Linux Audio

Check our new training course

Loading...
   1/*
   2 * SPDX-License-Identifier: MIT
   3 *
   4 * Copyright © 2019 Intel Corporation
   5 */
   6
   7#include <drm/i915_drm.h>
   8
   9#include "i915_drv.h"
  10#include "intel_gt.h"
  11#include "intel_gt_clock_utils.h"
  12#include "intel_gt_irq.h"
  13#include "intel_gt_pm_irq.h"
  14#include "intel_rps.h"
  15#include "intel_sideband.h"
  16#include "../../../platform/x86/intel_ips.h"
  17
  18#define BUSY_MAX_EI	20u /* ms */
  19
  20/*
  21 * Lock protecting IPS related data structures
  22 */
  23static DEFINE_SPINLOCK(mchdev_lock);
  24
  25static struct intel_gt *rps_to_gt(struct intel_rps *rps)
  26{
  27	return container_of(rps, struct intel_gt, rps);
  28}
  29
  30static struct drm_i915_private *rps_to_i915(struct intel_rps *rps)
  31{
  32	return rps_to_gt(rps)->i915;
  33}
  34
  35static struct intel_uncore *rps_to_uncore(struct intel_rps *rps)
  36{
  37	return rps_to_gt(rps)->uncore;
  38}
  39
  40static u32 rps_pm_sanitize_mask(struct intel_rps *rps, u32 mask)
  41{
  42	return mask & ~rps->pm_intrmsk_mbz;
  43}
  44
  45static inline void set(struct intel_uncore *uncore, i915_reg_t reg, u32 val)
  46{
  47	intel_uncore_write_fw(uncore, reg, val);
  48}
  49
  50static void rps_timer(struct timer_list *t)
  51{
  52	struct intel_rps *rps = from_timer(rps, t, timer);
  53	struct intel_engine_cs *engine;
  54	ktime_t dt, last, timestamp;
  55	enum intel_engine_id id;
  56	s64 max_busy[3] = {};
  57
  58	timestamp = 0;
  59	for_each_engine(engine, rps_to_gt(rps), id) {
  60		s64 busy;
  61		int i;
  62
  63		dt = intel_engine_get_busy_time(engine, &timestamp);
  64		last = engine->stats.rps;
  65		engine->stats.rps = dt;
  66
  67		busy = ktime_to_ns(ktime_sub(dt, last));
  68		for (i = 0; i < ARRAY_SIZE(max_busy); i++) {
  69			if (busy > max_busy[i])
  70				swap(busy, max_busy[i]);
  71		}
  72	}
  73	last = rps->pm_timestamp;
  74	rps->pm_timestamp = timestamp;
  75
  76	if (intel_rps_is_active(rps)) {
  77		s64 busy;
  78		int i;
  79
  80		dt = ktime_sub(timestamp, last);
  81
  82		/*
  83		 * Our goal is to evaluate each engine independently, so we run
  84		 * at the lowest clocks required to sustain the heaviest
  85		 * workload. However, a task may be split into sequential
  86		 * dependent operations across a set of engines, such that
  87		 * the independent contributions do not account for high load,
  88		 * but overall the task is GPU bound. For example, consider
  89		 * video decode on vcs followed by colour post-processing
  90		 * on vecs, followed by general post-processing on rcs.
  91		 * Since multi-engines being active does imply a single
  92		 * continuous workload across all engines, we hedge our
  93		 * bets by only contributing a factor of the distributed
  94		 * load into our busyness calculation.
  95		 */
  96		busy = max_busy[0];
  97		for (i = 1; i < ARRAY_SIZE(max_busy); i++) {
  98			if (!max_busy[i])
  99				break;
 100
 101			busy += div_u64(max_busy[i], 1 << i);
 102		}
 103		GT_TRACE(rps_to_gt(rps),
 104			 "busy:%lld [%d%%], max:[%lld, %lld, %lld], interval:%d\n",
 105			 busy, (int)div64_u64(100 * busy, dt),
 106			 max_busy[0], max_busy[1], max_busy[2],
 107			 rps->pm_interval);
 108
 109		if (100 * busy > rps->power.up_threshold * dt &&
 110		    rps->cur_freq < rps->max_freq_softlimit) {
 111			rps->pm_iir |= GEN6_PM_RP_UP_THRESHOLD;
 112			rps->pm_interval = 1;
 113			schedule_work(&rps->work);
 114		} else if (100 * busy < rps->power.down_threshold * dt &&
 115			   rps->cur_freq > rps->min_freq_softlimit) {
 116			rps->pm_iir |= GEN6_PM_RP_DOWN_THRESHOLD;
 117			rps->pm_interval = 1;
 118			schedule_work(&rps->work);
 119		} else {
 120			rps->last_adj = 0;
 121		}
 122
 123		mod_timer(&rps->timer,
 124			  jiffies + msecs_to_jiffies(rps->pm_interval));
 125		rps->pm_interval = min(rps->pm_interval * 2, BUSY_MAX_EI);
 126	}
 127}
 128
 129static void rps_start_timer(struct intel_rps *rps)
 130{
 131	rps->pm_timestamp = ktime_sub(ktime_get(), rps->pm_timestamp);
 132	rps->pm_interval = 1;
 133	mod_timer(&rps->timer, jiffies + 1);
 134}
 135
 136static void rps_stop_timer(struct intel_rps *rps)
 137{
 138	del_timer_sync(&rps->timer);
 139	rps->pm_timestamp = ktime_sub(ktime_get(), rps->pm_timestamp);
 140	cancel_work_sync(&rps->work);
 141}
 142
 143static u32 rps_pm_mask(struct intel_rps *rps, u8 val)
 144{
 145	u32 mask = 0;
 146
 147	/* We use UP_EI_EXPIRED interrupts for both up/down in manual mode */
 148	if (val > rps->min_freq_softlimit)
 149		mask |= (GEN6_PM_RP_UP_EI_EXPIRED |
 150			 GEN6_PM_RP_DOWN_THRESHOLD |
 151			 GEN6_PM_RP_DOWN_TIMEOUT);
 152
 153	if (val < rps->max_freq_softlimit)
 154		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
 155
 156	mask &= rps->pm_events;
 157
 158	return rps_pm_sanitize_mask(rps, ~mask);
 159}
 160
 161static void rps_reset_ei(struct intel_rps *rps)
 162{
 163	memset(&rps->ei, 0, sizeof(rps->ei));
 164}
 165
 166static void rps_enable_interrupts(struct intel_rps *rps)
 167{
 168	struct intel_gt *gt = rps_to_gt(rps);
 169
 170	GT_TRACE(gt, "interrupts:on rps->pm_events: %x, rps_pm_mask:%x\n",
 171		 rps->pm_events, rps_pm_mask(rps, rps->last_freq));
 172
 173	rps_reset_ei(rps);
 174
 175	spin_lock_irq(&gt->irq_lock);
 176	gen6_gt_pm_enable_irq(gt, rps->pm_events);
 177	spin_unlock_irq(&gt->irq_lock);
 178
 179	intel_uncore_write(gt->uncore,
 180			   GEN6_PMINTRMSK, rps_pm_mask(rps, rps->last_freq));
 181}
 182
 183static void gen6_rps_reset_interrupts(struct intel_rps *rps)
 184{
 185	gen6_gt_pm_reset_iir(rps_to_gt(rps), GEN6_PM_RPS_EVENTS);
 186}
 187
 188static void gen11_rps_reset_interrupts(struct intel_rps *rps)
 189{
 190	while (gen11_gt_reset_one_iir(rps_to_gt(rps), 0, GEN11_GTPM))
 191		;
 192}
 193
 194static void rps_reset_interrupts(struct intel_rps *rps)
 195{
 196	struct intel_gt *gt = rps_to_gt(rps);
 197
 198	spin_lock_irq(&gt->irq_lock);
 199	if (INTEL_GEN(gt->i915) >= 11)
 200		gen11_rps_reset_interrupts(rps);
 201	else
 202		gen6_rps_reset_interrupts(rps);
 203
 204	rps->pm_iir = 0;
 205	spin_unlock_irq(&gt->irq_lock);
 206}
 207
 208static void rps_disable_interrupts(struct intel_rps *rps)
 209{
 210	struct intel_gt *gt = rps_to_gt(rps);
 211
 212	intel_uncore_write(gt->uncore,
 213			   GEN6_PMINTRMSK, rps_pm_sanitize_mask(rps, ~0u));
 214
 215	spin_lock_irq(&gt->irq_lock);
 216	gen6_gt_pm_disable_irq(gt, GEN6_PM_RPS_EVENTS);
 217	spin_unlock_irq(&gt->irq_lock);
 218
 219	intel_synchronize_irq(gt->i915);
 220
 221	/*
 222	 * Now that we will not be generating any more work, flush any
 223	 * outstanding tasks. As we are called on the RPS idle path,
 224	 * we will reset the GPU to minimum frequencies, so the current
 225	 * state of the worker can be discarded.
 226	 */
 227	cancel_work_sync(&rps->work);
 228
 229	rps_reset_interrupts(rps);
 230	GT_TRACE(gt, "interrupts:off\n");
 231}
 232
 233static const struct cparams {
 234	u16 i;
 235	u16 t;
 236	u16 m;
 237	u16 c;
 238} cparams[] = {
 239	{ 1, 1333, 301, 28664 },
 240	{ 1, 1066, 294, 24460 },
 241	{ 1, 800, 294, 25192 },
 242	{ 0, 1333, 276, 27605 },
 243	{ 0, 1066, 276, 27605 },
 244	{ 0, 800, 231, 23784 },
 245};
 246
 247static void gen5_rps_init(struct intel_rps *rps)
 248{
 249	struct drm_i915_private *i915 = rps_to_i915(rps);
 250	struct intel_uncore *uncore = rps_to_uncore(rps);
 251	u8 fmax, fmin, fstart;
 252	u32 rgvmodectl;
 253	int c_m, i;
 254
 255	if (i915->fsb_freq <= 3200)
 256		c_m = 0;
 257	else if (i915->fsb_freq <= 4800)
 258		c_m = 1;
 259	else
 260		c_m = 2;
 261
 262	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
 263		if (cparams[i].i == c_m && cparams[i].t == i915->mem_freq) {
 264			rps->ips.m = cparams[i].m;
 265			rps->ips.c = cparams[i].c;
 266			break;
 267		}
 268	}
 269
 270	rgvmodectl = intel_uncore_read(uncore, MEMMODECTL);
 271
 272	/* Set up min, max, and cur for interrupt handling */
 273	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
 274	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
 275	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
 276		MEMMODE_FSTART_SHIFT;
 277	drm_dbg(&i915->drm, "fmax: %d, fmin: %d, fstart: %d\n",
 278		fmax, fmin, fstart);
 279
 280	rps->min_freq = fmax;
 281	rps->efficient_freq = fstart;
 282	rps->max_freq = fmin;
 283}
 284
 285static unsigned long
 286__ips_chipset_val(struct intel_ips *ips)
 287{
 288	struct intel_uncore *uncore =
 289		rps_to_uncore(container_of(ips, struct intel_rps, ips));
 290	unsigned long now = jiffies_to_msecs(jiffies), dt;
 291	unsigned long result;
 292	u64 total, delta;
 293
 294	lockdep_assert_held(&mchdev_lock);
 295
 296	/*
 297	 * Prevent division-by-zero if we are asking too fast.
