Linux Audio

Check our new training course

Linux BSP development engineering services

Need help to port Linux and bootloaders to your hardware?
Loading...
v5.9
  1// SPDX-License-Identifier: GPL-2.0+
  2/*
  3 * Device tree based initialization code for reserved memory.
  4 *
  5 * Copyright (c) 2013, 2015 The Linux Foundation. All Rights Reserved.
  6 * Copyright (c) 2013,2014 Samsung Electronics Co., Ltd.
  7 *		http://www.samsung.com
  8 * Author: Marek Szyprowski <m.szyprowski@samsung.com>
  9 * Author: Josh Cartwright <joshc@codeaurora.org>
 
 
 
 
 
 10 */
 11
 12#define pr_fmt(fmt)	"OF: reserved mem: " fmt
 13
 14#include <linux/err.h>
 15#include <linux/of.h>
 16#include <linux/of_fdt.h>
 17#include <linux/of_platform.h>
 18#include <linux/mm.h>
 19#include <linux/sizes.h>
 20#include <linux/of_reserved_mem.h>
 21#include <linux/sort.h>
 22#include <linux/slab.h>
 23#include <linux/memblock.h>
 24
 25#define MAX_RESERVED_REGIONS	64
 26static struct reserved_mem reserved_mem[MAX_RESERVED_REGIONS];
 27static int reserved_mem_count;
 28
 29static int __init early_init_dt_alloc_reserved_memory_arch(phys_addr_t size,
 
 
 30	phys_addr_t align, phys_addr_t start, phys_addr_t end, bool nomap,
 31	phys_addr_t *res_base)
 32{
 33	phys_addr_t base;
 34
 35	end = !end ? MEMBLOCK_ALLOC_ANYWHERE : end;
 36	align = !align ? SMP_CACHE_BYTES : align;
 37	base = memblock_find_in_range(start, end, size, align);
 38	if (!base)
 39		return -ENOMEM;
 40
 
 
 
 
 
 
 
 
 41	*res_base = base;
 42	if (nomap)
 43		return memblock_remove(base, size);
 44
 45	return memblock_reserve(base, size);
 
 
 
 
 
 
 
 
 46}
 
 47
 48/**
 49 * fdt_reserved_mem_save_node() - save fdt node for second pass initialization
 50 */
 51void __init fdt_reserved_mem_save_node(unsigned long node, const char *uname,
 52				      phys_addr_t base, phys_addr_t size)
 53{
 54	struct reserved_mem *rmem = &reserved_mem[reserved_mem_count];
 55
 56	if (reserved_mem_count == ARRAY_SIZE(reserved_mem)) {
 57		pr_err("not enough space for all defined regions.\n");
 58		return;
 59	}
 60
 61	rmem->fdt_node = node;
 62	rmem->name = uname;
 63	rmem->base = base;
 64	rmem->size = size;
 65
 66	reserved_mem_count++;
 67	return;
 68}
 69
 70/**
 71 * __reserved_mem_alloc_size() - allocate reserved memory described by
 72 *	'size', 'alignment'  and 'alloc-ranges' properties.
 73 */
 74static int __init __reserved_mem_alloc_size(unsigned long node,
 75	const char *uname, phys_addr_t *res_base, phys_addr_t *res_size)
 76{
 77	int t_len = (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32);
 78	phys_addr_t start = 0, end = 0;
 79	phys_addr_t base = 0, align = 0, size;
 80	int len;
 81	const __be32 *prop;
 82	bool nomap;
 83	int ret;
 84
 85	prop = of_get_flat_dt_prop(node, "size", &len);
 86	if (!prop)
 87		return -EINVAL;
 88
 89	if (len != dt_root_size_cells * sizeof(__be32)) {
 90		pr_err("invalid size property in '%s' node.\n", uname);
 
 91		return -EINVAL;
 92	}
 93	size = dt_mem_next_cell(dt_root_size_cells, &prop);
 94
 
