Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * (C) Copyright Linus Torvalds 1999
   4 * (C) Copyright Johannes Erdfelt 1999-2001
   5 * (C) Copyright Andreas Gal 1999
   6 * (C) Copyright Gregory P. Smith 1999
   7 * (C) Copyright Deti Fliegl 1999
   8 * (C) Copyright Randy Dunlap 2000
   9 * (C) Copyright David Brownell 2000-2002
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  10 */
  11
  12#include <linux/bcd.h>
  13#include <linux/module.h>
  14#include <linux/version.h>
  15#include <linux/kernel.h>
  16#include <linux/sched/task_stack.h>
  17#include <linux/slab.h>
  18#include <linux/completion.h>
  19#include <linux/utsname.h>
  20#include <linux/mm.h>
  21#include <asm/io.h>
  22#include <linux/device.h>
  23#include <linux/dma-mapping.h>
  24#include <linux/mutex.h>
  25#include <asm/irq.h>
  26#include <asm/byteorder.h>
  27#include <asm/unaligned.h>
  28#include <linux/platform_device.h>
  29#include <linux/workqueue.h>
  30#include <linux/pm_runtime.h>
  31#include <linux/types.h>
  32#include <linux/genalloc.h>
  33#include <linux/io.h>
  34#include <linux/kcov.h>
  35
  36#include <linux/phy/phy.h>
  37#include <linux/usb.h>
  38#include <linux/usb/hcd.h>
  39#include <linux/usb/otg.h>
  40
  41#include "usb.h"
  42#include "phy.h"
  43
  44
  45/*-------------------------------------------------------------------------*/
  46
  47/*
  48 * USB Host Controller Driver framework
  49 *
  50 * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
  51 * HCD-specific behaviors/bugs.
  52 *
  53 * This does error checks, tracks devices and urbs, and delegates to a
  54 * "hc_driver" only for code (and data) that really needs to know about
  55 * hardware differences.  That includes root hub registers, i/o queues,
  56 * and so on ... but as little else as possible.
  57 *
  58 * Shared code includes most of the "root hub" code (these are emulated,
  59 * though each HC's hardware works differently) and PCI glue, plus request
  60 * tracking overhead.  The HCD code should only block on spinlocks or on
  61 * hardware handshaking; blocking on software events (such as other kernel
  62 * threads releasing resources, or completing actions) is all generic.
  63 *
  64 * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
  65 * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
  66 * only by the hub driver ... and that neither should be seen or used by
  67 * usb client device drivers.
  68 *
  69 * Contributors of ideas or unattributed patches include: David Brownell,
  70 * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
  71 *
  72 * HISTORY:
  73 * 2002-02-21	Pull in most of the usb_bus support from usb.c; some
  74 *		associated cleanup.  "usb_hcd" still != "usb_bus".
  75 * 2001-12-12	Initial patch version for Linux 2.5.1 kernel.
  76 */
  77
  78/*-------------------------------------------------------------------------*/
  79
  80/* Keep track of which host controller drivers are loaded */
  81unsigned long usb_hcds_loaded;
  82EXPORT_SYMBOL_GPL(usb_hcds_loaded);
  83
  84/* host controllers we manage */
  85DEFINE_IDR (usb_bus_idr);
  86EXPORT_SYMBOL_GPL (usb_bus_idr);
  87
  88/* used when allocating bus numbers */
  89#define USB_MAXBUS		64
 
  90
  91/* used when updating list of hcds */
  92DEFINE_MUTEX(usb_bus_idr_lock);	/* exported only for usbfs */
  93EXPORT_SYMBOL_GPL (usb_bus_idr_lock);
  94
  95/* used for controlling access to virtual root hubs */
  96static DEFINE_SPINLOCK(hcd_root_hub_lock);
  97
  98/* used when updating an endpoint's URB list */
  99static DEFINE_SPINLOCK(hcd_urb_list_lock);
 100
 101/* used to protect against unlinking URBs after the device is gone */
 102static DEFINE_SPINLOCK(hcd_urb_unlink_lock);
 103
 104/* wait queue for synchronous unlinks */
 105DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
 106
 
 
 
 
 
 107/*-------------------------------------------------------------------------*/
 108
 109/*
 110 * Sharable chunks of root hub code.
 111 */
 112
 113/*-------------------------------------------------------------------------*/
 114#define KERNEL_REL	bin2bcd(((LINUX_VERSION_CODE >> 16) & 0x0ff))
 115#define KERNEL_VER	bin2bcd(((LINUX_VERSION_CODE >> 8) & 0x0ff))
 116
 117/* usb 3.1 root hub device descriptor */
 118static const u8 usb31_rh_dev_descriptor[18] = {
 119	0x12,       /*  __u8  bLength; */
 120	USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
 121	0x10, 0x03, /*  __le16 bcdUSB; v3.1 */
 122
 123	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
 124	0x00,	    /*  __u8  bDeviceSubClass; */
 125	0x03,       /*  __u8  bDeviceProtocol; USB 3 hub */
 126	0x09,       /*  __u8  bMaxPacketSize0; 2^9 = 512 Bytes */
 127
 128	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
 129	0x03, 0x00, /*  __le16 idProduct; device 0x0003 */
 130	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
 131
 132	0x03,       /*  __u8  iManufacturer; */
 133	0x02,       /*  __u8  iProduct; */
 134	0x01,       /*  __u8  iSerialNumber; */
 135	0x01        /*  __u8  bNumConfigurations; */
 136};
 137
 138/* usb 3.0 root hub device descriptor */
 139static const u8 usb3_rh_dev_descriptor[18] = {
 140	0x12,       /*  __u8  bLength; */
 141	USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
 142	0x00, 0x03, /*  __le16 bcdUSB; v3.0 */
 143
 144	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
 145	0x00,	    /*  __u8  bDeviceSubClass; */
 146	0x03,       /*  __u8  bDeviceProtocol; USB 3.0 hub */
 147	0x09,       /*  __u8  bMaxPacketSize0; 2^9 = 512 Bytes */
 148
 149	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
 150	0x03, 0x00, /*  __le16 idProduct; device 0x0003 */
 151	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
 152
 153	0x03,       /*  __u8  iManufacturer; */
 154	0x02,       /*  __u8  iProduct; */
 155	0x01,       /*  __u8  iSerialNumber; */
 156	0x01        /*  __u8  bNumConfigurations; */
 157};
 158
 159/* usb 2.5 (wireless USB 1.0) root hub device descriptor */
 160static const u8 usb25_rh_dev_descriptor[18] = {
 161	0x12,       /*  __u8  bLength; */
 162	USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
 163	0x50, 0x02, /*  __le16 bcdUSB; v2.5 */
 164
 165	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
 166	0x00,	    /*  __u8  bDeviceSubClass; */
 167	0x00,       /*  __u8  bDeviceProtocol; [ usb 2.0 no TT ] */
 168	0xFF,       /*  __u8  bMaxPacketSize0; always 0xFF (WUSB Spec 7.4.1). */
 169
 170	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
 171	0x02, 0x00, /*  __le16 idProduct; device 0x0002 */
 172	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
 173
 174	0x03,       /*  __u8  iManufacturer; */
 175	0x02,       /*  __u8  iProduct; */
 176	0x01,       /*  __u8  iSerialNumber; */
 177	0x01        /*  __u8  bNumConfigurations; */
 178};
 179
 180/* usb 2.0 root hub device descriptor */
 181static const u8 usb2_rh_dev_descriptor[18] = {
 182	0x12,       /*  __u8  bLength; */
 183	USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
 184	0x00, 0x02, /*  __le16 bcdUSB; v2.0 */
 185
 186	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
 187	0x00,	    /*  __u8  bDeviceSubClass; */
 188	0x00,       /*  __u8  bDeviceProtocol; [ usb 2.0 no TT ] */
 189	0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
 190
 191	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
 192	0x02, 0x00, /*  __le16 idProduct; device 0x0002 */
 193	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
 194
 195	0x03,       /*  __u8  iManufacturer; */
 196	0x02,       /*  __u8  iProduct; */
 197	0x01,       /*  __u8  iSerialNumber; */
 198	0x01        /*  __u8  bNumConfigurations; */
 199};
 200
 201/* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
 202
 203/* usb 1.1 root hub device descriptor */
 204static const u8 usb11_rh_dev_descriptor[18] = {
 205	0x12,       /*  __u8  bLength; */
 206	USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
 207	0x10, 0x01, /*  __le16 bcdUSB; v1.1 */
 208
 209	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
 210	0x00,	    /*  __u8  bDeviceSubClass; */
 211	0x00,       /*  __u8  bDeviceProtocol; [ low/full speeds only ] */
 212	0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
 213
 214	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
 215	0x01, 0x00, /*  __le16 idProduct; device 0x0001 */
 216	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
 217
 218	0x03,       /*  __u8  iManufacturer; */
 219	0x02,       /*  __u8  iProduct; */
 220	0x01,       /*  __u8  iSerialNumber; */
 221	0x01        /*  __u8  bNumConfigurations; */
 222};
 223
 224
 225/*-------------------------------------------------------------------------*/
 226
 227/* Configuration descriptors for our root hubs */
 228
 229static const u8 fs_rh_config_descriptor[] = {
 230
 231	/* one configuration */
 232	0x09,       /*  __u8  bLength; */
 233	USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
 234	0x19, 0x00, /*  __le16 wTotalLength; */
 235	0x01,       /*  __u8  bNumInterfaces; (1) */
 236	0x01,       /*  __u8  bConfigurationValue; */
 237	0x00,       /*  __u8  iConfiguration; */
 238	0xc0,       /*  __u8  bmAttributes;
 239				 Bit 7: must be set,
 240				     6: Self-powered,
 241				     5: Remote wakeup,
 242				     4..0: resvd */
 243	0x00,       /*  __u8  MaxPower; */
 244
 245	/* USB 1.1:
 246	 * USB 2.0, single TT organization (mandatory):
 247	 *	one interface, protocol 0
 248	 *
 249	 * USB 2.0, multiple TT organization (optional):
 250	 *	two interfaces, protocols 1 (like single TT)
 251	 *	and 2 (multiple TT mode) ... config is
 252	 *	sometimes settable
 253	 *	NOT IMPLEMENTED
 254	 */
 255
 256	/* one interface */
 257	0x09,       /*  __u8  if_bLength; */
 258	USB_DT_INTERFACE,  /* __u8 if_bDescriptorType; Interface */
 259	0x00,       /*  __u8  if_bInterfaceNumber; */
 260	0x00,       /*  __u8  if_bAlternateSetting; */
 261	0x01,       /*  __u8  if_bNumEndpoints; */
 262	0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
 263	0x00,       /*  __u8  if_bInterfaceSubClass; */
 264	0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
 265	0x00,       /*  __u8  if_iInterface; */
 266
 267	/* one endpoint (status change endpoint) */
 268	0x07,       /*  __u8  ep_bLength; */
 269	USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
 270	0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
 271	0x03,       /*  __u8  ep_bmAttributes; Interrupt */
 272	0x02, 0x00, /*  __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
 273	0xff        /*  __u8  ep_bInterval; (255ms -- usb 2.0 spec) */
 274};
 275
 276static const u8 hs_rh_config_descriptor[] = {
 277
 278	/* one configuration */
 279	0x09,       /*  __u8  bLength; */
 280	USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
 281	0x19, 0x00, /*  __le16 wTotalLength; */
 282	0x01,       /*  __u8  bNumInterfaces; (1) */
 283	0x01,       /*  __u8  bConfigurationValue; */
 284	0x00,       /*  __u8  iConfiguration; */
 285	0xc0,       /*  __u8  bmAttributes;
 286				 Bit 7: must be set,
 287				     6: Self-powered,
 288				     5: Remote wakeup,
 289				     4..0: resvd */
 290	0x00,       /*  __u8  MaxPower; */
 291
 292	/* USB 1.1:
 293	 * USB 2.0, single TT organization (mandatory):
 294	 *	one interface, protocol 0
 295	 *
 296	 * USB 2.0, multiple TT organization (optional):
 297	 *	two interfaces, protocols 1 (like single TT)
 298	 *	and 2 (multiple TT mode) ... config is
 299	 *	sometimes settable
 300	 *	NOT IMPLEMENTED
 301	 */
 302
 303	/* one interface */
 304	0x09,       /*  __u8  if_bLength; */
 305	USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
 306	0x00,       /*  __u8  if_bInterfaceNumber; */
 307	0x00,       /*  __u8  if_bAlternateSetting; */
 308	0x01,       /*  __u8  if_bNumEndpoints; */
 309	0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
 310	0x00,       /*  __u8  if_bInterfaceSubClass; */
 311	0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
 312	0x00,       /*  __u8  if_iInterface; */
 313
 314	/* one endpoint (status change endpoint) */
 315	0x07,       /*  __u8  ep_bLength; */
 316	USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
 317	0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
 318	0x03,       /*  __u8  ep_bmAttributes; Interrupt */
 319		    /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
 320		     * see hub.c:hub_configure() for details. */
 321	(USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
 322	0x0c        /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
 323};
 324
 325static const u8 ss_rh_config_descriptor[] = {
 326	/* one configuration */
 327	0x09,       /*  __u8  bLength; */
 328	USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
 329	0x1f, 0x00, /*  __le16 wTotalLength; */
 330	0x01,       /*  __u8  bNumInterfaces; (1) */
 331	0x01,       /*  __u8  bConfigurationValue; */
 332	0x00,       /*  __u8  iConfiguration; */
 333	0xc0,       /*  __u8  bmAttributes;
 334				 Bit 7: must be set,
 335				     6: Self-powered,
 336				     5: Remote wakeup,
 337				     4..0: resvd */
 338	0x00,       /*  __u8  MaxPower; */
 339
 340	/* one interface */
 341	0x09,       /*  __u8  if_bLength; */
 342	USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
 343	0x00,       /*  __u8  if_bInterfaceNumber; */
 344	0x00,       /*  __u8  if_bAlternateSetting; */
 345	0x01,       /*  __u8  if_bNumEndpoints; */
 346	0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
 347	0x00,       /*  __u8  if_bInterfaceSubClass; */
 348	0x00,       /*  __u8  if_bInterfaceProtocol; */
 349	0x00,       /*  __u8  if_iInterface; */
 350
 351	/* one endpoint (status change endpoint) */
 352	0x07,       /*  __u8  ep_bLength; */
 353	USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
 354	0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
 355	0x03,       /*  __u8  ep_bmAttributes; Interrupt */
 356		    /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
 357		     * see hub.c:hub_configure() for details. */
 358	(USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
 359	0x0c,       /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
 360
 361	/* one SuperSpeed endpoint companion descriptor */
 362	0x06,        /* __u8 ss_bLength */
 363	USB_DT_SS_ENDPOINT_COMP, /* __u8 ss_bDescriptorType; SuperSpeed EP */
 364		     /* Companion */
 365	0x00,        /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */
 366	0x00,        /* __u8 ss_bmAttributes; 1 packet per service interval */
 367	0x02, 0x00   /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */
 368};
 369
 370/* authorized_default behaviour:
 371 * -1 is authorized for all devices except wireless (old behaviour)
 372 * 0 is unauthorized for all devices
 373 * 1 is authorized for all devices
 374 * 2 is authorized for internal devices
 375 */
 376#define USB_AUTHORIZE_WIRED	-1
 377#define USB_AUTHORIZE_NONE	0
 378#define USB_AUTHORIZE_ALL	1
 379#define USB_AUTHORIZE_INTERNAL	2
 380
 381static int authorized_default = USB_AUTHORIZE_WIRED;
 382module_param(authorized_default, int, S_IRUGO|S_IWUSR);
 383MODULE_PARM_DESC(authorized_default,
 384		"Default USB device authorization: 0 is not authorized, 1 is "
 385		"authorized, 2 is authorized for internal devices, -1 is "
 386		"authorized except for wireless USB (default, old behaviour)");
 387/*-------------------------------------------------------------------------*/
 388
 389/**
 390 * ascii2desc() - Helper routine for producing UTF-16LE string descriptors
 391 * @s: Null-terminated ASCII (actually ISO-8859-1) string
 392 * @buf: Buffer for USB string descriptor (header + UTF-16LE)
 393 * @len: Length (in bytes; may be odd) of descriptor buffer.
 394 *
 395 * Return: The number of bytes filled in: 2 + 2*strlen(s) or @len,
 396 * whichever is less.
 397 *
 398 * Note:
 399 * USB String descriptors can contain at most 126 characters; input
 400 * strings longer than that are truncated.
 401 */
 402static unsigned
 403ascii2desc(char const *s, u8 *buf, unsigned len)
 404{
 405	unsigned n, t = 2 + 2*strlen(s);
 406
 407	if (t > 254)
 408		t = 254;	/* Longest possible UTF string descriptor */
 409	if (len > t)
 410		len = t;
 411
 412	t += USB_DT_STRING << 8;	/* Now t is first 16 bits to store */
 413
 414	n = len;
 415	while (n--) {
 416		*buf++ = t;
 417		if (!n--)
 418			break;
 419		*buf++ = t >> 8;
 420		t = (unsigned char)*s++;
 421	}
 422	return len;
 423}
 424
 425/**
 426 * rh_string() - provides string descriptors for root hub
 427 * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor)
 428 * @hcd: the host controller for this root hub
 429 * @data: buffer for output packet
 430 * @len: length of the provided buffer
 431 *
 432 * Produces either a manufacturer, product or serial number string for the
 433 * virtual root hub device.
 434 *
 435 * Return: The number of bytes filled in: the length of the descriptor or
 436 * of the provided buffer, whichever is less.
 437 */
 438static unsigned
 439rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len)
 440{
 441	char buf[100];
 442	char const *s;
 443	static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04};
 444
 445	/* language ids */
 446	switch (id) {
 447	case 0:
 448		/* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */
 449		/* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */
 450		if (len > 4)
 451			len = 4;
 452		memcpy(data, langids, len);
 453		return len;
 454	case 1:
 455		/* Serial number */
 456		s = hcd->self.bus_name;
 457		break;
 458	case 2:
 459		/* Product name */
 460		s = hcd->product_desc;
 461		break;
 462	case 3:
 463		/* Manufacturer */
 464		snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
 465			init_utsname()->release, hcd->driver->description);
 466		s = buf;
 467		break;
 468	default:
 469		/* Can't happen; caller guarantees it */
 470		return 0;
 471	}
 472
 473	return ascii2desc(s, data, len);
 474}
 475
 476
 477/* Root hub control transfers execute synchronously */
 478static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
 479{
 480	struct usb_ctrlrequest *cmd;
 481	u16		typeReq, wValue, wIndex, wLength;
 482	u8		*ubuf = urb->transfer_buffer;
 483	unsigned	len = 0;
 484	int		status;
 485	u8		patch_wakeup = 0;
 486	u8		patch_protocol = 0;
 487	u16		tbuf_size;
 488	u8		*tbuf = NULL;
 489	const u8	*bufp;
 490
 491	might_sleep();
 492
 493	spin_lock_irq(&hcd_root_hub_lock);
 494	status = usb_hcd_link_urb_to_ep(hcd, urb);
 495	spin_unlock_irq(&hcd_root_hub_lock);
 496	if (status)
 497		return status;
 498	urb->hcpriv = hcd;	/* Indicate it's queued */
 499
 500	cmd = (struct usb_ctrlrequest *) urb->setup_packet;
 501	typeReq  = (cmd->bRequestType << 8) | cmd->bRequest;
 502	wValue   = le16_to_cpu (cmd->wValue);
 503	wIndex   = le16_to_cpu (cmd->wIndex);
 504	wLength  = le16_to_cpu (cmd->wLength);
 505
 506	if (wLength > urb->transfer_buffer_length)
 507		goto error;
 508
 509	/*
 510	 * tbuf should be at least as big as the
 511	 * USB hub descriptor.
 512	 */
 513	tbuf_size =  max_t(u16, sizeof(struct usb_hub_descriptor), wLength);
 514	tbuf = kzalloc(tbuf_size, GFP_KERNEL);
 515	if (!tbuf) {
 516		status = -ENOMEM;
 517		goto err_alloc;
 518	}
 519
 520	bufp = tbuf;
 521
 522
 523	urb->actual_length = 0;
 524	switch (typeReq) {
 525
 526	/* DEVICE REQUESTS */
 527
 528	/* The root hub's remote wakeup enable bit is implemented using
 529	 * driver model wakeup flags.  If this system supports wakeup
 530	 * through USB, userspace may change the default "allow wakeup"
 531	 * policy through sysfs or these calls.
 532	 *
 533	 * Most root hubs support wakeup from downstream devices, for
 534	 * runtime power management (disabling USB clocks and reducing
 535	 * VBUS power usage).  However, not all of them do so; silicon,
 536	 * board, and BIOS bugs here are not uncommon, so these can't
 537	 * be treated quite like external hubs.
 538	 *
 539	 * Likewise, not all root hubs will pass wakeup events upstream,
 540	 * to wake up the whole system.  So don't assume root hub and
 541	 * controller capabilities are identical.
 542	 */
 543
 544	case DeviceRequest | USB_REQ_GET_STATUS:
 545		tbuf[0] = (device_may_wakeup(&hcd->self.root_hub->dev)
 546					<< USB_DEVICE_REMOTE_WAKEUP)
 547				| (1 << USB_DEVICE_SELF_POWERED);
 548		tbuf[1] = 0;
 549		len = 2;
 550		break;
 551	case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
 552		if (wValue == USB_DEVICE_REMOTE_WAKEUP)
 553			device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
 554		else
 555			goto error;
 556		break;
 557	case DeviceOutRequest | USB_REQ_SET_FEATURE:
 558		if (device_can_wakeup(&hcd->self.root_hub->dev)
 559				&& wValue == USB_DEVICE_REMOTE_WAKEUP)
 560			device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
 561		else
 562			goto error;
 563		break;
 564	case DeviceRequest | USB_REQ_GET_CONFIGURATION:
 565		tbuf[0] = 1;
 566		len = 1;
 567		fallthrough;
 568	case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
 569		break;
 570	case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
 571		switch (wValue & 0xff00) {
 572		case USB_DT_DEVICE << 8:
 573			switch (hcd->speed) {
 574			case HCD_USB32:
 575			case HCD_USB31:
 576				bufp = usb31_rh_dev_descriptor;
 577				break;
 578			case HCD_USB3:
 579				bufp = usb3_rh_dev_descriptor;
 580				break;
 581			case HCD_USB25:
 582				bufp = usb25_rh_dev_descriptor;
 583				break;
 584			case HCD_USB2:
 585				bufp = usb2_rh_dev_descriptor;
 586				break;
 587			case HCD_USB11:
 588				bufp = usb11_rh_dev_descriptor;
 589				break;
 590			default:
 591				goto error;
 592			}
 593			len = 18;
 594			if (hcd->has_tt)
 595				patch_protocol = 1;
 596			break;
 597		case USB_DT_CONFIG << 8:
 598			switch (hcd->speed) {
 599			case HCD_USB32:
 600			case HCD_USB31:
 601			case HCD_USB3:
 602				bufp = ss_rh_config_descriptor;
 603				len = sizeof ss_rh_config_descriptor;
 604				break;
 605			case HCD_USB25:
 606			case HCD_USB2:
 607				bufp = hs_rh_config_descriptor;
 608				len = sizeof hs_rh_config_descriptor;
 609				break;
 610			case HCD_USB11:
 611				bufp = fs_rh_config_descriptor;
 612				len = sizeof fs_rh_config_descriptor;
 613				break;
 614			default:
 615				goto error;
 616			}
 617			if (device_can_wakeup(&hcd->self.root_hub->dev))
 618				patch_wakeup = 1;
 619			break;
 620		case USB_DT_STRING << 8:
 621			if ((wValue & 0xff) < 4)
 622				urb->actual_length = rh_string(wValue & 0xff,
 623						hcd, ubuf, wLength);
 624			else /* unsupported IDs --> "protocol stall" */
 625				goto error;
 626			break;
 627		case USB_DT_BOS << 8:
 628			goto nongeneric;
 629		default:
 630			goto error;
 631		}
 632		break;
 633	case DeviceRequest | USB_REQ_GET_INTERFACE:
 634		tbuf[0] = 0;
 635		len = 1;
 636		fallthrough;
 637	case DeviceOutRequest | USB_REQ_SET_INTERFACE:
 638		break;
 639	case DeviceOutRequest | USB_REQ_SET_ADDRESS:
 640		/* wValue == urb->dev->devaddr */
 641		dev_dbg (hcd->self.controller, "root hub device address %d\n",
 642			wValue);
 643		break;
 644
 645	/* INTERFACE REQUESTS (no defined feature/status flags) */
 646
 647	/* ENDPOINT REQUESTS */
 648
 649	case EndpointRequest | USB_REQ_GET_STATUS:
 650		/* ENDPOINT_HALT flag */
 651		tbuf[0] = 0;
 652		tbuf[1] = 0;
 653		len = 2;
 654		fallthrough;
 655	case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
 656	case EndpointOutRequest | USB_REQ_SET_FEATURE:
 657		dev_dbg (hcd->self.controller, "no endpoint features yet\n");
 658		break;
 659
 660	/* CLASS REQUESTS (and errors) */
 661
 662	default:
 663nongeneric:
 664		/* non-generic request */
 665		switch (typeReq) {
 666		case GetHubStatus:
 667			len = 4;
 668			break;
 669		case GetPortStatus:
 670			if (wValue == HUB_PORT_STATUS)
 671				len = 4;
 672			else
 673				/* other port status types return 8 bytes */
 674				len = 8;
 675			break;
 676		case GetHubDescriptor:
 677			len = sizeof (struct usb_hub_descriptor);
 678			break;
 679		case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
 680			/* len is returned by hub_control */
 681			break;
 682		}
 683		status = hcd->driver->hub_control (hcd,
 684			typeReq, wValue, wIndex,
 685			tbuf, wLength);
 686
 687		if (typeReq == GetHubDescriptor)
 688			usb_hub_adjust_deviceremovable(hcd->self.root_hub,
 689				(struct usb_hub_descriptor *)tbuf);
 690		break;
 691error:
 692		/* "protocol stall" on error */
 693		status = -EPIPE;
 694	}
 695
 696	if (status < 0) {
 697		len = 0;
 698		if (status != -EPIPE) {
 699			dev_dbg (hcd->self.controller,
 700				"CTRL: TypeReq=0x%x val=0x%x "
 701				"idx=0x%x len=%d ==> %d\n",
 702				typeReq, wValue, wIndex,
 703				wLength, status);
 704		}
 705	} else if (status > 0) {
 706		/* hub_control may return the length of data copied. */
 707		len = status;
 708		status = 0;
 709	}
 710	if (len) {
 711		if (urb->transfer_buffer_length < len)
 712			len = urb->transfer_buffer_length;
 713		urb->actual_length = len;
 714		/* always USB_DIR_IN, toward host */
 715		memcpy (ubuf, bufp, len);
 716
 717		/* report whether RH hardware supports remote wakeup */
 718		if (patch_wakeup &&
 719				len > offsetof (struct usb_config_descriptor,
 720						bmAttributes))
 721			((struct usb_config_descriptor *)ubuf)->bmAttributes
 722				|= USB_CONFIG_ATT_WAKEUP;
 723
 724		/* report whether RH hardware has an integrated TT */
 725		if (patch_protocol &&
 726				len > offsetof(struct usb_device_descriptor,
 727						bDeviceProtocol))
 728			((struct usb_device_descriptor *) ubuf)->
 729				bDeviceProtocol = USB_HUB_PR_HS_SINGLE_TT;
 730	}
 731
 732	kfree(tbuf);
 733 err_alloc:
 734
 735	/* any errors get returned through the urb completion */
 736	spin_lock_irq(&hcd_root_hub_lock);
 737	usb_hcd_unlink_urb_from_ep(hcd, urb);
 738	usb_hcd_giveback_urb(hcd, urb, status);
 739	spin_unlock_irq(&hcd_root_hub_lock);
 740	return 0;
 741}
 742
 743/*-------------------------------------------------------------------------*/
 744
 745/*
 746 * Root Hub interrupt transfers are polled using a timer if the
 747 * driver requests it; otherwise the driver is responsible for
 748 * calling usb_hcd_poll_rh_status() when an event occurs.
 749 *
 750 * Completions are called in_interrupt(), but they may or may not
 751 * be in_irq().
 752 */
 753void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
 754{
 755	struct urb	*urb;
 756	int		length;
 757	unsigned long	flags;
 758	char		buffer[6];	/* Any root hubs with > 31 ports? */
 759
 760	if (unlikely(!hcd->rh_pollable))
 761		return;
 762	if (!hcd->uses_new_polling && !hcd->status_urb)
 763		return;
 764
 765	length = hcd->driver->hub_status_data(hcd, buffer);
 766	if (length > 0) {
 767
 768		/* try to complete the status urb */
 769		spin_lock_irqsave(&hcd_root_hub_lock, flags);
 770		urb = hcd->status_urb;
 771		if (urb) {
 772			clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
 773			hcd->status_urb = NULL;
 774			urb->actual_length = length;
 775			memcpy(urb->transfer_buffer, buffer, length);
 776
 777			usb_hcd_unlink_urb_from_ep(hcd, urb);
 778			usb_hcd_giveback_urb(hcd, urb, 0);
 779		} else {
 780			length = 0;
 781			set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
 782		}
 783		spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
 784	}
 785
 786	/* The USB 2.0 spec says 256 ms.  This is close enough and won't
 787	 * exceed that limit if HZ is 100. The math is more clunky than
 788	 * maybe expected, this is to make sure that all timers for USB devices
 789	 * fire at the same time to give the CPU a break in between */
 790	if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) :
 791			(length == 0 && hcd->status_urb != NULL))
 792		mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
 793}
 794EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
 795
 796/* timer callback */
 797static void rh_timer_func (struct timer_list *t)
 798{
 799	struct usb_hcd *_hcd = from_timer(_hcd, t, rh_timer);
 800
 801	usb_hcd_poll_rh_status(_hcd);
 802}
 803
 804/*-------------------------------------------------------------------------*/
 805
 806static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
 807{
 808	int		retval;
 809	unsigned long	flags;
 810	unsigned	len = 1 + (urb->dev->maxchild / 8);
 811
 812	spin_lock_irqsave (&hcd_root_hub_lock, flags);
 813	if (hcd->status_urb || urb->transfer_buffer_length < len) {
 814		dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
 815		retval = -EINVAL;
 816		goto done;
 817	}
 818
 819	retval = usb_hcd_link_urb_to_ep(hcd, urb);
 820	if (retval)
 821		goto done;
 822
 823	hcd->status_urb = urb;
 824	urb->hcpriv = hcd;	/* indicate it's queued */
 825	if (!hcd->uses_new_polling)
 826		mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
 827
 828	/* If a status change has already occurred, report it ASAP */
 829	else if (HCD_POLL_PENDING(hcd))
 830		mod_timer(&hcd->rh_timer, jiffies);
 831	retval = 0;
 832 done:
 833	spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
 834	return retval;
 835}
 836
 837static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
 838{
 839	if (usb_endpoint_xfer_int(&urb->ep->desc))
 840		return rh_queue_status (hcd, urb);
 841	if (usb_endpoint_xfer_control(&urb->ep->desc))
 842		return rh_call_control (hcd, urb);
 843	return -EINVAL;
 844}
 845
 846/*-------------------------------------------------------------------------*/
 847
 848/* Unlinks of root-hub control URBs are legal, but they don't do anything
 849 * since these URBs always execute synchronously.
 850 */
 851static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
 852{
 853	unsigned long	flags;
 854	int		rc;
 855
 856	spin_lock_irqsave(&hcd_root_hub_lock, flags);
 857	rc = usb_hcd_check_unlink_urb(hcd, urb, status);
 858	if (rc)
 859		goto done;
 860
 861	if (usb_endpoint_num(&urb->ep->desc) == 0) {	/* Control URB */
 862		;	/* Do nothing */
 863
 864	} else {				/* Status URB */
 865		if (!hcd->uses_new_polling)
 866			del_timer (&hcd->rh_timer);
 867		if (urb == hcd->status_urb) {
 868			hcd->status_urb = NULL;
 869			usb_hcd_unlink_urb_from_ep(hcd, urb);
 870			usb_hcd_giveback_urb(hcd, urb, status);
 871		}
 872	}
 873 done:
 874	spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
 875	return rc;
 876}
 877
 878
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 879/*-------------------------------------------------------------------------*/
 880
 881/**
 882 * usb_bus_init - shared initialization code
 883 * @bus: the bus structure being initialized
 884 *
 885 * This code is used to initialize a usb_bus structure, memory for which is
 886 * separately managed.
 887 */
 888static void usb_bus_init (struct usb_bus *bus)
 889{
 890	memset (&bus->devmap, 0, sizeof(struct usb_devmap));
 891
 892	bus->devnum_next = 1;
 893
 894	bus->root_hub = NULL;
 895	bus->busnum = -1;
 896	bus->bandwidth_allocated = 0;
 897	bus->bandwidth_int_reqs  = 0;
 898	bus->bandwidth_isoc_reqs = 0;
 899	mutex_init(&bus->devnum_next_mutex);
 
