Linux Audio

Check our new training course

Loading...
Note: File does not exist in v5.9.
   1/*
   2 * Device driver for the thermostats & fan controller of  the
   3 * Apple G5 "PowerMac7,2" desktop machines.
   4 *
   5 * (c) Copyright IBM Corp. 2003-2004
   6 *
   7 * Maintained by: Benjamin Herrenschmidt
   8 *                <benh@kernel.crashing.org>
   9 * 
  10 *
  11 * The algorithm used is the PID control algorithm, used the same
  12 * way the published Darwin code does, using the same values that
  13 * are present in the Darwin 7.0 snapshot property lists.
  14 *
  15 * As far as the CPUs control loops are concerned, I use the
  16 * calibration & PID constants provided by the EEPROM,
  17 * I do _not_ embed any value from the property lists, as the ones
  18 * provided by Darwin 7.0 seem to always have an older version that
  19 * what I've seen on the actual computers.
  20 * It would be interesting to verify that though. Darwin has a
  21 * version code of 1.0.0d11 for all control loops it seems, while
  22 * so far, the machines EEPROMs contain a dataset versioned 1.0.0f
  23 *
  24 * Darwin doesn't provide source to all parts, some missing
  25 * bits like the AppleFCU driver or the actual scale of some
  26 * of the values returned by sensors had to be "guessed" some
  27 * way... or based on what Open Firmware does.
  28 *
  29 * I didn't yet figure out how to get the slots power consumption
  30 * out of the FCU, so that part has not been implemented yet and
  31 * the slots fan is set to a fixed 50% PWM, hoping this value is
  32 * safe enough ...
  33 *
  34 * Note: I have observed strange oscillations of the CPU control
  35 * loop on a dual G5 here. When idle, the CPU exhaust fan tend to
  36 * oscillates slowly (over several minutes) between the minimum
  37 * of 300RPMs and approx. 1000 RPMs. I don't know what is causing
  38 * this, it could be some incorrect constant or an error in the
  39 * way I ported the algorithm, or it could be just normal. I
  40 * don't have full understanding on the way Apple tweaked the PID
  41 * algorithm for the CPU control, it is definitely not a standard
  42 * implementation...
  43 *
  44 * TODO:  - Check MPU structure version/signature
  45 *        - Add things like /sbin/overtemp for non-critical
  46 *          overtemp conditions so userland can take some policy
  47 *          decisions, like slowing down CPUs
  48 *	  - Deal with fan and i2c failures in a better way
  49 *	  - Maybe do a generic PID based on params used for
  50 *	    U3 and Drives ? Definitely need to factor code a bit
  51 *          better... also make sensor detection more robust using
  52 *          the device-tree to probe for them
  53 *        - Figure out how to get the slots consumption and set the
  54 *          slots fan accordingly
  55 *
  56 * History:
  57 *
  58 *  Nov. 13, 2003 : 0.5
  59 *	- First release
  60 *
  61 *  Nov. 14, 2003 : 0.6
  62 *	- Read fan speed from FCU, low level fan routines now deal
  63 *	  with errors & check fan status, though higher level don't
  64 *	  do much.
  65 *	- Move a bunch of definitions to .h file
  66 *
  67 *  Nov. 18, 2003 : 0.7
  68 *	- Fix build on ppc64 kernel
  69 *	- Move back statics definitions to .c file
  70 *	- Avoid calling schedule_timeout with a negative number
  71 *
  72 *  Dec. 18, 2003 : 0.8
  73 *	- Fix typo when reading back fan speed on 2 CPU machines
  74 *
  75 *  Mar. 11, 2004 : 0.9
  76 *	- Rework code accessing the ADC chips, make it more robust and
  77 *	  closer to the chip spec. Also make sure it is configured properly,
  78 *        I've seen yet unexplained cases where on startup, I would have stale
  79 *        values in the configuration register
  80 *	- Switch back to use of target fan speed for PID, thus lowering
  81 *        pressure on i2c
  82 *
  83 *  Oct. 20, 2004 : 1.1
  84 *	- Add device-tree lookup for fan IDs, should detect liquid cooling
  85 *        pumps when present
  86 *	- Enable driver for PowerMac7,3 machines
  87 *	- Split the U3/Backside cooling on U3 & U3H versions as Darwin does
  88 *	- Add new CPU cooling algorithm for machines with liquid cooling
  89 *	- Workaround for some PowerMac7,3 with empty "fan" node in the devtree
  90 *	- Fix a signed/unsigned compare issue in some PID loops
  91 *
  92 *  Mar. 10, 2005 : 1.2
  93 *	- Add basic support for Xserve G5
  94 *	- Retrieve pumps min/max from EEPROM image in device-tree (broken)
  95 *	- Use min/max macros here or there
  96 *	- Latest darwin updated U3H min fan speed to 20% PWM
  97 *
  98 *  July. 06, 2006 : 1.3
  99 *	- Fix setting of RPM fans on Xserve G5 (they were going too fast)
 100 *      - Add missing slots fan control loop for Xserve G5
 101 *	- Lower fixed slots fan speed from 50% to 40% on desktop G5s. We
 102 *        still can't properly implement the control loop for these, so let's
 103 *        reduce the noise a little bit, it appears that 40% still gives us
 104 *        a pretty good air flow
 105 *	- Add code to "tickle" the FCU regulary so it doesn't think that
 106 *        we are gone while in fact, the machine just didn't need any fan
 107 *        speed change lately
 108 *
 109 */
 110
 111#include <linux/types.h>
 112#include <linux/module.h>
 113#include <linux/errno.h>
 114#include <linux/kernel.h>
 115#include <linux/delay.h>
 116#include <linux/sched.h>
 117#include <linux/init.h>
 118#include <linux/spinlock.h>
 119#include <linux/wait.h>
 120#include <linux/reboot.h>
 121#include <linux/kmod.h>
 122#include <linux/i2c.h>
 123#include <linux/kthread.h>
 124#include <linux/mutex.h>
 125#include <linux/of_device.h>
 126#include <linux/of_platform.h>
 127#include <asm/prom.h>
 128#include <asm/machdep.h>
 129#include <asm/io.h>
 130#include <asm/sections.h>
 131#include <asm/macio.h>
 132
 133#include "therm_pm72.h"
 134
 135#define VERSION "1.3"
 136
 137#undef DEBUG
 138
 139#ifdef DEBUG
 140#define DBG(args...)	printk(args)
 141#else
 142#define DBG(args...)	do { } while(0)
 143#endif
 144
 145
 146/*
 147 * Driver statics
 148 */
 149
 150static struct platform_device *		of_dev;
 151static struct i2c_adapter *		u3_0;
 152static struct i2c_adapter *		u3_1;
 153static struct i2c_adapter *		k2;
 154static struct i2c_client *		fcu;
 155static struct cpu_pid_state		processor_state[2];
 156static struct basckside_pid_params	backside_params;
 157static struct backside_pid_state	backside_state;
 158static struct drives_pid_state		drives_state;
 159static struct dimm_pid_state		dimms_state;
 160static struct slots_pid_state		slots_state;
 161static int				state;
 162static int				cpu_count;
 163static int				cpu_pid_type;
 164static struct task_struct		*ctrl_task;
 165static struct completion		ctrl_complete;
 166static int				critical_state;
 167static int				rackmac;
 168static s32				dimm_output_clamp;
 169static int 				fcu_rpm_shift;
 170static int				fcu_tickle_ticks;
 171static DEFINE_MUTEX(driver_lock);
 172
 173/*
 174 * We have 3 types of CPU PID control. One is "split" old style control
 175 * for intake & exhaust fans, the other is "combined" control for both
 176 * CPUs that also deals with the pumps when present. To be "compatible"
 177 * with OS X at this point, we only use "COMBINED" on the machines that
 178 * are identified as having the pumps (though that identification is at
 179 * least dodgy). Ultimately, we could probably switch completely to this
 180 * algorithm provided we hack it to deal with the UP case
 181 */
 182#define CPU_PID_TYPE_SPLIT	0
 183#define CPU_PID_TYPE_COMBINED	1
 184#define CPU_PID_TYPE_RACKMAC	2
 185
 186/*
 187 * This table describes all fans in the FCU. The "id" and "type" values
 188 * are defaults valid for all earlier machines. Newer machines will
 189 * eventually override the table content based on the device-tree
 190 */
 191struct fcu_fan_table
 192{
 193	char*	loc;	/* location code */
 194	int	type;	/* 0 = rpm, 1 = pwm, 2 = pump */
 195	int	id;	/* id or -1 */
 196};
 197
 198#define FCU_FAN_RPM		0
 199#define FCU_FAN_PWM		1
 200
 201#define FCU_FAN_ABSENT_ID	-1
 202
 203#define FCU_FAN_COUNT		ARRAY_SIZE(fcu_fans)
 204
 205struct fcu_fan_table	fcu_fans[] = {
 206	[BACKSIDE_FAN_PWM_INDEX] = {
 207		.loc	= "BACKSIDE,SYS CTRLR FAN",
 208		.type	= FCU_FAN_PWM,
 209		.id	= BACKSIDE_FAN_PWM_DEFAULT_ID,
 210	},
 211	[DRIVES_FAN_RPM_INDEX] = {
 212		.loc	= "DRIVE BAY",
 213		.type	= FCU_FAN_RPM,
 214		.id	= DRIVES_FAN_RPM_DEFAULT_ID,
 215	},
 216	[SLOTS_FAN_PWM_INDEX] = {
 217		.loc	= "SLOT,PCI FAN",
 218		.type	= FCU_FAN_PWM,
 219		.id	= SLOTS_FAN_PWM_DEFAULT_ID,
 220	},
 221	[CPUA_INTAKE_FAN_RPM_INDEX] = {
 222		.loc	= "CPU A INTAKE",
 223		.type	= FCU_FAN_RPM,
 224		.id	= CPUA_INTAKE_FAN_RPM_DEFAULT_ID,
 225	},
 226	[CPUA_EXHAUST_FAN_RPM_INDEX] = {
 227		.loc	= "CPU A EXHAUST",
 228		.type	= FCU_FAN_RPM,
 229		.id	= CPUA_EXHAUST_FAN_RPM_DEFAULT_ID,
 230	},
 231	[CPUB_INTAKE_FAN_RPM_INDEX] = {
 232		.loc	= "CPU B INTAKE",
 233		.type	= FCU_FAN_RPM,
 234		.id	= CPUB_INTAKE_FAN_RPM_DEFAULT_ID,
 235	},
 236	[CPUB_EXHAUST_FAN_RPM_INDEX] = {
 237		.loc	= "CPU B EXHAUST",
 238		.type	= FCU_FAN_RPM,
 239		.id	= CPUB_EXHAUST_FAN_RPM_DEFAULT_ID,
 240	},
 241	/* pumps aren't present by default, have to be looked up in the
 242	 * device-tree
 243	 */
 244	[CPUA_PUMP_RPM_INDEX] = {
 245		.loc	= "CPU A PUMP",
 246		.type	= FCU_FAN_RPM,		
 247		.id	= FCU_FAN_ABSENT_ID,
 248	},
 249	[CPUB_PUMP_RPM_INDEX] = {
 250		.loc	= "CPU B PUMP",
 251		.type	= FCU_FAN_RPM,
 252		.id	= FCU_FAN_ABSENT_ID,
 253	},
 254	/* Xserve fans */
 255	[CPU_A1_FAN_RPM_INDEX] = {
 256		.loc	= "CPU A 1",
 257		.type	= FCU_FAN_RPM,
 258		.id	= FCU_FAN_ABSENT_ID,
 259	},
 260	[CPU_A2_FAN_RPM_INDEX] = {
 261		.loc	= "CPU A 2",
 262		.type	= FCU_FAN_RPM,
 263		.id	= FCU_FAN_ABSENT_ID,
 264	},
 265	[CPU_A3_FAN_RPM_INDEX] = {
 266		.loc	= "CPU A 3",
 267		.type	= FCU_FAN_RPM,
 268		.id	= FCU_FAN_ABSENT_ID,
 269	},
 270	[CPU_B1_FAN_RPM_INDEX] = {
 271		.loc	= "CPU B 1",
 272		.type	= FCU_FAN_RPM,
 273		.id	= FCU_FAN_ABSENT_ID,
 274	},
 275	[CPU_B2_FAN_RPM_INDEX] = {
 276		.loc	= "CPU B 2",
 277		.type	= FCU_FAN_RPM,
 278		.id	= FCU_FAN_ABSENT_ID,
 279	},
 280	[CPU_B3_FAN_RPM_INDEX] = {
 281		.loc	= "CPU B 3",
 282		.type	= FCU_FAN_RPM,
 283		.id	= FCU_FAN_ABSENT_ID,
 284	},
 285};
 286
 287static struct i2c_driver therm_pm72_driver;
 288
 289/*
 290 * Utility function to create an i2c_client structure and
 291 * attach it to one of u3 adapters
 292 */
 293static struct i2c_client *attach_i2c_chip(int id, const char *name)
 294{
 295	struct i2c_client *clt;
 296	struct i2c_adapter *adap;
 297	struct i2c_board_info info;
 298
 299	if (id & 0x200)
 300		adap = k2;
 301	else if (id & 0x100)
 302		adap = u3_1;
 303	else
 304		adap = u3_0;
 305	if (adap == NULL)
 306		return NULL;
 307
 308	memset(&info, 0, sizeof(struct i2c_board_info));
 309	info.addr = (id >> 1) & 0x7f;
 310	strlcpy(info.type, "therm_pm72", I2C_NAME_SIZE);
 311	clt = i2c_new_device(adap, &info);
 312	if (!clt) {
 313		printk(KERN_ERR "therm_pm72: Failed to attach to i2c ID 0x%x\n", id);
 314		return NULL;
 315	}
 316
 317	/*
 318	 * Let i2c-core delete that device on driver removal.