 
 95	prop = of_get_flat_dt_prop(node, "alignment", &len);
 96	if (prop) {
 97		if (len != dt_root_addr_cells * sizeof(__be32)) {
 98			pr_err("invalid alignment property in '%s' node.\n",
 99				uname);
100			return -EINVAL;
101		}
102		align = dt_mem_next_cell(dt_root_addr_cells, &prop);
103	}
104
105	nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
106
107	/* Need adjust the alignment to satisfy the CMA requirement */
108	if (IS_ENABLED(CONFIG_CMA)
109	    && of_flat_dt_is_compatible(node, "shared-dma-pool")
110	    && of_get_flat_dt_prop(node, "reusable", NULL)
111	    && !nomap) {
112		unsigned long order =
113			max_t(unsigned long, MAX_ORDER - 1, pageblock_order);
114
115		align = max(align, (phys_addr_t)PAGE_SIZE << order);
116	}
117
118	prop = of_get_flat_dt_prop(node, "alloc-ranges", &len);
119	if (prop) {
120
121		if (len % t_len != 0) {
122			pr_err("invalid alloc-ranges property in '%s', skipping node.\n",
123			       uname);
124			return -EINVAL;
125		}
126
127		base = 0;
128
129		while (len > 0) {
130			start = dt_mem_next_cell(dt_root_addr_cells, &prop);
131			end = start + dt_mem_next_cell(dt_root_size_cells,
132						       &prop);
133
134			ret = early_init_dt_alloc_reserved_memory_arch(size,
135					align, start, end, nomap, &base);
136			if (ret == 0) {
137				pr_debug("allocated memory for '%s' node: base %pa, size %ld MiB\n",
138					uname, &base,
139					(unsigned long)size / SZ_1M);
140				break;
141			}
142			len -= t_len;
143		}
144
145	} else {
146		ret = early_init_dt_alloc_reserved_memory_arch(size, align,
147							0, 0, nomap, &base);
148		if (ret == 0)
149			pr_debug("allocated memory for '%s' node: base %pa, size %ld MiB\n",
150				uname, &base, (unsigned long)size / SZ_1M);
151	}
152
153	if (base == 0) {
154		pr_info("failed to allocate memory for node '%s'\n", uname);
 
155		return -ENOMEM;
156	}
157
158	*res_base = base;
159	*res_size = size;
160
161	return 0;
162}
163
164static const struct of_device_id __rmem_of_table_sentinel
165	__used __section(__reservedmem_of_table_end);
166
167/**
168 * __reserved_mem_init_node() - call region specific reserved memory init code
169 */
170static int __init __reserved_mem_init_node(struct reserved_mem *rmem)
171{
172	extern const struct of_device_id __reservedmem_of_table[];
173	const struct of_device_id *i;
174	int ret = -ENOENT;
175
176	for (i = __reservedmem_of_table; i < &__rmem_of_table_sentinel; i++) {
177		reservedmem_of_init_fn initfn = i->data;
178		const char *compat = i->compatible;
179
180		if (!of_flat_dt_is_compatible(rmem->fdt_node, compat))
181			continue;
182
183		ret = initfn(rmem);
184		if (ret == 0) {
185			pr_info("initialized node %s, compatible id %s\n",
186				rmem->name, compat);
187			break;
188		}
189	}
190	return ret;
191}
192
193static int __init __rmem_cmp(const void *a, const void *b)
194{
195	const struct reserved_mem *ra = a, *rb = b;
196
197	if (ra->base < rb->base)
198		return -1;
199
200	if (ra->base > rb->base)
201		return 1;
202
203	return 0;
204}
205
206static void __init __rmem_check_for_overlap(void)
207{
208	int i;
209
210	if (reserved_mem_count < 2)
211		return;
212
213	sort(reserved_mem, reserved_mem_count, sizeof(reserved_mem[0]),
214	     __rmem_cmp, NULL);
215	for (i = 0; i < reserved_mem_count - 1; i++) {
216		struct reserved_mem *this, *next;
217
218		this = &reserved_mem[i];
219		next = &reserved_mem[i + 1];
220		if (!(this->base && next->base))
221			continue;
222		if (this->base + this->size > next->base) {
223			phys_addr_t this_end, next_end;
224
225			this_end = this->base + this->size;
226			next_end = next->base + next->size;
227			pr_err("OVERLAP DETECTED!\n%s (%pa--%pa) overlaps with %s (%pa--%pa)\n",
228			       this->name, &this->base, &this_end,
229			       next->name, &next->base, &next_end);
230		}
231	}
 