 298	 * Also, we don't get interesting results if we are polling
 299	 * faster than once in 10ms, so just return the saved value
 300	 * in such cases.
 301	 */
 302	dt = now - ips->last_time1;
 303	if (dt <= 10)
 304		return ips->chipset_power;
 305
 306	/* FIXME: handle per-counter overflow */
 307	total = intel_uncore_read(uncore, DMIEC);
 308	total += intel_uncore_read(uncore, DDREC);
 309	total += intel_uncore_read(uncore, CSIEC);
 310
 311	delta = total - ips->last_count1;
 312
 313	result = div_u64(div_u64(ips->m * delta, dt) + ips->c, 10);
 314
 315	ips->last_count1 = total;
 316	ips->last_time1 = now;
 317
 318	ips->chipset_power = result;
 319
 320	return result;
 321}
 322
 323static unsigned long ips_mch_val(struct intel_uncore *uncore)
 324{
 325	unsigned int m, x, b;
 326	u32 tsfs;
 327
 328	tsfs = intel_uncore_read(uncore, TSFS);
 329	x = intel_uncore_read8(uncore, TR1);
 330
 331	b = tsfs & TSFS_INTR_MASK;
 332	m = (tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT;
 333
 334	return m * x / 127 - b;
 335}
 336
 337static int _pxvid_to_vd(u8 pxvid)
 338{
 339	if (pxvid == 0)
 340		return 0;
 341
 342	if (pxvid >= 8 && pxvid < 31)
 343		pxvid = 31;
 344
 345	return (pxvid + 2) * 125;
 346}
 347
 348static u32 pvid_to_extvid(struct drm_i915_private *i915, u8 pxvid)
 349{
 350	const int vd = _pxvid_to_vd(pxvid);
 351
 352	if (INTEL_INFO(i915)->is_mobile)
 353		return max(vd - 1125, 0);
 354
 355	return vd;
 356}
 357
 358static void __gen5_ips_update(struct intel_ips *ips)
 359{
 360	struct intel_uncore *uncore =
 361		rps_to_uncore(container_of(ips, struct intel_rps, ips));
 362	u64 now, delta, dt;
 363	u32 count;
 364
 365	lockdep_assert_held(&mchdev_lock);
 366
 367	now = ktime_get_raw_ns();
 368	dt = now - ips->last_time2;
 369	do_div(dt, NSEC_PER_MSEC);
 370
 371	/* Don't divide by 0 */
 372	if (dt <= 10)
 373		return;
 374
 375	count = intel_uncore_read(uncore, GFXEC);
 376	delta = count - ips->last_count2;
 377
 378	ips->last_count2 = count;
 379	ips->last_time2 = now;
 380
 381	/* More magic constants... */
 382	ips->gfx_power = div_u64(delta * 1181, dt * 10);
 383}
 384
 385static void gen5_rps_update(struct intel_rps *rps)
 386{
 387	spin_lock_irq(&mchdev_lock);
 388	__gen5_ips_update(&rps->ips);
 389	spin_unlock_irq(&mchdev_lock);
 390}
 391
 392static bool gen5_rps_set(struct intel_rps *rps, u8 val)
 393{
 394	struct intel_uncore *uncore = rps_to_uncore(rps);
 395	u16 rgvswctl;
 396
 397	lockdep_assert_held(&mchdev_lock);
 398
 399	rgvswctl = intel_uncore_read16(uncore, MEMSWCTL);
 400	if (rgvswctl & MEMCTL_CMD_STS) {
 401		DRM_DEBUG("gpu busy, RCS change rejected\n");
 402		return false; /* still busy with another command */
 403	}
 404
 405	/* Invert the frequency bin into an ips delay */
 406	val = rps->max_freq - val;
 407	val = rps->min_freq + val;
 408
 409	rgvswctl =
 410		(MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
 411		(val << MEMCTL_FREQ_SHIFT) |
 412		MEMCTL_SFCAVM;
 413	intel_uncore_write16(uncore, MEMSWCTL, rgvswctl);
 414	intel_uncore_posting_read16(uncore, MEMSWCTL);
 415
 416	rgvswctl |= MEMCTL_CMD_STS;
 417	intel_uncore_write16(uncore, MEMSWCTL, rgvswctl);
 418
 419	return true;
 420}
 421
 422static unsigned long intel_pxfreq(u32 vidfreq)
 423{
 424	int div = (vidfreq & 0x3f0000) >> 16;
 425	int post = (vidfreq & 0x3000) >> 12;
 426	int pre = (vidfreq & 0x7);
 427
 428	if (!pre)
 429		return 0;
 430
 431	return div * 133333 / (pre << post);
 432}
 433
 434static unsigned int init_emon(struct intel_uncore *uncore)
 435{
 436	u8 pxw[16];
 437	int i;
 438
 439	/* Disable to program */
 440	intel_uncore_write(uncore, ECR, 0);
 441	intel_uncore_posting_read(uncore, ECR);
 442
 443	/* Program energy weights for various events */
 444	intel_uncore_write(uncore, SDEW, 0x15040d00);
 445	intel_uncore_write(uncore, CSIEW0, 0x007f0000);
 446	intel_uncore_write(uncore, CSIEW1, 0x1e220004);
 447	intel_uncore_write(uncore, CSIEW2, 0x04000004);
 448
 449	for (i = 0; i < 5; i++)
 450		intel_uncore_write(uncore, PEW(i), 0);
 451	for (i = 0; i < 3; i++)
 452		intel_uncore_write(uncore, DEW(i), 0);
 453
 454	/* Program P-state weights to account for frequency power adjustment */
 455	for (i = 0; i < 16; i++) {
 456		u32 pxvidfreq = intel_uncore_read(uncore, PXVFREQ(i));
 457		unsigned int freq = intel_pxfreq(pxvidfreq);
 458		unsigned int vid =
 459			(pxvidfreq & PXVFREQ_PX_MASK) >> PXVFREQ_PX_SHIFT;
 460		unsigned int val;
 461
 462		val = vid * vid * freq / 1000 * 255;
 463		val /= 127 * 127 * 900;
 464
 465		pxw[i] = val;
 466	}
 467	/* Render standby states get 0 weight */
 468	pxw[14] = 0;
 469	pxw[15] = 0;
 470
 471	for (i = 0; i < 4; i++) {
 472		intel_uncore_write(uncore, PXW(i),
 473				   pxw[i * 4 + 0] << 24 |
 474				   pxw[i * 4 + 1] << 16 |
 475				   pxw[i * 4 + 2] <<  8 |
 476				   pxw[i * 4 + 3] <<  0);
 477	}
 478
 479	/* Adjust magic regs to magic values (more experimental results) */
 480	intel_uncore_write(uncore, OGW0, 0);
 481	intel_uncore_write(uncore, OGW1, 0);
 482	intel_uncore_write(uncore, EG0, 0x00007f00);
 483	intel_uncore_write(uncore, EG1, 0x0000000e);
 484	intel_uncore_write(uncore, EG2, 0x000e0000);
 485	intel_uncore_write(uncore, EG3, 0x68000300);
 486	intel_uncore_write(uncore, EG4, 0x42000000);
 487	intel_uncore_write(uncore, EG5, 0x00140031);
 488	intel_uncore_write(uncore, EG6, 0);
 489	intel_uncore_write(uncore, EG7, 0);
 490
 491	for (i = 0; i < 8; i++)
 492		intel_uncore_write(uncore, PXWL(i), 0);
 493
 494	/* Enable PMON + select events */
 495	intel_uncore_write(uncore, ECR, 0x80000019);
 496
 497	return intel_uncore_read(uncore, LCFUSE02) & LCFUSE_HIV_MASK;
 498}
 499
 500static bool gen5_rps_enable(struct intel_rps *rps)
 501{
 502	struct intel_uncore *uncore = rps_to_uncore(rps);
 503	u8 fstart, vstart;
 504	u32 rgvmodectl;
 505
 506	spin_lock_irq(&mchdev_lock);
 507
 508	rgvmodectl = intel_uncore_read(uncore, MEMMODECTL);
 509
 510	/* Enable temp reporting */
 511	intel_uncore_write16(uncore, PMMISC,
 512			     intel_uncore_read16(uncore, PMMISC) | MCPPCE_EN);
 513	intel_uncore_write16(uncore, TSC1,
 514			     intel_uncore_read16(uncore, TSC1) | TSE);
 515
 516	/* 100ms RC evaluation intervals */
 517	intel_uncore_write(uncore, RCUPEI, 100000);
 518	intel_uncore_write(uncore, RCDNEI, 100000);
 519
 520	/* Set max/min thresholds to 90ms and 80ms respectively */
 521	intel_uncore_write(uncore, RCBMAXAVG, 90000);
 522	intel_uncore_write(uncore, RCBMINAVG, 80000);
 523
 524	intel_uncore_write(uncore, MEMIHYST, 1);
 525
 526	/* Set up min, max, and cur for interrupt handling */
 527	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
 528		MEMMODE_FSTART_SHIFT;
 529
 530	vstart = (intel_uncore_read(uncore, PXVFREQ(fstart)) &
 531		  PXVFREQ_PX_MASK) >> PXVFREQ_PX_SHIFT;
 532
 533	intel_uncore_write(uncore,
 534			   MEMINTREN,
 535			   MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
 536
 537	intel_uncore_write(uncore, VIDSTART, vstart);
 538	intel_uncore_posting_read(uncore, VIDSTART);
 539
 540	rgvmodectl |= MEMMODE_SWMODE_EN;
 541	intel_uncore_write(uncore, MEMMODECTL, rgvmodectl);
 542
 543	if (wait_for_atomic((intel_uncore_read(uncore, MEMSWCTL) &
 544			     MEMCTL_CMD_STS) == 0, 10))
 545		drm_err(&uncore->i915->drm,
 546			"stuck trying to change perf mode\n");
 547	mdelay(1);
 548
 549	gen5_rps_set(rps, rps->cur_freq);
 550
 551	rps->ips.last_count1 = intel_uncore_read(uncore, DMIEC);
 552	rps->ips.last_count1 += intel_uncore_read(uncore, DDREC);
 553	rps->ips.last_count1 += intel_uncore_read(uncore, CSIEC);