 319	 * This is safe because i2c-core holds the core_lock mutex for us.
 320	 */
 321	list_add_tail(&clt->detected, &therm_pm72_driver.clients);
 322	return clt;
 323}
 324
 325/*
 326 * Here are the i2c chip access wrappers
 327 */
 328
 329static void initialize_adc(struct cpu_pid_state *state)
 330{
 331	int rc;
 332	u8 buf[2];
 333
 334	/* Read ADC the configuration register and cache it. We
 335	 * also make sure Config2 contains proper values, I've seen
 336	 * cases where we got stale grabage in there, thus preventing
 337	 * proper reading of conv. values
 338	 */
 339
 340	/* Clear Config2 */
 341	buf[0] = 5;
 342	buf[1] = 0;
 343	i2c_master_send(state->monitor, buf, 2);
 344
 345	/* Read & cache Config1 */
 346	buf[0] = 1;
 347	rc = i2c_master_send(state->monitor, buf, 1);
 348	if (rc > 0) {
 349		rc = i2c_master_recv(state->monitor, buf, 1);
 350		if (rc > 0) {
 351			state->adc_config = buf[0];
 352			DBG("ADC config reg: %02x\n", state->adc_config);
 353			/* Disable shutdown mode */
 354		       	state->adc_config &= 0xfe;
 355			buf[0] = 1;
 356			buf[1] = state->adc_config;
 357			rc = i2c_master_send(state->monitor, buf, 2);
 358		}
 359	}
 360	if (rc <= 0)
 361		printk(KERN_ERR "therm_pm72: Error reading ADC config"
 362		       " register !\n");
 363}
 364
 365static int read_smon_adc(struct cpu_pid_state *state, int chan)
 366{
 367	int rc, data, tries = 0;
 368	u8 buf[2];
 369
 370	for (;;) {
 371		/* Set channel */
 372		buf[0] = 1;
 373		buf[1] = (state->adc_config & 0x1f) | (chan << 5);
 374		rc = i2c_master_send(state->monitor, buf, 2);
 375		if (rc <= 0)
 376			goto error;
 377		/* Wait for conversion */
 378		msleep(1);
 379		/* Switch to data register */
 380		buf[0] = 4;
 381		rc = i2c_master_send(state->monitor, buf, 1);
 382		if (rc <= 0)
 383			goto error;
 384		/* Read result */
 385		rc = i2c_master_recv(state->monitor, buf, 2);
 386		if (rc < 0)
 387			goto error;
 388		data = ((u16)buf[0]) << 8 | (u16)buf[1];
 389		return data >> 6;
 390	error:
 391		DBG("Error reading ADC, retrying...\n");
 392		if (++tries > 10) {
 393			printk(KERN_ERR "therm_pm72: Error reading ADC !\n");
 394			return -1;
 395		}
 396		msleep(10);
 397	}
 398}
 399
 400static int read_lm87_reg(struct i2c_client * chip, int reg)
 401{
 402	int rc, tries = 0;
 403	u8 buf;
 404
 405	for (;;) {
 406		/* Set address */
 407		buf = (u8)reg;
 408		rc = i2c_master_send(chip, &buf, 1);
 409		if (rc <= 0)
 410			goto error;
 411		rc = i2c_master_recv(chip, &buf, 1);
 412		if (rc <= 0)
 413			goto error;
 414		return (int)buf;
 415	error:
 416		DBG("Error reading LM87, retrying...\n");
 417		if (++tries > 10) {
 418			printk(KERN_ERR "therm_pm72: Error reading LM87 !\n");
 419			return -1;
 420		}
 421		msleep(10);
 422	}
 423}
 424
 425static int fan_read_reg(int reg, unsigned char *buf, int nb)
 426{
 427	int tries, nr, nw;
 428
 429	buf[0] = reg;
 430	tries = 0;
 431	for (;;) {
 432		nw = i2c_master_send(fcu, buf, 1);
 433		if (nw > 0 || (nw < 0 && nw != -EIO) || tries >= 100)
 434			break;
 435		msleep(10);
 436		++tries;
 437	}
 438	if (nw <= 0) {
 439		printk(KERN_ERR "Failure writing address to FCU: %d", nw);
 440		return -EIO;
 441	}
 442	tries = 0;
 443	for (;;) {
 444		nr = i2c_master_recv(fcu, buf, nb);
 445		if (nr > 0 || (nr < 0 && nr != -ENODEV) || tries >= 100)
 446			break;
 447		msleep(10);
 448		++tries;
 449	}
 450	if (nr <= 0)
 451		printk(KERN_ERR "Failure reading data from FCU: %d", nw);
 452	return nr;
 453}
 454
 455static int fan_write_reg(int reg, const unsigned char *ptr, int nb)
 456{
 457	int tries, nw;
 458	unsigned char buf[16];
 459
 460	buf[0] = reg;
 461	memcpy(buf+1, ptr, nb);
 462	++nb;
 463	tries = 0;
 464	for (;;) {
 465		nw = i2c_master_send(fcu, buf, nb);
 466		if (nw > 0 || (nw < 0 && nw != -EIO) || tries >= 100)
 467			break;
 468		msleep(10);
 469		++tries;
 470	}
 471	if (nw < 0)
 472		printk(KERN_ERR "Failure writing to FCU: %d", nw);
 473	return nw;
 474}
 475
 476static int start_fcu(void)
 477{
 478	unsigned char buf = 0xff;
 479	int rc;
 480
 481	rc = fan_write_reg(0xe, &buf, 1);
 482	if (rc < 0)
 483		return -EIO;
 484	rc = fan_write_reg(0x2e, &buf, 1);
 485	if (rc < 0)
 486		return -EIO;
 487	rc = fan_read_reg(0, &buf, 1);
 488	if (rc < 0)
 489		return -EIO;
 490	fcu_rpm_shift = (buf == 1) ? 2 : 3;
 491	printk(KERN_DEBUG "FCU Initialized, RPM fan shift is %d\n",
 492	       fcu_rpm_shift);
 493
 494	return 0;
 495}
 496
 497static int set_rpm_fan(int fan_index, int rpm)
 498{
 499	unsigned char buf[2];
 500	int rc, id, min, max;
 501
 502	if (fcu_fans[fan_index].type != FCU_FAN_RPM)
 503		return -EINVAL;
 504	id = fcu_fans[fan_index].id; 
 505	if (id == FCU_FAN_ABSENT_ID)
 506		return -EINVAL;
 507
 508	min = 2400 >> fcu_rpm_shift;
 509	max = 56000 >> fcu_rpm_shift;
 510
 511	if (rpm < min)
 512		rpm = min;
 513	else if (rpm > max)
 514		rpm = max;
 515	buf[0] = rpm >> (8 - fcu_rpm_shift);
 516	buf[1] = rpm << fcu_rpm_shift;
 517	rc = fan_write_reg(0x10 + (id * 2), buf, 2);
 518	if (rc < 0)
 519		return -EIO;
 520	return 0;
 521}
 522
 523static int get_rpm_fan(int fan_index, int programmed)
 524{
 525	unsigned char failure;
 526	unsigned char active;
 527	unsigned char buf[2];
 528	int rc, id, reg_base;
 529
 530	if (fcu_fans[fan_index].type != FCU_FAN_RPM)
 531		return -EINVAL;
 532	id = fcu_fans[fan_index].id; 
 533	if (id == FCU_FAN_ABSENT_ID)
 534		return -EINVAL;
 535
 536	rc = fan_read_reg(0xb, &failure, 1);
 537	if (rc != 1)
 538		return -EIO;
 539	if ((failure & (1 << id)) != 0)
 540		return -EFAULT;
 541	rc = fan_read_reg(0xd, &active, 1);
 542	if (rc != 1)
 543		return -EIO;
 544	if ((active & (1 << id)) == 0)
 545		return -ENXIO;
 546
 547	/* Programmed value or real current speed */
 548	reg_base = programmed ? 0x10 : 0x11;
 549	rc = fan_read_reg(reg_base + (id * 2), buf, 2);
 550	if (rc != 2)
 551		return -EIO;
 552
 553	return (buf[0] << (8 - fcu_rpm_shift)) | buf[1] >> fcu_rpm_shift;
 554}
 555
 556static int set_pwm_fan(int fan_index, int pwm)
 557{
 558	unsigned char buf[2];
 559	int rc, id;
 560
 561	if (fcu_fans[fan_index].type != FCU_FAN_PWM)
 562		return -EINVAL;
 563	id = fcu_fans[fan_index].id; 
 564	if (id == FCU_FAN_ABSENT_ID)
 565		return -EINVAL;
 566
 567	if (pwm < 10)
 568		pwm = 10;
 569	else if (pwm > 100)
 570		pwm = 100;
 571	pwm = (pwm * 2559) / 1000;
 572	buf[0] = pwm;
 573	rc = fan_write_reg(0x30 + (id * 2), buf, 1);
 574	if (rc < 0)
 575		return rc;
 576	return 0;
 577}
 578
 579static int get_pwm_fan(int fan_index)
 580{
 581	unsigned char failure;
 582	unsigned char active;
 583	unsigned char buf[2];
 584	int rc, id;
 585
 586	if (fcu_fans[fan_index].type != FCU_FAN_PWM)
 587		return -EINVAL;
 588	id = fcu_fans[fan_index].id; 
 589	if (id == FCU_FAN_ABSENT_ID)
 590		return -EINVAL;
 591
 592	rc = fan_read_reg(0x2b, &failure, 1);
 593	if (rc != 1)
 594		return -EIO;
 595	if ((failure & (1 << id)) != 0)
 596		return -EFAULT;
 597	rc = fan_read_reg(0x2d, &active, 1);
 598	if (rc != 1)
 599		return -EIO;
 600	if ((active & (1 << id)) == 0)
 601		return -ENXIO;
 602
 603	/* Programmed value or real current speed */
 604	rc = fan_read_reg(0x30 + (id * 2), buf, 1);
 605	if (rc != 1)
 606		return -EIO;
 607
 608	return (buf[0] * 1000) / 2559;
 609}
 610
 611static void tickle_fcu(void)
 612{
 613	int pwm;
 614
 615	pwm = get_pwm_fan(SLOTS_FAN_PWM_INDEX);
 616
 617	DBG("FCU Tickle, slots fan is: %d\n", pwm);
 618	if (pwm < 0)
 619		pwm = 100;
 620
 621	if (!rackmac) {
 622		pwm = SLOTS_FAN_DEFAULT_PWM;
 623	} else if (pwm < SLOTS_PID_OUTPUT_MIN)
 624		pwm = SLOTS_PID_OUTPUT_MIN;
 625
 626	/* That is hopefully enough to make the FCU happy */
 627	set_pwm_fan(SLOTS_FAN_PWM_INDEX, pwm);
 628}
 629
 630
 631/*
 632 * Utility routine to read the CPU calibration EEPROM data
 633 * from the device-tree
 634 */
 635static int read_eeprom(int cpu, struct mpu_data *out)
 636{
 637	struct device_node *np;
 638	char nodename[64];
 639	const u8 *data;
 640	int len;
 641
 642	/* prom.c routine for finding a node by path is a bit brain dead
 643	 * and requires exact @xxx unit numbers. This is a bit ugly but
 644	 * will work for these machines
 645	 */
 646	sprintf(nodename, "/u3@0,f8000000/i2c@f8001000/cpuid@a%d", cpu ? 2 : 0);
 647	np = of_find_node_by_path(nodename);
 648	if (np == NULL) {
 649		printk(KERN_ERR "therm_pm72: Failed to retrieve cpuid node from device-tree\n");
 650		return -ENODEV;
 651	}
 652	data = of_get_property(np, "cpuid", &len);
 653	if (data == NULL) {
 654		printk(KERN_ERR "therm_pm72: Failed to retrieve cpuid property from device-tree\n");
 655		of_node_put(np);
 656		return -ENODEV;
 657	}
 658	memcpy(out, data, sizeof(struct mpu_data));
 659	of_node_put(np);
 660	