232}
233
234/**
235 * fdt_init_reserved_mem() - allocate and init all saved reserved memory regions
236 */
237void __init fdt_init_reserved_mem(void)
238{
239	int i;
240
241	/* check for overlapping reserved regions */
242	__rmem_check_for_overlap();
243
244	for (i = 0; i < reserved_mem_count; i++) {
245		struct reserved_mem *rmem = &reserved_mem[i];
246		unsigned long node = rmem->fdt_node;
247		int len;
248		const __be32 *prop;
249		int err = 0;
250		bool nomap;
251
252		nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
253		prop = of_get_flat_dt_prop(node, "phandle", &len);
254		if (!prop)
255			prop = of_get_flat_dt_prop(node, "linux,phandle", &len);
256		if (prop)
257			rmem->phandle = of_read_number(prop, len/4);
258
259		if (rmem->size == 0)
260			err = __reserved_mem_alloc_size(node, rmem->name,
261						 &rmem->base, &rmem->size);
262		if (err == 0) {
263			err = __reserved_mem_init_node(rmem);
264			if (err != 0 && err != -ENOENT) {
265				pr_info("node %s compatible matching fail\n",
266					rmem->name);
267				memblock_free(rmem->base, rmem->size);
268				if (nomap)
269					memblock_add(rmem->base, rmem->size);
270			}
271		}
272	}
273}
274
275static inline struct reserved_mem *__find_rmem(struct device_node *node)
276{
277	unsigned int i;
278
279	if (!node->phandle)
280		return NULL;
281
282	for (i = 0; i < reserved_mem_count; i++)
283		if (reserved_mem[i].phandle == node->phandle)
284			return &reserved_mem[i];
285	return NULL;
286}
287
288struct rmem_assigned_device {
289	struct device *dev;
290	struct reserved_mem *rmem;
291	struct list_head list;
292};
293
294static LIST_HEAD(of_rmem_assigned_device_list);
295static DEFINE_MUTEX(of_rmem_assigned_device_mutex);
296
297/**
298 * of_reserved_mem_device_init_by_idx() - assign reserved memory region to
299 *					  given device
300 * @dev:	Pointer to the device to configure
301 * @np:		Pointer to the device_node with 'reserved-memory' property
302 * @idx:	Index of selected region
303 *
304 * This function assigns respective DMA-mapping operations based on reserved
305 * memory region specified by 'memory-region' property in @np node to the @dev
306 * device. When driver needs to use more than one reserved memory region, it
307 * should allocate child devices and initialize regions by name for each of
308 * child device.
309 *
310 * Returns error code or zero on success.
311 */
312int of_reserved_mem_device_init_by_idx(struct device *dev,
313				       struct device_node *np, int idx)
314{
315	struct rmem_assigned_device *rd;
316	struct device_node *target;
317	struct reserved_mem *rmem;
318	int ret;
319
320	if (!np || !dev)
321		return -EINVAL;
322
323	target = of_parse_phandle(np, "memory-region", idx);
324	if (!target)
325		return -ENODEV;
326
327	if (!of_device_is_available(target)) {
328		of_node_put(target);
329		return 0;
330	}
331
332	rmem = __find_rmem(target);
333	of_node_put(target);
334
335	if (!rmem || !rmem->ops || !rmem->ops->device_init)