 554	rps->ips.last_time1 = jiffies_to_msecs(jiffies);
 555
 556	rps->ips.last_count2 = intel_uncore_read(uncore, GFXEC);
 557	rps->ips.last_time2 = ktime_get_raw_ns();
 558
 559	spin_unlock_irq(&mchdev_lock);
 560
 561	rps->ips.corr = init_emon(uncore);
 562
 563	return true;
 564}
 565
 566static void gen5_rps_disable(struct intel_rps *rps)
 567{
 568	struct intel_uncore *uncore = rps_to_uncore(rps);
 569	u16 rgvswctl;
 570
 571	spin_lock_irq(&mchdev_lock);
 572
 573	rgvswctl = intel_uncore_read16(uncore, MEMSWCTL);
 574
 575	/* Ack interrupts, disable EFC interrupt */
 576	intel_uncore_write(uncore, MEMINTREN,
 577			   intel_uncore_read(uncore, MEMINTREN) &
 578			   ~MEMINT_EVAL_CHG_EN);
 579	intel_uncore_write(uncore, MEMINTRSTS, MEMINT_EVAL_CHG);
 580	intel_uncore_write(uncore, DEIER,
 581			   intel_uncore_read(uncore, DEIER) & ~DE_PCU_EVENT);
 582	intel_uncore_write(uncore, DEIIR, DE_PCU_EVENT);
 583	intel_uncore_write(uncore, DEIMR,
 584			   intel_uncore_read(uncore, DEIMR) | DE_PCU_EVENT);
 585
 586	/* Go back to the starting frequency */
 587	gen5_rps_set(rps, rps->idle_freq);
 588	mdelay(1);
 589	rgvswctl |= MEMCTL_CMD_STS;
 590	intel_uncore_write(uncore, MEMSWCTL, rgvswctl);
 591	mdelay(1);
 592
 593	spin_unlock_irq(&mchdev_lock);
 594}
 595
 596static u32 rps_limits(struct intel_rps *rps, u8 val)
 597{
 598	u32 limits;
 599
 600	/*
 601	 * Only set the down limit when we've reached the lowest level to avoid
 602	 * getting more interrupts, otherwise leave this clear. This prevents a
 603	 * race in the hw when coming out of rc6: There's a tiny window where
 604	 * the hw runs at the minimal clock before selecting the desired
 605	 * frequency, if the down threshold expires in that window we will not
 606	 * receive a down interrupt.
 607	 */
 608	if (INTEL_GEN(rps_to_i915(rps)) >= 9) {
 609		limits = rps->max_freq_softlimit << 23;
 610		if (val <= rps->min_freq_softlimit)
 611			limits |= rps->min_freq_softlimit << 14;
 612	} else {
 613		limits = rps->max_freq_softlimit << 24;
 614		if (val <= rps->min_freq_softlimit)
 615			limits |= rps->min_freq_softlimit << 16;
 616	}
 617
 618	return limits;
 619}
 620
 621static void rps_set_power(struct intel_rps *rps, int new_power)
 622{
 623	struct intel_gt *gt = rps_to_gt(rps);
 624	struct intel_uncore *uncore = gt->uncore;
 625	u32 threshold_up = 0, threshold_down = 0; /* in % */
 626	u32 ei_up = 0, ei_down = 0;
 627
 628	lockdep_assert_held(&rps->power.mutex);
 629
 630	if (new_power == rps->power.mode)
 631		return;
 632
 633	threshold_up = 95;
 634	threshold_down = 85;
 635
 636	/* Note the units here are not exactly 1us, but 1280ns. */
 637	switch (new_power) {
 638	case LOW_POWER:
 639		ei_up = 16000;
 640		ei_down = 32000;
 641		break;
 642
 643	case BETWEEN:
 644		ei_up = 13000;
 645		ei_down = 32000;
 646		break;
 647
 648	case HIGH_POWER:
 649		ei_up = 10000;
 650		ei_down = 32000;
 651		break;
 652	}
 653
 654	/* When byt can survive without system hang with dynamic
 655	 * sw freq adjustments, this restriction can be lifted.
 656	 */
 657	if (IS_VALLEYVIEW(gt->i915))
 658		goto skip_hw_write;
 659
 660	GT_TRACE(gt,
 661		 "changing power mode [%d], up %d%% @ %dus, down %d%% @ %dus\n",
 662		 new_power, threshold_up, ei_up, threshold_down, ei_down);
 663
 664	set(uncore, GEN6_RP_UP_EI,
 665	    intel_gt_ns_to_pm_interval(gt, ei_up * 1000));
 666	set(uncore, GEN6_RP_UP_THRESHOLD,
 667	    intel_gt_ns_to_pm_interval(gt, ei_up * threshold_up * 10));
 668
 669	set(uncore, GEN6_RP_DOWN_EI,
 670	    intel_gt_ns_to_pm_interval(gt, ei_down * 1000));
 671	set(uncore, GEN6_RP_DOWN_THRESHOLD,
 672	    intel_gt_ns_to_pm_interval(gt, ei_down * threshold_down * 10));
 673
 674	set(uncore, GEN6_RP_CONTROL,
 675	    (INTEL_GEN(gt->i915) > 9 ? 0 : GEN6_RP_MEDIA_TURBO) |
 676	    GEN6_RP_MEDIA_HW_NORMAL_MODE |
 677	    GEN6_RP_MEDIA_IS_GFX |
 678	    GEN6_RP_ENABLE |
 679	    GEN6_RP_UP_BUSY_AVG |
 680	    GEN6_RP_DOWN_IDLE_AVG);
 681
 682skip_hw_write:
 683	rps->power.mode = new_power;
 684	rps->power.up_threshold = threshold_up;
 685	rps->power.down_threshold = threshold_down;
 686}
 687
 688static void gen6_rps_set_thresholds(struct intel_rps *rps, u8 val)
 689{
 690	int new_power;
 691
 692	new_power = rps->power.mode;
 693	switch (rps->power.mode) {
 694	case LOW_POWER:
 695		if (val > rps->efficient_freq + 1 &&
 696		    val > rps->cur_freq)
 697			new_power = BETWEEN;
 698		break;
 699
 700	case BETWEEN:
 701		if (val <= rps->efficient_freq &&
 702		    val < rps->cur_freq)
 703			new_power = LOW_POWER;
 704		else if (val >= rps->rp0_freq &&
 705			 val > rps->cur_freq)
 706			new_power = HIGH_POWER;
 707		break;
 708
 709	case HIGH_POWER:
 710		if (val < (rps->rp1_freq + rps->rp0_freq) >> 1 &&
 711		    val < rps->cur_freq)
 712			new_power = BETWEEN;
 713		break;
 714	}
 715	/* Max/min bins are special */
 716	if (val <= rps->min_freq_softlimit)
 717		new_power = LOW_POWER;
 718	if (val >= rps->max_freq_softlimit)
 719		new_power = HIGH_POWER;
 720
 721	mutex_lock(&rps->power.mutex);
 722	if (rps->power.interactive)
 723		new_power = HIGH_POWER;
 724	rps_set_power(rps, new_power);
 725	mutex_unlock(&rps->power.mutex);
 726}
 727
 728void intel_rps_mark_interactive(struct intel_rps *rps, bool interactive)
 729{
 730	GT_TRACE(rps_to_gt(rps), "mark interactive: %s\n", yesno(interactive));
 731
 732	mutex_lock(&rps->power.mutex);
 733	if (interactive) {
 734		if (!rps->power.interactive++ && intel_rps_is_active(rps))
 735			rps_set_power(rps, HIGH_POWER);
 736	} else {
 737		GEM_BUG_ON(!rps->power.interactive);
 738		rps->power.interactive--;
 739	}
 740	mutex_unlock(&rps->power.mutex);
 741}
 742
 743static int gen6_rps_set(struct intel_rps *rps, u8 val)
 744{
 745	struct intel_uncore *uncore = rps_to_uncore(rps);
 746	struct drm_i915_private *i915 = rps_to_i915(rps);
 747	u32 swreq;
 748
 749	if (INTEL_GEN(i915) >= 9)
 750		swreq = GEN9_FREQUENCY(val);
 751	else if (IS_HASWELL(i915) || IS_BROADWELL(i915))
 752		swreq = HSW_FREQUENCY(val);
 753	else
 754		swreq = (GEN6_FREQUENCY(val) |
 755			 GEN6_OFFSET(0) |
 756			 GEN6_AGGRESSIVE_TURBO);
 757	set(uncore, GEN6_RPNSWREQ, swreq);
 758
 759	GT_TRACE(rps_to_gt(rps), "set val:%x, freq:%d, swreq:%x\n",
 760		 val, intel_gpu_freq(rps, val), swreq);
 761
 762	return 0;
 763}
 764
 765static int vlv_rps_set(struct intel_rps *rps, u8 val)
 766{
 767	struct drm_i915_private *i915 = rps_to_i915(rps);
 768	int err;
 769
 770	vlv_punit_get(i915);
 771	err = vlv_punit_write(i915, PUNIT_REG_GPU_FREQ_REQ, val);
 772	vlv_punit_put(i915);
 773
 774	GT_TRACE(rps_to_gt(rps), "set val:%x, freq:%d\n",
 775		 val, intel_gpu_freq(rps, val));
 776
 777	return err;
 778}
 779
 780static int rps_set(struct intel_rps *rps, u8 val, bool update)
 781{
 782	struct drm_i915_private *i915 = rps_to_i915(rps);
 783	int err;
 784
 785	if (INTEL_GEN(i915) < 6)
 786		return 0;
 787
 788	if (val == rps->last_freq)
 789		return 0;
 790
 791	if (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915))
 792		err = vlv_rps_set(rps, val);
 793	else
 794		err = gen6_rps_set(rps, val);
 795	if (err)
 796		return err;
 797
 798	if (update)
 799		gen6_rps_set_thresholds(rps, val);
 800	rps->last_freq = val;
 801
 802	return 0;
 803}
 804
 805void intel_rps_unpark(struct intel_rps *rps)
 806{
 807	if (!intel_rps_is_enabled(rps))
 808		return;
 809
 810	GT_TRACE(rps_to_gt(rps), "unpark:%x\n", rps->cur_freq);
 811
 812	/*
 813	 * Use the user's desired frequency as a guide, but for better
 814	 * performance, jump directly to RPe as our starting frequency.