 661	return 0;
 662}
 663
 664static void fetch_cpu_pumps_minmax(void)
 665{
 666	struct cpu_pid_state *state0 = &processor_state[0];
 667	struct cpu_pid_state *state1 = &processor_state[1];
 668	u16 pump_min = 0, pump_max = 0xffff;
 669	u16 tmp[4];
 670
 671	/* Try to fetch pumps min/max infos from eeprom */
 672
 673	memcpy(&tmp, &state0->mpu.processor_part_num, 8);
 674	if (tmp[0] != 0xffff && tmp[1] != 0xffff) {
 675		pump_min = max(pump_min, tmp[0]);
 676		pump_max = min(pump_max, tmp[1]);
 677	}
 678	if (tmp[2] != 0xffff && tmp[3] != 0xffff) {
 679		pump_min = max(pump_min, tmp[2]);
 680		pump_max = min(pump_max, tmp[3]);
 681	}
 682
 683	/* Double check the values, this _IS_ needed as the EEPROM on
 684	 * some dual 2.5Ghz G5s seem, at least, to have both min & max
 685	 * same to the same value ... (grrrr)
 686	 */
 687	if (pump_min == pump_max || pump_min == 0 || pump_max == 0xffff) {
 688		pump_min = CPU_PUMP_OUTPUT_MIN;
 689		pump_max = CPU_PUMP_OUTPUT_MAX;
 690	}
 691
 692	state0->pump_min = state1->pump_min = pump_min;
 693	state0->pump_max = state1->pump_max = pump_max;
 694}
 695
 696/* 
 697 * Now, unfortunately, sysfs doesn't give us a nice void * we could
 698 * pass around to the attribute functions, so we don't really have
 699 * choice but implement a bunch of them...
 700 *
 701 * That sucks a bit, we take the lock because FIX32TOPRINT evaluates
 702 * the input twice... I accept patches :)
 703 */
 704#define BUILD_SHOW_FUNC_FIX(name, data)				\
 705static ssize_t show_##name(struct device *dev, struct device_attribute *attr, char *buf)	\
 706{								\
 707	ssize_t r;						\
 708	mutex_lock(&driver_lock);					\
 709	r = sprintf(buf, "%d.%03d", FIX32TOPRINT(data));	\
 710	mutex_unlock(&driver_lock);					\
 711	return r;						\
 712}
 713#define BUILD_SHOW_FUNC_INT(name, data)				\
 714static ssize_t show_##name(struct device *dev, struct device_attribute *attr, char *buf)	\
 715{								\
 716	return sprintf(buf, "%d", data);			\
 717}
 718
 719BUILD_SHOW_FUNC_FIX(cpu0_temperature, processor_state[0].last_temp)
 720BUILD_SHOW_FUNC_FIX(cpu0_voltage, processor_state[0].voltage)
 721BUILD_SHOW_FUNC_FIX(cpu0_current, processor_state[0].current_a)
 722BUILD_SHOW_FUNC_INT(cpu0_exhaust_fan_rpm, processor_state[0].rpm)
 723BUILD_SHOW_FUNC_INT(cpu0_intake_fan_rpm, processor_state[0].intake_rpm)
 724
 725BUILD_SHOW_FUNC_FIX(cpu1_temperature, processor_state[1].last_temp)
 726BUILD_SHOW_FUNC_FIX(cpu1_voltage, processor_state[1].voltage)
 727BUILD_SHOW_FUNC_FIX(cpu1_current, processor_state[1].current_a)
 728BUILD_SHOW_FUNC_INT(cpu1_exhaust_fan_rpm, processor_state[1].rpm)
 729BUILD_SHOW_FUNC_INT(cpu1_intake_fan_rpm, processor_state[1].intake_rpm)
 730
 731BUILD_SHOW_FUNC_FIX(backside_temperature, backside_state.last_temp)
 732BUILD_SHOW_FUNC_INT(backside_fan_pwm, backside_state.pwm)
 733
 734BUILD_SHOW_FUNC_FIX(drives_temperature, drives_state.last_temp)
 735BUILD_SHOW_FUNC_INT(drives_fan_rpm, drives_state.rpm)
 736
 737BUILD_SHOW_FUNC_FIX(slots_temperature, slots_state.last_temp)
 738BUILD_SHOW_FUNC_INT(slots_fan_pwm, slots_state.pwm)
 739
 740BUILD_SHOW_FUNC_FIX(dimms_temperature, dimms_state.last_temp)
 741
 742static DEVICE_ATTR(cpu0_temperature,S_IRUGO,show_cpu0_temperature,NULL);
 743static DEVICE_ATTR(cpu0_voltage,S_IRUGO,show_cpu0_voltage,NULL);
 744static DEVICE_ATTR(cpu0_current,S_IRUGO,show_cpu0_current,NULL);
 745static DEVICE_ATTR(cpu0_exhaust_fan_rpm,S_IRUGO,show_cpu0_exhaust_fan_rpm,NULL);
 746static DEVICE_ATTR(cpu0_intake_fan_rpm,S_IRUGO,show_cpu0_intake_fan_rpm,NULL);
 747
 748static DEVICE_ATTR(cpu1_temperature,S_IRUGO,show_cpu1_temperature,NULL);
 749static DEVICE_ATTR(cpu1_voltage,S_IRUGO,show_cpu1_voltage,NULL);
 750static DEVICE_ATTR(cpu1_current,S_IRUGO,show_cpu1_current,NULL);
 751static DEVICE_ATTR(cpu1_exhaust_fan_rpm,S_IRUGO,show_cpu1_exhaust_fan_rpm,NULL);
 752static DEVICE_ATTR(cpu1_intake_fan_rpm,S_IRUGO,show_cpu1_intake_fan_rpm,NULL);
 753
 754static DEVICE_ATTR(backside_temperature,S_IRUGO,show_backside_temperature,NULL);
 755static DEVICE_ATTR(backside_fan_pwm,S_IRUGO,show_backside_fan_pwm,NULL);
 756
 757static DEVICE_ATTR(drives_temperature,S_IRUGO,show_drives_temperature,NULL);
 758static DEVICE_ATTR(drives_fan_rpm,S_IRUGO,show_drives_fan_rpm,NULL);
 759
 760static DEVICE_ATTR(slots_temperature,S_IRUGO,show_slots_temperature,NULL);
 761static DEVICE_ATTR(slots_fan_pwm,S_IRUGO,show_slots_fan_pwm,NULL);
 762
 763static DEVICE_ATTR(dimms_temperature,S_IRUGO,show_dimms_temperature,NULL);
 764
 765/*
 766 * CPUs fans control loop
 767 */
 768
 769static int do_read_one_cpu_values(struct cpu_pid_state *state, s32 *temp, s32 *power)
 770{
 771	s32 ltemp, volts, amps;
 772	int index, rc = 0;
 773
 774	/* Default (in case of error) */
 775	*temp = state->cur_temp;
 776	*power = state->cur_power;
 777
 778	if (cpu_pid_type == CPU_PID_TYPE_RACKMAC)
 779		index = (state->index == 0) ?
 780			CPU_A1_FAN_RPM_INDEX : CPU_B1_FAN_RPM_INDEX;
 781	else
 782		index = (state->index == 0) ?
 783			CPUA_EXHAUST_FAN_RPM_INDEX : CPUB_EXHAUST_FAN_RPM_INDEX;
 784
 785	/* Read current fan status */
 786	rc = get_rpm_fan(index, !RPM_PID_USE_ACTUAL_SPEED);
 787	if (rc < 0) {
 788		/* XXX What do we do now ? Nothing for now, keep old value, but
 789		 * return error upstream
 790		 */
 791		DBG("  cpu %d, fan reading error !\n", state->index);
 792	} else {
 793		state->rpm = rc;
 794		DBG("  cpu %d, exhaust RPM: %d\n", state->index, state->rpm);
 795	}
 796
 797	/* Get some sensor readings and scale it */
 798	ltemp = read_smon_adc(state, 1);
 799	if (ltemp == -1) {
 800		/* XXX What do we do now ? */
 801		state->overtemp++;
 802		if (rc == 0)
 803			rc = -EIO;
 804		DBG("  cpu %d, temp reading error !\n", state->index);
 805	} else {
 806		/* Fixup temperature according to diode calibration
 807		 */
 808		DBG("  cpu %d, temp raw: %04x, m_diode: %04x, b_diode: %04x\n",
 809		    state->index,
 810		    ltemp, state->mpu.mdiode, state->mpu.bdiode);
 811		*temp = ((s32)ltemp * (s32)state->mpu.mdiode + ((s32)state->mpu.bdiode << 12)) >> 2;
 812		state->last_temp = *temp;
 813		DBG("  temp: %d.%03d\n", FIX32TOPRINT((*temp)));
 814	}
 815
 816	/*
 817	 * Read voltage & current and calculate power
 818	 */
 819	volts = read_smon_adc(state, 3);
 820	amps = read_smon_adc(state, 4);
 821
 822	/* Scale voltage and current raw sensor values according to fixed scales
 823	 * obtained in Darwin and calculate power from I and V
 824	 */
 825	volts *= ADC_CPU_VOLTAGE_SCALE;
 826	amps *= ADC_CPU_CURRENT_SCALE;
 827	*power = (((u64)volts) * ((u64)amps)) >> 16;
 828	state->voltage = volts;
 829	state->current_a = amps;
 830	state->last_power = *power;
 831
 832	DBG("  cpu %d, current: %d.%03d, voltage: %d.%03d, power: %d.%03d W\n",
 833	    state->index, FIX32TOPRINT(state->current_a),
 834	    FIX32TOPRINT(state->voltage), FIX32TOPRINT(*power));
 835
 836	return 0;
 837}
 838
 839static void do_cpu_pid(struct cpu_pid_state *state, s32 temp, s32 power)
 840{
 841	s32 power_target, integral, derivative, proportional, adj_in_target, sval;
 842	s64 integ_p, deriv_p, prop_p, sum; 
 843	int i;
 844
 845	/* Calculate power target value (could be done once for all)
 846	 * and convert to a 16.16 fp number
 847	 */
 848	power_target = ((u32)(state->mpu.pmaxh - state->mpu.padjmax)) << 16;
 849	DBG("  power target: %d.%03d, error: %d.%03d\n",
 850	    FIX32TOPRINT(power_target), FIX32TOPRINT(power_target - power));
 851
 852	/* Store temperature and power in history array */
 853	state->cur_temp = (state->cur_temp + 1) % CPU_TEMP_HISTORY_SIZE;
 854	state->temp_history[state->cur_temp] = temp;
 855	state->cur_power = (state->cur_power + 1) % state->count_power;
 856	state->power_history[state->cur_power] = power;
 857	state->error_history[state->cur_power] = power_target - power;
 858	
 859	/* If first loop, fill the history table */
 860	if (state->first) {
 861		for (i = 0; i < (state->count_power - 1); i++) {
 862			state->cur_power = (state->cur_power + 1) % state->count_power;
 863			state->power_history[state->cur_power] = power;
 864			state->error_history[state->cur_power] = power_target - power;
 865		}
 866		for (i = 0; i < (CPU_TEMP_HISTORY_SIZE - 1); i++) {
 867			state->cur_temp = (state->cur_temp + 1) % CPU_TEMP_HISTORY_SIZE;
 868			state->temp_history[state->cur_temp] = temp;			
 869		}
 870		state->first = 0;
 871	}
 872
 873	/* Calculate the integral term normally based on the "power" values */
 874	sum = 0;
 875	integral = 0;
 876	for (i = 0; i < state->count_power; i++)
 877		integral += state->error_history[i];
 878	integral *= CPU_PID_INTERVAL;
 879	DBG("  integral: %08x\n", integral);
 880
 881	/* Calculate the adjusted input (sense value).
