Linux Audio

Check our new training course

Loading...
Note: File does not exist in v5.9.
   1/*
   2 * This file is provided under a dual BSD/GPLv2 license.  When using or
   3 *   redistributing this file, you may do so under either license.
   4 *
   5 *   GPL LICENSE SUMMARY
   6 *
   7 *   Copyright(c) 2012 Intel Corporation. All rights reserved.
   8 *
   9 *   This program is free software; you can redistribute it and/or modify
  10 *   it under the terms of version 2 of the GNU General Public License as
  11 *   published by the Free Software Foundation.
  12 *
  13 *   BSD LICENSE
  14 *
  15 *   Copyright(c) 2012 Intel Corporation. All rights reserved.
  16 *
  17 *   Redistribution and use in source and binary forms, with or without
  18 *   modification, are permitted provided that the following conditions
  19 *   are met:
  20 *
  21 *     * Redistributions of source code must retain the above copyright
  22 *       notice, this list of conditions and the following disclaimer.
  23 *     * Redistributions in binary form must reproduce the above copy
  24 *       notice, this list of conditions and the following disclaimer in
  25 *       the documentation and/or other materials provided with the
  26 *       distribution.
  27 *     * Neither the name of Intel Corporation nor the names of its
  28 *       contributors may be used to endorse or promote products derived
  29 *       from this software without specific prior written permission.
  30 *
  31 *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  32 *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  33 *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  34 *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  35 *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  36 *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  37 *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  38 *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  39 *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  40 *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  41 *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  42 *
  43 * Intel PCIe NTB Linux driver
  44 *
  45 * Contact Information:
  46 * Jon Mason <jon.mason@intel.com>
  47 */
  48#include <linux/debugfs.h>
  49#include <linux/delay.h>
  50#include <linux/init.h>
  51#include <linux/interrupt.h>
  52#include <linux/module.h>
  53#include <linux/pci.h>
  54#include <linux/random.h>
  55#include <linux/slab.h>
  56#include "ntb_hw.h"
  57#include "ntb_regs.h"
  58
  59#define NTB_NAME	"Intel(R) PCI-E Non-Transparent Bridge Driver"
  60#define NTB_VER		"1.0"
  61
  62MODULE_DESCRIPTION(NTB_NAME);
  63MODULE_VERSION(NTB_VER);
  64MODULE_LICENSE("Dual BSD/GPL");
  65MODULE_AUTHOR("Intel Corporation");
  66
  67static bool xeon_errata_workaround = true;
  68module_param(xeon_errata_workaround, bool, 0644);
  69MODULE_PARM_DESC(xeon_errata_workaround, "Workaround for the Xeon Errata");
  70
  71enum {
  72	NTB_CONN_TRANSPARENT = 0,
  73	NTB_CONN_B2B,
  74	NTB_CONN_RP,
  75};
  76
  77enum {
  78	NTB_DEV_USD = 0,
  79	NTB_DEV_DSD,
  80};
  81
  82enum {
  83	SNB_HW = 0,
  84	BWD_HW,
  85};
  86
  87static struct dentry *debugfs_dir;
  88
  89#define BWD_LINK_RECOVERY_TIME	500
  90
  91/* Translate memory window 0,1 to BAR 2,4 */
  92#define MW_TO_BAR(mw)	(mw * NTB_MAX_NUM_MW + 2)
  93
  94static const struct pci_device_id ntb_pci_tbl[] = {
  95	{PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_NTB_B2B_BWD)},
  96	{PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_NTB_B2B_JSF)},
  97	{PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_NTB_B2B_SNB)},
  98	{PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_NTB_B2B_IVT)},
  99	{PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_NTB_B2B_HSX)},
 100	{PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_NTB_PS_JSF)},
 101	{PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_NTB_PS_SNB)},
 102	{PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_NTB_PS_IVT)},
 103	{PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_NTB_PS_HSX)},
 104	{PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_NTB_SS_JSF)},
 105	{PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_NTB_SS_SNB)},
 106	{PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_NTB_SS_IVT)},
 107	{PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_NTB_SS_HSX)},
 108	{0}
 109};
 110MODULE_DEVICE_TABLE(pci, ntb_pci_tbl);
 111
 112/**
 113 * ntb_register_event_callback() - register event callback
 114 * @ndev: pointer to ntb_device instance
 115 * @func: callback function to register
 116 *
 117 * This function registers a callback for any HW driver events such as link
 118 * up/down, power management notices and etc.
 119 *
 120 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
 121 */
 122int ntb_register_event_callback(struct ntb_device *ndev,
 123				void (*func)(void *handle,
 124					     enum ntb_hw_event event))
 125{
 126	if (ndev->event_cb)
 127		return -EINVAL;
 128
 129	ndev->event_cb = func;
 130
 131	return 0;
 132}
 133
 134/**
 135 * ntb_unregister_event_callback() - unregisters the event callback
 136 * @ndev: pointer to ntb_device instance
 137 *
 138 * This function unregisters the existing callback from transport
 139 */
 140void ntb_unregister_event_callback(struct ntb_device *ndev)
 141{
 142	ndev->event_cb = NULL;
 143}
 144
 145static void ntb_irq_work(unsigned long data)
 146{
 147	struct ntb_db_cb *db_cb = (struct ntb_db_cb *)data;
 148	int rc;
 149
 150	rc = db_cb->callback(db_cb->data, db_cb->db_num);
 151	if (rc)
 152		tasklet_schedule(&db_cb->irq_work);
 153	else {
 154		struct ntb_device *ndev = db_cb->ndev;
 155		unsigned long mask;
 156
 157		mask = readw(ndev->reg_ofs.ldb_mask);
 158		clear_bit(db_cb->db_num * ndev->bits_per_vector, &mask);
 159		writew(mask, ndev->reg_ofs.ldb_mask);
 160	}
 161}
 162
 163/**
 164 * ntb_register_db_callback() - register a callback for doorbell interrupt
 165 * @ndev: pointer to ntb_device instance
 166 * @idx: doorbell index to register callback, zero based
 167 * @data: pointer to be returned to caller with every callback
 168 * @func: callback function to register
 169 *
 170 * This function registers a callback function for the doorbell interrupt
 171 * on the primary side. The function will unmask the doorbell as well to
 172 * allow interrupt.
 173 *
 174 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
 175 */
 176int ntb_register_db_callback(struct ntb_device *ndev, unsigned int idx,
 177			     void *data, int (*func)(void *data, int db_num))
 178{
 179	unsigned long mask;
 180
 181	if (idx >= ndev->max_cbs || ndev->db_cb[idx].callback) {
 182		dev_warn(&ndev->pdev->dev, "Invalid Index.\n");
 183		return -EINVAL;
 184	}
 185
 186	ndev->db_cb[idx].callback = func;
 187	ndev->db_cb[idx].data = data;
 188	ndev->db_cb[idx].ndev = ndev;
 189
 190	tasklet_init(&ndev->db_cb[idx].irq_work, ntb_irq_work,
 191		     (unsigned long) &ndev->db_cb[idx]);
 192
 193	/* unmask interrupt */
 194	mask = readw(ndev->reg_ofs.ldb_mask);
 195	clear_bit(idx * ndev->bits_per_vector, &mask);
 196	writew(mask, ndev->reg_ofs.ldb_mask);
 197
 198	return 0;
 199}
 200
 201/**
 202 * ntb_unregister_db_callback() - unregister a callback for doorbell interrupt
 203 * @ndev: pointer to ntb_device instance
 204 * @idx: doorbell index to register callback, zero based
 205 *
 206 * This function unregisters a callback function for the doorbell interrupt
 207 * on the primary side. The function will also mask the said doorbell.
