Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * RapidIO interconnect services
4 * (RapidIO Interconnect Specification, http://www.rapidio.org)
5 *
6 * Copyright 2005 MontaVista Software, Inc.
7 * Matt Porter <mporter@kernel.crashing.org>
8 *
9 * Copyright 2009 - 2013 Integrated Device Technology, Inc.
10 * Alex Bounine <alexandre.bounine@idt.com>
11 */
12
13#include <linux/types.h>
14#include <linux/kernel.h>
15
16#include <linux/delay.h>
17#include <linux/init.h>
18#include <linux/rio.h>
19#include <linux/rio_drv.h>
20#include <linux/rio_ids.h>
21#include <linux/rio_regs.h>
22#include <linux/module.h>
23#include <linux/spinlock.h>
24#include <linux/slab.h>
25#include <linux/interrupt.h>
26
27#include "rio.h"
28
29/*
30 * struct rio_pwrite - RIO portwrite event
31 * @node: Node in list of doorbell events
32 * @pwcback: Doorbell event callback
33 * @context: Handler specific context to pass on event
34 */
35struct rio_pwrite {
36 struct list_head node;
37
38 int (*pwcback)(struct rio_mport *mport, void *context,
39 union rio_pw_msg *msg, int step);
40 void *context;
41};
42
43MODULE_DESCRIPTION("RapidIO Subsystem Core");
44MODULE_AUTHOR("Matt Porter <mporter@kernel.crashing.org>");
45MODULE_AUTHOR("Alexandre Bounine <alexandre.bounine@idt.com>");
46MODULE_LICENSE("GPL");
47
48static int hdid[RIO_MAX_MPORTS];
49static int ids_num;
50module_param_array(hdid, int, &ids_num, 0);
51MODULE_PARM_DESC(hdid,
52 "Destination ID assignment to local RapidIO controllers");
53
54static LIST_HEAD(rio_devices);
55static LIST_HEAD(rio_nets);
56static DEFINE_SPINLOCK(rio_global_list_lock);
57
58static LIST_HEAD(rio_mports);
59static LIST_HEAD(rio_scans);
60static DEFINE_MUTEX(rio_mport_list_lock);
61static unsigned char next_portid;
62static DEFINE_SPINLOCK(rio_mmap_lock);
63
64/**
65 * rio_local_get_device_id - Get the base/extended device id for a port
66 * @port: RIO master port from which to get the deviceid
67 *
68 * Reads the base/extended device id from the local device
69 * implementing the master port. Returns the 8/16-bit device
70 * id.
71 */
72u16 rio_local_get_device_id(struct rio_mport *port)
73{
74 u32 result;
75
76 rio_local_read_config_32(port, RIO_DID_CSR, &result);
77
78 return (RIO_GET_DID(port->sys_size, result));
79}
80EXPORT_SYMBOL_GPL(rio_local_get_device_id);
81
82/**
83 * rio_query_mport - Query mport device attributes
84 * @port: mport device to query
85 * @mport_attr: mport attributes data structure
86 *
87 * Returns attributes of specified mport through the
88 * pointer to attributes data structure.
89 */
90int rio_query_mport(struct rio_mport *port,
91 struct rio_mport_attr *mport_attr)
92{
93 if (!port->ops->query_mport)
94 return -ENODATA;
95 return port->ops->query_mport(port, mport_attr);
96}
97EXPORT_SYMBOL(rio_query_mport);
98
99/**
100 * rio_alloc_net- Allocate and initialize a new RIO network data structure
101 * @mport: Master port associated with the RIO network
102 *
103 * Allocates a RIO network structure, initializes per-network
104 * list heads, and adds the associated master port to the
105 * network list of associated master ports. Returns a
106 * RIO network pointer on success or %NULL on failure.
107 */
108struct rio_net *rio_alloc_net(struct rio_mport *mport)
109{
110 struct rio_net *net = kzalloc(sizeof(*net), GFP_KERNEL);
111
112 if (net) {
113 INIT_LIST_HEAD(&net->node);
114 INIT_LIST_HEAD(&net->devices);
115 INIT_LIST_HEAD(&net->switches);
116 INIT_LIST_HEAD(&net->mports);
117 mport->net = net;
118 }
119 return net;
120}
121EXPORT_SYMBOL_GPL(rio_alloc_net);
122
123int rio_add_net(struct rio_net *net)
124{
125 int err;
126
127 err = device_register(&net->dev);
128 if (err)
129 return err;
130 spin_lock(&rio_global_list_lock);
131 list_add_tail(&net->node, &rio_nets);
132 spin_unlock(&rio_global_list_lock);
133
134 return 0;
135}
136EXPORT_SYMBOL_GPL(rio_add_net);
137
138void rio_free_net(struct rio_net *net)
139{
140 spin_lock(&rio_global_list_lock);
141 if (!list_empty(&net->node))
142 list_del(&net->node);
143 spin_unlock(&rio_global_list_lock);
144 if (net->release)
145 net->release(net);
146 device_unregister(&net->dev);
147}
148EXPORT_SYMBOL_GPL(rio_free_net);
149
150/**
151 * rio_local_set_device_id - Set the base/extended device id for a port
152 * @port: RIO master port
153 * @did: Device ID value to be written
154 *
155 * Writes the base/extended device id from a device.
156 */
157void rio_local_set_device_id(struct rio_mport *port, u16 did)
158{
159 rio_local_write_config_32(port, RIO_DID_CSR,
160 RIO_SET_DID(port->sys_size, did));
161}
162EXPORT_SYMBOL_GPL(rio_local_set_device_id);
163
164/**
165 * rio_add_device- Adds a RIO device to the device model
166 * @rdev: RIO device
167 *
168 * Adds the RIO device to the global device list and adds the RIO
169 * device to the RIO device list. Creates the generic sysfs nodes
170 * for an RIO device.
171 */
172int rio_add_device(struct rio_dev *rdev)
173{
174 int err;
175
176 atomic_set(&rdev->state, RIO_DEVICE_RUNNING);
177 err = device_register(&rdev->dev);
178 if (err)
179 return err;
180
181 spin_lock(&rio_global_list_lock);
182 list_add_tail(&rdev->global_list, &rio_devices);
183 if (rdev->net) {
184 list_add_tail(&rdev->net_list, &rdev->net->devices);
185 if (rdev->pef & RIO_PEF_SWITCH)
186 list_add_tail(&rdev->rswitch->node,
187 &rdev->net->switches);
188 }
189 spin_unlock(&rio_global_list_lock);
190
191 return 0;
192}
193EXPORT_SYMBOL_GPL(rio_add_device);
194
195/*
196 * rio_del_device - removes a RIO device from the device model
197 * @rdev: RIO device
198 * @state: device state to set during removal process
199 *
200 * Removes the RIO device to the kernel device list and subsystem's device list.
201 * Clears sysfs entries for the removed device.
202 */
203void rio_del_device(struct rio_dev *rdev, enum rio_device_state state)
204{
205 pr_debug("RIO: %s: removing %s\n", __func__, rio_name(rdev));
206 atomic_set(&rdev->state, state);
207 spin_lock(&rio_global_list_lock);
208 list_del(&rdev->global_list);
209 if (rdev->net) {
210 list_del(&rdev->net_list);
211 if (rdev->pef & RIO_PEF_SWITCH) {
212 list_del(&rdev->rswitch->node);
213 kfree(rdev->rswitch->route_table);
214 }
215 }
216 spin_unlock(&rio_global_list_lock);
217 device_unregister(&rdev->dev);
218}
219EXPORT_SYMBOL_GPL(rio_del_device);
220
221/**
222 * rio_request_inb_mbox - request inbound mailbox service
223 * @mport: RIO master port from which to allocate the mailbox resource
224 * @dev_id: Device specific pointer to pass on event
225 * @mbox: Mailbox number to claim
226 * @entries: Number of entries in inbound mailbox queue
227 * @minb: Callback to execute when inbound message is received
228 *
229 * Requests ownership of an inbound mailbox resource and binds
230 * a callback function to the resource. Returns %0 on success.
231 */
232int rio_request_inb_mbox(struct rio_mport *mport,
233 void *dev_id,
234 int mbox,
235 int entries,
236 void (*minb) (struct rio_mport * mport, void *dev_id, int mbox,
237 int slot))
238{
239 int rc = -ENOSYS;
240 struct resource *res;
241
242 if (!mport->ops->open_inb_mbox)
243 goto out;
244
245 res = kzalloc(sizeof(*res), GFP_KERNEL);
246 if (res) {
247 rio_init_mbox_res(res, mbox, mbox);
248
249 /* Make sure this mailbox isn't in use */
250 rc = request_resource(&mport->riores[RIO_INB_MBOX_RESOURCE],
251 res);
252 if (rc < 0) {
253 kfree(res);
254 goto out;
255 }
256
257 mport->inb_msg[mbox].res = res;
258
259 /* Hook the inbound message callback */
260 mport->inb_msg[mbox].mcback = minb;
261
262 rc = mport->ops->open_inb_mbox(mport, dev_id, mbox, entries);
263 if (rc) {
264 mport->inb_msg[mbox].mcback = NULL;
265 mport->inb_msg[mbox].res = NULL;
266 release_resource(res);
267 kfree(res);
268 }
269 } else
270 rc = -ENOMEM;
271
272 out:
273 return rc;
274}
275EXPORT_SYMBOL_GPL(rio_request_inb_mbox);
276
277/**
278 * rio_release_inb_mbox - release inbound mailbox message service
279 * @mport: RIO master port from which to release the mailbox resource
280 * @mbox: Mailbox number to release
281 *
282 * Releases ownership of an inbound mailbox resource. Returns 0
283 * if the request has been satisfied.
284 */
285int rio_release_inb_mbox(struct rio_mport *mport, int mbox)
286{
287 int rc;
288
289 if (!mport->ops->close_inb_mbox || !mport->inb_msg[mbox].res)
290 return -EINVAL;
291
292 mport->ops->close_inb_mbox(mport, mbox);
293 mport->inb_msg[mbox].mcback = NULL;
294
295 rc = release_resource(mport->inb_msg[mbox].res);
296 if (rc)
297 return rc;
298
299 kfree(mport->inb_msg[mbox].res);
300 mport->inb_msg[mbox].res = NULL;
301
302 return 0;
303}
304EXPORT_SYMBOL_GPL(rio_release_inb_mbox);
305
306/**
307 * rio_request_outb_mbox - request outbound mailbox service
308 * @mport: RIO master port from which to allocate the mailbox resource
309 * @dev_id: Device specific pointer to pass on event
310 * @mbox: Mailbox number to claim
311 * @entries: Number of entries in outbound mailbox queue
312 * @moutb: Callback to execute when outbound message is sent
313 *
314 * Requests ownership of an outbound mailbox resource and binds
315 * a callback function to the resource. Returns 0 on success.
316 */
317int rio_request_outb_mbox(struct rio_mport *mport,
318 void *dev_id,
319 int mbox,
320 int entries,
321 void (*moutb) (struct rio_mport * mport, void *dev_id, int mbox, int slot))
322{
323 int rc = -ENOSYS;
324 struct resource *res;
325
326 if (!mport->ops->open_outb_mbox)
327 goto out;
328
329 res = kzalloc(sizeof(*res), GFP_KERNEL);
330 if (res) {
331 rio_init_mbox_res(res, mbox, mbox);
332
333 /* Make sure this outbound mailbox isn't in use */
334 rc = request_resource(&mport->riores[RIO_OUTB_MBOX_RESOURCE],
335 res);
336 if (rc < 0) {
337 kfree(res);
338 goto out;
339 }
340
341 mport->outb_msg[mbox].res = res;
342
343 /* Hook the inbound message callback */
344 mport->outb_msg[mbox].mcback = moutb;
345
346 rc = mport->ops->open_outb_mbox(mport, dev_id, mbox, entries);
347 if (rc) {
348 mport->outb_msg[mbox].mcback = NULL;
349 mport->outb_msg[mbox].res = NULL;
350 release_resource(res);
351 kfree(res);
352 }
353 } else
354 rc = -ENOMEM;
355
356 out:
357 return rc;
358}
359EXPORT_SYMBOL_GPL(rio_request_outb_mbox);
360
361/**
362 * rio_release_outb_mbox - release outbound mailbox message service
363 * @mport: RIO master port from which to release the mailbox resource
364 * @mbox: Mailbox number to release
365 *
366 * Releases ownership of an inbound mailbox resource. Returns 0
367 * if the request has been satisfied.
368 */
369int rio_release_outb_mbox(struct rio_mport *mport, int mbox)
370{
371 int rc;
372
373 if (!mport->ops->close_outb_mbox || !mport->outb_msg[mbox].res)
374 return -EINVAL;
375
376 mport->ops->close_outb_mbox(mport, mbox);
377 mport->outb_msg[mbox].mcback = NULL;
378
379 rc = release_resource(mport->outb_msg[mbox].res);
380 if (rc)
381 return rc;
382
383 kfree(mport->outb_msg[mbox].res);
384 mport->outb_msg[mbox].res = NULL;
385
386 return 0;
387}
388EXPORT_SYMBOL_GPL(rio_release_outb_mbox);
389
390/**
391 * rio_setup_inb_dbell - bind inbound doorbell callback
392 * @mport: RIO master port to bind the doorbell callback
393 * @dev_id: Device specific pointer to pass on event
394 * @res: Doorbell message resource
395 * @dinb: Callback to execute when doorbell is received
396 *
397 * Adds a doorbell resource/callback pair into a port's
398 * doorbell event list. Returns 0 if the request has been
399 * satisfied.
400 */
401static int
402rio_setup_inb_dbell(struct rio_mport *mport, void *dev_id, struct resource *res,
403 void (*dinb) (struct rio_mport * mport, void *dev_id, u16 src, u16 dst,
404 u16 info))
405{
406 struct rio_dbell *dbell = kmalloc(sizeof(*dbell), GFP_KERNEL);
407
408 if (!dbell)
409 return -ENOMEM;
410
411 dbell->res = res;
412 dbell->dinb = dinb;
413 dbell->dev_id = dev_id;
414
415 mutex_lock(&mport->lock);
416 list_add_tail(&dbell->node, &mport->dbells);
417 mutex_unlock(&mport->lock);
418 return 0;
419}
420
421/**
422 * rio_request_inb_dbell - request inbound doorbell message service
423 * @mport: RIO master port from which to allocate the doorbell resource
424 * @dev_id: Device specific pointer to pass on event
425 * @start: Doorbell info range start
426 * @end: Doorbell info range end
427 * @dinb: Callback to execute when doorbell is received
428 *
429 * Requests ownership of an inbound doorbell resource and binds
430 * a callback function to the resource. Returns 0 if the request
431 * has been satisfied.
432 */
433int rio_request_inb_dbell(struct rio_mport *mport,
434 void *dev_id,
435 u16 start,
436 u16 end,
437 void (*dinb) (struct rio_mport * mport, void *dev_id, u16 src,
438 u16 dst, u16 info))
439{
440 int rc;
441 struct resource *res = kzalloc(sizeof(*res), GFP_KERNEL);
442
443 if (res) {
444 rio_init_dbell_res(res, start, end);
445
446 /* Make sure these doorbells aren't in use */
447 rc = request_resource(&mport->riores[RIO_DOORBELL_RESOURCE],
448 res);
449 if (rc < 0) {
450 kfree(res);
451 goto out;
452 }
453
454 /* Hook the doorbell callback */
455 rc = rio_setup_inb_dbell(mport, dev_id, res, dinb);
456 } else
457 rc = -ENOMEM;
458
459 out:
460 return rc;
461}
462EXPORT_SYMBOL_GPL(rio_request_inb_dbell);
463
464/**
465 * rio_release_inb_dbell - release inbound doorbell message service
466 * @mport: RIO master port from which to release the doorbell resource
467 * @start: Doorbell info range start
468 * @end: Doorbell info range end
469 *
470 * Releases ownership of an inbound doorbell resource and removes
471 * callback from the doorbell event list. Returns 0 if the request
472 * has been satisfied.
473 */
474int rio_release_inb_dbell(struct rio_mport *mport, u16 start, u16 end)
475{
476 int rc = 0, found = 0;
477 struct rio_dbell *dbell;
478
479 mutex_lock(&mport->lock);
480 list_for_each_entry(dbell, &mport->dbells, node) {
481 if ((dbell->res->start == start) && (dbell->res->end == end)) {
482 list_del(&dbell->node);
483 found = 1;
484 break;
485 }
486 }
487 mutex_unlock(&mport->lock);
488
489 /* If we can't find an exact match, fail */
490 if (!found) {
491 rc = -EINVAL;
492 goto out;
493 }
494
495 /* Release the doorbell resource */
496 rc = release_resource(dbell->res);
497
498 /* Free the doorbell event */
499 kfree(dbell);
500
501 out:
502 return rc;
503}
504EXPORT_SYMBOL_GPL(rio_release_inb_dbell);
505
506/**
507 * rio_request_outb_dbell - request outbound doorbell message range
508 * @rdev: RIO device from which to allocate the doorbell resource
509 * @start: Doorbell message range start
510 * @end: Doorbell message range end
511 *
512 * Requests ownership of a doorbell message range. Returns a resource
513 * if the request has been satisfied or %NULL on failure.
514 */
515struct resource *rio_request_outb_dbell(struct rio_dev *rdev, u16 start,
516 u16 end)
517{
518 struct resource *res = kzalloc(sizeof(struct resource), GFP_KERNEL);
519
520 if (res) {
521 rio_init_dbell_res(res, start, end);
522
523 /* Make sure these doorbells aren't in use */
524 if (request_resource(&rdev->riores[RIO_DOORBELL_RESOURCE], res)
525 < 0) {
526 kfree(res);
527 res = NULL;
528 }
529 }
530
531 return res;
532}
533EXPORT_SYMBOL_GPL(rio_request_outb_dbell);
534
535/**
536 * rio_release_outb_dbell - release outbound doorbell message range
537 * @rdev: RIO device from which to release the doorbell resource
538 * @res: Doorbell resource to be freed
539 *
540 * Releases ownership of a doorbell message range. Returns 0 if the
541 * request has been satisfied.
542 */
543int rio_release_outb_dbell(struct rio_dev *rdev, struct resource *res)
544{
545 int rc = release_resource(res);
546
547 kfree(res);
548
549 return rc;
550}
551EXPORT_SYMBOL_GPL(rio_release_outb_dbell);
552
553/**
554 * rio_add_mport_pw_handler - add port-write message handler into the list
555 * of mport specific pw handlers
556 * @mport: RIO master port to bind the portwrite callback
557 * @context: Handler specific context to pass on event
558 * @pwcback: Callback to execute when portwrite is received
559 *
560 * Returns 0 if the request has been satisfied.
561 */
562int rio_add_mport_pw_handler(struct rio_mport *mport, void *context,
563 int (*pwcback)(struct rio_mport *mport,
564 void *context, union rio_pw_msg *msg, int step))
565{
566 struct rio_pwrite *pwrite = kzalloc(sizeof(*pwrite), GFP_KERNEL);
567
568 if (!pwrite)
569 return -ENOMEM;
570
571 pwrite->pwcback = pwcback;
572 pwrite->context = context;
573 mutex_lock(&mport->lock);
574 list_add_tail(&pwrite->node, &mport->pwrites);
575 mutex_unlock(&mport->lock);
576 return 0;
577}
578EXPORT_SYMBOL_GPL(rio_add_mport_pw_handler);
579
580/**
581 * rio_del_mport_pw_handler - remove port-write message handler from the list
582 * of mport specific pw handlers
583 * @mport: RIO master port to bind the portwrite callback
584 * @context: Registered handler specific context to pass on event
585 * @pwcback: Registered callback function
586 *
587 * Returns 0 if the request has been satisfied.