 900}
 901
 902/*-------------------------------------------------------------------------*/
 903
 904/**
 905 * usb_register_bus - registers the USB host controller with the usb core
 906 * @bus: pointer to the bus to register
 907 * Context: !in_interrupt()
 908 *
 909 * Assigns a bus number, and links the controller into usbcore data
 910 * structures so that it can be seen by scanning the bus list.
 911 *
 912 * Return: 0 if successful. A negative error code otherwise.
 913 */
 914static int usb_register_bus(struct usb_bus *bus)
 915{
 916	int result = -E2BIG;
 917	int busnum;
 918
 919	mutex_lock(&usb_bus_idr_lock);
 920	busnum = idr_alloc(&usb_bus_idr, bus, 1, USB_MAXBUS, GFP_KERNEL);
 921	if (busnum < 0) {
 922		pr_err("%s: failed to get bus number\n", usbcore_name);
 923		goto error_find_busnum;
 924	}
 
 925	bus->busnum = busnum;
 926	mutex_unlock(&usb_bus_idr_lock);
 
 
 
 927
 928	usb_notify_add_bus(bus);
 929
 930	dev_info (bus->controller, "new USB bus registered, assigned bus "
 931		  "number %d\n", bus->busnum);
 932	return 0;
 933
 934error_find_busnum:
 935	mutex_unlock(&usb_bus_idr_lock);
 936	return result;
 937}
 938
 939/**
 940 * usb_deregister_bus - deregisters the USB host controller
 941 * @bus: pointer to the bus to deregister
 942 * Context: !in_interrupt()
 943 *
 944 * Recycles the bus number, and unlinks the controller from usbcore data
 945 * structures so that it won't be seen by scanning the bus list.
 946 */
 947static void usb_deregister_bus (struct usb_bus *bus)
 948{
 949	dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
 950
 951	/*
 952	 * NOTE: make sure that all the devices are removed by the
 953	 * controller code, as well as having it call this when cleaning
 954	 * itself up
 955	 */
 956	mutex_lock(&usb_bus_idr_lock);
 957	idr_remove(&usb_bus_idr, bus->busnum);
 958	mutex_unlock(&usb_bus_idr_lock);
 959
 960	usb_notify_remove_bus(bus);
 
 
 961}
 962
 963/**
 964 * register_root_hub - called by usb_add_hcd() to register a root hub
 965 * @hcd: host controller for this root hub
 966 *
 967 * This function registers the root hub with the USB subsystem.  It sets up
 968 * the device properly in the device tree and then calls usb_new_device()
 969 * to register the usb device.  It also assigns the root hub's USB address
 970 * (always 1).
 971 *
 972 * Return: 0 if successful. A negative error code otherwise.
 973 */
 974static int register_root_hub(struct usb_hcd *hcd)
 975{
 976	struct device *parent_dev = hcd->self.controller;
 977	struct usb_device *usb_dev = hcd->self.root_hub;
 978	const int devnum = 1;
 979	int retval;
 980
 981	usb_dev->devnum = devnum;
 982	usb_dev->bus->devnum_next = devnum + 1;
 
 
 983	set_bit (devnum, usb_dev->bus->devmap.devicemap);
 984	usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
 985
 986	mutex_lock(&usb_bus_idr_lock);
 987
 988	usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64);
 989	retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE);
 990	if (retval != sizeof usb_dev->descriptor) {
 991		mutex_unlock(&usb_bus_idr_lock);
 992		dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
 993				dev_name(&usb_dev->dev), retval);
 994		return (retval < 0) ? retval : -EMSGSIZE;
 995	}
 996
 997	if (le16_to_cpu(usb_dev->descriptor.bcdUSB) >= 0x0201) {
 998		retval = usb_get_bos_descriptor(usb_dev);
 999		if (!retval) {
1000			usb_dev->lpm_capable = usb_device_supports_lpm(usb_dev);
1001		} else if (usb_dev->speed >= USB_SPEED_SUPER) {
1002			mutex_unlock(&usb_bus_idr_lock);
1003			dev_dbg(parent_dev, "can't read %s bos descriptor %d\n",
1004					dev_name(&usb_dev->dev), retval);
1005			return retval;
1006		}
1007	}
1008
1009	retval = usb_new_device (usb_dev);
1010	if (retval) {
1011		dev_err (parent_dev, "can't register root hub for %s, %d\n",
1012				dev_name(&usb_dev->dev), retval);
1013	} else {
1014		spin_lock_irq (&hcd_root_hub_lock);
1015		hcd->rh_registered = 1;
1016		spin_unlock_irq (&hcd_root_hub_lock);
1017
1018		/* Did the HC die before the root hub was registered? */
1019		if (HCD_DEAD(hcd))
1020			usb_hc_died (hcd);	/* This time clean up */
1021	}
1022	mutex_unlock(&usb_bus_idr_lock);
1023
1024	return retval;
1025}
1026
1027/*
1028 * usb_hcd_start_port_resume - a root-hub port is sending a resume signal
1029 * @bus: the bus which the root hub belongs to
1030 * @portnum: the port which is being resumed
1031 *
1032 * HCDs should call this function when they know that a resume signal is
1033 * being sent to a root-hub port.  The root hub will be prevented from
1034 * going into autosuspend until usb_hcd_end_port_resume() is called.
1035 *
1036 * The bus's private lock must be held by the caller.
1037 */
1038void usb_hcd_start_port_resume(struct usb_bus *bus, int portnum)
1039{
1040	unsigned bit = 1 << portnum;
1041
1042	if (!(bus->resuming_ports & bit)) {
1043		bus->resuming_ports |= bit;
1044		pm_runtime_get_noresume(&bus->root_hub->dev);
1045	}
1046}
1047EXPORT_SYMBOL_GPL(usb_hcd_start_port_resume);
1048
1049/*
1050 * usb_hcd_end_port_resume - a root-hub port has stopped sending a resume signal
1051 * @bus: the bus which the root hub belongs to
1052 * @portnum: the port which is being resumed
1053 *
1054 * HCDs should call this function when they know that a resume signal has
1055 * stopped being sent to a root-hub port.  The root hub will be allowed to
1056 * autosuspend again.
1057 *
1058 * The bus's private lock must be held by the caller.
1059 */
1060void usb_hcd_end_port_resume(struct usb_bus *bus, int portnum)
1061{
1062	unsigned bit = 1 << portnum;
1063
1064	if (bus->resuming_ports & bit) {
1065		bus->resuming_ports &= ~bit;
1066		pm_runtime_put_noidle(&bus->root_hub->dev);
1067	}
1068}
1069EXPORT_SYMBOL_GPL(usb_hcd_end_port_resume);
1070
1071/*-------------------------------------------------------------------------*/
1072
1073/**
1074 * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
1075 * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
1076 * @is_input: true iff the transaction sends data to the host
1077 * @isoc: true for isochronous transactions, false for interrupt ones
1078 * @bytecount: how many bytes in the transaction.
1079 *
1080 * Return: Approximate bus time in nanoseconds for a periodic transaction.
1081 *
1082 * Note:
1083 * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
1084 * scheduled in software, this function is only used for such scheduling.
1085 */
1086long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
1087{
1088	unsigned long	tmp;
1089
1090	switch (speed) {
1091	case USB_SPEED_LOW: 	/* INTR only */
1092		if (is_input) {
1093			tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
1094			return 64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1095		} else {
1096			tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
1097			return 64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1098		}
1099	case USB_SPEED_FULL:	/* ISOC or INTR */
1100		if (isoc) {
1101			tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1102			return ((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp;
1103		} else {
1104			tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1105			return 9107L + BW_HOST_DELAY + tmp;
1106		}
1107	case USB_SPEED_HIGH:	/* ISOC or INTR */
1108		/* FIXME adjust for input vs output */
1109		if (isoc)
1110			tmp = HS_NSECS_ISO (bytecount);
1111		else
1112			tmp = HS_NSECS (bytecount);
1113		return tmp;
1114	default:
1115		pr_debug ("%s: bogus device speed!\n", usbcore_name);
1116		return -1;
1117	}
1118}
1119EXPORT_SYMBOL_GPL(usb_calc_bus_time);
1120
1121
1122/*-------------------------------------------------------------------------*/
1123
1124/*
1125 * Generic HC operations.
1126 */
1127
1128/*-------------------------------------------------------------------------*/
1129
1130/**
1131 * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
1132 * @hcd: host controller to which @urb was submitted
1133 * @urb: URB being submitted
1134 *
1135 * Host controller drivers should call this routine in their enqueue()
1136 * method.  The HCD's private spinlock must be held and interrupts must
1137 * be disabled.  The actions carried out here are required for URB
1138 * submission, as well as for endpoint shutdown and for usb_kill_urb.
1139 *
1140 * Return: 0 for no error, otherwise a negative error code (in which case
1141 * the enqueue() method must fail).  If no error occurs but enqueue() fails
1142 * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
1143 * the private spinlock and returning.
1144 */
1145int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb)
1146{
1147	int		rc = 0;
1148
1149	spin_lock(&hcd_urb_list_lock);
1150
1151	/* Check that the URB isn't being killed */
1152	if (unlikely(atomic_read(&urb->reject))) {
1153		rc = -EPERM;
1154		goto done;
1155	}
1156
1157	if (unlikely(!urb->ep->enabled)) {
1158		rc = -ENOENT;
1159		goto done;
1160	}
1161
1162	if (unlikely(!urb->dev->can_submit)) {
1163		rc = -EHOSTUNREACH;
1164		goto done;
1165	}
1166
1167	/*
1168	 * Check the host controller's state and add the URB to the
1169	 * endpoint's queue.
1170	 */
1171	if (HCD_RH_RUNNING(hcd)) {
1172		urb->unlinked = 0;
1173		list_add_tail(&urb->urb_list, &urb->ep->urb_list);
1174	} else {
1175		rc = -ESHUTDOWN;
1176		goto done;
1177	}
1178 done:
1179	spin_unlock(&hcd_urb_list_lock);
1180	return rc;
1181}
1182EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
1183
1184/**
1185 * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1186 * @hcd: host controller to which @urb was submitted
1187 * @urb: URB being checked for unlinkability
1188 * @status: error code to store in @urb if the unlink succeeds
1189 *
1190 * Host controller drivers should call this routine in their dequeue()
1191 * method.  The HCD's private spinlock must be held and interrupts must
1192 * be disabled.  The actions carried out here are required for making
1193 * sure than an unlink is valid.
1194 *
1195 * Return: 0 for no error, otherwise a negative error code (in which case
1196 * the dequeue() method must fail).  The possible error codes are:
1197 *
1198 *	-EIDRM: @urb was not submitted or has already completed.
1199 *		The completion function may not have been called yet.
1200 *
1201 *	-EBUSY: @urb has already been unlinked.
1202 */
1203int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb,
1204		int status)
1205{
1206	struct list_head	*tmp;
1207
1208	/* insist the urb is still queued */
1209	list_for_each(tmp, &urb->ep->urb_list) {
1210		if (tmp == &urb->urb_list)
1211			break;
1212	}
1213	if (tmp != &urb->urb_list)
1214		return -EIDRM;
1215
1216	/* Any status except -EINPROGRESS means something already started to
1217	 * unlink this URB from the hardware.  So there's no more work to do.
1218	 */
1219	if (urb->unlinked)
1220		return -EBUSY;
1221	urb->unlinked = status;
1222	return 0;
1223}
1224EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb);
1225
1226/**
1227 * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1228 * @hcd: host controller to which @urb was submitted
1229 * @urb: URB being unlinked
1230 *
1231 * Host controller drivers should call this routine before calling
1232 * usb_hcd_giveback_urb().  The HCD's private spinlock must be held and
1233 * interrupts must be disabled.  The actions carried out here are required
1234 * for URB completion.
1235 */
1236void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb)
1237{
1238	/* clear all state linking urb to this dev (and hcd) */
1239	spin_lock(&hcd_urb_list_lock);
1240	list_del_init(&urb->urb_list);
1241	spin_unlock(&hcd_urb_list_lock);
1242}
1243EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
1244
1245/*
1246 * Some usb host controllers can only perform dma using a small SRAM area.
1247 * The usb core itself is however optimized for host controllers that can dma
1248 * using regular system memory - like pci devices doing bus mastering.
1249 *
1250 * To support host controllers with limited dma capabilities we provide dma
1251 * bounce buffers. This feature can be enabled by initializing
1252 * hcd->localmem_pool using usb_hcd_setup_local_mem().
1253 *
1254 * The initialized hcd->localmem_pool then tells the usb code to allocate all
1255 * data for dma using the genalloc API.
 
 
 
1256 *
1257 * So, to summarize...
1258 *
1259 * - We need "local" memory, canonical example being
1260 *   a small SRAM on a discrete controller being the
1261 *   only memory that the controller can read ...
1262 *   (a) "normal" kernel memory is no good, and
1263 *   (b) there's not enough to share
1264 *
 
 
 
1265 * - So we use that, even though the primary requirement
1266 *   is that the memory be "local" (hence addressable
1267 *   by that device), not "coherent".
1268 *
1269 */
1270
1271static int hcd_alloc_coherent(struct usb_bus *bus,
1272			      gfp_t mem_flags, dma_addr_t *dma_handle,
1273			      void **vaddr_handle, size_t size,
1274			      enum dma_data_direction dir)
1275{
1276	unsigned char *vaddr;
1277
1278	if (*vaddr_handle == NULL) {
1279		WARN_ON_ONCE(1);
1280		return -EFAULT;
1281	}
1282
1283	vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr),
1284				 mem_flags, dma_handle);
1285	if (!vaddr)
1286		return -ENOMEM;
1287
1288	/*
1289	 * Store the virtual address of the buffer at the end
1290	 * of the allocated dma buffer. The size of the buffer
1291	 * may be uneven so use unaligned functions instead
1292	 * of just rounding up. It makes sense to optimize for
1293	 * memory footprint over access speed since the amount
1294	 * of memory available for dma may be limited.
1295	 */
1296	put_unaligned((unsigned long)*vaddr_handle,
1297		      (unsigned long *)(vaddr + size));
1298
1299	if (dir == DMA_TO_DEVICE)
1300		memcpy(vaddr, *vaddr_handle, size);
1301
1302	*vaddr_handle = vaddr;
1303	return 0;
1304}
1305
1306static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle,
1307			      void **vaddr_handle, size_t size,
1308			      enum dma_data_direction dir)
1309{
1310	unsigned char *vaddr = *vaddr_handle;
1311
1312	vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size));
1313
1314	if (dir == DMA_FROM_DEVICE)
1315		memcpy(vaddr, *vaddr_handle, size);
1316
1317	hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle);
1318
1319	*vaddr_handle = vaddr;
1320	*dma_handle = 0;
1321}
1322
1323void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb)
1324{
1325	if (IS_ENABLED(CONFIG_HAS_DMA) &&
1326	    (urb->transfer_flags & URB_SETUP_MAP_SINGLE))
1327		dma_unmap_single(hcd->self.sysdev,
1328				urb->setup_dma,
1329				sizeof(struct usb_ctrlrequest),
1330				DMA_TO_DEVICE);
1331	else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL)
1332		hcd_free_coherent(urb->dev->bus,
1333				&urb->setup_dma,
1334				(void **) &urb->setup_packet,
1335				sizeof(struct usb_ctrlrequest),
1336				DMA_TO_DEVICE);
1337
1338	/* Make it safe to call this routine more than once */
1339	urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL);
1340}
1341EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma);
1342
1343static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1344{
1345	if (hcd->driver->unmap_urb_for_dma)
1346		hcd->driver->unmap_urb_for_dma(hcd, urb);
1347	else
1348		usb_hcd_unmap_urb_for_dma(hcd, urb);
1349}
1350
1351void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1352{
1353	enum dma_data_direction dir;
1354
1355	usb_hcd_unmap_urb_setup_for_dma(hcd, urb);
1356
1357	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1358	if (IS_ENABLED(CONFIG_HAS_DMA) &&
1359	    (urb->transfer_flags & URB_DMA_MAP_SG))
1360		dma_unmap_sg(hcd->self.sysdev,
1361				urb->sg,
1362				urb->num_sgs,
1363				dir);
1364	else if (IS_ENABLED(CONFIG_HAS_DMA) &&
1365		 (urb->transfer_flags & URB_DMA_MAP_PAGE))
1366		dma_unmap_page(hcd->self.sysdev,
1367				urb->transfer_dma,
1368				urb->transfer_buffer_length,
1369				dir);
1370	else if (IS_ENABLED(CONFIG_HAS_DMA) &&
1371		 (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1372		dma_unmap_single(hcd->self.sysdev,
1373				urb->transfer_dma,
1374				urb->transfer_buffer_length,
1375				dir);
1376	else if (urb->transfer_flags & URB_MAP_LOCAL)
1377		hcd_free_coherent(urb->dev->bus,
1378				&urb->transfer_dma,
1379				&urb->transfer_buffer,
1380				urb->transfer_buffer_length,
1381				dir);
1382
1383	/* Make it safe to call this routine more than once */
1384	urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE |
1385			URB_DMA_MAP_SINGLE | URB_MAP_LOCAL);
1386}
1387EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma);
1388
1389static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1390			   gfp_t mem_flags)
1391{
1392	if (hcd->driver->map_urb_for_dma)
1393		return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags);
1394	else
1395		return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1396}
1397
1398int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1399			    gfp_t mem_flags)
1400{
1401	enum dma_data_direction dir;
1402	int ret = 0;
1403
1404	/* Map the URB's buffers for DMA access.
1405	 * Lower level HCD code should use *_dma exclusively,
1406	 * unless it uses pio or talks to another transport,
1407	 * or uses the provided scatter gather list for bulk.
1408	 */
1409
1410	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1411		if (hcd->self.uses_pio_for_control)
1412			return ret;
1413		if (hcd->localmem_pool) {
 
 
 
 
 
 
 
 
 
 
1414			ret = hcd_alloc_coherent(
1415					urb->dev->bus, mem_flags,
1416					&urb->setup_dma,
1417					(void **)&urb->setup_packet,
1418					sizeof(struct usb_ctrlrequest),
1419					DMA_TO_DEVICE);
1420			if (ret)
1421				return ret;
1422			urb->transfer_flags |= URB_SETUP_MAP_LOCAL;
1423		} else if (hcd_uses_dma(hcd)) {
1424			if (object_is_on_stack(urb->setup_packet)) {
1425				WARN_ONCE(1, "setup packet is on stack\n");
1426				return -EAGAIN;
1427			}
1428
1429			urb->setup_dma = dma_map_single(
1430					hcd->self.sysdev,
1431					urb->setup_packet,
1432					sizeof(struct usb_ctrlrequest),
1433					DMA_TO_DEVICE);
1434			if (dma_mapping_error(hcd->self.sysdev,
1435						urb->setup_dma))
1436				return -EAGAIN;
1437			urb->transfer_flags |= URB_SETUP_MAP_SINGLE;
1438		}
1439	}
1440
1441	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1442	if (urb->transfer_buffer_length != 0
1443	    && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1444		if (hcd->localmem_pool) {
1445			ret = hcd_alloc_coherent(
1446					urb->dev->bus, mem_flags,
1447					&urb->transfer_dma,
1448					&urb->transfer_buffer,
1449					urb->transfer_buffer_length,
1450					dir);
1451			if (ret == 0)
1452				urb->transfer_flags |= URB_MAP_LOCAL;
1453		} else if (hcd_uses_dma(hcd)) {
1454			if (urb->num_sgs) {
1455				int n;
1456
1457				/* We don't support sg for isoc transfers ! */
1458				if (usb_endpoint_xfer_isoc(&urb->ep->desc)) {
1459					WARN_ON(1);
1460					return -EINVAL;
1461				}
1462
1463				n = dma_map_sg(
1464						hcd->self.sysdev,
1465						urb->sg,
1466						urb->num_sgs,
1467						dir);
1468				if (n <= 0)
1469					ret = -EAGAIN;
1470				else
1471					urb->transfer_flags |= URB_DMA_MAP_SG;
1472				urb->num_mapped_sgs = n;
1473				if (n != urb->num_sgs)
1474					urb->transfer_flags |=
1475							URB_DMA_SG_COMBINED;
1476			} else if (urb->sg) {
1477				struct scatterlist *sg = urb->sg;
1478				urb->transfer_dma = dma_map_page(
1479						hcd->self.sysdev,
1480						sg_page(sg),
1481						sg->offset,
1482						urb->transfer_buffer_length,
1483						dir);
1484				if (dma_mapping_error(hcd->self.sysdev,
1485						urb->transfer_dma))
1486					ret = -EAGAIN;
1487				else
1488					urb->transfer_flags |= URB_DMA_MAP_PAGE;
1489			} else if (object_is_on_stack(urb->transfer_buffer)) {
1490				WARN_ONCE(1, "transfer buffer is on stack\n");
1491				ret = -EAGAIN;
1492			} else {
1493				urb->transfer_dma = dma_map_single(
1494						hcd->self.sysdev,
1495						urb->transfer_buffer,
1496						urb->transfer_buffer_length,
1497						dir);
1498				if (dma_mapping_error(hcd->self.sysdev,
1499						urb->transfer_dma))
1500					ret = -EAGAIN;
1501				else
1502					urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1503			}
 
