Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2012 Texas Instruments
4 * Author: Rob Clark <robdclark@gmail.com>
5 */
6
7#include <linux/component.h>
8#include <linux/gpio/consumer.h>
9#include <linux/hdmi.h>
10#include <linux/module.h>
11#include <linux/platform_data/tda9950.h>
12#include <linux/irq.h>
13#include <sound/asoundef.h>
14#include <sound/hdmi-codec.h>
15
16#include <drm/drm_atomic_helper.h>
17#include <drm/drm_bridge.h>
18#include <drm/drm_edid.h>
19#include <drm/drm_of.h>
20#include <drm/drm_print.h>
21#include <drm/drm_probe_helper.h>
22#include <drm/drm_simple_kms_helper.h>
23#include <drm/i2c/tda998x.h>
24
25#include <media/cec-notifier.h>
26
27#define DBG(fmt, ...) DRM_DEBUG(fmt"\n", ##__VA_ARGS__)
28
29enum {
30 AUDIO_ROUTE_I2S,
31 AUDIO_ROUTE_SPDIF,
32 AUDIO_ROUTE_NUM
33};
34
35struct tda998x_audio_route {
36 u8 ena_aclk;
37 u8 mux_ap;
38 u8 aip_clksel;
39};
40
41struct tda998x_audio_settings {
42 const struct tda998x_audio_route *route;
43 struct hdmi_audio_infoframe cea;
44 unsigned int sample_rate;
45 u8 status[5];
46 u8 ena_ap;
47 u8 i2s_format;
48 u8 cts_n;
49};
50
51struct tda998x_priv {
52 struct i2c_client *cec;
53 struct i2c_client *hdmi;
54 struct mutex mutex;
55 u16 rev;
56 u8 cec_addr;
57 u8 current_page;
58 bool is_on;
59 bool supports_infoframes;
60 bool sink_has_audio;
61 enum hdmi_quantization_range rgb_quant_range;
62 u8 vip_cntrl_0;
63 u8 vip_cntrl_1;
64 u8 vip_cntrl_2;
65 unsigned long tmds_clock;
66 struct tda998x_audio_settings audio;
67
68 struct platform_device *audio_pdev;
69 struct mutex audio_mutex;
70
71 struct mutex edid_mutex;
72 wait_queue_head_t wq_edid;
73 volatile int wq_edid_wait;
74
75 struct work_struct detect_work;
76 struct timer_list edid_delay_timer;
77 wait_queue_head_t edid_delay_waitq;
78 bool edid_delay_active;
79
80 struct drm_encoder encoder;
81 struct drm_bridge bridge;
82 struct drm_connector connector;
83
84 u8 audio_port_enable[AUDIO_ROUTE_NUM];
85 struct tda9950_glue cec_glue;
86 struct gpio_desc *calib;
87 struct cec_notifier *cec_notify;
88};
89
90#define conn_to_tda998x_priv(x) \
91 container_of(x, struct tda998x_priv, connector)
92#define enc_to_tda998x_priv(x) \
93 container_of(x, struct tda998x_priv, encoder)
94#define bridge_to_tda998x_priv(x) \
95 container_of(x, struct tda998x_priv, bridge)
96
97/* The TDA9988 series of devices use a paged register scheme.. to simplify
98 * things we encode the page # in upper bits of the register #. To read/
99 * write a given register, we need to make sure CURPAGE register is set
100 * appropriately. Which implies reads/writes are not atomic. Fun!
101 */
102
103#define REG(page, addr) (((page) << 8) | (addr))
104#define REG2ADDR(reg) ((reg) & 0xff)
105#define REG2PAGE(reg) (((reg) >> 8) & 0xff)
106
107#define REG_CURPAGE 0xff /* write */
108
109
110/* Page 00h: General Control */
111#define REG_VERSION_LSB REG(0x00, 0x00) /* read */
112#define REG_MAIN_CNTRL0 REG(0x00, 0x01) /* read/write */
113# define MAIN_CNTRL0_SR (1 << 0)
114# define MAIN_CNTRL0_DECS (1 << 1)
115# define MAIN_CNTRL0_DEHS (1 << 2)
116# define MAIN_CNTRL0_CECS (1 << 3)
117# define MAIN_CNTRL0_CEHS (1 << 4)
118# define MAIN_CNTRL0_SCALER (1 << 7)
119#define REG_VERSION_MSB REG(0x00, 0x02) /* read */
120#define REG_SOFTRESET REG(0x00, 0x0a) /* write */
121# define SOFTRESET_AUDIO (1 << 0)
122# define SOFTRESET_I2C_MASTER (1 << 1)
123#define REG_DDC_DISABLE REG(0x00, 0x0b) /* read/write */
124#define REG_CCLK_ON REG(0x00, 0x0c) /* read/write */
125#define REG_I2C_MASTER REG(0x00, 0x0d) /* read/write */
126# define I2C_MASTER_DIS_MM (1 << 0)
127# define I2C_MASTER_DIS_FILT (1 << 1)
128# define I2C_MASTER_APP_STRT_LAT (1 << 2)
129#define REG_FEAT_POWERDOWN REG(0x00, 0x0e) /* read/write */
130# define FEAT_POWERDOWN_PREFILT BIT(0)
131# define FEAT_POWERDOWN_CSC BIT(1)
132# define FEAT_POWERDOWN_SPDIF (1 << 3)
133#define REG_INT_FLAGS_0 REG(0x00, 0x0f) /* read/write */
134#define REG_INT_FLAGS_1 REG(0x00, 0x10) /* read/write */
135#define REG_INT_FLAGS_2 REG(0x00, 0x11) /* read/write */
136# define INT_FLAGS_2_EDID_BLK_RD (1 << 1)
137#define REG_ENA_ACLK REG(0x00, 0x16) /* read/write */
138#define REG_ENA_VP_0 REG(0x00, 0x18) /* read/write */
139#define REG_ENA_VP_1 REG(0x00, 0x19) /* read/write */
140#define REG_ENA_VP_2 REG(0x00, 0x1a) /* read/write */
141#define REG_ENA_AP REG(0x00, 0x1e) /* read/write */
142#define REG_VIP_CNTRL_0 REG(0x00, 0x20) /* write */
143# define VIP_CNTRL_0_MIRR_A (1 << 7)
144# define VIP_CNTRL_0_SWAP_A(x) (((x) & 7) << 4)
145# define VIP_CNTRL_0_MIRR_B (1 << 3)
146# define VIP_CNTRL_0_SWAP_B(x) (((x) & 7) << 0)
147#define REG_VIP_CNTRL_1 REG(0x00, 0x21) /* write */
148# define VIP_CNTRL_1_MIRR_C (1 << 7)
149# define VIP_CNTRL_1_SWAP_C(x) (((x) & 7) << 4)
150# define VIP_CNTRL_1_MIRR_D (1 << 3)
151# define VIP_CNTRL_1_SWAP_D(x) (((x) & 7) << 0)
152#define REG_VIP_CNTRL_2 REG(0x00, 0x22) /* write */
153# define VIP_CNTRL_2_MIRR_E (1 << 7)
154# define VIP_CNTRL_2_SWAP_E(x) (((x) & 7) << 4)
155# define VIP_CNTRL_2_MIRR_F (1 << 3)
156# define VIP_CNTRL_2_SWAP_F(x) (((x) & 7) << 0)
157#define REG_VIP_CNTRL_3 REG(0x00, 0x23) /* write */
158# define VIP_CNTRL_3_X_TGL (1 << 0)
159# define VIP_CNTRL_3_H_TGL (1 << 1)
160# define VIP_CNTRL_3_V_TGL (1 << 2)
161# define VIP_CNTRL_3_EMB (1 << 3)
162# define VIP_CNTRL_3_SYNC_DE (1 << 4)
163# define VIP_CNTRL_3_SYNC_HS (1 << 5)
164# define VIP_CNTRL_3_DE_INT (1 << 6)
165# define VIP_CNTRL_3_EDGE (1 << 7)
166#define REG_VIP_CNTRL_4 REG(0x00, 0x24) /* write */
167# define VIP_CNTRL_4_BLC(x) (((x) & 3) << 0)
168# define VIP_CNTRL_4_BLANKIT(x) (((x) & 3) << 2)
169# define VIP_CNTRL_4_CCIR656 (1 << 4)
170# define VIP_CNTRL_4_656_ALT (1 << 5)
171# define VIP_CNTRL_4_TST_656 (1 << 6)
172# define VIP_CNTRL_4_TST_PAT (1 << 7)
173#define REG_VIP_CNTRL_5 REG(0x00, 0x25) /* write */
174# define VIP_CNTRL_5_CKCASE (1 << 0)
175# define VIP_CNTRL_5_SP_CNT(x) (((x) & 3) << 1)
176#define REG_MUX_AP REG(0x00, 0x26) /* read/write */
177# define MUX_AP_SELECT_I2S 0x64
178# define MUX_AP_SELECT_SPDIF 0x40
179#define REG_MUX_VP_VIP_OUT REG(0x00, 0x27) /* read/write */
180#define REG_MAT_CONTRL REG(0x00, 0x80) /* write */
181# define MAT_CONTRL_MAT_SC(x) (((x) & 3) << 0)
182# define MAT_CONTRL_MAT_BP (1 << 2)
183#define REG_VIDFORMAT REG(0x00, 0xa0) /* write */
184#define REG_REFPIX_MSB REG(0x00, 0xa1) /* write */
185#define REG_REFPIX_LSB REG(0x00, 0xa2) /* write */
186#define REG_REFLINE_MSB REG(0x00, 0xa3) /* write */
187#define REG_REFLINE_LSB REG(0x00, 0xa4) /* write */
188#define REG_NPIX_MSB REG(0x00, 0xa5) /* write */
189#define REG_NPIX_LSB REG(0x00, 0xa6) /* write */
190#define REG_NLINE_MSB REG(0x00, 0xa7) /* write */
191#define REG_NLINE_LSB REG(0x00, 0xa8) /* write */
192#define REG_VS_LINE_STRT_1_MSB REG(0x00, 0xa9) /* write */
193#define REG_VS_LINE_STRT_1_LSB REG(0x00, 0xaa) /* write */
194#define REG_VS_PIX_STRT_1_MSB REG(0x00, 0xab) /* write */
195#define REG_VS_PIX_STRT_1_LSB REG(0x00, 0xac) /* write */
196#define REG_VS_LINE_END_1_MSB REG(0x00, 0xad) /* write */
197#define REG_VS_LINE_END_1_LSB REG(0x00, 0xae) /* write */
198#define REG_VS_PIX_END_1_MSB REG(0x00, 0xaf) /* write */
199#define REG_VS_PIX_END_1_LSB REG(0x00, 0xb0) /* write */
200#define REG_VS_LINE_STRT_2_MSB REG(0x00, 0xb1) /* write */
201#define REG_VS_LINE_STRT_2_LSB REG(0x00, 0xb2) /* write */
202#define REG_VS_PIX_STRT_2_MSB REG(0x00, 0xb3) /* write */
203#define REG_VS_PIX_STRT_2_LSB REG(0x00, 0xb4) /* write */
204#define REG_VS_LINE_END_2_MSB REG(0x00, 0xb5) /* write */
205#define REG_VS_LINE_END_2_LSB REG(0x00, 0xb6) /* write */
206#define REG_VS_PIX_END_2_MSB REG(0x00, 0xb7) /* write */
207#define REG_VS_PIX_END_2_LSB REG(0x00, 0xb8) /* write */
208#define REG_HS_PIX_START_MSB REG(0x00, 0xb9) /* write */
209#define REG_HS_PIX_START_LSB REG(0x00, 0xba) /* write */
210#define REG_HS_PIX_STOP_MSB REG(0x00, 0xbb) /* write */
211#define REG_HS_PIX_STOP_LSB REG(0x00, 0xbc) /* write */
212#define REG_VWIN_START_1_MSB REG(0x00, 0xbd) /* write */
213#define REG_VWIN_START_1_LSB REG(0x00, 0xbe) /* write */
214#define REG_VWIN_END_1_MSB REG(0x00, 0xbf) /* write */