 882	 *   G_r is 12.20
 883	 *   integ is 16.16
 884	 *   so the result is 28.36
 885	 *
 886	 * input target is mpu.ttarget, input max is mpu.tmax
 887	 */
 888	integ_p = ((s64)state->mpu.pid_gr) * (s64)integral;
 889	DBG("   integ_p: %d\n", (int)(integ_p >> 36));
 890	sval = (state->mpu.tmax << 16) - ((integ_p >> 20) & 0xffffffff);
 891	adj_in_target = (state->mpu.ttarget << 16);
 892	if (adj_in_target > sval)
 893		adj_in_target = sval;
 894	DBG("   adj_in_target: %d.%03d, ttarget: %d\n", FIX32TOPRINT(adj_in_target),
 895	    state->mpu.ttarget);
 896
 897	/* Calculate the derivative term */
 898	derivative = state->temp_history[state->cur_temp] -
 899		state->temp_history[(state->cur_temp + CPU_TEMP_HISTORY_SIZE - 1)
 900				    % CPU_TEMP_HISTORY_SIZE];
 901	derivative /= CPU_PID_INTERVAL;
 902	deriv_p = ((s64)state->mpu.pid_gd) * (s64)derivative;
 903	DBG("   deriv_p: %d\n", (int)(deriv_p >> 36));
 904	sum += deriv_p;
 905
 906	/* Calculate the proportional term */
 907	proportional = temp - adj_in_target;
 908	prop_p = ((s64)state->mpu.pid_gp) * (s64)proportional;
 909	DBG("   prop_p: %d\n", (int)(prop_p >> 36));
 910	sum += prop_p;
 911
 912	/* Scale sum */
 913	sum >>= 36;
 914
 915	DBG("   sum: %d\n", (int)sum);
 916	state->rpm += (s32)sum;
 917}
 918
 919static void do_monitor_cpu_combined(void)
 920{
 921	struct cpu_pid_state *state0 = &processor_state[0];
 922	struct cpu_pid_state *state1 = &processor_state[1];
 923	s32 temp0, power0, temp1, power1;
 924	s32 temp_combi, power_combi;
 925	int rc, intake, pump;
 926
 927	rc = do_read_one_cpu_values(state0, &temp0, &power0);
 928	if (rc < 0) {
 929		/* XXX What do we do now ? */
 930	}
 931	state1->overtemp = 0;
 932	rc = do_read_one_cpu_values(state1, &temp1, &power1);
 933	if (rc < 0) {
 934		/* XXX What do we do now ? */
 935	}
 936	if (state1->overtemp)
 937		state0->overtemp++;
 938
 939	temp_combi = max(temp0, temp1);
 940	power_combi = max(power0, power1);
 941
 942	/* Check tmax, increment overtemp if we are there. At tmax+8, we go
 943	 * full blown immediately and try to trigger a shutdown
 944	 */
 945	if (temp_combi >= ((state0->mpu.tmax + 8) << 16)) {
 946		printk(KERN_WARNING "Warning ! Temperature way above maximum (%d) !\n",
 947		       temp_combi >> 16);
 948		state0->overtemp += CPU_MAX_OVERTEMP / 4;
 949	} else if (temp_combi > (state0->mpu.tmax << 16)) {
 950		state0->overtemp++;
 951		printk(KERN_WARNING "Temperature %d above max %d. overtemp %d\n",
 952		       temp_combi >> 16, state0->mpu.tmax, state0->overtemp);
 953	} else {
 954		if (state0->overtemp)
 955			printk(KERN_WARNING "Temperature back down to %d\n",
 956			       temp_combi >> 16);
 957		state0->overtemp = 0;
 958	}
 959	if (state0->overtemp >= CPU_MAX_OVERTEMP)
 960		critical_state = 1;
 961	if (state0->overtemp > 0) {
 962		state0->rpm = state0->mpu.rmaxn_exhaust_fan;
 963		state0->intake_rpm = intake = state0->mpu.rmaxn_intake_fan;
 964		pump = state0->pump_max;
 965		goto do_set_fans;
 966	}
 967
 968	/* Do the PID */
 969	do_cpu_pid(state0, temp_combi, power_combi);
 970
 971	/* Range check */
 972	state0->rpm = max(state0->rpm, (int)state0->mpu.rminn_exhaust_fan);
 973	state0->rpm = min(state0->rpm, (int)state0->mpu.rmaxn_exhaust_fan);
 974
 975	/* Calculate intake fan speed */
 976	intake = (state0->rpm * CPU_INTAKE_SCALE) >> 16;
 977	intake = max(intake, (int)state0->mpu.rminn_intake_fan);
 978	intake = min(intake, (int)state0->mpu.rmaxn_intake_fan);
 979	state0->intake_rpm = intake;
 980
 981	/* Calculate pump speed */
 982	pump = (state0->rpm * state0->pump_max) /
 983		state0->mpu.rmaxn_exhaust_fan;
 984	pump = min(pump, state0->pump_max);
 985	pump = max(pump, state0->pump_min);
 986	
 987 do_set_fans:
 988	/* We copy values from state 0 to state 1 for /sysfs */
 989	state1->rpm = state0->rpm;
 990	state1->intake_rpm = state0->intake_rpm;
 991
 992	DBG("** CPU %d RPM: %d Ex, %d, Pump: %d, In, overtemp: %d\n",
 993	    state1->index, (int)state1->rpm, intake, pump, state1->overtemp);
 994
 995	/* We should check for errors, shouldn't we ? But then, what
 996	 * do we do once the error occurs ? For FCU notified fan
 997	 * failures (-EFAULT) we probably want to notify userland
 998	 * some way...
 999	 */
1000	set_rpm_fan(CPUA_INTAKE_FAN_RPM_INDEX, intake);
1001	set_rpm_fan(CPUA_EXHAUST_FAN_RPM_INDEX, state0->rpm);
1002	set_rpm_fan(CPUB_INTAKE_FAN_RPM_INDEX, intake);
1003	set_rpm_fan(CPUB_EXHAUST_FAN_RPM_INDEX, state0->rpm);
1004
1005	if (fcu_fans[CPUA_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID)
1006		set_rpm_fan(CPUA_PUMP_RPM_INDEX, pump);
1007	if (fcu_fans[CPUB_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID)
1008		set_rpm_fan(CPUB_PUMP_RPM_INDEX, pump);
1009}
1010
1011static void do_monitor_cpu_split(struct cpu_pid_state *state)
1012{
1013	s32 temp, power;
1014	int rc, intake;
1015
1016	/* Read current fan status */
1017	rc = do_read_one_cpu_values(state, &temp, &power);
1018	if (rc < 0) {
1019		/* XXX What do we do now ? */
1020	}
1021
1022	/* Check tmax, increment overtemp if we are there. At tmax+8, we go
1023	 * full blown immediately and try to trigger a shutdown
1024	 */
1025	if (temp >= ((state->mpu.tmax + 8) << 16)) {
1026		printk(KERN_WARNING "Warning ! CPU %d temperature way above maximum"
1027		       " (%d) !\n",
1028		       state->index, temp >> 16);
1029		state->overtemp += CPU_MAX_OVERTEMP / 4;
1030	} else if (temp > (state->mpu.tmax << 16)) {
1031		state->overtemp++;
1032		printk(KERN_WARNING "CPU %d temperature %d above max %d. overtemp %d\n",
1033		       state->index, temp >> 16, state->mpu.tmax, state->overtemp);
1034	} else {
1035		if (state->overtemp)
1036			printk(KERN_WARNING "CPU %d temperature back down to %d\n",
1037			       state->index, temp >> 16);
1038		state->overtemp = 0;
1039	}
1040	if (state->overtemp >= CPU_MAX_OVERTEMP)
1041		critical_state = 1;
1042	if (state->overtemp > 0) {
1043		state->rpm = state->mpu.rmaxn_exhaust_fan;
1044		state->intake_rpm = intake = state->mpu.rmaxn_intake_fan;
1045		goto do_set_fans;
1046	}
1047
1048	/* Do the PID */
1049	do_cpu_pid(state, temp, power);
1050
1051	/* Range check */
1052	state->rpm = max(state->rpm, (int)state->mpu.rminn_exhaust_fan);
1053	state->rpm = min(state->rpm, (int)state->mpu.rmaxn_exhaust_fan);
1054
1055	/* Calculate intake fan */
1056	intake = (state->rpm * CPU_INTAKE_SCALE) >> 16;
1057	intake = max(intake, (int)state->mpu.rminn_intake_fan);
1058	intake = min(intake, (int)state->mpu.rmaxn_intake_fan);
1059	state->intake_rpm = intake;
1060
1061 do_set_fans:
1062	DBG("** CPU %d RPM: %d Ex, %d In, overtemp: %d\n",
1063	    state->index, (int)state->rpm, intake, state->overtemp);
1064
1065	/* We should check for errors, shouldn't we ? But then, what
1066	 * do we do once the error occurs ? For FCU notified fan
1067	 * failures (-EFAULT) we probably want to notify userland
1068	 * some way...