 
 
 
 
 
 
 
 
1504		}
1505		if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE |
1506				URB_SETUP_MAP_LOCAL)))
1507			usb_hcd_unmap_urb_for_dma(hcd, urb);
1508	}
1509	return ret;
1510}
1511EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma);
1512
1513/*-------------------------------------------------------------------------*/
1514
1515/* may be called in any context with a valid urb->dev usecount
1516 * caller surrenders "ownership" of urb
1517 * expects usb_submit_urb() to have sanity checked and conditioned all
1518 * inputs in the urb
1519 */
1520int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1521{
1522	int			status;
1523	struct usb_hcd		*hcd = bus_to_hcd(urb->dev->bus);
1524
1525	/* increment urb's reference count as part of giving it to the HCD
1526	 * (which will control it).  HCD guarantees that it either returns
1527	 * an error or calls giveback(), but not both.
1528	 */
1529	usb_get_urb(urb);
1530	atomic_inc(&urb->use_count);
1531	atomic_inc(&urb->dev->urbnum);
1532	usbmon_urb_submit(&hcd->self, urb);
1533
1534	/* NOTE requirements on root-hub callers (usbfs and the hub
1535	 * driver, for now):  URBs' urb->transfer_buffer must be
1536	 * valid and usb_buffer_{sync,unmap}() not be needed, since
1537	 * they could clobber root hub response data.  Also, control
1538	 * URBs must be submitted in process context with interrupts
1539	 * enabled.
1540	 */
1541
1542	if (is_root_hub(urb->dev)) {
1543		status = rh_urb_enqueue(hcd, urb);
1544	} else {
1545		status = map_urb_for_dma(hcd, urb, mem_flags);
1546		if (likely(status == 0)) {
1547			status = hcd->driver->urb_enqueue(hcd, urb, mem_flags);
1548			if (unlikely(status))
1549				unmap_urb_for_dma(hcd, urb);
1550		}
1551	}
1552
1553	if (unlikely(status)) {
1554		usbmon_urb_submit_error(&hcd->self, urb, status);
1555		urb->hcpriv = NULL;
1556		INIT_LIST_HEAD(&urb->urb_list);
1557		atomic_dec(&urb->use_count);
1558		atomic_dec(&urb->dev->urbnum);
1559		if (atomic_read(&urb->reject))
1560			wake_up(&usb_kill_urb_queue);
1561		usb_put_urb(urb);
1562	}
1563	return status;
1564}
1565
1566/*-------------------------------------------------------------------------*/
1567
1568/* this makes the hcd giveback() the urb more quickly, by kicking it
1569 * off hardware queues (which may take a while) and returning it as
1570 * soon as practical.  we've already set up the urb's return status,
1571 * but we can't know if the callback completed already.
1572 */
1573static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status)
1574{
1575	int		value;
1576
1577	if (is_root_hub(urb->dev))
1578		value = usb_rh_urb_dequeue(hcd, urb, status);
1579	else {
1580
1581		/* The only reason an HCD might fail this call is if
1582		 * it has not yet fully queued the urb to begin with.
1583		 * Such failures should be harmless. */
1584		value = hcd->driver->urb_dequeue(hcd, urb, status);
1585	}
1586	return value;
1587}
1588
1589/*
1590 * called in any context
1591 *
1592 * caller guarantees urb won't be recycled till both unlink()
1593 * and the urb's completion function return
1594 */
1595int usb_hcd_unlink_urb (struct urb *urb, int status)
1596{
1597	struct usb_hcd		*hcd;
1598	struct usb_device	*udev = urb->dev;
1599	int			retval = -EIDRM;
1600	unsigned long		flags;
1601
1602	/* Prevent the device and bus from going away while
1603	 * the unlink is carried out.  If they are already gone
1604	 * then urb->use_count must be 0, since disconnected
1605	 * devices can't have any active URBs.
1606	 */
1607	spin_lock_irqsave(&hcd_urb_unlink_lock, flags);
1608	if (atomic_read(&urb->use_count) > 0) {
1609		retval = 0;
1610		usb_get_dev(udev);
1611	}
1612	spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags);
1613	if (retval == 0) {
1614		hcd = bus_to_hcd(urb->dev->bus);
1615		retval = unlink1(hcd, urb, status);
1616		if (retval == 0)
1617			retval = -EINPROGRESS;
1618		else if (retval != -EIDRM && retval != -EBUSY)
1619			dev_dbg(&udev->dev, "hcd_unlink_urb %pK fail %d\n",
1620					urb, retval);
1621		usb_put_dev(udev);
1622	}
 
 
 
 
 
 
1623	return retval;
1624}
1625
1626/*-------------------------------------------------------------------------*/
1627
1628static void __usb_hcd_giveback_urb(struct urb *urb)
1629{
1630	struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1631	struct usb_anchor *anchor = urb->anchor;
1632	int status = urb->unlinked;
 
1633
1634	urb->hcpriv = NULL;
1635	if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) &&
1636	    urb->actual_length < urb->transfer_buffer_length &&
1637	    !status))
1638		status = -EREMOTEIO;
1639
1640	unmap_urb_for_dma(hcd, urb);
1641	usbmon_urb_complete(&hcd->self, urb, status);
1642	usb_anchor_suspend_wakeups(anchor);
1643	usb_unanchor_urb(urb);
1644	if (likely(status == 0))
1645		usb_led_activity(USB_LED_EVENT_HOST);
1646
1647	/* pass ownership to the completion handler */
1648	urb->status = status;
1649	kcov_remote_start_usb((u64)urb->dev->bus->busnum);
 
 
 
 
 
 
 
 
 
 
 
1650	urb->complete(urb);
1651	kcov_remote_stop();
1652
1653	usb_anchor_resume_wakeups(anchor);
1654	atomic_dec(&urb->use_count);
1655	if (unlikely(atomic_read(&urb->reject)))
1656		wake_up(&usb_kill_urb_queue);
1657	usb_put_urb(urb);
1658}
1659
1660static void usb_giveback_urb_bh(unsigned long param)
1661{
1662	struct giveback_urb_bh *bh = (struct giveback_urb_bh *)param;
1663	struct list_head local_list;
1664
1665	spin_lock_irq(&bh->lock);
1666	bh->running = true;
1667 restart:
1668	list_replace_init(&bh->head, &local_list);
1669	spin_unlock_irq(&bh->lock);
1670
1671	while (!list_empty(&local_list)) {
1672		struct urb *urb;
1673
1674		urb = list_entry(local_list.next, struct urb, urb_list);
1675		list_del_init(&urb->urb_list);
1676		bh->completing_ep = urb->ep;
1677		__usb_hcd_giveback_urb(urb);
1678		bh->completing_ep = NULL;
1679	}
1680
1681	/* check if there are new URBs to giveback */
1682	spin_lock_irq(&bh->lock);
1683	if (!list_empty(&bh->head))
1684		goto restart;
1685	bh->running = false;
1686	spin_unlock_irq(&bh->lock);
1687}
1688
1689/**
1690 * usb_hcd_giveback_urb - return URB from HCD to device driver
1691 * @hcd: host controller returning the URB
1692 * @urb: urb being returned to the USB device driver.
1693 * @status: completion status code for the URB.
1694 * Context: in_interrupt()
1695 *
1696 * This hands the URB from HCD to its USB device driver, using its
1697 * completion function.  The HCD has freed all per-urb resources
1698 * (and is done using urb->hcpriv).  It also released all HCD locks;
1699 * the device driver won't cause problems if it frees, modifies,
1700 * or resubmits this URB.
1701 *
1702 * If @urb was unlinked, the value of @status will be overridden by
1703 * @urb->unlinked.  Erroneous short transfers are detected in case
1704 * the HCD hasn't checked for them.
1705 */
1706void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status)
1707{
1708	struct giveback_urb_bh *bh;
1709	bool running, high_prio_bh;
1710
1711	/* pass status to tasklet via unlinked */
1712	if (likely(!urb->unlinked))
1713		urb->unlinked = status;
1714
1715	if (!hcd_giveback_urb_in_bh(hcd) && !is_root_hub(urb->dev)) {
1716		__usb_hcd_giveback_urb(urb);
1717		return;
1718	}
1719
1720	if (usb_pipeisoc(urb->pipe) || usb_pipeint(urb->pipe)) {
1721		bh = &hcd->high_prio_bh;
1722		high_prio_bh = true;
1723	} else {
1724		bh = &hcd->low_prio_bh;
1725		high_prio_bh = false;
1726	}
1727
1728	spin_lock(&bh->lock);
1729	list_add_tail(&urb->urb_list, &bh->head);
1730	running = bh->running;
1731	spin_unlock(&bh->lock);
1732
1733	if (running)
1734		;
1735	else if (high_prio_bh)
1736		tasklet_hi_schedule(&bh->bh);
1737	else
1738		tasklet_schedule(&bh->bh);
1739}
1740EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb);
1741
1742/*-------------------------------------------------------------------------*/
1743
1744/* Cancel all URBs pending on this endpoint and wait for the endpoint's
1745 * queue to drain completely.  The caller must first insure that no more
1746 * URBs can be submitted for this endpoint.
1747 */
1748void usb_hcd_flush_endpoint(struct usb_device *udev,
1749		struct usb_host_endpoint *ep)
1750{
1751	struct usb_hcd		*hcd;
1752	struct urb		*urb;
1753
1754	if (!ep)
1755		return;
1756	might_sleep();
1757	hcd = bus_to_hcd(udev->bus);
1758
1759	/* No more submits can occur */
1760	spin_lock_irq(&hcd_urb_list_lock);
1761rescan:
1762	list_for_each_entry_reverse(urb, &ep->urb_list, urb_list) {
1763		int	is_in;
1764
1765		if (urb->unlinked)
1766			continue;
1767		usb_get_urb (urb);
1768		is_in = usb_urb_dir_in(urb);
1769		spin_unlock(&hcd_urb_list_lock);
1770
1771		/* kick hcd */
1772		unlink1(hcd, urb, -ESHUTDOWN);
1773		dev_dbg (hcd->self.controller,
1774			"shutdown urb %pK ep%d%s-%s\n",
1775			urb, usb_endpoint_num(&ep->desc),
1776			is_in ? "in" : "out",
1777			usb_ep_type_string(usb_endpoint_type(&ep->desc)));
 
 
 
 
 
 
 
 
 
 
 
 
 
1778		usb_put_urb (urb);
1779
1780		/* list contents may have changed */
1781		spin_lock(&hcd_urb_list_lock);
1782		goto rescan;
1783	}
1784	spin_unlock_irq(&hcd_urb_list_lock);
1785
1786	/* Wait until the endpoint queue is completely empty */
1787	while (!list_empty (&ep->urb_list)) {
1788		spin_lock_irq(&hcd_urb_list_lock);
1789
1790		/* The list may have changed while we acquired the spinlock */
1791		urb = NULL;
1792		if (!list_empty (&ep->urb_list)) {
1793			urb = list_entry (ep->urb_list.prev, struct urb,
1794					urb_list);
1795			usb_get_urb (urb);
1796		}
1797		spin_unlock_irq(&hcd_urb_list_lock);
1798
1799		if (urb) {
1800			usb_kill_urb (urb);
1801			usb_put_urb (urb);
1802		}
1803	}
1804}
1805
1806/**
1807 * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds
1808 *				the bus bandwidth
1809 * @udev: target &usb_device
1810 * @new_config: new configuration to install
1811 * @cur_alt: the current alternate interface setting
1812 * @new_alt: alternate interface setting that is being installed
1813 *
1814 * To change configurations, pass in the new configuration in new_config,
1815 * and pass NULL for cur_alt and new_alt.
1816 *
1817 * To reset a device's configuration (put the device in the ADDRESSED state),
1818 * pass in NULL for new_config, cur_alt, and new_alt.
1819 *
1820 * To change alternate interface settings, pass in NULL for new_config,
1821 * pass in the current alternate interface setting in cur_alt,
1822 * and pass in the new alternate interface setting in new_alt.
1823 *
1824 * Return: An error if the requested bandwidth change exceeds the
1825 * bus bandwidth or host controller internal resources.
1826 */
1827int usb_hcd_alloc_bandwidth(struct usb_device *udev,
1828		struct usb_host_config *new_config,
1829		struct usb_host_interface *cur_alt,
1830		struct usb_host_interface *new_alt)
1831{
1832	int num_intfs, i, j;
1833	struct usb_host_interface *alt = NULL;
1834	int ret = 0;
1835	struct usb_hcd *hcd;
1836	struct usb_host_endpoint *ep;
1837
1838	hcd = bus_to_hcd(udev->bus);
1839	if (!hcd->driver->check_bandwidth)
1840		return 0;
1841
1842	/* Configuration is being removed - set configuration 0 */
1843	if (!new_config && !cur_alt) {
1844		for (i = 1; i < 16; ++i) {
1845			ep = udev->ep_out[i];
1846			if (ep)
1847				hcd->driver->drop_endpoint(hcd, udev, ep);
1848			ep = udev->ep_in[i];
1849			if (ep)
1850				hcd->driver->drop_endpoint(hcd, udev, ep);
1851		}
1852		hcd->driver->check_bandwidth(hcd, udev);
1853		return 0;
1854	}
1855	/* Check if the HCD says there's enough bandwidth.  Enable all endpoints
1856	 * each interface's alt setting 0 and ask the HCD to check the bandwidth
1857	 * of the bus.  There will always be bandwidth for endpoint 0, so it's
1858	 * ok to exclude it.
1859	 */
1860	if (new_config) {
1861		num_intfs = new_config->desc.bNumInterfaces;
1862		/* Remove endpoints (except endpoint 0, which is always on the
1863		 * schedule) from the old config from the schedule
1864		 */
1865		for (i = 1; i < 16; ++i) {
1866			ep = udev->ep_out[i];
1867			if (ep) {
1868				ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1869				if (ret < 0)
1870					goto reset;
1871			}
1872			ep = udev->ep_in[i];
1873			if (ep) {
1874				ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1875				if (ret < 0)
1876					goto reset;
1877			}
1878		}
1879		for (i = 0; i < num_intfs; ++i) {
1880			struct usb_host_interface *first_alt;
1881			int iface_num;
1882
1883			first_alt = &new_config->intf_cache[i]->altsetting[0];
1884			iface_num = first_alt->desc.bInterfaceNumber;
1885			/* Set up endpoints for alternate interface setting 0 */
1886			alt = usb_find_alt_setting(new_config, iface_num, 0);
1887			if (!alt)
1888				/* No alt setting 0? Pick the first setting. */
1889				alt = first_alt;
1890
1891			for (j = 0; j < alt->desc.bNumEndpoints; j++) {
1892				ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]);
1893				if (ret < 0)
1894					goto reset;
1895			}
1896		}
1897	}
1898	if (cur_alt && new_alt) {
1899		struct usb_interface *iface = usb_ifnum_to_if(udev,
1900				cur_alt->desc.bInterfaceNumber);
1901
1902		if (!iface)
1903			return -EINVAL;
1904		if (iface->resetting_device) {
1905			/*
1906			 * The USB core just reset the device, so the xHCI host
1907			 * and the device will think alt setting 0 is installed.
1908			 * However, the USB core will pass in the alternate
1909			 * setting installed before the reset as cur_alt.  Dig
1910			 * out the alternate setting 0 structure, or the first
1911			 * alternate setting if a broken device doesn't have alt
1912			 * setting 0.
1913			 */
1914			cur_alt = usb_altnum_to_altsetting(iface, 0);
1915			if (!cur_alt)
1916				cur_alt = &iface->altsetting[0];
1917		}
1918
1919		/* Drop all the endpoints in the current alt setting */
1920		for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) {
1921			ret = hcd->driver->drop_endpoint(hcd, udev,
1922					&cur_alt->endpoint[i]);
1923			if (ret < 0)
1924				goto reset;
1925		}
1926		/* Add all the endpoints in the new alt setting */
1927		for (i = 0; i < new_alt->desc.bNumEndpoints; i++) {
1928			ret = hcd->driver->add_endpoint(hcd, udev,
1929					&new_alt->endpoint[i]);
1930			if (ret < 0)
1931				goto reset;
1932		}
1933	}
1934	ret = hcd->driver->check_bandwidth(hcd, udev);
1935reset:
1936	if (ret < 0)
1937		hcd->driver->reset_bandwidth(hcd, udev);
1938	return ret;
1939}
1940
1941/* Disables the endpoint: synchronizes with the hcd to make sure all
1942 * endpoint state is gone from hardware.  usb_hcd_flush_endpoint() must
1943 * have been called previously.  Use for set_configuration, set_interface,
1944 * driver removal, physical disconnect.
1945 *
1946 * example:  a qh stored in ep->hcpriv, holding state related to endpoint
1947 * type, maxpacket size, toggle, halt status, and scheduling.
1948 */
1949void usb_hcd_disable_endpoint(struct usb_device *udev,
1950		struct usb_host_endpoint *ep)
1951{
1952	struct usb_hcd		*hcd;
1953
1954	might_sleep();
1955	hcd = bus_to_hcd(udev->bus);
1956	if (hcd->driver->endpoint_disable)
1957		hcd->driver->endpoint_disable(hcd, ep);
1958}
1959
1960/**
1961 * usb_hcd_reset_endpoint - reset host endpoint state
1962 * @udev: USB device.
1963 * @ep:   the endpoint to reset.
1964 *
1965 * Resets any host endpoint state such as the toggle bit, sequence
1966 * number and current window.
1967 */
1968void usb_hcd_reset_endpoint(struct usb_device *udev,
1969			    struct usb_host_endpoint *ep)
1970{
1971	struct usb_hcd *hcd = bus_to_hcd(udev->bus);
1972
1973	if (hcd->driver->endpoint_reset)
1974		hcd->driver->endpoint_reset(hcd, ep);
1975	else {
1976		int epnum = usb_endpoint_num(&ep->desc);
1977		int is_out = usb_endpoint_dir_out(&ep->desc);
1978		int is_control = usb_endpoint_xfer_control(&ep->desc);
1979
1980		usb_settoggle(udev, epnum, is_out, 0);
1981		if (is_control)
1982			usb_settoggle(udev, epnum, !is_out, 0);
1983	}
1984}
1985
1986/**
1987 * usb_alloc_streams - allocate bulk endpoint stream IDs.
1988 * @interface:		alternate setting that includes all endpoints.
1989 * @eps:		array of endpoints that need streams.
1990 * @num_eps:		number of endpoints in the array.
1991 * @num_streams:	number of streams to allocate.
1992 * @mem_flags:		flags hcd should use to allocate memory.
1993 *
1994 * Sets up a group of bulk endpoints to have @num_streams stream IDs available.
1995 * Drivers may queue multiple transfers to different stream IDs, which may
1996 * complete in a different order than they were queued.
1997 *
1998 * Return: On success, the number of allocated streams. On failure, a negative
1999 * error code.
2000 */
2001int usb_alloc_streams(struct usb_interface *interface,
2002		struct usb_host_endpoint **eps, unsigned int num_eps,
2003		unsigned int num_streams, gfp_t mem_flags)
2004{
2005	struct usb_hcd *hcd;
2006	struct usb_device *dev;
2007	int i, ret;
2008
2009	dev = interface_to_usbdev(interface);
2010	hcd = bus_to_hcd(dev->bus);
2011	if (!hcd->driver->alloc_streams || !hcd->driver->free_streams)
2012		return -EINVAL;
2013	if (dev->speed < USB_SPEED_SUPER)
2014		return -EINVAL;
2015	if (dev->state < USB_STATE_CONFIGURED)
2016		return -ENODEV;
2017
2018	for (i = 0; i < num_eps; i++) {
2019		/* Streams only apply to bulk endpoints. */
2020		if (!usb_endpoint_xfer_bulk(&eps[i]->desc))
2021			return -EINVAL;
2022		/* Re-alloc is not allowed */
2023		if (eps[i]->streams)
2024			return -EINVAL;
2025	}
2026
2027	ret = hcd->driver->alloc_streams(hcd, dev, eps, num_eps,
2028			num_streams, mem_flags);
2029	if (ret < 0)
2030		return ret;
2031
2032	for (i = 0; i < num_eps; i++)
2033		eps[i]->streams = ret;
2034
2035	return ret;
2036}
2037EXPORT_SYMBOL_GPL(usb_alloc_streams);
2038
2039/**
2040 * usb_free_streams - free bulk endpoint stream IDs.
2041 * @interface:	alternate setting that includes all endpoints.
2042 * @eps:	array of endpoints to remove streams from.
2043 * @num_eps:	number of endpoints in the array.
2044 * @mem_flags:	flags hcd should use to allocate memory.
2045 *
2046 * Reverts a group of bulk endpoints back to not using stream IDs.
2047 * Can fail if we are given bad arguments, or HCD is broken.
2048 *
2049 * Return: 0 on success. On failure, a negative error code.
2050 */
2051int usb_free_streams(struct usb_interface *interface,
2052		struct usb_host_endpoint **eps, unsigned int num_eps,
2053		gfp_t mem_flags)
2054{
2055	struct usb_hcd *hcd;
2056	struct usb_device *dev;
2057	int i, ret;
2058
2059	dev = interface_to_usbdev(interface);
2060	hcd = bus_to_hcd(dev->bus);
2061	if (dev->speed < USB_SPEED_SUPER)
2062		return -EINVAL;
2063
2064	/* Double-free is not allowed */
2065	for (i = 0; i < num_eps; i++)
2066		if (!eps[i] || !eps[i]->streams)
2067			return -EINVAL;
2068
2069	ret = hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags);
2070	if (ret < 0)
2071		return ret;
2072
2073	for (i = 0; i < num_eps; i++)
2074		eps[i]->streams = 0;
2075
2076	return ret;
2077}
2078EXPORT_SYMBOL_GPL(usb_free_streams);
2079
2080/* Protect against drivers that try to unlink URBs after the device
2081 * is gone, by waiting until all unlinks for @udev are finished.
2082 * Since we don't currently track URBs by device, simply wait until
2083 * nothing is running in the locked region of usb_hcd_unlink_urb().
2084 */
2085void usb_hcd_synchronize_unlinks(struct usb_device *udev)
2086{
2087	spin_lock_irq(&hcd_urb_unlink_lock);
2088	spin_unlock_irq(&hcd_urb_unlink_lock);
2089}
2090
2091/*-------------------------------------------------------------------------*/
2092
2093/* called in any context */
2094int usb_hcd_get_frame_number (struct usb_device *udev)
2095{
2096	struct usb_hcd	*hcd = bus_to_hcd(udev->bus);
2097
2098	if (!HCD_RH_RUNNING(hcd))
2099		return -ESHUTDOWN;
2100	return hcd->driver->get_frame_number (hcd);
2101}
2102
2103/*-------------------------------------------------------------------------*/
2104
2105#ifdef	CONFIG_PM
2106
2107int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg)
2108{
2109	struct usb_hcd	*hcd = bus_to_hcd(rhdev->bus);
2110	int		status;
2111	int		old_state = hcd->state;
2112
2113	dev_dbg(&rhdev->dev, "bus %ssuspend, wakeup %d\n",
2114			(PMSG_IS_AUTO(msg) ? "auto-" : ""),
2115			rhdev->do_remote_wakeup);
2116	if (HCD_DEAD(hcd)) {
2117		dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend");
2118		return 0;
2119	}
2120
2121	if (!hcd->driver->bus_suspend) {
2122		status = -ENOENT;
2123	} else {
2124		clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2125		hcd->state = HC_STATE_QUIESCING;
2126		status = hcd->driver->bus_suspend(hcd);
2127	}
2128	if (status == 0) {
2129		usb_set_device_state(rhdev, USB_STATE_SUSPENDED);
2130		hcd->state = HC_STATE_SUSPENDED;
2131
2132		if (!PMSG_IS_AUTO(msg))
2133			usb_phy_roothub_suspend(hcd->self.sysdev,
2134						hcd->phy_roothub);
2135
2136		/* Did we race with a root-hub wakeup event? */
2137		if (rhdev->do_remote_wakeup) {
2138			char	buffer[6];
2139
2140			status = hcd->driver->hub_status_data(hcd, buffer);
2141			if (status != 0) {
2142				dev_dbg(&rhdev->dev, "suspend raced with wakeup event\n");
2143				hcd_bus_resume(rhdev, PMSG_AUTO_RESUME);
2144				status = -EBUSY;
2145			}
2146		}
2147	} else {
2148		spin_lock_irq(&hcd_root_hub_lock);
2149		if (!HCD_DEAD(hcd)) {
2150			set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2151			hcd->state = old_state;
2152		}
2153		spin_unlock_irq(&hcd_root_hub_lock);
2154		dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2155				"suspend", status);
2156	}
2157	return status;
2158}
2159
2160int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg)
2161{
2162	struct usb_hcd	*hcd = bus_to_hcd(rhdev->bus);
2163	int		status;
2164	int		old_state = hcd->state;
2165
2166	dev_dbg(&rhdev->dev, "usb %sresume\n",
2167			(PMSG_IS_AUTO(msg) ? "auto-" : ""));
2168	if (HCD_DEAD(hcd)) {
2169		dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume");
2170		return 0;
2171	}
2172
2173	if (!PMSG_IS_AUTO(msg)) {
2174		status = usb_phy_roothub_resume(hcd->self.sysdev,
2175						hcd->phy_roothub);
2176		if (status)
2177			return status;
2178	}
2179
2180	if (!hcd->driver->bus_resume)
2181		return -ENOENT;
2182	if (HCD_RH_RUNNING(hcd))
2183		return 0;
2184
2185	hcd->state = HC_STATE_RESUMING;
2186	status = hcd->driver->bus_resume(hcd);
2187	clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2188	if (status == 0)
2189		status = usb_phy_roothub_calibrate(hcd->phy_roothub);
2190
2191	if (status == 0) {
2192		struct usb_device *udev;
2193		int port1;
2194
2195		spin_lock_irq(&hcd_root_hub_lock);
2196		if (!HCD_DEAD(hcd)) {
2197			usb_set_device_state(rhdev, rhdev->actconfig
2198					? USB_STATE_CONFIGURED
2199					: USB_STATE_ADDRESS);
2200			set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2201			hcd->state = HC_STATE_RUNNING;
2202		}
2203		spin_unlock_irq(&hcd_root_hub_lock);
2204
2205		/*
2206		 * Check whether any of the enabled ports on the root hub are
2207		 * unsuspended.  If they are then a TRSMRCY delay is needed
2208		 * (this is what the USB-2 spec calls a "global resume").
2209		 * Otherwise we can skip the delay.
2210		 */
2211		usb_hub_for_each_child(rhdev, port1, udev) {
2212			if (udev->state != USB_STATE_NOTATTACHED &&
2213					!udev->port_is_suspended) {
2214				usleep_range(10000, 11000);	/* TRSMRCY */
2215				break;
2216			}
2217		}
2218	} else {
2219		hcd->state = old_state;
2220		usb_phy_roothub_suspend(hcd->self.sysdev, hcd->phy_roothub);
2221		dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2222				"resume", status);
2223		if (status != -ESHUTDOWN)
2224			usb_hc_died(hcd);
2225	}
2226	return status;
2227}
2228
 