336		return -EINVAL;
337
338	rd = kmalloc(sizeof(struct rmem_assigned_device), GFP_KERNEL);
339	if (!rd)
340		return -ENOMEM;
341
342	ret = rmem->ops->device_init(rmem, dev);
343	if (ret == 0) {
344		rd->dev = dev;
345		rd->rmem = rmem;
346
347		mutex_lock(&of_rmem_assigned_device_mutex);
348		list_add(&rd->list, &of_rmem_assigned_device_list);
349		mutex_unlock(&of_rmem_assigned_device_mutex);
350
351		dev_info(dev, "assigned reserved memory node %s\n", rmem->name);
352	} else {
353		kfree(rd);
354	}
355
356	return ret;
357}
358EXPORT_SYMBOL_GPL(of_reserved_mem_device_init_by_idx);
359
360/**
361 * of_reserved_mem_device_init_by_name() - assign named reserved memory region
362 *					   to given device
363 * @dev: pointer to the device to configure
364 * @np: pointer to the device node with 'memory-region' property
365 * @name: name of the selected memory region
366 *
367 * Returns: 0 on success or a negative error-code on failure.
368 */
369int of_reserved_mem_device_init_by_name(struct device *dev,
370					struct device_node *np,
371					const char *name)
372{
373	int idx = of_property_match_string(np, "memory-region-names", name);
374
375	return of_reserved_mem_device_init_by_idx(dev, np, idx);
376}
377EXPORT_SYMBOL_GPL(of_reserved_mem_device_init_by_name);
378
379/**
380 * of_reserved_mem_device_release() - release reserved memory device structures
381 * @dev:	Pointer to the device to deconfigure
382 *
383 * This function releases structures allocated for memory region handling for
384 * the given device.
385 */
386void of_reserved_mem_device_release(struct device *dev)
387{
388	struct rmem_assigned_device *rd, *tmp;
389	LIST_HEAD(release_list);
390
391	mutex_lock(&of_rmem_assigned_device_mutex);
392	list_for_each_entry_safe(rd, tmp, &of_rmem_assigned_device_list, list) {
393		if (rd->dev == dev)
394			list_move_tail(&rd->list, &release_list);
395	}
396	mutex_unlock(&of_rmem_assigned_device_mutex);
397
398	list_for_each_entry_safe(rd, tmp, &release_list, list) {
399		if (rd->rmem && rd->rmem->ops && rd->rmem->ops->device_release)
400			rd->rmem->ops->device_release(rd->rmem, dev);
401
402		kfree(rd);
403	}
404}
405EXPORT_SYMBOL_GPL(of_reserved_mem_device_release);
406
407/**
408 * of_reserved_mem_lookup() - acquire reserved_mem from a device node
409 * @np:		node pointer of the desired reserved-memory region
410 *
411 * This function allows drivers to acquire a reference to the reserved_mem
412 * struct based on a device node handle.
413 *
414 * Returns a reserved_mem reference, or NULL on error.
415 */
416struct reserved_mem *of_reserved_mem_lookup(struct device_node *np)
417{
418	const char *name;
419	int i;
420
421	if (!np->full_name)
422		return NULL;
423
424	name = kbasename(np->full_name);
425	for (i = 0; i < reserved_mem_count; i++)
426		if (!strcmp(reserved_mem[i].name, name))
427			return &reserved_mem[i];
428
429	return NULL;
430}
431EXPORT_SYMBOL_GPL(of_reserved_mem_lookup);
v3.15
 