588 */
589int rio_del_mport_pw_handler(struct rio_mport *mport, void *context,
590 int (*pwcback)(struct rio_mport *mport,
591 void *context, union rio_pw_msg *msg, int step))
592{
593 int rc = -EINVAL;
594 struct rio_pwrite *pwrite;
595
596 mutex_lock(&mport->lock);
597 list_for_each_entry(pwrite, &mport->pwrites, node) {
598 if (pwrite->pwcback == pwcback && pwrite->context == context) {
599 list_del(&pwrite->node);
600 kfree(pwrite);
601 rc = 0;
602 break;
603 }
604 }
605 mutex_unlock(&mport->lock);
606
607 return rc;
608}
609EXPORT_SYMBOL_GPL(rio_del_mport_pw_handler);
610
611/**
612 * rio_request_inb_pwrite - request inbound port-write message service for
613 * specific RapidIO device
614 * @rdev: RIO device to which register inbound port-write callback routine
615 * @pwcback: Callback routine to execute when port-write is received
616 *
617 * Binds a port-write callback function to the RapidIO device.
618 * Returns 0 if the request has been satisfied.
619 */
620int rio_request_inb_pwrite(struct rio_dev *rdev,
621 int (*pwcback)(struct rio_dev *rdev, union rio_pw_msg *msg, int step))
622{
623 int rc = 0;
624
625 spin_lock(&rio_global_list_lock);
626 if (rdev->pwcback)
627 rc = -ENOMEM;
628 else
629 rdev->pwcback = pwcback;
630
631 spin_unlock(&rio_global_list_lock);
632 return rc;
633}
634EXPORT_SYMBOL_GPL(rio_request_inb_pwrite);
635
636/**
637 * rio_release_inb_pwrite - release inbound port-write message service
638 * associated with specific RapidIO device
639 * @rdev: RIO device which registered for inbound port-write callback
640 *
641 * Removes callback from the rio_dev structure. Returns 0 if the request
642 * has been satisfied.
643 */
644int rio_release_inb_pwrite(struct rio_dev *rdev)
645{
646 int rc = -ENOMEM;
647
648 spin_lock(&rio_global_list_lock);
649 if (rdev->pwcback) {
650 rdev->pwcback = NULL;
651 rc = 0;
652 }
653
654 spin_unlock(&rio_global_list_lock);
655 return rc;
656}
657EXPORT_SYMBOL_GPL(rio_release_inb_pwrite);
658
659/**
660 * rio_pw_enable - Enables/disables port-write handling by a master port
661 * @mport: Master port associated with port-write handling
662 * @enable: 1=enable, 0=disable
663 */
664void rio_pw_enable(struct rio_mport *mport, int enable)
665{
666 if (mport->ops->pwenable) {
667 mutex_lock(&mport->lock);
668
669 if ((enable && ++mport->pwe_refcnt == 1) ||
670 (!enable && mport->pwe_refcnt && --mport->pwe_refcnt == 0))
671 mport->ops->pwenable(mport, enable);
672 mutex_unlock(&mport->lock);
673 }
674}
675EXPORT_SYMBOL_GPL(rio_pw_enable);
676
677/**
678 * rio_map_inb_region -- Map inbound memory region.
679 * @mport: Master port.
680 * @local: physical address of memory region to be mapped
681 * @rbase: RIO base address assigned to this window
682 * @size: Size of the memory region
683 * @rflags: Flags for mapping.
684 *
685 * Return: 0 -- Success.
686 *
687 * This function will create the mapping from RIO space to local memory.
688 */
689int rio_map_inb_region(struct rio_mport *mport, dma_addr_t local,
690 u64 rbase, u32 size, u32 rflags)
691{
692 int rc;
693 unsigned long flags;
694
695 if (!mport->ops->map_inb)
696 return -1;
697 spin_lock_irqsave(&rio_mmap_lock, flags);
698 rc = mport->ops->map_inb(mport, local, rbase, size, rflags);
699 spin_unlock_irqrestore(&rio_mmap_lock, flags);
700 return rc;
701}
702EXPORT_SYMBOL_GPL(rio_map_inb_region);
703
704/**
705 * rio_unmap_inb_region -- Unmap the inbound memory region
706 * @mport: Master port
707 * @lstart: physical address of memory region to be unmapped
708 */
709void rio_unmap_inb_region(struct rio_mport *mport, dma_addr_t lstart)
710{
711 unsigned long flags;
712 if (!mport->ops->unmap_inb)
713 return;
714 spin_lock_irqsave(&rio_mmap_lock, flags);
715 mport->ops->unmap_inb(mport, lstart);
716 spin_unlock_irqrestore(&rio_mmap_lock, flags);
717}
718EXPORT_SYMBOL_GPL(rio_unmap_inb_region);
719
720/**
721 * rio_map_outb_region -- Map outbound memory region.
722 * @mport: Master port.
723 * @destid: destination id window points to
724 * @rbase: RIO base address window translates to
725 * @size: Size of the memory region
726 * @rflags: Flags for mapping.
727 * @local: physical address of memory region mapped
728 *
729 * Return: 0 -- Success.
730 *
731 * This function will create the mapping from RIO space to local memory.
732 */
733int rio_map_outb_region(struct rio_mport *mport, u16 destid, u64 rbase,
734 u32 size, u32 rflags, dma_addr_t *local)
735{
736 int rc;
737 unsigned long flags;
738
739 if (!mport->ops->map_outb)
740 return -ENODEV;
741
742 spin_lock_irqsave(&rio_mmap_lock, flags);
743 rc = mport->ops->map_outb(mport, destid, rbase, size,
744 rflags, local);
745 spin_unlock_irqrestore(&rio_mmap_lock, flags);
746
747 return rc;
748}
749EXPORT_SYMBOL_GPL(rio_map_outb_region);
750
751/**
752 * rio_unmap_inb_region -- Unmap the inbound memory region
753 * @mport: Master port
754 * @destid: destination id mapping points to
755 * @rstart: RIO base address window translates to
756 */
757void rio_unmap_outb_region(struct rio_mport *mport, u16 destid, u64 rstart)
758{
759 unsigned long flags;
760
761 if (!mport->ops->unmap_outb)
762 return;
763
764 spin_lock_irqsave(&rio_mmap_lock, flags);
765 mport->ops->unmap_outb(mport, destid, rstart);
766 spin_unlock_irqrestore(&rio_mmap_lock, flags);
767}
768EXPORT_SYMBOL_GPL(rio_unmap_outb_region);
769
770/**
771 * rio_mport_get_physefb - Helper function that returns register offset
772 * for Physical Layer Extended Features Block.
773 * @port: Master port to issue transaction
774 * @local: Indicate a local master port or remote device access
775 * @destid: Destination ID of the device
776 * @hopcount: Number of switch hops to the device
777 * @rmap: pointer to location to store register map type info
778 */
779u32
780rio_mport_get_physefb(struct rio_mport *port, int local,
781 u16 destid, u8 hopcount, u32 *rmap)
782{
783 u32 ext_ftr_ptr;
784 u32 ftr_header;
785
786 ext_ftr_ptr = rio_mport_get_efb(port, local, destid, hopcount, 0);
787
788 while (ext_ftr_ptr) {
789 if (local)
790 rio_local_read_config_32(port, ext_ftr_ptr,
791 &ftr_header);
792 else
793 rio_mport_read_config_32(port, destid, hopcount,
794 ext_ftr_ptr, &ftr_header);
795
796 ftr_header = RIO_GET_BLOCK_ID(ftr_header);
797 switch (ftr_header) {
798
799 case RIO_EFB_SER_EP_ID:
800 case RIO_EFB_SER_EP_REC_ID:
801 case RIO_EFB_SER_EP_FREE_ID:
802 case RIO_EFB_SER_EP_M1_ID:
803 case RIO_EFB_SER_EP_SW_M1_ID:
804 case RIO_EFB_SER_EPF_M1_ID:
805 case RIO_EFB_SER_EPF_SW_M1_ID:
806 *rmap = 1;
807 return ext_ftr_ptr;
808
809 case RIO_EFB_SER_EP_M2_ID:
810 case RIO_EFB_SER_EP_SW_M2_ID:
811 case RIO_EFB_SER_EPF_M2_ID:
812 case RIO_EFB_SER_EPF_SW_M2_ID:
813 *rmap = 2;
814 return ext_ftr_ptr;
815
816 default:
817 break;
818 }
819
820 ext_ftr_ptr = rio_mport_get_efb(port, local, destid,
821 hopcount, ext_ftr_ptr);
822 }
823
824 return ext_ftr_ptr;
825}
826EXPORT_SYMBOL_GPL(rio_mport_get_physefb);
827
828/**
829 * rio_get_comptag - Begin or continue searching for a RIO device by component tag
830 * @comp_tag: RIO component tag to match
831 * @from: Previous RIO device found in search, or %NULL for new search
832 *
833 * Iterates through the list of known RIO devices. If a RIO device is
834 * found with a matching @comp_tag, a pointer to its device
835 * structure is returned. Otherwise, %NULL is returned. A new search
836 * is initiated by passing %NULL to the @from argument. Otherwise, if
837 * @from is not %NULL, searches continue from next device on the global
838 * list.
839 */
840struct rio_dev *rio_get_comptag(u32 comp_tag, struct rio_dev *from)
841{
842 struct list_head *n;
843 struct rio_dev *rdev;
844
845 spin_lock(&rio_global_list_lock);
846 n = from ? from->global_list.next : rio_devices.next;
847
848 while (n && (n != &rio_devices)) {
849 rdev = rio_dev_g(n);
850 if (rdev->comp_tag == comp_tag)
851 goto exit;
852 n = n->next;
853 }
854 rdev = NULL;
855exit:
856 spin_unlock(&rio_global_list_lock);
857 return rdev;
858}
859EXPORT_SYMBOL_GPL(rio_get_comptag);
860
861/**
862 * rio_set_port_lockout - Sets/clears LOCKOUT bit (RIO EM 1.3) for a switch port.
863 * @rdev: Pointer to RIO device control structure
864 * @pnum: Switch port number to set LOCKOUT bit
865 * @lock: Operation : set (=1) or clear (=0)
866 */
867int rio_set_port_lockout(struct rio_dev *rdev, u32 pnum, int lock)
868{
869 u32 regval;
870
871 rio_read_config_32(rdev,
872 RIO_DEV_PORT_N_CTL_CSR(rdev, pnum),
873 ®val);
874 if (lock)
875 regval |= RIO_PORT_N_CTL_LOCKOUT;
876 else
877 regval &= ~RIO_PORT_N_CTL_LOCKOUT;
878
879 rio_write_config_32(rdev,
880 RIO_DEV_PORT_N_CTL_CSR(rdev, pnum),
881 regval);
882 return 0;
883}
884EXPORT_SYMBOL_GPL(rio_set_port_lockout);
885
886/**
887 * rio_enable_rx_tx_port - enable input receiver and output transmitter of
888 * given port
889 * @port: Master port associated with the RIO network
890 * @local: local=1 select local port otherwise a far device is reached
891 * @destid: Destination ID of the device to check host bit
892 * @hopcount: Number of hops to reach the target
893 * @port_num: Port (-number on switch) to enable on a far end device
894 *
895 * Returns 0 or 1 from on General Control Command and Status Register
896 * (EXT_PTR+0x3C)
897 */
898int rio_enable_rx_tx_port(struct rio_mport *port,
899 int local, u16 destid,
900 u8 hopcount, u8 port_num)
901{
902#ifdef CONFIG_RAPIDIO_ENABLE_RX_TX_PORTS
903 u32 regval;
904 u32 ext_ftr_ptr;
905 u32 rmap;
906
907 /*
908 * enable rx input tx output port
909 */
910 pr_debug("rio_enable_rx_tx_port(local = %d, destid = %d, hopcount = "
911 "%d, port_num = %d)\n", local, destid, hopcount, port_num);
912
913 ext_ftr_ptr = rio_mport_get_physefb(port, local, destid,
914 hopcount, &rmap);
915
916 if (local) {
917 rio_local_read_config_32(port,
918 ext_ftr_ptr + RIO_PORT_N_CTL_CSR(0, rmap),
919 ®val);
920 } else {
921 if (rio_mport_read_config_32(port, destid, hopcount,
922 ext_ftr_ptr + RIO_PORT_N_CTL_CSR(port_num, rmap),
923 ®val) < 0)
924 return -EIO;
925 }
926
927 regval = regval | RIO_PORT_N_CTL_EN_RX | RIO_PORT_N_CTL_EN_TX;
928
929 if (local) {
930 rio_local_write_config_32(port,
931 ext_ftr_ptr + RIO_PORT_N_CTL_CSR(0, rmap), regval);
932 } else {
933 if (rio_mport_write_config_32(port, destid, hopcount,
934 ext_ftr_ptr + RIO_PORT_N_CTL_CSR(port_num, rmap),
935 regval) < 0)
936 return -EIO;
937 }
938#endif
939 return 0;
940}
941EXPORT_SYMBOL_GPL(rio_enable_rx_tx_port);
942
943
944/**
945 * rio_chk_dev_route - Validate route to the specified device.
946 * @rdev: RIO device failed to respond
947 * @nrdev: Last active device on the route to rdev
948 * @npnum: nrdev's port number on the route to rdev
949 *
950 * Follows a route to the specified RIO device to determine the last available
951 * device (and corresponding RIO port) on the route.
952 */
953static int
954rio_chk_dev_route(struct rio_dev *rdev, struct rio_dev **nrdev, int *npnum)
955{
956 u32 result;
957 int p_port, rc = -EIO;
958 struct rio_dev *prev = NULL;
959
960 /* Find switch with failed RIO link */
961 while (rdev->prev && (rdev->prev->pef & RIO_PEF_SWITCH)) {
962 if (!rio_read_config_32(rdev->prev, RIO_DEV_ID_CAR, &result)) {
963 prev = rdev->prev;
964 break;
965 }
966 rdev = rdev->prev;
967 }
968
969 if (!prev)
970 goto err_out;
971
972 p_port = prev->rswitch->route_table[rdev->destid];
973
974 if (p_port != RIO_INVALID_ROUTE) {
975 pr_debug("RIO: link failed on [%s]-P%d\n",
976 rio_name(prev), p_port);
977 *nrdev = prev;
978 *npnum = p_port;
979 rc = 0;
980 } else
981 pr_debug("RIO: failed to trace route to %s\n", rio_name(rdev));
982err_out:
983 return rc;
984}
985
986/**
987 * rio_mport_chk_dev_access - Validate access to the specified device.
988 * @mport: Master port to send transactions
989 * @destid: Device destination ID in network
990 * @hopcount: Number of hops into the network
991 */
992int
993rio_mport_chk_dev_access(struct rio_mport *mport, u16 destid, u8 hopcount)
994{
995 int i = 0;
996 u32 tmp;
997
998 while (rio_mport_read_config_32(mport, destid, hopcount,
999 RIO_DEV_ID_CAR, &tmp)) {
1000 i++;
1001 if (i == RIO_MAX_CHK_RETRY)
1002 return -EIO;
1003 mdelay(1);
1004 }
1005
1006 return 0;
1007}
1008EXPORT_SYMBOL_GPL(rio_mport_chk_dev_access);
1009
1010/**
1011 * rio_chk_dev_access - Validate access to the specified device.
1012 * @rdev: Pointer to RIO device control structure
1013 */
1014static int rio_chk_dev_access(struct rio_dev *rdev)
1015{
1016 return rio_mport_chk_dev_access(rdev->net->hport,
1017 rdev->destid, rdev->hopcount);
1018}
1019
1020/**
1021 * rio_get_input_status - Sends a Link-Request/Input-Status control symbol and
1022 * returns link-response (if requested).
1023 * @rdev: RIO devive to issue Input-status command
1024 * @pnum: Device port number to issue the command
1025 * @lnkresp: Response from a link partner
1026 */
1027static int
1028rio_get_input_status(struct rio_dev *rdev, int pnum, u32 *lnkresp)
1029{
1030 u32 regval;
1031 int checkcount;
1032
1033 if (lnkresp) {
1034 /* Read from link maintenance response register
1035 * to clear valid bit */
1036 rio_read_config_32(rdev,
1037 RIO_DEV_PORT_N_MNT_RSP_CSR(rdev, pnum),
1038 ®val);
1039 udelay(50);
1040 }
1041
1042 /* Issue Input-status command */
1043 rio_write_config_32(rdev,
1044 RIO_DEV_PORT_N_MNT_REQ_CSR(rdev, pnum),
1045 RIO_MNT_REQ_CMD_IS);
1046
1047 /* Exit if the response is not expected */
1048 if (!lnkresp)
1049 return 0;
1050
1051 checkcount = 3;
1052 while (checkcount--) {
1053 udelay(50);
1054 rio_read_config_32(rdev,
1055 RIO_DEV_PORT_N_MNT_RSP_CSR(rdev, pnum),
1056 ®val);
1057 if (regval & RIO_PORT_N_MNT_RSP_RVAL) {
1058 *lnkresp = regval;
1059 return 0;
1060 }
1061 }
1062
1063 return -EIO;
1064}
1065
1066/**
1067 * rio_clr_err_stopped - Clears port Error-stopped states.
1068 * @rdev: Pointer to RIO device control structure
1069 * @pnum: Switch port number to clear errors
1070 * @err_status: port error status (if 0 reads register from device)
1071 *
1072 * TODO: Currently this routine is not compatible with recovery process
1073 * specified for idt_gen3 RapidIO switch devices. It has to be reviewed
1074 * to implement universal recovery process that is compatible full range
1075 * off available devices.
1076 * IDT gen3 switch driver now implements HW-specific error handler that
1077 * issues soft port reset to the port to reset ERR_STOP bits and ackIDs.
1078 */
1079static int rio_clr_err_stopped(struct rio_dev *rdev, u32 pnum, u32 err_status)
1080{
1081 struct rio_dev *nextdev = rdev->rswitch->nextdev[pnum];
1082 u32 regval;
1083 u32 far_ackid, far_linkstat, near_ackid;
1084
1085 if (err_status == 0)
1086 rio_read_config_32(rdev,
1087 RIO_DEV_PORT_N_ERR_STS_CSR(rdev, pnum),
1088 &err_status);
1089
1090 if (err_status & RIO_PORT_N_ERR_STS_OUT_ES) {
1091 pr_debug("RIO_EM: servicing Output Error-Stopped state\n");
1092 /*
1093 * Send a Link-Request/Input-Status control symbol
1094 */
1095 if (rio_get_input_status(rdev, pnum, ®val)) {
1096 pr_debug("RIO_EM: Input-status response timeout\n");
1097 goto rd_err;
1098 }
1099
1100 pr_debug("RIO_EM: SP%d Input-status response=0x%08x\n",
1101 pnum, regval);
1102 far_ackid = (regval & RIO_PORT_N_MNT_RSP_ASTAT) >> 5;
1103 far_linkstat = regval & RIO_PORT_N_MNT_RSP_LSTAT;
1104 rio_read_config_32(rdev,
1105 RIO_DEV_PORT_N_ACK_STS_CSR(rdev, pnum),
1106 ®val);
1107 pr_debug("RIO_EM: SP%d_ACK_STS_CSR=0x%08x\n", pnum, regval);
1108 near_ackid = (regval & RIO_PORT_N_ACK_INBOUND) >> 24;
1109 pr_debug("RIO_EM: SP%d far_ackID=0x%02x far_linkstat=0x%02x" \
1110 " near_ackID=0x%02x\n",
1111 pnum, far_ackid, far_linkstat, near_ackid);
1112
1113 /*
1114 * If required, synchronize ackIDs of near and
1115 * far sides.
1116 */
1117 if ((far_ackid != ((regval & RIO_PORT_N_ACK_OUTSTAND) >> 8)) ||
1118 (far_ackid != (regval & RIO_PORT_N_ACK_OUTBOUND))) {
1119 /* Align near outstanding/outbound ackIDs with
1120 * far inbound.
1121 */
1122 rio_write_config_32(rdev,
1123 RIO_DEV_PORT_N_ACK_STS_CSR(rdev, pnum),
1124 (near_ackid << 24) |
1125 (far_ackid << 8) | far_ackid);
1126 /* Align far outstanding/outbound ackIDs with
1127 * near inbound.