 
 
 
2229/* Workqueue routine for root-hub remote wakeup */
2230static void hcd_resume_work(struct work_struct *work)
2231{
2232	struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work);
2233	struct usb_device *udev = hcd->self.root_hub;
2234
 
2235	usb_remote_wakeup(udev);
 
2236}
2237
2238/**
2239 * usb_hcd_resume_root_hub - called by HCD to resume its root hub
2240 * @hcd: host controller for this root hub
2241 *
2242 * The USB host controller calls this function when its root hub is
2243 * suspended (with the remote wakeup feature enabled) and a remote
2244 * wakeup request is received.  The routine submits a workqueue request
2245 * to resume the root hub (that is, manage its downstream ports again).
2246 */
2247void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
2248{
2249	unsigned long flags;
2250
2251	spin_lock_irqsave (&hcd_root_hub_lock, flags);
2252	if (hcd->rh_registered) {
2253		pm_wakeup_event(&hcd->self.root_hub->dev, 0);
2254		set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2255		queue_work(pm_wq, &hcd->wakeup_work);
2256	}
2257	spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2258}
2259EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
2260
2261#endif	/* CONFIG_PM */
2262
2263/*-------------------------------------------------------------------------*/
2264
2265#ifdef	CONFIG_USB_OTG
2266
2267/**
2268 * usb_bus_start_enum - start immediate enumeration (for OTG)
2269 * @bus: the bus (must use hcd framework)
2270 * @port_num: 1-based number of port; usually bus->otg_port
2271 * Context: in_interrupt()
2272 *
2273 * Starts enumeration, with an immediate reset followed later by
2274 * hub_wq identifying and possibly configuring the device.
2275 * This is needed by OTG controller drivers, where it helps meet
2276 * HNP protocol timing requirements for starting a port reset.
2277 *
2278 * Return: 0 if successful.
2279 */
2280int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
2281{
2282	struct usb_hcd		*hcd;
2283	int			status = -EOPNOTSUPP;
2284
2285	/* NOTE: since HNP can't start by grabbing the bus's address0_sem,
2286	 * boards with root hubs hooked up to internal devices (instead of
2287	 * just the OTG port) may need more attention to resetting...
2288	 */
2289	hcd = bus_to_hcd(bus);
2290	if (port_num && hcd->driver->start_port_reset)
2291		status = hcd->driver->start_port_reset(hcd, port_num);
2292
2293	/* allocate hub_wq shortly after (first) root port reset finishes;
2294	 * it may issue others, until at least 50 msecs have passed.
2295	 */
2296	if (status == 0)
2297		mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
2298	return status;
2299}
2300EXPORT_SYMBOL_GPL(usb_bus_start_enum);
2301
2302#endif
2303
2304/*-------------------------------------------------------------------------*/
2305
2306/**
2307 * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
2308 * @irq: the IRQ being raised
2309 * @__hcd: pointer to the HCD whose IRQ is being signaled
2310 *
2311 * If the controller isn't HALTed, calls the driver's irq handler.
2312 * Checks whether the controller is now dead.
2313 *
2314 * Return: %IRQ_HANDLED if the IRQ was handled. %IRQ_NONE otherwise.
2315 */
2316irqreturn_t usb_hcd_irq (int irq, void *__hcd)
2317{
2318	struct usb_hcd		*hcd = __hcd;
2319	irqreturn_t		rc;
2320
2321	if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd)))
2322		rc = IRQ_NONE;
2323	else if (hcd->driver->irq(hcd) == IRQ_NONE)
2324		rc = IRQ_NONE;
2325	else
2326		rc = IRQ_HANDLED;
2327
2328	return rc;
2329}
2330EXPORT_SYMBOL_GPL(usb_hcd_irq);
2331
2332/*-------------------------------------------------------------------------*/
2333
2334/* Workqueue routine for when the root-hub has died. */
2335static void hcd_died_work(struct work_struct *work)
2336{
2337	struct usb_hcd *hcd = container_of(work, struct usb_hcd, died_work);
2338	static char *env[] = {
2339		"ERROR=DEAD",
2340		NULL
2341	};
2342
2343	/* Notify user space that the host controller has died */
2344	kobject_uevent_env(&hcd->self.root_hub->dev.kobj, KOBJ_OFFLINE, env);
2345}
2346
2347/**
2348 * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
2349 * @hcd: pointer to the HCD representing the controller
2350 *
2351 * This is called by bus glue to report a USB host controller that died
2352 * while operations may still have been pending.  It's called automatically
2353 * by the PCI glue, so only glue for non-PCI busses should need to call it.
2354 *
2355 * Only call this function with the primary HCD.
2356 */
2357void usb_hc_died (struct usb_hcd *hcd)
2358{
2359	unsigned long flags;
2360
2361	dev_err (hcd->self.controller, "HC died; cleaning up\n");
2362
2363	spin_lock_irqsave (&hcd_root_hub_lock, flags);
2364	clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2365	set_bit(HCD_FLAG_DEAD, &hcd->flags);
2366	if (hcd->rh_registered) {
2367		clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2368
2369		/* make hub_wq clean up old urbs and devices */
2370		usb_set_device_state (hcd->self.root_hub,
2371				USB_STATE_NOTATTACHED);
2372		usb_kick_hub_wq(hcd->self.root_hub);
2373	}
2374	if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) {
2375		hcd = hcd->shared_hcd;
2376		clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2377		set_bit(HCD_FLAG_DEAD, &hcd->flags);
2378		if (hcd->rh_registered) {
2379			clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2380
2381			/* make hub_wq clean up old urbs and devices */
2382			usb_set_device_state(hcd->self.root_hub,
2383					USB_STATE_NOTATTACHED);
2384			usb_kick_hub_wq(hcd->self.root_hub);
2385		}
2386	}
2387
2388	/* Handle the case where this function gets called with a shared HCD */
2389	if (usb_hcd_is_primary_hcd(hcd))
2390		schedule_work(&hcd->died_work);
2391	else
2392		schedule_work(&hcd->primary_hcd->died_work);
2393
2394	spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2395	/* Make sure that the other roothub is also deallocated. */
2396}
2397EXPORT_SYMBOL_GPL (usb_hc_died);
2398
2399/*-------------------------------------------------------------------------*/
2400
2401static void init_giveback_urb_bh(struct giveback_urb_bh *bh)
2402{
2403
2404	spin_lock_init(&bh->lock);
2405	INIT_LIST_HEAD(&bh->head);
2406	tasklet_init(&bh->bh, usb_giveback_urb_bh, (unsigned long)bh);
2407}
2408
2409struct usb_hcd *__usb_create_hcd(const struct hc_driver *driver,
2410		struct device *sysdev, struct device *dev, const char *bus_name,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2411		struct usb_hcd *primary_hcd)
2412{
2413	struct usb_hcd *hcd;
2414
2415	hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
2416	if (!hcd)
 
2417		return NULL;
 
2418	if (primary_hcd == NULL) {
2419		hcd->address0_mutex = kmalloc(sizeof(*hcd->address0_mutex),
2420				GFP_KERNEL);
2421		if (!hcd->address0_mutex) {
2422			kfree(hcd);
2423			dev_dbg(dev, "hcd address0 mutex alloc failed\n");
2424			return NULL;
2425		}
2426		mutex_init(hcd->address0_mutex);
2427		hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex),
2428				GFP_KERNEL);
2429		if (!hcd->bandwidth_mutex) {
2430			kfree(hcd->address0_mutex);
2431			kfree(hcd);
2432			dev_dbg(dev, "hcd bandwidth mutex alloc failed\n");
2433			return NULL;
2434		}
2435		mutex_init(hcd->bandwidth_mutex);
2436		dev_set_drvdata(dev, hcd);
2437	} else {
2438		mutex_lock(&usb_port_peer_mutex);
2439		hcd->address0_mutex = primary_hcd->address0_mutex;
2440		hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex;
2441		hcd->primary_hcd = primary_hcd;
2442		primary_hcd->primary_hcd = primary_hcd;
2443		hcd->shared_hcd = primary_hcd;
2444		primary_hcd->shared_hcd = hcd;
2445		mutex_unlock(&usb_port_peer_mutex);
2446	}
2447
2448	kref_init(&hcd->kref);
2449
2450	usb_bus_init(&hcd->self);
2451	hcd->self.controller = dev;
2452	hcd->self.sysdev = sysdev;
2453	hcd->self.bus_name = bus_name;
 
2454
2455	timer_setup(&hcd->rh_timer, rh_timer_func, 0);
2456#ifdef CONFIG_PM
 
 
2457	INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
2458#endif
2459
2460	INIT_WORK(&hcd->died_work, hcd_died_work);
2461
2462	hcd->driver = driver;
2463	hcd->speed = driver->flags & HCD_MASK;
2464	hcd->product_desc = (driver->product_desc) ? driver->product_desc :
2465			"USB Host Controller";
2466	return hcd;
2467}
2468EXPORT_SYMBOL_GPL(__usb_create_hcd);
2469
2470/**
2471 * usb_create_shared_hcd - create and initialize an HCD structure
2472 * @driver: HC driver that will use this hcd
2473 * @dev: device for this HC, stored in hcd->self.controller
2474 * @bus_name: value to store in hcd->self.bus_name
2475 * @primary_hcd: a pointer to the usb_hcd structure that is sharing the
2476 *              PCI device.  Only allocate certain resources for the primary HCD
2477 * Context: !in_interrupt()
2478 *
2479 * Allocate a struct usb_hcd, with extra space at the end for the
2480 * HC driver's private data.  Initialize the generic members of the
2481 * hcd structure.
2482 *
2483 * Return: On success, a pointer to the created and initialized HCD structure.
2484 * On failure (e.g. if memory is unavailable), %NULL.
2485 */
2486struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver,
2487		struct device *dev, const char *bus_name,
2488		struct usb_hcd *primary_hcd)
2489{
2490	return __usb_create_hcd(driver, dev, dev, bus_name, primary_hcd);
2491}
2492EXPORT_SYMBOL_GPL(usb_create_shared_hcd);
2493
2494/**
2495 * usb_create_hcd - create and initialize an HCD structure
2496 * @driver: HC driver that will use this hcd
2497 * @dev: device for this HC, stored in hcd->self.controller
2498 * @bus_name: value to store in hcd->self.bus_name
2499 * Context: !in_interrupt()
2500 *
2501 * Allocate a struct usb_hcd, with extra space at the end for the
2502 * HC driver's private data.  Initialize the generic members of the
2503 * hcd structure.
2504 *
2505 * Return: On success, a pointer to the created and initialized HCD
2506 * structure. On failure (e.g. if memory is unavailable), %NULL.
2507 */
2508struct usb_hcd *usb_create_hcd(const struct hc_driver *driver,
2509		struct device *dev, const char *bus_name)
2510{
2511	return __usb_create_hcd(driver, dev, dev, bus_name, NULL);
2512}
2513EXPORT_SYMBOL_GPL(usb_create_hcd);
2514
2515/*
2516 * Roothubs that share one PCI device must also share the bandwidth mutex.
2517 * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is
2518 * deallocated.
2519 *
2520 * Make sure to deallocate the bandwidth_mutex only when the last HCD is
2521 * freed.  When hcd_release() is called for either hcd in a peer set,
2522 * invalidate the peer's ->shared_hcd and ->primary_hcd pointers.
 
2523 */
2524static void hcd_release(struct kref *kref)
2525{
2526	struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
2527
2528	mutex_lock(&usb_port_peer_mutex);
2529	if (hcd->shared_hcd) {
2530		struct usb_hcd *peer = hcd->shared_hcd;
2531
2532		peer->shared_hcd = NULL;
2533		peer->primary_hcd = NULL;
2534	} else {
2535		kfree(hcd->address0_mutex);
2536		kfree(hcd->bandwidth_mutex);
2537	}
2538	mutex_unlock(&usb_port_peer_mutex);
2539	kfree(hcd);
2540}
2541
2542struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd)
2543{
2544	if (hcd)
2545		kref_get (&hcd->kref);
2546	return hcd;
2547}
2548EXPORT_SYMBOL_GPL(usb_get_hcd);
2549
2550void usb_put_hcd (struct usb_hcd *hcd)
2551{
2552	if (hcd)
2553		kref_put (&hcd->kref, hcd_release);
2554}
2555EXPORT_SYMBOL_GPL(usb_put_hcd);
2556
2557int usb_hcd_is_primary_hcd(struct usb_hcd *hcd)
2558{
2559	if (!hcd->primary_hcd)
2560		return 1;
2561	return hcd == hcd->primary_hcd;
2562}
2563EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd);
2564
2565int usb_hcd_find_raw_port_number(struct usb_hcd *hcd, int port1)
2566{
2567	if (!hcd->driver->find_raw_port_number)
2568		return port1;
2569
2570	return hcd->driver->find_raw_port_number(hcd, port1);
2571}
2572
2573static int usb_hcd_request_irqs(struct usb_hcd *hcd,
2574		unsigned int irqnum, unsigned long irqflags)
2575{
2576	int retval;
2577
2578	if (hcd->driver->irq) {
2579
2580		snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
2581				hcd->driver->description, hcd->self.busnum);
2582		retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
2583				hcd->irq_descr, hcd);
2584		if (retval != 0) {
2585			dev_err(hcd->self.controller,
2586					"request interrupt %d failed\n",
2587					irqnum);
2588			return retval;
2589		}
2590		hcd->irq = irqnum;
2591		dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
2592				(hcd->driver->flags & HCD_MEMORY) ?
2593					"io mem" : "io base",
2594					(unsigned long long)hcd->rsrc_start);
2595	} else {
2596		hcd->irq = 0;
2597		if (hcd->rsrc_start)
2598			dev_info(hcd->self.controller, "%s 0x%08llx\n",
2599					(hcd->driver->flags & HCD_MEMORY) ?
2600					"io mem" : "io base",
2601					(unsigned long long)hcd->rsrc_start);
2602	}
2603	return 0;
2604}
2605
2606/*
2607 * Before we free this root hub, flush in-flight peering attempts
2608 * and disable peer lookups
2609 */
2610static void usb_put_invalidate_rhdev(struct usb_hcd *hcd)
2611{
2612	struct usb_device *rhdev;
2613
2614	mutex_lock(&usb_port_peer_mutex);
2615	rhdev = hcd->self.root_hub;
2616	hcd->self.root_hub = NULL;
2617	mutex_unlock(&usb_port_peer_mutex);
2618	usb_put_dev(rhdev);
2619}
2620
2621/**
2622 * usb_add_hcd - finish generic HCD structure initialization and register
2623 * @hcd: the usb_hcd structure to initialize
2624 * @irqnum: Interrupt line to allocate
2625 * @irqflags: Interrupt type flags
2626 *
2627 * Finish the remaining parts of generic HCD initialization: allocate the
2628 * buffers of consistent memory, register the bus, request the IRQ line,
2629 * and call the driver's reset() and start() routines.
2630 */
2631int usb_add_hcd(struct usb_hcd *hcd,
2632		unsigned int irqnum, unsigned long irqflags)
2633{
2634	int retval;
2635	struct usb_device *rhdev;
2636
2637	if (!hcd->skip_phy_initialization && usb_hcd_is_primary_hcd(hcd)) {
2638		hcd->phy_roothub = usb_phy_roothub_alloc(hcd->self.sysdev);
2639		if (IS_ERR(hcd->phy_roothub))
2640			return PTR_ERR(hcd->phy_roothub);
2641
2642		retval = usb_phy_roothub_init(hcd->phy_roothub);
2643		if (retval)
2644			return retval;
2645
2646		retval = usb_phy_roothub_set_mode(hcd->phy_roothub,
2647						  PHY_MODE_USB_HOST_SS);
2648		if (retval)
2649			retval = usb_phy_roothub_set_mode(hcd->phy_roothub,
2650							  PHY_MODE_USB_HOST);
2651		if (retval)
2652			goto err_usb_phy_roothub_power_on;
2653
2654		retval = usb_phy_roothub_power_on(hcd->phy_roothub);
2655		if (retval)
2656			goto err_usb_phy_roothub_power_on;
 
 
 
 
 
 
 
 
 
 
2657	}
2658
2659	dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
2660
2661	switch (authorized_default) {
2662	case USB_AUTHORIZE_NONE:
2663		hcd->dev_policy = USB_DEVICE_AUTHORIZE_NONE;
2664		break;
2665
2666	case USB_AUTHORIZE_ALL:
2667		hcd->dev_policy = USB_DEVICE_AUTHORIZE_ALL;
2668		break;
2669
2670	case USB_AUTHORIZE_INTERNAL:
2671		hcd->dev_policy = USB_DEVICE_AUTHORIZE_INTERNAL;
2672		break;
2673
2674	case USB_AUTHORIZE_WIRED:
2675	default:
2676		hcd->dev_policy = hcd->wireless ?
2677			USB_DEVICE_AUTHORIZE_NONE : USB_DEVICE_AUTHORIZE_ALL;
2678		break;
2679	}
2680
2681	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
2682
2683	/* per default all interfaces are authorized */
2684	set_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
2685
2686	/* HC is in reset state, but accessible.  Now do the one-time init,
2687	 * bottom up so that hcds can customize the root hubs before hub_wq
2688	 * starts talking to them.  (Note, bus id is assigned early too.)
2689	 */
2690	retval = hcd_buffer_create(hcd);
2691	if (retval != 0) {
2692		dev_dbg(hcd->self.sysdev, "pool alloc failed\n");
2693		goto err_create_buf;
2694	}
2695
2696	retval = usb_register_bus(&hcd->self);
2697	if (retval < 0)
2698		goto err_register_bus;
2699
2700	rhdev = usb_alloc_dev(NULL, &hcd->self, 0);
2701	if (rhdev == NULL) {
2702		dev_err(hcd->self.sysdev, "unable to allocate root hub\n");
2703		retval = -ENOMEM;
2704		goto err_allocate_root_hub;
2705	}
2706	mutex_lock(&usb_port_peer_mutex);
2707	hcd->self.root_hub = rhdev;
2708	mutex_unlock(&usb_port_peer_mutex);
2709
2710	rhdev->rx_lanes = 1;
2711	rhdev->tx_lanes = 1;
2712
2713	switch (hcd->speed) {
2714	case HCD_USB11:
2715		rhdev->speed = USB_SPEED_FULL;
2716		break;
2717	case HCD_USB2:
2718		rhdev->speed = USB_SPEED_HIGH;
2719		break;
2720	case HCD_USB25:
2721		rhdev->speed = USB_SPEED_WIRELESS;
2722		break;
2723	case HCD_USB3:
2724		rhdev->speed = USB_SPEED_SUPER;
2725		break;
2726	case HCD_USB32:
2727		rhdev->rx_lanes = 2;
2728		rhdev->tx_lanes = 2;
2729		fallthrough;
2730	case HCD_USB31:
2731		rhdev->speed = USB_SPEED_SUPER_PLUS;
2732		break;
2733	default:
2734		retval = -EINVAL;
2735		goto err_set_rh_speed;
2736	}
2737
2738	/* wakeup flag init defaults to "everything works" for root hubs,
2739	 * but drivers can override it in reset() if needed, along with
2740	 * recording the overall controller's system wakeup capability.
2741	 */
2742	device_set_wakeup_capable(&rhdev->dev, 1);
2743
2744	/* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is
2745	 * registered.  But since the controller can die at any time,
2746	 * let's initialize the flag before touching the hardware.
2747	 */
2748	set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2749
2750	/* "reset" is misnamed; its role is now one-time init. the controller
2751	 * should already have been reset (and boot firmware kicked off etc).
2752	 */
2753	if (hcd->driver->reset) {
2754		retval = hcd->driver->reset(hcd);
2755		if (retval < 0) {
2756			dev_err(hcd->self.controller, "can't setup: %d\n",
2757					retval);
2758			goto err_hcd_driver_setup;
2759		}
2760	}
2761	hcd->rh_pollable = 1;
2762
2763	retval = usb_phy_roothub_calibrate(hcd->phy_roothub);
2764	if (retval)
2765		goto err_hcd_driver_setup;
2766
2767	/* NOTE: root hub and controller capabilities may not be the same */
2768	if (device_can_wakeup(hcd->self.controller)
2769			&& device_can_wakeup(&hcd->self.root_hub->dev))
2770		dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
2771
2772	/* initialize tasklets */
2773	init_giveback_urb_bh(&hcd->high_prio_bh);
2774	init_giveback_urb_bh(&hcd->low_prio_bh);
2775
2776	/* enable irqs just before we start the controller,
2777	 * if the BIOS provides legacy PCI irqs.
2778	 */
2779	if (usb_hcd_is_primary_hcd(hcd) && irqnum) {
2780		retval = usb_hcd_request_irqs(hcd, irqnum, irqflags);
2781		if (retval)
2782			goto err_request_irq;
2783	}
2784
2785	hcd->state = HC_STATE_RUNNING;
2786	retval = hcd->driver->start(hcd);
2787	if (retval < 0) {
2788		dev_err(hcd->self.controller, "startup error %d\n", retval);
2789		goto err_hcd_driver_start;
2790	}
2791
2792	/* starting here, usbcore will pay attention to this root hub */
2793	retval = register_root_hub(hcd);
2794	if (retval != 0)
2795		goto err_register_root_hub;
2796
 
 
 
 
 
 
2797	if (hcd->uses_new_polling && HCD_POLL_RH(hcd))
2798		usb_hcd_poll_rh_status(hcd);
2799
2800	return retval;
2801
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2802err_register_root_hub:
2803	hcd->rh_pollable = 0;
2804	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2805	del_timer_sync(&hcd->rh_timer);
2806	hcd->driver->stop(hcd);
2807	hcd->state = HC_STATE_HALT;
2808	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2809	del_timer_sync(&hcd->rh_timer);
2810err_hcd_driver_start:
2811	if (usb_hcd_is_primary_hcd(hcd) && hcd->irq > 0)
2812		free_irq(irqnum, hcd);
2813err_request_irq:
2814err_hcd_driver_setup:
2815err_set_rh_speed:
2816	usb_put_invalidate_rhdev(hcd);
2817err_allocate_root_hub:
2818	usb_deregister_bus(&hcd->self);
2819err_register_bus:
2820	hcd_buffer_destroy(hcd);
2821err_create_buf:
2822	usb_phy_roothub_power_off(hcd->phy_roothub);
2823err_usb_phy_roothub_power_on:
2824	usb_phy_roothub_exit(hcd->phy_roothub);
2825
 
2826	return retval;
2827}
2828EXPORT_SYMBOL_GPL(usb_add_hcd);
2829
2830/**
2831 * usb_remove_hcd - shutdown processing for generic HCDs
2832 * @hcd: the usb_hcd structure to remove
2833 * Context: !in_interrupt()
2834 *
2835 * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
2836 * invoking the HCD's stop() method.
2837 */
2838void usb_remove_hcd(struct usb_hcd *hcd)
2839{
2840	struct usb_device *rhdev = hcd->self.root_hub;
2841
2842	dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
2843
2844	usb_get_dev(rhdev);
 
 
2845	clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2846	if (HC_IS_RUNNING (hcd->state))
2847		hcd->state = HC_STATE_QUIESCING;
2848
2849	dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
2850	spin_lock_irq (&hcd_root_hub_lock);
2851	hcd->rh_registered = 0;
2852	spin_unlock_irq (&hcd_root_hub_lock);
2853
2854#ifdef CONFIG_PM
2855	cancel_work_sync(&hcd->wakeup_work);
2856#endif
2857	cancel_work_sync(&hcd->died_work);
2858
2859	mutex_lock(&usb_bus_idr_lock);
2860	usb_disconnect(&rhdev);		/* Sets rhdev to NULL */
2861	mutex_unlock(&usb_bus_idr_lock);
2862
2863	/*
2864	 * tasklet_kill() isn't needed here because:
2865	 * - driver's disconnect() called from usb_disconnect() should
2866	 *   make sure its URBs are completed during the disconnect()
2867	 *   callback
2868	 *
2869	 * - it is too late to run complete() here since driver may have
2870	 *   been removed already now
2871	 */
2872
2873	/* Prevent any more root-hub status calls from the timer.
2874	 * The HCD might still restart the timer (if a port status change
2875	 * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke
2876	 * the hub_status_data() callback.
2877	 */
2878	hcd->rh_pollable = 0;
2879	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2880	del_timer_sync(&hcd->rh_timer);
2881
2882	hcd->driver->stop(hcd);
2883	hcd->state = HC_STATE_HALT;
2884
2885	/* In case the HCD restarted the timer, stop it again. */
2886	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2887	del_timer_sync(&hcd->rh_timer);
2888
2889	if (usb_hcd_is_primary_hcd(hcd)) {
2890		if (hcd->irq > 0)
2891			free_irq(hcd->irq, hcd);
2892	}
2893
 