1069	 */
1070	if (state->index == 0) {
1071		set_rpm_fan(CPUA_INTAKE_FAN_RPM_INDEX, intake);
1072		set_rpm_fan(CPUA_EXHAUST_FAN_RPM_INDEX, state->rpm);
1073	} else {
1074		set_rpm_fan(CPUB_INTAKE_FAN_RPM_INDEX, intake);
1075		set_rpm_fan(CPUB_EXHAUST_FAN_RPM_INDEX, state->rpm);
1076	}
1077}
1078
1079static void do_monitor_cpu_rack(struct cpu_pid_state *state)
1080{
1081	s32 temp, power, fan_min;
1082	int rc;
1083
1084	/* Read current fan status */
1085	rc = do_read_one_cpu_values(state, &temp, &power);
1086	if (rc < 0) {
1087		/* XXX What do we do now ? */
1088	}
1089
1090	/* Check tmax, increment overtemp if we are there. At tmax+8, we go
1091	 * full blown immediately and try to trigger a shutdown
1092	 */
1093	if (temp >= ((state->mpu.tmax + 8) << 16)) {
1094		printk(KERN_WARNING "Warning ! CPU %d temperature way above maximum"
1095		       " (%d) !\n",
1096		       state->index, temp >> 16);
1097		state->overtemp = CPU_MAX_OVERTEMP / 4;
1098	} else if (temp > (state->mpu.tmax << 16)) {
1099		state->overtemp++;
1100		printk(KERN_WARNING "CPU %d temperature %d above max %d. overtemp %d\n",
1101		       state->index, temp >> 16, state->mpu.tmax, state->overtemp);
1102	} else {
1103		if (state->overtemp)
1104			printk(KERN_WARNING "CPU %d temperature back down to %d\n",
1105			       state->index, temp >> 16);
1106		state->overtemp = 0;
1107	}
1108	if (state->overtemp >= CPU_MAX_OVERTEMP)
1109		critical_state = 1;
1110	if (state->overtemp > 0) {
1111		state->rpm = state->intake_rpm = state->mpu.rmaxn_intake_fan;
1112		goto do_set_fans;
1113	}
1114
1115	/* Do the PID */
1116	do_cpu_pid(state, temp, power);
1117
1118	/* Check clamp from dimms */
1119	fan_min = dimm_output_clamp;
1120	fan_min = max(fan_min, (int)state->mpu.rminn_intake_fan);
1121
1122	DBG(" CPU min mpu = %d, min dimm = %d\n",
1123	    state->mpu.rminn_intake_fan, dimm_output_clamp);
1124
1125	state->rpm = max(state->rpm, (int)fan_min);
1126	state->rpm = min(state->rpm, (int)state->mpu.rmaxn_intake_fan);
1127	state->intake_rpm = state->rpm;
1128
1129 do_set_fans:
1130	DBG("** CPU %d RPM: %d overtemp: %d\n",
1131	    state->index, (int)state->rpm, state->overtemp);
1132
1133	/* We should check for errors, shouldn't we ? But then, what
1134	 * do we do once the error occurs ? For FCU notified fan
1135	 * failures (-EFAULT) we probably want to notify userland
1136	 * some way...
1137	 */
1138	if (state->index == 0) {
1139		set_rpm_fan(CPU_A1_FAN_RPM_INDEX, state->rpm);
1140		set_rpm_fan(CPU_A2_FAN_RPM_INDEX, state->rpm);
1141		set_rpm_fan(CPU_A3_FAN_RPM_INDEX, state->rpm);
1142	} else {
1143		set_rpm_fan(CPU_B1_FAN_RPM_INDEX, state->rpm);
1144		set_rpm_fan(CPU_B2_FAN_RPM_INDEX, state->rpm);
1145		set_rpm_fan(CPU_B3_FAN_RPM_INDEX, state->rpm);
1146	}
1147}
1148
1149/*
1150 * Initialize the state structure for one CPU control loop
1151 */
1152static int init_processor_state(struct cpu_pid_state *state, int index)
1153{
1154	int err;
1155
1156	state->index = index;
1157	state->first = 1;
1158	state->rpm = (cpu_pid_type == CPU_PID_TYPE_RACKMAC) ? 4000 : 1000;
1159	state->overtemp = 0;
1160	state->adc_config = 0x00;
1161
1162
1163	if (index == 0)
1164		state->monitor = attach_i2c_chip(SUPPLY_MONITOR_ID, "CPU0_monitor");
1165	else if (index == 1)
1166		state->monitor = attach_i2c_chip(SUPPLY_MONITORB_ID, "CPU1_monitor");
1167	if (state->monitor == NULL)
1168		goto fail;
1169
1170	if (read_eeprom(index, &state->mpu))
1171		goto fail;
1172
1173	state->count_power = state->mpu.tguardband;
1174	if (state->count_power > CPU_POWER_HISTORY_SIZE) {
1175		printk(KERN_WARNING "Warning ! too many power history slots\n");
1176		state->count_power = CPU_POWER_HISTORY_SIZE;
1177	}
1178	DBG("CPU %d Using %d power history entries\n", index, state->count_power);
1179
1180	if (index == 0) {
1181		err = device_create_file(&of_dev->dev, &dev_attr_cpu0_temperature);
1182		err |= device_create_file(&of_dev->dev, &dev_attr_cpu0_voltage);
1183		err |= device_create_file(&of_dev->dev, &dev_attr_cpu0_current);
1184		err |= device_create_file(&of_dev->dev, &dev_attr_cpu0_exhaust_fan_rpm);
1185		err |= device_create_file(&of_dev->dev, &dev_attr_cpu0_intake_fan_rpm);
1186	} else {
1187		err = device_create_file(&of_dev->dev, &dev_attr_cpu1_temperature);
1188		err |= device_create_file(&of_dev->dev, &dev_attr_cpu1_voltage);
1189		err |= device_create_file(&of_dev->dev, &dev_attr_cpu1_current);
1190		err |= device_create_file(&of_dev->dev, &dev_attr_cpu1_exhaust_fan_rpm);
1191		err |= device_create_file(&of_dev->dev, &dev_attr_cpu1_intake_fan_rpm);
1192	}
1193	if (err)
1194		printk(KERN_WARNING "Failed to create some of the attribute"
1195			"files for CPU %d\n", index);
1196
1197	return 0;
1198 fail:
1199	state->monitor = NULL;
1200	
1201	return -ENODEV;
1202}
1203
1204/*
1205 * Dispose of the state data for one CPU control loop
1206 */
1207static void dispose_processor_state(struct cpu_pid_state *state)
1208{
1209	if (state->monitor == NULL)
1210		return;
1211
1212	if (state->index == 0) {
1213		device_remove_file(&of_dev->dev, &dev_attr_cpu0_temperature);
1214		device_remove_file(&of_dev->dev, &dev_attr_cpu0_voltage);
1215		device_remove_file(&of_dev->dev, &dev_attr_cpu0_current);
1216		device_remove_file(&of_dev->dev, &dev_attr_cpu0_exhaust_fan_rpm);
1217		device_remove_file(&of_dev->dev, &dev_attr_cpu0_intake_fan_rpm);
1218	} else {
1219		device_remove_file(&of_dev->dev, &dev_attr_cpu1_temperature);
1220		device_remove_file(&of_dev->dev, &dev_attr_cpu1_voltage);
1221		device_remove_file(&of_dev->dev, &dev_attr_cpu1_current);
1222		device_remove_file(&of_dev->dev, &dev_attr_cpu1_exhaust_fan_rpm);
1223		device_remove_file(&of_dev->dev, &dev_attr_cpu1_intake_fan_rpm);
1224	}
1225
1226	state->monitor = NULL;
1227}
1228
1229/*
1230 * Motherboard backside & U3 heatsink fan control loop
1231 */
1232static void do_monitor_backside(struct backside_pid_state *state)
1233{
1234	s32 temp, integral, derivative, fan_min;
1235	s64 integ_p, deriv_p, prop_p, sum; 
1236	int i, rc;
1237
1238	if (--state->ticks != 0)
1239		return;
1240	state->ticks = backside_params.interval;
1241
1242	DBG("backside:\n");
1243
1244	/* Check fan status */
1245	rc = get_pwm_fan(BACKSIDE_FAN_PWM_INDEX);
1246	if (rc < 0) {
1247		printk(KERN_WARNING "Error %d reading backside fan !\n", rc);
1248		/* XXX What do we do now ? */
1249	} else
1250		state->pwm = rc;
1251	DBG("  current pwm: %d\n", state->pwm);
1252
1253	/* Get some sensor readings */
1254	temp = i2c_smbus_read_byte_data(state->monitor, MAX6690_EXT_TEMP) << 16;
1255	state->last_temp = temp;
1256	DBG("  temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp),
1257	    FIX32TOPRINT(backside_params.input_target));
1258
1259	/* Store temperature and error in history array */
1260	state->cur_sample = (state->cur_sample + 1) % BACKSIDE_PID_HISTORY_SIZE;
1261	state->sample_history[state->cur_sample] = temp;
1262	state->error_history[state->cur_sample] = temp - backside_params.input_target;
1263	
1264	/* If first loop, fill the history table */
1265	if (state->first) {
1266		for (i = 0; i < (BACKSIDE_PID_HISTORY_SIZE - 1); i++) {
1267			state->cur_sample = (state->cur_sample + 1) %
1268				BACKSIDE_PID_HISTORY_SIZE;
1269			state->sample_history[state->cur_sample] = temp;
1270			state->error_history[state->cur_sample] =
1271				temp - backside_params.input_target;
1272		}
1273		state->first = 0;
1274	}
1275
1276	/* Calculate the integral term */
1277	sum = 0;
1278	integral = 0;
1279	for (i = 0; i < BACKSIDE_PID_HISTORY_SIZE; i++)
1280		integral += state->error_history[i];
1281	integral *= backside_params.interval;
1282	DBG("  integral: %08x\n", integral);
1283	integ_p = ((s64)backside_params.G_r) * (s64)integral;
1284	DBG("   integ_p: %d\n", (int)(integ_p >> 36));
1285	sum += integ_p;
1286
1287	/* Calculate the derivative term */
1288	derivative = state->error_history[state->cur_sample] -
1289		state->error_history[(state->cur_sample + BACKSIDE_PID_HISTORY_SIZE - 1)
1290				    % BACKSIDE_PID_HISTORY_SIZE];
1291	derivative /= backside_params.interval;
1292	deriv_p = ((s64)backside_params.G_d) * (s64)derivative;
1293	DBG("   deriv_p: %d\n", (int)(deriv_p >> 36));
1294	sum += deriv_p;
1295
1296	/* Calculate the proportional term */
1297	prop_p = ((s64)backside_params.G_p) * (s64)(state->error_history[state->cur_sample]);
1298	DBG("   prop_p: %d\n", (int)(prop_p >> 36));
1299	sum += prop_p;
1300
1301	/* Scale sum */
1302	sum >>= 36;
1303
1304	DBG("   sum: %d\n", (int)sum);
1305	if (backside_params.additive)
1306		state->pwm += (s32)sum;
1307	else
1308		state->pwm = sum;
1309
1310	/* Check for clamp */
1311	fan_min = (dimm_output_clamp * 100) / 14000;
1312	fan_min = max(fan_min, backside_params.output_min);
1313
1314	state->pwm = max(state->pwm, fan_min);
1315	state->pwm = min(state->pwm, backside_params.output_max);
1316
1317	DBG("** BACKSIDE PWM: %d\n", (int)state->pwm);
1318	set_pwm_fan(BACKSIDE_FAN_PWM_INDEX, state->pwm);
1319}
1320
1321/*
1322 * Initialize the state structure for the backside fan control loop
1323 */
1324static int init_backside_state(struct backside_pid_state *state)
1325{
1326	struct device_node *u3;
1327	int u3h = 1; /* conservative by default */
1328	int err;
1329
1330	/*
1331	 * There are different PID params for machines with U3 and machines
1332	 * with U3H, pick the right ones now
1333	 */
1334	u3 = of_find_node_by_path("/u3@0,f8000000");
1335	if (u3 != NULL) {