 815	 */
 816	mutex_lock(&rps->lock);
 817
 818	intel_rps_set_active(rps);
 819	intel_rps_set(rps,
 820		      clamp(rps->cur_freq,
 821			    rps->min_freq_softlimit,
 822			    rps->max_freq_softlimit));
 823
 824	mutex_unlock(&rps->lock);
 825
 826	rps->pm_iir = 0;
 827	if (intel_rps_has_interrupts(rps))
 828		rps_enable_interrupts(rps);
 829	if (intel_rps_uses_timer(rps))
 830		rps_start_timer(rps);
 831
 832	if (IS_GEN(rps_to_i915(rps), 5))
 833		gen5_rps_update(rps);
 834}
 835
 836void intel_rps_park(struct intel_rps *rps)
 837{
 838	int adj;
 839
 840	if (!intel_rps_clear_active(rps))
 841		return;
 842
 843	if (intel_rps_uses_timer(rps))
 844		rps_stop_timer(rps);
 845	if (intel_rps_has_interrupts(rps))
 846		rps_disable_interrupts(rps);
 847
 848	if (rps->last_freq <= rps->idle_freq)
 849		return;
 850
 851	/*
 852	 * The punit delays the write of the frequency and voltage until it
 853	 * determines the GPU is awake. During normal usage we don't want to
 854	 * waste power changing the frequency if the GPU is sleeping (rc6).
 855	 * However, the GPU and driver is now idle and we do not want to delay
 856	 * switching to minimum voltage (reducing power whilst idle) as we do
 857	 * not expect to be woken in the near future and so must flush the
 858	 * change by waking the device.
 859	 *
 860	 * We choose to take the media powerwell (either would do to trick the
 861	 * punit into committing the voltage change) as that takes a lot less
 862	 * power than the render powerwell.
 863	 */
 864	intel_uncore_forcewake_get(rps_to_uncore(rps), FORCEWAKE_MEDIA);
 865	rps_set(rps, rps->idle_freq, false);
 866	intel_uncore_forcewake_put(rps_to_uncore(rps), FORCEWAKE_MEDIA);
 867
 868	/*
 869	 * Since we will try and restart from the previously requested
 870	 * frequency on unparking, treat this idle point as a downclock
 871	 * interrupt and reduce the frequency for resume. If we park/unpark
 872	 * more frequently than the rps worker can run, we will not respond
 873	 * to any EI and never see a change in frequency.
 874	 *
 875	 * (Note we accommodate Cherryview's limitation of only using an
 876	 * even bin by applying it to all.)
 877	 */
 878	adj = rps->last_adj;
 879	if (adj < 0)
 880		adj *= 2;
 881	else /* CHV needs even encode values */
 882		adj = -2;
 883	rps->last_adj = adj;
 884	rps->cur_freq = max_t(int, rps->cur_freq + adj, rps->min_freq);
 885
 886	GT_TRACE(rps_to_gt(rps), "park:%x\n", rps->cur_freq);
 887}
 888
 889void intel_rps_boost(struct i915_request *rq)
 890{
 891	struct intel_rps *rps = &READ_ONCE(rq->engine)->gt->rps;
 892	unsigned long flags;
 893
 894	if (i915_request_signaled(rq) || !intel_rps_is_active(rps))
 895		return;
 896
 897	/* Serializes with i915_request_retire() */
 898	spin_lock_irqsave(&rq->lock, flags);
 899	if (!i915_request_has_waitboost(rq) &&
 900	    !dma_fence_is_signaled_locked(&rq->fence)) {
 901		set_bit(I915_FENCE_FLAG_BOOST, &rq->fence.flags);
 902
 903		GT_TRACE(rps_to_gt(rps), "boost fence:%llx:%llx\n",
 904			 rq->fence.context, rq->fence.seqno);
 905
 906		if (!atomic_fetch_inc(&rps->num_waiters) &&
 907		    READ_ONCE(rps->cur_freq) < rps->boost_freq)
 908			schedule_work(&rps->work);
 909
 910		atomic_inc(&rps->boosts);
 911	}
 912	spin_unlock_irqrestore(&rq->lock, flags);
 913}
 914
 915int intel_rps_set(struct intel_rps *rps, u8 val)
 916{
 917	int err;
 918
 919	lockdep_assert_held(&rps->lock);
 920	GEM_BUG_ON(val > rps->max_freq);
 921	GEM_BUG_ON(val < rps->min_freq);
 922
 923	if (intel_rps_is_active(rps)) {
 924		err = rps_set(rps, val, true);
 925		if (err)
 926			return err;
 927
 928		/*
 929		 * Make sure we continue to get interrupts
 930		 * until we hit the minimum or maximum frequencies.
 931		 */
 932		if (intel_rps_has_interrupts(rps)) {
 933			struct intel_uncore *uncore = rps_to_uncore(rps);
 934
 935			set(uncore,
 936			    GEN6_RP_INTERRUPT_LIMITS, rps_limits(rps, val));
 937
 938			set(uncore, GEN6_PMINTRMSK, rps_pm_mask(rps, val));
 939		}
 940	}
 941
 942	rps->cur_freq = val;
 943	return 0;
 944}
 945
 946static void gen6_rps_init(struct intel_rps *rps)
 947{
 948	struct drm_i915_private *i915 = rps_to_i915(rps);
 949	struct intel_uncore *uncore = rps_to_uncore(rps);
 950
 951	/* All of these values are in units of 50MHz */
 952
 953	/* static values from HW: RP0 > RP1 > RPn (min_freq) */
 954	if (IS_GEN9_LP(i915)) {
 955		u32 rp_state_cap = intel_uncore_read(uncore, BXT_RP_STATE_CAP);
 956
 957		rps->rp0_freq = (rp_state_cap >> 16) & 0xff;
 958		rps->rp1_freq = (rp_state_cap >>  8) & 0xff;
 959		rps->min_freq = (rp_state_cap >>  0) & 0xff;
 960	} else {
 961		u32 rp_state_cap = intel_uncore_read(uncore, GEN6_RP_STATE_CAP);
 962
 963		rps->rp0_freq = (rp_state_cap >>  0) & 0xff;
 964		rps->rp1_freq = (rp_state_cap >>  8) & 0xff;
 965		rps->min_freq = (rp_state_cap >> 16) & 0xff;
 966	}
 967
 968	/* hw_max = RP0 until we check for overclocking */
 969	rps->max_freq = rps->rp0_freq;
 970
 971	rps->efficient_freq = rps->rp1_freq;
 972	if (IS_HASWELL(i915) || IS_BROADWELL(i915) ||
 973	    IS_GEN9_BC(i915) || INTEL_GEN(i915) >= 10) {
 974		u32 ddcc_status = 0;
 975
 976		if (sandybridge_pcode_read(i915,
 977					   HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
 978					   &ddcc_status, NULL) == 0)
 979			rps->efficient_freq =
 980				clamp_t(u8,
 981					(ddcc_status >> 8) & 0xff,
 982					rps->min_freq,
 983					rps->max_freq);
 984	}
 985
 986	if (IS_GEN9_BC(i915) || INTEL_GEN(i915) >= 10) {
 987		/* Store the frequency values in 16.66 MHZ units, which is
 988		 * the natural hardware unit for SKL
 989		 */
 990		rps->rp0_freq *= GEN9_FREQ_SCALER;
 991		rps->rp1_freq *= GEN9_FREQ_SCALER;
 992		rps->min_freq *= GEN9_FREQ_SCALER;
 993		rps->max_freq *= GEN9_FREQ_SCALER;
 994		rps->efficient_freq *= GEN9_FREQ_SCALER;
 995	}
 996}
 997
 998static bool rps_reset(struct intel_rps *rps)
 999{
1000	struct drm_i915_private *i915 = rps_to_i915(rps);
1001
1002	/* force a reset */
1003	rps->power.mode = -1;
1004	rps->last_freq = -1;
1005
1006	if (rps_set(rps, rps->min_freq, true)) {
1007		drm_err(&i915->drm, "Failed to reset RPS to initial values\n");
1008		return false;
1009	}
1010
1011	rps->cur_freq = rps->min_freq;
1012	return true;
1013}
1014
1015/* See the Gen9_GT_PM_Programming_Guide doc for the below */
1016static bool gen9_rps_enable(struct intel_rps *rps)
1017{
1018	struct intel_gt *gt = rps_to_gt(rps);
1019	struct intel_uncore *uncore = gt->uncore;
1020
1021	/* Program defaults and thresholds for RPS */
1022	if (IS_GEN(gt->i915, 9))
1023		intel_uncore_write_fw(uncore, GEN6_RC_VIDEO_FREQ,
1024				      GEN9_FREQUENCY(rps->rp1_freq));
1025
1026	intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 0xa);
1027
1028	rps->pm_events = GEN6_PM_RP_UP_THRESHOLD | GEN6_PM_RP_DOWN_THRESHOLD;
1029
1030	return rps_reset(rps);
1031}
1032
1033static bool gen8_rps_enable(struct intel_rps *rps)
1034{
1035	struct intel_uncore *uncore = rps_to_uncore(rps);
1036
1037	intel_uncore_write_fw(uncore, GEN6_RC_VIDEO_FREQ,
1038			      HSW_FREQUENCY(rps->rp1_freq));
1039
1040	intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10);
1041
1042	rps->pm_events = GEN6_PM_RP_UP_THRESHOLD | GEN6_PM_RP_DOWN_THRESHOLD;
1043
1044	return rps_reset(rps);
1045}
1046
1047static bool gen6_rps_enable(struct intel_rps *rps)
1048{
1049	struct intel_uncore *uncore = rps_to_uncore(rps);
1050
1051	/* Power down if completely idle for over 50ms */
1052	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_TIMEOUT, 50000);
1053	intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10);
1054
1055	rps->pm_events = (GEN6_PM_RP_UP_THRESHOLD |
1056			  GEN6_PM_RP_DOWN_THRESHOLD |
1057			  GEN6_PM_RP_DOWN_TIMEOUT);
1058
1059	return rps_reset(rps);
1060}
1061
1062static int chv_rps_max_freq(struct intel_rps *rps)
1063{
1064	struct drm_i915_private *i915 = rps_to_i915(rps);
1065	struct intel_gt *gt = rps_to_gt(rps);
1066	u32 val;
1067
1068	val = vlv_punit_read(i915, FB_GFX_FMAX_AT_VMAX_FUSE);
1069
1070	switch (gt->info.sseu.eu_total) {
1071	case 8:
1072		/* (2 * 4) config */