2894	usb_deregister_bus(&hcd->self);
2895	hcd_buffer_destroy(hcd);
2896
2897	usb_phy_roothub_power_off(hcd->phy_roothub);
2898	usb_phy_roothub_exit(hcd->phy_roothub);
2899
2900	usb_put_invalidate_rhdev(hcd);
2901	hcd->flags = 0;
2902}
2903EXPORT_SYMBOL_GPL(usb_remove_hcd);
2904
2905void
2906usb_hcd_platform_shutdown(struct platform_device *dev)
2907{
2908	struct usb_hcd *hcd = platform_get_drvdata(dev);
2909
2910	/* No need for pm_runtime_put(), we're shutting down */
2911	pm_runtime_get_sync(&dev->dev);
2912
2913	if (hcd->driver->shutdown)
2914		hcd->driver->shutdown(hcd);
2915}
2916EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
2917
2918int usb_hcd_setup_local_mem(struct usb_hcd *hcd, phys_addr_t phys_addr,
2919			    dma_addr_t dma, size_t size)
2920{
2921	int err;
2922	void *local_mem;
2923
2924	hcd->localmem_pool = devm_gen_pool_create(hcd->self.sysdev, 4,
2925						  dev_to_node(hcd->self.sysdev),
2926						  dev_name(hcd->self.sysdev));
2927	if (IS_ERR(hcd->localmem_pool))
2928		return PTR_ERR(hcd->localmem_pool);
2929
2930	local_mem = devm_memremap(hcd->self.sysdev, phys_addr,
2931				  size, MEMREMAP_WC);
2932	if (IS_ERR(local_mem))
2933		return PTR_ERR(local_mem);
2934
2935	/*
2936	 * Here we pass a dma_addr_t but the arg type is a phys_addr_t.
2937	 * It's not backed by system memory and thus there's no kernel mapping
2938	 * for it.
2939	 */
2940	err = gen_pool_add_virt(hcd->localmem_pool, (unsigned long)local_mem,
2941				dma, size, dev_to_node(hcd->self.sysdev));
2942	if (err < 0) {
2943		dev_err(hcd->self.sysdev, "gen_pool_add_virt failed with %d\n",
2944			err);
2945		return err;
2946	}
2947
2948	return 0;
2949}
2950EXPORT_SYMBOL_GPL(usb_hcd_setup_local_mem);
2951
2952/*-------------------------------------------------------------------------*/
2953
2954#if IS_ENABLED(CONFIG_USB_MON)
2955
2956const struct usb_mon_operations *mon_ops;
2957
2958/*
2959 * The registration is unlocked.
2960 * We do it this way because we do not want to lock in hot paths.
2961 *
2962 * Notice that the code is minimally error-proof. Because usbmon needs
2963 * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
2964 */
2965
2966int usb_mon_register(const struct usb_mon_operations *ops)
2967{
2968
2969	if (mon_ops)
2970		return -EBUSY;
2971
2972	mon_ops = ops;
2973	mb();
2974	return 0;
2975}
2976EXPORT_SYMBOL_GPL (usb_mon_register);
2977
2978void usb_mon_deregister (void)
2979{
2980
2981	if (mon_ops == NULL) {
2982		printk(KERN_ERR "USB: monitor was not registered\n");
2983		return;
2984	}
2985	mon_ops = NULL;
2986	mb();
2987}
2988EXPORT_SYMBOL_GPL (usb_mon_deregister);
2989
2990#endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */
v3.15
 
   1/*
   2 * (C) Copyright Linus Torvalds 1999
   3 * (C) Copyright Johannes Erdfelt 1999-2001
   4 * (C) Copyright Andreas Gal 1999
   5 * (C) Copyright Gregory P. Smith 1999
   6 * (C) Copyright Deti Fliegl 1999
   7 * (C) Copyright Randy Dunlap 2000
   8 * (C) Copyright David Brownell 2000-2002
   9 *
  10 * This program is free software; you can redistribute it and/or modify it
  11 * under the terms of the GNU General Public License as published by the
  12 * Free Software Foundation; either version 2 of the License, or (at your
  13 * option) any later version.
  14 *
  15 * This program is distributed in the hope that it will be useful, but
  16 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
  17 * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  18 * for more details.
  19 *
  20 * You should have received a copy of the GNU General Public License
  21 * along with this program; if not, write to the Free Software Foundation,
  22 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  23 */
  24
  25#include <linux/bcd.h>
  26#include <linux/module.h>
  27#include <linux/version.h>
  28#include <linux/kernel.h>
 
  29#include <linux/slab.h>
  30#include <linux/completion.h>
  31#include <linux/utsname.h>
  32#include <linux/mm.h>
  33#include <asm/io.h>
  34#include <linux/device.h>
  35#include <linux/dma-mapping.h>
  36#include <linux/mutex.h>
  37#include <asm/irq.h>
  38#include <asm/byteorder.h>
  39#include <asm/unaligned.h>
  40#include <linux/platform_device.h>
  41#include <linux/workqueue.h>
  42#include <linux/pm_runtime.h>
  43#include <linux/types.h>
 
 
 
  44
 
  45#include <linux/usb.h>
  46#include <linux/usb/hcd.h>
  47#include <linux/usb/phy.h>
  48
  49#include "usb.h"
 
  50
  51
  52/*-------------------------------------------------------------------------*/
  53
  54/*
  55 * USB Host Controller Driver framework
  56 *
  57 * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
  58 * HCD-specific behaviors/bugs.
  59 *
  60 * This does error checks, tracks devices and urbs, and delegates to a
  61 * "hc_driver" only for code (and data) that really needs to know about
  62 * hardware differences.  That includes root hub registers, i/o queues,
  63 * and so on ... but as little else as possible.
  64 *
  65 * Shared code includes most of the "root hub" code (these are emulated,
  66 * though each HC's hardware works differently) and PCI glue, plus request
  67 * tracking overhead.  The HCD code should only block on spinlocks or on
  68 * hardware handshaking; blocking on software events (such as other kernel
  69 * threads releasing resources, or completing actions) is all generic.
  70 *
  71 * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
  72 * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
  73 * only by the hub driver ... and that neither should be seen or used by
  74 * usb client device drivers.
  75 *
  76 * Contributors of ideas or unattributed patches include: David Brownell,
  77 * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
  78 *
  79 * HISTORY:
  80 * 2002-02-21	Pull in most of the usb_bus support from usb.c; some
  81 *		associated cleanup.  "usb_hcd" still != "usb_bus".
  82 * 2001-12-12	Initial patch version for Linux 2.5.1 kernel.
  83 */
  84
  85/*-------------------------------------------------------------------------*/
  86
  87/* Keep track of which host controller drivers are loaded */
  88unsigned long usb_hcds_loaded;
  89EXPORT_SYMBOL_GPL(usb_hcds_loaded);
  90
  91/* host controllers we manage */
  92LIST_HEAD (usb_bus_list);
  93EXPORT_SYMBOL_GPL (usb_bus_list);
  94
  95/* used when allocating bus numbers */
  96#define USB_MAXBUS		64
  97static DECLARE_BITMAP(busmap, USB_MAXBUS);
  98
  99/* used when updating list of hcds */
 100DEFINE_MUTEX(usb_bus_list_lock);	/* exported only for usbfs */
 101EXPORT_SYMBOL_GPL (usb_bus_list_lock);
 102
 103/* used for controlling access to virtual root hubs */
 104static DEFINE_SPINLOCK(hcd_root_hub_lock);
 105
 106/* used when updating an endpoint's URB list */
 107static DEFINE_SPINLOCK(hcd_urb_list_lock);
 108
 109/* used to protect against unlinking URBs after the device is gone */
 110static DEFINE_SPINLOCK(hcd_urb_unlink_lock);
 111
 112/* wait queue for synchronous unlinks */
 113DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
 114
 115static inline int is_root_hub(struct usb_device *udev)
 116{
 117	return (udev->parent == NULL);
 118}
 119
 120/*-------------------------------------------------------------------------*/
 121
 122/*
 123 * Sharable chunks of root hub code.
 124 */
 125
 126/*-------------------------------------------------------------------------*/
 127#define KERNEL_REL	bin2bcd(((LINUX_VERSION_CODE >> 16) & 0x0ff))
 128#define KERNEL_VER	bin2bcd(((LINUX_VERSION_CODE >> 8) & 0x0ff))
 129
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 130/* usb 3.0 root hub device descriptor */
 131static const u8 usb3_rh_dev_descriptor[18] = {
 132	0x12,       /*  __u8  bLength; */
 133	0x01,       /*  __u8  bDescriptorType; Device */
 134	0x00, 0x03, /*  __le16 bcdUSB; v3.0 */
 135
 136	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
 137	0x00,	    /*  __u8  bDeviceSubClass; */
 138	0x03,       /*  __u8  bDeviceProtocol; USB 3.0 hub */
 139	0x09,       /*  __u8  bMaxPacketSize0; 2^9 = 512 Bytes */
 140
 141	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
 142	0x03, 0x00, /*  __le16 idProduct; device 0x0003 */
 143	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
 144
 145	0x03,       /*  __u8  iManufacturer; */
 146	0x02,       /*  __u8  iProduct; */
 147	0x01,       /*  __u8  iSerialNumber; */
 148	0x01        /*  __u8  bNumConfigurations; */
 149};
 150
 151/* usb 2.5 (wireless USB 1.0) root hub device descriptor */
 152static const u8 usb25_rh_dev_descriptor[18] = {
 153	0x12,       /*  __u8  bLength; */
 154	0x01,       /*  __u8  bDescriptorType; Device */
 155	0x50, 0x02, /*  __le16 bcdUSB; v2.5 */
 156
 157	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
 158	0x00,	    /*  __u8  bDeviceSubClass; */
 159	0x00,       /*  __u8  bDeviceProtocol; [ usb 2.0 no TT ] */
 160	0xFF,       /*  __u8  bMaxPacketSize0; always 0xFF (WUSB Spec 7.4.1). */
 161
 162	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
 163	0x02, 0x00, /*  __le16 idProduct; device 0x0002 */
 164	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
 165
 166	0x03,       /*  __u8  iManufacturer; */
 167	0x02,       /*  __u8  iProduct; */
 168	0x01,       /*  __u8  iSerialNumber; */
 169	0x01        /*  __u8  bNumConfigurations; */
 170};
 171
 172/* usb 2.0 root hub device descriptor */
 173static const u8 usb2_rh_dev_descriptor[18] = {
 174	0x12,       /*  __u8  bLength; */
 175	0x01,       /*  __u8  bDescriptorType; Device */
 176	0x00, 0x02, /*  __le16 bcdUSB; v2.0 */
 177
 178	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
 179	0x00,	    /*  __u8  bDeviceSubClass; */
 180	0x00,       /*  __u8  bDeviceProtocol; [ usb 2.0 no TT ] */
 181	0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
 182
 183	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
 184	0x02, 0x00, /*  __le16 idProduct; device 0x0002 */
 185	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
 186
 187	0x03,       /*  __u8  iManufacturer; */
 188	0x02,       /*  __u8  iProduct; */
 189	0x01,       /*  __u8  iSerialNumber; */
 190	0x01        /*  __u8  bNumConfigurations; */
 191};
 192
 193/* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
 194
 195/* usb 1.1 root hub device descriptor */
 196static const u8 usb11_rh_dev_descriptor[18] = {
 197	0x12,       /*  __u8  bLength; */
 198	0x01,       /*  __u8  bDescriptorType; Device */
 199	0x10, 0x01, /*  __le16 bcdUSB; v1.1 */
 200
 201	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
 202	0x00,	    /*  __u8  bDeviceSubClass; */
 203	0x00,       /*  __u8  bDeviceProtocol; [ low/full speeds only ] */
 204	0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
 205
 206	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
 207	0x01, 0x00, /*  __le16 idProduct; device 0x0001 */
 208	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
 209
 210	0x03,       /*  __u8  iManufacturer; */
 211	0x02,       /*  __u8  iProduct; */
 212	0x01,       /*  __u8  iSerialNumber; */
 213	0x01        /*  __u8  bNumConfigurations; */
 214};
 215
 216
 217/*-------------------------------------------------------------------------*/
 218
 219/* Configuration descriptors for our root hubs */
 220
 221static const u8 fs_rh_config_descriptor[] = {
 222
 223	/* one configuration */
 224	0x09,       /*  __u8  bLength; */
 225	0x02,       /*  __u8  bDescriptorType; Configuration */
 226	0x19, 0x00, /*  __le16 wTotalLength; */
 227	0x01,       /*  __u8  bNumInterfaces; (1) */
 228	0x01,       /*  __u8  bConfigurationValue; */
 229	0x00,       /*  __u8  iConfiguration; */
 230	0xc0,       /*  __u8  bmAttributes;
 231				 Bit 7: must be set,
 232				     6: Self-powered,
 233				     5: Remote wakeup,
 234				     4..0: resvd */
 235	0x00,       /*  __u8  MaxPower; */
 236
 237	/* USB 1.1:
 238	 * USB 2.0, single TT organization (mandatory):
 239	 *	one interface, protocol 0
 240	 *
 241	 * USB 2.0, multiple TT organization (optional):
 242	 *	two interfaces, protocols 1 (like single TT)
 243	 *	and 2 (multiple TT mode) ... config is
 244	 *	sometimes settable
 245	 *	NOT IMPLEMENTED
 246	 */
 247
 248	/* one interface */
 249	0x09,       /*  __u8  if_bLength; */
 250	0x04,       /*  __u8  if_bDescriptorType; Interface */
 251	0x00,       /*  __u8  if_bInterfaceNumber; */
 252	0x00,       /*  __u8  if_bAlternateSetting; */
 253	0x01,       /*  __u8  if_bNumEndpoints; */
 254	0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
 255	0x00,       /*  __u8  if_bInterfaceSubClass; */
 256	0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
 257	0x00,       /*  __u8  if_iInterface; */
 258
 259	/* one endpoint (status change endpoint) */
 260	0x07,       /*  __u8  ep_bLength; */
 261	0x05,       /*  __u8  ep_bDescriptorType; Endpoint */
 262	0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
 263	0x03,       /*  __u8  ep_bmAttributes; Interrupt */
 264	0x02, 0x00, /*  __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
 265	0xff        /*  __u8  ep_bInterval; (255ms -- usb 2.0 spec) */
 266};
 267
 268static const u8 hs_rh_config_descriptor[] = {
 269
 270	/* one configuration */
 271	0x09,       /*  __u8  bLength; */
 272	0x02,       /*  __u8  bDescriptorType; Configuration */
 273	0x19, 0x00, /*  __le16 wTotalLength; */
 274	0x01,       /*  __u8  bNumInterfaces; (1) */
 275	0x01,       /*  __u8  bConfigurationValue; */
 276	0x00,       /*  __u8  iConfiguration; */
 277	0xc0,       /*  __u8  bmAttributes;
 278				 Bit 7: must be set,
 279				     6: Self-powered,
 280				     5: Remote wakeup,
 281				     4..0: resvd */
 282	0x00,       /*  __u8  MaxPower; */
 283
 284	/* USB 1.1:
 285	 * USB 2.0, single TT organization (mandatory):
 286	 *	one interface, protocol 0
 287	 *
 288	 * USB 2.0, multiple TT organization (optional):
 289	 *	two interfaces, protocols 1 (like single TT)
 290	 *	and 2 (multiple TT mode) ... config is
 291	 *	sometimes settable
 292	 *	NOT IMPLEMENTED
 293	 */
 294
 295	/* one interface */
 296	0x09,       /*  __u8  if_bLength; */
 297	0x04,       /*  __u8  if_bDescriptorType; Interface */
 298	0x00,       /*  __u8  if_bInterfaceNumber; */
 299	0x00,       /*  __u8  if_bAlternateSetting; */
 300	0x01,       /*  __u8  if_bNumEndpoints; */
 301	0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
 302	0x00,       /*  __u8  if_bInterfaceSubClass; */
 303	0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
 304	0x00,       /*  __u8  if_iInterface; */
 305
 306	/* one endpoint (status change endpoint) */
 307	0x07,       /*  __u8  ep_bLength; */
 308	0x05,       /*  __u8  ep_bDescriptorType; Endpoint */
 309	0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
 310	0x03,       /*  __u8  ep_bmAttributes; Interrupt */
 311		    /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
 312		     * see hub.c:hub_configure() for details. */
 313	(USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
 314	0x0c        /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
 315};
 316
 317static const u8 ss_rh_config_descriptor[] = {
 318	/* one configuration */
 319	0x09,       /*  __u8  bLength; */
 320	0x02,       /*  __u8  bDescriptorType; Configuration */
 321	0x1f, 0x00, /*  __le16 wTotalLength; */
 322	0x01,       /*  __u8  bNumInterfaces; (1) */
 323	0x01,       /*  __u8  bConfigurationValue; */
 324	0x00,       /*  __u8  iConfiguration; */
 325	0xc0,       /*  __u8  bmAttributes;
 326				 Bit 7: must be set,
 327				     6: Self-powered,
 328				     5: Remote wakeup,
 329				     4..0: resvd */
 330	0x00,       /*  __u8  MaxPower; */
 331
 332	/* one interface */
 333	0x09,       /*  __u8  if_bLength; */
 334	0x04,       /*  __u8  if_bDescriptorType; Interface */
 335	0x00,       /*  __u8  if_bInterfaceNumber; */
 336	0x00,       /*  __u8  if_bAlternateSetting; */
 337	0x01,       /*  __u8  if_bNumEndpoints; */
 338	0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
 339	0x00,       /*  __u8  if_bInterfaceSubClass; */
 340	0x00,       /*  __u8  if_bInterfaceProtocol; */
 341	0x00,       /*  __u8  if_iInterface; */
 342
 343	/* one endpoint (status change endpoint) */
 344	0x07,       /*  __u8  ep_bLength; */
 345	0x05,       /*  __u8  ep_bDescriptorType; Endpoint */
 346	0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
 347	0x03,       /*  __u8  ep_bmAttributes; Interrupt */
 348		    /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
 349		     * see hub.c:hub_configure() for details. */
 350	(USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
 351	0x0c,       /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
 352
 353	/* one SuperSpeed endpoint companion descriptor */
 354	0x06,        /* __u8 ss_bLength */
 355	0x30,        /* __u8 ss_bDescriptorType; SuperSpeed EP Companion */
 
 356	0x00,        /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */
 357	0x00,        /* __u8 ss_bmAttributes; 1 packet per service interval */
 358	0x02, 0x00   /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */
 359};
 360
 361/* authorized_default behaviour:
 362 * -1 is authorized for all devices except wireless (old behaviour)
 363 * 0 is unauthorized for all devices
 364 * 1 is authorized for all devices
 
 365 */
 366static int authorized_default = -1;
 
 
 
 
 
 367module_param(authorized_default, int, S_IRUGO|S_IWUSR);
 368MODULE_PARM_DESC(authorized_default,
 369		"Default USB device authorization: 0 is not authorized, 1 is "
 370		"authorized, -1 is authorized except for wireless USB (default, "
 371		"old behaviour");
 372/*-------------------------------------------------------------------------*/
 373
 374/**
 375 * ascii2desc() - Helper routine for producing UTF-16LE string descriptors
 376 * @s: Null-terminated ASCII (actually ISO-8859-1) string
 377 * @buf: Buffer for USB string descriptor (header + UTF-16LE)
 378 * @len: Length (in bytes; may be odd) of descriptor buffer.
 379 *
 380 * Return: The number of bytes filled in: 2 + 2*strlen(s) or @len,
 381 * whichever is less.
 382 *
 383 * Note:
 384 * USB String descriptors can contain at most 126 characters; input
 385 * strings longer than that are truncated.
 386 */
 387static unsigned
 388ascii2desc(char const *s, u8 *buf, unsigned len)
 389{
 390	unsigned n, t = 2 + 2*strlen(s);
 391
 392	if (t > 254)
 393		t = 254;	/* Longest possible UTF string descriptor */
 394	if (len > t)
 395		len = t;
 396
 397	t += USB_DT_STRING << 8;	/* Now t is first 16 bits to store */
 398
 399	n = len;
 400	while (n--) {
 401		*buf++ = t;
 402		if (!n--)
 403			break;
 404		*buf++ = t >> 8;
 405		t = (unsigned char)*s++;
 406	}
 407	return len;
 408}
 409
 410/**
 411 * rh_string() - provides string descriptors for root hub
 412 * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor)
 413 * @hcd: the host controller for this root hub
 414 * @data: buffer for output packet
 415 * @len: length of the provided buffer
 416 *
 417 * Produces either a manufacturer, product or serial number string for the
 418 * virtual root hub device.
 419 *
 420 * Return: The number of bytes filled in: the length of the descriptor or
 421 * of the provided buffer, whichever is less.
 422 */
 423static unsigned
 424rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len)
 425{
 426	char buf[100];
 427	char const *s;
 428	static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04};
 429
 430	/* language ids */
 431	switch (id) {
 432	case 0:
 433		/* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */
 434		/* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */
 435		if (len > 4)
 436			len = 4;
 437		memcpy(data, langids, len);
 438		return len;
 439	case 1:
 440		/* Serial number */
 441		s = hcd->self.bus_name;
 442		break;
 443	case 2:
 444		/* Product name */
 445		s = hcd->product_desc;
 446		break;
 447	case 3:
 448		/* Manufacturer */
 449		snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
 450			init_utsname()->release, hcd->driver->description);
 451		s = buf;
 452		break;
 453	default:
 454		/* Can't happen; caller guarantees it */
 455		return 0;
 456	}
 457
 458	return ascii2desc(s, data, len);
 459}
 460
 461
 462/* Root hub control transfers execute synchronously */
 463static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
 464{
 465	struct usb_ctrlrequest *cmd;
 466	u16		typeReq, wValue, wIndex, wLength;
 467	u8		*ubuf = urb->transfer_buffer;
 468	unsigned	len = 0;
 469	int		status;
 470	u8		patch_wakeup = 0;
 471	u8		patch_protocol = 0;
 472	u16		tbuf_size;
 473	u8		*tbuf = NULL;
 474	const u8	*bufp;
 475
 476	might_sleep();
 477
 478	spin_lock_irq(&hcd_root_hub_lock);
 479	status = usb_hcd_link_urb_to_ep(hcd, urb);
 480	spin_unlock_irq(&hcd_root_hub_lock);
 481	if (status)
 482		return status;
 483	urb->hcpriv = hcd;	/* Indicate it's queued */
 484
 485	cmd = (struct usb_ctrlrequest *) urb->setup_packet;
 486	typeReq  = (cmd->bRequestType << 8) | cmd->bRequest;
 487	wValue   = le16_to_cpu (cmd->wValue);
 488	wIndex   = le16_to_cpu (cmd->wIndex);
 489	wLength  = le16_to_cpu (cmd->wLength);
 490
 491	if (wLength > urb->transfer_buffer_length)
 492		goto error;
 493
 494	/*
 495	 * tbuf should be at least as big as the
 496	 * USB hub descriptor.
 497	 */
 498	tbuf_size =  max_t(u16, sizeof(struct usb_hub_descriptor), wLength);
 499	tbuf = kzalloc(tbuf_size, GFP_KERNEL);
 500	if (!tbuf)
 501		return -ENOMEM;
 
 
 502
 503	bufp = tbuf;
 504
 505
 506	urb->actual_length = 0;
 507	switch (typeReq) {
 508
 509	/* DEVICE REQUESTS */
 510
 511	/* The root hub's remote wakeup enable bit is implemented using
 512	 * driver model wakeup flags.  If this system supports wakeup
 513	 * through USB, userspace may change the default "allow wakeup"
 514	 * policy through sysfs or these calls.
 515	 *
 516	 * Most root hubs support wakeup from downstream devices, for
 517	 * runtime power management (disabling USB clocks and reducing
 518	 * VBUS power usage).  However, not all of them do so; silicon,
 519	 * board, and BIOS bugs here are not uncommon, so these can't
 520	 * be treated quite like external hubs.
 521	 *
 522	 * Likewise, not all root hubs will pass wakeup events upstream,
 523	 * to wake up the whole system.  So don't assume root hub and
 524	 * controller capabilities are identical.
 525	 */
 526
 527	case DeviceRequest | USB_REQ_GET_STATUS:
 528		tbuf[0] = (device_may_wakeup(&hcd->self.root_hub->dev)
 529					<< USB_DEVICE_REMOTE_WAKEUP)
 530				| (1 << USB_DEVICE_SELF_POWERED);
 531		tbuf[1] = 0;
 532		len = 2;
 533		break;
 534	case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
 535		if (wValue == USB_DEVICE_REMOTE_WAKEUP)
 536			device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
 537		else
 538			goto error;
 539		break;
 540	case DeviceOutRequest | USB_REQ_SET_FEATURE:
 541		if (device_can_wakeup(&hcd->self.root_hub->dev)
 542				&& wValue == USB_DEVICE_REMOTE_WAKEUP)
 543			device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
 544		else
 545			goto error;
 546		break;
 547	case DeviceRequest | USB_REQ_GET_CONFIGURATION:
 548		tbuf[0] = 1;
 549		len = 1;
 550			/* FALLTHROUGH */
 551	case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
 552		break;
 553	case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
 554		switch (wValue & 0xff00) {
 555		case USB_DT_DEVICE << 8:
 556			switch (hcd->speed) {
 
 
 
 
 557			case HCD_USB3:
 558				bufp = usb3_rh_dev_descriptor;
 559				break;
 560			case HCD_USB25:
 561				bufp = usb25_rh_dev_descriptor;
 562				break;
 563			case HCD_USB2:
 564				bufp = usb2_rh_dev_descriptor;
 565				break;
 566			case HCD_USB11:
 567				bufp = usb11_rh_dev_descriptor;
 568				break;
 569			default:
 570				goto error;
 571			}
 572			len = 18;
 573			if (hcd->has_tt)
 574				patch_protocol = 1;
 575			break;
 576		case USB_DT_CONFIG << 8:
 577			switch (hcd->speed) {
 
 
 578			case HCD_USB3:
 579				bufp = ss_rh_config_descriptor;
 580				len = sizeof ss_rh_config_descriptor;
 581				break;
 582			case HCD_USB25:
 583			case HCD_USB2:
 584				bufp = hs_rh_config_descriptor;
 585				len = sizeof hs_rh_config_descriptor;
 586				break;
 587			case HCD_USB11:
 588				bufp = fs_rh_config_descriptor;
 589				len = sizeof fs_rh_config_descriptor;
 590				break;
 591			default:
 592				goto error;
 593			}
 594			if (device_can_wakeup(&hcd->self.root_hub->dev))
 595				patch_wakeup = 1;
 596			break;
 597		case USB_DT_STRING << 8:
 598			if ((wValue & 0xff) < 4)
 599				urb->actual_length = rh_string(wValue & 0xff,
 600						hcd, ubuf, wLength);
 601			else /* unsupported IDs --> "protocol stall" */
 602				goto error;
 603			break;
 604		case USB_DT_BOS << 8:
 605			goto nongeneric;
 606		default:
 607			goto error;
 608		}
 609		break;
 610	case DeviceRequest | USB_REQ_GET_INTERFACE:
 611		tbuf[0] = 0;
 612		len = 1;
 613			/* FALLTHROUGH */
 614	case DeviceOutRequest | USB_REQ_SET_INTERFACE:
 615		break;
 616	case DeviceOutRequest | USB_REQ_SET_ADDRESS:
 617		/* wValue == urb->dev->devaddr */
 618		dev_dbg (hcd->self.controller, "root hub device address %d\n",
 619			wValue);
 620		break;
 621
 622	/* INTERFACE REQUESTS (no defined feature/status flags) */
 623
 624	/* ENDPOINT REQUESTS */
 625
 626	case EndpointRequest | USB_REQ_GET_STATUS:
 627		/* ENDPOINT_HALT flag */
 628		tbuf[0] = 0;
 629		tbuf[1] = 0;
 630		len = 2;
 631			/* FALLTHROUGH */
 632	case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
 633	case EndpointOutRequest | USB_REQ_SET_FEATURE:
 634		dev_dbg (hcd->self.controller, "no endpoint features yet\n");
 635		break;
 636
 637	/* CLASS REQUESTS (and errors) */
 638
 639	default:
 640nongeneric:
 641		/* non-generic request */
 642		switch (typeReq) {
 643		case GetHubStatus:
 
 
 644		case GetPortStatus:
 645			len = 4;
 
 
 