1336		const u32 *vers = of_get_property(u3, "device-rev", NULL);
1337		if (vers)
1338			if (((*vers) & 0x3f) < 0x34)
1339				u3h = 0;
1340		of_node_put(u3);
1341	}
1342
1343	if (rackmac) {
1344		backside_params.G_d = BACKSIDE_PID_RACK_G_d;
1345		backside_params.input_target = BACKSIDE_PID_RACK_INPUT_TARGET;
1346		backside_params.output_min = BACKSIDE_PID_U3H_OUTPUT_MIN;
1347		backside_params.interval = BACKSIDE_PID_RACK_INTERVAL;
1348		backside_params.G_p = BACKSIDE_PID_RACK_G_p;
1349		backside_params.G_r = BACKSIDE_PID_G_r;
1350		backside_params.output_max = BACKSIDE_PID_OUTPUT_MAX;
1351		backside_params.additive = 0;
1352	} else if (u3h) {
1353		backside_params.G_d = BACKSIDE_PID_U3H_G_d;
1354		backside_params.input_target = BACKSIDE_PID_U3H_INPUT_TARGET;
1355		backside_params.output_min = BACKSIDE_PID_U3H_OUTPUT_MIN;
1356		backside_params.interval = BACKSIDE_PID_INTERVAL;
1357		backside_params.G_p = BACKSIDE_PID_G_p;
1358		backside_params.G_r = BACKSIDE_PID_G_r;
1359		backside_params.output_max = BACKSIDE_PID_OUTPUT_MAX;
1360		backside_params.additive = 1;
1361	} else {
1362		backside_params.G_d = BACKSIDE_PID_U3_G_d;
1363		backside_params.input_target = BACKSIDE_PID_U3_INPUT_TARGET;
1364		backside_params.output_min = BACKSIDE_PID_U3_OUTPUT_MIN;
1365		backside_params.interval = BACKSIDE_PID_INTERVAL;
1366		backside_params.G_p = BACKSIDE_PID_G_p;
1367		backside_params.G_r = BACKSIDE_PID_G_r;
1368		backside_params.output_max = BACKSIDE_PID_OUTPUT_MAX;
1369		backside_params.additive = 1;
1370	}
1371
1372	state->ticks = 1;
1373	state->first = 1;
1374	state->pwm = 50;
1375
1376	state->monitor = attach_i2c_chip(BACKSIDE_MAX_ID, "backside_temp");
1377	if (state->monitor == NULL)
1378		return -ENODEV;
1379
1380	err = device_create_file(&of_dev->dev, &dev_attr_backside_temperature);
1381	err |= device_create_file(&of_dev->dev, &dev_attr_backside_fan_pwm);
1382	if (err)
1383		printk(KERN_WARNING "Failed to create attribute file(s)"
1384			" for backside fan\n");
1385
1386	return 0;
1387}
1388
1389/*
1390 * Dispose of the state data for the backside control loop
1391 */
1392static void dispose_backside_state(struct backside_pid_state *state)
1393{
1394	if (state->monitor == NULL)
1395		return;
1396
1397	device_remove_file(&of_dev->dev, &dev_attr_backside_temperature);
1398	device_remove_file(&of_dev->dev, &dev_attr_backside_fan_pwm);
1399
1400	state->monitor = NULL;
1401}
1402 
1403/*
1404 * Drives bay fan control loop
1405 */
1406static void do_monitor_drives(struct drives_pid_state *state)
1407{
1408	s32 temp, integral, derivative;
1409	s64 integ_p, deriv_p, prop_p, sum; 
1410	int i, rc;
1411
1412	if (--state->ticks != 0)
1413		return;
1414	state->ticks = DRIVES_PID_INTERVAL;
1415
1416	DBG("drives:\n");
1417
1418	/* Check fan status */
1419	rc = get_rpm_fan(DRIVES_FAN_RPM_INDEX, !RPM_PID_USE_ACTUAL_SPEED);
1420	if (rc < 0) {
1421		printk(KERN_WARNING "Error %d reading drives fan !\n", rc);
1422		/* XXX What do we do now ? */
1423	} else
1424		state->rpm = rc;
1425	DBG("  current rpm: %d\n", state->rpm);
1426
1427	/* Get some sensor readings */
1428	temp = le16_to_cpu(i2c_smbus_read_word_data(state->monitor,
1429						    DS1775_TEMP)) << 8;
1430	state->last_temp = temp;
1431	DBG("  temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp),
1432	    FIX32TOPRINT(DRIVES_PID_INPUT_TARGET));
1433
1434	/* Store temperature and error in history array */
1435	state->cur_sample = (state->cur_sample + 1) % DRIVES_PID_HISTORY_SIZE;
1436	state->sample_history[state->cur_sample] = temp;
1437	state->error_history[state->cur_sample] = temp - DRIVES_PID_INPUT_TARGET;
1438	
1439	/* If first loop, fill the history table */
1440	if (state->first) {
1441		for (i = 0; i < (DRIVES_PID_HISTORY_SIZE - 1); i++) {
1442			state->cur_sample = (state->cur_sample + 1) %
1443				DRIVES_PID_HISTORY_SIZE;
1444			state->sample_history[state->cur_sample] = temp;
1445			state->error_history[state->cur_sample] =
1446				temp - DRIVES_PID_INPUT_TARGET;
1447		}
1448		state->first = 0;
1449	}
1450
1451	/* Calculate the integral term */
1452	sum = 0;
1453	integral = 0;
1454	for (i = 0; i < DRIVES_PID_HISTORY_SIZE; i++)
1455		integral += state->error_history[i];
1456	integral *= DRIVES_PID_INTERVAL;
1457	DBG("  integral: %08x\n", integral);
1458	integ_p = ((s64)DRIVES_PID_G_r) * (s64)integral;
1459	DBG("   integ_p: %d\n", (int)(integ_p >> 36));
1460	sum += integ_p;
1461
1462	/* Calculate the derivative term */
1463	derivative = state->error_history[state->cur_sample] -
1464		state->error_history[(state->cur_sample + DRIVES_PID_HISTORY_SIZE - 1)
1465				    % DRIVES_PID_HISTORY_SIZE];
1466	derivative /= DRIVES_PID_INTERVAL;
1467	deriv_p = ((s64)DRIVES_PID_G_d) * (s64)derivative;
1468	DBG("   deriv_p: %d\n", (int)(deriv_p >> 36));
1469	sum += deriv_p;
1470
1471	/* Calculate the proportional term */
1472	prop_p = ((s64)DRIVES_PID_G_p) * (s64)(state->error_history[state->cur_sample]);
1473	DBG("   prop_p: %d\n", (int)(prop_p >> 36));
1474	sum += prop_p;
1475
1476	/* Scale sum */
1477	sum >>= 36;
1478
1479	DBG("   sum: %d\n", (int)sum);
1480	state->rpm += (s32)sum;
1481
1482	state->rpm = max(state->rpm, DRIVES_PID_OUTPUT_MIN);
1483	state->rpm = min(state->rpm, DRIVES_PID_OUTPUT_MAX);
1484
1485	DBG("** DRIVES RPM: %d\n", (int)state->rpm);
1486	set_rpm_fan(DRIVES_FAN_RPM_INDEX, state->rpm);
1487}
1488
1489/*
1490 * Initialize the state structure for the drives bay fan control loop
1491 */
1492static int init_drives_state(struct drives_pid_state *state)
1493{
1494	int err;
1495
1496	state->ticks = 1;
1497	state->first = 1;
1498	state->rpm = 1000;
1499
1500	state->monitor = attach_i2c_chip(DRIVES_DALLAS_ID, "drives_temp");
1501	if (state->monitor == NULL)
1502		return -ENODEV;
1503
1504	err = device_create_file(&of_dev->dev, &dev_attr_drives_temperature);
1505	err |= device_create_file(&of_dev->dev, &dev_attr_drives_fan_rpm);
1506	if (err)
1507		printk(KERN_WARNING "Failed to create attribute file(s)"
1508			" for drives bay fan\n");
1509
1510	return 0;
1511}
1512
1513/*
1514 * Dispose of the state data for the drives control loop
1515 */
1516static void dispose_drives_state(struct drives_pid_state *state)
1517{
1518	if (state->monitor == NULL)
1519		return;
1520
1521	device_remove_file(&of_dev->dev, &dev_attr_drives_temperature);
1522	device_remove_file(&of_dev->dev, &dev_attr_drives_fan_rpm);
1523
1524	state->monitor = NULL;
1525}
1526
1527/*
1528 * DIMMs temp control loop
1529 */
1530static void do_monitor_dimms(struct dimm_pid_state *state)
1531{
1532	s32 temp, integral, derivative, fan_min;
1533	s64 integ_p, deriv_p, prop_p, sum;
1534	int i;
1535
1536	if (--state->ticks != 0)
1537		return;
1538	state->ticks = DIMM_PID_INTERVAL;
1539
1540	DBG("DIMM:\n");
1541
1542	DBG("  current value: %d\n", state->output);
1543
1544	temp = read_lm87_reg(state->monitor, LM87_INT_TEMP);
1545	if (temp < 0)
1546		return;
1547	temp <<= 16;
1548	state->last_temp = temp;
1549	DBG("  temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp),
1550	    FIX32TOPRINT(DIMM_PID_INPUT_TARGET));
1551
1552	/* Store temperature and error in history array */
1553	state->cur_sample = (state->cur_sample + 1) % DIMM_PID_HISTORY_SIZE;
1554	state->sample_history[state->cur_sample] = temp;
1555	state->error_history[state->cur_sample] = temp - DIMM_PID_INPUT_TARGET;
1556
1557	/* If first loop, fill the history table */
1558	if (state->first) {
1559		for (i = 0; i < (DIMM_PID_HISTORY_SIZE - 1); i++) {
1560			state->cur_sample = (state->cur_sample + 1) %
1561				DIMM_PID_HISTORY_SIZE;
1562			state->sample_history[state->cur_sample] = temp;
1563			state->error_history[state->cur_sample] =
1564				temp - DIMM_PID_INPUT_TARGET;
1565		}
1566		state->first = 0;
1567	}
1568
1569	/* Calculate the integral term */
1570	sum = 0;
1571	integral = 0;
1572	for (i = 0; i < DIMM_PID_HISTORY_SIZE; i++)
1573		integral += state->error_history[i];
1574	integral *= DIMM_PID_INTERVAL;
1575	DBG("  integral: %08x\n", integral);
1576	integ_p = ((s64)DIMM_PID_G_r) * (s64)integral;
1577	DBG("   integ_p: %d\n", (int)(integ_p >> 36));
1578	sum += integ_p;
1579
1580	/* Calculate the derivative term */
1581	derivative = state->error_history[state->cur_sample] -
1582		state->error_history[(state->cur_sample + DIMM_PID_HISTORY_SIZE - 1)
1583				    % DIMM_PID_HISTORY_SIZE];
1584	derivative /= DIMM_PID_INTERVAL;
1585	deriv_p = ((s64)DIMM_PID_G_d) * (s64)derivative;
1586	DBG("   deriv_p: %d\n", (int)(deriv_p >> 36));
1587	sum += deriv_p;
1588
1589	/* Calculate the proportional term */
1590	prop_p = ((s64)DIMM_PID_G_p) * (s64)(state->error_history[state->cur_sample]);
1591	DBG("   prop_p: %d\n", (int)(prop_p >> 36));
1592	sum += prop_p;
1593
1594	/* Scale sum */
1595	sum >>= 36;
1596
1597	DBG("   sum: %d\n", (int)sum);
1598	state->output = (s32)sum;
1599	state->output = max(state->output, DIMM_PID_OUTPUT_MIN);
1600	state->output = min(state->output, DIMM_PID_OUTPUT_MAX);
1601	dimm_output_clamp = state->output;
1602
1603	DBG("** DIMM clamp value: %d\n", (int)state->output);
1604
1605	/* Backside PID is only every 5 seconds, force backside fan clamping now */
1606	fan_min = (dimm_output_clamp * 100) / 14000;
1607	fan_min = max(fan_min, backside_params.output_min);
1608	if (backside_state.pwm < fan_min) {
1609		backside_state.pwm = fan_min;
1610		DBG(" -> applying clamp to backside fan now: %d  !\n", fan_min);
1611		set_pwm_fan(BACKSIDE_FAN_PWM_INDEX, fan_min);
1612	}
1613}
1614
1615/*