1128 */
1129 far_ackid++;
1130 if (!nextdev) {
1131 pr_debug("RIO_EM: nextdev pointer == NULL\n");
1132 goto rd_err;
1133 }
1134
1135 rio_write_config_32(nextdev,
1136 RIO_DEV_PORT_N_ACK_STS_CSR(nextdev,
1137 RIO_GET_PORT_NUM(nextdev->swpinfo)),
1138 (far_ackid << 24) |
1139 (near_ackid << 8) | near_ackid);
1140 }
1141rd_err:
1142 rio_read_config_32(rdev, RIO_DEV_PORT_N_ERR_STS_CSR(rdev, pnum),
1143 &err_status);
1144 pr_debug("RIO_EM: SP%d_ERR_STS_CSR=0x%08x\n", pnum, err_status);
1145 }
1146
1147 if ((err_status & RIO_PORT_N_ERR_STS_INP_ES) && nextdev) {
1148 pr_debug("RIO_EM: servicing Input Error-Stopped state\n");
1149 rio_get_input_status(nextdev,
1150 RIO_GET_PORT_NUM(nextdev->swpinfo), NULL);
1151 udelay(50);
1152
1153 rio_read_config_32(rdev, RIO_DEV_PORT_N_ERR_STS_CSR(rdev, pnum),
1154 &err_status);
1155 pr_debug("RIO_EM: SP%d_ERR_STS_CSR=0x%08x\n", pnum, err_status);
1156 }
1157
1158 return (err_status & (RIO_PORT_N_ERR_STS_OUT_ES |
1159 RIO_PORT_N_ERR_STS_INP_ES)) ? 1 : 0;
1160}
1161
1162/**
1163 * rio_inb_pwrite_handler - inbound port-write message handler
1164 * @mport: mport device associated with port-write
1165 * @pw_msg: pointer to inbound port-write message
1166 *
1167 * Processes an inbound port-write message. Returns 0 if the request
1168 * has been satisfied.
1169 */
1170int rio_inb_pwrite_handler(struct rio_mport *mport, union rio_pw_msg *pw_msg)
1171{
1172 struct rio_dev *rdev;
1173 u32 err_status, em_perrdet, em_ltlerrdet;
1174 int rc, portnum;
1175 struct rio_pwrite *pwrite;
1176
1177#ifdef DEBUG_PW
1178 {
1179 u32 i;
1180
1181 pr_debug("%s: PW to mport_%d:\n", __func__, mport->id);
1182 for (i = 0; i < RIO_PW_MSG_SIZE / sizeof(u32); i = i + 4) {
1183 pr_debug("0x%02x: %08x %08x %08x %08x\n",
1184 i * 4, pw_msg->raw[i], pw_msg->raw[i + 1],
1185 pw_msg->raw[i + 2], pw_msg->raw[i + 3]);
1186 }
1187 }
1188#endif
1189
1190 rdev = rio_get_comptag((pw_msg->em.comptag & RIO_CTAG_UDEVID), NULL);
1191 if (rdev) {
1192 pr_debug("RIO: Port-Write message from %s\n", rio_name(rdev));
1193 } else {
1194 pr_debug("RIO: %s No matching device for CTag 0x%08x\n",
1195 __func__, pw_msg->em.comptag);
1196 }
1197
1198 /* Call a device-specific handler (if it is registered for the device).
1199 * This may be the service for endpoints that send device-specific
1200 * port-write messages. End-point messages expected to be handled
1201 * completely by EP specific device driver.
1202 * For switches rc==0 signals that no standard processing required.
1203 */
1204 if (rdev && rdev->pwcback) {
1205 rc = rdev->pwcback(rdev, pw_msg, 0);
1206 if (rc == 0)
1207 return 0;
1208 }
1209
1210 mutex_lock(&mport->lock);
1211 list_for_each_entry(pwrite, &mport->pwrites, node)
1212 pwrite->pwcback(mport, pwrite->context, pw_msg, 0);
1213 mutex_unlock(&mport->lock);
1214
1215 if (!rdev)
1216 return 0;
1217
1218 /*
1219 * FIXME: The code below stays as it was before for now until we decide
1220 * how to do default PW handling in combination with per-mport callbacks
1221 */
1222
1223 portnum = pw_msg->em.is_port & 0xFF;
1224
1225 /* Check if device and route to it are functional:
1226 * Sometimes devices may send PW message(s) just before being
1227 * powered down (or link being lost).
1228 */
1229 if (rio_chk_dev_access(rdev)) {
1230 pr_debug("RIO: device access failed - get link partner\n");
1231 /* Scan route to the device and identify failed link.
1232 * This will replace device and port reported in PW message.
1233 * PW message should not be used after this point.
1234 */
1235 if (rio_chk_dev_route(rdev, &rdev, &portnum)) {
1236 pr_err("RIO: Route trace for %s failed\n",
1237 rio_name(rdev));
1238 return -EIO;
1239 }
1240 pw_msg = NULL;
1241 }
1242
1243 /* For End-point devices processing stops here */
1244 if (!(rdev->pef & RIO_PEF_SWITCH))
1245 return 0;
1246
1247 if (rdev->phys_efptr == 0) {
1248 pr_err("RIO_PW: Bad switch initialization for %s\n",
1249 rio_name(rdev));
1250 return 0;
1251 }
1252
1253 /*
1254 * Process the port-write notification from switch
1255 */
1256 if (rdev->rswitch->ops && rdev->rswitch->ops->em_handle)
1257 rdev->rswitch->ops->em_handle(rdev, portnum);
1258
1259 rio_read_config_32(rdev, RIO_DEV_PORT_N_ERR_STS_CSR(rdev, portnum),
1260 &err_status);
1261 pr_debug("RIO_PW: SP%d_ERR_STS_CSR=0x%08x\n", portnum, err_status);
1262
1263 if (err_status & RIO_PORT_N_ERR_STS_PORT_OK) {
1264
1265 if (!(rdev->rswitch->port_ok & (1 << portnum))) {
1266 rdev->rswitch->port_ok |= (1 << portnum);
1267 rio_set_port_lockout(rdev, portnum, 0);
1268 /* Schedule Insertion Service */
1269 pr_debug("RIO_PW: Device Insertion on [%s]-P%d\n",
1270 rio_name(rdev), portnum);
1271 }
1272
1273 /* Clear error-stopped states (if reported).
1274 * Depending on the link partner state, two attempts
1275 * may be needed for successful recovery.
1276 */
1277 if (err_status & (RIO_PORT_N_ERR_STS_OUT_ES |
1278 RIO_PORT_N_ERR_STS_INP_ES)) {
1279 if (rio_clr_err_stopped(rdev, portnum, err_status))
1280 rio_clr_err_stopped(rdev, portnum, 0);
1281 }
1282 } else { /* if (err_status & RIO_PORT_N_ERR_STS_PORT_UNINIT) */
1283
1284 if (rdev->rswitch->port_ok & (1 << portnum)) {
1285 rdev->rswitch->port_ok &= ~(1 << portnum);
1286 rio_set_port_lockout(rdev, portnum, 1);
1287
1288 if (rdev->phys_rmap == 1) {
1289 rio_write_config_32(rdev,
1290 RIO_DEV_PORT_N_ACK_STS_CSR(rdev, portnum),
1291 RIO_PORT_N_ACK_CLEAR);
1292 } else {
1293 rio_write_config_32(rdev,
1294 RIO_DEV_PORT_N_OB_ACK_CSR(rdev, portnum),
1295 RIO_PORT_N_OB_ACK_CLEAR);
1296 rio_write_config_32(rdev,
1297 RIO_DEV_PORT_N_IB_ACK_CSR(rdev, portnum),
1298 0);
1299 }
1300
1301 /* Schedule Extraction Service */
1302 pr_debug("RIO_PW: Device Extraction on [%s]-P%d\n",
1303 rio_name(rdev), portnum);
1304 }
1305 }
1306
1307 rio_read_config_32(rdev,
1308 rdev->em_efptr + RIO_EM_PN_ERR_DETECT(portnum), &em_perrdet);
1309 if (em_perrdet) {
1310 pr_debug("RIO_PW: RIO_EM_P%d_ERR_DETECT=0x%08x\n",
1311 portnum, em_perrdet);
1312 /* Clear EM Port N Error Detect CSR */
1313 rio_write_config_32(rdev,
1314 rdev->em_efptr + RIO_EM_PN_ERR_DETECT(portnum), 0);
1315 }
1316
1317 rio_read_config_32(rdev,
1318 rdev->em_efptr + RIO_EM_LTL_ERR_DETECT, &em_ltlerrdet);
1319 if (em_ltlerrdet) {
1320 pr_debug("RIO_PW: RIO_EM_LTL_ERR_DETECT=0x%08x\n",
1321 em_ltlerrdet);
1322 /* Clear EM L/T Layer Error Detect CSR */
1323 rio_write_config_32(rdev,
1324 rdev->em_efptr + RIO_EM_LTL_ERR_DETECT, 0);
1325 }
1326
1327 /* Clear remaining error bits and Port-Write Pending bit */
1328 rio_write_config_32(rdev, RIO_DEV_PORT_N_ERR_STS_CSR(rdev, portnum),
1329 err_status);
1330
1331 return 0;
1332}
1333EXPORT_SYMBOL_GPL(rio_inb_pwrite_handler);
1334
1335/**
1336 * rio_mport_get_efb - get pointer to next extended features block
1337 * @port: Master port to issue transaction
1338 * @local: Indicate a local master port or remote device access
1339 * @destid: Destination ID of the device
1340 * @hopcount: Number of switch hops to the device
1341 * @from: Offset of current Extended Feature block header (if 0 starts
1342 * from ExtFeaturePtr)
1343 */
1344u32
1345rio_mport_get_efb(struct rio_mport *port, int local, u16 destid,
1346 u8 hopcount, u32 from)
1347{
1348 u32 reg_val;
1349
1350 if (from == 0) {
1351 if (local)
1352 rio_local_read_config_32(port, RIO_ASM_INFO_CAR,
1353 ®_val);
1354 else
1355 rio_mport_read_config_32(port, destid, hopcount,
1356 RIO_ASM_INFO_CAR, ®_val);
1357 return reg_val & RIO_EXT_FTR_PTR_MASK;
1358 } else {
1359 if (local)
1360 rio_local_read_config_32(port, from, ®_val);
1361 else
1362 rio_mport_read_config_32(port, destid, hopcount,
1363 from, ®_val);
1364 return RIO_GET_BLOCK_ID(reg_val);
1365 }
1366}
1367EXPORT_SYMBOL_GPL(rio_mport_get_efb);
1368
1369/**
1370 * rio_mport_get_feature - query for devices' extended features
1371 * @port: Master port to issue transaction
1372 * @local: Indicate a local master port or remote device access
1373 * @destid: Destination ID of the device
1374 * @hopcount: Number of switch hops to the device
1375 * @ftr: Extended feature code
1376 *
1377 * Tell if a device supports a given RapidIO capability.
1378 * Returns the offset of the requested extended feature
1379 * block within the device's RIO configuration space or
1380 * 0 in case the device does not support it.
1381 */
1382u32
1383rio_mport_get_feature(struct rio_mport * port, int local, u16 destid,
1384 u8 hopcount, int ftr)
1385{
1386 u32 asm_info, ext_ftr_ptr, ftr_header;
1387
1388 if (local)
1389 rio_local_read_config_32(port, RIO_ASM_INFO_CAR, &asm_info);
1390 else
1391 rio_mport_read_config_32(port, destid, hopcount,
1392 RIO_ASM_INFO_CAR, &asm_info);
1393
1394 ext_ftr_ptr = asm_info & RIO_EXT_FTR_PTR_MASK;
1395
1396 while (ext_ftr_ptr) {
1397 if (local)
1398 rio_local_read_config_32(port, ext_ftr_ptr,
1399 &ftr_header);
1400 else
1401 rio_mport_read_config_32(port, destid, hopcount,
1402 ext_ftr_ptr, &ftr_header);
1403 if (RIO_GET_BLOCK_ID(ftr_header) == ftr)
1404 return ext_ftr_ptr;
1405
1406 ext_ftr_ptr = RIO_GET_BLOCK_PTR(ftr_header);
1407 if (!ext_ftr_ptr)
1408 break;
1409 }
1410
1411 return 0;
1412}
1413EXPORT_SYMBOL_GPL(rio_mport_get_feature);
1414
1415/**
1416 * rio_get_asm - Begin or continue searching for a RIO device by vid/did/asm_vid/asm_did
1417 * @vid: RIO vid to match or %RIO_ANY_ID to match all vids
1418 * @did: RIO did to match or %RIO_ANY_ID to match all dids
1419 * @asm_vid: RIO asm_vid to match or %RIO_ANY_ID to match all asm_vids
1420 * @asm_did: RIO asm_did to match or %RIO_ANY_ID to match all asm_dids
1421 * @from: Previous RIO device found in search, or %NULL for new search
1422 *
1423 * Iterates through the list of known RIO devices. If a RIO device is
1424 * found with a matching @vid, @did, @asm_vid, @asm_did, the reference
1425 * count to the device is incrememted and a pointer to its device
1426 * structure is returned. Otherwise, %NULL is returned. A new search
1427 * is initiated by passing %NULL to the @from argument. Otherwise, if
1428 * @from is not %NULL, searches continue from next device on the global
1429 * list. The reference count for @from is always decremented if it is
1430 * not %NULL.
1431 */
1432struct rio_dev *rio_get_asm(u16 vid, u16 did,
1433 u16 asm_vid, u16 asm_did, struct rio_dev *from)
1434{
1435 struct list_head *n;
1436 struct rio_dev *rdev;
1437
1438 WARN_ON(in_interrupt());
1439 spin_lock(&rio_global_list_lock);
1440 n = from ? from->global_list.next : rio_devices.next;
1441
1442 while (n && (n != &rio_devices)) {
1443 rdev = rio_dev_g(n);
1444 if ((vid == RIO_ANY_ID || rdev->vid == vid) &&
1445 (did == RIO_ANY_ID || rdev->did == did) &&
1446 (asm_vid == RIO_ANY_ID || rdev->asm_vid == asm_vid) &&
1447 (asm_did == RIO_ANY_ID || rdev->asm_did == asm_did))
1448 goto exit;
1449 n = n->next;
1450 }
1451 rdev = NULL;
1452 exit:
1453 rio_dev_put(from);
1454 rdev = rio_dev_get(rdev);
1455 spin_unlock(&rio_global_list_lock);
1456 return rdev;
1457}
1458EXPORT_SYMBOL_GPL(rio_get_asm);
1459
1460/**
1461 * rio_get_device - Begin or continue searching for a RIO device by vid/did
1462 * @vid: RIO vid to match or %RIO_ANY_ID to match all vids
1463 * @did: RIO did to match or %RIO_ANY_ID to match all dids
1464 * @from: Previous RIO device found in search, or %NULL for new search
1465 *
1466 * Iterates through the list of known RIO devices. If a RIO device is
1467 * found with a matching @vid and @did, the reference count to the
1468 * device is incrememted and a pointer to its device structure is returned.
1469 * Otherwise, %NULL is returned. A new search is initiated by passing %NULL
1470 * to the @from argument. Otherwise, if @from is not %NULL, searches
1471 * continue from next device on the global list. The reference count for
1472 * @from is always decremented if it is not %NULL.
1473 */
1474struct rio_dev *rio_get_device(u16 vid, u16 did, struct rio_dev *from)
1475{
1476 return rio_get_asm(vid, did, RIO_ANY_ID, RIO_ANY_ID, from);
1477}
1478EXPORT_SYMBOL_GPL(rio_get_device);
1479
1480/**
1481 * rio_std_route_add_entry - Add switch route table entry using standard
1482 * registers defined in RIO specification rev.1.3
1483 * @mport: Master port to issue transaction
1484 * @destid: Destination ID of the device
1485 * @hopcount: Number of switch hops to the device
1486 * @table: routing table ID (global or port-specific)
1487 * @route_destid: destID entry in the RT
1488 * @route_port: destination port for specified destID
1489 */
1490static int
1491rio_std_route_add_entry(struct rio_mport *mport, u16 destid, u8 hopcount,
1492 u16 table, u16 route_destid, u8 route_port)
1493{
1494 if (table == RIO_GLOBAL_TABLE) {
1495 rio_mport_write_config_32(mport, destid, hopcount,
1496 RIO_STD_RTE_CONF_DESTID_SEL_CSR,
1497 (u32)route_destid);
1498 rio_mport_write_config_32(mport, destid, hopcount,
1499 RIO_STD_RTE_CONF_PORT_SEL_CSR,
1500 (u32)route_port);
1501 }
1502
1503 udelay(10);
1504 return 0;
1505}
1506
1507/**
1508 * rio_std_route_get_entry - Read switch route table entry (port number)
1509 * associated with specified destID using standard registers defined in RIO
1510 * specification rev.1.3
1511 * @mport: Master port to issue transaction
1512 * @destid: Destination ID of the device
1513 * @hopcount: Number of switch hops to the device
1514 * @table: routing table ID (global or port-specific)
1515 * @route_destid: destID entry in the RT
1516 * @route_port: returned destination port for specified destID
1517 */
1518static int
1519rio_std_route_get_entry(struct rio_mport *mport, u16 destid, u8 hopcount,
1520 u16 table, u16 route_destid, u8 *route_port)
1521{
1522 u32 result;
1523
1524 if (table == RIO_GLOBAL_TABLE) {
1525 rio_mport_write_config_32(mport, destid, hopcount,
1526 RIO_STD_RTE_CONF_DESTID_SEL_CSR, route_destid);
1527 rio_mport_read_config_32(mport, destid, hopcount,
1528 RIO_STD_RTE_CONF_PORT_SEL_CSR, &result);
1529
1530 *route_port = (u8)result;
1531 }
1532
1533 return 0;
1534}
1535
1536/**
1537 * rio_std_route_clr_table - Clear swotch route table using standard registers
1538 * defined in RIO specification rev.1.3.
1539 * @mport: Master port to issue transaction
1540 * @destid: Destination ID of the device
1541 * @hopcount: Number of switch hops to the device
1542 * @table: routing table ID (global or port-specific)
1543 */
1544static int
1545rio_std_route_clr_table(struct rio_mport *mport, u16 destid, u8 hopcount,
1546 u16 table)
1547{
1548 u32 max_destid = 0xff;
1549 u32 i, pef, id_inc = 1, ext_cfg = 0;
1550 u32 port_sel = RIO_INVALID_ROUTE;
1551
1552 if (table == RIO_GLOBAL_TABLE) {
1553 rio_mport_read_config_32(mport, destid, hopcount,
1554 RIO_PEF_CAR, &pef);
1555
1556 if (mport->sys_size) {
1557 rio_mport_read_config_32(mport, destid, hopcount,
1558 RIO_SWITCH_RT_LIMIT,
1559 &max_destid);
1560 max_destid &= RIO_RT_MAX_DESTID;
1561 }
1562
1563 if (pef & RIO_PEF_EXT_RT) {
1564 ext_cfg = 0x80000000;
1565 id_inc = 4;
1566 port_sel = (RIO_INVALID_ROUTE << 24) |
1567 (RIO_INVALID_ROUTE << 16) |
1568 (RIO_INVALID_ROUTE << 8) |
1569 RIO_INVALID_ROUTE;
1570 }
1571
1572 for (i = 0; i <= max_destid;) {
1573 rio_mport_write_config_32(mport, destid, hopcount,
1574 RIO_STD_RTE_CONF_DESTID_SEL_CSR,
1575 ext_cfg | i);
1576 rio_mport_write_config_32(mport, destid, hopcount,
1577 RIO_STD_RTE_CONF_PORT_SEL_CSR,
1578 port_sel);
1579 i += id_inc;
1580 }
1581 }
1582
1583 udelay(10);
1584 return 0;
1585}
1586
1587/**
1588 * rio_lock_device - Acquires host device lock for specified device
1589 * @port: Master port to send transaction
1590 * @destid: Destination ID for device/switch
1591 * @hopcount: Hopcount to reach switch
1592 * @wait_ms: Max wait time in msec (0 = no timeout)
1593 *
1594 * Attepts to acquire host device lock for specified device
1595 * Returns 0 if device lock acquired or EINVAL if timeout expires.