1073		val >>= FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT;
1074		break;
1075	case 12:
1076		/* (2 * 6) config */
1077		val >>= FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT;
1078		break;
1079	case 16:
1080		/* (2 * 8) config */
1081	default:
1082		/* Setting (2 * 8) Min RP0 for any other combination */
1083		val >>= FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT;
1084		break;
1085	}
1086
1087	return val & FB_GFX_FREQ_FUSE_MASK;
1088}
1089
1090static int chv_rps_rpe_freq(struct intel_rps *rps)
1091{
1092	struct drm_i915_private *i915 = rps_to_i915(rps);
1093	u32 val;
1094
1095	val = vlv_punit_read(i915, PUNIT_GPU_DUTYCYCLE_REG);
1096	val >>= PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT;
1097
1098	return val & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
1099}
1100
1101static int chv_rps_guar_freq(struct intel_rps *rps)
1102{
1103	struct drm_i915_private *i915 = rps_to_i915(rps);
1104	u32 val;
1105
1106	val = vlv_punit_read(i915, FB_GFX_FMAX_AT_VMAX_FUSE);
1107
1108	return val & FB_GFX_FREQ_FUSE_MASK;
1109}
1110
1111static u32 chv_rps_min_freq(struct intel_rps *rps)
1112{
1113	struct drm_i915_private *i915 = rps_to_i915(rps);
1114	u32 val;
1115
1116	val = vlv_punit_read(i915, FB_GFX_FMIN_AT_VMIN_FUSE);
1117	val >>= FB_GFX_FMIN_AT_VMIN_FUSE_SHIFT;
1118
1119	return val & FB_GFX_FREQ_FUSE_MASK;
1120}
1121
1122static bool chv_rps_enable(struct intel_rps *rps)
1123{
1124	struct intel_uncore *uncore = rps_to_uncore(rps);
1125	struct drm_i915_private *i915 = rps_to_i915(rps);
1126	u32 val;
1127
1128	/* 1: Program defaults and thresholds for RPS*/
1129	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_TIMEOUT, 1000000);
1130	intel_uncore_write_fw(uncore, GEN6_RP_UP_THRESHOLD, 59400);
1131	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_THRESHOLD, 245000);
1132	intel_uncore_write_fw(uncore, GEN6_RP_UP_EI, 66000);
1133	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_EI, 350000);
1134
1135	intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10);
1136
1137	/* 2: Enable RPS */
1138	intel_uncore_write_fw(uncore, GEN6_RP_CONTROL,
1139			      GEN6_RP_MEDIA_HW_NORMAL_MODE |
1140			      GEN6_RP_MEDIA_IS_GFX |
1141			      GEN6_RP_ENABLE |
1142			      GEN6_RP_UP_BUSY_AVG |
1143			      GEN6_RP_DOWN_IDLE_AVG);
1144
1145	rps->pm_events = (GEN6_PM_RP_UP_THRESHOLD |
1146			  GEN6_PM_RP_DOWN_THRESHOLD |
1147			  GEN6_PM_RP_DOWN_TIMEOUT);
1148
1149	/* Setting Fixed Bias */
1150	vlv_punit_get(i915);
1151
1152	val = VLV_OVERRIDE_EN | VLV_SOC_TDP_EN | CHV_BIAS_CPU_50_SOC_50;
1153	vlv_punit_write(i915, VLV_TURBO_SOC_OVERRIDE, val);
1154
1155	val = vlv_punit_read(i915, PUNIT_REG_GPU_FREQ_STS);
1156
1157	vlv_punit_put(i915);
1158
1159	/* RPS code assumes GPLL is used */
1160	drm_WARN_ONCE(&i915->drm, (val & GPLLENABLE) == 0,
1161		      "GPLL not enabled\n");
1162
1163	drm_dbg(&i915->drm, "GPLL enabled? %s\n", yesno(val & GPLLENABLE));
1164	drm_dbg(&i915->drm, "GPU status: 0x%08x\n", val);
1165
1166	return rps_reset(rps);
1167}
1168
1169static int vlv_rps_guar_freq(struct intel_rps *rps)
1170{
1171	struct drm_i915_private *i915 = rps_to_i915(rps);
1172	u32 val, rp1;
1173
1174	val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FREQ_FUSE);
1175
1176	rp1 = val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK;
1177	rp1 >>= FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
1178
1179	return rp1;
1180}
1181
1182static int vlv_rps_max_freq(struct intel_rps *rps)
1183{
1184	struct drm_i915_private *i915 = rps_to_i915(rps);
1185	u32 val, rp0;
1186
1187	val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FREQ_FUSE);
1188
1189	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
1190	/* Clamp to max */
1191	rp0 = min_t(u32, rp0, 0xea);
1192
1193	return rp0;
1194}
1195
1196static int vlv_rps_rpe_freq(struct intel_rps *rps)
1197{
1198	struct drm_i915_private *i915 = rps_to_i915(rps);
1199	u32 val, rpe;
1200
1201	val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
1202	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
1203	val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
1204	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
1205
1206	return rpe;
1207}
1208
1209static int vlv_rps_min_freq(struct intel_rps *rps)
1210{
1211	struct drm_i915_private *i915 = rps_to_i915(rps);
1212	u32 val;
1213
1214	val = vlv_punit_read(i915, PUNIT_REG_GPU_LFM) & 0xff;
1215	/*
1216	 * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
1217	 * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
1218	 * a BYT-M B0 the above register contains 0xbf. Moreover when setting
1219	 * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
1220	 * to make sure it matches what Punit accepts.
1221	 */
1222	return max_t(u32, val, 0xc0);
1223}
1224
1225static bool vlv_rps_enable(struct intel_rps *rps)
1226{
1227	struct intel_uncore *uncore = rps_to_uncore(rps);
1228	struct drm_i915_private *i915 = rps_to_i915(rps);
1229	u32 val;
1230
1231	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_TIMEOUT, 1000000);
1232	intel_uncore_write_fw(uncore, GEN6_RP_UP_THRESHOLD, 59400);
1233	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_THRESHOLD, 245000);
1234	intel_uncore_write_fw(uncore, GEN6_RP_UP_EI, 66000);
1235	intel_uncore_write_fw(uncore, GEN6_RP_DOWN_EI, 350000);
1236
1237	intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10);
1238
1239	intel_uncore_write_fw(uncore, GEN6_RP_CONTROL,
1240			      GEN6_RP_MEDIA_TURBO |
1241			      GEN6_RP_MEDIA_HW_NORMAL_MODE |
1242			      GEN6_RP_MEDIA_IS_GFX |
1243			      GEN6_RP_ENABLE |
1244			      GEN6_RP_UP_BUSY_AVG |
1245			      GEN6_RP_DOWN_IDLE_CONT);
1246
1247	/* WaGsvRC0ResidencyMethod:vlv */
1248	rps->pm_events = GEN6_PM_RP_UP_EI_EXPIRED;
1249
1250	vlv_punit_get(i915);
1251
1252	/* Setting Fixed Bias */
1253	val = VLV_OVERRIDE_EN | VLV_SOC_TDP_EN | VLV_BIAS_CPU_125_SOC_875;
1254	vlv_punit_write(i915, VLV_TURBO_SOC_OVERRIDE, val);
1255
1256	val = vlv_punit_read(i915, PUNIT_REG_GPU_FREQ_STS);
1257
1258	vlv_punit_put(i915);
1259
1260	/* RPS code assumes GPLL is used */
1261	drm_WARN_ONCE(&i915->drm, (val & GPLLENABLE) == 0,
1262		      "GPLL not enabled\n");
1263
1264	drm_dbg(&i915->drm, "GPLL enabled? %s\n", yesno(val & GPLLENABLE));
1265	drm_dbg(&i915->drm, "GPU status: 0x%08x\n", val);
1266
1267	return rps_reset(rps);
1268}
1269
1270static unsigned long __ips_gfx_val(struct intel_ips *ips)
1271{
1272	struct intel_rps *rps = container_of(ips, typeof(*rps), ips);
1273	struct intel_uncore *uncore = rps_to_uncore(rps);
1274	unsigned long t, corr, state1, corr2, state2;
1275	u32 pxvid, ext_v;
1276
1277	lockdep_assert_held(&mchdev_lock);
1278
1279	pxvid = intel_uncore_read(uncore, PXVFREQ(rps->cur_freq));
1280	pxvid = (pxvid >> 24) & 0x7f;
1281	ext_v = pvid_to_extvid(rps_to_i915(rps), pxvid);
1282
1283	state1 = ext_v;
1284
1285	/* Revel in the empirically derived constants */
1286
1287	/* Correction factor in 1/100000 units */
1288	t = ips_mch_val(uncore);
1289	if (t > 80)
1290		corr = t * 2349 + 135940;
1291	else if (t >= 50)
1292		corr = t * 964 + 29317;
1293	else /* < 50 */
1294		corr = t * 301 + 1004;
1295
1296	corr = corr * 150142 * state1 / 10000 - 78642;
1297	corr /= 100000;
1298	corr2 = corr * ips->corr;
1299
1300	state2 = corr2 * state1 / 10000;
1301	state2 /= 100; /* convert to mW */
1302
1303	__gen5_ips_update(ips);
1304
1305	return ips->gfx_power + state2;
1306}
1307
1308static bool has_busy_stats(struct intel_rps *rps)
1309{
1310	struct intel_engine_cs *engine;
1311	enum intel_engine_id id;
1312
1313	for_each_engine(engine, rps_to_gt(rps), id) {
1314		if (!intel_engine_supports_stats(engine))
1315			return false;
1316	}
1317
1318	return true;
1319}
1320
1321void intel_rps_enable(struct intel_rps *rps)
1322{
1323	struct drm_i915_private *i915 = rps_to_i915(rps);
1324	struct intel_uncore *uncore = rps_to_uncore(rps);
1325	bool enabled = false;
1326
1327	if (!HAS_RPS(i915))
1328		return;
1329
1330	intel_gt_check_clock_frequency(rps_to_gt(rps));
1331
1332	intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL);