 208 */
 209void ntb_unregister_db_callback(struct ntb_device *ndev, unsigned int idx)
 210{
 211	unsigned long mask;
 212
 213	if (idx >= ndev->max_cbs || !ndev->db_cb[idx].callback)
 214		return;
 215
 216	mask = readw(ndev->reg_ofs.ldb_mask);
 217	set_bit(idx * ndev->bits_per_vector, &mask);
 218	writew(mask, ndev->reg_ofs.ldb_mask);
 219
 220	tasklet_disable(&ndev->db_cb[idx].irq_work);
 221
 222	ndev->db_cb[idx].callback = NULL;
 223}
 224
 225/**
 226 * ntb_find_transport() - find the transport pointer
 227 * @transport: pointer to pci device
 228 *
 229 * Given the pci device pointer, return the transport pointer passed in when
 230 * the transport attached when it was inited.
 231 *
 232 * RETURNS: pointer to transport.
 233 */
 234void *ntb_find_transport(struct pci_dev *pdev)
 235{
 236	struct ntb_device *ndev = pci_get_drvdata(pdev);
 237	return ndev->ntb_transport;
 238}
 239
 240/**
 241 * ntb_register_transport() - Register NTB transport with NTB HW driver
 242 * @transport: transport identifier
 243 *
 244 * This function allows a transport to reserve the hardware driver for
 245 * NTB usage.
 246 *
 247 * RETURNS: pointer to ntb_device, NULL on error.
 248 */
 249struct ntb_device *ntb_register_transport(struct pci_dev *pdev, void *transport)
 250{
 251	struct ntb_device *ndev = pci_get_drvdata(pdev);
 252
 253	if (ndev->ntb_transport)
 254		return NULL;
 255
 256	ndev->ntb_transport = transport;
 257	return ndev;
 258}
 259
 260/**
 261 * ntb_unregister_transport() - Unregister the transport with the NTB HW driver
 262 * @ndev - ntb_device of the transport to be freed
 263 *
 264 * This function unregisters the transport from the HW driver and performs any
 265 * necessary cleanups.
 266 */
 267void ntb_unregister_transport(struct ntb_device *ndev)
 268{
 269	int i;
 270
 271	if (!ndev->ntb_transport)
 272		return;
 273
 274	for (i = 0; i < ndev->max_cbs; i++)
 275		ntb_unregister_db_callback(ndev, i);
 276
 277	ntb_unregister_event_callback(ndev);
 278	ndev->ntb_transport = NULL;
 279}
 280
 281/**
 282 * ntb_write_local_spad() - write to the secondary scratchpad register
 283 * @ndev: pointer to ntb_device instance
 284 * @idx: index to the scratchpad register, 0 based
 285 * @val: the data value to put into the register
 286 *
 287 * This function allows writing of a 32bit value to the indexed scratchpad
 288 * register. This writes over the data mirrored to the local scratchpad register
 289 * by the remote system.
 290 *
 291 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
 292 */
 293int ntb_write_local_spad(struct ntb_device *ndev, unsigned int idx, u32 val)
 294{
 295	if (idx >= ndev->limits.max_spads)
 296		return -EINVAL;
 297
 298	dev_dbg(&ndev->pdev->dev, "Writing %x to local scratch pad index %d\n",
 299		val, idx);
 300	writel(val, ndev->reg_ofs.spad_read + idx * 4);
 301
 302	return 0;
 303}
 304
 305/**
 306 * ntb_read_local_spad() - read from the primary scratchpad register
 307 * @ndev: pointer to ntb_device instance
 308 * @idx: index to scratchpad register, 0 based
 309 * @val: pointer to 32bit integer for storing the register value
 310 *
 311 * This function allows reading of the 32bit scratchpad register on
 312 * the primary (internal) side.  This allows the local system to read data
 313 * written and mirrored to the scratchpad register by the remote system.
 314 *
 315 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
 316 */
 317int ntb_read_local_spad(struct ntb_device *ndev, unsigned int idx, u32 *val)
 318{
 319	if (idx >= ndev->limits.max_spads)
 320		return -EINVAL;
 321
 322	*val = readl(ndev->reg_ofs.spad_write + idx * 4);
 323	dev_dbg(&ndev->pdev->dev,
 324		"Reading %x from local scratch pad index %d\n", *val, idx);
 325
 326	return 0;
 327}
 328
 329/**
 330 * ntb_write_remote_spad() - write to the secondary scratchpad register
 331 * @ndev: pointer to ntb_device instance
 332 * @idx: index to the scratchpad register, 0 based
 333 * @val: the data value to put into the register
 334 *
 335 * This function allows writing of a 32bit value to the indexed scratchpad
 336 * register. The register resides on the secondary (external) side.  This allows
 337 * the local system to write data to be mirrored to the remote systems
 338 * scratchpad register.
 339 *
 340 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
 341 */
 342int ntb_write_remote_spad(struct ntb_device *ndev, unsigned int idx, u32 val)
 343{
 344	if (idx >= ndev->limits.max_spads)
 345		return -EINVAL;
 346
 347	dev_dbg(&ndev->pdev->dev, "Writing %x to remote scratch pad index %d\n",
 348		val, idx);
 349	writel(val, ndev->reg_ofs.spad_write + idx * 4);
 350
 351	return 0;
 352}
 353
 354/**
 355 * ntb_read_remote_spad() - read from the primary scratchpad register
 356 * @ndev: pointer to ntb_device instance
 357 * @idx: index to scratchpad register, 0 based
 358 * @val: pointer to 32bit integer for storing the register value
 359 *
 360 * This function allows reading of the 32bit scratchpad register on
 361 * the primary (internal) side.  This alloows the local system to read the data
 362 * it wrote to be mirrored on the remote system.
 363 *
 364 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
 365 */
 366int ntb_read_remote_spad(struct ntb_device *ndev, unsigned int idx, u32 *val)
 367{
 368	if (idx >= ndev->limits.max_spads)
 369		return -EINVAL;
 370
 371	*val = readl(ndev->reg_ofs.spad_read + idx * 4);
 372	dev_dbg(&ndev->pdev->dev,
 373		"Reading %x from remote scratch pad index %d\n", *val, idx);
 374
 375	return 0;
 376}
 377
 378/**
 379 * ntb_get_mw_base() - get addr for the NTB memory window
 380 * @ndev: pointer to ntb_device instance
 381 * @mw: memory window number
 382 *
 383 * This function provides the base address of the memory window specified.
 384 *
 385 * RETURNS: address, or NULL on error.
 386 */
 387resource_size_t ntb_get_mw_base(struct ntb_device *ndev, unsigned int mw)
 388{
 389	if (mw >= ntb_max_mw(ndev))
 390		return 0;
 391
 392	return pci_resource_start(ndev->pdev, MW_TO_BAR(mw));
 393}
 394
 395/**
 396 * ntb_get_mw_vbase() - get virtual addr for the NTB memory window
 397 * @ndev: pointer to ntb_device instance
 398 * @mw: memory window number
 399 *
 400 * This function provides the base virtual address of the memory window
 401 * specified.
 402 *
 403 * RETURNS: pointer to virtual address, or NULL on error.
 404 */
 405void __iomem *ntb_get_mw_vbase(struct ntb_device *ndev, unsigned int mw)
 406{
 407	if (mw >= ntb_max_mw(ndev))
 408		return NULL;
 409
 410	return ndev->mw[mw].vbase;
 411}
 412
 413/**
 414 * ntb_get_mw_size() - return size of NTB memory window
 415 * @ndev: pointer to ntb_device instance
 416 * @mw: memory window number
 417 *
 418 * This function provides the physical size of the memory window specified
 419 *
 420 * RETURNS: the size of the memory window or zero on error
 421 */
 422u64 ntb_get_mw_size(struct ntb_device *ndev, unsigned int mw)
 423{
 424	if (mw >= ntb_max_mw(ndev))
 425		return 0;
 426
 427	return ndev->mw[mw].bar_sz;
 428}
 429
 430/**
 431 * ntb_set_mw_addr - set the memory window address
 432 * @ndev: pointer to ntb_device instance
 433 * @mw: memory window number
 434 * @addr: base address for data
 435 *
 436 * This function sets the base physical address of the memory window.  This
 437 * memory address is where data from the remote system will be transfered into
 438 * or out of depending on how the transport is configured.