 
 646			break;
 647		case GetHubDescriptor:
 648			len = sizeof (struct usb_hub_descriptor);
 649			break;
 650		case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
 651			/* len is returned by hub_control */
 652			break;
 653		}
 654		status = hcd->driver->hub_control (hcd,
 655			typeReq, wValue, wIndex,
 656			tbuf, wLength);
 657
 658		if (typeReq == GetHubDescriptor)
 659			usb_hub_adjust_deviceremovable(hcd->self.root_hub,
 660				(struct usb_hub_descriptor *)tbuf);
 661		break;
 662error:
 663		/* "protocol stall" on error */
 664		status = -EPIPE;
 665	}
 666
 667	if (status < 0) {
 668		len = 0;
 669		if (status != -EPIPE) {
 670			dev_dbg (hcd->self.controller,
 671				"CTRL: TypeReq=0x%x val=0x%x "
 672				"idx=0x%x len=%d ==> %d\n",
 673				typeReq, wValue, wIndex,
 674				wLength, status);
 675		}
 676	} else if (status > 0) {
 677		/* hub_control may return the length of data copied. */
 678		len = status;
 679		status = 0;
 680	}
 681	if (len) {
 682		if (urb->transfer_buffer_length < len)
 683			len = urb->transfer_buffer_length;
 684		urb->actual_length = len;
 685		/* always USB_DIR_IN, toward host */
 686		memcpy (ubuf, bufp, len);
 687
 688		/* report whether RH hardware supports remote wakeup */
 689		if (patch_wakeup &&
 690				len > offsetof (struct usb_config_descriptor,
 691						bmAttributes))
 692			((struct usb_config_descriptor *)ubuf)->bmAttributes
 693				|= USB_CONFIG_ATT_WAKEUP;
 694
 695		/* report whether RH hardware has an integrated TT */
 696		if (patch_protocol &&
 697				len > offsetof(struct usb_device_descriptor,
 698						bDeviceProtocol))
 699			((struct usb_device_descriptor *) ubuf)->
 700				bDeviceProtocol = USB_HUB_PR_HS_SINGLE_TT;
 701	}
 702
 703	kfree(tbuf);
 
 704
 705	/* any errors get returned through the urb completion */
 706	spin_lock_irq(&hcd_root_hub_lock);
 707	usb_hcd_unlink_urb_from_ep(hcd, urb);
 708	usb_hcd_giveback_urb(hcd, urb, status);
 709	spin_unlock_irq(&hcd_root_hub_lock);
 710	return 0;
 711}
 712
 713/*-------------------------------------------------------------------------*/
 714
 715/*
 716 * Root Hub interrupt transfers are polled using a timer if the
 717 * driver requests it; otherwise the driver is responsible for
 718 * calling usb_hcd_poll_rh_status() when an event occurs.
 719 *
 720 * Completions are called in_interrupt(), but they may or may not
 721 * be in_irq().
 722 */
 723void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
 724{
 725	struct urb	*urb;
 726	int		length;
 727	unsigned long	flags;
 728	char		buffer[6];	/* Any root hubs with > 31 ports? */
 729
 730	if (unlikely(!hcd->rh_pollable))
 731		return;
 732	if (!hcd->uses_new_polling && !hcd->status_urb)
 733		return;
 734
 735	length = hcd->driver->hub_status_data(hcd, buffer);
 736	if (length > 0) {
 737
 738		/* try to complete the status urb */
 739		spin_lock_irqsave(&hcd_root_hub_lock, flags);
 740		urb = hcd->status_urb;
 741		if (urb) {
 742			clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
 743			hcd->status_urb = NULL;
 744			urb->actual_length = length;
 745			memcpy(urb->transfer_buffer, buffer, length);
 746
 747			usb_hcd_unlink_urb_from_ep(hcd, urb);
 748			usb_hcd_giveback_urb(hcd, urb, 0);
 749		} else {
 750			length = 0;
 751			set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
 752		}
 753		spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
 754	}
 755
 756	/* The USB 2.0 spec says 256 ms.  This is close enough and won't
 757	 * exceed that limit if HZ is 100. The math is more clunky than
 758	 * maybe expected, this is to make sure that all timers for USB devices
 759	 * fire at the same time to give the CPU a break in between */
 760	if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) :
 761			(length == 0 && hcd->status_urb != NULL))
 762		mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
 763}
 764EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
 765
 766/* timer callback */
 767static void rh_timer_func (unsigned long _hcd)
 768{
 769	usb_hcd_poll_rh_status((struct usb_hcd *) _hcd);
 
 
 770}
 771
 772/*-------------------------------------------------------------------------*/
 773
 774static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
 775{
 776	int		retval;
 777	unsigned long	flags;
 778	unsigned	len = 1 + (urb->dev->maxchild / 8);
 779
 780	spin_lock_irqsave (&hcd_root_hub_lock, flags);
 781	if (hcd->status_urb || urb->transfer_buffer_length < len) {
 782		dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
 783		retval = -EINVAL;
 784		goto done;
 785	}
 786
 787	retval = usb_hcd_link_urb_to_ep(hcd, urb);
 788	if (retval)
 789		goto done;
 790
 791	hcd->status_urb = urb;
 792	urb->hcpriv = hcd;	/* indicate it's queued */
 793	if (!hcd->uses_new_polling)
 794		mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
 795
 796	/* If a status change has already occurred, report it ASAP */
 797	else if (HCD_POLL_PENDING(hcd))
 798		mod_timer(&hcd->rh_timer, jiffies);
 799	retval = 0;
 800 done:
 801	spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
 802	return retval;
 803}
 804
 805static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
 806{
 807	if (usb_endpoint_xfer_int(&urb->ep->desc))
 808		return rh_queue_status (hcd, urb);
 809	if (usb_endpoint_xfer_control(&urb->ep->desc))
 810		return rh_call_control (hcd, urb);
 811	return -EINVAL;
 812}
 813
 814/*-------------------------------------------------------------------------*/
 815
 816/* Unlinks of root-hub control URBs are legal, but they don't do anything
 817 * since these URBs always execute synchronously.
 818 */
 819static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
 820{
 821	unsigned long	flags;
 822	int		rc;
 823
 824	spin_lock_irqsave(&hcd_root_hub_lock, flags);
 825	rc = usb_hcd_check_unlink_urb(hcd, urb, status);
 826	if (rc)
 827		goto done;
 828
 829	if (usb_endpoint_num(&urb->ep->desc) == 0) {	/* Control URB */
 830		;	/* Do nothing */
 831
 832	} else {				/* Status URB */
 833		if (!hcd->uses_new_polling)
 834			del_timer (&hcd->rh_timer);
 835		if (urb == hcd->status_urb) {
 836			hcd->status_urb = NULL;
 837			usb_hcd_unlink_urb_from_ep(hcd, urb);
 838			usb_hcd_giveback_urb(hcd, urb, status);
 839		}
 840	}
 841 done:
 842	spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
 843	return rc;
 844}
 845
 846
 847
 848/*
 849 * Show & store the current value of authorized_default
 850 */
 851static ssize_t authorized_default_show(struct device *dev,
 852				       struct device_attribute *attr, char *buf)
 853{
 854	struct usb_device *rh_usb_dev = to_usb_device(dev);
 855	struct usb_bus *usb_bus = rh_usb_dev->bus;
 856	struct usb_hcd *usb_hcd;
 857
 858	if (usb_bus == NULL)	/* FIXME: not sure if this case is possible */
 859		return -ENODEV;
 860	usb_hcd = bus_to_hcd(usb_bus);
 861	return snprintf(buf, PAGE_SIZE, "%u\n", usb_hcd->authorized_default);
 862}
 863
 864static ssize_t authorized_default_store(struct device *dev,
 865					struct device_attribute *attr,
 866					const char *buf, size_t size)
 867{
 868	ssize_t result;
 869	unsigned val;
 870	struct usb_device *rh_usb_dev = to_usb_device(dev);
 871	struct usb_bus *usb_bus = rh_usb_dev->bus;
 872	struct usb_hcd *usb_hcd;
 873
 874	if (usb_bus == NULL)	/* FIXME: not sure if this case is possible */
 875		return -ENODEV;
 876	usb_hcd = bus_to_hcd(usb_bus);
 877	result = sscanf(buf, "%u\n", &val);
 878	if (result == 1) {
 879		usb_hcd->authorized_default = val ? 1 : 0;
 880		result = size;
 881	} else {
 882		result = -EINVAL;
 883	}
 884	return result;
 885}
 886static DEVICE_ATTR_RW(authorized_default);
 887
 888/* Group all the USB bus attributes */
 889static struct attribute *usb_bus_attrs[] = {
 890		&dev_attr_authorized_default.attr,
 891		NULL,
 892};
 893
 894static struct attribute_group usb_bus_attr_group = {
 895	.name = NULL,	/* we want them in the same directory */
 896	.attrs = usb_bus_attrs,
 897};
 898
 899
 900
 901/*-------------------------------------------------------------------------*/
 902
 903/**
 904 * usb_bus_init - shared initialization code
 905 * @bus: the bus structure being initialized
 906 *
 907 * This code is used to initialize a usb_bus structure, memory for which is
 908 * separately managed.
 909 */
 910static void usb_bus_init (struct usb_bus *bus)
 911{
 912	memset (&bus->devmap, 0, sizeof(struct usb_devmap));
 913
 914	bus->devnum_next = 1;
 915
 916	bus->root_hub = NULL;
 917	bus->busnum = -1;
 918	bus->bandwidth_allocated = 0;
 919	bus->bandwidth_int_reqs  = 0;
 920	bus->bandwidth_isoc_reqs = 0;
 921
 922	INIT_LIST_HEAD (&bus->bus_list);
 923}
 924
 925/*-------------------------------------------------------------------------*/
 926
 927/**
 928 * usb_register_bus - registers the USB host controller with the usb core
 929 * @bus: pointer to the bus to register
 930 * Context: !in_interrupt()
 931 *
 932 * Assigns a bus number, and links the controller into usbcore data
 933 * structures so that it can be seen by scanning the bus list.
 934 *
 935 * Return: 0 if successful. A negative error code otherwise.
 936 */
 937static int usb_register_bus(struct usb_bus *bus)
 938{
 939	int result = -E2BIG;
 940	int busnum;
 941
 942	mutex_lock(&usb_bus_list_lock);
 943	busnum = find_next_zero_bit(busmap, USB_MAXBUS, 1);
 944	if (busnum >= USB_MAXBUS) {
 945		printk (KERN_ERR "%s: too many buses\n", usbcore_name);
 946		goto error_find_busnum;
 947	}
 948	set_bit(busnum, busmap);
 949	bus->busnum = busnum;
 950
 951	/* Add it to the local list of buses */
 952	list_add (&bus->bus_list, &usb_bus_list);
 953	mutex_unlock(&usb_bus_list_lock);
 954
 955	usb_notify_add_bus(bus);
 956
 957	dev_info (bus->controller, "new USB bus registered, assigned bus "
 958		  "number %d\n", bus->busnum);
 959	return 0;
 960
 961error_find_busnum:
 962	mutex_unlock(&usb_bus_list_lock);
 963	return result;
 964}
 965
 966/**
 967 * usb_deregister_bus - deregisters the USB host controller
 968 * @bus: pointer to the bus to deregister
 969 * Context: !in_interrupt()
 970 *
 971 * Recycles the bus number, and unlinks the controller from usbcore data
 972 * structures so that it won't be seen by scanning the bus list.
 973 */
 974static void usb_deregister_bus (struct usb_bus *bus)
 975{
 976	dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
 977
 978	/*
 979	 * NOTE: make sure that all the devices are removed by the
 980	 * controller code, as well as having it call this when cleaning
 981	 * itself up
 982	 */
 983	mutex_lock(&usb_bus_list_lock);
 984	list_del (&bus->bus_list);
 985	mutex_unlock(&usb_bus_list_lock);
 986
 987	usb_notify_remove_bus(bus);
 988
 989	clear_bit(bus->busnum, busmap);
 990}
 991
 992/**
 993 * register_root_hub - called by usb_add_hcd() to register a root hub
 994 * @hcd: host controller for this root hub
 995 *
 996 * This function registers the root hub with the USB subsystem.  It sets up
 997 * the device properly in the device tree and then calls usb_new_device()
 998 * to register the usb device.  It also assigns the root hub's USB address
 999 * (always 1).
1000 *
1001 * Return: 0 if successful. A negative error code otherwise.
1002 */
1003static int register_root_hub(struct usb_hcd *hcd)
1004{
1005	struct device *parent_dev = hcd->self.controller;
1006	struct usb_device *usb_dev = hcd->self.root_hub;
1007	const int devnum = 1;
1008	int retval;
1009
1010	usb_dev->devnum = devnum;
1011	usb_dev->bus->devnum_next = devnum + 1;
1012	memset (&usb_dev->bus->devmap.devicemap, 0,
1013			sizeof usb_dev->bus->devmap.devicemap);
1014	set_bit (devnum, usb_dev->bus->devmap.devicemap);
1015	usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
1016
1017	mutex_lock(&usb_bus_list_lock);
1018
1019	usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64);
1020	retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE);
1021	if (retval != sizeof usb_dev->descriptor) {
1022		mutex_unlock(&usb_bus_list_lock);
1023		dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
1024				dev_name(&usb_dev->dev), retval);
1025		return (retval < 0) ? retval : -EMSGSIZE;
1026	}
1027	if (usb_dev->speed == USB_SPEED_SUPER) {
 
1028		retval = usb_get_bos_descriptor(usb_dev);
1029		if (retval < 0) {
1030			mutex_unlock(&usb_bus_list_lock);
 
 
1031			dev_dbg(parent_dev, "can't read %s bos descriptor %d\n",
1032					dev_name(&usb_dev->dev), retval);
1033			return retval;
1034		}
1035	}
1036
1037	retval = usb_new_device (usb_dev);
1038	if (retval) {
1039		dev_err (parent_dev, "can't register root hub for %s, %d\n",
1040				dev_name(&usb_dev->dev), retval);
1041	} else {
1042		spin_lock_irq (&hcd_root_hub_lock);
1043		hcd->rh_registered = 1;
1044		spin_unlock_irq (&hcd_root_hub_lock);
1045
1046		/* Did the HC die before the root hub was registered? */
1047		if (HCD_DEAD(hcd))
1048			usb_hc_died (hcd);	/* This time clean up */
1049	}
1050	mutex_unlock(&usb_bus_list_lock);
1051
1052	return retval;
1053}
1054
1055/*
1056 * usb_hcd_start_port_resume - a root-hub port is sending a resume signal
1057 * @bus: the bus which the root hub belongs to
1058 * @portnum: the port which is being resumed
1059 *
1060 * HCDs should call this function when they know that a resume signal is
1061 * being sent to a root-hub port.  The root hub will be prevented from
1062 * going into autosuspend until usb_hcd_end_port_resume() is called.
1063 *
1064 * The bus's private lock must be held by the caller.
1065 */
1066void usb_hcd_start_port_resume(struct usb_bus *bus, int portnum)
1067{
1068	unsigned bit = 1 << portnum;
1069
1070	if (!(bus->resuming_ports & bit)) {
1071		bus->resuming_ports |= bit;
1072		pm_runtime_get_noresume(&bus->root_hub->dev);
1073	}
1074}
1075EXPORT_SYMBOL_GPL(usb_hcd_start_port_resume);
1076
1077/*
1078 * usb_hcd_end_port_resume - a root-hub port has stopped sending a resume signal
1079 * @bus: the bus which the root hub belongs to
1080 * @portnum: the port which is being resumed
1081 *
1082 * HCDs should call this function when they know that a resume signal has
1083 * stopped being sent to a root-hub port.  The root hub will be allowed to
1084 * autosuspend again.
1085 *
1086 * The bus's private lock must be held by the caller.
1087 */
1088void usb_hcd_end_port_resume(struct usb_bus *bus, int portnum)
1089{
1090	unsigned bit = 1 << portnum;
1091
1092	if (bus->resuming_ports & bit) {
1093		bus->resuming_ports &= ~bit;
1094		pm_runtime_put_noidle(&bus->root_hub->dev);
1095	}
1096}
1097EXPORT_SYMBOL_GPL(usb_hcd_end_port_resume);
1098
1099/*-------------------------------------------------------------------------*/
1100
1101/**
1102 * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
1103 * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
1104 * @is_input: true iff the transaction sends data to the host
1105 * @isoc: true for isochronous transactions, false for interrupt ones
1106 * @bytecount: how many bytes in the transaction.
1107 *
1108 * Return: Approximate bus time in nanoseconds for a periodic transaction.
1109 *
1110 * Note:
1111 * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
1112 * scheduled in software, this function is only used for such scheduling.
1113 */
1114long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
1115{
1116	unsigned long	tmp;
1117
1118	switch (speed) {
1119	case USB_SPEED_LOW: 	/* INTR only */
1120		if (is_input) {
1121			tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
1122			return 64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1123		} else {
1124			tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
1125			return 64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1126		}
1127	case USB_SPEED_FULL:	/* ISOC or INTR */
1128		if (isoc) {
1129			tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1130			return ((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp;
1131		} else {
1132			tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1133			return 9107L + BW_HOST_DELAY + tmp;
1134		}
1135	case USB_SPEED_HIGH:	/* ISOC or INTR */
1136		/* FIXME adjust for input vs output */
1137		if (isoc)
1138			tmp = HS_NSECS_ISO (bytecount);
1139		else
1140			tmp = HS_NSECS (bytecount);
1141		return tmp;
1142	default:
1143		pr_debug ("%s: bogus device speed!\n", usbcore_name);
1144		return -1;
1145	}
1146}
1147EXPORT_SYMBOL_GPL(usb_calc_bus_time);
1148
1149
1150/*-------------------------------------------------------------------------*/
1151
1152/*
1153 * Generic HC operations.
1154 */
1155
1156/*-------------------------------------------------------------------------*/
1157
1158/**
1159 * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
1160 * @hcd: host controller to which @urb was submitted
1161 * @urb: URB being submitted
1162 *
1163 * Host controller drivers should call this routine in their enqueue()
1164 * method.  The HCD's private spinlock must be held and interrupts must
1165 * be disabled.  The actions carried out here are required for URB
1166 * submission, as well as for endpoint shutdown and for usb_kill_urb.
1167 *
1168 * Return: 0 for no error, otherwise a negative error code (in which case
1169 * the enqueue() method must fail).  If no error occurs but enqueue() fails
1170 * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
1171 * the private spinlock and returning.
1172 */
1173int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb)
1174{
1175	int		rc = 0;
1176
1177	spin_lock(&hcd_urb_list_lock);
1178
1179	/* Check that the URB isn't being killed */
1180	if (unlikely(atomic_read(&urb->reject))) {
1181		rc = -EPERM;
1182		goto done;
1183	}
1184
1185	if (unlikely(!urb->ep->enabled)) {
1186		rc = -ENOENT;
1187		goto done;
1188	}
1189
1190	if (unlikely(!urb->dev->can_submit)) {
1191		rc = -EHOSTUNREACH;
1192		goto done;
1193	}
1194
1195	/*
1196	 * Check the host controller's state and add the URB to the
1197	 * endpoint's queue.
1198	 */
1199	if (HCD_RH_RUNNING(hcd)) {
1200		urb->unlinked = 0;
1201		list_add_tail(&urb->urb_list, &urb->ep->urb_list);
1202	} else {
1203		rc = -ESHUTDOWN;
1204		goto done;
1205	}
1206 done:
1207	spin_unlock(&hcd_urb_list_lock);
1208	return rc;
1209}
1210EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
1211
1212/**
1213 * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1214 * @hcd: host controller to which @urb was submitted
1215 * @urb: URB being checked for unlinkability
1216 * @status: error code to store in @urb if the unlink succeeds
1217 *
1218 * Host controller drivers should call this routine in their dequeue()
1219 * method.  The HCD's private spinlock must be held and interrupts must
1220 * be disabled.  The actions carried out here are required for making
1221 * sure than an unlink is valid.
1222 *
1223 * Return: 0 for no error, otherwise a negative error code (in which case
1224 * the dequeue() method must fail).  The possible error codes are:
1225 *
1226 *	-EIDRM: @urb was not submitted or has already completed.
1227 *		The completion function may not have been called yet.
1228 *
1229 *	-EBUSY: @urb has already been unlinked.
1230 */
1231int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb,
1232		int status)
1233{
1234	struct list_head	*tmp;
1235
1236	/* insist the urb is still queued */
1237	list_for_each(tmp, &urb->ep->urb_list) {
1238		if (tmp == &urb->urb_list)
1239			break;
1240	}
1241	if (tmp != &urb->urb_list)
1242		return -EIDRM;
1243
1244	/* Any status except -EINPROGRESS means something already started to
1245	 * unlink this URB from the hardware.  So there's no more work to do.
1246	 */
1247	if (urb->unlinked)
1248		return -EBUSY;
1249	urb->unlinked = status;
1250	return 0;
1251}
1252EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb);
1253
1254/**
1255 * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1256 * @hcd: host controller to which @urb was submitted
1257 * @urb: URB being unlinked
1258 *
1259 * Host controller drivers should call this routine before calling
1260 * usb_hcd_giveback_urb().  The HCD's private spinlock must be held and
1261 * interrupts must be disabled.  The actions carried out here are required
1262 * for URB completion.
1263 */
1264void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb)
1265{
1266	/* clear all state linking urb to this dev (and hcd) */
1267	spin_lock(&hcd_urb_list_lock);
1268	list_del_init(&urb->urb_list);
1269	spin_unlock(&hcd_urb_list_lock);
1270}
1271EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
1272
1273/*
1274 * Some usb host controllers can only perform dma using a small SRAM area.
1275 * The usb core itself is however optimized for host controllers that can dma
1276 * using regular system memory - like pci devices doing bus mastering.
1277 *
1278 * To support host controllers with limited dma capabilites we provide dma
1279 * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag.
1280 * For this to work properly the host controller code must first use the
1281 * function dma_declare_coherent_memory() to point out which memory area
1282 * that should be used for dma allocations.
1283 *
1284 * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for
1285 * dma using dma_alloc_coherent() which in turn allocates from the memory
1286 * area pointed out with dma_declare_coherent_memory().
1287 *
1288 * So, to summarize...
1289 *
1290 * - We need "local" memory, canonical example being
1291 *   a small SRAM on a discrete controller being the
1292 *   only memory that the controller can read ...
1293 *   (a) "normal" kernel memory is no good, and
1294 *   (b) there's not enough to share
1295 *
1296 * - The only *portable* hook for such stuff in the
1297 *   DMA framework is dma_declare_coherent_memory()
1298 *
1299 * - So we use that, even though the primary requirement
1300 *   is that the memory be "local" (hence addressable
1301 *   by that device), not "coherent".
1302 *
1303 */
1304
1305static int hcd_alloc_coherent(struct usb_bus *bus,
1306			      gfp_t mem_flags, dma_addr_t *dma_handle,
1307			      void **vaddr_handle, size_t size,
1308			      enum dma_data_direction dir)
1309{
1310	unsigned char *vaddr;
1311
1312	if (*vaddr_handle == NULL) {
1313		WARN_ON_ONCE(1);
1314		return -EFAULT;
1315	}
1316
1317	vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr),
1318				 mem_flags, dma_handle);
1319	if (!vaddr)
1320		return -ENOMEM;
1321
1322	/*
1323	 * Store the virtual address of the buffer at the end
1324	 * of the allocated dma buffer. The size of the buffer
1325	 * may be uneven so use unaligned functions instead
1326	 * of just rounding up. It makes sense to optimize for
1327	 * memory footprint over access speed since the amount
1328	 * of memory available for dma may be limited.
1329	 */
1330	put_unaligned((unsigned long)*vaddr_handle,
1331		      (unsigned long *)(vaddr + size));
1332
1333	if (dir == DMA_TO_DEVICE)
1334		memcpy(vaddr, *vaddr_handle, size);
1335
1336	*vaddr_handle = vaddr;
1337	return 0;
1338}
1339
1340static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle,
1341			      void **vaddr_handle, size_t size,
1342			      enum dma_data_direction dir)
1343{
1344	unsigned char *vaddr = *vaddr_handle;
1345
1346	vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size));
1347
1348	if (dir == DMA_FROM_DEVICE)
1349		memcpy(vaddr, *vaddr_handle, size);
1350
1351	hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle);
1352
1353	*vaddr_handle = vaddr;
1354	*dma_handle = 0;
1355}
1356
1357void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb)
1358{
1359	if (urb->transfer_flags & URB_SETUP_MAP_SINGLE)
1360		dma_unmap_single(hcd->self.controller,
 
1361				urb->setup_dma,
1362				sizeof(struct usb_ctrlrequest),
1363				DMA_TO_DEVICE);
1364	else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL)
1365		hcd_free_coherent(urb->dev->bus,
1366				&urb->setup_dma,
1367				(void **) &urb->setup_packet,
1368				sizeof(struct usb_ctrlrequest),
1369				DMA_TO_DEVICE);
1370
1371	/* Make it safe to call this routine more than once */
1372	urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL);
1373}
1374EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma);
1375
1376static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1377{
1378	if (hcd->driver->unmap_urb_for_dma)
1379		hcd->driver->unmap_urb_for_dma(hcd, urb);
1380	else
1381		usb_hcd_unmap_urb_for_dma(hcd, urb);
1382}
1383
1384void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1385{
1386	enum dma_data_direction dir;
1387
1388	usb_hcd_unmap_urb_setup_for_dma(hcd, urb);
1389
1390	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1391	if (urb->transfer_flags & URB_DMA_MAP_SG)
1392		dma_unmap_sg(hcd->self.controller,
 
1393				urb->sg,
1394				urb->num_sgs,
1395				dir);
1396	else if (urb->transfer_flags & URB_DMA_MAP_PAGE)
1397		dma_unmap_page(hcd->self.controller,
 
1398				urb->transfer_dma,
1399				urb->transfer_buffer_length,
1400				dir);
1401	else if (urb->transfer_flags & URB_DMA_MAP_SINGLE)
1402		dma_unmap_single(hcd->self.controller,
 