1596 */
1597int rio_lock_device(struct rio_mport *port, u16 destid,
1598 u8 hopcount, int wait_ms)
1599{
1600 u32 result;
1601 int tcnt = 0;
1602
1603 /* Attempt to acquire device lock */
1604 rio_mport_write_config_32(port, destid, hopcount,
1605 RIO_HOST_DID_LOCK_CSR, port->host_deviceid);
1606 rio_mport_read_config_32(port, destid, hopcount,
1607 RIO_HOST_DID_LOCK_CSR, &result);
1608
1609 while (result != port->host_deviceid) {
1610 if (wait_ms != 0 && tcnt == wait_ms) {
1611 pr_debug("RIO: timeout when locking device %x:%x\n",
1612 destid, hopcount);
1613 return -EINVAL;
1614 }
1615
1616 /* Delay a bit */
1617 mdelay(1);
1618 tcnt++;
1619 /* Try to acquire device lock again */
1620 rio_mport_write_config_32(port, destid,
1621 hopcount,
1622 RIO_HOST_DID_LOCK_CSR,
1623 port->host_deviceid);
1624 rio_mport_read_config_32(port, destid,
1625 hopcount,
1626 RIO_HOST_DID_LOCK_CSR, &result);
1627 }
1628
1629 return 0;
1630}
1631EXPORT_SYMBOL_GPL(rio_lock_device);
1632
1633/**
1634 * rio_unlock_device - Releases host device lock for specified device
1635 * @port: Master port to send transaction
1636 * @destid: Destination ID for device/switch
1637 * @hopcount: Hopcount to reach switch
1638 *
1639 * Returns 0 if device lock released or EINVAL if fails.
1640 */
1641int rio_unlock_device(struct rio_mport *port, u16 destid, u8 hopcount)
1642{
1643 u32 result;
1644
1645 /* Release device lock */
1646 rio_mport_write_config_32(port, destid,
1647 hopcount,
1648 RIO_HOST_DID_LOCK_CSR,
1649 port->host_deviceid);
1650 rio_mport_read_config_32(port, destid, hopcount,
1651 RIO_HOST_DID_LOCK_CSR, &result);
1652 if ((result & 0xffff) != 0xffff) {
1653 pr_debug("RIO: badness when releasing device lock %x:%x\n",
1654 destid, hopcount);
1655 return -EINVAL;
1656 }
1657
1658 return 0;
1659}
1660EXPORT_SYMBOL_GPL(rio_unlock_device);
1661
1662/**
1663 * rio_route_add_entry- Add a route entry to a switch routing table
1664 * @rdev: RIO device
1665 * @table: Routing table ID
1666 * @route_destid: Destination ID to be routed
1667 * @route_port: Port number to be routed
1668 * @lock: apply a hardware lock on switch device flag (1=lock, 0=no_lock)
1669 *
1670 * If available calls the switch specific add_entry() method to add a route
1671 * entry into a switch routing table. Otherwise uses standard RT update method
1672 * as defined by RapidIO specification. A specific routing table can be selected
1673 * using the @table argument if a switch has per port routing tables or
1674 * the standard (or global) table may be used by passing
1675 * %RIO_GLOBAL_TABLE in @table.
1676 *
1677 * Returns %0 on success or %-EINVAL on failure.
1678 */
1679int rio_route_add_entry(struct rio_dev *rdev,
1680 u16 table, u16 route_destid, u8 route_port, int lock)
1681{
1682 int rc = -EINVAL;
1683 struct rio_switch_ops *ops = rdev->rswitch->ops;
1684
1685 if (lock) {
1686 rc = rio_lock_device(rdev->net->hport, rdev->destid,
1687 rdev->hopcount, 1000);
1688 if (rc)
1689 return rc;
1690 }
1691
1692 spin_lock(&rdev->rswitch->lock);
1693
1694 if (!ops || !ops->add_entry) {
1695 rc = rio_std_route_add_entry(rdev->net->hport, rdev->destid,
1696 rdev->hopcount, table,
1697 route_destid, route_port);
1698 } else if (try_module_get(ops->owner)) {
1699 rc = ops->add_entry(rdev->net->hport, rdev->destid,
1700 rdev->hopcount, table, route_destid,
1701 route_port);
1702 module_put(ops->owner);
1703 }
1704
1705 spin_unlock(&rdev->rswitch->lock);
1706
1707 if (lock)
1708 rio_unlock_device(rdev->net->hport, rdev->destid,
1709 rdev->hopcount);
1710
1711 return rc;
1712}
1713EXPORT_SYMBOL_GPL(rio_route_add_entry);
1714
1715/**
1716 * rio_route_get_entry- Read an entry from a switch routing table
1717 * @rdev: RIO device
1718 * @table: Routing table ID
1719 * @route_destid: Destination ID to be routed
1720 * @route_port: Pointer to read port number into
1721 * @lock: apply a hardware lock on switch device flag (1=lock, 0=no_lock)
1722 *
1723 * If available calls the switch specific get_entry() method to fetch a route
1724 * entry from a switch routing table. Otherwise uses standard RT read method
1725 * as defined by RapidIO specification. A specific routing table can be selected
1726 * using the @table argument if a switch has per port routing tables or
1727 * the standard (or global) table may be used by passing
1728 * %RIO_GLOBAL_TABLE in @table.
1729 *
1730 * Returns %0 on success or %-EINVAL on failure.
1731 */
1732int rio_route_get_entry(struct rio_dev *rdev, u16 table,
1733 u16 route_destid, u8 *route_port, int lock)
1734{
1735 int rc = -EINVAL;
1736 struct rio_switch_ops *ops = rdev->rswitch->ops;
1737
1738 if (lock) {
1739 rc = rio_lock_device(rdev->net->hport, rdev->destid,
1740 rdev->hopcount, 1000);
1741 if (rc)
1742 return rc;
1743 }
1744
1745 spin_lock(&rdev->rswitch->lock);
1746
1747 if (!ops || !ops->get_entry) {
1748 rc = rio_std_route_get_entry(rdev->net->hport, rdev->destid,
1749 rdev->hopcount, table,
1750 route_destid, route_port);
1751 } else if (try_module_get(ops->owner)) {
1752 rc = ops->get_entry(rdev->net->hport, rdev->destid,
1753 rdev->hopcount, table, route_destid,
1754 route_port);
1755 module_put(ops->owner);
1756 }
1757
1758 spin_unlock(&rdev->rswitch->lock);
1759
1760 if (lock)
1761 rio_unlock_device(rdev->net->hport, rdev->destid,
1762 rdev->hopcount);
1763 return rc;
1764}
1765EXPORT_SYMBOL_GPL(rio_route_get_entry);
1766
1767/**
1768 * rio_route_clr_table - Clear a switch routing table
1769 * @rdev: RIO device
1770 * @table: Routing table ID
1771 * @lock: apply a hardware lock on switch device flag (1=lock, 0=no_lock)
1772 *
1773 * If available calls the switch specific clr_table() method to clear a switch
1774 * routing table. Otherwise uses standard RT write method as defined by RapidIO
1775 * specification. A specific routing table can be selected using the @table
1776 * argument if a switch has per port routing tables or the standard (or global)
1777 * table may be used by passing %RIO_GLOBAL_TABLE in @table.
1778 *
1779 * Returns %0 on success or %-EINVAL on failure.
1780 */
1781int rio_route_clr_table(struct rio_dev *rdev, u16 table, int lock)
1782{
1783 int rc = -EINVAL;
1784 struct rio_switch_ops *ops = rdev->rswitch->ops;
1785
1786 if (lock) {
1787 rc = rio_lock_device(rdev->net->hport, rdev->destid,
1788 rdev->hopcount, 1000);
1789 if (rc)
1790 return rc;
1791 }
1792
1793 spin_lock(&rdev->rswitch->lock);
1794
1795 if (!ops || !ops->clr_table) {
1796 rc = rio_std_route_clr_table(rdev->net->hport, rdev->destid,
1797 rdev->hopcount, table);
1798 } else if (try_module_get(ops->owner)) {
1799 rc = ops->clr_table(rdev->net->hport, rdev->destid,
1800 rdev->hopcount, table);
1801
1802 module_put(ops->owner);
1803 }
1804
1805 spin_unlock(&rdev->rswitch->lock);
1806
1807 if (lock)
1808 rio_unlock_device(rdev->net->hport, rdev->destid,
1809 rdev->hopcount);
1810
1811 return rc;
1812}
1813EXPORT_SYMBOL_GPL(rio_route_clr_table);
1814
1815#ifdef CONFIG_RAPIDIO_DMA_ENGINE
1816
1817static bool rio_chan_filter(struct dma_chan *chan, void *arg)
1818{
1819 struct rio_mport *mport = arg;
1820
1821 /* Check that DMA device belongs to the right MPORT */
1822 return mport == container_of(chan->device, struct rio_mport, dma);
1823}
1824
1825/**
1826 * rio_request_mport_dma - request RapidIO capable DMA channel associated
1827 * with specified local RapidIO mport device.
1828 * @mport: RIO mport to perform DMA data transfers
1829 *
1830 * Returns pointer to allocated DMA channel or NULL if failed.
1831 */
1832struct dma_chan *rio_request_mport_dma(struct rio_mport *mport)
1833{
1834 dma_cap_mask_t mask;
1835
1836 dma_cap_zero(mask);
1837 dma_cap_set(DMA_SLAVE, mask);
1838 return dma_request_channel(mask, rio_chan_filter, mport);
1839}
1840EXPORT_SYMBOL_GPL(rio_request_mport_dma);
1841
1842/**
1843 * rio_request_dma - request RapidIO capable DMA channel that supports
1844 * specified target RapidIO device.
1845 * @rdev: RIO device associated with DMA transfer
1846 *
1847 * Returns pointer to allocated DMA channel or NULL if failed.
1848 */
1849struct dma_chan *rio_request_dma(struct rio_dev *rdev)
1850{
1851 return rio_request_mport_dma(rdev->net->hport);
1852}
1853EXPORT_SYMBOL_GPL(rio_request_dma);
1854
1855/**
1856 * rio_release_dma - release specified DMA channel
1857 * @dchan: DMA channel to release
1858 */
1859void rio_release_dma(struct dma_chan *dchan)
1860{
1861 dma_release_channel(dchan);
1862}
1863EXPORT_SYMBOL_GPL(rio_release_dma);
1864
1865/**
1866 * rio_dma_prep_xfer - RapidIO specific wrapper
1867 * for device_prep_slave_sg callback defined by DMAENGINE.
1868 * @dchan: DMA channel to configure
1869 * @destid: target RapidIO device destination ID
1870 * @data: RIO specific data descriptor
1871 * @direction: DMA data transfer direction (TO or FROM the device)
1872 * @flags: dmaengine defined flags
1873 *
1874 * Initializes RapidIO capable DMA channel for the specified data transfer.
1875 * Uses DMA channel private extension to pass information related to remote
1876 * target RIO device.
1877 *
1878 * Returns: pointer to DMA transaction descriptor if successful,
1879 * error-valued pointer or NULL if failed.
1880 */
1881struct dma_async_tx_descriptor *rio_dma_prep_xfer(struct dma_chan *dchan,
1882 u16 destid, struct rio_dma_data *data,
1883 enum dma_transfer_direction direction, unsigned long flags)
1884{
1885 struct rio_dma_ext rio_ext;
1886
1887 if (!dchan->device->device_prep_slave_sg) {
1888 pr_err("%s: prep_rio_sg == NULL\n", __func__);
1889 return NULL;
1890 }
1891
1892 rio_ext.destid = destid;
1893 rio_ext.rio_addr_u = data->rio_addr_u;
1894 rio_ext.rio_addr = data->rio_addr;
1895 rio_ext.wr_type = data->wr_type;
1896
1897 return dmaengine_prep_rio_sg(dchan, data->sg, data->sg_len,
1898 direction, flags, &rio_ext);
1899}
1900EXPORT_SYMBOL_GPL(rio_dma_prep_xfer);
1901
1902/**
1903 * rio_dma_prep_slave_sg - RapidIO specific wrapper
1904 * for device_prep_slave_sg callback defined by DMAENGINE.
1905 * @rdev: RIO device control structure
1906 * @dchan: DMA channel to configure
1907 * @data: RIO specific data descriptor
1908 * @direction: DMA data transfer direction (TO or FROM the device)
1909 * @flags: dmaengine defined flags
1910 *
1911 * Initializes RapidIO capable DMA channel for the specified data transfer.
1912 * Uses DMA channel private extension to pass information related to remote
1913 * target RIO device.
1914 *
1915 * Returns: pointer to DMA transaction descriptor if successful,
1916 * error-valued pointer or NULL if failed.
1917 */
1918struct dma_async_tx_descriptor *rio_dma_prep_slave_sg(struct rio_dev *rdev,
1919 struct dma_chan *dchan, struct rio_dma_data *data,
1920 enum dma_transfer_direction direction, unsigned long flags)
1921{
1922 return rio_dma_prep_xfer(dchan, rdev->destid, data, direction, flags);
1923}
1924EXPORT_SYMBOL_GPL(rio_dma_prep_slave_sg);
1925
1926#endif /* CONFIG_RAPIDIO_DMA_ENGINE */
1927
1928/**
1929 * rio_find_mport - find RIO mport by its ID
1930 * @mport_id: number (ID) of mport device
1931 *
1932 * Given a RIO mport number, the desired mport is located
1933 * in the global list of mports. If the mport is found, a pointer to its
1934 * data structure is returned. If no mport is found, %NULL is returned.
1935 */
1936struct rio_mport *rio_find_mport(int mport_id)
1937{
1938 struct rio_mport *port;
1939
1940 mutex_lock(&rio_mport_list_lock);
1941 list_for_each_entry(port, &rio_mports, node) {
1942 if (port->id == mport_id)
1943 goto found;
1944 }
1945 port = NULL;
1946found:
1947 mutex_unlock(&rio_mport_list_lock);
1948
1949 return port;
1950}
1951
1952/**
1953 * rio_register_scan - enumeration/discovery method registration interface
1954 * @mport_id: mport device ID for which fabric scan routine has to be set
1955 * (RIO_MPORT_ANY = set for all available mports)
1956 * @scan_ops: enumeration/discovery operations structure
1957 *
1958 * Registers enumeration/discovery operations with RapidIO subsystem and
1959 * attaches it to the specified mport device (or all available mports
1960 * if RIO_MPORT_ANY is specified).
1961 *
1962 * Returns error if the mport already has an enumerator attached to it.
1963 * In case of RIO_MPORT_ANY skips mports with valid scan routines (no error).
1964 */
1965int rio_register_scan(int mport_id, struct rio_scan *scan_ops)
1966{
1967 struct rio_mport *port;
1968 struct rio_scan_node *scan;
1969 int rc = 0;
1970
1971 pr_debug("RIO: %s for mport_id=%d\n", __func__, mport_id);
1972
1973 if ((mport_id != RIO_MPORT_ANY && mport_id >= RIO_MAX_MPORTS) ||
1974 !scan_ops)
1975 return -EINVAL;
1976
1977 mutex_lock(&rio_mport_list_lock);
1978
1979 /*
1980 * Check if there is another enumerator already registered for
1981 * the same mport ID (including RIO_MPORT_ANY). Multiple enumerators
1982 * for the same mport ID are not supported.
1983 */
1984 list_for_each_entry(scan, &rio_scans, node) {
1985 if (scan->mport_id == mport_id) {
1986 rc = -EBUSY;
1987 goto err_out;
1988 }
1989 }
1990
1991 /*
1992 * Allocate and initialize new scan registration node.
1993 */
1994 scan = kzalloc(sizeof(*scan), GFP_KERNEL);
1995 if (!scan) {
1996 rc = -ENOMEM;
1997 goto err_out;
1998 }
1999
2000 scan->mport_id = mport_id;
2001 scan->ops = scan_ops;
2002
2003 /*
2004 * Traverse the list of registered mports to attach this new scan.
2005 *
2006 * The new scan with matching mport ID overrides any previously attached
2007 * scan assuming that old scan (if any) is the default one (based on the
2008 * enumerator registration check above).
2009 * If the new scan is the global one, it will be attached only to mports
2010 * that do not have their own individual operations already attached.
2011 */
2012 list_for_each_entry(port, &rio_mports, node) {
2013 if (port->id == mport_id) {
2014 port->nscan = scan_ops;
2015 break;
2016 } else if (mport_id == RIO_MPORT_ANY && !port->nscan)
2017 port->nscan = scan_ops;
2018 }
2019
2020 list_add_tail(&scan->node, &rio_scans);
2021
2022err_out:
2023 mutex_unlock(&rio_mport_list_lock);
2024
2025 return rc;
2026}
2027EXPORT_SYMBOL_GPL(rio_register_scan);
2028
2029/**
2030 * rio_unregister_scan - removes enumeration/discovery method from mport
2031 * @mport_id: mport device ID for which fabric scan routine has to be
2032 * unregistered (RIO_MPORT_ANY = apply to all mports that use
2033 * the specified scan_ops)
2034 * @scan_ops: enumeration/discovery operations structure
2035 *
2036 * Removes enumeration or discovery method assigned to the specified mport
2037 * device. If RIO_MPORT_ANY is specified, removes the specified operations from
2038 * all mports that have them attached.
2039 */
2040int rio_unregister_scan(int mport_id, struct rio_scan *scan_ops)
2041{
2042 struct rio_mport *port;
2043 struct rio_scan_node *scan;
2044
2045 pr_debug("RIO: %s for mport_id=%d\n", __func__, mport_id);
2046
2047 if (mport_id != RIO_MPORT_ANY && mport_id >= RIO_MAX_MPORTS)
2048 return -EINVAL;
2049
2050 mutex_lock(&rio_mport_list_lock);
2051
2052 list_for_each_entry(port, &rio_mports, node)
2053 if (port->id == mport_id ||
2054 (mport_id == RIO_MPORT_ANY && port->nscan == scan_ops))
2055 port->nscan = NULL;
2056
2057 list_for_each_entry(scan, &rio_scans, node) {
2058 if (scan->mport_id == mport_id) {
2059 list_del(&scan->node);
2060 kfree(scan);
2061 break;
2062 }
2063 }
2064
2065 mutex_unlock(&rio_mport_list_lock);
2066
2067 return 0;
2068}
2069EXPORT_SYMBOL_GPL(rio_unregister_scan);
2070
2071/**
2072 * rio_mport_scan - execute enumeration/discovery on the specified mport
2073 * @mport_id: number (ID) of mport device
2074 */
2075int rio_mport_scan(int mport_id)
2076{
2077 struct rio_mport *port = NULL;
2078 int rc;
2079
2080 mutex_lock(&rio_mport_list_lock);
2081 list_for_each_entry(port, &rio_mports, node) {
2082 if (port->id == mport_id)
2083 goto found;
2084 }
2085 mutex_unlock(&rio_mport_list_lock);
2086 return -ENODEV;
2087found:
2088 if (!port->nscan) {
2089 mutex_unlock(&rio_mport_list_lock);
2090 return -EINVAL;
2091 }
2092
2093 if (!try_module_get(port->nscan->owner)) {
2094 mutex_unlock(&rio_mport_list_lock);
2095 return -ENODEV;
2096 }
2097
2098 mutex_unlock(&rio_mport_list_lock);
2099
2100 if (port->host_deviceid >= 0)
2101 rc = port->nscan->enumerate(port, 0);
2102 else
2103 rc = port->nscan->discover(port, RIO_SCAN_ENUM_NO_WAIT);
2104
2105 module_put(port->nscan->owner);
2106 return rc;
2107}
2108
2109static void rio_fixup_device(struct rio_dev *dev)
2110{
2111}
2112
2113static int rio_init(void)
2114{
2115 struct rio_dev *dev = NULL;
2116
2117 while ((dev = rio_get_device(RIO_ANY_ID, RIO_ANY_ID, dev)) != NULL) {
2118 rio_fixup_device(dev);
2119 }
2120 return 0;
2121}
2122
2123static struct workqueue_struct *rio_wq;
2124
2125struct rio_disc_work {
2126 struct work_struct work;
2127 struct rio_mport *mport;
2128};
2129
2130static void disc_work_handler(struct work_struct *_work)
2131{
2132 struct rio_disc_work *work;
2133
2134 work = container_of(_work, struct rio_disc_work, work);
2135 pr_debug("RIO: discovery work for mport %d %s\n",
2136 work->mport->id, work->mport->name);
2137 if (try_module_get(work->mport->nscan->owner)) {
2138 work->mport->nscan->discover(work->mport, 0);
2139 module_put(work->mport->nscan->owner);
2140 }
2141}
2142
2143int rio_init_mports(void)
2144{
2145 struct rio_mport *port;
2146 struct rio_disc_work *work;
2147 int n = 0;
2148
2149 if (!next_portid)
2150 return -ENODEV;
2151
2152 /*
2153 * First, run enumerations and check if we need to perform discovery
2154 * on any of the registered mports.