  1/*
  2 * Device tree based initialization code for reserved memory.
  3 *
  4 * Copyright (c) 2013, The Linux Foundation. All Rights Reserved.
  5 * Copyright (c) 2013,2014 Samsung Electronics Co., Ltd.
  6 *		http://www.samsung.com
  7 * Author: Marek Szyprowski <m.szyprowski@samsung.com>
  8 * Author: Josh Cartwright <joshc@codeaurora.org>
  9 *
 10 * This program is free software; you can redistribute it and/or
 11 * modify it under the terms of the GNU General Public License as
 12 * published by the Free Software Foundation; either version 2 of the
 13 * License or (at your optional) any later version of the license.
 14 */
 15
 
 
 16#include <linux/err.h>
 17#include <linux/of.h>
 18#include <linux/of_fdt.h>
 19#include <linux/of_platform.h>
 20#include <linux/mm.h>
 21#include <linux/sizes.h>
 22#include <linux/of_reserved_mem.h>
 
 
 
 23
 24#define MAX_RESERVED_REGIONS	16
 25static struct reserved_mem reserved_mem[MAX_RESERVED_REGIONS];
 26static int reserved_mem_count;
 27
 28#if defined(CONFIG_HAVE_MEMBLOCK)
 29#include <linux/memblock.h>
 30int __init __weak early_init_dt_alloc_reserved_memory_arch(phys_addr_t size,
 31	phys_addr_t align, phys_addr_t start, phys_addr_t end, bool nomap,
 32	phys_addr_t *res_base)
 33{
 34	/*
 35	 * We use __memblock_alloc_base() because memblock_alloc_base()
 36	 * panic()s on allocation failure.
 37	 */
 38	phys_addr_t base = __memblock_alloc_base(size, align, end);
 39	if (!base)
 40		return -ENOMEM;
 41
 42	/*
 43	 * Check if the allocated region fits in to start..end window
 44	 */
 45	if (base < start) {
 46		memblock_free(base, size);
 47		return -ENOMEM;
 48	}
 49
 50	*res_base = base;
 51	if (nomap)
 52		return memblock_remove(base, size);
 53	return 0;
 54}
 55#else
 56int __init __weak early_init_dt_alloc_reserved_memory_arch(phys_addr_t size,
 57	phys_addr_t align, phys_addr_t start, phys_addr_t end, bool nomap,
 58	phys_addr_t *res_base)
 59{
 60	pr_err("Reserved memory not supported, ignoring region 0x%llx%s\n",
 61		  size, nomap ? " (nomap)" : "");
 62	return -ENOSYS;
 63}
 64#endif
 65
 66/**
 67 * res_mem_save_node() - save fdt node for second pass initialization
 68 */
 69void __init fdt_reserved_mem_save_node(unsigned long node, const char *uname,
 70				      phys_addr_t base, phys_addr_t size)
 71{
 72	struct reserved_mem *rmem = &reserved_mem[reserved_mem_count];
 73
 74	if (reserved_mem_count == ARRAY_SIZE(reserved_mem)) {
 75		pr_err("Reserved memory: not enough space all defined regions.\n");
 76		return;
 77	}
 78
 79	rmem->fdt_node = node;
 80	rmem->name = uname;
 81	rmem->base = base;
 82	rmem->size = size;
 83
 84	reserved_mem_count++;
 85	return;
 86}
 87
 88/**
 89 * res_mem_alloc_size() - allocate reserved memory described by 'size', 'align'
 90 *			  and 'alloc-ranges' properties
 91 */
 92static int __init __reserved_mem_alloc_size(unsigned long node,
 93	const char *uname, phys_addr_t *res_base, phys_addr_t *res_size)
 94{
 95	int t_len = (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32);
 96	phys_addr_t start = 0, end = 0;
 97	phys_addr_t base = 0, align = 0, size;
 98	unsigned long len;
 99	__be32 *prop;
100	int nomap;
101	int ret;
102
103	prop = of_get_flat_dt_prop(node, "size", &len);
104	if (!prop)
105		return -EINVAL;
106
107	if (len != dt_root_size_cells * sizeof(__be32)) {
108		pr_err("Reserved memory: invalid size property in '%s' node.\n",
109				uname);
110		return -EINVAL;
111	}
112	size = dt_mem_next_cell(dt_root_size_cells, &prop);
113
114	nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
115
116	prop = of_get_flat_dt_prop(node, "alignment", &len);
117	if (prop) {
118		if (len != dt_root_addr_cells * sizeof(__be32)) {
119			pr_err("Reserved memory: invalid alignment property in '%s' node.\n",
120				uname);
121			return -EINVAL;
122		}
123		align = dt_mem_next_cell(dt_root_addr_cells, &prop);
124	}
125
 