215#define REG_VWIN_END_1_LSB REG(0x00, 0xc0) /* write */
216#define REG_VWIN_START_2_MSB REG(0x00, 0xc1) /* write */
217#define REG_VWIN_START_2_LSB REG(0x00, 0xc2) /* write */
218#define REG_VWIN_END_2_MSB REG(0x00, 0xc3) /* write */
219#define REG_VWIN_END_2_LSB REG(0x00, 0xc4) /* write */
220#define REG_DE_START_MSB REG(0x00, 0xc5) /* write */
221#define REG_DE_START_LSB REG(0x00, 0xc6) /* write */
222#define REG_DE_STOP_MSB REG(0x00, 0xc7) /* write */
223#define REG_DE_STOP_LSB REG(0x00, 0xc8) /* write */
224#define REG_TBG_CNTRL_0 REG(0x00, 0xca) /* write */
225# define TBG_CNTRL_0_TOP_TGL (1 << 0)
226# define TBG_CNTRL_0_TOP_SEL (1 << 1)
227# define TBG_CNTRL_0_DE_EXT (1 << 2)
228# define TBG_CNTRL_0_TOP_EXT (1 << 3)
229# define TBG_CNTRL_0_FRAME_DIS (1 << 5)
230# define TBG_CNTRL_0_SYNC_MTHD (1 << 6)
231# define TBG_CNTRL_0_SYNC_ONCE (1 << 7)
232#define REG_TBG_CNTRL_1 REG(0x00, 0xcb) /* write */
233# define TBG_CNTRL_1_H_TGL (1 << 0)
234# define TBG_CNTRL_1_V_TGL (1 << 1)
235# define TBG_CNTRL_1_TGL_EN (1 << 2)
236# define TBG_CNTRL_1_X_EXT (1 << 3)
237# define TBG_CNTRL_1_H_EXT (1 << 4)
238# define TBG_CNTRL_1_V_EXT (1 << 5)
239# define TBG_CNTRL_1_DWIN_DIS (1 << 6)
240#define REG_ENABLE_SPACE REG(0x00, 0xd6) /* write */
241#define REG_HVF_CNTRL_0 REG(0x00, 0xe4) /* write */
242# define HVF_CNTRL_0_SM (1 << 7)
243# define HVF_CNTRL_0_RWB (1 << 6)
244# define HVF_CNTRL_0_PREFIL(x) (((x) & 3) << 2)
245# define HVF_CNTRL_0_INTPOL(x) (((x) & 3) << 0)
246#define REG_HVF_CNTRL_1 REG(0x00, 0xe5) /* write */
247# define HVF_CNTRL_1_FOR (1 << 0)
248# define HVF_CNTRL_1_YUVBLK (1 << 1)
249# define HVF_CNTRL_1_VQR(x) (((x) & 3) << 2)
250# define HVF_CNTRL_1_PAD(x) (((x) & 3) << 4)
251# define HVF_CNTRL_1_SEMI_PLANAR (1 << 6)
252#define REG_RPT_CNTRL REG(0x00, 0xf0) /* write */
253# define RPT_CNTRL_REPEAT(x) ((x) & 15)
254#define REG_I2S_FORMAT REG(0x00, 0xfc) /* read/write */
255# define I2S_FORMAT_PHILIPS (0 << 0)
256# define I2S_FORMAT_LEFT_J (2 << 0)
257# define I2S_FORMAT_RIGHT_J (3 << 0)
258#define REG_AIP_CLKSEL REG(0x00, 0xfd) /* write */
259# define AIP_CLKSEL_AIP_SPDIF (0 << 3)
260# define AIP_CLKSEL_AIP_I2S (1 << 3)
261# define AIP_CLKSEL_FS_ACLK (0 << 0)
262# define AIP_CLKSEL_FS_MCLK (1 << 0)
263# define AIP_CLKSEL_FS_FS64SPDIF (2 << 0)
264
265/* Page 02h: PLL settings */
266#define REG_PLL_SERIAL_1 REG(0x02, 0x00) /* read/write */
267# define PLL_SERIAL_1_SRL_FDN (1 << 0)
268# define PLL_SERIAL_1_SRL_IZ(x) (((x) & 3) << 1)
269# define PLL_SERIAL_1_SRL_MAN_IZ (1 << 6)
270#define REG_PLL_SERIAL_2 REG(0x02, 0x01) /* read/write */
271# define PLL_SERIAL_2_SRL_NOSC(x) ((x) << 0)
272# define PLL_SERIAL_2_SRL_PR(x) (((x) & 0xf) << 4)
273#define REG_PLL_SERIAL_3 REG(0x02, 0x02) /* read/write */
274# define PLL_SERIAL_3_SRL_CCIR (1 << 0)
275# define PLL_SERIAL_3_SRL_DE (1 << 2)
276# define PLL_SERIAL_3_SRL_PXIN_SEL (1 << 4)
277#define REG_SERIALIZER REG(0x02, 0x03) /* read/write */
278#define REG_BUFFER_OUT REG(0x02, 0x04) /* read/write */
279#define REG_PLL_SCG1 REG(0x02, 0x05) /* read/write */
280#define REG_PLL_SCG2 REG(0x02, 0x06) /* read/write */
281#define REG_PLL_SCGN1 REG(0x02, 0x07) /* read/write */
282#define REG_PLL_SCGN2 REG(0x02, 0x08) /* read/write */
283#define REG_PLL_SCGR1 REG(0x02, 0x09) /* read/write */
284#define REG_PLL_SCGR2 REG(0x02, 0x0a) /* read/write */
285#define REG_AUDIO_DIV REG(0x02, 0x0e) /* read/write */
286# define AUDIO_DIV_SERCLK_1 0
287# define AUDIO_DIV_SERCLK_2 1
288# define AUDIO_DIV_SERCLK_4 2
289# define AUDIO_DIV_SERCLK_8 3
290# define AUDIO_DIV_SERCLK_16 4
291# define AUDIO_DIV_SERCLK_32 5
292#define REG_SEL_CLK REG(0x02, 0x11) /* read/write */
293# define SEL_CLK_SEL_CLK1 (1 << 0)
294# define SEL_CLK_SEL_VRF_CLK(x) (((x) & 3) << 1)
295# define SEL_CLK_ENA_SC_CLK (1 << 3)
296#define REG_ANA_GENERAL REG(0x02, 0x12) /* read/write */
297
298
299/* Page 09h: EDID Control */
300#define REG_EDID_DATA_0 REG(0x09, 0x00) /* read */
301/* next 127 successive registers are the EDID block */
302#define REG_EDID_CTRL REG(0x09, 0xfa) /* read/write */
303#define REG_DDC_ADDR REG(0x09, 0xfb) /* read/write */
304#define REG_DDC_OFFS REG(0x09, 0xfc) /* read/write */
305#define REG_DDC_SEGM_ADDR REG(0x09, 0xfd) /* read/write */
306#define REG_DDC_SEGM REG(0x09, 0xfe) /* read/write */
307
308
309/* Page 10h: information frames and packets */
310#define REG_IF1_HB0 REG(0x10, 0x20) /* read/write */
311#define REG_IF2_HB0 REG(0x10, 0x40) /* read/write */
312#define REG_IF3_HB0 REG(0x10, 0x60) /* read/write */
313#define REG_IF4_HB0 REG(0x10, 0x80) /* read/write */
314#define REG_IF5_HB0 REG(0x10, 0xa0) /* read/write */
315
316
317/* Page 11h: audio settings and content info packets */
318#define REG_AIP_CNTRL_0 REG(0x11, 0x00) /* read/write */
319# define AIP_CNTRL_0_RST_FIFO (1 << 0)
320# define AIP_CNTRL_0_SWAP (1 << 1)
321# define AIP_CNTRL_0_LAYOUT (1 << 2)
322# define AIP_CNTRL_0_ACR_MAN (1 << 5)
323# define AIP_CNTRL_0_RST_CTS (1 << 6)
324#define REG_CA_I2S REG(0x11, 0x01) /* read/write */
325# define CA_I2S_CA_I2S(x) (((x) & 31) << 0)
326# define CA_I2S_HBR_CHSTAT (1 << 6)
327#define REG_LATENCY_RD REG(0x11, 0x04) /* read/write */
328#define REG_ACR_CTS_0 REG(0x11, 0x05) /* read/write */
329#define REG_ACR_CTS_1 REG(0x11, 0x06) /* read/write */
330#define REG_ACR_CTS_2 REG(0x11, 0x07) /* read/write */
331#define REG_ACR_N_0 REG(0x11, 0x08) /* read/write */
332#define REG_ACR_N_1 REG(0x11, 0x09) /* read/write */
333#define REG_ACR_N_2 REG(0x11, 0x0a) /* read/write */
334#define REG_CTS_N REG(0x11, 0x0c) /* read/write */
335# define CTS_N_K(x) (((x) & 7) << 0)
336# define CTS_N_M(x) (((x) & 3) << 4)
337#define REG_ENC_CNTRL REG(0x11, 0x0d) /* read/write */
338# define ENC_CNTRL_RST_ENC (1 << 0)
339# define ENC_CNTRL_RST_SEL (1 << 1)
340# define ENC_CNTRL_CTL_CODE(x) (((x) & 3) << 2)
341#define REG_DIP_FLAGS REG(0x11, 0x0e) /* read/write */
342# define DIP_FLAGS_ACR (1 << 0)
343# define DIP_FLAGS_GC (1 << 1)
344#define REG_DIP_IF_FLAGS REG(0x11, 0x0f) /* read/write */
345# define DIP_IF_FLAGS_IF1 (1 << 1)
346# define DIP_IF_FLAGS_IF2 (1 << 2)
347# define DIP_IF_FLAGS_IF3 (1 << 3)
348# define DIP_IF_FLAGS_IF4 (1 << 4)
349# define DIP_IF_FLAGS_IF5 (1 << 5)
350#define REG_CH_STAT_B(x) REG(0x11, 0x14 + (x)) /* read/write */
351
352
353/* Page 12h: HDCP and OTP */
354#define REG_TX3 REG(0x12, 0x9a) /* read/write */
355#define REG_TX4 REG(0x12, 0x9b) /* read/write */
356# define TX4_PD_RAM (1 << 1)
357#define REG_TX33 REG(0x12, 0xb8) /* read/write */
358# define TX33_HDMI (1 << 1)
359
360
361/* Page 13h: Gamut related metadata packets */
362
363
364
365/* CEC registers: (not paged)
366 */
367#define REG_CEC_INTSTATUS 0xee /* read */
368# define CEC_INTSTATUS_CEC (1 << 0)
369# define CEC_INTSTATUS_HDMI (1 << 1)
370#define REG_CEC_CAL_XOSC_CTRL1 0xf2
371# define CEC_CAL_XOSC_CTRL1_ENA_CAL BIT(0)
372#define REG_CEC_DES_FREQ2 0xf5
373# define CEC_DES_FREQ2_DIS_AUTOCAL BIT(7)
374#define REG_CEC_CLK 0xf6
375# define CEC_CLK_FRO 0x11
376#define REG_CEC_FRO_IM_CLK_CTRL 0xfb /* read/write */
377# define CEC_FRO_IM_CLK_CTRL_GHOST_DIS (1 << 7)
378# define CEC_FRO_IM_CLK_CTRL_ENA_OTP (1 << 6)
379# define CEC_FRO_IM_CLK_CTRL_IMCLK_SEL (1 << 1)
380# define CEC_FRO_IM_CLK_CTRL_FRO_DIV (1 << 0)
381#define REG_CEC_RXSHPDINTENA 0xfc /* read/write */
382#define REG_CEC_RXSHPDINT 0xfd /* read */
383# define CEC_RXSHPDINT_RXSENS BIT(0)
384# define CEC_RXSHPDINT_HPD BIT(1)
385#define REG_CEC_RXSHPDLEV 0xfe /* read */
386# define CEC_RXSHPDLEV_RXSENS (1 << 0)
387# define CEC_RXSHPDLEV_HPD (1 << 1)
388
389#define REG_CEC_ENAMODS 0xff /* read/write */
390# define CEC_ENAMODS_EN_CEC_CLK (1 << 7)
391# define CEC_ENAMODS_DIS_FRO (1 << 6)
392# define CEC_ENAMODS_DIS_CCLK (1 << 5)
393# define CEC_ENAMODS_EN_RXSENS (1 << 2)
394# define CEC_ENAMODS_EN_HDMI (1 << 1)
395# define CEC_ENAMODS_EN_CEC (1 << 0)
396
397
398/* Device versions: */
399#define TDA9989N2 0x0101
400#define TDA19989 0x0201
401#define TDA19989N2 0x0202
402#define TDA19988 0x0301
403
404static void
405cec_write(struct tda998x_priv *priv, u16 addr, u8 val)
406{
407 u8 buf[] = {addr, val};
408 struct i2c_msg msg = {
409 .addr = priv->cec_addr,
410 .len = 2,