 439 */
 440void ntb_set_mw_addr(struct ntb_device *ndev, unsigned int mw, u64 addr)
 441{
 442	if (mw >= ntb_max_mw(ndev))
 443		return;
 444
 445	dev_dbg(&ndev->pdev->dev, "Writing addr %Lx to BAR %d\n", addr,
 446		MW_TO_BAR(mw));
 447
 448	ndev->mw[mw].phys_addr = addr;
 449
 450	switch (MW_TO_BAR(mw)) {
 451	case NTB_BAR_23:
 452		writeq(addr, ndev->reg_ofs.bar2_xlat);
 453		break;
 454	case NTB_BAR_45:
 455		writeq(addr, ndev->reg_ofs.bar4_xlat);
 456		break;
 457	}
 458}
 459
 460/**
 461 * ntb_ring_doorbell() - Set the doorbell on the secondary/external side
 462 * @ndev: pointer to ntb_device instance
 463 * @db: doorbell to ring
 464 *
 465 * This function allows triggering of a doorbell on the secondary/external
 466 * side that will initiate an interrupt on the remote host
 467 *
 468 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
 469 */
 470void ntb_ring_doorbell(struct ntb_device *ndev, unsigned int db)
 471{
 472	dev_dbg(&ndev->pdev->dev, "%s: ringing doorbell %d\n", __func__, db);
 473
 474	if (ndev->hw_type == BWD_HW)
 475		writeq((u64) 1 << db, ndev->reg_ofs.rdb);
 476	else
 477		writew(((1 << ndev->bits_per_vector) - 1) <<
 478		       (db * ndev->bits_per_vector), ndev->reg_ofs.rdb);
 479}
 480
 481static void bwd_recover_link(struct ntb_device *ndev)
 482{
 483	u32 status;
 484
 485	/* Driver resets the NTB ModPhy lanes - magic! */
 486	writeb(0xe0, ndev->reg_base + BWD_MODPHY_PCSREG6);
 487	writeb(0x40, ndev->reg_base + BWD_MODPHY_PCSREG4);
 488	writeb(0x60, ndev->reg_base + BWD_MODPHY_PCSREG4);
 489	writeb(0x60, ndev->reg_base + BWD_MODPHY_PCSREG6);
 490
 491	/* Driver waits 100ms to allow the NTB ModPhy to settle */
 492	msleep(100);
 493
 494	/* Clear AER Errors, write to clear */
 495	status = readl(ndev->reg_base + BWD_ERRCORSTS_OFFSET);
 496	dev_dbg(&ndev->pdev->dev, "ERRCORSTS = %x\n", status);
 497	status &= PCI_ERR_COR_REP_ROLL;
 498	writel(status, ndev->reg_base + BWD_ERRCORSTS_OFFSET);
 499
 500	/* Clear unexpected electrical idle event in LTSSM, write to clear */
 501	status = readl(ndev->reg_base + BWD_LTSSMERRSTS0_OFFSET);
 502	dev_dbg(&ndev->pdev->dev, "LTSSMERRSTS0 = %x\n", status);
 503	status |= BWD_LTSSMERRSTS0_UNEXPECTEDEI;
 504	writel(status, ndev->reg_base + BWD_LTSSMERRSTS0_OFFSET);
 505
 506	/* Clear DeSkew Buffer error, write to clear */
 507	status = readl(ndev->reg_base + BWD_DESKEWSTS_OFFSET);
 508	dev_dbg(&ndev->pdev->dev, "DESKEWSTS = %x\n", status);
 509	status |= BWD_DESKEWSTS_DBERR;
 510	writel(status, ndev->reg_base + BWD_DESKEWSTS_OFFSET);
 511
 512	status = readl(ndev->reg_base + BWD_IBSTERRRCRVSTS0_OFFSET);
 513	dev_dbg(&ndev->pdev->dev, "IBSTERRRCRVSTS0 = %x\n", status);
 514	status &= BWD_IBIST_ERR_OFLOW;
 515	writel(status, ndev->reg_base + BWD_IBSTERRRCRVSTS0_OFFSET);
 516
 517	/* Releases the NTB state machine to allow the link to retrain */
 518	status = readl(ndev->reg_base + BWD_LTSSMSTATEJMP_OFFSET);
 519	dev_dbg(&ndev->pdev->dev, "LTSSMSTATEJMP = %x\n", status);
 520	status &= ~BWD_LTSSMSTATEJMP_FORCEDETECT;
 521	writel(status, ndev->reg_base + BWD_LTSSMSTATEJMP_OFFSET);
 522}
 523
 524static void ntb_link_event(struct ntb_device *ndev, int link_state)
 525{
 526	unsigned int event;
 527
 528	if (ndev->link_status == link_state)
 529		return;
 530
 531	if (link_state == NTB_LINK_UP) {
 532		u16 status;
 533
 534		dev_info(&ndev->pdev->dev, "Link Up\n");
 535		ndev->link_status = NTB_LINK_UP;
 536		event = NTB_EVENT_HW_LINK_UP;
 537
 538		if (ndev->hw_type == BWD_HW ||
 539		    ndev->conn_type == NTB_CONN_TRANSPARENT)
 540			status = readw(ndev->reg_ofs.lnk_stat);
 541		else {
 542			int rc = pci_read_config_word(ndev->pdev,
 543						      SNB_LINK_STATUS_OFFSET,
 544						      &status);
 545			if (rc)
 546				return;
 547		}
 548
 549		ndev->link_width = (status & NTB_LINK_WIDTH_MASK) >> 4;
 550		ndev->link_speed = (status & NTB_LINK_SPEED_MASK);
 551		dev_info(&ndev->pdev->dev, "Link Width %d, Link Speed %d\n",
 552			 ndev->link_width, ndev->link_speed);
 553	} else {
 554		dev_info(&ndev->pdev->dev, "Link Down\n");
 555		ndev->link_status = NTB_LINK_DOWN;
 556		event = NTB_EVENT_HW_LINK_DOWN;
 557		/* Don't modify link width/speed, we need it in link recovery */
 558	}
 559
 560	/* notify the upper layer if we have an event change */
 561	if (ndev->event_cb)
 562		ndev->event_cb(ndev->ntb_transport, event);
 563}
 564
 565static int ntb_link_status(struct ntb_device *ndev)
 566{
 567	int link_state;
 568
 569	if (ndev->hw_type == BWD_HW) {
 570		u32 ntb_cntl;
 571
 572		ntb_cntl = readl(ndev->reg_ofs.lnk_cntl);
 573		if (ntb_cntl & BWD_CNTL_LINK_DOWN)
 574			link_state = NTB_LINK_DOWN;
 575		else
 576			link_state = NTB_LINK_UP;
 577	} else {
 578		u16 status;
 579		int rc;
 580
 581		rc = pci_read_config_word(ndev->pdev, SNB_LINK_STATUS_OFFSET,
 582					  &status);
 583		if (rc)
 584			return rc;
 585
 586		if (status & NTB_LINK_STATUS_ACTIVE)
 587			link_state = NTB_LINK_UP;
 588		else
 589			link_state = NTB_LINK_DOWN;
 590	}
 591
 592	ntb_link_event(ndev, link_state);
 593
 594	return 0;
 595}
 596
 597static void bwd_link_recovery(struct work_struct *work)
 598{
 599	struct ntb_device *ndev = container_of(work, struct ntb_device,
 600					       lr_timer.work);
 601	u32 status32;
 602
 603	bwd_recover_link(ndev);
 604	/* There is a potential race between the 2 NTB devices recovering at the
 605	 * same time.  If the times are the same, the link will not recover and
 606	 * the driver will be stuck in this loop forever.  Add a random interval
 607	 * to the recovery time to prevent this race.