2155 */
2156 mutex_lock(&rio_mport_list_lock);
2157 list_for_each_entry(port, &rio_mports, node) {
2158 if (port->host_deviceid >= 0) {
2159 if (port->nscan && try_module_get(port->nscan->owner)) {
2160 port->nscan->enumerate(port, 0);
2161 module_put(port->nscan->owner);
2162 }
2163 } else
2164 n++;
2165 }
2166 mutex_unlock(&rio_mport_list_lock);
2167
2168 if (!n)
2169 goto no_disc;
2170
2171 /*
2172 * If we have mports that require discovery schedule a discovery work
2173 * for each of them. If the code below fails to allocate needed
2174 * resources, exit without error to keep results of enumeration
2175 * process (if any).
2176 * TODO: Implement restart of discovery process for all or
2177 * individual discovering mports.
2178 */
2179 rio_wq = alloc_workqueue("riodisc", 0, 0);
2180 if (!rio_wq) {
2181 pr_err("RIO: unable allocate rio_wq\n");
2182 goto no_disc;
2183 }
2184
2185 work = kcalloc(n, sizeof *work, GFP_KERNEL);
2186 if (!work) {
2187 destroy_workqueue(rio_wq);
2188 goto no_disc;
2189 }
2190
2191 n = 0;
2192 mutex_lock(&rio_mport_list_lock);
2193 list_for_each_entry(port, &rio_mports, node) {
2194 if (port->host_deviceid < 0 && port->nscan) {
2195 work[n].mport = port;
2196 INIT_WORK(&work[n].work, disc_work_handler);
2197 queue_work(rio_wq, &work[n].work);
2198 n++;
2199 }
2200 }
2201
2202 flush_workqueue(rio_wq);
2203 mutex_unlock(&rio_mport_list_lock);
2204 pr_debug("RIO: destroy discovery workqueue\n");
2205 destroy_workqueue(rio_wq);
2206 kfree(work);
2207
2208no_disc:
2209 rio_init();
2210
2211 return 0;
2212}
2213EXPORT_SYMBOL_GPL(rio_init_mports);
2214
2215static int rio_get_hdid(int index)
2216{
2217 if (ids_num == 0 || ids_num <= index || index >= RIO_MAX_MPORTS)
2218 return -1;
2219
2220 return hdid[index];
2221}
2222
2223int rio_mport_initialize(struct rio_mport *mport)
2224{
2225 if (next_portid >= RIO_MAX_MPORTS) {
2226 pr_err("RIO: reached specified max number of mports\n");
2227 return -ENODEV;
2228 }
2229
2230 atomic_set(&mport->state, RIO_DEVICE_INITIALIZING);
2231 mport->id = next_portid++;
2232 mport->host_deviceid = rio_get_hdid(mport->id);
2233 mport->nscan = NULL;
2234 mutex_init(&mport->lock);
2235 mport->pwe_refcnt = 0;
2236 INIT_LIST_HEAD(&mport->pwrites);
2237
2238 return 0;
2239}
2240EXPORT_SYMBOL_GPL(rio_mport_initialize);
2241
2242int rio_register_mport(struct rio_mport *port)
2243{
2244 struct rio_scan_node *scan = NULL;
2245 int res = 0;
2246
2247 mutex_lock(&rio_mport_list_lock);
2248
2249 /*
2250 * Check if there are any registered enumeration/discovery operations
2251 * that have to be attached to the added mport.
2252 */
2253 list_for_each_entry(scan, &rio_scans, node) {
2254 if (port->id == scan->mport_id ||
2255 scan->mport_id == RIO_MPORT_ANY) {
2256 port->nscan = scan->ops;
2257 if (port->id == scan->mport_id)
2258 break;
2259 }
2260 }
2261
2262 list_add_tail(&port->node, &rio_mports);
2263 mutex_unlock(&rio_mport_list_lock);
2264
2265 dev_set_name(&port->dev, "rapidio%d", port->id);
2266 port->dev.class = &rio_mport_class;
2267 atomic_set(&port->state, RIO_DEVICE_RUNNING);
2268
2269 res = device_register(&port->dev);
2270 if (res)
2271 dev_err(&port->dev, "RIO: mport%d registration failed ERR=%d\n",
2272 port->id, res);
2273 else
2274 dev_dbg(&port->dev, "RIO: registered mport%d\n", port->id);
2275
2276 return res;
2277}
2278EXPORT_SYMBOL_GPL(rio_register_mport);
2279
2280static int rio_mport_cleanup_callback(struct device *dev, void *data)
2281{
2282 struct rio_dev *rdev = to_rio_dev(dev);
2283
2284 if (dev->bus == &rio_bus_type)
2285 rio_del_device(rdev, RIO_DEVICE_SHUTDOWN);
2286 return 0;
2287}
2288
2289static int rio_net_remove_children(struct rio_net *net)
2290{
2291 /*
2292 * Unregister all RapidIO devices residing on this net (this will
2293 * invoke notification of registered subsystem interfaces as well).
2294 */
2295 device_for_each_child(&net->dev, NULL, rio_mport_cleanup_callback);
2296 return 0;
2297}
2298
2299int rio_unregister_mport(struct rio_mport *port)
2300{
2301 pr_debug("RIO: %s %s id=%d\n", __func__, port->name, port->id);
2302
2303 /* Transition mport to the SHUTDOWN state */
2304 if (atomic_cmpxchg(&port->state,
2305 RIO_DEVICE_RUNNING,
2306 RIO_DEVICE_SHUTDOWN) != RIO_DEVICE_RUNNING) {
2307 pr_err("RIO: %s unexpected state transition for mport %s\n",
2308 __func__, port->name);
2309 }
2310
2311 if (port->net && port->net->hport == port) {
2312 rio_net_remove_children(port->net);
2313 rio_free_net(port->net);
2314 }
2315
2316 /*
2317 * Unregister all RapidIO devices attached to this mport (this will
2318 * invoke notification of registered subsystem interfaces as well).
2319 */
2320 mutex_lock(&rio_mport_list_lock);
2321 list_del(&port->node);
2322 mutex_unlock(&rio_mport_list_lock);
2323 device_unregister(&port->dev);
2324
2325 return 0;
2326}
2327EXPORT_SYMBOL_GPL(rio_unregister_mport);
1/*
2 * RapidIO interconnect services
3 * (RapidIO Interconnect Specification, http://www.rapidio.org)
4 *
5 * Copyright 2005 MontaVista Software, Inc.
6 * Matt Porter <mporter@kernel.crashing.org>
7 *
8 * Copyright 2009 - 2013 Integrated Device Technology, Inc.
9 * Alex Bounine <alexandre.bounine@idt.com>
10 *
11 * This program is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the
13 * Free Software Foundation; either version 2 of the License, or (at your
14 * option) any later version.
15 */
16
17#include <linux/types.h>
18#include <linux/kernel.h>
19
20#include <linux/delay.h>
21#include <linux/init.h>
22#include <linux/rio.h>
23#include <linux/rio_drv.h>
24#include <linux/rio_ids.h>
25#include <linux/rio_regs.h>
26#include <linux/module.h>
27#include <linux/spinlock.h>
28#include <linux/slab.h>
29#include <linux/interrupt.h>
30
31#include "rio.h"
32
33MODULE_DESCRIPTION("RapidIO Subsystem Core");
34MODULE_AUTHOR("Matt Porter <mporter@kernel.crashing.org>");
35MODULE_AUTHOR("Alexandre Bounine <alexandre.bounine@idt.com>");
36MODULE_LICENSE("GPL");
37
38static int hdid[RIO_MAX_MPORTS];
39static int ids_num;
40module_param_array(hdid, int, &ids_num, 0);
41MODULE_PARM_DESC(hdid,
42 "Destination ID assignment to local RapidIO controllers");
43
44static LIST_HEAD(rio_devices);
45static DEFINE_SPINLOCK(rio_global_list_lock);
46
47static LIST_HEAD(rio_mports);
48static LIST_HEAD(rio_scans);
49static DEFINE_MUTEX(rio_mport_list_lock);
50static unsigned char next_portid;
51static DEFINE_SPINLOCK(rio_mmap_lock);
52
53/**
54 * rio_local_get_device_id - Get the base/extended device id for a port
55 * @port: RIO master port from which to get the deviceid
56 *
57 * Reads the base/extended device id from the local device
58 * implementing the master port. Returns the 8/16-bit device
59 * id.
60 */
61u16 rio_local_get_device_id(struct rio_mport *port)
62{
63 u32 result;
64
65 rio_local_read_config_32(port, RIO_DID_CSR, &result);
66
67 return (RIO_GET_DID(port->sys_size, result));
68}
69
70/**
71 * rio_add_device- Adds a RIO device to the device model
72 * @rdev: RIO device
73 *
74 * Adds the RIO device to the global device list and adds the RIO
75 * device to the RIO device list. Creates the generic sysfs nodes
76 * for an RIO device.
77 */
78int rio_add_device(struct rio_dev *rdev)
79{
80 int err;
81
82 err = device_add(&rdev->dev);
83 if (err)
84 return err;
85
86 spin_lock(&rio_global_list_lock);
87 list_add_tail(&rdev->global_list, &rio_devices);
88 spin_unlock(&rio_global_list_lock);
89
90 rio_create_sysfs_dev_files(rdev);
91
92 return 0;
93}
94EXPORT_SYMBOL_GPL(rio_add_device);
95
96/**
97 * rio_request_inb_mbox - request inbound mailbox service
98 * @mport: RIO master port from which to allocate the mailbox resource
99 * @dev_id: Device specific pointer to pass on event
100 * @mbox: Mailbox number to claim
101 * @entries: Number of entries in inbound mailbox queue
102 * @minb: Callback to execute when inbound message is received
103 *
104 * Requests ownership of an inbound mailbox resource and binds
105 * a callback function to the resource. Returns %0 on success.
106 */
107int rio_request_inb_mbox(struct rio_mport *mport,
108 void *dev_id,
109 int mbox,
110 int entries,
111 void (*minb) (struct rio_mport * mport, void *dev_id, int mbox,
112 int slot))
113{
114 int rc = -ENOSYS;
115 struct resource *res;
116
117 if (mport->ops->open_inb_mbox == NULL)
118 goto out;
119
120 res = kmalloc(sizeof(struct resource), GFP_KERNEL);
121
122 if (res) {
123 rio_init_mbox_res(res, mbox, mbox);
124
125 /* Make sure this mailbox isn't in use */
126 if ((rc =
127 request_resource(&mport->riores[RIO_INB_MBOX_RESOURCE],
128 res)) < 0) {
129 kfree(res);
130 goto out;
131 }
132
133 mport->inb_msg[mbox].res = res;
134
135 /* Hook the inbound message callback */
136 mport->inb_msg[mbox].mcback = minb;
137
138 rc = mport->ops->open_inb_mbox(mport, dev_id, mbox, entries);
139 } else
140 rc = -ENOMEM;
141
142 out:
143 return rc;
144}
145
146/**
147 * rio_release_inb_mbox - release inbound mailbox message service
148 * @mport: RIO master port from which to release the mailbox resource
149 * @mbox: Mailbox number to release
150 *
151 * Releases ownership of an inbound mailbox resource. Returns 0
152 * if the request has been satisfied.
153 */
154int rio_release_inb_mbox(struct rio_mport *mport, int mbox)
155{
156 if (mport->ops->close_inb_mbox) {
157 mport->ops->close_inb_mbox(mport, mbox);
158
159 /* Release the mailbox resource */
160 return release_resource(mport->inb_msg[mbox].res);
161 } else
162 return -ENOSYS;
163}
164
165/**
166 * rio_request_outb_mbox - request outbound mailbox service
167 * @mport: RIO master port from which to allocate the mailbox resource
168 * @dev_id: Device specific pointer to pass on event
169 * @mbox: Mailbox number to claim
170 * @entries: Number of entries in outbound mailbox queue
171 * @moutb: Callback to execute when outbound message is sent
172 *
173 * Requests ownership of an outbound mailbox resource and binds
174 * a callback function to the resource. Returns 0 on success.
175 */
176int rio_request_outb_mbox(struct rio_mport *mport,
177 void *dev_id,
178 int mbox,
179 int entries,
180 void (*moutb) (struct rio_mport * mport, void *dev_id, int mbox, int slot))
181{
182 int rc = -ENOSYS;
183 struct resource *res;
184
185 if (mport->ops->open_outb_mbox == NULL)
186 goto out;
187
188 res = kmalloc(sizeof(struct resource), GFP_KERNEL);
189
190 if (res) {
191 rio_init_mbox_res(res, mbox, mbox);
192
193 /* Make sure this outbound mailbox isn't in use */
194 if ((rc =
195 request_resource(&mport->riores[RIO_OUTB_MBOX_RESOURCE],
196 res)) < 0) {
197 kfree(res);
198 goto out;
199 }
200
201 mport->outb_msg[mbox].res = res;
202
203 /* Hook the inbound message callback */
204 mport->outb_msg[mbox].mcback = moutb;
205
206 rc = mport->ops->open_outb_mbox(mport, dev_id, mbox, entries);
207 } else
208 rc = -ENOMEM;
209
210 out:
211 return rc;
212}
213
214/**
215 * rio_release_outb_mbox - release outbound mailbox message service
216 * @mport: RIO master port from which to release the mailbox resource
217 * @mbox: Mailbox number to release
218 *
219 * Releases ownership of an inbound mailbox resource. Returns 0
220 * if the request has been satisfied.
221 */
222int rio_release_outb_mbox(struct rio_mport *mport, int mbox)
223{
224 if (mport->ops->close_outb_mbox) {
225 mport->ops->close_outb_mbox(mport, mbox);
226
227 /* Release the mailbox resource */
228 return release_resource(mport->outb_msg[mbox].res);
229 } else
230 return -ENOSYS;
231}
232
233/**
234 * rio_setup_inb_dbell - bind inbound doorbell callback
235 * @mport: RIO master port to bind the doorbell callback
236 * @dev_id: Device specific pointer to pass on event
237 * @res: Doorbell message resource
238 * @dinb: Callback to execute when doorbell is received
239 *
240 * Adds a doorbell resource/callback pair into a port's
241 * doorbell event list. Returns 0 if the request has been
242 * satisfied.
243 */
244static int
245rio_setup_inb_dbell(struct rio_mport *mport, void *dev_id, struct resource *res,
246 void (*dinb) (struct rio_mport * mport, void *dev_id, u16 src, u16 dst,
247 u16 info))
248{
249 int rc = 0;
250 struct rio_dbell *dbell;
251
252 if (!(dbell = kmalloc(sizeof(struct rio_dbell), GFP_KERNEL))) {
253 rc = -ENOMEM;
254 goto out;
255 }
256
257 dbell->res = res;
258 dbell->dinb = dinb;
259 dbell->dev_id = dev_id;
260
261 list_add_tail(&dbell->node, &mport->dbells);
262
263 out:
264 return rc;
265}
266
267/**
268 * rio_request_inb_dbell - request inbound doorbell message service
269 * @mport: RIO master port from which to allocate the doorbell resource
270 * @dev_id: Device specific pointer to pass on event
271 * @start: Doorbell info range start
272 * @end: Doorbell info range end
273 * @dinb: Callback to execute when doorbell is received
274 *
275 * Requests ownership of an inbound doorbell resource and binds
276 * a callback function to the resource. Returns 0 if the request
277 * has been satisfied.
278 */
279int rio_request_inb_dbell(struct rio_mport *mport,
280 void *dev_id,
281 u16 start,
282 u16 end,
283 void (*dinb) (struct rio_mport * mport, void *dev_id, u16 src,
284 u16 dst, u16 info))
285{
286 int rc = 0;
287
288 struct resource *res = kmalloc(sizeof(struct resource), GFP_KERNEL);
289
290 if (res) {
291 rio_init_dbell_res(res, start, end);
292
293 /* Make sure these doorbells aren't in use */
294 if ((rc =
295 request_resource(&mport->riores[RIO_DOORBELL_RESOURCE],
296 res)) < 0) {
297 kfree(res);
298 goto out;
299 }
300
301 /* Hook the doorbell callback */
302 rc = rio_setup_inb_dbell(mport, dev_id, res, dinb);
303 } else
304 rc = -ENOMEM;
305
306 out:
307 return rc;
308}
309
310/**
311 * rio_release_inb_dbell - release inbound doorbell message service
312 * @mport: RIO master port from which to release the doorbell resource
313 * @start: Doorbell info range start
314 * @end: Doorbell info range end
315 *
316 * Releases ownership of an inbound doorbell resource and removes
317 * callback from the doorbell event list. Returns 0 if the request
318 * has been satisfied.
319 */
320int rio_release_inb_dbell(struct rio_mport *mport, u16 start, u16 end)
321{
322 int rc = 0, found = 0;
323 struct rio_dbell *dbell;
324
325 list_for_each_entry(dbell, &mport->dbells, node) {
326 if ((dbell->res->start == start) && (dbell->res->end == end)) {
327 found = 1;
328 break;
329 }
330 }
331
332 /* If we can't find an exact match, fail */
333 if (!found) {
334 rc = -EINVAL;
335 goto out;
336 }
337
338 /* Delete from list */
339 list_del(&dbell->node);
340
341 /* Release the doorbell resource */
342 rc = release_resource(dbell->res);
343
344 /* Free the doorbell event */
345 kfree(dbell);
346
347 out:
348 return rc;
349}
350
351/**
352 * rio_request_outb_dbell - request outbound doorbell message range
353 * @rdev: RIO device from which to allocate the doorbell resource
354 * @start: Doorbell message range start
355 * @end: Doorbell message range end
356 *
357 * Requests ownership of a doorbell message range. Returns a resource
358 * if the request has been satisfied or %NULL on failure.
359 */
360struct resource *rio_request_outb_dbell(struct rio_dev *rdev, u16 start,
361 u16 end)
362{
363 struct resource *res = kmalloc(sizeof(struct resource), GFP_KERNEL);
364
365 if (res) {
366 rio_init_dbell_res(res, start, end);
367
368 /* Make sure these doorbells aren't in use */
369 if (request_resource(&rdev->riores[RIO_DOORBELL_RESOURCE], res)
370 < 0) {
371 kfree(res);
372 res = NULL;
373 }
374 }
375
376 return res;
377}
378
379/**
380 * rio_release_outb_dbell - release outbound doorbell message range
381 * @rdev: RIO device from which to release the doorbell resource
382 * @res: Doorbell resource to be freed
383 *
384 * Releases ownership of a doorbell message range. Returns 0 if the
385 * request has been satisfied.