411 .buf = buf,
412 };
413 int ret;
414
415 ret = i2c_transfer(priv->hdmi->adapter, &msg, 1);
416 if (ret < 0)
417 dev_err(&priv->hdmi->dev, "Error %d writing to cec:0x%x\n",
418 ret, addr);
419}
420
421static u8
422cec_read(struct tda998x_priv *priv, u8 addr)
423{
424 u8 val;
425 struct i2c_msg msg[2] = {
426 {
427 .addr = priv->cec_addr,
428 .len = 1,
429 .buf = &addr,
430 }, {
431 .addr = priv->cec_addr,
432 .flags = I2C_M_RD,
433 .len = 1,
434 .buf = &val,
435 },
436 };
437 int ret;
438
439 ret = i2c_transfer(priv->hdmi->adapter, msg, ARRAY_SIZE(msg));
440 if (ret < 0) {
441 dev_err(&priv->hdmi->dev, "Error %d reading from cec:0x%x\n",
442 ret, addr);
443 val = 0;
444 }
445
446 return val;
447}
448
449static void cec_enamods(struct tda998x_priv *priv, u8 mods, bool enable)
450{
451 int val = cec_read(priv, REG_CEC_ENAMODS);
452
453 if (val < 0)
454 return;
455
456 if (enable)
457 val |= mods;
458 else
459 val &= ~mods;
460
461 cec_write(priv, REG_CEC_ENAMODS, val);
462}
463
464static void tda998x_cec_set_calibration(struct tda998x_priv *priv, bool enable)
465{
466 if (enable) {
467 u8 val;
468
469 cec_write(priv, 0xf3, 0xc0);
470 cec_write(priv, 0xf4, 0xd4);
471
472 /* Enable automatic calibration mode */
473 val = cec_read(priv, REG_CEC_DES_FREQ2);
474 val &= ~CEC_DES_FREQ2_DIS_AUTOCAL;
475 cec_write(priv, REG_CEC_DES_FREQ2, val);
476
477 /* Enable free running oscillator */
478 cec_write(priv, REG_CEC_CLK, CEC_CLK_FRO);
479 cec_enamods(priv, CEC_ENAMODS_DIS_FRO, false);
480
481 cec_write(priv, REG_CEC_CAL_XOSC_CTRL1,
482 CEC_CAL_XOSC_CTRL1_ENA_CAL);
483 } else {
484 cec_write(priv, REG_CEC_CAL_XOSC_CTRL1, 0);
485 }
486}
487
488/*
489 * Calibration for the internal oscillator: we need to set calibration mode,
490 * and then pulse the IRQ line low for a 10ms ± 1% period.
491 */
492static void tda998x_cec_calibration(struct tda998x_priv *priv)
493{
494 struct gpio_desc *calib = priv->calib;
495
496 mutex_lock(&priv->edid_mutex);
497 if (priv->hdmi->irq > 0)
498 disable_irq(priv->hdmi->irq);
499 gpiod_direction_output(calib, 1);
500 tda998x_cec_set_calibration(priv, true);
501
502 local_irq_disable();
503 gpiod_set_value(calib, 0);
504 mdelay(10);
505 gpiod_set_value(calib, 1);
506 local_irq_enable();
507
508 tda998x_cec_set_calibration(priv, false);
509 gpiod_direction_input(calib);
510 if (priv->hdmi->irq > 0)
511 enable_irq(priv->hdmi->irq);
512 mutex_unlock(&priv->edid_mutex);
513}
514
515static int tda998x_cec_hook_init(void *data)
516{
517 struct tda998x_priv *priv = data;
518 struct gpio_desc *calib;
519
520 calib = gpiod_get(&priv->hdmi->dev, "nxp,calib", GPIOD_ASIS);
521 if (IS_ERR(calib)) {
522 dev_warn(&priv->hdmi->dev, "failed to get calibration gpio: %ld\n",
523 PTR_ERR(calib));
524 return PTR_ERR(calib);
525 }
526
527 priv->calib = calib;
528
529 return 0;
530}
531
532static void tda998x_cec_hook_exit(void *data)
533{
534 struct tda998x_priv *priv = data;
535
536 gpiod_put(priv->calib);
537 priv->calib = NULL;
538}
539
540static int tda998x_cec_hook_open(void *data)
541{
542 struct tda998x_priv *priv = data;
543
544 cec_enamods(priv, CEC_ENAMODS_EN_CEC_CLK | CEC_ENAMODS_EN_CEC, true);
545 tda998x_cec_calibration(priv);
546
547 return 0;
548}
549
550static void tda998x_cec_hook_release(void *data)
551{
552 struct tda998x_priv *priv = data;
553
554 cec_enamods(priv, CEC_ENAMODS_EN_CEC_CLK | CEC_ENAMODS_EN_CEC, false);
555}
556
557static int
558set_page(struct tda998x_priv *priv, u16 reg)
559{
560 if (REG2PAGE(reg) != priv->current_page) {
561 struct i2c_client *client = priv->hdmi;
562 u8 buf[] = {
563 REG_CURPAGE, REG2PAGE(reg)
564 };
565 int ret = i2c_master_send(client, buf, sizeof(buf));
566 if (ret < 0) {
567 dev_err(&client->dev, "%s %04x err %d\n", __func__,
568 reg, ret);
569 return ret;
570 }
571
572 priv->current_page = REG2PAGE(reg);
573 }
574 return 0;
575}
576
577static int
578reg_read_range(struct tda998x_priv *priv, u16 reg, char *buf, int cnt)
579{
580 struct i2c_client *client = priv->hdmi;
581 u8 addr = REG2ADDR(reg);
582 int ret;
583
584 mutex_lock(&priv->mutex);
585 ret = set_page(priv, reg);
586 if (ret < 0)
587 goto out;
588
589 ret = i2c_master_send(client, &addr, sizeof(addr));
590 if (ret < 0)
591 goto fail;
592
593 ret = i2c_master_recv(client, buf, cnt);
594 if (ret < 0)
595 goto fail;
596
597 goto out;
598
599fail:
600 dev_err(&client->dev, "Error %d reading from 0x%x\n", ret, reg);
601out:
602 mutex_unlock(&priv->mutex);
603 return ret;
604}
605
606#define MAX_WRITE_RANGE_BUF 32
607
608static void
609reg_write_range(struct tda998x_priv *priv, u16 reg, u8 *p, int cnt)
610{
611 struct i2c_client *client = priv->hdmi;
612 /* This is the maximum size of the buffer passed in */
613 u8 buf[MAX_WRITE_RANGE_BUF + 1];
614 int ret;
615
616 if (cnt > MAX_WRITE_RANGE_BUF) {
617 dev_err(&client->dev, "Fixed write buffer too small (%d)\n",
618 MAX_WRITE_RANGE_BUF);
619 return;
620 }
621
622 buf[0] = REG2ADDR(reg);
623 memcpy(&buf[1], p, cnt);
624
625 mutex_lock(&priv->mutex);
626 ret = set_page(priv, reg);
627 if (ret < 0)
628 goto out;
629
630 ret = i2c_master_send(client, buf, cnt + 1);
631 if (ret < 0)
632 dev_err(&client->dev, "Error %d writing to 0x%x\n", ret, reg);
633out:
634 mutex_unlock(&priv->mutex);
635}
636
637static int
638reg_read(struct tda998x_priv *priv, u16 reg)
639{
640 u8 val = 0;
641 int ret;
642
643 ret = reg_read_range(priv, reg, &val, sizeof(val));
644 if (ret < 0)
645 return ret;
646 return val;
647}
648
649static void
650reg_write(struct tda998x_priv *priv, u16 reg, u8 val)
651{
652 struct i2c_client *client = priv->hdmi;
653 u8 buf[] = {REG2ADDR(reg), val};
654 int ret;
655
656 mutex_lock(&priv->mutex);
657 ret = set_page(priv, reg);
658 if (ret < 0)
659 goto out;
660
661 ret = i2c_master_send(client, buf, sizeof(buf));
662 if (ret < 0)
663 dev_err(&client->dev, "Error %d writing to 0x%x\n", ret, reg);
664out:
665 mutex_unlock(&priv->mutex);
666}
667
668static void
669reg_write16(struct tda998x_priv *priv, u16 reg, u16 val)
670{
671 struct i2c_client *client = priv->hdmi;
672 u8 buf[] = {REG2ADDR(reg), val >> 8, val};
673 int ret;
674
675 mutex_lock(&priv->mutex);
676 ret = set_page(priv, reg);
677 if (ret < 0)
678 goto out;
679
680 ret = i2c_master_send(client, buf, sizeof(buf));
681 if (ret < 0)
682 dev_err(&client->dev, "Error %d writing to 0x%x\n", ret, reg);
683out:
684 mutex_unlock(&priv->mutex);
685}
686
687static void
688reg_set(struct tda998x_priv *priv, u16 reg, u8 val)
689{
690 int old_val;
691
692 old_val = reg_read(priv, reg);
693 if (old_val >= 0)
694 reg_write(priv, reg, old_val | val);
695}
696
697static void
698reg_clear(struct tda998x_priv *priv, u16 reg, u8 val)
699{
700 int old_val;
701
702 old_val = reg_read(priv, reg);
703 if (old_val >= 0)
704 reg_write(priv, reg, old_val & ~val);
705}
706
707static void
708tda998x_reset(struct tda998x_priv *priv)
709{
710 /* reset audio and i2c master: */
711 reg_write(priv, REG_SOFTRESET, SOFTRESET_AUDIO | SOFTRESET_I2C_MASTER);
712 msleep(50);
713 reg_write(priv, REG_SOFTRESET, 0);
714 msleep(50);
715
716 /* reset transmitter: */
717 reg_set(priv, REG_MAIN_CNTRL0, MAIN_CNTRL0_SR);
718 reg_clear(priv, REG_MAIN_CNTRL0, MAIN_CNTRL0_SR);
719
720 /* PLL registers common configuration */
721 reg_write(priv, REG_PLL_SERIAL_1, 0x00);
722 reg_write(priv, REG_PLL_SERIAL_2, PLL_SERIAL_2_SRL_NOSC(1));
723 reg_write(priv, REG_PLL_SERIAL_3, 0x00);
724 reg_write(priv, REG_SERIALIZER, 0x00);
725 reg_write(priv, REG_BUFFER_OUT, 0x00);
726 reg_write(priv, REG_PLL_SCG1, 0x00);
727 reg_write(priv, REG_AUDIO_DIV, AUDIO_DIV_SERCLK_8);
728 reg_write(priv, REG_SEL_CLK, SEL_CLK_SEL_CLK1 | SEL_CLK_ENA_SC_CLK);
729 reg_write(priv, REG_PLL_SCGN1, 0xfa);
730 reg_write(priv, REG_PLL_SCGN2, 0x00);
731 reg_write(priv, REG_PLL_SCGR1, 0x5b);
732 reg_write(priv, REG_PLL_SCGR2, 0x00);
733 reg_write(priv, REG_PLL_SCG2, 0x10);
734
735 /* Write the default value MUX register */
736 reg_write(priv, REG_MUX_VP_VIP_OUT, 0x24);
737}
738
739/*
740 * The TDA998x has a problem when trying to read the EDID close to a
741 * HPD assertion: it needs a delay of 100ms to avoid timing out while
742 * trying to read EDID data.