1333	if (rps->max_freq <= rps->min_freq)
1334		/* leave disabled, no room for dynamic reclocking */;
1335	else if (IS_CHERRYVIEW(i915))
1336		enabled = chv_rps_enable(rps);
1337	else if (IS_VALLEYVIEW(i915))
1338		enabled = vlv_rps_enable(rps);
1339	else if (INTEL_GEN(i915) >= 9)
1340		enabled = gen9_rps_enable(rps);
1341	else if (INTEL_GEN(i915) >= 8)
1342		enabled = gen8_rps_enable(rps);
1343	else if (INTEL_GEN(i915) >= 6)
1344		enabled = gen6_rps_enable(rps);
1345	else if (IS_IRONLAKE_M(i915))
1346		enabled = gen5_rps_enable(rps);
1347	else
1348		MISSING_CASE(INTEL_GEN(i915));
1349	intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL);
1350	if (!enabled)
1351		return;
1352
1353	GT_TRACE(rps_to_gt(rps),
1354		 "min:%x, max:%x, freq:[%d, %d]\n",
1355		 rps->min_freq, rps->max_freq,
1356		 intel_gpu_freq(rps, rps->min_freq),
1357		 intel_gpu_freq(rps, rps->max_freq));
1358
1359	GEM_BUG_ON(rps->max_freq < rps->min_freq);
1360	GEM_BUG_ON(rps->idle_freq > rps->max_freq);
1361
1362	GEM_BUG_ON(rps->efficient_freq < rps->min_freq);
1363	GEM_BUG_ON(rps->efficient_freq > rps->max_freq);
1364
1365	if (has_busy_stats(rps))
1366		intel_rps_set_timer(rps);
1367	else if (INTEL_GEN(i915) >= 6)
1368		intel_rps_set_interrupts(rps);
1369	else
1370		/* Ironlake currently uses intel_ips.ko */ {}
1371
1372	intel_rps_set_enabled(rps);
1373}
1374
1375static void gen6_rps_disable(struct intel_rps *rps)
1376{
1377	set(rps_to_uncore(rps), GEN6_RP_CONTROL, 0);
1378}
1379
1380void intel_rps_disable(struct intel_rps *rps)
1381{
1382	struct drm_i915_private *i915 = rps_to_i915(rps);
1383
1384	intel_rps_clear_enabled(rps);
1385	intel_rps_clear_interrupts(rps);
1386	intel_rps_clear_timer(rps);
1387
1388	if (INTEL_GEN(i915) >= 6)
1389		gen6_rps_disable(rps);
1390	else if (IS_IRONLAKE_M(i915))
1391		gen5_rps_disable(rps);
1392}
1393
1394static int byt_gpu_freq(struct intel_rps *rps, int val)
1395{
1396	/*
1397	 * N = val - 0xb7
1398	 * Slow = Fast = GPLL ref * N
1399	 */
1400	return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * (val - 0xb7), 1000);
1401}
1402
1403static int byt_freq_opcode(struct intel_rps *rps, int val)
1404{
1405	return DIV_ROUND_CLOSEST(1000 * val, rps->gpll_ref_freq) + 0xb7;
1406}
1407
1408static int chv_gpu_freq(struct intel_rps *rps, int val)
1409{
1410	/*
1411	 * N = val / 2
1412	 * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
1413	 */
1414	return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * val, 2 * 2 * 1000);
1415}
1416
1417static int chv_freq_opcode(struct intel_rps *rps, int val)
1418{
1419	/* CHV needs even values */
1420	return DIV_ROUND_CLOSEST(2 * 1000 * val, rps->gpll_ref_freq) * 2;
1421}
1422
1423int intel_gpu_freq(struct intel_rps *rps, int val)
1424{
1425	struct drm_i915_private *i915 = rps_to_i915(rps);
1426
1427	if (INTEL_GEN(i915) >= 9)
1428		return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
1429					 GEN9_FREQ_SCALER);
1430	else if (IS_CHERRYVIEW(i915))
1431		return chv_gpu_freq(rps, val);
1432	else if (IS_VALLEYVIEW(i915))
1433		return byt_gpu_freq(rps, val);
1434	else
1435		return val * GT_FREQUENCY_MULTIPLIER;
1436}
1437
1438int intel_freq_opcode(struct intel_rps *rps, int val)
1439{
1440	struct drm_i915_private *i915 = rps_to_i915(rps);
1441
1442	if (INTEL_GEN(i915) >= 9)
1443		return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
1444					 GT_FREQUENCY_MULTIPLIER);
1445	else if (IS_CHERRYVIEW(i915))
1446		return chv_freq_opcode(rps, val);
1447	else if (IS_VALLEYVIEW(i915))
1448		return byt_freq_opcode(rps, val);
1449	else
1450		return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
1451}
1452
1453static void vlv_init_gpll_ref_freq(struct intel_rps *rps)
1454{
1455	struct drm_i915_private *i915 = rps_to_i915(rps);
1456
1457	rps->gpll_ref_freq =
1458		vlv_get_cck_clock(i915, "GPLL ref",
1459				  CCK_GPLL_CLOCK_CONTROL,
1460				  i915->czclk_freq);
1461
1462	drm_dbg(&i915->drm, "GPLL reference freq: %d kHz\n",
1463		rps->gpll_ref_freq);
1464}
1465
1466static void vlv_rps_init(struct intel_rps *rps)
1467{
1468	struct drm_i915_private *i915 = rps_to_i915(rps);
1469	u32 val;
1470
1471	vlv_iosf_sb_get(i915,
1472			BIT(VLV_IOSF_SB_PUNIT) |
1473			BIT(VLV_IOSF_SB_NC) |
1474			BIT(VLV_IOSF_SB_CCK));
1475
1476	vlv_init_gpll_ref_freq(rps);
1477
1478	val = vlv_punit_read(i915, PUNIT_REG_GPU_FREQ_STS);
1479	switch ((val >> 6) & 3) {
1480	case 0:
1481	case 1:
1482		i915->mem_freq = 800;
1483		break;
1484	case 2:
1485		i915->mem_freq = 1066;
1486		break;
1487	case 3:
1488		i915->mem_freq = 1333;
1489		break;
1490	}
1491	drm_dbg(&i915->drm, "DDR speed: %d MHz\n", i915->mem_freq);
1492
1493	rps->max_freq = vlv_rps_max_freq(rps);
1494	rps->rp0_freq = rps->max_freq;
1495	drm_dbg(&i915->drm, "max GPU freq: %d MHz (%u)\n",
1496		intel_gpu_freq(rps, rps->max_freq), rps->max_freq);
1497
1498	rps->efficient_freq = vlv_rps_rpe_freq(rps);
1499	drm_dbg(&i915->drm, "RPe GPU freq: %d MHz (%u)\n",
1500		intel_gpu_freq(rps, rps->efficient_freq), rps->efficient_freq);
1501
1502	rps->rp1_freq = vlv_rps_guar_freq(rps);
1503	drm_dbg(&i915->drm, "RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
1504		intel_gpu_freq(rps, rps->rp1_freq), rps->rp1_freq);
1505
1506	rps->min_freq = vlv_rps_min_freq(rps);
1507	drm_dbg(&i915->drm, "min GPU freq: %d MHz (%u)\n",
1508		intel_gpu_freq(rps, rps->min_freq), rps->min_freq);
1509
1510	vlv_iosf_sb_put(i915,
1511			BIT(VLV_IOSF_SB_PUNIT) |
1512			BIT(VLV_IOSF_SB_NC) |
1513			BIT(VLV_IOSF_SB_CCK));
1514}
1515
1516static void chv_rps_init(struct intel_rps *rps)
1517{
1518	struct drm_i915_private *i915 = rps_to_i915(rps);
1519	u32 val;
1520
1521	vlv_iosf_sb_get(i915,
1522			BIT(VLV_IOSF_SB_PUNIT) |
1523			BIT(VLV_IOSF_SB_NC) |
1524			BIT(VLV_IOSF_SB_CCK));
1525
1526	vlv_init_gpll_ref_freq(rps);
1527
1528	val = vlv_cck_read(i915, CCK_FUSE_REG);
1529
1530	switch ((val >> 2) & 0x7) {
1531	case 3:
1532		i915->mem_freq = 2000;
1533		break;
1534	default:
1535		i915->mem_freq = 1600;
1536		break;
1537	}
1538	drm_dbg(&i915->drm, "DDR speed: %d MHz\n", i915->mem_freq);
1539
1540	rps->max_freq = chv_rps_max_freq(rps);
1541	rps->rp0_freq = rps->max_freq;
1542	drm_dbg(&i915->drm, "max GPU freq: %d MHz (%u)\n",
1543		intel_gpu_freq(rps, rps->max_freq), rps->max_freq);
1544
1545	rps->efficient_freq = chv_rps_rpe_freq(rps);
1546	drm_dbg(&i915->drm, "RPe GPU freq: %d MHz (%u)\n",
1547		intel_gpu_freq(rps, rps->efficient_freq), rps->efficient_freq);
1548
1549	rps->rp1_freq = chv_rps_guar_freq(rps);
1550	drm_dbg(&i915->drm, "RP1(Guar) GPU freq: %d MHz (%u)\n",
1551		intel_gpu_freq(rps, rps->rp1_freq), rps->rp1_freq);
1552
1553	rps->min_freq = chv_rps_min_freq(rps);
1554	drm_dbg(&i915->drm, "min GPU freq: %d MHz (%u)\n",
1555		intel_gpu_freq(rps, rps->min_freq), rps->min_freq);
1556
1557	vlv_iosf_sb_put(i915,
1558			BIT(VLV_IOSF_SB_PUNIT) |
1559			BIT(VLV_IOSF_SB_NC) |
1560			BIT(VLV_IOSF_SB_CCK));
1561
1562	drm_WARN_ONCE(&i915->drm, (rps->max_freq | rps->efficient_freq |
1563				   rps->rp1_freq | rps->min_freq) & 1,
1564		      "Odd GPU freq values\n");
1565}
1566
1567static void vlv_c0_read(struct intel_uncore *uncore, struct intel_rps_ei *ei)
1568{
1569	ei->ktime = ktime_get_raw();
1570	ei->render_c0 = intel_uncore_read(uncore, VLV_RENDER_C0_COUNT);
1571	ei->media_c0 = intel_uncore_read(uncore, VLV_MEDIA_C0_COUNT);
1572}
1573
1574static u32 vlv_wa_c0_ei(struct intel_rps *rps, u32 pm_iir)
1575{
1576	struct intel_uncore *uncore = rps_to_uncore(rps);
1577	const struct intel_rps_ei *prev = &rps->ei;
1578	struct intel_rps_ei now;
1579	u32 events = 0;
1580
1581	if ((pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) == 0)
1582		return 0;
1583
1584	vlv_c0_read(uncore, &now);
1585
1586	if (prev->ktime) {
1587		u64 time, c0;
1588		u32 render, media;
1589
1590		time = ktime_us_delta(now.ktime, prev->ktime);
1591
1592		time *= rps_to_i915(rps)->czclk_freq;
1593
1594		/* Workload can be split between render + media,
1595		 * e.g. SwapBuffers being blitted in X after being rendered in
1596		 * mesa. To account for this we need to combine both engines
1597		 * into our activity counter.