1616 * Initialize the state structure for the DIMM temp control loop
1617 */
1618static int init_dimms_state(struct dimm_pid_state *state)
1619{
1620	state->ticks = 1;
1621	state->first = 1;
1622	state->output = 4000;
1623
1624	state->monitor = attach_i2c_chip(XSERVE_DIMMS_LM87, "dimms_temp");
1625	if (state->monitor == NULL)
1626		return -ENODEV;
1627
1628	if (device_create_file(&of_dev->dev, &dev_attr_dimms_temperature))
1629		printk(KERN_WARNING "Failed to create attribute file"
1630			" for DIMM temperature\n");
1631
1632	return 0;
1633}
1634
1635/*
1636 * Dispose of the state data for the DIMM control loop
1637 */
1638static void dispose_dimms_state(struct dimm_pid_state *state)
1639{
1640	if (state->monitor == NULL)
1641		return;
1642
1643	device_remove_file(&of_dev->dev, &dev_attr_dimms_temperature);
1644
1645	state->monitor = NULL;
1646}
1647
1648/*
1649 * Slots fan control loop
1650 */
1651static void do_monitor_slots(struct slots_pid_state *state)
1652{
1653	s32 temp, integral, derivative;
1654	s64 integ_p, deriv_p, prop_p, sum;
1655	int i, rc;
1656
1657	if (--state->ticks != 0)
1658		return;
1659	state->ticks = SLOTS_PID_INTERVAL;
1660
1661	DBG("slots:\n");
1662
1663	/* Check fan status */
1664	rc = get_pwm_fan(SLOTS_FAN_PWM_INDEX);
1665	if (rc < 0) {
1666		printk(KERN_WARNING "Error %d reading slots fan !\n", rc);
1667		/* XXX What do we do now ? */
1668	} else
1669		state->pwm = rc;
1670	DBG("  current pwm: %d\n", state->pwm);
1671
1672	/* Get some sensor readings */
1673	temp = le16_to_cpu(i2c_smbus_read_word_data(state->monitor,
1674						    DS1775_TEMP)) << 8;
1675	state->last_temp = temp;
1676	DBG("  temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp),
1677	    FIX32TOPRINT(SLOTS_PID_INPUT_TARGET));
1678
1679	/* Store temperature and error in history array */
1680	state->cur_sample = (state->cur_sample + 1) % SLOTS_PID_HISTORY_SIZE;
1681	state->sample_history[state->cur_sample] = temp;
1682	state->error_history[state->cur_sample] = temp - SLOTS_PID_INPUT_TARGET;
1683
1684	/* If first loop, fill the history table */
1685	if (state->first) {
1686		for (i = 0; i < (SLOTS_PID_HISTORY_SIZE - 1); i++) {
1687			state->cur_sample = (state->cur_sample + 1) %
1688				SLOTS_PID_HISTORY_SIZE;
1689			state->sample_history[state->cur_sample] = temp;
1690			state->error_history[state->cur_sample] =
1691				temp - SLOTS_PID_INPUT_TARGET;
1692		}
1693		state->first = 0;
1694	}
1695
1696	/* Calculate the integral term */
1697	sum = 0;
1698	integral = 0;
1699	for (i = 0; i < SLOTS_PID_HISTORY_SIZE; i++)
1700		integral += state->error_history[i];
1701	integral *= SLOTS_PID_INTERVAL;
1702	DBG("  integral: %08x\n", integral);
1703	integ_p = ((s64)SLOTS_PID_G_r) * (s64)integral;
1704	DBG("   integ_p: %d\n", (int)(integ_p >> 36));
1705	sum += integ_p;
1706
1707	/* Calculate the derivative term */
1708	derivative = state->error_history[state->cur_sample] -
1709		state->error_history[(state->cur_sample + SLOTS_PID_HISTORY_SIZE - 1)
1710				    % SLOTS_PID_HISTORY_SIZE];
1711	derivative /= SLOTS_PID_INTERVAL;
1712	deriv_p = ((s64)SLOTS_PID_G_d) * (s64)derivative;
1713	DBG("   deriv_p: %d\n", (int)(deriv_p >> 36));
1714	sum += deriv_p;
1715
1716	/* Calculate the proportional term */
1717	prop_p = ((s64)SLOTS_PID_G_p) * (s64)(state->error_history[state->cur_sample]);
1718	DBG("   prop_p: %d\n", (int)(prop_p >> 36));
1719	sum += prop_p;
1720
1721	/* Scale sum */
1722	sum >>= 36;
1723
1724	DBG("   sum: %d\n", (int)sum);
1725	state->pwm = (s32)sum;
1726
1727	state->pwm = max(state->pwm, SLOTS_PID_OUTPUT_MIN);
1728	state->pwm = min(state->pwm, SLOTS_PID_OUTPUT_MAX);
1729
1730	DBG("** DRIVES PWM: %d\n", (int)state->pwm);
1731	set_pwm_fan(SLOTS_FAN_PWM_INDEX, state->pwm);
1732}
1733
1734/*
1735 * Initialize the state structure for the slots bay fan control loop
1736 */
1737static int init_slots_state(struct slots_pid_state *state)
1738{
1739	int err;
1740
1741	state->ticks = 1;
1742	state->first = 1;
1743	state->pwm = 50;
1744
1745	state->monitor = attach_i2c_chip(XSERVE_SLOTS_LM75, "slots_temp");
1746	if (state->monitor == NULL)
1747		return -ENODEV;
1748
1749	err = device_create_file(&of_dev->dev, &dev_attr_slots_temperature);
1750	err |= device_create_file(&of_dev->dev, &dev_attr_slots_fan_pwm);
1751	if (err)
1752		printk(KERN_WARNING "Failed to create attribute file(s)"
1753			" for slots bay fan\n");
1754
1755	return 0;
1756}
1757
1758/*
1759 * Dispose of the state data for the slots control loop
1760 */
1761static void dispose_slots_state(struct slots_pid_state *state)
1762{
1763	if (state->monitor == NULL)
1764		return;
1765
1766	device_remove_file(&of_dev->dev, &dev_attr_slots_temperature);
1767	device_remove_file(&of_dev->dev, &dev_attr_slots_fan_pwm);
1768
1769	state->monitor = NULL;
1770}
1771
1772
1773static int call_critical_overtemp(void)
1774{
1775	char *argv[] = { critical_overtemp_path, NULL };
1776	static char *envp[] = { "HOME=/",
1777				"TERM=linux",
1778				"PATH=/sbin:/usr/sbin:/bin:/usr/bin",
1779				NULL };
1780
1781	return call_usermodehelper(critical_overtemp_path,
1782				   argv, envp, UMH_WAIT_EXEC);
1783}
1784
1785
1786/*
1787 * Here's the kernel thread that calls the various control loops
1788 */
1789static int main_control_loop(void *x)
1790{
1791	DBG("main_control_loop started\n");
1792
1793	mutex_lock(&driver_lock);
1794
1795	if (start_fcu() < 0) {
1796		printk(KERN_ERR "kfand: failed to start FCU\n");
1797		mutex_unlock(&driver_lock);
1798		goto out;
1799	}
1800
1801	/* Set the PCI fan once for now on non-RackMac */
1802	if (!rackmac)
1803		set_pwm_fan(SLOTS_FAN_PWM_INDEX, SLOTS_FAN_DEFAULT_PWM);
1804
1805	/* Initialize ADCs */
1806	initialize_adc(&processor_state[0]);
1807	if (processor_state[1].monitor != NULL)
1808		initialize_adc(&processor_state[1]);
1809
1810	fcu_tickle_ticks = FCU_TICKLE_TICKS;
1811
1812	mutex_unlock(&driver_lock);
1813
1814	while (state == state_attached) {
1815		unsigned long elapsed, start;
1816
1817		start = jiffies;
1818
1819		mutex_lock(&driver_lock);
1820
1821		/* Tickle the FCU just in case */
1822		if (--fcu_tickle_ticks < 0) {
1823			fcu_tickle_ticks = FCU_TICKLE_TICKS;
1824			tickle_fcu();
1825		}
1826
1827		/* First, we always calculate the new DIMMs state on an Xserve */
1828		if (rackmac)
1829			do_monitor_dimms(&dimms_state);
1830
1831		/* Then, the CPUs */
1832		if (cpu_pid_type == CPU_PID_TYPE_COMBINED)
1833			do_monitor_cpu_combined();
1834		else if (cpu_pid_type == CPU_PID_TYPE_RACKMAC) {
1835			do_monitor_cpu_rack(&processor_state[0]);
1836			if (processor_state[1].monitor != NULL)
1837				do_monitor_cpu_rack(&processor_state[1]);
1838			// better deal with UP
1839		} else {
1840			do_monitor_cpu_split(&processor_state[0]);
1841			if (processor_state[1].monitor != NULL)
1842				do_monitor_cpu_split(&processor_state[1]);
1843			// better deal with UP
1844		}
1845		/* Then, the rest */
1846		do_monitor_backside(&backside_state);
1847		if (rackmac)
1848			do_monitor_slots(&slots_state);
1849		else
1850			do_monitor_drives(&drives_state);
1851		mutex_unlock(&driver_lock);
1852
1853		if (critical_state == 1) {
1854			printk(KERN_WARNING "Temperature control detected a critical condition\n");
1855			printk(KERN_WARNING "Attempting to shut down...\n");
1856			if (call_critical_overtemp()) {
1857				printk(KERN_WARNING "Can't call %s, power off now!\n",
1858				       critical_overtemp_path);
1859				machine_power_off();
1860			}
1861		}
1862		if (critical_state > 0)
1863			critical_state++;
1864		if (critical_state > MAX_CRITICAL_STATE) {
1865			printk(KERN_WARNING "Shutdown timed out, power off now !\n");
1866			machine_power_off();
1867		}
1868
1869		// FIXME: Deal with signals
1870		elapsed = jiffies - start;
1871		if (elapsed < HZ)
1872			schedule_timeout_interruptible(HZ - elapsed);
1873	}
1874
1875 out:
1876	DBG("main_control_loop ended\n");
1877
1878	ctrl_task = 0;
1879	complete_and_exit(&ctrl_complete, 0);
1880}
1881
1882/*
1883 * Dispose the control loops when tearing down
1884 */
1885static void dispose_control_loops(void)
1886{
1887	dispose_processor_state(&processor_state[0]);
1888	dispose_processor_state(&processor_state[1]);
1889	dispose_backside_state(&backside_state);
1890	dispose_drives_state(&drives_state);
1891	dispose_slots_state(&slots_state);
1892	dispose_dimms_state(&dimms_state);
1893}
1894
1895/*
1896 * Create the control loops. U3-0 i2c bus is up, so we can now
1897 * get to the various sensors
1898 */
1899static int create_control_loops(void)
1900{
1901	struct device_node *np;
1902
1903	/* Count CPUs from the device-tree, we don't care how many are
1904	 * actually used by Linux
1905	 */
1906	cpu_count = 0;
1907	for (np = NULL; NULL != (np = of_find_node_by_type(np, "cpu"));)
1908		cpu_count++;
1909
1910	DBG("counted %d CPUs in the device-tree\n", cpu_count);
1911
1912	/* Decide the type of PID algorithm to use based on the presence of
1913	 * the pumps, though that may not be the best way, that is good enough
1914	 * for now
1915	 */
1916	if (rackmac)
1917		cpu_pid_type = CPU_PID_TYPE_RACKMAC;
1918	else if (of_machine_is_compatible("PowerMac7,3")
1919	    && (cpu_count > 1)
1920	    && fcu_fans[CPUA_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID
1921	    && fcu_fans[CPUB_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID) {
1922		printk(KERN_INFO "Liquid cooling pumps detected, using new algorithm !\n");
1923		cpu_pid_type = CPU_PID_TYPE_COMBINED;
1924	} else