 608	 */
 609	msleep(BWD_LINK_RECOVERY_TIME + prandom_u32() % BWD_LINK_RECOVERY_TIME);
 610
 611	status32 = readl(ndev->reg_base + BWD_LTSSMSTATEJMP_OFFSET);
 612	if (status32 & BWD_LTSSMSTATEJMP_FORCEDETECT)
 613		goto retry;
 614
 615	status32 = readl(ndev->reg_base + BWD_IBSTERRRCRVSTS0_OFFSET);
 616	if (status32 & BWD_IBIST_ERR_OFLOW)
 617		goto retry;
 618
 619	status32 = readl(ndev->reg_ofs.lnk_cntl);
 620	if (!(status32 & BWD_CNTL_LINK_DOWN)) {
 621		unsigned char speed, width;
 622		u16 status16;
 623
 624		status16 = readw(ndev->reg_ofs.lnk_stat);
 625		width = (status16 & NTB_LINK_WIDTH_MASK) >> 4;
 626		speed = (status16 & NTB_LINK_SPEED_MASK);
 627		if (ndev->link_width != width || ndev->link_speed != speed)
 628			goto retry;
 629	}
 630
 631	schedule_delayed_work(&ndev->hb_timer, NTB_HB_TIMEOUT);
 632	return;
 633
 634retry:
 635	schedule_delayed_work(&ndev->lr_timer, NTB_HB_TIMEOUT);
 636}
 637
 638/* BWD doesn't have link status interrupt, poll on that platform */
 639static void bwd_link_poll(struct work_struct *work)
 640{
 641	struct ntb_device *ndev = container_of(work, struct ntb_device,
 642					       hb_timer.work);
 643	unsigned long ts = jiffies;
 644
 645	/* If we haven't gotten an interrupt in a while, check the BWD link
 646	 * status bit
 647	 */
 648	if (ts > ndev->last_ts + NTB_HB_TIMEOUT) {
 649		int rc = ntb_link_status(ndev);
 650		if (rc)
 651			dev_err(&ndev->pdev->dev,
 652				"Error determining link status\n");
 653
 654		/* Check to see if a link error is the cause of the link down */
 655		if (ndev->link_status == NTB_LINK_DOWN) {
 656			u32 status32 = readl(ndev->reg_base +
 657					     BWD_LTSSMSTATEJMP_OFFSET);
 658			if (status32 & BWD_LTSSMSTATEJMP_FORCEDETECT) {
 659				schedule_delayed_work(&ndev->lr_timer, 0);
 660				return;
 661			}
 662		}
 663	}
 664
 665	schedule_delayed_work(&ndev->hb_timer, NTB_HB_TIMEOUT);
 666}
 667
 668static int ntb_xeon_setup(struct ntb_device *ndev)
 669{
 670	int rc;
 671	u8 val;
 672
 673	ndev->hw_type = SNB_HW;
 674
 675	rc = pci_read_config_byte(ndev->pdev, NTB_PPD_OFFSET, &val);
 676	if (rc)
 677		return rc;
 678
 679	if (val & SNB_PPD_DEV_TYPE)
 680		ndev->dev_type = NTB_DEV_USD;
 681	else
 682		ndev->dev_type = NTB_DEV_DSD;
 683
 684	switch (val & SNB_PPD_CONN_TYPE) {
 685	case NTB_CONN_B2B:
 686		dev_info(&ndev->pdev->dev, "Conn Type = B2B\n");
 687		ndev->conn_type = NTB_CONN_B2B;
 688		ndev->reg_ofs.ldb = ndev->reg_base + SNB_PDOORBELL_OFFSET;
 689		ndev->reg_ofs.ldb_mask = ndev->reg_base + SNB_PDBMSK_OFFSET;
 690		ndev->reg_ofs.spad_read = ndev->reg_base + SNB_SPAD_OFFSET;
 691		ndev->reg_ofs.bar2_xlat = ndev->reg_base + SNB_SBAR2XLAT_OFFSET;
 692		ndev->reg_ofs.bar4_xlat = ndev->reg_base + SNB_SBAR4XLAT_OFFSET;
 693		ndev->limits.max_spads = SNB_MAX_B2B_SPADS;
 694
 695		/* There is a Xeon hardware errata related to writes to
 696		 * SDOORBELL or B2BDOORBELL in conjunction with inbound access
 697		 * to NTB MMIO Space, which may hang the system.  To workaround
 698		 * this use the second memory window to access the interrupt and
 699		 * scratch pad registers on the remote system.
 700		 */
 701		if (xeon_errata_workaround) {
 702			if (!ndev->mw[1].bar_sz)
 703				return -EINVAL;
 704
 705			ndev->limits.max_mw = SNB_ERRATA_MAX_MW;
 706			ndev->limits.max_db_bits = SNB_MAX_DB_BITS;
 707			ndev->reg_ofs.spad_write = ndev->mw[1].vbase +
 708						   SNB_SPAD_OFFSET;
 709			ndev->reg_ofs.rdb = ndev->mw[1].vbase +
 710					    SNB_PDOORBELL_OFFSET;
 711
 712			/* Set the Limit register to 4k, the minimum size, to
 713			 * prevent an illegal access
 714			 */
 715			writeq(ndev->mw[1].bar_sz + 0x1000, ndev->reg_base +
 716			       SNB_PBAR4LMT_OFFSET);
 717			/* HW errata on the Limit registers.  They can only be
 718			 * written when the base register is 4GB aligned and
 719			 * < 32bit.  This should already be the case based on
 720			 * the driver defaults, but write the Limit registers
 721			 * first just in case.
 722			 */
 723		} else {
 724			ndev->limits.max_mw = SNB_MAX_MW;
 725
 726			/* HW Errata on bit 14 of b2bdoorbell register.  Writes
 727			 * will not be mirrored to the remote system.  Shrink
 728			 * the number of bits by one, since bit 14 is the last
 729			 * bit.
 730			 */
 731			ndev->limits.max_db_bits = SNB_MAX_DB_BITS - 1;
 732			ndev->reg_ofs.spad_write = ndev->reg_base +
 733						   SNB_B2B_SPAD_OFFSET;
 734			ndev->reg_ofs.rdb = ndev->reg_base +
 735					    SNB_B2B_DOORBELL_OFFSET;
 736
 737			/* Disable the Limit register, just incase it is set to
 738			 * something silly
 739			 */
 740			writeq(0, ndev->reg_base + SNB_PBAR4LMT_OFFSET);
 741			/* HW errata on the Limit registers.  They can only be
 742			 * written when the base register is 4GB aligned and
 743			 * < 32bit.  This should already be the case based on
 744			 * the driver defaults, but write the Limit registers
 745			 * first just in case.
 746			 */
 747		}
 748
 749		/* The Xeon errata workaround requires setting SBAR Base
 750		 * addresses to known values, so that the PBAR XLAT can be
 751		 * pointed at SBAR0 of the remote system.