743 *
744 * However, tda998x_connector_get_modes() may be called at any moment
745 * after tda998x_connector_detect() indicates that we are connected, so
746 * we need to delay probing modes in tda998x_connector_get_modes() after
747 * we have seen a HPD inactive->active transition. This code implements
748 * that delay.
749 */
750static void tda998x_edid_delay_done(struct timer_list *t)
751{
752 struct tda998x_priv *priv = from_timer(priv, t, edid_delay_timer);
753
754 priv->edid_delay_active = false;
755 wake_up(&priv->edid_delay_waitq);
756 schedule_work(&priv->detect_work);
757}
758
759static void tda998x_edid_delay_start(struct tda998x_priv *priv)
760{
761 priv->edid_delay_active = true;
762 mod_timer(&priv->edid_delay_timer, jiffies + HZ/10);
763}
764
765static int tda998x_edid_delay_wait(struct tda998x_priv *priv)
766{
767 return wait_event_killable(priv->edid_delay_waitq, !priv->edid_delay_active);
768}
769
770/*
771 * We need to run the KMS hotplug event helper outside of our threaded
772 * interrupt routine as this can call back into our get_modes method,
773 * which will want to make use of interrupts.
774 */
775static void tda998x_detect_work(struct work_struct *work)
776{
777 struct tda998x_priv *priv =
778 container_of(work, struct tda998x_priv, detect_work);
779 struct drm_device *dev = priv->connector.dev;
780
781 if (dev)
782 drm_kms_helper_hotplug_event(dev);
783}
784
785/*
786 * only 2 interrupts may occur: screen plug/unplug and EDID read
787 */
788static irqreturn_t tda998x_irq_thread(int irq, void *data)
789{
790 struct tda998x_priv *priv = data;
791 u8 sta, cec, lvl, flag0, flag1, flag2;
792 bool handled = false;
793
794 sta = cec_read(priv, REG_CEC_INTSTATUS);
795 if (sta & CEC_INTSTATUS_HDMI) {
796 cec = cec_read(priv, REG_CEC_RXSHPDINT);
797 lvl = cec_read(priv, REG_CEC_RXSHPDLEV);
798 flag0 = reg_read(priv, REG_INT_FLAGS_0);
799 flag1 = reg_read(priv, REG_INT_FLAGS_1);
800 flag2 = reg_read(priv, REG_INT_FLAGS_2);
801 DRM_DEBUG_DRIVER(
802 "tda irq sta %02x cec %02x lvl %02x f0 %02x f1 %02x f2 %02x\n",
803 sta, cec, lvl, flag0, flag1, flag2);
804
805 if (cec & CEC_RXSHPDINT_HPD) {
806 if (lvl & CEC_RXSHPDLEV_HPD) {
807 tda998x_edid_delay_start(priv);
808 } else {
809 schedule_work(&priv->detect_work);
810 cec_notifier_phys_addr_invalidate(
811 priv->cec_notify);
812 }
813
814 handled = true;
815 }
816
817 if ((flag2 & INT_FLAGS_2_EDID_BLK_RD) && priv->wq_edid_wait) {
818 priv->wq_edid_wait = 0;
819 wake_up(&priv->wq_edid);
820 handled = true;
821 }
822 }
823
824 return IRQ_RETVAL(handled);
825}
826
827static void
828tda998x_write_if(struct tda998x_priv *priv, u8 bit, u16 addr,
829 union hdmi_infoframe *frame)
830{
831 u8 buf[MAX_WRITE_RANGE_BUF];
832 ssize_t len;
833
834 len = hdmi_infoframe_pack(frame, buf, sizeof(buf));
835 if (len < 0) {
836 dev_err(&priv->hdmi->dev,
837 "hdmi_infoframe_pack() type=0x%02x failed: %zd\n",
838 frame->any.type, len);
839 return;
840 }
841
842 reg_clear(priv, REG_DIP_IF_FLAGS, bit);
843 reg_write_range(priv, addr, buf, len);
844 reg_set(priv, REG_DIP_IF_FLAGS, bit);
845}
846
847static void tda998x_write_aif(struct tda998x_priv *priv,
848 const struct hdmi_audio_infoframe *cea)
849{
850 union hdmi_infoframe frame;
851
852 frame.audio = *cea;
853
854 tda998x_write_if(priv, DIP_IF_FLAGS_IF4, REG_IF4_HB0, &frame);
855}
856
857static void
858tda998x_write_avi(struct tda998x_priv *priv, const struct drm_display_mode *mode)
859{
860 union hdmi_infoframe frame;
861
862 drm_hdmi_avi_infoframe_from_display_mode(&frame.avi,
863 &priv->connector, mode);
864 frame.avi.quantization_range = HDMI_QUANTIZATION_RANGE_FULL;
865 drm_hdmi_avi_infoframe_quant_range(&frame.avi, &priv->connector, mode,
866 priv->rgb_quant_range);
867
868 tda998x_write_if(priv, DIP_IF_FLAGS_IF2, REG_IF2_HB0, &frame);
869}
870
871static void tda998x_write_vsi(struct tda998x_priv *priv,
872 const struct drm_display_mode *mode)
873{
874 union hdmi_infoframe frame;
875
876 if (drm_hdmi_vendor_infoframe_from_display_mode(&frame.vendor.hdmi,
877 &priv->connector,
878 mode))
879 reg_clear(priv, REG_DIP_IF_FLAGS, DIP_IF_FLAGS_IF1);
880 else
881 tda998x_write_if(priv, DIP_IF_FLAGS_IF1, REG_IF1_HB0, &frame);
882}
883
884/* Audio support */
885
886static const struct tda998x_audio_route tda998x_audio_route[AUDIO_ROUTE_NUM] = {
887 [AUDIO_ROUTE_I2S] = {
888 .ena_aclk = 1,
889 .mux_ap = MUX_AP_SELECT_I2S,
890 .aip_clksel = AIP_CLKSEL_AIP_I2S | AIP_CLKSEL_FS_ACLK,
891 },
892 [AUDIO_ROUTE_SPDIF] = {
893 .ena_aclk = 0,
894 .mux_ap = MUX_AP_SELECT_SPDIF,
895 .aip_clksel = AIP_CLKSEL_AIP_SPDIF | AIP_CLKSEL_FS_FS64SPDIF,
896 },
897};
898
899/* Configure the TDA998x audio data and clock routing. */
900static int tda998x_derive_routing(struct tda998x_priv *priv,
901 struct tda998x_audio_settings *s,
902 unsigned int route)
903{
904 s->route = &tda998x_audio_route[route];
905 s->ena_ap = priv->audio_port_enable[route];
906 if (s->ena_ap == 0) {
907 dev_err(&priv->hdmi->dev, "no audio configuration found\n");
908 return -EINVAL;
909 }
910
911 return 0;
912}
913
914/*
915 * The audio clock divisor register controls a divider producing Audio_Clk_Out
916 * from SERclk by dividing it by 2^n where 0 <= n <= 5. We don't know what
917 * Audio_Clk_Out or SERclk are. We guess SERclk is the same as TMDS clock.
918 *
919 * It seems that Audio_Clk_Out must be the smallest value that is greater
920 * than 128*fs, otherwise audio does not function. There is some suggestion
921 * that 126*fs is a better value.
922 */
923static u8 tda998x_get_adiv(struct tda998x_priv *priv, unsigned int fs)
924{
925 unsigned long min_audio_clk = fs * 128;
926 unsigned long ser_clk = priv->tmds_clock * 1000;
927 u8 adiv;
928
929 for (adiv = AUDIO_DIV_SERCLK_32; adiv != AUDIO_DIV_SERCLK_1; adiv--)
930 if (ser_clk > min_audio_clk << adiv)
931 break;
932
933 dev_dbg(&priv->hdmi->dev,
934 "ser_clk=%luHz fs=%uHz min_aclk=%luHz adiv=%d\n",
935 ser_clk, fs, min_audio_clk, adiv);
936
937 return adiv;
938}
939
940/*
941 * In auto-CTS mode, the TDA998x uses a "measured time stamp" counter to
942 * generate the CTS value. It appears that the "measured time stamp" is
943 * the number of TDMS clock cycles within a number of audio input clock
944 * cycles defined by the k and N parameters defined below, in a similar
945 * way to that which is set out in the CTS generation in the HDMI spec.
946 *
947 * tmdsclk ----> mts -> /m ---> CTS
948 * ^
949 * sclk -> /k -> /N
950 *
951 * CTS = mts / m, where m is 2^M.
952 * /k is a divider based on the K value below, K+1 for K < 4, or 8 for K >= 4
953 * /N is a divider based on the HDMI specified N value.
954 *
955 * This produces the following equation:
956 * CTS = tmds_clock * k * N / (sclk * m)
957 *
958 * When combined with the sink-side equation, and realising that sclk is
959 * bclk_ratio * fs, we end up with:
960 * k = m * bclk_ratio / 128.
961 *
962 * Note: S/PDIF always uses a bclk_ratio of 64.