386 */
387int rio_release_outb_dbell(struct rio_dev *rdev, struct resource *res)
388{
389 int rc = release_resource(res);
390
391 kfree(res);
392
393 return rc;
394}
395
396/**
397 * rio_request_inb_pwrite - request inbound port-write message service
398 * @rdev: RIO device to which register inbound port-write callback routine
399 * @pwcback: Callback routine to execute when port-write is received
400 *
401 * Binds a port-write callback function to the RapidIO device.
402 * Returns 0 if the request has been satisfied.
403 */
404int rio_request_inb_pwrite(struct rio_dev *rdev,
405 int (*pwcback)(struct rio_dev *rdev, union rio_pw_msg *msg, int step))
406{
407 int rc = 0;
408
409 spin_lock(&rio_global_list_lock);
410 if (rdev->pwcback != NULL)
411 rc = -ENOMEM;
412 else
413 rdev->pwcback = pwcback;
414
415 spin_unlock(&rio_global_list_lock);
416 return rc;
417}
418EXPORT_SYMBOL_GPL(rio_request_inb_pwrite);
419
420/**
421 * rio_release_inb_pwrite - release inbound port-write message service
422 * @rdev: RIO device which registered for inbound port-write callback
423 *
424 * Removes callback from the rio_dev structure. Returns 0 if the request
425 * has been satisfied.
426 */
427int rio_release_inb_pwrite(struct rio_dev *rdev)
428{
429 int rc = -ENOMEM;
430
431 spin_lock(&rio_global_list_lock);
432 if (rdev->pwcback) {
433 rdev->pwcback = NULL;
434 rc = 0;
435 }
436
437 spin_unlock(&rio_global_list_lock);
438 return rc;
439}
440EXPORT_SYMBOL_GPL(rio_release_inb_pwrite);
441
442/**
443 * rio_map_inb_region -- Map inbound memory region.
444 * @mport: Master port.
445 * @local: physical address of memory region to be mapped
446 * @rbase: RIO base address assigned to this window
447 * @size: Size of the memory region
448 * @rflags: Flags for mapping.
449 *
450 * Return: 0 -- Success.
451 *
452 * This function will create the mapping from RIO space to local memory.
453 */
454int rio_map_inb_region(struct rio_mport *mport, dma_addr_t local,
455 u64 rbase, u32 size, u32 rflags)
456{
457 int rc = 0;
458 unsigned long flags;
459
460 if (!mport->ops->map_inb)
461 return -1;
462 spin_lock_irqsave(&rio_mmap_lock, flags);
463 rc = mport->ops->map_inb(mport, local, rbase, size, rflags);
464 spin_unlock_irqrestore(&rio_mmap_lock, flags);
465 return rc;
466}
467EXPORT_SYMBOL_GPL(rio_map_inb_region);
468
469/**
470 * rio_unmap_inb_region -- Unmap the inbound memory region
471 * @mport: Master port
472 * @lstart: physical address of memory region to be unmapped
473 */
474void rio_unmap_inb_region(struct rio_mport *mport, dma_addr_t lstart)
475{
476 unsigned long flags;
477 if (!mport->ops->unmap_inb)
478 return;
479 spin_lock_irqsave(&rio_mmap_lock, flags);
480 mport->ops->unmap_inb(mport, lstart);
481 spin_unlock_irqrestore(&rio_mmap_lock, flags);
482}
483EXPORT_SYMBOL_GPL(rio_unmap_inb_region);
484
485/**
486 * rio_mport_get_physefb - Helper function that returns register offset
487 * for Physical Layer Extended Features Block.
488 * @port: Master port to issue transaction
489 * @local: Indicate a local master port or remote device access
490 * @destid: Destination ID of the device
491 * @hopcount: Number of switch hops to the device
492 */
493u32
494rio_mport_get_physefb(struct rio_mport *port, int local,
495 u16 destid, u8 hopcount)
496{
497 u32 ext_ftr_ptr;
498 u32 ftr_header;
499
500 ext_ftr_ptr = rio_mport_get_efb(port, local, destid, hopcount, 0);
501
502 while (ext_ftr_ptr) {
503 if (local)
504 rio_local_read_config_32(port, ext_ftr_ptr,
505 &ftr_header);
506 else
507 rio_mport_read_config_32(port, destid, hopcount,
508 ext_ftr_ptr, &ftr_header);
509
510 ftr_header = RIO_GET_BLOCK_ID(ftr_header);
511 switch (ftr_header) {
512
513 case RIO_EFB_SER_EP_ID_V13P:
514 case RIO_EFB_SER_EP_REC_ID_V13P:
515 case RIO_EFB_SER_EP_FREE_ID_V13P:
516 case RIO_EFB_SER_EP_ID:
517 case RIO_EFB_SER_EP_REC_ID:
518 case RIO_EFB_SER_EP_FREE_ID:
519 case RIO_EFB_SER_EP_FREC_ID:
520
521 return ext_ftr_ptr;
522
523 default:
524 break;
525 }
526
527 ext_ftr_ptr = rio_mport_get_efb(port, local, destid,
528 hopcount, ext_ftr_ptr);
529 }
530
531 return ext_ftr_ptr;
532}
533EXPORT_SYMBOL_GPL(rio_mport_get_physefb);
534
535/**
536 * rio_get_comptag - Begin or continue searching for a RIO device by component tag
537 * @comp_tag: RIO component tag to match
538 * @from: Previous RIO device found in search, or %NULL for new search
539 *
540 * Iterates through the list of known RIO devices. If a RIO device is
541 * found with a matching @comp_tag, a pointer to its device
542 * structure is returned. Otherwise, %NULL is returned. A new search
543 * is initiated by passing %NULL to the @from argument. Otherwise, if
544 * @from is not %NULL, searches continue from next device on the global
545 * list.
546 */
547struct rio_dev *rio_get_comptag(u32 comp_tag, struct rio_dev *from)
548{
549 struct list_head *n;
550 struct rio_dev *rdev;
551
552 spin_lock(&rio_global_list_lock);
553 n = from ? from->global_list.next : rio_devices.next;
554
555 while (n && (n != &rio_devices)) {
556 rdev = rio_dev_g(n);
557 if (rdev->comp_tag == comp_tag)
558 goto exit;
559 n = n->next;
560 }
561 rdev = NULL;
562exit:
563 spin_unlock(&rio_global_list_lock);
564 return rdev;
565}
566EXPORT_SYMBOL_GPL(rio_get_comptag);
567
568/**
569 * rio_set_port_lockout - Sets/clears LOCKOUT bit (RIO EM 1.3) for a switch port.
570 * @rdev: Pointer to RIO device control structure
571 * @pnum: Switch port number to set LOCKOUT bit
572 * @lock: Operation : set (=1) or clear (=0)
573 */
574int rio_set_port_lockout(struct rio_dev *rdev, u32 pnum, int lock)
575{
576 u32 regval;
577
578 rio_read_config_32(rdev,
579 rdev->phys_efptr + RIO_PORT_N_CTL_CSR(pnum),
580 ®val);
581 if (lock)
582 regval |= RIO_PORT_N_CTL_LOCKOUT;
583 else
584 regval &= ~RIO_PORT_N_CTL_LOCKOUT;
585
586 rio_write_config_32(rdev,
587 rdev->phys_efptr + RIO_PORT_N_CTL_CSR(pnum),
588 regval);
589 return 0;
590}
591EXPORT_SYMBOL_GPL(rio_set_port_lockout);
592
593/**
594 * rio_enable_rx_tx_port - enable input receiver and output transmitter of
595 * given port
596 * @port: Master port associated with the RIO network
597 * @local: local=1 select local port otherwise a far device is reached
598 * @destid: Destination ID of the device to check host bit
599 * @hopcount: Number of hops to reach the target
600 * @port_num: Port (-number on switch) to enable on a far end device
601 *
602 * Returns 0 or 1 from on General Control Command and Status Register
603 * (EXT_PTR+0x3C)
604 */
605int rio_enable_rx_tx_port(struct rio_mport *port,
606 int local, u16 destid,
607 u8 hopcount, u8 port_num)
608{
609#ifdef CONFIG_RAPIDIO_ENABLE_RX_TX_PORTS
610 u32 regval;
611 u32 ext_ftr_ptr;
612
613 /*
614 * enable rx input tx output port
615 */
616 pr_debug("rio_enable_rx_tx_port(local = %d, destid = %d, hopcount = "
617 "%d, port_num = %d)\n", local, destid, hopcount, port_num);
618
619 ext_ftr_ptr = rio_mport_get_physefb(port, local, destid, hopcount);
620
621 if (local) {
622 rio_local_read_config_32(port, ext_ftr_ptr +
623 RIO_PORT_N_CTL_CSR(0),
624 ®val);
625 } else {
626 if (rio_mport_read_config_32(port, destid, hopcount,
627 ext_ftr_ptr + RIO_PORT_N_CTL_CSR(port_num), ®val) < 0)
628 return -EIO;
629 }
630
631 if (regval & RIO_PORT_N_CTL_P_TYP_SER) {
632 /* serial */
633 regval = regval | RIO_PORT_N_CTL_EN_RX_SER
634 | RIO_PORT_N_CTL_EN_TX_SER;
635 } else {
636 /* parallel */
637 regval = regval | RIO_PORT_N_CTL_EN_RX_PAR
638 | RIO_PORT_N_CTL_EN_TX_PAR;
639 }
640
641 if (local) {
642 rio_local_write_config_32(port, ext_ftr_ptr +
643 RIO_PORT_N_CTL_CSR(0), regval);
644 } else {
645 if (rio_mport_write_config_32(port, destid, hopcount,
646 ext_ftr_ptr + RIO_PORT_N_CTL_CSR(port_num), regval) < 0)
647 return -EIO;
648 }
649#endif
650 return 0;
651}
652EXPORT_SYMBOL_GPL(rio_enable_rx_tx_port);
653
654
655/**
656 * rio_chk_dev_route - Validate route to the specified device.
657 * @rdev: RIO device failed to respond
658 * @nrdev: Last active device on the route to rdev
659 * @npnum: nrdev's port number on the route to rdev
660 *
661 * Follows a route to the specified RIO device to determine the last available
662 * device (and corresponding RIO port) on the route.
663 */
664static int
665rio_chk_dev_route(struct rio_dev *rdev, struct rio_dev **nrdev, int *npnum)
666{
667 u32 result;
668 int p_port, rc = -EIO;
669 struct rio_dev *prev = NULL;
670
671 /* Find switch with failed RIO link */
672 while (rdev->prev && (rdev->prev->pef & RIO_PEF_SWITCH)) {
673 if (!rio_read_config_32(rdev->prev, RIO_DEV_ID_CAR, &result)) {
674 prev = rdev->prev;
675 break;
676 }
677 rdev = rdev->prev;
678 }
679
680 if (prev == NULL)
681 goto err_out;
682
683 p_port = prev->rswitch->route_table[rdev->destid];
684
685 if (p_port != RIO_INVALID_ROUTE) {
686 pr_debug("RIO: link failed on [%s]-P%d\n",
687 rio_name(prev), p_port);
688 *nrdev = prev;
689 *npnum = p_port;
690 rc = 0;
691 } else
692 pr_debug("RIO: failed to trace route to %s\n", rio_name(rdev));
693err_out:
694 return rc;
695}
696
697/**
698 * rio_mport_chk_dev_access - Validate access to the specified device.
699 * @mport: Master port to send transactions
700 * @destid: Device destination ID in network
701 * @hopcount: Number of hops into the network
702 */
703int
704rio_mport_chk_dev_access(struct rio_mport *mport, u16 destid, u8 hopcount)
705{
706 int i = 0;
707 u32 tmp;
708
709 while (rio_mport_read_config_32(mport, destid, hopcount,
710 RIO_DEV_ID_CAR, &tmp)) {
711 i++;
712 if (i == RIO_MAX_CHK_RETRY)
713 return -EIO;
714 mdelay(1);
715 }
716
717 return 0;
718}
719EXPORT_SYMBOL_GPL(rio_mport_chk_dev_access);
720
721/**
722 * rio_chk_dev_access - Validate access to the specified device.
723 * @rdev: Pointer to RIO device control structure
724 */
725static int rio_chk_dev_access(struct rio_dev *rdev)
726{
727 return rio_mport_chk_dev_access(rdev->net->hport,
728 rdev->destid, rdev->hopcount);
729}
730
731/**
732 * rio_get_input_status - Sends a Link-Request/Input-Status control symbol and
733 * returns link-response (if requested).
734 * @rdev: RIO devive to issue Input-status command
735 * @pnum: Device port number to issue the command
736 * @lnkresp: Response from a link partner
737 */
738static int
739rio_get_input_status(struct rio_dev *rdev, int pnum, u32 *lnkresp)
740{
741 u32 regval;
742 int checkcount;
743
744 if (lnkresp) {
745 /* Read from link maintenance response register
746 * to clear valid bit */
747 rio_read_config_32(rdev,
748 rdev->phys_efptr + RIO_PORT_N_MNT_RSP_CSR(pnum),
749 ®val);
750 udelay(50);
751 }
752
753 /* Issue Input-status command */
754 rio_write_config_32(rdev,
755 rdev->phys_efptr + RIO_PORT_N_MNT_REQ_CSR(pnum),
756 RIO_MNT_REQ_CMD_IS);
757
758 /* Exit if the response is not expected */
759 if (lnkresp == NULL)
760 return 0;
761
762 checkcount = 3;
763 while (checkcount--) {
764 udelay(50);
765 rio_read_config_32(rdev,
766 rdev->phys_efptr + RIO_PORT_N_MNT_RSP_CSR(pnum),
767 ®val);
768 if (regval & RIO_PORT_N_MNT_RSP_RVAL) {
769 *lnkresp = regval;
770 return 0;
771 }
772 }
773
774 return -EIO;
775}
776
777/**
778 * rio_clr_err_stopped - Clears port Error-stopped states.
779 * @rdev: Pointer to RIO device control structure
780 * @pnum: Switch port number to clear errors
781 * @err_status: port error status (if 0 reads register from device)
782 */
783static int rio_clr_err_stopped(struct rio_dev *rdev, u32 pnum, u32 err_status)
784{
785 struct rio_dev *nextdev = rdev->rswitch->nextdev[pnum];
786 u32 regval;
787 u32 far_ackid, far_linkstat, near_ackid;
788
789 if (err_status == 0)
790 rio_read_config_32(rdev,
791 rdev->phys_efptr + RIO_PORT_N_ERR_STS_CSR(pnum),
792 &err_status);
793
794 if (err_status & RIO_PORT_N_ERR_STS_PW_OUT_ES) {
795 pr_debug("RIO_EM: servicing Output Error-Stopped state\n");
796 /*
797 * Send a Link-Request/Input-Status control symbol
798 */
799 if (rio_get_input_status(rdev, pnum, ®val)) {
800 pr_debug("RIO_EM: Input-status response timeout\n");
801 goto rd_err;
802 }
803
804 pr_debug("RIO_EM: SP%d Input-status response=0x%08x\n",
805 pnum, regval);
806 far_ackid = (regval & RIO_PORT_N_MNT_RSP_ASTAT) >> 5;
807 far_linkstat = regval & RIO_PORT_N_MNT_RSP_LSTAT;
808 rio_read_config_32(rdev,
809 rdev->phys_efptr + RIO_PORT_N_ACK_STS_CSR(pnum),
810 ®val);
811 pr_debug("RIO_EM: SP%d_ACK_STS_CSR=0x%08x\n", pnum, regval);
812 near_ackid = (regval & RIO_PORT_N_ACK_INBOUND) >> 24;
813 pr_debug("RIO_EM: SP%d far_ackID=0x%02x far_linkstat=0x%02x" \
814 " near_ackID=0x%02x\n",
815 pnum, far_ackid, far_linkstat, near_ackid);
816
817 /*
818 * If required, synchronize ackIDs of near and
819 * far sides.
820 */
821 if ((far_ackid != ((regval & RIO_PORT_N_ACK_OUTSTAND) >> 8)) ||
822 (far_ackid != (regval & RIO_PORT_N_ACK_OUTBOUND))) {
823 /* Align near outstanding/outbound ackIDs with
824 * far inbound.
825 */
826 rio_write_config_32(rdev,
827 rdev->phys_efptr + RIO_PORT_N_ACK_STS_CSR(pnum),
828 (near_ackid << 24) |
829 (far_ackid << 8) | far_ackid);
830 /* Align far outstanding/outbound ackIDs with
831 * near inbound.
832 */
833 far_ackid++;
834 if (nextdev)
835 rio_write_config_32(nextdev,
836 nextdev->phys_efptr +
837 RIO_PORT_N_ACK_STS_CSR(RIO_GET_PORT_NUM(nextdev->swpinfo)),
838 (far_ackid << 24) |
839 (near_ackid << 8) | near_ackid);
840 else
841 pr_debug("RIO_EM: Invalid nextdev pointer (NULL)\n");
842 }
843rd_err:
844 rio_read_config_32(rdev,
845 rdev->phys_efptr + RIO_PORT_N_ERR_STS_CSR(pnum),
846 &err_status);
847 pr_debug("RIO_EM: SP%d_ERR_STS_CSR=0x%08x\n", pnum, err_status);
848 }
849
850 if ((err_status & RIO_PORT_N_ERR_STS_PW_INP_ES) && nextdev) {
851 pr_debug("RIO_EM: servicing Input Error-Stopped state\n");
852 rio_get_input_status(nextdev,
853 RIO_GET_PORT_NUM(nextdev->swpinfo), NULL);
854 udelay(50);
855
856 rio_read_config_32(rdev,
857 rdev->phys_efptr + RIO_PORT_N_ERR_STS_CSR(pnum),
858 &err_status);
859 pr_debug("RIO_EM: SP%d_ERR_STS_CSR=0x%08x\n", pnum, err_status);
860 }
861
862 return (err_status & (RIO_PORT_N_ERR_STS_PW_OUT_ES |
863 RIO_PORT_N_ERR_STS_PW_INP_ES)) ? 1 : 0;
864}
865
866/**
867 * rio_inb_pwrite_handler - process inbound port-write message
868 * @pw_msg: pointer to inbound port-write message
869 *
870 * Processes an inbound port-write message. Returns 0 if the request
871 * has been satisfied.
872 */
873int rio_inb_pwrite_handler(union rio_pw_msg *pw_msg)
874{
875 struct rio_dev *rdev;
876 u32 err_status, em_perrdet, em_ltlerrdet;
877 int rc, portnum;
878
879 rdev = rio_get_comptag((pw_msg->em.comptag & RIO_CTAG_UDEVID), NULL);
880 if (rdev == NULL) {
881 /* Device removed or enumeration error */
882 pr_debug("RIO: %s No matching device for CTag 0x%08x\n",
883 __func__, pw_msg->em.comptag);
884 return -EIO;
885 }
886
887 pr_debug("RIO: Port-Write message from %s\n", rio_name(rdev));
888
889#ifdef DEBUG_PW
890 {
891 u32 i;
892 for (i = 0; i < RIO_PW_MSG_SIZE/sizeof(u32);) {
893 pr_debug("0x%02x: %08x %08x %08x %08x\n",
894 i*4, pw_msg->raw[i], pw_msg->raw[i + 1],
895 pw_msg->raw[i + 2], pw_msg->raw[i + 3]);
896 i += 4;
897 }
898 }
899#endif
900
901 /* Call an external service function (if such is registered
902 * for this device). This may be the service for endpoints that send
903 * device-specific port-write messages. End-point messages expected
904 * to be handled completely by EP specific device driver.
905 * For switches rc==0 signals that no standard processing required.
906 */
907 if (rdev->pwcback != NULL) {
908 rc = rdev->pwcback(rdev, pw_msg, 0);
909 if (rc == 0)
910 return 0;
911 }
912
913 portnum = pw_msg->em.is_port & 0xFF;
914
915 /* Check if device and route to it are functional:
916 * Sometimes devices may send PW message(s) just before being
917 * powered down (or link being lost).
918 */
919 if (rio_chk_dev_access(rdev)) {
920 pr_debug("RIO: device access failed - get link partner\n");
921 /* Scan route to the device and identify failed link.
922 * This will replace device and port reported in PW message.