1403				urb->transfer_dma,
1404				urb->transfer_buffer_length,
1405				dir);
1406	else if (urb->transfer_flags & URB_MAP_LOCAL)
1407		hcd_free_coherent(urb->dev->bus,
1408				&urb->transfer_dma,
1409				&urb->transfer_buffer,
1410				urb->transfer_buffer_length,
1411				dir);
1412
1413	/* Make it safe to call this routine more than once */
1414	urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE |
1415			URB_DMA_MAP_SINGLE | URB_MAP_LOCAL);
1416}
1417EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma);
1418
1419static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1420			   gfp_t mem_flags)
1421{
1422	if (hcd->driver->map_urb_for_dma)
1423		return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags);
1424	else
1425		return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1426}
1427
1428int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1429			    gfp_t mem_flags)
1430{
1431	enum dma_data_direction dir;
1432	int ret = 0;
1433
1434	/* Map the URB's buffers for DMA access.
1435	 * Lower level HCD code should use *_dma exclusively,
1436	 * unless it uses pio or talks to another transport,
1437	 * or uses the provided scatter gather list for bulk.
1438	 */
1439
1440	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1441		if (hcd->self.uses_pio_for_control)
1442			return ret;
1443		if (hcd->self.uses_dma) {
1444			urb->setup_dma = dma_map_single(
1445					hcd->self.controller,
1446					urb->setup_packet,
1447					sizeof(struct usb_ctrlrequest),
1448					DMA_TO_DEVICE);
1449			if (dma_mapping_error(hcd->self.controller,
1450						urb->setup_dma))
1451				return -EAGAIN;
1452			urb->transfer_flags |= URB_SETUP_MAP_SINGLE;
1453		} else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1454			ret = hcd_alloc_coherent(
1455					urb->dev->bus, mem_flags,
1456					&urb->setup_dma,
1457					(void **)&urb->setup_packet,
1458					sizeof(struct usb_ctrlrequest),
1459					DMA_TO_DEVICE);
1460			if (ret)
1461				return ret;
1462			urb->transfer_flags |= URB_SETUP_MAP_LOCAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1463		}
1464	}
1465
1466	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1467	if (urb->transfer_buffer_length != 0
1468	    && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1469		if (hcd->self.uses_dma) {
 
 
 
 
 
 
 
 
 
1470			if (urb->num_sgs) {
1471				int n;
1472
1473				/* We don't support sg for isoc transfers ! */
1474				if (usb_endpoint_xfer_isoc(&urb->ep->desc)) {
1475					WARN_ON(1);
1476					return -EINVAL;
1477				}
1478
1479				n = dma_map_sg(
1480						hcd->self.controller,
1481						urb->sg,
1482						urb->num_sgs,
1483						dir);
1484				if (n <= 0)
1485					ret = -EAGAIN;
1486				else
1487					urb->transfer_flags |= URB_DMA_MAP_SG;
1488				urb->num_mapped_sgs = n;
1489				if (n != urb->num_sgs)
1490					urb->transfer_flags |=
1491							URB_DMA_SG_COMBINED;
1492			} else if (urb->sg) {
1493				struct scatterlist *sg = urb->sg;
1494				urb->transfer_dma = dma_map_page(
1495						hcd->self.controller,
1496						sg_page(sg),
1497						sg->offset,
1498						urb->transfer_buffer_length,
1499						dir);
1500				if (dma_mapping_error(hcd->self.controller,
1501						urb->transfer_dma))
1502					ret = -EAGAIN;
1503				else
1504					urb->transfer_flags |= URB_DMA_MAP_PAGE;
 
 
 
1505			} else {
1506				urb->transfer_dma = dma_map_single(
1507						hcd->self.controller,
1508						urb->transfer_buffer,
1509						urb->transfer_buffer_length,
1510						dir);
1511				if (dma_mapping_error(hcd->self.controller,
1512						urb->transfer_dma))
1513					ret = -EAGAIN;
1514				else
1515					urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1516			}
1517		} else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1518			ret = hcd_alloc_coherent(
1519					urb->dev->bus, mem_flags,
1520					&urb->transfer_dma,
1521					&urb->transfer_buffer,
1522					urb->transfer_buffer_length,
1523					dir);
1524			if (ret == 0)
1525				urb->transfer_flags |= URB_MAP_LOCAL;
1526		}
1527		if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE |
1528				URB_SETUP_MAP_LOCAL)))
1529			usb_hcd_unmap_urb_for_dma(hcd, urb);
1530	}
1531	return ret;
1532}
1533EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma);
1534
1535/*-------------------------------------------------------------------------*/
1536
1537/* may be called in any context with a valid urb->dev usecount
1538 * caller surrenders "ownership" of urb
1539 * expects usb_submit_urb() to have sanity checked and conditioned all
1540 * inputs in the urb
1541 */
1542int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1543{
1544	int			status;
1545	struct usb_hcd		*hcd = bus_to_hcd(urb->dev->bus);
1546
1547	/* increment urb's reference count as part of giving it to the HCD
1548	 * (which will control it).  HCD guarantees that it either returns
1549	 * an error or calls giveback(), but not both.
1550	 */
1551	usb_get_urb(urb);
1552	atomic_inc(&urb->use_count);
1553	atomic_inc(&urb->dev->urbnum);
1554	usbmon_urb_submit(&hcd->self, urb);
1555
1556	/* NOTE requirements on root-hub callers (usbfs and the hub
1557	 * driver, for now):  URBs' urb->transfer_buffer must be
1558	 * valid and usb_buffer_{sync,unmap}() not be needed, since
1559	 * they could clobber root hub response data.  Also, control
1560	 * URBs must be submitted in process context with interrupts
1561	 * enabled.
1562	 */
1563
1564	if (is_root_hub(urb->dev)) {
1565		status = rh_urb_enqueue(hcd, urb);
1566	} else {
1567		status = map_urb_for_dma(hcd, urb, mem_flags);
1568		if (likely(status == 0)) {
1569			status = hcd->driver->urb_enqueue(hcd, urb, mem_flags);
1570			if (unlikely(status))
1571				unmap_urb_for_dma(hcd, urb);
1572		}
1573	}
1574
1575	if (unlikely(status)) {
1576		usbmon_urb_submit_error(&hcd->self, urb, status);
1577		urb->hcpriv = NULL;
1578		INIT_LIST_HEAD(&urb->urb_list);
1579		atomic_dec(&urb->use_count);
1580		atomic_dec(&urb->dev->urbnum);
1581		if (atomic_read(&urb->reject))
1582			wake_up(&usb_kill_urb_queue);
1583		usb_put_urb(urb);
1584	}
1585	return status;
1586}
1587
1588/*-------------------------------------------------------------------------*/
1589
1590/* this makes the hcd giveback() the urb more quickly, by kicking it
1591 * off hardware queues (which may take a while) and returning it as
1592 * soon as practical.  we've already set up the urb's return status,
1593 * but we can't know if the callback completed already.
1594 */
1595static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status)
1596{
1597	int		value;
1598
1599	if (is_root_hub(urb->dev))
1600		value = usb_rh_urb_dequeue(hcd, urb, status);
1601	else {
1602
1603		/* The only reason an HCD might fail this call is if
1604		 * it has not yet fully queued the urb to begin with.
1605		 * Such failures should be harmless. */
1606		value = hcd->driver->urb_dequeue(hcd, urb, status);
1607	}
1608	return value;
1609}
1610
1611/*
1612 * called in any context
1613 *
1614 * caller guarantees urb won't be recycled till both unlink()
1615 * and the urb's completion function return
1616 */
1617int usb_hcd_unlink_urb (struct urb *urb, int status)
1618{
1619	struct usb_hcd		*hcd;
 
1620	int			retval = -EIDRM;
1621	unsigned long		flags;
1622
1623	/* Prevent the device and bus from going away while
1624	 * the unlink is carried out.  If they are already gone
1625	 * then urb->use_count must be 0, since disconnected
1626	 * devices can't have any active URBs.
1627	 */
1628	spin_lock_irqsave(&hcd_urb_unlink_lock, flags);
1629	if (atomic_read(&urb->use_count) > 0) {
1630		retval = 0;
1631		usb_get_dev(urb->dev);
1632	}
1633	spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags);
1634	if (retval == 0) {
1635		hcd = bus_to_hcd(urb->dev->bus);
1636		retval = unlink1(hcd, urb, status);
1637		usb_put_dev(urb->dev);
 
 
 
 
 
1638	}
1639
1640	if (retval == 0)
1641		retval = -EINPROGRESS;
1642	else if (retval != -EIDRM && retval != -EBUSY)
1643		dev_dbg(&urb->dev->dev, "hcd_unlink_urb %p fail %d\n",
1644				urb, retval);
1645	return retval;
1646}
1647
1648/*-------------------------------------------------------------------------*/
1649
1650static void __usb_hcd_giveback_urb(struct urb *urb)
1651{
1652	struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1653	struct usb_anchor *anchor = urb->anchor;
1654	int status = urb->unlinked;
1655	unsigned long flags;
1656
1657	urb->hcpriv = NULL;
1658	if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) &&
1659	    urb->actual_length < urb->transfer_buffer_length &&
1660	    !status))
1661		status = -EREMOTEIO;
1662
1663	unmap_urb_for_dma(hcd, urb);
1664	usbmon_urb_complete(&hcd->self, urb, status);
1665	usb_anchor_suspend_wakeups(anchor);
1666	usb_unanchor_urb(urb);
 
 
1667
1668	/* pass ownership to the completion handler */
1669	urb->status = status;
1670
1671	/*
1672	 * We disable local IRQs here avoid possible deadlock because
1673	 * drivers may call spin_lock() to hold lock which might be
1674	 * acquired in one hard interrupt handler.
1675	 *
1676	 * The local_irq_save()/local_irq_restore() around complete()
1677	 * will be removed if current USB drivers have been cleaned up
1678	 * and no one may trigger the above deadlock situation when
1679	 * running complete() in tasklet.
1680	 */
1681	local_irq_save(flags);
1682	urb->complete(urb);
1683	local_irq_restore(flags);
1684
1685	usb_anchor_resume_wakeups(anchor);
1686	atomic_dec(&urb->use_count);
1687	if (unlikely(atomic_read(&urb->reject)))
1688		wake_up(&usb_kill_urb_queue);
1689	usb_put_urb(urb);
1690}
1691
1692static void usb_giveback_urb_bh(unsigned long param)
1693{
1694	struct giveback_urb_bh *bh = (struct giveback_urb_bh *)param;
1695	struct list_head local_list;
1696
1697	spin_lock_irq(&bh->lock);
1698	bh->running = true;
1699 restart:
1700	list_replace_init(&bh->head, &local_list);
1701	spin_unlock_irq(&bh->lock);
1702
1703	while (!list_empty(&local_list)) {
1704		struct urb *urb;
1705
1706		urb = list_entry(local_list.next, struct urb, urb_list);
1707		list_del_init(&urb->urb_list);
1708		bh->completing_ep = urb->ep;
1709		__usb_hcd_giveback_urb(urb);
1710		bh->completing_ep = NULL;
1711	}
1712
1713	/* check if there are new URBs to giveback */
1714	spin_lock_irq(&bh->lock);
1715	if (!list_empty(&bh->head))
1716		goto restart;
1717	bh->running = false;
1718	spin_unlock_irq(&bh->lock);
1719}
1720
1721/**
1722 * usb_hcd_giveback_urb - return URB from HCD to device driver
1723 * @hcd: host controller returning the URB
1724 * @urb: urb being returned to the USB device driver.
1725 * @status: completion status code for the URB.
1726 * Context: in_interrupt()
1727 *
1728 * This hands the URB from HCD to its USB device driver, using its
1729 * completion function.  The HCD has freed all per-urb resources
1730 * (and is done using urb->hcpriv).  It also released all HCD locks;
1731 * the device driver won't cause problems if it frees, modifies,
1732 * or resubmits this URB.
1733 *
1734 * If @urb was unlinked, the value of @status will be overridden by
1735 * @urb->unlinked.  Erroneous short transfers are detected in case
1736 * the HCD hasn't checked for them.
1737 */
1738void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status)
1739{
1740	struct giveback_urb_bh *bh;
1741	bool running, high_prio_bh;
1742
1743	/* pass status to tasklet via unlinked */
1744	if (likely(!urb->unlinked))
1745		urb->unlinked = status;
1746
1747	if (!hcd_giveback_urb_in_bh(hcd) && !is_root_hub(urb->dev)) {
1748		__usb_hcd_giveback_urb(urb);
1749		return;
1750	}
1751
1752	if (usb_pipeisoc(urb->pipe) || usb_pipeint(urb->pipe)) {
1753		bh = &hcd->high_prio_bh;
1754		high_prio_bh = true;
1755	} else {
1756		bh = &hcd->low_prio_bh;
1757		high_prio_bh = false;
1758	}
1759
1760	spin_lock(&bh->lock);
1761	list_add_tail(&urb->urb_list, &bh->head);
1762	running = bh->running;
1763	spin_unlock(&bh->lock);
1764
1765	if (running)
1766		;
1767	else if (high_prio_bh)
1768		tasklet_hi_schedule(&bh->bh);
1769	else
1770		tasklet_schedule(&bh->bh);
1771}
1772EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb);
1773
1774/*-------------------------------------------------------------------------*/
1775
1776/* Cancel all URBs pending on this endpoint and wait for the endpoint's
1777 * queue to drain completely.  The caller must first insure that no more
1778 * URBs can be submitted for this endpoint.
1779 */
1780void usb_hcd_flush_endpoint(struct usb_device *udev,
1781		struct usb_host_endpoint *ep)
1782{
1783	struct usb_hcd		*hcd;
1784	struct urb		*urb;
1785
1786	if (!ep)
1787		return;
1788	might_sleep();
1789	hcd = bus_to_hcd(udev->bus);
1790
1791	/* No more submits can occur */
1792	spin_lock_irq(&hcd_urb_list_lock);
1793rescan:
1794	list_for_each_entry (urb, &ep->urb_list, urb_list) {
1795		int	is_in;
1796
1797		if (urb->unlinked)
1798			continue;
1799		usb_get_urb (urb);
1800		is_in = usb_urb_dir_in(urb);
1801		spin_unlock(&hcd_urb_list_lock);
1802
1803		/* kick hcd */
1804		unlink1(hcd, urb, -ESHUTDOWN);
1805		dev_dbg (hcd->self.controller,
1806			"shutdown urb %p ep%d%s%s\n",
1807			urb, usb_endpoint_num(&ep->desc),
1808			is_in ? "in" : "out",
1809			({	char *s;
1810
1811				 switch (usb_endpoint_type(&ep->desc)) {
1812				 case USB_ENDPOINT_XFER_CONTROL:
1813					s = ""; break;
1814				 case USB_ENDPOINT_XFER_BULK:
1815					s = "-bulk"; break;
1816				 case USB_ENDPOINT_XFER_INT:
1817					s = "-intr"; break;
1818				 default:
1819					s = "-iso"; break;
1820				};
1821				s;
1822			}));
1823		usb_put_urb (urb);
1824
1825		/* list contents may have changed */
1826		spin_lock(&hcd_urb_list_lock);
1827		goto rescan;
1828	}
1829	spin_unlock_irq(&hcd_urb_list_lock);
1830
1831	/* Wait until the endpoint queue is completely empty */
1832	while (!list_empty (&ep->urb_list)) {
1833		spin_lock_irq(&hcd_urb_list_lock);
1834
1835		/* The list may have changed while we acquired the spinlock */
1836		urb = NULL;
1837		if (!list_empty (&ep->urb_list)) {
1838			urb = list_entry (ep->urb_list.prev, struct urb,
1839					urb_list);
1840			usb_get_urb (urb);
1841		}
1842		spin_unlock_irq(&hcd_urb_list_lock);
1843
1844		if (urb) {
1845			usb_kill_urb (urb);
1846			usb_put_urb (urb);
1847		}
1848	}
1849}
1850
1851/**
1852 * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds
1853 *				the bus bandwidth
1854 * @udev: target &usb_device
1855 * @new_config: new configuration to install
1856 * @cur_alt: the current alternate interface setting
1857 * @new_alt: alternate interface setting that is being installed
1858 *
1859 * To change configurations, pass in the new configuration in new_config,
1860 * and pass NULL for cur_alt and new_alt.
1861 *
1862 * To reset a device's configuration (put the device in the ADDRESSED state),
1863 * pass in NULL for new_config, cur_alt, and new_alt.
1864 *
1865 * To change alternate interface settings, pass in NULL for new_config,
1866 * pass in the current alternate interface setting in cur_alt,
1867 * and pass in the new alternate interface setting in new_alt.
1868 *
1869 * Return: An error if the requested bandwidth change exceeds the
1870 * bus bandwidth or host controller internal resources.
1871 */
1872int usb_hcd_alloc_bandwidth(struct usb_device *udev,
1873		struct usb_host_config *new_config,
1874		struct usb_host_interface *cur_alt,
1875		struct usb_host_interface *new_alt)
1876{
1877	int num_intfs, i, j;
1878	struct usb_host_interface *alt = NULL;
1879	int ret = 0;
1880	struct usb_hcd *hcd;
1881	struct usb_host_endpoint *ep;
1882
1883	hcd = bus_to_hcd(udev->bus);
1884	if (!hcd->driver->check_bandwidth)
1885		return 0;
1886
1887	/* Configuration is being removed - set configuration 0 */
1888	if (!new_config && !cur_alt) {
1889		for (i = 1; i < 16; ++i) {
1890			ep = udev->ep_out[i];
1891			if (ep)
1892				hcd->driver->drop_endpoint(hcd, udev, ep);
1893			ep = udev->ep_in[i];
1894			if (ep)
1895				hcd->driver->drop_endpoint(hcd, udev, ep);
1896		}
1897		hcd->driver->check_bandwidth(hcd, udev);
1898		return 0;
1899	}
1900	/* Check if the HCD says there's enough bandwidth.  Enable all endpoints
1901	 * each interface's alt setting 0 and ask the HCD to check the bandwidth
1902	 * of the bus.  There will always be bandwidth for endpoint 0, so it's
1903	 * ok to exclude it.
1904	 */
1905	if (new_config) {
1906		num_intfs = new_config->desc.bNumInterfaces;
1907		/* Remove endpoints (except endpoint 0, which is always on the
1908		 * schedule) from the old config from the schedule
1909		 */
1910		for (i = 1; i < 16; ++i) {
1911			ep = udev->ep_out[i];
1912			if (ep) {
1913				ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1914				if (ret < 0)
1915					goto reset;
1916			}
1917			ep = udev->ep_in[i];
1918			if (ep) {
1919				ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1920				if (ret < 0)
1921					goto reset;
1922			}
1923		}
1924		for (i = 0; i < num_intfs; ++i) {
1925			struct usb_host_interface *first_alt;
1926			int iface_num;
1927
1928			first_alt = &new_config->intf_cache[i]->altsetting[0];
1929			iface_num = first_alt->desc.bInterfaceNumber;
1930			/* Set up endpoints for alternate interface setting 0 */
1931			alt = usb_find_alt_setting(new_config, iface_num, 0);
1932			if (!alt)
1933				/* No alt setting 0? Pick the first setting. */
1934				alt = first_alt;
1935
1936			for (j = 0; j < alt->desc.bNumEndpoints; j++) {
1937				ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]);
1938				if (ret < 0)
1939					goto reset;
1940			}
1941		}
1942	}
1943	if (cur_alt && new_alt) {
1944		struct usb_interface *iface = usb_ifnum_to_if(udev,
1945				cur_alt->desc.bInterfaceNumber);
1946
1947		if (!iface)
1948			return -EINVAL;
1949		if (iface->resetting_device) {
1950			/*
1951			 * The USB core just reset the device, so the xHCI host
1952			 * and the device will think alt setting 0 is installed.
1953			 * However, the USB core will pass in the alternate
1954			 * setting installed before the reset as cur_alt.  Dig
1955			 * out the alternate setting 0 structure, or the first
1956			 * alternate setting if a broken device doesn't have alt
1957			 * setting 0.
1958			 */
1959			cur_alt = usb_altnum_to_altsetting(iface, 0);
1960			if (!cur_alt)
1961				cur_alt = &iface->altsetting[0];
1962		}
1963
1964		/* Drop all the endpoints in the current alt setting */
1965		for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) {
1966			ret = hcd->driver->drop_endpoint(hcd, udev,
1967					&cur_alt->endpoint[i]);
1968			if (ret < 0)
1969				goto reset;
1970		}
1971		/* Add all the endpoints in the new alt setting */
1972		for (i = 0; i < new_alt->desc.bNumEndpoints; i++) {
1973			ret = hcd->driver->add_endpoint(hcd, udev,
1974					&new_alt->endpoint[i]);
1975			if (ret < 0)
1976				goto reset;
1977		}
1978	}
1979	ret = hcd->driver->check_bandwidth(hcd, udev);
1980reset:
1981	if (ret < 0)
1982		hcd->driver->reset_bandwidth(hcd, udev);
1983	return ret;
1984}
1985
1986/* Disables the endpoint: synchronizes with the hcd to make sure all
1987 * endpoint state is gone from hardware.  usb_hcd_flush_endpoint() must
1988 * have been called previously.  Use for set_configuration, set_interface,
1989 * driver removal, physical disconnect.
1990 *
1991 * example:  a qh stored in ep->hcpriv, holding state related to endpoint
1992 * type, maxpacket size, toggle, halt status, and scheduling.
1993 */
1994void usb_hcd_disable_endpoint(struct usb_device *udev,
1995		struct usb_host_endpoint *ep)
1996{
1997	struct usb_hcd		*hcd;
1998
1999	might_sleep();
2000	hcd = bus_to_hcd(udev->bus);
2001	if (hcd->driver->endpoint_disable)
2002		hcd->driver->endpoint_disable(hcd, ep);
2003}
2004
2005/**
2006 * usb_hcd_reset_endpoint - reset host endpoint state
2007 * @udev: USB device.
2008 * @ep:   the endpoint to reset.
2009 *
2010 * Resets any host endpoint state such as the toggle bit, sequence
2011 * number and current window.
2012 */
2013void usb_hcd_reset_endpoint(struct usb_device *udev,
2014			    struct usb_host_endpoint *ep)
2015{
2016	struct usb_hcd *hcd = bus_to_hcd(udev->bus);
2017
2018	if (hcd->driver->endpoint_reset)
2019		hcd->driver->endpoint_reset(hcd, ep);
2020	else {
2021		int epnum = usb_endpoint_num(&ep->desc);
2022		int is_out = usb_endpoint_dir_out(&ep->desc);
2023		int is_control = usb_endpoint_xfer_control(&ep->desc);
2024
2025		usb_settoggle(udev, epnum, is_out, 0);
2026		if (is_control)
2027			usb_settoggle(udev, epnum, !is_out, 0);
2028	}
2029}
2030
2031/**
2032 * usb_alloc_streams - allocate bulk endpoint stream IDs.
2033 * @interface:		alternate setting that includes all endpoints.
2034 * @eps:		array of endpoints that need streams.
2035 * @num_eps:		number of endpoints in the array.
2036 * @num_streams:	number of streams to allocate.
2037 * @mem_flags:		flags hcd should use to allocate memory.
2038 *
2039 * Sets up a group of bulk endpoints to have @num_streams stream IDs available.
2040 * Drivers may queue multiple transfers to different stream IDs, which may
2041 * complete in a different order than they were queued.
2042 *
2043 * Return: On success, the number of allocated streams. On failure, a negative
2044 * error code.
2045 */
2046int usb_alloc_streams(struct usb_interface *interface,
2047		struct usb_host_endpoint **eps, unsigned int num_eps,
2048		unsigned int num_streams, gfp_t mem_flags)
2049{
2050	struct usb_hcd *hcd;
2051	struct usb_device *dev;
2052	int i, ret;
2053
2054	dev = interface_to_usbdev(interface);
2055	hcd = bus_to_hcd(dev->bus);
2056	if (!hcd->driver->alloc_streams || !hcd->driver->free_streams)
2057		return -EINVAL;
2058	if (dev->speed != USB_SPEED_SUPER)
2059		return -EINVAL;
 
 
2060
2061	for (i = 0; i < num_eps; i++) {
2062		/* Streams only apply to bulk endpoints. */
2063		if (!usb_endpoint_xfer_bulk(&eps[i]->desc))
2064			return -EINVAL;
2065		/* Re-alloc is not allowed */
2066		if (eps[i]->streams)
2067			return -EINVAL;
2068	}
2069
2070	ret = hcd->driver->alloc_streams(hcd, dev, eps, num_eps,
2071			num_streams, mem_flags);
2072	if (ret < 0)
2073		return ret;
2074
2075	for (i = 0; i < num_eps; i++)
2076		eps[i]->streams = ret;
2077
2078	return ret;
2079}
2080EXPORT_SYMBOL_GPL(usb_alloc_streams);
2081
2082/**
2083 * usb_free_streams - free bulk endpoint stream IDs.
2084 * @interface:	alternate setting that includes all endpoints.
2085 * @eps:	array of endpoints to remove streams from.
2086 * @num_eps:	number of endpoints in the array.
2087 * @mem_flags:	flags hcd should use to allocate memory.
2088 *
2089 * Reverts a group of bulk endpoints back to not using stream IDs.
2090 * Can fail if we are given bad arguments, or HCD is broken.
2091 *
2092 * Return: 0 on success. On failure, a negative error code.
2093 */
2094int usb_free_streams(struct usb_interface *interface,
2095		struct usb_host_endpoint **eps, unsigned int num_eps,
2096		gfp_t mem_flags)
2097{
2098	struct usb_hcd *hcd;
2099	struct usb_device *dev;
2100	int i, ret;
2101
2102	dev = interface_to_usbdev(interface);
2103	hcd = bus_to_hcd(dev->bus);
2104	if (dev->speed != USB_SPEED_SUPER)
2105		return -EINVAL;
2106
2107	/* Double-free is not allowed */
2108	for (i = 0; i < num_eps; i++)
2109		if (!eps[i] || !eps[i]->streams)
2110			return -EINVAL;
2111
2112	ret = hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags);
2113	if (ret < 0)
2114		return ret;
2115
2116	for (i = 0; i < num_eps; i++)
2117		eps[i]->streams = 0;
2118
2119	return ret;
2120}
2121EXPORT_SYMBOL_GPL(usb_free_streams);
2122
2123/* Protect against drivers that try to unlink URBs after the device
2124 * is gone, by waiting until all unlinks for @udev are finished.
2125 * Since we don't currently track URBs by device, simply wait until
2126 * nothing is running in the locked region of usb_hcd_unlink_urb().
2127 */
2128void usb_hcd_synchronize_unlinks(struct usb_device *udev)
2129{
2130	spin_lock_irq(&hcd_urb_unlink_lock);
2131	spin_unlock_irq(&hcd_urb_unlink_lock);
2132}
2133
2134/*-------------------------------------------------------------------------*/
2135
2136/* called in any context */
2137int usb_hcd_get_frame_number (struct usb_device *udev)
2138{
2139	struct usb_hcd	*hcd = bus_to_hcd(udev->bus);
2140
2141	if (!HCD_RH_RUNNING(hcd))
2142		return -ESHUTDOWN;
2143	return hcd->driver->get_frame_number (hcd);
2144}
2145
2146/*-------------------------------------------------------------------------*/
2147
2148#ifdef	CONFIG_PM
2149
2150int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg)
2151{
2152	struct usb_hcd	*hcd = container_of(rhdev->bus, struct usb_hcd, self);
2153	int		status;
2154	int		old_state = hcd->state;
2155
2156	dev_dbg(&rhdev->dev, "bus %ssuspend, wakeup %d\n",
2157			(PMSG_IS_AUTO(msg) ? "auto-" : ""),
2158			rhdev->do_remote_wakeup);
2159	if (HCD_DEAD(hcd)) {
2160		dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend");
2161		return 0;
2162	}
2163
2164	if (!hcd->driver->bus_suspend) {
2165		status = -ENOENT;
2166	} else {
2167		clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2168		hcd->state = HC_STATE_QUIESCING;
2169		status = hcd->driver->bus_suspend(hcd);
2170	}
2171	if (status == 0) {
2172		usb_set_device_state(rhdev, USB_STATE_SUSPENDED);
2173		hcd->state = HC_STATE_SUSPENDED;
2174
 