963 */
964static int tda998x_derive_cts_n(struct tda998x_priv *priv,
965 struct tda998x_audio_settings *settings,
966 unsigned int ratio)
967{
968 switch (ratio) {
969 case 16:
970 settings->cts_n = CTS_N_M(3) | CTS_N_K(0);
971 break;
972 case 32:
973 settings->cts_n = CTS_N_M(3) | CTS_N_K(1);
974 break;
975 case 48:
976 settings->cts_n = CTS_N_M(3) | CTS_N_K(2);
977 break;
978 case 64:
979 settings->cts_n = CTS_N_M(3) | CTS_N_K(3);
980 break;
981 case 128:
982 settings->cts_n = CTS_N_M(0) | CTS_N_K(0);
983 break;
984 default:
985 dev_err(&priv->hdmi->dev, "unsupported bclk ratio %ufs\n",
986 ratio);
987 return -EINVAL;
988 }
989 return 0;
990}
991
992static void tda998x_audio_mute(struct tda998x_priv *priv, bool on)
993{
994 if (on) {
995 reg_set(priv, REG_SOFTRESET, SOFTRESET_AUDIO);
996 reg_clear(priv, REG_SOFTRESET, SOFTRESET_AUDIO);
997 reg_set(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_FIFO);
998 } else {
999 reg_clear(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_FIFO);
1000 }
1001}
1002
1003static void tda998x_configure_audio(struct tda998x_priv *priv)
1004{
1005 const struct tda998x_audio_settings *settings = &priv->audio;
1006 u8 buf[6], adiv;
1007 u32 n;
1008
1009 /* If audio is not configured, there is nothing to do. */
1010 if (settings->ena_ap == 0)
1011 return;
1012
1013 adiv = tda998x_get_adiv(priv, settings->sample_rate);
1014
1015 /* Enable audio ports */
1016 reg_write(priv, REG_ENA_AP, settings->ena_ap);
1017 reg_write(priv, REG_ENA_ACLK, settings->route->ena_aclk);
1018 reg_write(priv, REG_MUX_AP, settings->route->mux_ap);
1019 reg_write(priv, REG_I2S_FORMAT, settings->i2s_format);
1020 reg_write(priv, REG_AIP_CLKSEL, settings->route->aip_clksel);
1021 reg_clear(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_LAYOUT |
1022 AIP_CNTRL_0_ACR_MAN); /* auto CTS */
1023 reg_write(priv, REG_CTS_N, settings->cts_n);
1024 reg_write(priv, REG_AUDIO_DIV, adiv);
1025
1026 /*
1027 * This is the approximate value of N, which happens to be
1028 * the recommended values for non-coherent clocks.
1029 */
1030 n = 128 * settings->sample_rate / 1000;
1031
1032 /* Write the CTS and N values */
1033 buf[0] = 0x44;
1034 buf[1] = 0x42;
1035 buf[2] = 0x01;
1036 buf[3] = n;
1037 buf[4] = n >> 8;
1038 buf[5] = n >> 16;
1039 reg_write_range(priv, REG_ACR_CTS_0, buf, 6);
1040
1041 /* Reset CTS generator */
1042 reg_set(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_CTS);
1043 reg_clear(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_CTS);
1044
1045 /* Write the channel status
1046 * The REG_CH_STAT_B-registers skip IEC958 AES2 byte, because
1047 * there is a separate register for each I2S wire.
1048 */
1049 buf[0] = settings->status[0];
1050 buf[1] = settings->status[1];
1051 buf[2] = settings->status[3];
1052 buf[3] = settings->status[4];
1053 reg_write_range(priv, REG_CH_STAT_B(0), buf, 4);
1054
1055 tda998x_audio_mute(priv, true);
1056 msleep(20);
1057 tda998x_audio_mute(priv, false);
1058
1059 tda998x_write_aif(priv, &settings->cea);
1060}
1061
1062static int tda998x_audio_hw_params(struct device *dev, void *data,
1063 struct hdmi_codec_daifmt *daifmt,
1064 struct hdmi_codec_params *params)
1065{
1066 struct tda998x_priv *priv = dev_get_drvdata(dev);
1067 unsigned int bclk_ratio;
1068 bool spdif = daifmt->fmt == HDMI_SPDIF;
1069 int ret;
1070 struct tda998x_audio_settings audio = {
1071 .sample_rate = params->sample_rate,
1072 .cea = params->cea,
1073 };
1074
1075 memcpy(audio.status, params->iec.status,
1076 min(sizeof(audio.status), sizeof(params->iec.status)));
1077
1078 switch (daifmt->fmt) {
1079 case HDMI_I2S:
1080 audio.i2s_format = I2S_FORMAT_PHILIPS;
1081 break;
1082 case HDMI_LEFT_J:
1083 audio.i2s_format = I2S_FORMAT_LEFT_J;
1084 break;
1085 case HDMI_RIGHT_J:
1086 audio.i2s_format = I2S_FORMAT_RIGHT_J;
1087 break;
1088 case HDMI_SPDIF:
1089 audio.i2s_format = 0;
1090 break;
1091 default:
1092 dev_err(dev, "%s: Invalid format %d\n", __func__, daifmt->fmt);
1093 return -EINVAL;
1094 }
1095
1096 if (!spdif &&
1097 (daifmt->bit_clk_inv || daifmt->frame_clk_inv ||
1098 daifmt->bit_clk_master || daifmt->frame_clk_master)) {
1099 dev_err(dev, "%s: Bad flags %d %d %d %d\n", __func__,
1100 daifmt->bit_clk_inv, daifmt->frame_clk_inv,
1101 daifmt->bit_clk_master,
1102 daifmt->frame_clk_master);
1103 return -EINVAL;
1104 }
1105
1106 ret = tda998x_derive_routing(priv, &audio, AUDIO_ROUTE_I2S + spdif);
1107 if (ret < 0)
1108 return ret;
1109
1110 bclk_ratio = spdif ? 64 : params->sample_width * 2;
1111 ret = tda998x_derive_cts_n(priv, &audio, bclk_ratio);
1112 if (ret < 0)
1113 return ret;
1114
1115 mutex_lock(&priv->audio_mutex);
1116 priv->audio = audio;
1117 if (priv->supports_infoframes && priv->sink_has_audio)
1118 tda998x_configure_audio(priv);
1119 mutex_unlock(&priv->audio_mutex);
1120
1121 return 0;
1122}
1123
1124static void tda998x_audio_shutdown(struct device *dev, void *data)
1125{
1126 struct tda998x_priv *priv = dev_get_drvdata(dev);
1127
1128 mutex_lock(&priv->audio_mutex);
1129
1130 reg_write(priv, REG_ENA_AP, 0);
1131 priv->audio.ena_ap = 0;
1132
1133 mutex_unlock(&priv->audio_mutex);
1134}
1135
1136static int tda998x_audio_mute_stream(struct device *dev, void *data,
1137 bool enable, int direction)
1138{
1139 struct tda998x_priv *priv = dev_get_drvdata(dev);
1140
1141 mutex_lock(&priv->audio_mutex);
1142
1143 tda998x_audio_mute(priv, enable);
1144
1145 mutex_unlock(&priv->audio_mutex);
1146 return 0;
1147}
1148
1149static int tda998x_audio_get_eld(struct device *dev, void *data,
1150 uint8_t *buf, size_t len)
1151{
1152 struct tda998x_priv *priv = dev_get_drvdata(dev);
1153
1154 mutex_lock(&priv->audio_mutex);
1155 memcpy(buf, priv->connector.eld,
1156 min(sizeof(priv->connector.eld), len));
1157 mutex_unlock(&priv->audio_mutex);
1158
1159 return 0;
1160}
1161
1162static const struct hdmi_codec_ops audio_codec_ops = {
1163 .hw_params = tda998x_audio_hw_params,
1164 .audio_shutdown = tda998x_audio_shutdown,
1165 .mute_stream = tda998x_audio_mute_stream,
1166 .get_eld = tda998x_audio_get_eld,
1167 .no_capture_mute = 1,
1168};
1169
1170static int tda998x_audio_codec_init(struct tda998x_priv *priv,
1171 struct device *dev)
1172{
1173 struct hdmi_codec_pdata codec_data = {
1174 .ops = &audio_codec_ops,
1175 .max_i2s_channels = 2,
1176 };
1177
1178 if (priv->audio_port_enable[AUDIO_ROUTE_I2S])
1179 codec_data.i2s = 1;
1180 if (priv->audio_port_enable[AUDIO_ROUTE_SPDIF])
1181 codec_data.spdif = 1;
1182
1183 priv->audio_pdev = platform_device_register_data(
1184 dev, HDMI_CODEC_DRV_NAME, PLATFORM_DEVID_AUTO,
1185 &codec_data, sizeof(codec_data));
1186
1187 return PTR_ERR_OR_ZERO(priv->audio_pdev);
1188}
1189
1190/* DRM connector functions */
1191
1192static enum drm_connector_status
1193tda998x_connector_detect(struct drm_connector *connector, bool force)
1194{
1195 struct tda998x_priv *priv = conn_to_tda998x_priv(connector);
1196 u8 val = cec_read(priv, REG_CEC_RXSHPDLEV);
1197
1198 return (val & CEC_RXSHPDLEV_HPD) ? connector_status_connected :
1199 connector_status_disconnected;
1200}
1201
1202static void tda998x_connector_destroy(struct drm_connector *connector)
1203{
1204 drm_connector_cleanup(connector);
1205}
1206
1207static const struct drm_connector_funcs tda998x_connector_funcs = {
1208 .reset = drm_atomic_helper_connector_reset,
1209 .fill_modes = drm_helper_probe_single_connector_modes,
1210 .detect = tda998x_connector_detect,
1211 .destroy = tda998x_connector_destroy,
1212 .atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
1213 .atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
1214};
1215
1216static int read_edid_block(void *data, u8 *buf, unsigned int blk, size_t length)
1217{
1218 struct tda998x_priv *priv = data;
1219 u8 offset, segptr;
1220 int ret, i;
1221
1222 offset = (blk & 1) ? 128 : 0;
1223 segptr = blk / 2;
1224
1225 mutex_lock(&priv->edid_mutex);
1226
1227 reg_write(priv, REG_DDC_ADDR, 0xa0);
1228 reg_write(priv, REG_DDC_OFFS, offset);
1229 reg_write(priv, REG_DDC_SEGM_ADDR, 0x60);
1230 reg_write(priv, REG_DDC_SEGM, segptr);
1231
1232 /* enable reading EDID: */
1233 priv->wq_edid_wait = 1;
1234 reg_write(priv, REG_EDID_CTRL, 0x1);
1235
1236 /* flag must be cleared by sw: */
1237 reg_write(priv, REG_EDID_CTRL, 0x0);
1238
1239 /* wait for block read to complete: */
1240 if (priv->hdmi->irq) {
1241 i = wait_event_timeout(priv->wq_edid,
1242 !priv->wq_edid_wait,
1243 msecs_to_jiffies(100));
1244 if (i < 0) {
1245 dev_err(&priv->hdmi->dev, "read edid wait err %d\n", i);
1246 ret = i;
1247 goto failed;
1248 }
1249 } else {
1250 for (i = 100; i > 0; i--) {
1251 msleep(1);
1252 ret = reg_read(priv, REG_INT_FLAGS_2);
1253 if (ret < 0)
1254 goto failed;
1255 if (ret & INT_FLAGS_2_EDID_BLK_RD)
1256 break;
1257 }
1258 }
1259
1260 if (i == 0) {
1261 dev_err(&priv->hdmi->dev, "read edid timeout\n");
1262 ret = -ETIMEDOUT;
1263 goto failed;
1264 }
1265
1266 ret = reg_read_range(priv, REG_EDID_DATA_0, buf, length);
1267 if (ret != length) {
1268 dev_err(&priv->hdmi->dev, "failed to read edid block %d: %d\n",
1269 blk, ret);
1270 goto failed;
1271 }
1272
1273 ret = 0;
1274
1275 failed:
1276 mutex_unlock(&priv->edid_mutex);
1277 return ret;
1278}
1279
1280static int tda998x_connector_get_modes(struct drm_connector *connector)
1281{
1282 struct tda998x_priv *priv = conn_to_tda998x_priv(connector);
1283 struct edid *edid;
1284 int n;
1285
1286 /*
1287 * If we get killed while waiting for the HPD timeout, return
1288 * no modes found: we are not in a restartable path, so we
1289 * can't handle signals gracefully.