 752		 */
 753		if (ndev->dev_type == NTB_DEV_USD) {
 754			writeq(SNB_MBAR23_DSD_ADDR, ndev->reg_base +
 755			       SNB_PBAR2XLAT_OFFSET);
 756			if (xeon_errata_workaround)
 757				writeq(SNB_MBAR01_DSD_ADDR, ndev->reg_base +
 758				       SNB_PBAR4XLAT_OFFSET);
 759			else {
 760				writeq(SNB_MBAR45_DSD_ADDR, ndev->reg_base +
 761				       SNB_PBAR4XLAT_OFFSET);
 762				/* B2B_XLAT_OFFSET is a 64bit register, but can
 763				 * only take 32bit writes
 764				 */
 765				writel(SNB_MBAR01_DSD_ADDR & 0xffffffff,
 766				       ndev->reg_base + SNB_B2B_XLAT_OFFSETL);
 767				writel(SNB_MBAR01_DSD_ADDR >> 32,
 768				       ndev->reg_base + SNB_B2B_XLAT_OFFSETU);
 769			}
 770
 771			writeq(SNB_MBAR01_USD_ADDR, ndev->reg_base +
 772			       SNB_SBAR0BASE_OFFSET);
 773			writeq(SNB_MBAR23_USD_ADDR, ndev->reg_base +
 774			       SNB_SBAR2BASE_OFFSET);
 775			writeq(SNB_MBAR45_USD_ADDR, ndev->reg_base +
 776			       SNB_SBAR4BASE_OFFSET);
 777		} else {
 778			writeq(SNB_MBAR23_USD_ADDR, ndev->reg_base +
 779			       SNB_PBAR2XLAT_OFFSET);
 780			if (xeon_errata_workaround)
 781				writeq(SNB_MBAR01_USD_ADDR, ndev->reg_base +
 782				       SNB_PBAR4XLAT_OFFSET);
 783			else {
 784				writeq(SNB_MBAR45_USD_ADDR, ndev->reg_base +
 785				       SNB_PBAR4XLAT_OFFSET);
 786				/* B2B_XLAT_OFFSET is a 64bit register, but can
 787				 * only take 32bit writes
 788				 */
 789				writel(SNB_MBAR01_USD_ADDR & 0xffffffff,
 790				       ndev->reg_base + SNB_B2B_XLAT_OFFSETL);
 791				writel(SNB_MBAR01_USD_ADDR >> 32,
 792				       ndev->reg_base + SNB_B2B_XLAT_OFFSETU);
 793			}
 794			writeq(SNB_MBAR01_DSD_ADDR, ndev->reg_base +
 795			       SNB_SBAR0BASE_OFFSET);
 796			writeq(SNB_MBAR23_DSD_ADDR, ndev->reg_base +
 797			       SNB_SBAR2BASE_OFFSET);
 798			writeq(SNB_MBAR45_DSD_ADDR, ndev->reg_base +
 799			       SNB_SBAR4BASE_OFFSET);
 800		}
 801		break;
 802	case NTB_CONN_RP:
 803		dev_info(&ndev->pdev->dev, "Conn Type = RP\n");
 804		ndev->conn_type = NTB_CONN_RP;
 805
 806		if (xeon_errata_workaround) {
 807			dev_err(&ndev->pdev->dev,
 808				"NTB-RP disabled due to hardware errata.  To disregard this warning and potentially lock-up the system, add the parameter 'xeon_errata_workaround=0'.\n");
 809			return -EINVAL;
 810		}
 811
 812		/* Scratch pads need to have exclusive access from the primary
 813		 * or secondary side.  Halve the num spads so that each side can
 814		 * have an equal amount.
 815		 */
 816		ndev->limits.max_spads = SNB_MAX_COMPAT_SPADS / 2;
 817		ndev->limits.max_db_bits = SNB_MAX_DB_BITS;
 818		/* Note: The SDOORBELL is the cause of the errata.  You REALLY
 819		 * don't want to touch it.
 820		 */
 821		ndev->reg_ofs.rdb = ndev->reg_base + SNB_SDOORBELL_OFFSET;
 822		ndev->reg_ofs.ldb = ndev->reg_base + SNB_PDOORBELL_OFFSET;
 823		ndev->reg_ofs.ldb_mask = ndev->reg_base + SNB_PDBMSK_OFFSET;
 824		/* Offset the start of the spads to correspond to whether it is
 825		 * primary or secondary
 826		 */
 827		ndev->reg_ofs.spad_write = ndev->reg_base + SNB_SPAD_OFFSET +
 828					   ndev->limits.max_spads * 4;
 829		ndev->reg_ofs.spad_read = ndev->reg_base + SNB_SPAD_OFFSET;
 830		ndev->reg_ofs.bar2_xlat = ndev->reg_base + SNB_SBAR2XLAT_OFFSET;
 831		ndev->reg_ofs.bar4_xlat = ndev->reg_base + SNB_SBAR4XLAT_OFFSET;
 832		ndev->limits.max_mw = SNB_MAX_MW;
 833		break;
 834	case NTB_CONN_TRANSPARENT:
 835		dev_info(&ndev->pdev->dev, "Conn Type = TRANSPARENT\n");
 836		ndev->conn_type = NTB_CONN_TRANSPARENT;
 837		/* Scratch pads need to have exclusive access from the primary
 838		 * or secondary side.  Halve the num spads so that each side can
 839		 * have an equal amount.
 840		 */
 841		ndev->limits.max_spads = SNB_MAX_COMPAT_SPADS / 2;
 842		ndev->limits.max_db_bits = SNB_MAX_DB_BITS;
 843		ndev->reg_ofs.rdb = ndev->reg_base + SNB_PDOORBELL_OFFSET;
 844		ndev->reg_ofs.ldb = ndev->reg_base + SNB_SDOORBELL_OFFSET;
 845		ndev->reg_ofs.ldb_mask = ndev->reg_base + SNB_SDBMSK_OFFSET;
 846		ndev->reg_ofs.spad_write = ndev->reg_base + SNB_SPAD_OFFSET;
 847		/* Offset the start of the spads to correspond to whether it is
 848		 * primary or secondary
 849		 */
 850		ndev->reg_ofs.spad_read = ndev->reg_base + SNB_SPAD_OFFSET +
 851					  ndev->limits.max_spads * 4;
 852		ndev->reg_ofs.bar2_xlat = ndev->reg_base + SNB_PBAR2XLAT_OFFSET;
 853		ndev->reg_ofs.bar4_xlat = ndev->reg_base + SNB_PBAR4XLAT_OFFSET;
 854
 855		ndev->limits.max_mw = SNB_MAX_MW;
 856		break;
 857	default:
 858		/* Most likely caused by the remote NTB-RP device not being
 859		 * configured
 860		 */
 861		dev_err(&ndev->pdev->dev, "Unknown PPD %x\n", val);
 862		return -EINVAL;
 863	}
 864
 865	ndev->reg_ofs.lnk_cntl = ndev->reg_base + SNB_NTBCNTL_OFFSET;
 866	ndev->reg_ofs.lnk_stat = ndev->reg_base + SNB_SLINK_STATUS_OFFSET;
 867	ndev->reg_ofs.spci_cmd = ndev->reg_base + SNB_PCICMD_OFFSET;
 868
 869	ndev->limits.msix_cnt = SNB_MSIX_CNT;
 870	ndev->bits_per_vector = SNB_DB_BITS_PER_VEC;
 871
 872	return 0;
 873}
 874
 875static int ntb_bwd_setup(struct ntb_device *ndev)
 876{
 877	int rc;
 878	u32 val;
 879
 880	ndev->hw_type = BWD_HW;
 881
 882	rc = pci_read_config_dword(ndev->pdev, NTB_PPD_OFFSET, &val);
 883	if (rc)
 884		return rc;
 885
 886	switch ((val & BWD_PPD_CONN_TYPE) >> 8) {
 887	case NTB_CONN_B2B:
 888		ndev->conn_type = NTB_CONN_B2B;
 889		break;
 890	case NTB_CONN_RP:
 891	default:
 892		dev_err(&ndev->pdev->dev, "Unsupported NTB configuration\n");
 893		return -EINVAL;
 894	}
 895
 896	if (val & BWD_PPD_DEV_TYPE)
 897		ndev->dev_type = NTB_DEV_DSD;
 898	else
 899		ndev->dev_type = NTB_DEV_USD;
 900
 901	/* Initiate PCI-E link training */
 902	rc = pci_write_config_dword(ndev->pdev, NTB_PPD_OFFSET,
 903				    val | BWD_PPD_INIT_LINK);