 
 
 
 
 
 
 
 
 
 
 
 
126	prop = of_get_flat_dt_prop(node, "alloc-ranges", &len);
127	if (prop) {
128
129		if (len % t_len != 0) {
130			pr_err("Reserved memory: invalid alloc-ranges property in '%s', skipping node.\n",
131			       uname);
132			return -EINVAL;
133		}
134
135		base = 0;
136
137		while (len > 0) {
138			start = dt_mem_next_cell(dt_root_addr_cells, &prop);
139			end = start + dt_mem_next_cell(dt_root_size_cells,
140						       &prop);
141
142			ret = early_init_dt_alloc_reserved_memory_arch(size,
143					align, start, end, nomap, &base);
144			if (ret == 0) {
145				pr_debug("Reserved memory: allocated memory for '%s' node: base %pa, size %ld MiB\n",
146					uname, &base,
147					(unsigned long)size / SZ_1M);
148				break;
149			}
150			len -= t_len;
151		}
152
153	} else {
154		ret = early_init_dt_alloc_reserved_memory_arch(size, align,
155							0, 0, nomap, &base);
156		if (ret == 0)
157			pr_debug("Reserved memory: allocated memory for '%s' node: base %pa, size %ld MiB\n",
158				uname, &base, (unsigned long)size / SZ_1M);
159	}
160
161	if (base == 0) {
162		pr_info("Reserved memory: failed to allocate memory for node '%s'\n",
163			uname);
164		return -ENOMEM;
165	}
166
167	*res_base = base;
168	*res_size = size;
169
170	return 0;
171}
172
173static const struct of_device_id __rmem_of_table_sentinel
174	__used __section(__reservedmem_of_table_end);
175
176/**
177 * res_mem_init_node() - call region specific reserved memory init code
178 */
179static int __init __reserved_mem_init_node(struct reserved_mem *rmem)
180{
181	extern const struct of_device_id __reservedmem_of_table[];
182	const struct of_device_id *i;
 
183
184	for (i = __reservedmem_of_table; i < &__rmem_of_table_sentinel; i++) {
185		reservedmem_of_init_fn initfn = i->data;
186		const char *compat = i->compatible;
187
188		if (!of_flat_dt_is_compatible(rmem->fdt_node, compat))
189			continue;
190
191		if (initfn(rmem, rmem->fdt_node, rmem->name) == 0) {
192			pr_info("Reserved memory: initialized node %s, compatible id %s\n",
 
193				rmem->name, compat);
194			return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
195		}
196	}
197	return -ENOENT;
198}
199
200/**
201 * fdt_init_reserved_mem - allocate and init all saved reserved memory regions
202 */
203void __init fdt_init_reserved_mem(void)
204{
205	int i;
 
 
 
 
206	for (i = 0; i < reserved_mem_count; i++) {
207		struct reserved_mem *rmem = &reserved_mem[i];
208		unsigned long node = rmem->fdt_node;
 
 
209		int err = 0;
 
 
 
 
 
 
 
 
210
211		if (rmem->size == 0)
212			err = __reserved_mem_alloc_size(node, rmem->name,
213						 &rmem->base, &rmem->size);
214		if (err == 0)
215			__reserved_mem_init_node(rmem);
 
 
 
 
 
 
 
 
216	}
217}