1290 */
1291 if (tda998x_edid_delay_wait(priv))
1292 return 0;
1293
1294 if (priv->rev == TDA19988)
1295 reg_clear(priv, REG_TX4, TX4_PD_RAM);
1296
1297 edid = drm_do_get_edid(connector, read_edid_block, priv);
1298
1299 if (priv->rev == TDA19988)
1300 reg_set(priv, REG_TX4, TX4_PD_RAM);
1301
1302 if (!edid) {
1303 dev_warn(&priv->hdmi->dev, "failed to read EDID\n");
1304 return 0;
1305 }
1306
1307 drm_connector_update_edid_property(connector, edid);
1308 cec_notifier_set_phys_addr_from_edid(priv->cec_notify, edid);
1309
1310 mutex_lock(&priv->audio_mutex);
1311 n = drm_add_edid_modes(connector, edid);
1312 priv->sink_has_audio = drm_detect_monitor_audio(edid);
1313 mutex_unlock(&priv->audio_mutex);
1314
1315 kfree(edid);
1316
1317 return n;
1318}
1319
1320static struct drm_encoder *
1321tda998x_connector_best_encoder(struct drm_connector *connector)
1322{
1323 struct tda998x_priv *priv = conn_to_tda998x_priv(connector);
1324
1325 return priv->bridge.encoder;
1326}
1327
1328static
1329const struct drm_connector_helper_funcs tda998x_connector_helper_funcs = {
1330 .get_modes = tda998x_connector_get_modes,
1331 .best_encoder = tda998x_connector_best_encoder,
1332};
1333
1334static int tda998x_connector_init(struct tda998x_priv *priv,
1335 struct drm_device *drm)
1336{
1337 struct drm_connector *connector = &priv->connector;
1338 int ret;
1339
1340 connector->interlace_allowed = 1;
1341
1342 if (priv->hdmi->irq)
1343 connector->polled = DRM_CONNECTOR_POLL_HPD;
1344 else
1345 connector->polled = DRM_CONNECTOR_POLL_CONNECT |
1346 DRM_CONNECTOR_POLL_DISCONNECT;
1347
1348 drm_connector_helper_add(connector, &tda998x_connector_helper_funcs);
1349 ret = drm_connector_init(drm, connector, &tda998x_connector_funcs,
1350 DRM_MODE_CONNECTOR_HDMIA);
1351 if (ret)
1352 return ret;
1353
1354 drm_connector_attach_encoder(&priv->connector,
1355 priv->bridge.encoder);
1356
1357 return 0;
1358}
1359
1360/* DRM bridge functions */
1361
1362static int tda998x_bridge_attach(struct drm_bridge *bridge,
1363 enum drm_bridge_attach_flags flags)
1364{
1365 struct tda998x_priv *priv = bridge_to_tda998x_priv(bridge);
1366
1367 if (flags & DRM_BRIDGE_ATTACH_NO_CONNECTOR) {
1368 DRM_ERROR("Fix bridge driver to make connector optional!");
1369 return -EINVAL;
1370 }
1371
1372 return tda998x_connector_init(priv, bridge->dev);
1373}
1374
1375static void tda998x_bridge_detach(struct drm_bridge *bridge)
1376{
1377 struct tda998x_priv *priv = bridge_to_tda998x_priv(bridge);
1378
1379 drm_connector_cleanup(&priv->connector);
1380}
1381
1382static enum drm_mode_status tda998x_bridge_mode_valid(struct drm_bridge *bridge,
1383 const struct drm_display_info *info,
1384 const struct drm_display_mode *mode)
1385{
1386 /* TDA19988 dotclock can go up to 165MHz */
1387 struct tda998x_priv *priv = bridge_to_tda998x_priv(bridge);
1388
1389 if (mode->clock > ((priv->rev == TDA19988) ? 165000 : 150000))
1390 return MODE_CLOCK_HIGH;
1391 if (mode->htotal >= BIT(13))
1392 return MODE_BAD_HVALUE;
1393 if (mode->vtotal >= BIT(11))
1394 return MODE_BAD_VVALUE;
1395 return MODE_OK;
1396}
1397
1398static void tda998x_bridge_enable(struct drm_bridge *bridge)
1399{
1400 struct tda998x_priv *priv = bridge_to_tda998x_priv(bridge);
1401
1402 if (!priv->is_on) {
1403 /* enable video ports, audio will be enabled later */
1404 reg_write(priv, REG_ENA_VP_0, 0xff);
1405 reg_write(priv, REG_ENA_VP_1, 0xff);
1406 reg_write(priv, REG_ENA_VP_2, 0xff);
1407 /* set muxing after enabling ports: */
1408 reg_write(priv, REG_VIP_CNTRL_0, priv->vip_cntrl_0);
1409 reg_write(priv, REG_VIP_CNTRL_1, priv->vip_cntrl_1);
1410 reg_write(priv, REG_VIP_CNTRL_2, priv->vip_cntrl_2);
1411
1412 priv->is_on = true;
1413 }
1414}
1415
1416static void tda998x_bridge_disable(struct drm_bridge *bridge)
1417{
1418 struct tda998x_priv *priv = bridge_to_tda998x_priv(bridge);
1419
1420 if (priv->is_on) {
1421 /* disable video ports */
1422 reg_write(priv, REG_ENA_VP_0, 0x00);
1423 reg_write(priv, REG_ENA_VP_1, 0x00);
1424 reg_write(priv, REG_ENA_VP_2, 0x00);
1425
1426 priv->is_on = false;
1427 }
1428}
1429
1430static void tda998x_bridge_mode_set(struct drm_bridge *bridge,
1431 const struct drm_display_mode *mode,
1432 const struct drm_display_mode *adjusted_mode)
1433{
1434 struct tda998x_priv *priv = bridge_to_tda998x_priv(bridge);
1435 unsigned long tmds_clock;
1436 u16 ref_pix, ref_line, n_pix, n_line;
1437 u16 hs_pix_s, hs_pix_e;
1438 u16 vs1_pix_s, vs1_pix_e, vs1_line_s, vs1_line_e;
1439 u16 vs2_pix_s, vs2_pix_e, vs2_line_s, vs2_line_e;
1440 u16 vwin1_line_s, vwin1_line_e;
1441 u16 vwin2_line_s, vwin2_line_e;
1442 u16 de_pix_s, de_pix_e;
1443 u8 reg, div, rep, sel_clk;
1444
1445 /*
1446 * Since we are "computer" like, our source invariably produces
1447 * full-range RGB. If the monitor supports full-range, then use
1448 * it, otherwise reduce to limited-range.
1449 */
1450 priv->rgb_quant_range =
1451 priv->connector.display_info.rgb_quant_range_selectable ?
1452 HDMI_QUANTIZATION_RANGE_FULL :
1453 drm_default_rgb_quant_range(adjusted_mode);
1454
1455 /*
1456 * Internally TDA998x is using ITU-R BT.656 style sync but
1457 * we get VESA style sync. TDA998x is using a reference pixel
1458 * relative to ITU to sync to the input frame and for output
1459 * sync generation. Currently, we are using reference detection
1460 * from HS/VS, i.e. REFPIX/REFLINE denote frame start sync point
1461 * which is position of rising VS with coincident rising HS.
1462 *
1463 * Now there is some issues to take care of:
1464 * - HDMI data islands require sync-before-active
1465 * - TDA998x register values must be > 0 to be enabled
1466 * - REFLINE needs an additional offset of +1
1467 * - REFPIX needs an addtional offset of +1 for UYUV and +3 for RGB
1468 *
1469 * So we add +1 to all horizontal and vertical register values,
1470 * plus an additional +3 for REFPIX as we are using RGB input only.
1471 */
1472 n_pix = mode->htotal;
1473 n_line = mode->vtotal;
1474
1475 hs_pix_e = mode->hsync_end - mode->hdisplay;
1476 hs_pix_s = mode->hsync_start - mode->hdisplay;
1477 de_pix_e = mode->htotal;
1478 de_pix_s = mode->htotal - mode->hdisplay;
1479 ref_pix = 3 + hs_pix_s;
1480
1481 /*
1482 * Attached LCD controllers may generate broken sync. Allow
1483 * those to adjust the position of the rising VS edge by adding
1484 * HSKEW to ref_pix.
1485 */
1486 if (adjusted_mode->flags & DRM_MODE_FLAG_HSKEW)
1487 ref_pix += adjusted_mode->hskew;
1488
1489 if ((mode->flags & DRM_MODE_FLAG_INTERLACE) == 0) {
1490 ref_line = 1 + mode->vsync_start - mode->vdisplay;
1491 vwin1_line_s = mode->vtotal - mode->vdisplay - 1;
1492 vwin1_line_e = vwin1_line_s + mode->vdisplay;
1493 vs1_pix_s = vs1_pix_e = hs_pix_s;
1494 vs1_line_s = mode->vsync_start - mode->vdisplay;
1495 vs1_line_e = vs1_line_s +
1496 mode->vsync_end - mode->vsync_start;
1497 vwin2_line_s = vwin2_line_e = 0;
1498 vs2_pix_s = vs2_pix_e = 0;
1499 vs2_line_s = vs2_line_e = 0;
1500 } else {
1501 ref_line = 1 + (mode->vsync_start - mode->vdisplay)/2;
1502 vwin1_line_s = (mode->vtotal - mode->vdisplay)/2;
1503 vwin1_line_e = vwin1_line_s + mode->vdisplay/2;
1504 vs1_pix_s = vs1_pix_e = hs_pix_s;
1505 vs1_line_s = (mode->vsync_start - mode->vdisplay)/2;
1506 vs1_line_e = vs1_line_s +
1507 (mode->vsync_end - mode->vsync_start)/2;
1508 vwin2_line_s = vwin1_line_s + mode->vtotal/2;
1509 vwin2_line_e = vwin2_line_s + mode->vdisplay/2;
1510 vs2_pix_s = vs2_pix_e = hs_pix_s + mode->htotal/2;
1511 vs2_line_s = vs1_line_s + mode->vtotal/2 ;
1512 vs2_line_e = vs2_line_s +
1513 (mode->vsync_end - mode->vsync_start)/2;
1514 }
1515
1516 /*
1517 * Select pixel repeat depending on the double-clock flag
1518 * (which means we have to repeat each pixel once.)