 904	if (rc)
 905		return rc;
 906
 907	ndev->reg_ofs.ldb = ndev->reg_base + BWD_PDOORBELL_OFFSET;
 908	ndev->reg_ofs.ldb_mask = ndev->reg_base + BWD_PDBMSK_OFFSET;
 909	ndev->reg_ofs.rdb = ndev->reg_base + BWD_B2B_DOORBELL_OFFSET;
 910	ndev->reg_ofs.bar2_xlat = ndev->reg_base + BWD_SBAR2XLAT_OFFSET;
 911	ndev->reg_ofs.bar4_xlat = ndev->reg_base + BWD_SBAR4XLAT_OFFSET;
 912	ndev->reg_ofs.lnk_cntl = ndev->reg_base + BWD_NTBCNTL_OFFSET;
 913	ndev->reg_ofs.lnk_stat = ndev->reg_base + BWD_LINK_STATUS_OFFSET;
 914	ndev->reg_ofs.spad_read = ndev->reg_base + BWD_SPAD_OFFSET;
 915	ndev->reg_ofs.spad_write = ndev->reg_base + BWD_B2B_SPAD_OFFSET;
 916	ndev->reg_ofs.spci_cmd = ndev->reg_base + BWD_PCICMD_OFFSET;
 917	ndev->limits.max_mw = BWD_MAX_MW;
 918	ndev->limits.max_spads = BWD_MAX_SPADS;
 919	ndev->limits.max_db_bits = BWD_MAX_DB_BITS;
 920	ndev->limits.msix_cnt = BWD_MSIX_CNT;
 921	ndev->bits_per_vector = BWD_DB_BITS_PER_VEC;
 922
 923	/* Since bwd doesn't have a link interrupt, setup a poll timer */
 924	INIT_DELAYED_WORK(&ndev->hb_timer, bwd_link_poll);
 925	INIT_DELAYED_WORK(&ndev->lr_timer, bwd_link_recovery);
 926	schedule_delayed_work(&ndev->hb_timer, NTB_HB_TIMEOUT);
 927
 928	return 0;
 929}
 930
 931static int ntb_device_setup(struct ntb_device *ndev)
 932{
 933	int rc;
 934
 935	switch (ndev->pdev->device) {
 936	case PCI_DEVICE_ID_INTEL_NTB_SS_JSF:
 937	case PCI_DEVICE_ID_INTEL_NTB_SS_SNB:
 938	case PCI_DEVICE_ID_INTEL_NTB_SS_IVT:
 939	case PCI_DEVICE_ID_INTEL_NTB_SS_HSX:
 940	case PCI_DEVICE_ID_INTEL_NTB_PS_JSF:
 941	case PCI_DEVICE_ID_INTEL_NTB_PS_SNB:
 942	case PCI_DEVICE_ID_INTEL_NTB_PS_IVT:
 943	case PCI_DEVICE_ID_INTEL_NTB_PS_HSX:
 944	case PCI_DEVICE_ID_INTEL_NTB_B2B_JSF:
 945	case PCI_DEVICE_ID_INTEL_NTB_B2B_SNB:
 946	case PCI_DEVICE_ID_INTEL_NTB_B2B_IVT:
 947	case PCI_DEVICE_ID_INTEL_NTB_B2B_HSX:
 948		rc = ntb_xeon_setup(ndev);
 949		break;
 950	case PCI_DEVICE_ID_INTEL_NTB_B2B_BWD:
 951		rc = ntb_bwd_setup(ndev);
 952		break;
 953	default:
 954		rc = -ENODEV;
 955	}
 956
 957	if (rc)
 958		return rc;
 959
 960	dev_info(&ndev->pdev->dev, "Device Type = %s\n",
 961		 ndev->dev_type == NTB_DEV_USD ? "USD/DSP" : "DSD/USP");
 962
 963	if (ndev->conn_type == NTB_CONN_B2B)
 964		/* Enable Bus Master and Memory Space on the secondary side */
 965		writew(PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER,
 966		       ndev->reg_ofs.spci_cmd);
 967
 968	return 0;
 969}
 970
 971static void ntb_device_free(struct ntb_device *ndev)
 972{
 973	if (ndev->hw_type == BWD_HW) {
 974		cancel_delayed_work_sync(&ndev->hb_timer);
 975		cancel_delayed_work_sync(&ndev->lr_timer);
 976	}
 977}
 978
 979static irqreturn_t bwd_callback_msix_irq(int irq, void *data)
 980{
 981	struct ntb_db_cb *db_cb = data;
 982	struct ntb_device *ndev = db_cb->ndev;
 983	unsigned long mask;
 984
 985	dev_dbg(&ndev->pdev->dev, "MSI-X irq %d received for DB %d\n", irq,
 986		db_cb->db_num);
 987
 988	mask = readw(ndev->reg_ofs.ldb_mask);
 989	set_bit(db_cb->db_num * ndev->bits_per_vector, &mask);
 990	writew(mask, ndev->reg_ofs.ldb_mask);
 991
 992	tasklet_schedule(&db_cb->irq_work);
 993
 994	/* No need to check for the specific HB irq, any interrupt means
 995	 * we're connected.
 996	 */
 997	ndev->last_ts = jiffies;
 998
 999	writeq((u64) 1 << db_cb->db_num, ndev->reg_ofs.ldb);
1000
1001	return IRQ_HANDLED;
1002}
1003
1004static irqreturn_t xeon_callback_msix_irq(int irq, void *data)
1005{
1006	struct ntb_db_cb *db_cb = data;
1007	struct ntb_device *ndev = db_cb->ndev;
1008	unsigned long mask;
1009
1010	dev_dbg(&ndev->pdev->dev, "MSI-X irq %d received for DB %d\n", irq,
1011		db_cb->db_num);
1012
1013	mask = readw(ndev->reg_ofs.ldb_mask);
1014	set_bit(db_cb->db_num * ndev->bits_per_vector, &mask);
1015	writew(mask, ndev->reg_ofs.ldb_mask);
1016
1017	tasklet_schedule(&db_cb->irq_work);
1018
1019	/* On Sandybridge, there are 16 bits in the interrupt register
1020	 * but only 4 vectors.  So, 5 bits are assigned to the first 3
1021	 * vectors, with the 4th having a single bit for link
1022	 * interrupts.
1023	 */
1024	writew(((1 << ndev->bits_per_vector) - 1) <<
1025	       (db_cb->db_num * ndev->bits_per_vector), ndev->reg_ofs.ldb);
1026
1027	return IRQ_HANDLED;
1028}
1029
1030/* Since we do not have a HW doorbell in BWD, this is only used in JF/JT */
1031static irqreturn_t xeon_event_msix_irq(int irq, void *dev)
1032{
1033	struct ntb_device *ndev = dev;
1034	int rc;
1035
1036	dev_dbg(&ndev->pdev->dev, "MSI-X irq %d received for Events\n", irq);
1037
1038	rc = ntb_link_status(ndev);
1039	if (rc)
1040		dev_err(&ndev->pdev->dev, "Error determining link status\n");
1041
1042	/* bit 15 is always the link bit */
1043	writew(1 << SNB_LINK_DB, ndev->reg_ofs.ldb);
1044
1045	return IRQ_HANDLED;
1046}
1047
1048static irqreturn_t ntb_interrupt(int irq, void *dev)
1049{
1050	struct ntb_device *ndev = dev;
1051	unsigned int i = 0;
1052
1053	if (ndev->hw_type == BWD_HW) {
1054		u64 ldb = readq(ndev->reg_ofs.ldb);
1055
1056		dev_dbg(&ndev->pdev->dev, "irq %d - ldb = %Lx\n", irq, ldb);
1057
1058		while (ldb) {
1059			i = __ffs(ldb);
1060			ldb &= ldb - 1;
1061			bwd_callback_msix_irq(irq, &ndev->db_cb[i]);
1062		}
1063	} else {
1064		u16 ldb = readw(ndev->reg_ofs.ldb);
1065
1066		dev_dbg(&ndev->pdev->dev, "irq %d - ldb = %x\n", irq, ldb);
1067
1068		if (ldb & SNB_DB_HW_LINK) {
1069			xeon_event_msix_irq(irq, dev);
1070			ldb &= ~SNB_DB_HW_LINK;
1071		}
1072
1073		while (ldb) {
1074			i = __ffs(ldb);
1075			ldb &= ldb - 1;
1076			xeon_callback_msix_irq(irq, &ndev->db_cb[i]);
1077		}
1078	}
1079
1080	return IRQ_HANDLED;
1081}
1082
1083static int ntb_setup_snb_msix(struct ntb_device *ndev, int msix_entries)
1084{
1085	struct pci_dev *pdev = ndev->pdev;