1598		 */
1599		render = now.render_c0 - prev->render_c0;
1600		media = now.media_c0 - prev->media_c0;
1601		c0 = max(render, media);
1602		c0 *= 1000 * 100 << 8; /* to usecs and scale to threshold% */
1603
1604		if (c0 > time * rps->power.up_threshold)
1605			events = GEN6_PM_RP_UP_THRESHOLD;
1606		else if (c0 < time * rps->power.down_threshold)
1607			events = GEN6_PM_RP_DOWN_THRESHOLD;
1608	}
1609
1610	rps->ei = now;
1611	return events;
1612}
1613
1614static void rps_work(struct work_struct *work)
1615{
1616	struct intel_rps *rps = container_of(work, typeof(*rps), work);
1617	struct intel_gt *gt = rps_to_gt(rps);
1618	struct drm_i915_private *i915 = rps_to_i915(rps);
1619	bool client_boost = false;
1620	int new_freq, adj, min, max;
1621	u32 pm_iir = 0;
1622
1623	spin_lock_irq(&gt->irq_lock);
1624	pm_iir = fetch_and_zero(&rps->pm_iir) & rps->pm_events;
1625	client_boost = atomic_read(&rps->num_waiters);
1626	spin_unlock_irq(&gt->irq_lock);
1627
1628	/* Make sure we didn't queue anything we're not going to process. */
1629	if (!pm_iir && !client_boost)
1630		goto out;
1631
1632	mutex_lock(&rps->lock);
1633	if (!intel_rps_is_active(rps)) {
1634		mutex_unlock(&rps->lock);
1635		return;
1636	}
1637
1638	pm_iir |= vlv_wa_c0_ei(rps, pm_iir);
1639
1640	adj = rps->last_adj;
1641	new_freq = rps->cur_freq;
1642	min = rps->min_freq_softlimit;
1643	max = rps->max_freq_softlimit;
1644	if (client_boost)
1645		max = rps->max_freq;
1646
1647	GT_TRACE(gt,
1648		 "pm_iir:%x, client_boost:%s, last:%d, cur:%x, min:%x, max:%x\n",
1649		 pm_iir, yesno(client_boost),
1650		 adj, new_freq, min, max);
1651
1652	if (client_boost && new_freq < rps->boost_freq) {
1653		new_freq = rps->boost_freq;
1654		adj = 0;
1655	} else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1656		if (adj > 0)
1657			adj *= 2;
1658		else /* CHV needs even encode values */
1659			adj = IS_CHERRYVIEW(gt->i915) ? 2 : 1;
1660
1661		if (new_freq >= rps->max_freq_softlimit)
1662			adj = 0;
1663	} else if (client_boost) {
1664		adj = 0;
1665	} else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1666		if (rps->cur_freq > rps->efficient_freq)
1667			new_freq = rps->efficient_freq;
1668		else if (rps->cur_freq > rps->min_freq_softlimit)
1669			new_freq = rps->min_freq_softlimit;
1670		adj = 0;
1671	} else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1672		if (adj < 0)
1673			adj *= 2;
1674		else /* CHV needs even encode values */
1675			adj = IS_CHERRYVIEW(gt->i915) ? -2 : -1;
1676
1677		if (new_freq <= rps->min_freq_softlimit)
1678			adj = 0;
1679	} else { /* unknown event */
1680		adj = 0;
1681	}
1682
1683	/*
1684	 * sysfs frequency limits may have snuck in while
1685	 * servicing the interrupt
1686	 */
1687	new_freq += adj;
1688	new_freq = clamp_t(int, new_freq, min, max);
1689
1690	if (intel_rps_set(rps, new_freq)) {
1691		drm_dbg(&i915->drm, "Failed to set new GPU frequency\n");
1692		adj = 0;
1693	}
1694	rps->last_adj = adj;
1695
1696	mutex_unlock(&rps->lock);
1697
1698out:
1699	spin_lock_irq(&gt->irq_lock);
1700	gen6_gt_pm_unmask_irq(gt, rps->pm_events);
1701	spin_unlock_irq(&gt->irq_lock);
1702}
1703
1704void gen11_rps_irq_handler(struct intel_rps *rps, u32 pm_iir)
1705{
1706	struct intel_gt *gt = rps_to_gt(rps);
1707	const u32 events = rps->pm_events & pm_iir;
1708
1709	lockdep_assert_held(&gt->irq_lock);
1710
1711	if (unlikely(!events))
1712		return;
1713
1714	GT_TRACE(gt, "irq events:%x\n", events);
1715
1716	gen6_gt_pm_mask_irq(gt, events);
1717
1718	rps->pm_iir |= events;
1719	schedule_work(&rps->work);
1720}
1721
1722void gen6_rps_irq_handler(struct intel_rps *rps, u32 pm_iir)
1723{
1724	struct intel_gt *gt = rps_to_gt(rps);
1725	u32 events;
1726
1727	events = pm_iir & rps->pm_events;
1728	if (events) {
1729		spin_lock(&gt->irq_lock);
1730
1731		GT_TRACE(gt, "irq events:%x\n", events);
1732
1733		gen6_gt_pm_mask_irq(gt, events);
1734		rps->pm_iir |= events;
1735
1736		schedule_work(&rps->work);
1737		spin_unlock(&gt->irq_lock);
1738	}
1739
1740	if (INTEL_GEN(gt->i915) >= 8)
1741		return;
1742
1743	if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1744		intel_engine_signal_breadcrumbs(gt->engine[VECS0]);
1745
1746	if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1747		DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
1748}
1749
1750void gen5_rps_irq_handler(struct intel_rps *rps)
1751{
1752	struct intel_uncore *uncore = rps_to_uncore(rps);
1753	u32 busy_up, busy_down, max_avg, min_avg;
1754	u8 new_freq;
1755
1756	spin_lock(&mchdev_lock);
1757
1758	intel_uncore_write16(uncore,
1759			     MEMINTRSTS,
1760			     intel_uncore_read(uncore, MEMINTRSTS));
1761
1762	intel_uncore_write16(uncore, MEMINTRSTS, MEMINT_EVAL_CHG);
1763	busy_up = intel_uncore_read(uncore, RCPREVBSYTUPAVG);
1764	busy_down = intel_uncore_read(uncore, RCPREVBSYTDNAVG);
1765	max_avg = intel_uncore_read(uncore, RCBMAXAVG);
1766	min_avg = intel_uncore_read(uncore, RCBMINAVG);
1767
1768	/* Handle RCS change request from hw */
1769	new_freq = rps->cur_freq;
1770	if (busy_up > max_avg)
1771		new_freq++;
1772	else if (busy_down < min_avg)
1773		new_freq--;
1774	new_freq = clamp(new_freq,
1775			 rps->min_freq_softlimit,
1776			 rps->max_freq_softlimit);
1777
1778	if (new_freq != rps->cur_freq && gen5_rps_set(rps, new_freq))
1779		rps->cur_freq = new_freq;
1780
1781	spin_unlock(&mchdev_lock);
1782}
1783
1784void intel_rps_init_early(struct intel_rps *rps)
1785{
1786	mutex_init(&rps->lock);
1787	mutex_init(&rps->power.mutex);
1788
1789	INIT_WORK(&rps->work, rps_work);
1790	timer_setup(&rps->timer, rps_timer, 0);
1791
1792	atomic_set(&rps->num_waiters, 0);
1793}
1794
1795void intel_rps_init(struct intel_rps *rps)
1796{
1797	struct drm_i915_private *i915 = rps_to_i915(rps);
1798
1799	if (IS_CHERRYVIEW(i915))
1800		chv_rps_init(rps);
1801	else if (IS_VALLEYVIEW(i915))
1802		vlv_rps_init(rps);
1803	else if (INTEL_GEN(i915) >= 6)
1804		gen6_rps_init(rps);
1805	else if (IS_IRONLAKE_M(i915))
1806		gen5_rps_init(rps);
1807
1808	/* Derive initial user preferences/limits from the hardware limits */
1809	rps->max_freq_softlimit = rps->max_freq;
1810	rps->min_freq_softlimit = rps->min_freq;
1811
1812	/* After setting max-softlimit, find the overclock max freq */
1813	if (IS_GEN(i915, 6) || IS_IVYBRIDGE(i915) || IS_HASWELL(i915)) {
1814		u32 params = 0;
1815
1816		sandybridge_pcode_read(i915, GEN6_READ_OC_PARAMS,
1817				       &params, NULL);
1818		if (params & BIT(31)) { /* OC supported */
1819			drm_dbg(&i915->drm,
1820				"Overclocking supported, max: %dMHz, overclock: %dMHz\n",
1821				(rps->max_freq & 0xff) * 50,
1822				(params & 0xff) * 50);
1823			rps->max_freq = params & 0xff;
1824		}
1825	}
1826
1827	/* Finally allow us to boost to max by default */
1828	rps->boost_freq = rps->max_freq;
1829	rps->idle_freq = rps->min_freq;
1830
1831	/* Start in the middle, from here we will autotune based on workload */
1832	rps->cur_freq = rps->efficient_freq;
1833
1834	rps->pm_intrmsk_mbz = 0;
1835
1836	/*
1837	 * SNB,IVB,HSW can while VLV,CHV may hard hang on looping batchbuffer
1838	 * if GEN6_PM_UP_EI_EXPIRED is masked.