1519 */
1520 rep = mode->flags & DRM_MODE_FLAG_DBLCLK ? 1 : 0;
1521 sel_clk = SEL_CLK_ENA_SC_CLK | SEL_CLK_SEL_CLK1 |
1522 SEL_CLK_SEL_VRF_CLK(rep ? 2 : 0);
1523
1524 /* the TMDS clock is scaled up by the pixel repeat */
1525 tmds_clock = mode->clock * (1 + rep);
1526
1527 /*
1528 * The divisor is power-of-2. The TDA9983B datasheet gives
1529 * this as ranges of Msample/s, which is 10x the TMDS clock:
1530 * 0 - 800 to 1500 Msample/s
1531 * 1 - 400 to 800 Msample/s
1532 * 2 - 200 to 400 Msample/s
1533 * 3 - as 2 above
1534 */
1535 for (div = 0; div < 3; div++)
1536 if (80000 >> div <= tmds_clock)
1537 break;
1538
1539 mutex_lock(&priv->audio_mutex);
1540
1541 priv->tmds_clock = tmds_clock;
1542
1543 /* mute the audio FIFO: */
1544 reg_set(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_FIFO);
1545
1546 /* set HDMI HDCP mode off: */
1547 reg_write(priv, REG_TBG_CNTRL_1, TBG_CNTRL_1_DWIN_DIS);
1548 reg_clear(priv, REG_TX33, TX33_HDMI);
1549 reg_write(priv, REG_ENC_CNTRL, ENC_CNTRL_CTL_CODE(0));
1550
1551 /* no pre-filter or interpolator: */
1552 reg_write(priv, REG_HVF_CNTRL_0, HVF_CNTRL_0_PREFIL(0) |
1553 HVF_CNTRL_0_INTPOL(0));
1554 reg_set(priv, REG_FEAT_POWERDOWN, FEAT_POWERDOWN_PREFILT);
1555 reg_write(priv, REG_VIP_CNTRL_5, VIP_CNTRL_5_SP_CNT(0));
1556 reg_write(priv, REG_VIP_CNTRL_4, VIP_CNTRL_4_BLANKIT(0) |
1557 VIP_CNTRL_4_BLC(0));
1558
1559 reg_clear(priv, REG_PLL_SERIAL_1, PLL_SERIAL_1_SRL_MAN_IZ);
1560 reg_clear(priv, REG_PLL_SERIAL_3, PLL_SERIAL_3_SRL_CCIR |
1561 PLL_SERIAL_3_SRL_DE);
1562 reg_write(priv, REG_SERIALIZER, 0);
1563 reg_write(priv, REG_HVF_CNTRL_1, HVF_CNTRL_1_VQR(0));
1564
1565 reg_write(priv, REG_RPT_CNTRL, RPT_CNTRL_REPEAT(rep));
1566 reg_write(priv, REG_SEL_CLK, sel_clk);
1567 reg_write(priv, REG_PLL_SERIAL_2, PLL_SERIAL_2_SRL_NOSC(div) |
1568 PLL_SERIAL_2_SRL_PR(rep));
1569
1570 /* set color matrix according to output rgb quant range */
1571 if (priv->rgb_quant_range == HDMI_QUANTIZATION_RANGE_LIMITED) {
1572 static u8 tda998x_full_to_limited_range[] = {
1573 MAT_CONTRL_MAT_SC(2),
1574 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
1575 0x03, 0x6f, 0x00, 0x00, 0x00, 0x00,
1576 0x00, 0x00, 0x03, 0x6f, 0x00, 0x00,
1577 0x00, 0x00, 0x00, 0x00, 0x03, 0x6f,
1578 0x00, 0x40, 0x00, 0x40, 0x00, 0x40
1579 };
1580 reg_clear(priv, REG_FEAT_POWERDOWN, FEAT_POWERDOWN_CSC);
1581 reg_write_range(priv, REG_MAT_CONTRL,
1582 tda998x_full_to_limited_range,
1583 sizeof(tda998x_full_to_limited_range));
1584 } else {
1585 reg_write(priv, REG_MAT_CONTRL, MAT_CONTRL_MAT_BP |
1586 MAT_CONTRL_MAT_SC(1));
1587 reg_set(priv, REG_FEAT_POWERDOWN, FEAT_POWERDOWN_CSC);
1588 }
1589
1590 /* set BIAS tmds value: */
1591 reg_write(priv, REG_ANA_GENERAL, 0x09);
1592
1593 /*
1594 * Sync on rising HSYNC/VSYNC
1595 */
1596 reg = VIP_CNTRL_3_SYNC_HS;
1597
1598 /*
1599 * TDA19988 requires high-active sync at input stage,
1600 * so invert low-active sync provided by master encoder here
1601 */
1602 if (mode->flags & DRM_MODE_FLAG_NHSYNC)
1603 reg |= VIP_CNTRL_3_H_TGL;
1604 if (mode->flags & DRM_MODE_FLAG_NVSYNC)
1605 reg |= VIP_CNTRL_3_V_TGL;
1606 reg_write(priv, REG_VIP_CNTRL_3, reg);
1607
1608 reg_write(priv, REG_VIDFORMAT, 0x00);
1609 reg_write16(priv, REG_REFPIX_MSB, ref_pix);
1610 reg_write16(priv, REG_REFLINE_MSB, ref_line);
1611 reg_write16(priv, REG_NPIX_MSB, n_pix);
1612 reg_write16(priv, REG_NLINE_MSB, n_line);
1613 reg_write16(priv, REG_VS_LINE_STRT_1_MSB, vs1_line_s);
1614 reg_write16(priv, REG_VS_PIX_STRT_1_MSB, vs1_pix_s);
1615 reg_write16(priv, REG_VS_LINE_END_1_MSB, vs1_line_e);
1616 reg_write16(priv, REG_VS_PIX_END_1_MSB, vs1_pix_e);
1617 reg_write16(priv, REG_VS_LINE_STRT_2_MSB, vs2_line_s);
1618 reg_write16(priv, REG_VS_PIX_STRT_2_MSB, vs2_pix_s);
1619 reg_write16(priv, REG_VS_LINE_END_2_MSB, vs2_line_e);
1620 reg_write16(priv, REG_VS_PIX_END_2_MSB, vs2_pix_e);
1621 reg_write16(priv, REG_HS_PIX_START_MSB, hs_pix_s);
1622 reg_write16(priv, REG_HS_PIX_STOP_MSB, hs_pix_e);
1623 reg_write16(priv, REG_VWIN_START_1_MSB, vwin1_line_s);
1624 reg_write16(priv, REG_VWIN_END_1_MSB, vwin1_line_e);
1625 reg_write16(priv, REG_VWIN_START_2_MSB, vwin2_line_s);
1626 reg_write16(priv, REG_VWIN_END_2_MSB, vwin2_line_e);
1627 reg_write16(priv, REG_DE_START_MSB, de_pix_s);
1628 reg_write16(priv, REG_DE_STOP_MSB, de_pix_e);
1629
1630 if (priv->rev == TDA19988) {
1631 /* let incoming pixels fill the active space (if any) */
1632 reg_write(priv, REG_ENABLE_SPACE, 0x00);
1633 }
1634
1635 /*
1636 * Always generate sync polarity relative to input sync and
1637 * revert input stage toggled sync at output stage
1638 */
1639 reg = TBG_CNTRL_1_DWIN_DIS | TBG_CNTRL_1_TGL_EN;
1640 if (mode->flags & DRM_MODE_FLAG_NHSYNC)
1641 reg |= TBG_CNTRL_1_H_TGL;
1642 if (mode->flags & DRM_MODE_FLAG_NVSYNC)
1643 reg |= TBG_CNTRL_1_V_TGL;
1644 reg_write(priv, REG_TBG_CNTRL_1, reg);
1645
1646 /* must be last register set: */
1647 reg_write(priv, REG_TBG_CNTRL_0, 0);
1648
1649 /* CEA-861B section 6 says that:
1650 * CEA version 1 (CEA-861) has no support for infoframes.
1651 * CEA version 2 (CEA-861A) supports version 1 AVI infoframes,
1652 * and optional basic audio.
1653 * CEA version 3 (CEA-861B) supports version 1 and 2 AVI infoframes,
1654 * and optional digital audio, with audio infoframes.
1655 *
1656 * Since we only support generation of version 2 AVI infoframes,
1657 * ignore CEA version 2 and below (iow, behave as if we're a
1658 * CEA-861 source.)
1659 */
1660 priv->supports_infoframes = priv->connector.display_info.cea_rev >= 3;
1661
1662 if (priv->supports_infoframes) {
1663 /* We need to turn HDMI HDCP stuff on to get audio through */
1664 reg &= ~TBG_CNTRL_1_DWIN_DIS;
1665 reg_write(priv, REG_TBG_CNTRL_1, reg);
1666 reg_write(priv, REG_ENC_CNTRL, ENC_CNTRL_CTL_CODE(1));
1667 reg_set(priv, REG_TX33, TX33_HDMI);
1668
1669 tda998x_write_avi(priv, adjusted_mode);
1670 tda998x_write_vsi(priv, adjusted_mode);
1671
1672 if (priv->sink_has_audio)
1673 tda998x_configure_audio(priv);
1674 }
1675
1676 mutex_unlock(&priv->audio_mutex);
1677}
1678
1679static const struct drm_bridge_funcs tda998x_bridge_funcs = {
1680 .attach = tda998x_bridge_attach,
1681 .detach = tda998x_bridge_detach,
1682 .mode_valid = tda998x_bridge_mode_valid,
1683 .disable = tda998x_bridge_disable,
1684 .mode_set = tda998x_bridge_mode_set,
1685 .enable = tda998x_bridge_enable,
1686};
1687
1688/* I2C driver functions */
1689
1690static int tda998x_get_audio_ports(struct tda998x_priv *priv,
1691 struct device_node *np)
1692{
1693 const u32 *port_data;
1694 u32 size;
1695 int i;
1696
1697 port_data = of_get_property(np, "audio-ports", &size);
1698 if (!port_data)
1699 return 0;
1700
1701 size /= sizeof(u32);
1702 if (size > 2 * ARRAY_SIZE(priv->audio_port_enable) || size % 2 != 0) {
1703 dev_err(&priv->hdmi->dev,
1704 "Bad number of elements in audio-ports dt-property\n");
1705 return -EINVAL;
1706 }
1707
1708 size /= 2;
1709
1710 for (i = 0; i < size; i++) {
1711 unsigned int route;
1712 u8 afmt = be32_to_cpup(&port_data[2*i]);
1713 u8 ena_ap = be32_to_cpup(&port_data[2*i+1]);
1714
1715 switch (afmt) {
1716 case AFMT_I2S:
1717 route = AUDIO_ROUTE_I2S;
1718 break;
1719 case AFMT_SPDIF:
1720 route = AUDIO_ROUTE_SPDIF;
1721 break;
1722 default:
1723 dev_err(&priv->hdmi->dev,
1724 "Bad audio format %u\n", afmt);
1725 return -EINVAL;
1726 }
1727
1728 if (!ena_ap) {
1729 dev_err(&priv->hdmi->dev, "invalid zero port config\n");
1730 continue;
1731 }
1732
1733 if (priv->audio_port_enable[route]) {
1734 dev_err(&priv->hdmi->dev,
1735 "%s format already configured\n",
1736 route == AUDIO_ROUTE_SPDIF ? "SPDIF" : "I2S");
1737 return -EINVAL;
1738 }
1739
1740 priv->audio_port_enable[route] = ena_ap;
1741 }
1742 return 0;
1743}
1744
1745static int tda998x_set_config(struct tda998x_priv *priv,
1746 const struct tda998x_encoder_params *p)
1747{
1748 priv->vip_cntrl_0 = VIP_CNTRL_0_SWAP_A(p->swap_a) |
1749 (p->mirr_a ? VIP_CNTRL_0_MIRR_A : 0) |
1750 VIP_CNTRL_0_SWAP_B(p->swap_b) |
1751 (p->mirr_b ? VIP_CNTRL_0_MIRR_B : 0);
1752 priv->vip_cntrl_1 = VIP_CNTRL_1_SWAP_C(p->swap_c) |
1753 (p->mirr_c ? VIP_CNTRL_1_MIRR_C : 0) |
1754 VIP_CNTRL_1_SWAP_D(p->swap_d) |
1755 (p->mirr_d ? VIP_CNTRL_1_MIRR_D : 0);
1756 priv->vip_cntrl_2 = VIP_CNTRL_2_SWAP_E(p->swap_e) |
1757 (p->mirr_e ? VIP_CNTRL_2_MIRR_E : 0) |
1758 VIP_CNTRL_2_SWAP_F(p->swap_f) |
1759 (p->mirr_f ? VIP_CNTRL_2_MIRR_F : 0);
1760
1761 if (p->audio_params.format != AFMT_UNUSED) {