1086	struct msix_entry *msix;
1087	int rc, i;
1088
1089	if (msix_entries < ndev->limits.msix_cnt)
1090		return -ENOSPC;
1091
1092	rc = pci_enable_msix_exact(pdev, ndev->msix_entries, msix_entries);
1093	if (rc < 0)
1094		return rc;
1095
1096	for (i = 0; i < msix_entries; i++) {
1097		msix = &ndev->msix_entries[i];
1098		WARN_ON(!msix->vector);
1099
1100		if (i == msix_entries - 1) {
1101			rc = request_irq(msix->vector,
1102					 xeon_event_msix_irq, 0,
1103					 "ntb-event-msix", ndev);
1104			if (rc)
1105				goto err;
1106		} else {
1107			rc = request_irq(msix->vector,
1108					 xeon_callback_msix_irq, 0,
1109					 "ntb-callback-msix",
1110					 &ndev->db_cb[i]);
1111			if (rc)
1112				goto err;
1113		}
1114	}
1115
1116	ndev->num_msix = msix_entries;
1117	ndev->max_cbs = msix_entries - 1;
1118
1119	return 0;
1120
1121err:
1122	while (--i >= 0) {
1123		/* Code never reaches here for entry nr 'ndev->num_msix - 1' */
1124		msix = &ndev->msix_entries[i];
1125		free_irq(msix->vector, &ndev->db_cb[i]);
1126	}
1127
1128	pci_disable_msix(pdev);
1129	ndev->num_msix = 0;
1130
1131	return rc;
1132}
1133
1134static int ntb_setup_bwd_msix(struct ntb_device *ndev, int msix_entries)
1135{
1136	struct pci_dev *pdev = ndev->pdev;
1137	struct msix_entry *msix;
1138	int rc, i;
1139
1140	msix_entries = pci_enable_msix_range(pdev, ndev->msix_entries,
1141					     1, msix_entries);
1142	if (msix_entries < 0)
1143		return msix_entries;
1144
1145	for (i = 0; i < msix_entries; i++) {
1146		msix = &ndev->msix_entries[i];
1147		WARN_ON(!msix->vector);
1148
1149		rc = request_irq(msix->vector, bwd_callback_msix_irq, 0,
1150				 "ntb-callback-msix", &ndev->db_cb[i]);
1151		if (rc)
1152			goto err;
1153	}
1154
1155	ndev->num_msix = msix_entries;
1156	ndev->max_cbs = msix_entries;
1157
1158	return 0;
1159
1160err:
1161	while (--i >= 0)
1162		free_irq(msix->vector, &ndev->db_cb[i]);
1163
1164	pci_disable_msix(pdev);
1165	ndev->num_msix = 0;
1166
1167	return rc;
1168}
1169
1170static int ntb_setup_msix(struct ntb_device *ndev)
1171{
1172	struct pci_dev *pdev = ndev->pdev;
1173	int msix_entries;
1174	int rc, i;
1175
1176	msix_entries = pci_msix_vec_count(pdev);
1177	if (msix_entries < 0) {
1178		rc = msix_entries;
1179		goto err;
1180	} else if (msix_entries > ndev->limits.msix_cnt) {
1181		rc = -EINVAL;
1182		goto err;
1183	}
1184
1185	ndev->msix_entries = kmalloc(sizeof(struct msix_entry) * msix_entries,
1186				     GFP_KERNEL);
1187	if (!ndev->msix_entries) {
1188		rc = -ENOMEM;
1189		goto err;
1190	}
1191
1192	for (i = 0; i < msix_entries; i++)
1193		ndev->msix_entries[i].entry = i;
1194
1195	if (ndev->hw_type == BWD_HW)
1196		rc = ntb_setup_bwd_msix(ndev, msix_entries);
1197	else
1198		rc = ntb_setup_snb_msix(ndev, msix_entries);
1199	if (rc)
1200		goto err1;
1201
1202	return 0;
1203
1204err1:
1205	kfree(ndev->msix_entries);
1206err:
1207	dev_err(&pdev->dev, "Error allocating MSI-X interrupt\n");
1208	return rc;
1209}
1210
1211static int ntb_setup_msi(struct ntb_device *ndev)
1212{
1213	struct pci_dev *pdev = ndev->pdev;
1214	int rc;
1215
1216	rc = pci_enable_msi(pdev);
1217	if (rc)
1218		return rc;
1219
1220	rc = request_irq(pdev->irq, ntb_interrupt, 0, "ntb-msi", ndev);
1221	if (rc) {
1222		pci_disable_msi(pdev);
1223		dev_err(&pdev->dev, "Error allocating MSI interrupt\n");
1224		return rc;
1225	}
1226
1227	return 0;
1228}
1229
1230static int ntb_setup_intx(struct ntb_device *ndev)
1231{
1232	struct pci_dev *pdev = ndev->pdev;
1233	int rc;
1234
1235	pci_msi_off(pdev);
1236
1237	/* Verify intx is enabled */
1238	pci_intx(pdev, 1);
1239
1240	rc = request_irq(pdev->irq, ntb_interrupt, IRQF_SHARED, "ntb-intx",
1241			 ndev);
1242	if (rc)
1243		return rc;
1244
1245	return 0;
1246}
1247
1248static int ntb_setup_interrupts(struct ntb_device *ndev)
1249{
1250	int rc;
1251
1252	/* On BWD, disable all interrupts.  On SNB, disable all but Link
1253	 * Interrupt.  The rest will be unmasked as callbacks are registered.
1254	 */
1255	if (ndev->hw_type == BWD_HW)
1256		writeq(~0, ndev->reg_ofs.ldb_mask);
1257	else {
1258		u16 var = 1 << SNB_LINK_DB;
1259		writew(~var, ndev->reg_ofs.ldb_mask);
1260	}
1261
1262	rc = ntb_setup_msix(ndev);
1263	if (!rc)
1264		goto done;
1265
1266	ndev->bits_per_vector = 1;
1267	ndev->max_cbs = ndev->limits.max_db_bits;
1268
1269	rc = ntb_setup_msi(ndev);
1270	if (!rc)
1271		goto done;
1272
1273	rc = ntb_setup_intx(ndev);
1274	if (rc) {
1275		dev_err(&ndev->pdev->dev, "no usable interrupts\n");
1276		return rc;
1277	}
1278
1279done:
1280	return 0;
1281}
1282
1283static void ntb_free_interrupts(struct ntb_device *ndev)
1284{
1285	struct pci_dev *pdev = ndev->pdev;
1286
1287	/* mask interrupts */
1288	if (ndev->hw_type == BWD_HW)
1289		writeq(~0, ndev->reg_ofs.ldb_mask);
1290	else
1291		writew(~0, ndev->reg_ofs.ldb_mask);
1292
1293	if (ndev->num_msix) {
1294		struct msix_entry *msix;
1295		u32 i;
1296
1297		for (i = 0; i < ndev->num_msix; i++) {
1298			msix = &ndev->msix_entries[i];
1299			if (ndev->hw_type != BWD_HW && i == ndev->num_msix - 1)
1300				free_irq(msix->vector, ndev);
1301			else
1302				free_irq(msix->vector, &ndev->db_cb[i]);
1303		}
1304		pci_disable_msix(pdev);
1305		kfree(ndev->msix_entries);
1306	} else {
1307		free_irq(pdev->irq, ndev);
1308
1309		if (pci_dev_msi_enabled(pdev))
1310			pci_disable_msi(pdev);
1311	}
1312}
1313
1314static int ntb_create_callbacks(struct ntb_device *ndev)
1315{
1316	int i;
1317
1318	/* Chicken-egg issue.  We won't know how many callbacks are necessary
1319	 * until we see how many MSI-X vectors we get, but these pointers need
1320	 * to be passed into the MSI-X register function.  So, we allocate the
1321	 * max, knowing that they might not all be used, to work around this.