1839	 *
1840	 * TODO: verify if this can be reproduced on VLV,CHV.
1841	 */
1842	if (INTEL_GEN(i915) <= 7)
1843		rps->pm_intrmsk_mbz |= GEN6_PM_RP_UP_EI_EXPIRED;
1844
1845	if (INTEL_GEN(i915) >= 8 && INTEL_GEN(i915) < 11)
1846		rps->pm_intrmsk_mbz |= GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC;
1847}
1848
1849void intel_rps_sanitize(struct intel_rps *rps)
1850{
1851	if (INTEL_GEN(rps_to_i915(rps)) >= 6)
1852		rps_disable_interrupts(rps);
1853}
1854
1855u32 intel_rps_get_cagf(struct intel_rps *rps, u32 rpstat)
1856{
1857	struct drm_i915_private *i915 = rps_to_i915(rps);
1858	u32 cagf;
1859
1860	if (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915))
1861		cagf = (rpstat >> 8) & 0xff;
1862	else if (INTEL_GEN(i915) >= 9)
1863		cagf = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT;
1864	else if (IS_HASWELL(i915) || IS_BROADWELL(i915))
1865		cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
1866	else
1867		cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
1868
1869	return cagf;
1870}
1871
1872static u32 read_cagf(struct intel_rps *rps)
1873{
1874	struct drm_i915_private *i915 = rps_to_i915(rps);
1875	u32 freq;
1876
1877	if (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915)) {
1878		vlv_punit_get(i915);
1879		freq = vlv_punit_read(i915, PUNIT_REG_GPU_FREQ_STS);
1880		vlv_punit_put(i915);
1881	} else {
1882		freq = intel_uncore_read(rps_to_uncore(rps), GEN6_RPSTAT1);
1883	}
1884
1885	return intel_rps_get_cagf(rps, freq);
1886}
1887
1888u32 intel_rps_read_actual_frequency(struct intel_rps *rps)
1889{
1890	struct intel_runtime_pm *rpm = rps_to_uncore(rps)->rpm;
1891	intel_wakeref_t wakeref;
1892	u32 freq = 0;
1893
1894	with_intel_runtime_pm_if_in_use(rpm, wakeref)
1895		freq = intel_gpu_freq(rps, read_cagf(rps));
1896
1897	return freq;
1898}
1899
1900/* External interface for intel_ips.ko */
1901
1902static struct drm_i915_private __rcu *ips_mchdev;
1903
1904/**
1905 * Tells the intel_ips driver that the i915 driver is now loaded, if
1906 * IPS got loaded first.
1907 *
1908 * This awkward dance is so that neither module has to depend on the
1909 * other in order for IPS to do the appropriate communication of
1910 * GPU turbo limits to i915.
1911 */
1912static void
1913ips_ping_for_i915_load(void)
1914{
1915	void (*link)(void);
1916
1917	link = symbol_get(ips_link_to_i915_driver);
1918	if (link) {
1919		link();
1920		symbol_put(ips_link_to_i915_driver);
1921	}
1922}
1923
1924void intel_rps_driver_register(struct intel_rps *rps)
1925{
1926	struct intel_gt *gt = rps_to_gt(rps);
1927
1928	/*
1929	 * We only register the i915 ips part with intel-ips once everything is
1930	 * set up, to avoid intel-ips sneaking in and reading bogus values.
1931	 */
1932	if (IS_GEN(gt->i915, 5)) {
1933		GEM_BUG_ON(ips_mchdev);
1934		rcu_assign_pointer(ips_mchdev, gt->i915);
1935		ips_ping_for_i915_load();
1936	}
1937}
1938
1939void intel_rps_driver_unregister(struct intel_rps *rps)
1940{
1941	if (rcu_access_pointer(ips_mchdev) == rps_to_i915(rps))
1942		rcu_assign_pointer(ips_mchdev, NULL);
1943}
1944
1945static struct drm_i915_private *mchdev_get(void)
1946{
1947	struct drm_i915_private *i915;
1948
1949	rcu_read_lock();
1950	i915 = rcu_dereference(ips_mchdev);
1951	if (!kref_get_unless_zero(&i915->drm.ref))
1952		i915 = NULL;
1953	rcu_read_unlock();
1954
1955	return i915;
1956}
1957
1958/**
1959 * i915_read_mch_val - return value for IPS use
1960 *
1961 * Calculate and return a value for the IPS driver to use when deciding whether
1962 * we have thermal and power headroom to increase CPU or GPU power budget.
1963 */
1964unsigned long i915_read_mch_val(void)
1965{
1966	struct drm_i915_private *i915;
1967	unsigned long chipset_val = 0;
1968	unsigned long graphics_val = 0;
1969	intel_wakeref_t wakeref;
1970
1971	i915 = mchdev_get();
1972	if (!i915)
1973		return 0;
1974
1975	with_intel_runtime_pm(&i915->runtime_pm, wakeref) {
1976		struct intel_ips *ips = &i915->gt.rps.ips;
1977
1978		spin_lock_irq(&mchdev_lock);
1979		chipset_val = __ips_chipset_val(ips);
1980		graphics_val = __ips_gfx_val(ips);
1981		spin_unlock_irq(&mchdev_lock);
1982	}
1983
1984	drm_dev_put(&i915->drm);
1985	return chipset_val + graphics_val;
1986}
1987EXPORT_SYMBOL_GPL(i915_read_mch_val);
1988
1989/**
1990 * i915_gpu_raise - raise GPU frequency limit
1991 *
1992 * Raise the limit; IPS indicates we have thermal headroom.
1993 */
1994bool i915_gpu_raise(void)
1995{
1996	struct drm_i915_private *i915;
1997	struct intel_rps *rps;
1998
1999	i915 = mchdev_get();
2000	if (!i915)
2001		return false;
2002
2003	rps = &i915->gt.rps;
2004
2005	spin_lock_irq(&mchdev_lock);
2006	if (rps->max_freq_softlimit < rps->max_freq)
2007		rps->max_freq_softlimit++;
2008	spin_unlock_irq(&mchdev_lock);
2009
2010	drm_dev_put(&i915->drm);
2011	return true;
2012}
2013EXPORT_SYMBOL_GPL(i915_gpu_raise);
2014
2015/**
2016 * i915_gpu_lower - lower GPU frequency limit
2017 *
2018 * IPS indicates we're close to a thermal limit, so throttle back the GPU
2019 * frequency maximum.
2020 */
2021bool i915_gpu_lower(void)
2022{
2023	struct drm_i915_private *i915;
2024	struct intel_rps *rps;
2025
2026	i915 = mchdev_get();
2027	if (!i915)
2028		return false;
2029
2030	rps = &i915->gt.rps;
2031
2032	spin_lock_irq(&mchdev_lock);
2033	if (rps->max_freq_softlimit > rps->min_freq)
2034		rps->max_freq_softlimit--;
2035	spin_unlock_irq(&mchdev_lock);
2036
2037	drm_dev_put(&i915->drm);
2038	return true;
2039}
2040EXPORT_SYMBOL_GPL(i915_gpu_lower);
2041
2042/**
2043 * i915_gpu_busy - indicate GPU business to IPS
2044 *
2045 * Tell the IPS driver whether or not the GPU is busy.
2046 */
2047bool i915_gpu_busy(void)
2048{
2049	struct drm_i915_private *i915;
2050	bool ret;
2051
2052	i915 = mchdev_get();
2053	if (!i915)
2054		return false;
2055
2056	ret = i915->gt.awake;
2057
2058	drm_dev_put(&i915->drm);
2059	return ret;
2060}
2061EXPORT_SYMBOL_GPL(i915_gpu_busy);
2062
2063/**
2064 * i915_gpu_turbo_disable - disable graphics turbo
2065 *
2066 * Disable graphics turbo by resetting the max frequency and setting the
2067 * current frequency to the default.
2068 */
2069bool i915_gpu_turbo_disable(void)
2070{
2071	struct drm_i915_private *i915;
2072	struct intel_rps *rps;
2073	bool ret;
2074
2075	i915 = mchdev_get();
2076	if (!i915)
2077		return false;
2078
2079	rps = &i915->gt.rps;
2080
2081	spin_lock_irq(&mchdev_lock);
2082	rps->max_freq_softlimit = rps->min_freq;
2083	ret = gen5_rps_set(&i915->gt.rps, rps->min_freq);
2084	spin_unlock_irq(&mchdev_lock);
2085
2086	drm_dev_put(&i915->drm);
2087	return ret;
2088}
2089EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
2090
2091#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2092#include "selftest_rps.c"
2093#endif
1