923 * PW message should not be used after this point.
924 */
925 if (rio_chk_dev_route(rdev, &rdev, &portnum)) {
926 pr_err("RIO: Route trace for %s failed\n",
927 rio_name(rdev));
928 return -EIO;
929 }
930 pw_msg = NULL;
931 }
932
933 /* For End-point devices processing stops here */
934 if (!(rdev->pef & RIO_PEF_SWITCH))
935 return 0;
936
937 if (rdev->phys_efptr == 0) {
938 pr_err("RIO_PW: Bad switch initialization for %s\n",
939 rio_name(rdev));
940 return 0;
941 }
942
943 /*
944 * Process the port-write notification from switch
945 */
946 if (rdev->rswitch->ops && rdev->rswitch->ops->em_handle)
947 rdev->rswitch->ops->em_handle(rdev, portnum);
948
949 rio_read_config_32(rdev,
950 rdev->phys_efptr + RIO_PORT_N_ERR_STS_CSR(portnum),
951 &err_status);
952 pr_debug("RIO_PW: SP%d_ERR_STS_CSR=0x%08x\n", portnum, err_status);
953
954 if (err_status & RIO_PORT_N_ERR_STS_PORT_OK) {
955
956 if (!(rdev->rswitch->port_ok & (1 << portnum))) {
957 rdev->rswitch->port_ok |= (1 << portnum);
958 rio_set_port_lockout(rdev, portnum, 0);
959 /* Schedule Insertion Service */
960 pr_debug("RIO_PW: Device Insertion on [%s]-P%d\n",
961 rio_name(rdev), portnum);
962 }
963
964 /* Clear error-stopped states (if reported).
965 * Depending on the link partner state, two attempts
966 * may be needed for successful recovery.
967 */
968 if (err_status & (RIO_PORT_N_ERR_STS_PW_OUT_ES |
969 RIO_PORT_N_ERR_STS_PW_INP_ES)) {
970 if (rio_clr_err_stopped(rdev, portnum, err_status))
971 rio_clr_err_stopped(rdev, portnum, 0);
972 }
973 } else { /* if (err_status & RIO_PORT_N_ERR_STS_PORT_UNINIT) */
974
975 if (rdev->rswitch->port_ok & (1 << portnum)) {
976 rdev->rswitch->port_ok &= ~(1 << portnum);
977 rio_set_port_lockout(rdev, portnum, 1);
978
979 rio_write_config_32(rdev,
980 rdev->phys_efptr +
981 RIO_PORT_N_ACK_STS_CSR(portnum),
982 RIO_PORT_N_ACK_CLEAR);
983
984 /* Schedule Extraction Service */
985 pr_debug("RIO_PW: Device Extraction on [%s]-P%d\n",
986 rio_name(rdev), portnum);
987 }
988 }
989
990 rio_read_config_32(rdev,
991 rdev->em_efptr + RIO_EM_PN_ERR_DETECT(portnum), &em_perrdet);
992 if (em_perrdet) {
993 pr_debug("RIO_PW: RIO_EM_P%d_ERR_DETECT=0x%08x\n",
994 portnum, em_perrdet);
995 /* Clear EM Port N Error Detect CSR */
996 rio_write_config_32(rdev,
997 rdev->em_efptr + RIO_EM_PN_ERR_DETECT(portnum), 0);
998 }
999
1000 rio_read_config_32(rdev,
1001 rdev->em_efptr + RIO_EM_LTL_ERR_DETECT, &em_ltlerrdet);
1002 if (em_ltlerrdet) {
1003 pr_debug("RIO_PW: RIO_EM_LTL_ERR_DETECT=0x%08x\n",
1004 em_ltlerrdet);
1005 /* Clear EM L/T Layer Error Detect CSR */
1006 rio_write_config_32(rdev,
1007 rdev->em_efptr + RIO_EM_LTL_ERR_DETECT, 0);
1008 }
1009
1010 /* Clear remaining error bits and Port-Write Pending bit */
1011 rio_write_config_32(rdev,
1012 rdev->phys_efptr + RIO_PORT_N_ERR_STS_CSR(portnum),
1013 err_status);
1014
1015 return 0;
1016}
1017EXPORT_SYMBOL_GPL(rio_inb_pwrite_handler);
1018
1019/**
1020 * rio_mport_get_efb - get pointer to next extended features block
1021 * @port: Master port to issue transaction
1022 * @local: Indicate a local master port or remote device access
1023 * @destid: Destination ID of the device
1024 * @hopcount: Number of switch hops to the device
1025 * @from: Offset of current Extended Feature block header (if 0 starts
1026 * from ExtFeaturePtr)
1027 */
1028u32
1029rio_mport_get_efb(struct rio_mport *port, int local, u16 destid,
1030 u8 hopcount, u32 from)
1031{
1032 u32 reg_val;
1033
1034 if (from == 0) {
1035 if (local)
1036 rio_local_read_config_32(port, RIO_ASM_INFO_CAR,
1037 ®_val);
1038 else
1039 rio_mport_read_config_32(port, destid, hopcount,
1040 RIO_ASM_INFO_CAR, ®_val);
1041 return reg_val & RIO_EXT_FTR_PTR_MASK;
1042 } else {
1043 if (local)
1044 rio_local_read_config_32(port, from, ®_val);
1045 else
1046 rio_mport_read_config_32(port, destid, hopcount,
1047 from, ®_val);
1048 return RIO_GET_BLOCK_ID(reg_val);
1049 }
1050}
1051EXPORT_SYMBOL_GPL(rio_mport_get_efb);
1052
1053/**
1054 * rio_mport_get_feature - query for devices' extended features
1055 * @port: Master port to issue transaction
1056 * @local: Indicate a local master port or remote device access
1057 * @destid: Destination ID of the device
1058 * @hopcount: Number of switch hops to the device
1059 * @ftr: Extended feature code
1060 *
1061 * Tell if a device supports a given RapidIO capability.
1062 * Returns the offset of the requested extended feature
1063 * block within the device's RIO configuration space or
1064 * 0 in case the device does not support it. Possible
1065 * values for @ftr:
1066 *
1067 * %RIO_EFB_PAR_EP_ID LP/LVDS EP Devices
1068 *
1069 * %RIO_EFB_PAR_EP_REC_ID LP/LVDS EP Recovery Devices
1070 *
1071 * %RIO_EFB_PAR_EP_FREE_ID LP/LVDS EP Free Devices
1072 *
1073 * %RIO_EFB_SER_EP_ID LP/Serial EP Devices
1074 *
1075 * %RIO_EFB_SER_EP_REC_ID LP/Serial EP Recovery Devices
1076 *
1077 * %RIO_EFB_SER_EP_FREE_ID LP/Serial EP Free Devices
1078 */
1079u32
1080rio_mport_get_feature(struct rio_mport * port, int local, u16 destid,
1081 u8 hopcount, int ftr)
1082{
1083 u32 asm_info, ext_ftr_ptr, ftr_header;
1084
1085 if (local)
1086 rio_local_read_config_32(port, RIO_ASM_INFO_CAR, &asm_info);
1087 else
1088 rio_mport_read_config_32(port, destid, hopcount,
1089 RIO_ASM_INFO_CAR, &asm_info);
1090
1091 ext_ftr_ptr = asm_info & RIO_EXT_FTR_PTR_MASK;
1092
1093 while (ext_ftr_ptr) {
1094 if (local)
1095 rio_local_read_config_32(port, ext_ftr_ptr,
1096 &ftr_header);
1097 else
1098 rio_mport_read_config_32(port, destid, hopcount,
1099 ext_ftr_ptr, &ftr_header);
1100 if (RIO_GET_BLOCK_ID(ftr_header) == ftr)
1101 return ext_ftr_ptr;
1102 if (!(ext_ftr_ptr = RIO_GET_BLOCK_PTR(ftr_header)))
1103 break;
1104 }
1105
1106 return 0;
1107}
1108EXPORT_SYMBOL_GPL(rio_mport_get_feature);
1109
1110/**
1111 * rio_get_asm - Begin or continue searching for a RIO device by vid/did/asm_vid/asm_did
1112 * @vid: RIO vid to match or %RIO_ANY_ID to match all vids
1113 * @did: RIO did to match or %RIO_ANY_ID to match all dids
1114 * @asm_vid: RIO asm_vid to match or %RIO_ANY_ID to match all asm_vids
1115 * @asm_did: RIO asm_did to match or %RIO_ANY_ID to match all asm_dids
1116 * @from: Previous RIO device found in search, or %NULL for new search
1117 *
1118 * Iterates through the list of known RIO devices. If a RIO device is
1119 * found with a matching @vid, @did, @asm_vid, @asm_did, the reference
1120 * count to the device is incrememted and a pointer to its device
1121 * structure is returned. Otherwise, %NULL is returned. A new search
1122 * is initiated by passing %NULL to the @from argument. Otherwise, if
1123 * @from is not %NULL, searches continue from next device on the global
1124 * list. The reference count for @from is always decremented if it is
1125 * not %NULL.
1126 */
1127struct rio_dev *rio_get_asm(u16 vid, u16 did,
1128 u16 asm_vid, u16 asm_did, struct rio_dev *from)
1129{
1130 struct list_head *n;
1131 struct rio_dev *rdev;
1132
1133 WARN_ON(in_interrupt());
1134 spin_lock(&rio_global_list_lock);
1135 n = from ? from->global_list.next : rio_devices.next;
1136
1137 while (n && (n != &rio_devices)) {
1138 rdev = rio_dev_g(n);
1139 if ((vid == RIO_ANY_ID || rdev->vid == vid) &&
1140 (did == RIO_ANY_ID || rdev->did == did) &&
1141 (asm_vid == RIO_ANY_ID || rdev->asm_vid == asm_vid) &&
1142 (asm_did == RIO_ANY_ID || rdev->asm_did == asm_did))
1143 goto exit;
1144 n = n->next;
1145 }
1146 rdev = NULL;
1147 exit:
1148 rio_dev_put(from);
1149 rdev = rio_dev_get(rdev);
1150 spin_unlock(&rio_global_list_lock);
1151 return rdev;
1152}
1153
1154/**
1155 * rio_get_device - Begin or continue searching for a RIO device by vid/did
1156 * @vid: RIO vid to match or %RIO_ANY_ID to match all vids
1157 * @did: RIO did to match or %RIO_ANY_ID to match all dids
1158 * @from: Previous RIO device found in search, or %NULL for new search
1159 *
1160 * Iterates through the list of known RIO devices. If a RIO device is
1161 * found with a matching @vid and @did, the reference count to the
1162 * device is incrememted and a pointer to its device structure is returned.
1163 * Otherwise, %NULL is returned. A new search is initiated by passing %NULL
1164 * to the @from argument. Otherwise, if @from is not %NULL, searches
1165 * continue from next device on the global list. The reference count for
1166 * @from is always decremented if it is not %NULL.
1167 */
1168struct rio_dev *rio_get_device(u16 vid, u16 did, struct rio_dev *from)
1169{
1170 return rio_get_asm(vid, did, RIO_ANY_ID, RIO_ANY_ID, from);
1171}
1172
1173/**
1174 * rio_std_route_add_entry - Add switch route table entry using standard
1175 * registers defined in RIO specification rev.1.3
1176 * @mport: Master port to issue transaction
1177 * @destid: Destination ID of the device
1178 * @hopcount: Number of switch hops to the device
1179 * @table: routing table ID (global or port-specific)
1180 * @route_destid: destID entry in the RT
1181 * @route_port: destination port for specified destID
1182 */
1183static int
1184rio_std_route_add_entry(struct rio_mport *mport, u16 destid, u8 hopcount,
1185 u16 table, u16 route_destid, u8 route_port)
1186{
1187 if (table == RIO_GLOBAL_TABLE) {
1188 rio_mport_write_config_32(mport, destid, hopcount,
1189 RIO_STD_RTE_CONF_DESTID_SEL_CSR,
1190 (u32)route_destid);
1191 rio_mport_write_config_32(mport, destid, hopcount,
1192 RIO_STD_RTE_CONF_PORT_SEL_CSR,
1193 (u32)route_port);
1194 }
1195
1196 udelay(10);
1197 return 0;
1198}
1199
1200/**
1201 * rio_std_route_get_entry - Read switch route table entry (port number)
1202 * associated with specified destID using standard registers defined in RIO
1203 * specification rev.1.3
1204 * @mport: Master port to issue transaction
1205 * @destid: Destination ID of the device
1206 * @hopcount: Number of switch hops to the device
1207 * @table: routing table ID (global or port-specific)
1208 * @route_destid: destID entry in the RT
1209 * @route_port: returned destination port for specified destID
1210 */
1211static int
1212rio_std_route_get_entry(struct rio_mport *mport, u16 destid, u8 hopcount,
1213 u16 table, u16 route_destid, u8 *route_port)
1214{
1215 u32 result;
1216
1217 if (table == RIO_GLOBAL_TABLE) {
1218 rio_mport_write_config_32(mport, destid, hopcount,
1219 RIO_STD_RTE_CONF_DESTID_SEL_CSR, route_destid);
1220 rio_mport_read_config_32(mport, destid, hopcount,
1221 RIO_STD_RTE_CONF_PORT_SEL_CSR, &result);
1222
1223 *route_port = (u8)result;
1224 }
1225
1226 return 0;
1227}
1228
1229/**
1230 * rio_std_route_clr_table - Clear swotch route table using standard registers
1231 * defined in RIO specification rev.1.3.
1232 * @mport: Master port to issue transaction
1233 * @destid: Destination ID of the device
1234 * @hopcount: Number of switch hops to the device
1235 * @table: routing table ID (global or port-specific)
1236 */
1237static int
1238rio_std_route_clr_table(struct rio_mport *mport, u16 destid, u8 hopcount,
1239 u16 table)
1240{
1241 u32 max_destid = 0xff;
1242 u32 i, pef, id_inc = 1, ext_cfg = 0;
1243 u32 port_sel = RIO_INVALID_ROUTE;
1244
1245 if (table == RIO_GLOBAL_TABLE) {
1246 rio_mport_read_config_32(mport, destid, hopcount,
1247 RIO_PEF_CAR, &pef);
1248
1249 if (mport->sys_size) {
1250 rio_mport_read_config_32(mport, destid, hopcount,
1251 RIO_SWITCH_RT_LIMIT,
1252 &max_destid);
1253 max_destid &= RIO_RT_MAX_DESTID;
1254 }
1255
1256 if (pef & RIO_PEF_EXT_RT) {
1257 ext_cfg = 0x80000000;
1258 id_inc = 4;
1259 port_sel = (RIO_INVALID_ROUTE << 24) |
1260 (RIO_INVALID_ROUTE << 16) |
1261 (RIO_INVALID_ROUTE << 8) |
1262 RIO_INVALID_ROUTE;
1263 }
1264
1265 for (i = 0; i <= max_destid;) {
1266 rio_mport_write_config_32(mport, destid, hopcount,
1267 RIO_STD_RTE_CONF_DESTID_SEL_CSR,
1268 ext_cfg | i);
1269 rio_mport_write_config_32(mport, destid, hopcount,
1270 RIO_STD_RTE_CONF_PORT_SEL_CSR,
1271 port_sel);
1272 i += id_inc;
1273 }
1274 }
1275
1276 udelay(10);
1277 return 0;
1278}
1279
1280/**
1281 * rio_lock_device - Acquires host device lock for specified device
1282 * @port: Master port to send transaction
1283 * @destid: Destination ID for device/switch
1284 * @hopcount: Hopcount to reach switch
1285 * @wait_ms: Max wait time in msec (0 = no timeout)
1286 *
1287 * Attepts to acquire host device lock for specified device
1288 * Returns 0 if device lock acquired or EINVAL if timeout expires.
1289 */
1290int rio_lock_device(struct rio_mport *port, u16 destid,
1291 u8 hopcount, int wait_ms)
1292{
1293 u32 result;
1294 int tcnt = 0;
1295
1296 /* Attempt to acquire device lock */
1297 rio_mport_write_config_32(port, destid, hopcount,
1298 RIO_HOST_DID_LOCK_CSR, port->host_deviceid);
1299 rio_mport_read_config_32(port, destid, hopcount,
1300 RIO_HOST_DID_LOCK_CSR, &result);
1301
1302 while (result != port->host_deviceid) {
1303 if (wait_ms != 0 && tcnt == wait_ms) {
1304 pr_debug("RIO: timeout when locking device %x:%x\n",
1305 destid, hopcount);
1306 return -EINVAL;
1307 }
1308
1309 /* Delay a bit */
1310 mdelay(1);
1311 tcnt++;
1312 /* Try to acquire device lock again */
1313 rio_mport_write_config_32(port, destid,
1314 hopcount,
1315 RIO_HOST_DID_LOCK_CSR,
1316 port->host_deviceid);
1317 rio_mport_read_config_32(port, destid,
1318 hopcount,
1319 RIO_HOST_DID_LOCK_CSR, &result);
1320 }
1321
1322 return 0;
1323}
1324EXPORT_SYMBOL_GPL(rio_lock_device);
1325
1326/**
1327 * rio_unlock_device - Releases host device lock for specified device
1328 * @port: Master port to send transaction
1329 * @destid: Destination ID for device/switch
1330 * @hopcount: Hopcount to reach switch
1331 *
1332 * Returns 0 if device lock released or EINVAL if fails.
1333 */
1334int rio_unlock_device(struct rio_mport *port, u16 destid, u8 hopcount)
1335{
1336 u32 result;
1337
1338 /* Release device lock */
1339 rio_mport_write_config_32(port, destid,
1340 hopcount,
1341 RIO_HOST_DID_LOCK_CSR,
1342 port->host_deviceid);
1343 rio_mport_read_config_32(port, destid, hopcount,
1344 RIO_HOST_DID_LOCK_CSR, &result);
1345 if ((result & 0xffff) != 0xffff) {
1346 pr_debug("RIO: badness when releasing device lock %x:%x\n",
1347 destid, hopcount);
1348 return -EINVAL;
1349 }
1350
1351 return 0;
1352}
1353EXPORT_SYMBOL_GPL(rio_unlock_device);
1354
1355/**
1356 * rio_route_add_entry- Add a route entry to a switch routing table
1357 * @rdev: RIO device
1358 * @table: Routing table ID
1359 * @route_destid: Destination ID to be routed
1360 * @route_port: Port number to be routed
1361 * @lock: apply a hardware lock on switch device flag (1=lock, 0=no_lock)
1362 *
1363 * If available calls the switch specific add_entry() method to add a route
1364 * entry into a switch routing table. Otherwise uses standard RT update method
1365 * as defined by RapidIO specification. A specific routing table can be selected
1366 * using the @table argument if a switch has per port routing tables or
1367 * the standard (or global) table may be used by passing
1368 * %RIO_GLOBAL_TABLE in @table.
1369 *
1370 * Returns %0 on success or %-EINVAL on failure.
1371 */
1372int rio_route_add_entry(struct rio_dev *rdev,
1373 u16 table, u16 route_destid, u8 route_port, int lock)
1374{
1375 int rc = -EINVAL;
1376 struct rio_switch_ops *ops = rdev->rswitch->ops;
1377
1378 if (lock) {
1379 rc = rio_lock_device(rdev->net->hport, rdev->destid,
1380 rdev->hopcount, 1000);
1381 if (rc)
1382 return rc;
1383 }
1384
1385 spin_lock(&rdev->rswitch->lock);
1386
1387 if (ops == NULL || ops->add_entry == NULL) {
1388 rc = rio_std_route_add_entry(rdev->net->hport, rdev->destid,
1389 rdev->hopcount, table,
1390 route_destid, route_port);
1391 } else if (try_module_get(ops->owner)) {
1392 rc = ops->add_entry(rdev->net->hport, rdev->destid,
1393 rdev->hopcount, table, route_destid,
1394 route_port);
1395 module_put(ops->owner);
1396 }
1397
1398 spin_unlock(&rdev->rswitch->lock);
1399
1400 if (lock)
1401 rio_unlock_device(rdev->net->hport, rdev->destid,
1402 rdev->hopcount);
1403
1404 return rc;
1405}
1406EXPORT_SYMBOL_GPL(rio_route_add_entry);
1407
1408/**
1409 * rio_route_get_entry- Read an entry from a switch routing table
1410 * @rdev: RIO device
1411 * @table: Routing table ID
1412 * @route_destid: Destination ID to be routed
1413 * @route_port: Pointer to read port number into
1414 * @lock: apply a hardware lock on switch device flag (1=lock, 0=no_lock)
1415 *
1416 * If available calls the switch specific get_entry() method to fetch a route
1417 * entry from a switch routing table. Otherwise uses standard RT read method
1418 * as defined by RapidIO specification. A specific routing table can be selected
1419 * using the @table argument if a switch has per port routing tables or
1420 * the standard (or global) table may be used by passing
1421 * %RIO_GLOBAL_TABLE in @table.