1322	 */
1323	ndev->db_cb = kcalloc(ndev->limits.max_db_bits,
1324			      sizeof(struct ntb_db_cb),
1325			      GFP_KERNEL);
1326	if (!ndev->db_cb)
1327		return -ENOMEM;
1328
1329	for (i = 0; i < ndev->limits.max_db_bits; i++) {
1330		ndev->db_cb[i].db_num = i;
1331		ndev->db_cb[i].ndev = ndev;
1332	}
1333
1334	return 0;
1335}
1336
1337static void ntb_free_callbacks(struct ntb_device *ndev)
1338{
1339	int i;
1340
1341	for (i = 0; i < ndev->limits.max_db_bits; i++)
1342		ntb_unregister_db_callback(ndev, i);
1343
1344	kfree(ndev->db_cb);
1345}
1346
1347static void ntb_setup_debugfs(struct ntb_device *ndev)
1348{
1349	if (!debugfs_initialized())
1350		return;
1351
1352	if (!debugfs_dir)
1353		debugfs_dir = debugfs_create_dir(KBUILD_MODNAME, NULL);
1354
1355	ndev->debugfs_dir = debugfs_create_dir(pci_name(ndev->pdev),
1356					       debugfs_dir);
1357}
1358
1359static void ntb_free_debugfs(struct ntb_device *ndev)
1360{
1361	debugfs_remove_recursive(ndev->debugfs_dir);
1362
1363	if (debugfs_dir && simple_empty(debugfs_dir)) {
1364		debugfs_remove_recursive(debugfs_dir);
1365		debugfs_dir = NULL;
1366	}
1367}
1368
1369static void ntb_hw_link_up(struct ntb_device *ndev)
1370{
1371	if (ndev->conn_type == NTB_CONN_TRANSPARENT)
1372		ntb_link_event(ndev, NTB_LINK_UP);
1373	else {
1374		u32 ntb_cntl;
1375
1376		/* Let's bring the NTB link up */
1377		ntb_cntl = readl(ndev->reg_ofs.lnk_cntl);
1378		ntb_cntl &= ~(NTB_CNTL_LINK_DISABLE | NTB_CNTL_CFG_LOCK);
1379		ntb_cntl |= NTB_CNTL_P2S_BAR23_SNOOP | NTB_CNTL_S2P_BAR23_SNOOP;
1380		ntb_cntl |= NTB_CNTL_P2S_BAR45_SNOOP | NTB_CNTL_S2P_BAR45_SNOOP;
1381		writel(ntb_cntl, ndev->reg_ofs.lnk_cntl);
1382	}
1383}
1384
1385static void ntb_hw_link_down(struct ntb_device *ndev)
1386{
1387	u32 ntb_cntl;
1388
1389	if (ndev->conn_type == NTB_CONN_TRANSPARENT) {
1390		ntb_link_event(ndev, NTB_LINK_DOWN);
1391		return;
1392	}
1393
1394	/* Bring NTB link down */
1395	ntb_cntl = readl(ndev->reg_ofs.lnk_cntl);
1396	ntb_cntl &= ~(NTB_CNTL_P2S_BAR23_SNOOP | NTB_CNTL_S2P_BAR23_SNOOP);
1397	ntb_cntl &= ~(NTB_CNTL_P2S_BAR45_SNOOP | NTB_CNTL_S2P_BAR45_SNOOP);
1398	ntb_cntl |= NTB_CNTL_LINK_DISABLE | NTB_CNTL_CFG_LOCK;
1399	writel(ntb_cntl, ndev->reg_ofs.lnk_cntl);
1400}
1401
1402static int ntb_pci_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1403{
1404	struct ntb_device *ndev;
1405	int rc, i;
1406
1407	ndev = kzalloc(sizeof(struct ntb_device), GFP_KERNEL);
1408	if (!ndev)
1409		return -ENOMEM;
1410
1411	ndev->pdev = pdev;
1412	ndev->link_status = NTB_LINK_DOWN;
1413	pci_set_drvdata(pdev, ndev);
1414	ntb_setup_debugfs(ndev);
1415
1416	rc = pci_enable_device(pdev);
1417	if (rc)
1418		goto err;
1419
1420	pci_set_master(ndev->pdev);
1421
1422	rc = pci_request_selected_regions(pdev, NTB_BAR_MASK, KBUILD_MODNAME);
1423	if (rc)
1424		goto err1;
1425
1426	ndev->reg_base = pci_ioremap_bar(pdev, NTB_BAR_MMIO);
1427	if (!ndev->reg_base) {
1428		dev_warn(&pdev->dev, "Cannot remap BAR 0\n");
1429		rc = -EIO;
1430		goto err2;
1431	}
1432
1433	for (i = 0; i < NTB_MAX_NUM_MW; i++) {
1434		ndev->mw[i].bar_sz = pci_resource_len(pdev, MW_TO_BAR(i));
1435		ndev->mw[i].vbase =
1436		    ioremap_wc(pci_resource_start(pdev, MW_TO_BAR(i)),
1437			       ndev->mw[i].bar_sz);
1438		dev_info(&pdev->dev, "MW %d size %llu\n", i,
1439			 (unsigned long long) ndev->mw[i].bar_sz);
1440		if (!ndev->mw[i].vbase) {
1441			dev_warn(&pdev->dev, "Cannot remap BAR %d\n",
1442				 MW_TO_BAR(i));
1443			rc = -EIO;
1444			goto err3;
1445		}
1446	}
1447
1448	rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
1449	if (rc) {
1450		rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
1451		if (rc)
1452			goto err3;
1453
1454		dev_warn(&pdev->dev, "Cannot DMA highmem\n");
1455	}
1456
1457	rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
1458	if (rc) {
1459		rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
1460		if (rc)
1461			goto err3;
1462
1463		dev_warn(&pdev->dev, "Cannot DMA consistent highmem\n");
1464	}
1465
1466	rc = ntb_device_setup(ndev);
1467	if (rc)
1468		goto err3;
1469
1470	rc = ntb_create_callbacks(ndev);
1471	if (rc)
1472		goto err4;
1473
1474	rc = ntb_setup_interrupts(ndev);
1475	if (rc)
1476		goto err5;
1477
1478	/* The scratchpad registers keep the values between rmmod/insmod,
1479	 * blast them now
1480	 */
1481	for (i = 0; i < ndev->limits.max_spads; i++) {
1482		ntb_write_local_spad(ndev, i, 0);
1483		ntb_write_remote_spad(ndev, i, 0);
1484	}
1485
1486	rc = ntb_transport_init(pdev);
1487	if (rc)
1488		goto err6;
1489
1490	ntb_hw_link_up(ndev);
1491
1492	return 0;
1493
1494err6:
1495	ntb_free_interrupts(ndev);
1496err5:
1497	ntb_free_callbacks(ndev);
1498err4:
1499	ntb_device_free(ndev);
1500err3:
1501	for (i--; i >= 0; i--)
1502		iounmap(ndev->mw[i].vbase);
1503	iounmap(ndev->reg_base);
1504err2:
1505	pci_release_selected_regions(pdev, NTB_BAR_MASK);
1506err1:
1507	pci_disable_device(pdev);
1508err:
1509	ntb_free_debugfs(ndev);
1510	kfree(ndev);
1511
1512	dev_err(&pdev->dev, "Error loading %s module\n", KBUILD_MODNAME);
1513	return rc;
1514}
1515
1516static void ntb_pci_remove(struct pci_dev *pdev)
1517{
1518	struct ntb_device *ndev = pci_get_drvdata(pdev);
1519	int i;
1520
1521	ntb_hw_link_down(ndev);
1522
1523	ntb_transport_free(ndev->ntb_transport);
1524
1525	ntb_free_interrupts(ndev);
1526	ntb_free_callbacks(ndev);
1527	ntb_device_free(ndev);
1528
1529	for (i = 0; i < NTB_MAX_NUM_MW; i++)
1530		iounmap(ndev->mw[i].vbase);
1531
1532	iounmap(ndev->reg_base);
1533	pci_release_selected_regions(pdev, NTB_BAR_MASK);
1534	pci_disable_device(pdev);
1535	ntb_free_debugfs(ndev);
1536	kfree(ndev);
1537}
1538
1539static struct pci_driver ntb_pci_driver = {
1540	.name = KBUILD_MODNAME,
1541	.id_table = ntb_pci_tbl,
1542	.probe = ntb_pci_probe,
1543	.remove = ntb_pci_remove,
1544};
1545module_pci_driver(ntb_pci_driver);