1925		cpu_pid_type = CPU_PID_TYPE_SPLIT;
1926
1927	/* Create control loops for everything. If any fail, everything
1928	 * fails
1929	 */
1930	if (init_processor_state(&processor_state[0], 0))
1931		goto fail;
1932	if (cpu_pid_type == CPU_PID_TYPE_COMBINED)
1933		fetch_cpu_pumps_minmax();
1934
1935	if (cpu_count > 1 && init_processor_state(&processor_state[1], 1))
1936		goto fail;
1937	if (init_backside_state(&backside_state))
1938		goto fail;
1939	if (rackmac && init_dimms_state(&dimms_state))
1940		goto fail;
1941	if (rackmac && init_slots_state(&slots_state))
1942		goto fail;
1943	if (!rackmac && init_drives_state(&drives_state))
1944		goto fail;
1945
1946	DBG("all control loops up !\n");
1947
1948	return 0;
1949	
1950 fail:
1951	DBG("failure creating control loops, disposing\n");
1952
1953	dispose_control_loops();
1954
1955	return -ENODEV;
1956}
1957
1958/*
1959 * Start the control loops after everything is up, that is create
1960 * the thread that will make them run
1961 */
1962static void start_control_loops(void)
1963{
1964	init_completion(&ctrl_complete);
1965
1966	ctrl_task = kthread_run(main_control_loop, NULL, "kfand");
1967}
1968
1969/*
1970 * Stop the control loops when tearing down
1971 */
1972static void stop_control_loops(void)
1973{
1974	if (ctrl_task)
1975		wait_for_completion(&ctrl_complete);
1976}
1977
1978/*
1979 * Attach to the i2c FCU after detecting U3-1 bus
1980 */
1981static int attach_fcu(void)
1982{
1983	fcu = attach_i2c_chip(FAN_CTRLER_ID, "fcu");
1984	if (fcu == NULL)
1985		return -ENODEV;
1986
1987	DBG("FCU attached\n");
1988
1989	return 0;
1990}
1991
1992/*
1993 * Detach from the i2c FCU when tearing down
1994 */
1995static void detach_fcu(void)
1996{
1997	fcu = NULL;
1998}
1999
2000/*
2001 * Attach to the i2c controller. We probe the various chips based
2002 * on the device-tree nodes and build everything for the driver to
2003 * run, we then kick the driver monitoring thread
2004 */
2005static int therm_pm72_attach(struct i2c_adapter *adapter)
2006{
2007	mutex_lock(&driver_lock);
2008
2009	/* Check state */
2010	if (state == state_detached)
2011		state = state_attaching;
2012	if (state != state_attaching) {
2013		mutex_unlock(&driver_lock);
2014		return 0;
2015	}
2016
2017	/* Check if we are looking for one of these */
2018	if (u3_0 == NULL && !strcmp(adapter->name, "u3 0")) {
2019		u3_0 = adapter;
2020		DBG("found U3-0\n");
2021		if (k2 || !rackmac)
2022			if (create_control_loops())
2023				u3_0 = NULL;
2024	} else if (u3_1 == NULL && !strcmp(adapter->name, "u3 1")) {
2025		u3_1 = adapter;
2026		DBG("found U3-1, attaching FCU\n");
2027		if (attach_fcu())
2028			u3_1 = NULL;
2029	} else if (k2 == NULL && !strcmp(adapter->name, "mac-io 0")) {
2030		k2 = adapter;
2031		DBG("Found K2\n");
2032		if (u3_0 && rackmac)
2033			if (create_control_loops())
2034				k2 = NULL;
2035	}
2036	/* We got all we need, start control loops */
2037	if (u3_0 != NULL && u3_1 != NULL && (k2 || !rackmac)) {
2038		DBG("everything up, starting control loops\n");
2039		state = state_attached;
2040		start_control_loops();
2041	}
2042	mutex_unlock(&driver_lock);
2043
2044	return 0;
2045}
2046
2047static int therm_pm72_probe(struct i2c_client *client,
2048			    const struct i2c_device_id *id)
2049{
2050	/* Always succeed, the real work was done in therm_pm72_attach() */
2051	return 0;
2052}
2053
2054/*
2055 * Called when any of the devices which participates into thermal management
2056 * is going away.
2057 */
2058static int therm_pm72_remove(struct i2c_client *client)
2059{
2060	struct i2c_adapter *adapter = client->adapter;
2061
2062	mutex_lock(&driver_lock);
2063
2064	if (state != state_detached)
2065		state = state_detaching;
2066
2067	/* Stop control loops if any */
2068	DBG("stopping control loops\n");
2069	mutex_unlock(&driver_lock);
2070	stop_control_loops();
2071	mutex_lock(&driver_lock);
2072
2073	if (u3_0 != NULL && !strcmp(adapter->name, "u3 0")) {
2074		DBG("lost U3-0, disposing control loops\n");
2075		dispose_control_loops();
2076		u3_0 = NULL;
2077	}
2078	
2079	if (u3_1 != NULL && !strcmp(adapter->name, "u3 1")) {
2080		DBG("lost U3-1, detaching FCU\n");
2081		detach_fcu();
2082		u3_1 = NULL;
2083	}
2084	if (u3_0 == NULL && u3_1 == NULL)
2085		state = state_detached;
2086
2087	mutex_unlock(&driver_lock);
2088
2089	return 0;
2090}
2091
2092/*
2093 * i2c_driver structure to attach to the host i2c controller
2094 */
2095
2096static const struct i2c_device_id therm_pm72_id[] = {
2097	/*
2098	 * Fake device name, thermal management is done by several
2099	 * chips but we don't need to differentiate between them at
2100	 * this point.
2101	 */
2102	{ "therm_pm72", 0 },
2103	{ }
2104};
2105
2106static struct i2c_driver therm_pm72_driver = {
2107	.driver = {
2108		.name	= "therm_pm72",
2109	},
2110	.attach_adapter	= therm_pm72_attach,
2111	.probe		= therm_pm72_probe,
2112	.remove		= therm_pm72_remove,
2113	.id_table	= therm_pm72_id,
2114};
2115
2116static int fan_check_loc_match(const char *loc, int fan)
2117{
2118	char	tmp[64];
2119	char	*c, *e;
2120
2121	strlcpy(tmp, fcu_fans[fan].loc, 64);
2122
2123	c = tmp;
2124	for (;;) {
2125		e = strchr(c, ',');
2126		if (e)
2127			*e = 0;
2128		if (strcmp(loc, c) == 0)
2129			return 1;
2130		if (e == NULL)
2131			break;
2132		c = e + 1;
2133	}
2134	return 0;
2135}
2136
2137static void fcu_lookup_fans(struct device_node *fcu_node)
2138{
2139	struct device_node *np = NULL;
2140	int i;
2141
2142	/* The table is filled by default with values that are suitable
2143	 * for the old machines without device-tree informations. We scan
2144	 * the device-tree and override those values with whatever is
2145	 * there
2146	 */
2147
2148	DBG("Looking up FCU controls in device-tree...\n");
2149
2150	while ((np = of_get_next_child(fcu_node, np)) != NULL) {
2151		int type = -1;
2152		const char *loc;
2153		const u32 *reg;
2154
2155		DBG(" control: %s, type: %s\n", np->name, np->type);
2156
2157		/* Detect control type */
2158		if (!strcmp(np->type, "fan-rpm-control") ||
2159		    !strcmp(np->type, "fan-rpm"))
2160			type = FCU_FAN_RPM;
2161		if (!strcmp(np->type, "fan-pwm-control") ||
2162		    !strcmp(np->type, "fan-pwm"))
2163			type = FCU_FAN_PWM;
2164		/* Only care about fans for now */
2165		if (type == -1)
2166			continue;
2167
2168		/* Lookup for a matching location */
2169		loc = of_get_property(np, "location", NULL);
2170		reg = of_get_property(np, "reg", NULL);
2171		if (loc == NULL || reg == NULL)
2172			continue;
2173		DBG(" matching location: %s, reg: 0x%08x\n", loc, *reg);
2174
2175		for (i = 0; i < FCU_FAN_COUNT; i++) {
2176			int fan_id;
2177
2178			if (!fan_check_loc_match(loc, i))
2179				continue;
2180			DBG(" location match, index: %d\n", i);
2181			fcu_fans[i].id = FCU_FAN_ABSENT_ID;
2182			if (type != fcu_fans[i].type) {
2183				printk(KERN_WARNING "therm_pm72: Fan type mismatch "
2184				       "in device-tree for %s\n", np->full_name);
2185				break;
2186			}
2187			if (type == FCU_FAN_RPM)
2188				fan_id = ((*reg) - 0x10) / 2;
2189			else
2190				fan_id = ((*reg) - 0x30) / 2;
2191			if (fan_id > 7) {
2192				printk(KERN_WARNING "therm_pm72: Can't parse "
2193				       "fan ID in device-tree for %s\n", np->full_name);
2194				break;
2195			}
2196			DBG(" fan id -> %d, type -> %d\n", fan_id, type);
2197			fcu_fans[i].id = fan_id;
2198		}
2199	}
2200
2201	/* Now dump the array */
2202	printk(KERN_INFO "Detected fan controls:\n");
2203	for (i = 0; i < FCU_FAN_COUNT; i++) {
2204		if (fcu_fans[i].id == FCU_FAN_ABSENT_ID)
2205			continue;
2206		printk(KERN_INFO "  %d: %s fan, id %d, location: %s\n", i,
2207		       fcu_fans[i].type == FCU_FAN_RPM ? "RPM" : "PWM",
2208		       fcu_fans[i].id, fcu_fans[i].loc);
2209	}
2210}
2211
2212static int fcu_of_probe(struct platform_device* dev)
2213{
2214	state = state_detached;
2215	of_dev = dev;
2216
2217	dev_info(&dev->dev, "PowerMac G5 Thermal control driver %s\n", VERSION);
2218
2219	/* Lookup the fans in the device tree */
2220	fcu_lookup_fans(dev->dev.of_node);
2221
2222	/* Add the driver */
2223	return i2c_add_driver(&therm_pm72_driver);
2224}
2225
2226static int fcu_of_remove(struct platform_device* dev)
2227{
2228	i2c_del_driver(&therm_pm72_driver);
2229
2230	return 0;
2231}
2232
2233static const struct of_device_id fcu_match[] = 
2234{
2235	{
2236	.type		= "fcu",
2237	},
2238	{},
2239};
2240MODULE_DEVICE_TABLE(of, fcu_match);
2241
2242static struct platform_driver fcu_of_platform_driver = 
2243{
2244	.driver = {
2245		.name = "temperature",
2246		.owner = THIS_MODULE,
2247		.of_match_table = fcu_match,
2248	},
2249	.probe		= fcu_of_probe,
2250	.remove		= fcu_of_remove
2251};
2252
2253/*
2254 * Check machine type, attach to i2c controller
2255 */
2256static int __init therm_pm72_init(void)
2257{
2258	rackmac = of_machine_is_compatible("RackMac3,1");
2259
2260	if (!of_machine_is_compatible("PowerMac7,2") &&
2261	    !of_machine_is_compatible("PowerMac7,3") &&
2262	    !rackmac)
2263	    	return -ENODEV;
2264
2265	return platform_driver_register(&fcu_of_platform_driver);
2266}
2267
2268static void __exit therm_pm72_exit(void)
2269{
2270	platform_driver_unregister(&fcu_of_platform_driver);
2271}
2272
2273module_init(therm_pm72_init);
2274module_exit(therm_pm72_exit);
2275
2276MODULE_AUTHOR("Benjamin Herrenschmidt <benh@kernel.crashing.org>");
2277MODULE_DESCRIPTION("Driver for Apple's PowerMac G5 thermal control");
2278MODULE_LICENSE("GPL");
2279