 
 
 
2175		/* Did we race with a root-hub wakeup event? */
2176		if (rhdev->do_remote_wakeup) {
2177			char	buffer[6];
2178
2179			status = hcd->driver->hub_status_data(hcd, buffer);
2180			if (status != 0) {
2181				dev_dbg(&rhdev->dev, "suspend raced with wakeup event\n");
2182				hcd_bus_resume(rhdev, PMSG_AUTO_RESUME);
2183				status = -EBUSY;
2184			}
2185		}
2186	} else {
2187		spin_lock_irq(&hcd_root_hub_lock);
2188		if (!HCD_DEAD(hcd)) {
2189			set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2190			hcd->state = old_state;
2191		}
2192		spin_unlock_irq(&hcd_root_hub_lock);
2193		dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2194				"suspend", status);
2195	}
2196	return status;
2197}
2198
2199int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg)
2200{
2201	struct usb_hcd	*hcd = container_of(rhdev->bus, struct usb_hcd, self);
2202	int		status;
2203	int		old_state = hcd->state;
2204
2205	dev_dbg(&rhdev->dev, "usb %sresume\n",
2206			(PMSG_IS_AUTO(msg) ? "auto-" : ""));
2207	if (HCD_DEAD(hcd)) {
2208		dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume");
2209		return 0;
2210	}
 
 
 
 
 
 
 
 
2211	if (!hcd->driver->bus_resume)
2212		return -ENOENT;
2213	if (HCD_RH_RUNNING(hcd))
2214		return 0;
2215
2216	hcd->state = HC_STATE_RESUMING;
2217	status = hcd->driver->bus_resume(hcd);
2218	clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
 
 
 
2219	if (status == 0) {
2220		struct usb_device *udev;
2221		int port1;
2222
2223		spin_lock_irq(&hcd_root_hub_lock);
2224		if (!HCD_DEAD(hcd)) {
2225			usb_set_device_state(rhdev, rhdev->actconfig
2226					? USB_STATE_CONFIGURED
2227					: USB_STATE_ADDRESS);
2228			set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2229			hcd->state = HC_STATE_RUNNING;
2230		}
2231		spin_unlock_irq(&hcd_root_hub_lock);
2232
2233		/*
2234		 * Check whether any of the enabled ports on the root hub are
2235		 * unsuspended.  If they are then a TRSMRCY delay is needed
2236		 * (this is what the USB-2 spec calls a "global resume").
2237		 * Otherwise we can skip the delay.
2238		 */
2239		usb_hub_for_each_child(rhdev, port1, udev) {
2240			if (udev->state != USB_STATE_NOTATTACHED &&
2241					!udev->port_is_suspended) {
2242				usleep_range(10000, 11000);	/* TRSMRCY */
2243				break;
2244			}
2245		}
2246	} else {
2247		hcd->state = old_state;
 
2248		dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2249				"resume", status);
2250		if (status != -ESHUTDOWN)
2251			usb_hc_died(hcd);
2252	}
2253	return status;
2254}
2255
2256#endif	/* CONFIG_PM */
2257
2258#ifdef	CONFIG_PM_RUNTIME
2259
2260/* Workqueue routine for root-hub remote wakeup */
2261static void hcd_resume_work(struct work_struct *work)
2262{
2263	struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work);
2264	struct usb_device *udev = hcd->self.root_hub;
2265
2266	usb_lock_device(udev);
2267	usb_remote_wakeup(udev);
2268	usb_unlock_device(udev);
2269}
2270
2271/**
2272 * usb_hcd_resume_root_hub - called by HCD to resume its root hub
2273 * @hcd: host controller for this root hub
2274 *
2275 * The USB host controller calls this function when its root hub is
2276 * suspended (with the remote wakeup feature enabled) and a remote
2277 * wakeup request is received.  The routine submits a workqueue request
2278 * to resume the root hub (that is, manage its downstream ports again).
2279 */
2280void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
2281{
2282	unsigned long flags;
2283
2284	spin_lock_irqsave (&hcd_root_hub_lock, flags);
2285	if (hcd->rh_registered) {
 
2286		set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2287		queue_work(pm_wq, &hcd->wakeup_work);
2288	}
2289	spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2290}
2291EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
2292
2293#endif	/* CONFIG_PM_RUNTIME */
2294
2295/*-------------------------------------------------------------------------*/
2296
2297#ifdef	CONFIG_USB_OTG
2298
2299/**
2300 * usb_bus_start_enum - start immediate enumeration (for OTG)
2301 * @bus: the bus (must use hcd framework)
2302 * @port_num: 1-based number of port; usually bus->otg_port
2303 * Context: in_interrupt()
2304 *
2305 * Starts enumeration, with an immediate reset followed later by
2306 * khubd identifying and possibly configuring the device.
2307 * This is needed by OTG controller drivers, where it helps meet
2308 * HNP protocol timing requirements for starting a port reset.
2309 *
2310 * Return: 0 if successful.
2311 */
2312int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
2313{
2314	struct usb_hcd		*hcd;
2315	int			status = -EOPNOTSUPP;
2316
2317	/* NOTE: since HNP can't start by grabbing the bus's address0_sem,
2318	 * boards with root hubs hooked up to internal devices (instead of
2319	 * just the OTG port) may need more attention to resetting...
2320	 */
2321	hcd = container_of (bus, struct usb_hcd, self);
2322	if (port_num && hcd->driver->start_port_reset)
2323		status = hcd->driver->start_port_reset(hcd, port_num);
2324
2325	/* run khubd shortly after (first) root port reset finishes;
2326	 * it may issue others, until at least 50 msecs have passed.
2327	 */
2328	if (status == 0)
2329		mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
2330	return status;
2331}
2332EXPORT_SYMBOL_GPL(usb_bus_start_enum);
2333
2334#endif
2335
2336/*-------------------------------------------------------------------------*/
2337
2338/**
2339 * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
2340 * @irq: the IRQ being raised
2341 * @__hcd: pointer to the HCD whose IRQ is being signaled
2342 *
2343 * If the controller isn't HALTed, calls the driver's irq handler.
2344 * Checks whether the controller is now dead.
2345 *
2346 * Return: %IRQ_HANDLED if the IRQ was handled. %IRQ_NONE otherwise.
2347 */
2348irqreturn_t usb_hcd_irq (int irq, void *__hcd)
2349{
2350	struct usb_hcd		*hcd = __hcd;
2351	irqreturn_t		rc;
2352
2353	if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd)))
2354		rc = IRQ_NONE;
2355	else if (hcd->driver->irq(hcd) == IRQ_NONE)
2356		rc = IRQ_NONE;
2357	else
2358		rc = IRQ_HANDLED;
2359
2360	return rc;
2361}
2362EXPORT_SYMBOL_GPL(usb_hcd_irq);
2363
2364/*-------------------------------------------------------------------------*/
2365
 
 
 
 
 
 
 
 
 
 
 
 
 
2366/**
2367 * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
2368 * @hcd: pointer to the HCD representing the controller
2369 *
2370 * This is called by bus glue to report a USB host controller that died
2371 * while operations may still have been pending.  It's called automatically
2372 * by the PCI glue, so only glue for non-PCI busses should need to call it.
2373 *
2374 * Only call this function with the primary HCD.
2375 */
2376void usb_hc_died (struct usb_hcd *hcd)
2377{
2378	unsigned long flags;
2379
2380	dev_err (hcd->self.controller, "HC died; cleaning up\n");
2381
2382	spin_lock_irqsave (&hcd_root_hub_lock, flags);
2383	clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2384	set_bit(HCD_FLAG_DEAD, &hcd->flags);
2385	if (hcd->rh_registered) {
2386		clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2387
2388		/* make khubd clean up old urbs and devices */
2389		usb_set_device_state (hcd->self.root_hub,
2390				USB_STATE_NOTATTACHED);
2391		usb_kick_khubd (hcd->self.root_hub);
2392	}
2393	if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) {
2394		hcd = hcd->shared_hcd;
 
 
2395		if (hcd->rh_registered) {
2396			clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2397
2398			/* make khubd clean up old urbs and devices */
2399			usb_set_device_state(hcd->self.root_hub,
2400					USB_STATE_NOTATTACHED);
2401			usb_kick_khubd(hcd->self.root_hub);
2402		}
2403	}
 
 
 
 
 
 
 
2404	spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2405	/* Make sure that the other roothub is also deallocated. */
2406}
2407EXPORT_SYMBOL_GPL (usb_hc_died);
2408
2409/*-------------------------------------------------------------------------*/
2410
2411static void init_giveback_urb_bh(struct giveback_urb_bh *bh)
2412{
2413
2414	spin_lock_init(&bh->lock);
2415	INIT_LIST_HEAD(&bh->head);
2416	tasklet_init(&bh->bh, usb_giveback_urb_bh, (unsigned long)bh);
2417}
2418
2419/**
2420 * usb_create_shared_hcd - create and initialize an HCD structure
2421 * @driver: HC driver that will use this hcd
2422 * @dev: device for this HC, stored in hcd->self.controller
2423 * @bus_name: value to store in hcd->self.bus_name
2424 * @primary_hcd: a pointer to the usb_hcd structure that is sharing the
2425 *              PCI device.  Only allocate certain resources for the primary HCD
2426 * Context: !in_interrupt()
2427 *
2428 * Allocate a struct usb_hcd, with extra space at the end for the
2429 * HC driver's private data.  Initialize the generic members of the
2430 * hcd structure.
2431 *
2432 * Return: On success, a pointer to the created and initialized HCD structure.
2433 * On failure (e.g. if memory is unavailable), %NULL.
2434 */
2435struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver,
2436		struct device *dev, const char *bus_name,
2437		struct usb_hcd *primary_hcd)
2438{
2439	struct usb_hcd *hcd;
2440
2441	hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
2442	if (!hcd) {
2443		dev_dbg (dev, "hcd alloc failed\n");
2444		return NULL;
2445	}
2446	if (primary_hcd == NULL) {
 
 
 
 
 
 
 
 
2447		hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex),
2448				GFP_KERNEL);
2449		if (!hcd->bandwidth_mutex) {
 
2450			kfree(hcd);
2451			dev_dbg(dev, "hcd bandwidth mutex alloc failed\n");
2452			return NULL;
2453		}
2454		mutex_init(hcd->bandwidth_mutex);
2455		dev_set_drvdata(dev, hcd);
2456	} else {
 
 
2457		hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex;
2458		hcd->primary_hcd = primary_hcd;
2459		primary_hcd->primary_hcd = primary_hcd;
2460		hcd->shared_hcd = primary_hcd;
2461		primary_hcd->shared_hcd = hcd;
 
2462	}
2463
2464	kref_init(&hcd->kref);
2465
2466	usb_bus_init(&hcd->self);
2467	hcd->self.controller = dev;
 
2468	hcd->self.bus_name = bus_name;
2469	hcd->self.uses_dma = (dev->dma_mask != NULL);
2470
2471	init_timer(&hcd->rh_timer);
2472	hcd->rh_timer.function = rh_timer_func;
2473	hcd->rh_timer.data = (unsigned long) hcd;
2474#ifdef CONFIG_PM_RUNTIME
2475	INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
2476#endif
2477
 
 
2478	hcd->driver = driver;
2479	hcd->speed = driver->flags & HCD_MASK;
2480	hcd->product_desc = (driver->product_desc) ? driver->product_desc :
2481			"USB Host Controller";
2482	return hcd;
2483}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2484EXPORT_SYMBOL_GPL(usb_create_shared_hcd);
2485
2486/**
2487 * usb_create_hcd - create and initialize an HCD structure
2488 * @driver: HC driver that will use this hcd
2489 * @dev: device for this HC, stored in hcd->self.controller
2490 * @bus_name: value to store in hcd->self.bus_name
2491 * Context: !in_interrupt()
2492 *
2493 * Allocate a struct usb_hcd, with extra space at the end for the
2494 * HC driver's private data.  Initialize the generic members of the
2495 * hcd structure.
2496 *
2497 * Return: On success, a pointer to the created and initialized HCD
2498 * structure. On failure (e.g. if memory is unavailable), %NULL.
2499 */
2500struct usb_hcd *usb_create_hcd(const struct hc_driver *driver,
2501		struct device *dev, const char *bus_name)
2502{
2503	return usb_create_shared_hcd(driver, dev, bus_name, NULL);
2504}
2505EXPORT_SYMBOL_GPL(usb_create_hcd);
2506
2507/*
2508 * Roothubs that share one PCI device must also share the bandwidth mutex.
2509 * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is
2510 * deallocated.
2511 *
2512 * Make sure to only deallocate the bandwidth_mutex when the primary HCD is
2513 * freed.  When hcd_release() is called for the non-primary HCD, set the
2514 * primary_hcd's shared_hcd pointer to null (since the non-primary HCD will be
2515 * freed shortly).
2516 */
2517static void hcd_release (struct kref *kref)
2518{
2519	struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
2520
2521	if (usb_hcd_is_primary_hcd(hcd))
 
 
 
 
 
 
 
2522		kfree(hcd->bandwidth_mutex);
2523	else
2524		hcd->shared_hcd->shared_hcd = NULL;
2525	kfree(hcd);
2526}
2527
2528struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd)
2529{
2530	if (hcd)
2531		kref_get (&hcd->kref);
2532	return hcd;
2533}
2534EXPORT_SYMBOL_GPL(usb_get_hcd);
2535
2536void usb_put_hcd (struct usb_hcd *hcd)
2537{
2538	if (hcd)
2539		kref_put (&hcd->kref, hcd_release);
2540}
2541EXPORT_SYMBOL_GPL(usb_put_hcd);
2542
2543int usb_hcd_is_primary_hcd(struct usb_hcd *hcd)
2544{
2545	if (!hcd->primary_hcd)
2546		return 1;
2547	return hcd == hcd->primary_hcd;
2548}
2549EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd);
2550
2551int usb_hcd_find_raw_port_number(struct usb_hcd *hcd, int port1)
2552{
2553	if (!hcd->driver->find_raw_port_number)
2554		return port1;
2555
2556	return hcd->driver->find_raw_port_number(hcd, port1);
2557}
2558
2559static int usb_hcd_request_irqs(struct usb_hcd *hcd,
2560		unsigned int irqnum, unsigned long irqflags)
2561{
2562	int retval;
2563
2564	if (hcd->driver->irq) {
2565
2566		snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
2567				hcd->driver->description, hcd->self.busnum);
2568		retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
2569				hcd->irq_descr, hcd);
2570		if (retval != 0) {
2571			dev_err(hcd->self.controller,
2572					"request interrupt %d failed\n",
2573					irqnum);
2574			return retval;
2575		}
2576		hcd->irq = irqnum;
2577		dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
2578				(hcd->driver->flags & HCD_MEMORY) ?
2579					"io mem" : "io base",
2580					(unsigned long long)hcd->rsrc_start);
2581	} else {
2582		hcd->irq = 0;
2583		if (hcd->rsrc_start)
2584			dev_info(hcd->self.controller, "%s 0x%08llx\n",
2585					(hcd->driver->flags & HCD_MEMORY) ?
2586					"io mem" : "io base",
2587					(unsigned long long)hcd->rsrc_start);
2588	}
2589	return 0;
2590}
2591
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2592/**
2593 * usb_add_hcd - finish generic HCD structure initialization and register
2594 * @hcd: the usb_hcd structure to initialize
2595 * @irqnum: Interrupt line to allocate
2596 * @irqflags: Interrupt type flags
2597 *
2598 * Finish the remaining parts of generic HCD initialization: allocate the
2599 * buffers of consistent memory, register the bus, request the IRQ line,
2600 * and call the driver's reset() and start() routines.
2601 */
2602int usb_add_hcd(struct usb_hcd *hcd,
2603		unsigned int irqnum, unsigned long irqflags)
2604{
2605	int retval;
2606	struct usb_device *rhdev;
2607
2608	if (IS_ENABLED(CONFIG_USB_PHY) && !hcd->phy) {
2609		struct usb_phy *phy = usb_get_phy_dev(hcd->self.controller, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2610
2611		if (IS_ERR(phy)) {
2612			retval = PTR_ERR(phy);
2613			if (retval == -EPROBE_DEFER)
2614				return retval;
2615		} else {
2616			retval = usb_phy_init(phy);
2617			if (retval) {
2618				usb_put_phy(phy);
2619				return retval;
2620			}
2621			hcd->phy = phy;
2622			hcd->remove_phy = 1;
2623		}
2624	}
2625
2626	dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
2627
2628	/* Keep old behaviour if authorized_default is not in [0, 1]. */
2629	if (authorized_default < 0 || authorized_default > 1)
2630		hcd->authorized_default = hcd->wireless ? 0 : 1;
2631	else
2632		hcd->authorized_default = authorized_default;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2633	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
2634
 
 
 
2635	/* HC is in reset state, but accessible.  Now do the one-time init,
2636	 * bottom up so that hcds can customize the root hubs before khubd
2637	 * starts talking to them.  (Note, bus id is assigned early too.)
2638	 */
2639	if ((retval = hcd_buffer_create(hcd)) != 0) {
2640		dev_dbg(hcd->self.controller, "pool alloc failed\n");
2641		goto err_remove_phy;
 
2642	}
2643
2644	if ((retval = usb_register_bus(&hcd->self)) < 0)
 
2645		goto err_register_bus;
2646
2647	if ((rhdev = usb_alloc_dev(NULL, &hcd->self, 0)) == NULL) {
2648		dev_err(hcd->self.controller, "unable to allocate root hub\n");
 
2649		retval = -ENOMEM;
2650		goto err_allocate_root_hub;
2651	}
 
2652	hcd->self.root_hub = rhdev;
 
 
 
 
2653
2654	switch (hcd->speed) {
2655	case HCD_USB11:
2656		rhdev->speed = USB_SPEED_FULL;
2657		break;
2658	case HCD_USB2:
2659		rhdev->speed = USB_SPEED_HIGH;
2660		break;
2661	case HCD_USB25:
2662		rhdev->speed = USB_SPEED_WIRELESS;
2663		break;
2664	case HCD_USB3:
2665		rhdev->speed = USB_SPEED_SUPER;
2666		break;
 
 
 
 
 
 
 
2667	default:
2668		retval = -EINVAL;
2669		goto err_set_rh_speed;
2670	}
2671
2672	/* wakeup flag init defaults to "everything works" for root hubs,
2673	 * but drivers can override it in reset() if needed, along with
2674	 * recording the overall controller's system wakeup capability.
2675	 */
2676	device_set_wakeup_capable(&rhdev->dev, 1);
2677
2678	/* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is
2679	 * registered.  But since the controller can die at any time,
2680	 * let's initialize the flag before touching the hardware.
2681	 */
2682	set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2683
2684	/* "reset" is misnamed; its role is now one-time init. the controller
2685	 * should already have been reset (and boot firmware kicked off etc).
2686	 */
2687	if (hcd->driver->reset && (retval = hcd->driver->reset(hcd)) < 0) {
2688		dev_err(hcd->self.controller, "can't setup: %d\n", retval);
2689		goto err_hcd_driver_setup;
 
 
 
 
2690	}
2691	hcd->rh_pollable = 1;
2692
 
 
 
 
2693	/* NOTE: root hub and controller capabilities may not be the same */
2694	if (device_can_wakeup(hcd->self.controller)
2695			&& device_can_wakeup(&hcd->self.root_hub->dev))
2696		dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
2697
2698	/* initialize tasklets */
2699	init_giveback_urb_bh(&hcd->high_prio_bh);
2700	init_giveback_urb_bh(&hcd->low_prio_bh);
2701
2702	/* enable irqs just before we start the controller,
2703	 * if the BIOS provides legacy PCI irqs.
2704	 */
2705	if (usb_hcd_is_primary_hcd(hcd) && irqnum) {
2706		retval = usb_hcd_request_irqs(hcd, irqnum, irqflags);
2707		if (retval)
2708			goto err_request_irq;
2709	}
2710
2711	hcd->state = HC_STATE_RUNNING;
2712	retval = hcd->driver->start(hcd);
2713	if (retval < 0) {
2714		dev_err(hcd->self.controller, "startup error %d\n", retval);
2715		goto err_hcd_driver_start;
2716	}
2717
2718	/* starting here, usbcore will pay attention to this root hub */
2719	if ((retval = register_root_hub(hcd)) != 0)
 
2720		goto err_register_root_hub;
2721
2722	retval = sysfs_create_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2723	if (retval < 0) {
2724		printk(KERN_ERR "Cannot register USB bus sysfs attributes: %d\n",
2725		       retval);
2726		goto error_create_attr_group;
2727	}
2728	if (hcd->uses_new_polling && HCD_POLL_RH(hcd))
2729		usb_hcd_poll_rh_status(hcd);
2730
2731	return retval;
2732
2733error_create_attr_group:
2734	clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2735	if (HC_IS_RUNNING(hcd->state))
2736		hcd->state = HC_STATE_QUIESCING;
2737	spin_lock_irq(&hcd_root_hub_lock);
2738	hcd->rh_registered = 0;
2739	spin_unlock_irq(&hcd_root_hub_lock);
2740
2741#ifdef CONFIG_PM_RUNTIME
2742	cancel_work_sync(&hcd->wakeup_work);
2743#endif
2744	mutex_lock(&usb_bus_list_lock);
2745	usb_disconnect(&rhdev);		/* Sets rhdev to NULL */
2746	mutex_unlock(&usb_bus_list_lock);
2747err_register_root_hub:
2748	hcd->rh_pollable = 0;
2749	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2750	del_timer_sync(&hcd->rh_timer);
2751	hcd->driver->stop(hcd);
2752	hcd->state = HC_STATE_HALT;
2753	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2754	del_timer_sync(&hcd->rh_timer);
2755err_hcd_driver_start:
2756	if (usb_hcd_is_primary_hcd(hcd) && hcd->irq > 0)
2757		free_irq(irqnum, hcd);
2758err_request_irq:
2759err_hcd_driver_setup:
2760err_set_rh_speed:
2761	usb_put_dev(hcd->self.root_hub);
2762err_allocate_root_hub:
2763	usb_deregister_bus(&hcd->self);
2764err_register_bus:
2765	hcd_buffer_destroy(hcd);
2766err_remove_phy:
2767	if (hcd->remove_phy && hcd->phy) {
2768		usb_phy_shutdown(hcd->phy);
2769		usb_put_phy(hcd->phy);
2770		hcd->phy = NULL;
2771	}
2772	return retval;
2773}
2774EXPORT_SYMBOL_GPL(usb_add_hcd);
2775
2776/**
2777 * usb_remove_hcd - shutdown processing for generic HCDs
2778 * @hcd: the usb_hcd structure to remove
2779 * Context: !in_interrupt()
2780 *
2781 * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
2782 * invoking the HCD's stop() method.
2783 */
2784void usb_remove_hcd(struct usb_hcd *hcd)
2785{
2786	struct usb_device *rhdev = hcd->self.root_hub;
2787
2788	dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
2789
2790	usb_get_dev(rhdev);
2791	sysfs_remove_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2792
2793	clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2794	if (HC_IS_RUNNING (hcd->state))
2795		hcd->state = HC_STATE_QUIESCING;
2796
2797	dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
2798	spin_lock_irq (&hcd_root_hub_lock);
2799	hcd->rh_registered = 0;
2800	spin_unlock_irq (&hcd_root_hub_lock);
2801
2802#ifdef CONFIG_PM_RUNTIME
2803	cancel_work_sync(&hcd->wakeup_work);
2804#endif
 
2805
2806	mutex_lock(&usb_bus_list_lock);
2807	usb_disconnect(&rhdev);		/* Sets rhdev to NULL */
2808	mutex_unlock(&usb_bus_list_lock);
2809
2810	/*
2811	 * tasklet_kill() isn't needed here because:
2812	 * - driver's disconnect() called from usb_disconnect() should
2813	 *   make sure its URBs are completed during the disconnect()
2814	 *   callback
2815	 *
2816	 * - it is too late to run complete() here since driver may have
2817	 *   been removed already now
2818	 */
2819
2820	/* Prevent any more root-hub status calls from the timer.
2821	 * The HCD might still restart the timer (if a port status change
2822	 * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke
2823	 * the hub_status_data() callback.
2824	 */
2825	hcd->rh_pollable = 0;
2826	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2827	del_timer_sync(&hcd->rh_timer);
2828
2829	hcd->driver->stop(hcd);
2830	hcd->state = HC_STATE_HALT;
2831
2832	/* In case the HCD restarted the timer, stop it again. */
2833	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2834	del_timer_sync(&hcd->rh_timer);
2835
2836	if (usb_hcd_is_primary_hcd(hcd)) {
2837		if (hcd->irq > 0)
2838			free_irq(hcd->irq, hcd);
2839	}
2840
2841	usb_put_dev(hcd->self.root_hub);
2842	usb_deregister_bus(&hcd->self);
2843	hcd_buffer_destroy(hcd);
2844	if (hcd->remove_phy && hcd->phy) {
2845		usb_phy_shutdown(hcd->phy);
2846		usb_put_phy(hcd->phy);
2847		hcd->phy = NULL;
2848	}
 
2849}
2850EXPORT_SYMBOL_GPL(usb_remove_hcd);
2851
2852void
2853usb_hcd_platform_shutdown(struct platform_device *dev)
2854{
2855	struct usb_hcd *hcd = platform_get_drvdata(dev);
2856
 
 
 
2857	if (hcd->driver->shutdown)
2858		hcd->driver->shutdown(hcd);
2859}
2860EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
2861
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2862/*-------------------------------------------------------------------------*/
2863
2864#if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
2865
2866struct usb_mon_operations *mon_ops;
2867
2868/*
2869 * The registration is unlocked.
2870 * We do it this way because we do not want to lock in hot paths.
2871 *
2872 * Notice that the code is minimally error-proof. Because usbmon needs
2873 * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
2874 */
2875
2876int usb_mon_register (struct usb_mon_operations *ops)
2877{
2878
2879	if (mon_ops)
2880		return -EBUSY;
2881
2882	mon_ops = ops;
2883	mb();
2884	return 0;
2885}
2886EXPORT_SYMBOL_GPL (usb_mon_register);
2887
2888void usb_mon_deregister (void)
2889{
2890
2891	if (mon_ops == NULL) {
2892		printk(KERN_ERR "USB: monitor was not registered\n");
2893		return;
2894	}
2895	mon_ops = NULL;
2896	mb();
2897}
2898EXPORT_SYMBOL_GPL (usb_mon_deregister);
2899
2900#endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */