ALIAS("md-raid4");
6167MODULE_ALIAS("md-level-5");
6168MODULE_ALIAS("md-level-4");
6169MODULE_ALIAS("md-personality-8"); /* RAID6 */
6170MODULE_ALIAS("md-raid6");
6171MODULE_ALIAS("md-level-6");
6172
6173/* This used to be two separate modules, they were: */
6174MODULE_ALIAS("raid5");
6175MODULE_ALIAS("raid6");