1422 *
1423 * Returns %0 on success or %-EINVAL on failure.
1424 */
1425int rio_route_get_entry(struct rio_dev *rdev, u16 table,
1426 u16 route_destid, u8 *route_port, int lock)
1427{
1428 int rc = -EINVAL;
1429 struct rio_switch_ops *ops = rdev->rswitch->ops;
1430
1431 if (lock) {
1432 rc = rio_lock_device(rdev->net->hport, rdev->destid,
1433 rdev->hopcount, 1000);
1434 if (rc)
1435 return rc;
1436 }
1437
1438 spin_lock(&rdev->rswitch->lock);
1439
1440 if (ops == NULL || ops->get_entry == NULL) {
1441 rc = rio_std_route_get_entry(rdev->net->hport, rdev->destid,
1442 rdev->hopcount, table,
1443 route_destid, route_port);
1444 } else if (try_module_get(ops->owner)) {
1445 rc = ops->get_entry(rdev->net->hport, rdev->destid,
1446 rdev->hopcount, table, route_destid,
1447 route_port);
1448 module_put(ops->owner);
1449 }
1450
1451 spin_unlock(&rdev->rswitch->lock);
1452
1453 if (lock)
1454 rio_unlock_device(rdev->net->hport, rdev->destid,
1455 rdev->hopcount);
1456 return rc;
1457}
1458EXPORT_SYMBOL_GPL(rio_route_get_entry);
1459
1460/**
1461 * rio_route_clr_table - Clear a switch routing table
1462 * @rdev: RIO device
1463 * @table: Routing table ID
1464 * @lock: apply a hardware lock on switch device flag (1=lock, 0=no_lock)
1465 *
1466 * If available calls the switch specific clr_table() method to clear a switch
1467 * routing table. Otherwise uses standard RT write method as defined by RapidIO
1468 * specification. A specific routing table can be selected using the @table
1469 * argument if a switch has per port routing tables or the standard (or global)
1470 * table may be used by passing %RIO_GLOBAL_TABLE in @table.
1471 *
1472 * Returns %0 on success or %-EINVAL on failure.
1473 */
1474int rio_route_clr_table(struct rio_dev *rdev, u16 table, int lock)
1475{
1476 int rc = -EINVAL;
1477 struct rio_switch_ops *ops = rdev->rswitch->ops;
1478
1479 if (lock) {
1480 rc = rio_lock_device(rdev->net->hport, rdev->destid,
1481 rdev->hopcount, 1000);
1482 if (rc)
1483 return rc;
1484 }
1485
1486 spin_lock(&rdev->rswitch->lock);
1487
1488 if (ops == NULL || ops->clr_table == NULL) {
1489 rc = rio_std_route_clr_table(rdev->net->hport, rdev->destid,
1490 rdev->hopcount, table);
1491 } else if (try_module_get(ops->owner)) {
1492 rc = ops->clr_table(rdev->net->hport, rdev->destid,
1493 rdev->hopcount, table);
1494
1495 module_put(ops->owner);
1496 }
1497
1498 spin_unlock(&rdev->rswitch->lock);
1499
1500 if (lock)
1501 rio_unlock_device(rdev->net->hport, rdev->destid,
1502 rdev->hopcount);
1503
1504 return rc;
1505}
1506EXPORT_SYMBOL_GPL(rio_route_clr_table);
1507
1508#ifdef CONFIG_RAPIDIO_DMA_ENGINE
1509
1510static bool rio_chan_filter(struct dma_chan *chan, void *arg)
1511{
1512 struct rio_dev *rdev = arg;
1513
1514 /* Check that DMA device belongs to the right MPORT */
1515 return (rdev->net->hport ==
1516 container_of(chan->device, struct rio_mport, dma));
1517}
1518
1519/**
1520 * rio_request_dma - request RapidIO capable DMA channel that supports
1521 * specified target RapidIO device.
1522 * @rdev: RIO device control structure
1523 *
1524 * Returns pointer to allocated DMA channel or NULL if failed.
1525 */
1526struct dma_chan *rio_request_dma(struct rio_dev *rdev)
1527{
1528 dma_cap_mask_t mask;
1529 struct dma_chan *dchan;
1530
1531 dma_cap_zero(mask);
1532 dma_cap_set(DMA_SLAVE, mask);
1533 dchan = dma_request_channel(mask, rio_chan_filter, rdev);
1534
1535 return dchan;
1536}
1537EXPORT_SYMBOL_GPL(rio_request_dma);
1538
1539/**
1540 * rio_release_dma - release specified DMA channel
1541 * @dchan: DMA channel to release
1542 */
1543void rio_release_dma(struct dma_chan *dchan)
1544{
1545 dma_release_channel(dchan);
1546}
1547EXPORT_SYMBOL_GPL(rio_release_dma);
1548
1549/**
1550 * rio_dma_prep_slave_sg - RapidIO specific wrapper
1551 * for device_prep_slave_sg callback defined by DMAENGINE.
1552 * @rdev: RIO device control structure
1553 * @dchan: DMA channel to configure
1554 * @data: RIO specific data descriptor
1555 * @direction: DMA data transfer direction (TO or FROM the device)
1556 * @flags: dmaengine defined flags
1557 *
1558 * Initializes RapidIO capable DMA channel for the specified data transfer.
1559 * Uses DMA channel private extension to pass information related to remote
1560 * target RIO device.
1561 * Returns pointer to DMA transaction descriptor or NULL if failed.
1562 */
1563struct dma_async_tx_descriptor *rio_dma_prep_slave_sg(struct rio_dev *rdev,
1564 struct dma_chan *dchan, struct rio_dma_data *data,
1565 enum dma_transfer_direction direction, unsigned long flags)
1566{
1567 struct dma_async_tx_descriptor *txd = NULL;
1568 struct rio_dma_ext rio_ext;
1569
1570 if (dchan->device->device_prep_slave_sg == NULL) {
1571 pr_err("%s: prep_rio_sg == NULL\n", __func__);
1572 return NULL;
1573 }
1574
1575 rio_ext.destid = rdev->destid;
1576 rio_ext.rio_addr_u = data->rio_addr_u;
1577 rio_ext.rio_addr = data->rio_addr;
1578 rio_ext.wr_type = data->wr_type;
1579
1580 txd = dmaengine_prep_rio_sg(dchan, data->sg, data->sg_len,
1581 direction, flags, &rio_ext);
1582
1583 return txd;
1584}
1585EXPORT_SYMBOL_GPL(rio_dma_prep_slave_sg);
1586
1587#endif /* CONFIG_RAPIDIO_DMA_ENGINE */
1588
1589/**
1590 * rio_find_mport - find RIO mport by its ID
1591 * @mport_id: number (ID) of mport device
1592 *
1593 * Given a RIO mport number, the desired mport is located
1594 * in the global list of mports. If the mport is found, a pointer to its
1595 * data structure is returned. If no mport is found, %NULL is returned.
1596 */
1597struct rio_mport *rio_find_mport(int mport_id)
1598{
1599 struct rio_mport *port;
1600
1601 mutex_lock(&rio_mport_list_lock);
1602 list_for_each_entry(port, &rio_mports, node) {
1603 if (port->id == mport_id)
1604 goto found;
1605 }
1606 port = NULL;
1607found:
1608 mutex_unlock(&rio_mport_list_lock);
1609
1610 return port;
1611}
1612
1613/**
1614 * rio_register_scan - enumeration/discovery method registration interface
1615 * @mport_id: mport device ID for which fabric scan routine has to be set
1616 * (RIO_MPORT_ANY = set for all available mports)
1617 * @scan_ops: enumeration/discovery operations structure
1618 *
1619 * Registers enumeration/discovery operations with RapidIO subsystem and
1620 * attaches it to the specified mport device (or all available mports
1621 * if RIO_MPORT_ANY is specified).
1622 *
1623 * Returns error if the mport already has an enumerator attached to it.
1624 * In case of RIO_MPORT_ANY skips mports with valid scan routines (no error).
1625 */
1626int rio_register_scan(int mport_id, struct rio_scan *scan_ops)
1627{
1628 struct rio_mport *port;
1629 struct rio_scan_node *scan;
1630 int rc = 0;
1631
1632 pr_debug("RIO: %s for mport_id=%d\n", __func__, mport_id);
1633
1634 if ((mport_id != RIO_MPORT_ANY && mport_id >= RIO_MAX_MPORTS) ||
1635 !scan_ops)
1636 return -EINVAL;
1637
1638 mutex_lock(&rio_mport_list_lock);
1639
1640 /*
1641 * Check if there is another enumerator already registered for
1642 * the same mport ID (including RIO_MPORT_ANY). Multiple enumerators
1643 * for the same mport ID are not supported.
1644 */
1645 list_for_each_entry(scan, &rio_scans, node) {
1646 if (scan->mport_id == mport_id) {
1647 rc = -EBUSY;
1648 goto err_out;
1649 }
1650 }
1651
1652 /*
1653 * Allocate and initialize new scan registration node.
1654 */
1655 scan = kzalloc(sizeof(*scan), GFP_KERNEL);
1656 if (!scan) {
1657 rc = -ENOMEM;
1658 goto err_out;
1659 }
1660
1661 scan->mport_id = mport_id;
1662 scan->ops = scan_ops;
1663
1664 /*
1665 * Traverse the list of registered mports to attach this new scan.
1666 *
1667 * The new scan with matching mport ID overrides any previously attached
1668 * scan assuming that old scan (if any) is the default one (based on the
1669 * enumerator registration check above).
1670 * If the new scan is the global one, it will be attached only to mports
1671 * that do not have their own individual operations already attached.
1672 */
1673 list_for_each_entry(port, &rio_mports, node) {
1674 if (port->id == mport_id) {
1675 port->nscan = scan_ops;
1676 break;
1677 } else if (mport_id == RIO_MPORT_ANY && !port->nscan)
1678 port->nscan = scan_ops;
1679 }
1680
1681 list_add_tail(&scan->node, &rio_scans);
1682
1683err_out:
1684 mutex_unlock(&rio_mport_list_lock);
1685
1686 return rc;
1687}
1688EXPORT_SYMBOL_GPL(rio_register_scan);
1689
1690/**
1691 * rio_unregister_scan - removes enumeration/discovery method from mport
1692 * @mport_id: mport device ID for which fabric scan routine has to be
1693 * unregistered (RIO_MPORT_ANY = apply to all mports that use
1694 * the specified scan_ops)
1695 * @scan_ops: enumeration/discovery operations structure
1696 *
1697 * Removes enumeration or discovery method assigned to the specified mport
1698 * device. If RIO_MPORT_ANY is specified, removes the specified operations from
1699 * all mports that have them attached.
1700 */
1701int rio_unregister_scan(int mport_id, struct rio_scan *scan_ops)
1702{
1703 struct rio_mport *port;
1704 struct rio_scan_node *scan;
1705
1706 pr_debug("RIO: %s for mport_id=%d\n", __func__, mport_id);
1707
1708 if (mport_id != RIO_MPORT_ANY && mport_id >= RIO_MAX_MPORTS)
1709 return -EINVAL;
1710
1711 mutex_lock(&rio_mport_list_lock);
1712
1713 list_for_each_entry(port, &rio_mports, node)
1714 if (port->id == mport_id ||
1715 (mport_id == RIO_MPORT_ANY && port->nscan == scan_ops))
1716 port->nscan = NULL;
1717
1718 list_for_each_entry(scan, &rio_scans, node) {
1719 if (scan->mport_id == mport_id) {
1720 list_del(&scan->node);
1721 kfree(scan);
1722 break;
1723 }
1724 }
1725
1726 mutex_unlock(&rio_mport_list_lock);
1727
1728 return 0;
1729}
1730EXPORT_SYMBOL_GPL(rio_unregister_scan);
1731
1732/**
1733 * rio_mport_scan - execute enumeration/discovery on the specified mport
1734 * @mport_id: number (ID) of mport device
1735 */
1736int rio_mport_scan(int mport_id)
1737{
1738 struct rio_mport *port = NULL;
1739 int rc;
1740
1741 mutex_lock(&rio_mport_list_lock);
1742 list_for_each_entry(port, &rio_mports, node) {
1743 if (port->id == mport_id)
1744 goto found;
1745 }
1746 mutex_unlock(&rio_mport_list_lock);
1747 return -ENODEV;
1748found:
1749 if (!port->nscan) {
1750 mutex_unlock(&rio_mport_list_lock);
1751 return -EINVAL;
1752 }
1753
1754 if (!try_module_get(port->nscan->owner)) {
1755 mutex_unlock(&rio_mport_list_lock);
1756 return -ENODEV;
1757 }
1758
1759 mutex_unlock(&rio_mport_list_lock);
1760
1761 if (port->host_deviceid >= 0)
1762 rc = port->nscan->enumerate(port, 0);
1763 else
1764 rc = port->nscan->discover(port, RIO_SCAN_ENUM_NO_WAIT);
1765
1766 module_put(port->nscan->owner);
1767 return rc;
1768}
1769
1770static void rio_fixup_device(struct rio_dev *dev)
1771{
1772}
1773
1774static int rio_init(void)
1775{
1776 struct rio_dev *dev = NULL;
1777
1778 while ((dev = rio_get_device(RIO_ANY_ID, RIO_ANY_ID, dev)) != NULL) {
1779 rio_fixup_device(dev);
1780 }
1781 return 0;
1782}
1783
1784static struct workqueue_struct *rio_wq;
1785
1786struct rio_disc_work {
1787 struct work_struct work;
1788 struct rio_mport *mport;
1789};
1790
1791static void disc_work_handler(struct work_struct *_work)
1792{
1793 struct rio_disc_work *work;
1794
1795 work = container_of(_work, struct rio_disc_work, work);
1796 pr_debug("RIO: discovery work for mport %d %s\n",
1797 work->mport->id, work->mport->name);
1798 if (try_module_get(work->mport->nscan->owner)) {
1799 work->mport->nscan->discover(work->mport, 0);
1800 module_put(work->mport->nscan->owner);
1801 }
1802}
1803
1804int rio_init_mports(void)
1805{
1806 struct rio_mport *port;
1807 struct rio_disc_work *work;
1808 int n = 0;
1809
1810 if (!next_portid)
1811 return -ENODEV;
1812
1813 /*
1814 * First, run enumerations and check if we need to perform discovery
1815 * on any of the registered mports.
1816 */
1817 mutex_lock(&rio_mport_list_lock);
1818 list_for_each_entry(port, &rio_mports, node) {
1819 if (port->host_deviceid >= 0) {
1820 if (port->nscan && try_module_get(port->nscan->owner)) {
1821 port->nscan->enumerate(port, 0);
1822 module_put(port->nscan->owner);
1823 }
1824 } else
1825 n++;
1826 }
1827 mutex_unlock(&rio_mport_list_lock);
1828
1829 if (!n)
1830 goto no_disc;
1831
1832 /*
1833 * If we have mports that require discovery schedule a discovery work
1834 * for each of them. If the code below fails to allocate needed
1835 * resources, exit without error to keep results of enumeration
1836 * process (if any).
1837 * TODO: Implement restart of discovery process for all or
1838 * individual discovering mports.
1839 */
1840 rio_wq = alloc_workqueue("riodisc", 0, 0);
1841 if (!rio_wq) {
1842 pr_err("RIO: unable allocate rio_wq\n");
1843 goto no_disc;
1844 }
1845
1846 work = kcalloc(n, sizeof *work, GFP_KERNEL);
1847 if (!work) {
1848 pr_err("RIO: no memory for work struct\n");
1849 destroy_workqueue(rio_wq);
1850 goto no_disc;
1851 }
1852
1853 n = 0;
1854 mutex_lock(&rio_mport_list_lock);
1855 list_for_each_entry(port, &rio_mports, node) {
1856 if (port->host_deviceid < 0 && port->nscan) {
1857 work[n].mport = port;
1858 INIT_WORK(&work[n].work, disc_work_handler);
1859 queue_work(rio_wq, &work[n].work);
1860 n++;
1861 }
1862 }
1863
1864 flush_workqueue(rio_wq);
1865 mutex_unlock(&rio_mport_list_lock);
1866 pr_debug("RIO: destroy discovery workqueue\n");
1867 destroy_workqueue(rio_wq);
1868 kfree(work);
1869
1870no_disc:
1871 rio_init();
1872
1873 return 0;
1874}
1875
1876static int rio_get_hdid(int index)
1877{
1878 if (ids_num == 0 || ids_num <= index || index >= RIO_MAX_MPORTS)
1879 return -1;
1880
1881 return hdid[index];
1882}
1883
1884int rio_register_mport(struct rio_mport *port)
1885{
1886 struct rio_scan_node *scan = NULL;
1887 int res = 0;
1888
1889 if (next_portid >= RIO_MAX_MPORTS) {
1890 pr_err("RIO: reached specified max number of mports\n");
1891 return 1;
1892 }
1893
1894 port->id = next_portid++;
1895 port->host_deviceid = rio_get_hdid(port->id);
1896 port->nscan = NULL;
1897
1898 dev_set_name(&port->dev, "rapidio%d", port->id);
1899 port->dev.class = &rio_mport_class;
1900
1901 res = device_register(&port->dev);
1902 if (res)
1903 dev_err(&port->dev, "RIO: mport%d registration failed ERR=%d\n",
1904 port->id, res);
1905 else
1906 dev_dbg(&port->dev, "RIO: mport%d registered\n", port->id);
1907
1908 mutex_lock(&rio_mport_list_lock);
1909 list_add_tail(&port->node, &rio_mports);
1910
1911 /*
1912 * Check if there are any registered enumeration/discovery operations
1913 * that have to be attached to the added mport.
1914 */
1915 list_for_each_entry(scan, &rio_scans, node) {
1916 if (port->id == scan->mport_id ||
1917 scan->mport_id == RIO_MPORT_ANY) {
1918 port->nscan = scan->ops;
1919 if (port->id == scan->mport_id)
1920 break;
1921 }
1922 }
1923 mutex_unlock(&rio_mport_list_lock);
1924
1925 pr_debug("RIO: %s %s id=%d\n", __func__, port->name, port->id);
1926 return 0;
1927}
1928EXPORT_SYMBOL_GPL(rio_register_mport);
1929
1930EXPORT_SYMBOL_GPL(rio_local_get_device_id);
1931EXPORT_SYMBOL_GPL(rio_get_device);
1932EXPORT_SYMBOL_GPL(rio_get_asm);
1933EXPORT_SYMBOL_GPL(rio_request_inb_dbell);
1934EXPORT_SYMBOL_GPL(rio_release_inb_dbell);
1935EXPORT_SYMBOL_GPL(rio_request_outb_dbell);
1936EXPORT_SYMBOL_GPL(rio_release_outb_dbell);
1937EXPORT_SYMBOL_GPL(rio_request_inb_mbox);
1938EXPORT_SYMBOL_GPL(rio_release_inb_mbox);
1939EXPORT_SYMBOL_GPL(rio_request_outb_mbox);
1940EXPORT_SYMBOL_GPL(rio_release_outb_mbox);
1941EXPORT_SYMBOL_GPL(rio_init_mports);