1762 unsigned int ratio, route;
1763 bool spdif = p->audio_params.format == AFMT_SPDIF;
1764
1765 route = AUDIO_ROUTE_I2S + spdif;
1766
1767 priv->audio.route = &tda998x_audio_route[route];
1768 priv->audio.cea = p->audio_params.cea;
1769 priv->audio.sample_rate = p->audio_params.sample_rate;
1770 memcpy(priv->audio.status, p->audio_params.status,
1771 min(sizeof(priv->audio.status),
1772 sizeof(p->audio_params.status)));
1773 priv->audio.ena_ap = p->audio_params.config;
1774 priv->audio.i2s_format = I2S_FORMAT_PHILIPS;
1775
1776 ratio = spdif ? 64 : p->audio_params.sample_width * 2;
1777 return tda998x_derive_cts_n(priv, &priv->audio, ratio);
1778 }
1779
1780 return 0;
1781}
1782
1783static void tda998x_destroy(struct device *dev)
1784{
1785 struct tda998x_priv *priv = dev_get_drvdata(dev);
1786
1787 drm_bridge_remove(&priv->bridge);
1788
1789 /* disable all IRQs and free the IRQ handler */
1790 cec_write(priv, REG_CEC_RXSHPDINTENA, 0);
1791 reg_clear(priv, REG_INT_FLAGS_2, INT_FLAGS_2_EDID_BLK_RD);
1792
1793 if (priv->audio_pdev)
1794 platform_device_unregister(priv->audio_pdev);
1795
1796 if (priv->hdmi->irq)
1797 free_irq(priv->hdmi->irq, priv);
1798
1799 del_timer_sync(&priv->edid_delay_timer);
1800 cancel_work_sync(&priv->detect_work);
1801
1802 i2c_unregister_device(priv->cec);
1803
1804 cec_notifier_conn_unregister(priv->cec_notify);
1805}
1806
1807static int tda998x_create(struct device *dev)
1808{
1809 struct i2c_client *client = to_i2c_client(dev);
1810 struct device_node *np = client->dev.of_node;
1811 struct i2c_board_info cec_info;
1812 struct tda998x_priv *priv;
1813 u32 video;
1814 int rev_lo, rev_hi, ret;
1815
1816 priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
1817 if (!priv)
1818 return -ENOMEM;
1819
1820 dev_set_drvdata(dev, priv);
1821
1822 mutex_init(&priv->mutex); /* protect the page access */
1823 mutex_init(&priv->audio_mutex); /* protect access from audio thread */
1824 mutex_init(&priv->edid_mutex);
1825 INIT_LIST_HEAD(&priv->bridge.list);
1826 init_waitqueue_head(&priv->edid_delay_waitq);
1827 timer_setup(&priv->edid_delay_timer, tda998x_edid_delay_done, 0);
1828 INIT_WORK(&priv->detect_work, tda998x_detect_work);
1829
1830 priv->vip_cntrl_0 = VIP_CNTRL_0_SWAP_A(2) | VIP_CNTRL_0_SWAP_B(3);
1831 priv->vip_cntrl_1 = VIP_CNTRL_1_SWAP_C(0) | VIP_CNTRL_1_SWAP_D(1);
1832 priv->vip_cntrl_2 = VIP_CNTRL_2_SWAP_E(4) | VIP_CNTRL_2_SWAP_F(5);
1833
1834 /* CEC I2C address bound to TDA998x I2C addr by configuration pins */
1835 priv->cec_addr = 0x34 + (client->addr & 0x03);
1836 priv->current_page = 0xff;
1837 priv->hdmi = client;
1838
1839 /* wake up the device: */
1840 cec_write(priv, REG_CEC_ENAMODS,
1841 CEC_ENAMODS_EN_RXSENS | CEC_ENAMODS_EN_HDMI);
1842
1843 tda998x_reset(priv);
1844
1845 /* read version: */
1846 rev_lo = reg_read(priv, REG_VERSION_LSB);
1847 if (rev_lo < 0) {
1848 dev_err(dev, "failed to read version: %d\n", rev_lo);
1849 return rev_lo;
1850 }
1851
1852 rev_hi = reg_read(priv, REG_VERSION_MSB);
1853 if (rev_hi < 0) {
1854 dev_err(dev, "failed to read version: %d\n", rev_hi);
1855 return rev_hi;
1856 }
1857
1858 priv->rev = rev_lo | rev_hi << 8;
1859
1860 /* mask off feature bits: */
1861 priv->rev &= ~0x30; /* not-hdcp and not-scalar bit */
1862
1863 switch (priv->rev) {
1864 case TDA9989N2:
1865 dev_info(dev, "found TDA9989 n2");
1866 break;
1867 case TDA19989:
1868 dev_info(dev, "found TDA19989");
1869 break;
1870 case TDA19989N2:
1871 dev_info(dev, "found TDA19989 n2");
1872 break;
1873 case TDA19988:
1874 dev_info(dev, "found TDA19988");
1875 break;
1876 default:
1877 dev_err(dev, "found unsupported device: %04x\n", priv->rev);
1878 return -ENXIO;
1879 }
1880
1881 /* after reset, enable DDC: */
1882 reg_write(priv, REG_DDC_DISABLE, 0x00);
1883
1884 /* set clock on DDC channel: */
1885 reg_write(priv, REG_TX3, 39);
1886
1887 /* if necessary, disable multi-master: */
1888 if (priv->rev == TDA19989)
1889 reg_set(priv, REG_I2C_MASTER, I2C_MASTER_DIS_MM);
1890
1891 cec_write(priv, REG_CEC_FRO_IM_CLK_CTRL,
1892 CEC_FRO_IM_CLK_CTRL_GHOST_DIS | CEC_FRO_IM_CLK_CTRL_IMCLK_SEL);
1893
1894 /* ensure interrupts are disabled */
1895 cec_write(priv, REG_CEC_RXSHPDINTENA, 0);
1896
1897 /* clear pending interrupts */
1898 cec_read(priv, REG_CEC_RXSHPDINT);
1899 reg_read(priv, REG_INT_FLAGS_0);
1900 reg_read(priv, REG_INT_FLAGS_1);
1901 reg_read(priv, REG_INT_FLAGS_2);
1902
1903 /* initialize the optional IRQ */
1904 if (client->irq) {
1905 unsigned long irq_flags;
1906
1907 /* init read EDID waitqueue and HDP work */
1908 init_waitqueue_head(&priv->wq_edid);
1909
1910 irq_flags =
1911 irqd_get_trigger_type(irq_get_irq_data(client->irq));
1912
1913 priv->cec_glue.irq_flags = irq_flags;
1914
1915 irq_flags |= IRQF_SHARED | IRQF_ONESHOT;
1916 ret = request_threaded_irq(client->irq, NULL,
1917 tda998x_irq_thread, irq_flags,
1918 "tda998x", priv);
1919 if (ret) {
1920 dev_err(dev, "failed to request IRQ#%u: %d\n",
1921 client->irq, ret);
1922 goto err_irq;
1923 }
1924
1925 /* enable HPD irq */
1926 cec_write(priv, REG_CEC_RXSHPDINTENA, CEC_RXSHPDLEV_HPD);
1927 }
1928
1929 priv->cec_notify = cec_notifier_conn_register(dev, NULL, NULL);
1930 if (!priv->cec_notify) {
1931 ret = -ENOMEM;
1932 goto fail;
1933 }
1934
1935 priv->cec_glue.parent = dev;
1936 priv->cec_glue.data = priv;
1937 priv->cec_glue.init = tda998x_cec_hook_init;
1938 priv->cec_glue.exit = tda998x_cec_hook_exit;
1939 priv->cec_glue.open = tda998x_cec_hook_open;
1940 priv->cec_glue.release = tda998x_cec_hook_release;
1941
1942 /*
1943 * Some TDA998x are actually two I2C devices merged onto one piece
1944 * of silicon: TDA9989 and TDA19989 combine the HDMI transmitter
1945 * with a slightly modified TDA9950 CEC device. The CEC device
1946 * is at the TDA9950 address, with the address pins strapped across
1947 * to the TDA998x address pins. Hence, it always has the same
1948 * offset.
1949 */
1950 memset(&cec_info, 0, sizeof(cec_info));
1951 strlcpy(cec_info.type, "tda9950", sizeof(cec_info.type));
1952 cec_info.addr = priv->cec_addr;
1953 cec_info.platform_data = &priv->cec_glue;
1954 cec_info.irq = client->irq;
1955
1956 priv->cec = i2c_new_client_device(client->adapter, &cec_info);
1957 if (IS_ERR(priv->cec)) {
1958 ret = PTR_ERR(priv->cec);
1959 goto fail;
1960 }
1961
1962 /* enable EDID read irq: */
1963 reg_set(priv, REG_INT_FLAGS_2, INT_FLAGS_2_EDID_BLK_RD);
1964
1965 if (np) {
1966 /* get the device tree parameters */
1967 ret = of_property_read_u32(np, "video-ports", &video);
1968 if (ret == 0) {
1969 priv->vip_cntrl_0 = video >> 16;
1970 priv->vip_cntrl_1 = video >> 8;
1971 priv->vip_cntrl_2 = video;
1972 }
1973
1974 ret = tda998x_get_audio_ports(priv, np);
1975 if (ret)
1976 goto fail;
1977
1978 if (priv->audio_port_enable[AUDIO_ROUTE_I2S] ||
1979 priv->audio_port_enable[AUDIO_ROUTE_SPDIF])
1980 tda998x_audio_codec_init(priv, &client->dev);
1981 } else if (dev->platform_data) {
1982 ret = tda998x_set_config(priv, dev->platform_data);
1983 if (ret)
1984 goto fail;
1985 }
1986
1987 priv->bridge.funcs = &tda998x_bridge_funcs;
1988#ifdef CONFIG_OF
1989 priv->bridge.of_node = dev->of_node;
1990#endif
1991
1992 drm_bridge_add(&priv->bridge);
1993
1994 return 0;
1995
1996fail:
1997 tda998x_destroy(dev);
1998err_irq:
1999 return ret;
2000}
2001
2002/* DRM encoder functions */
2003
2004static int tda998x_encoder_init(struct device *dev, struct drm_device *drm)
2005{
2006 struct tda998x_priv *priv = dev_get_drvdata(dev);
2007 u32 crtcs = 0;
2008 int ret;
2009
2010 if (dev->of_node)
2011 crtcs = drm_of_find_possible_crtcs(drm, dev->of_node);
2012
2013 /* If no CRTCs were found, fall back to our old behaviour */
2014 if (crtcs == 0) {
2015 dev_warn(dev, "Falling back to first CRTC\n");
2016 crtcs = 1 << 0;
2017 }
2018
2019 priv->encoder.possible_crtcs = crtcs;
2020
2021 ret = drm_simple_encoder_init(drm, &priv->encoder,
2022 DRM_MODE_ENCODER_TMDS);
2023 if (ret)
2024 goto err_encoder;
2025
2026 ret = drm_bridge_attach(&priv->encoder, &priv->bridge, NULL, 0);
2027 if (ret)
2028 goto err_bridge;
2029
2030 return 0;
2031
2032err_bridge:
2033 drm_encoder_cleanup(&priv->encoder);
2034err_encoder:
2035 return ret;
2036}
2037
2038static int tda998x_bind(struct device *dev, struct device *master, void *data)
2039{
2040 struct drm_device *drm = data;
2041
2042 return tda998x_encoder_init(dev, drm);
2043}
2044
2045static void tda998x_unbind(struct device *dev, struct device *master,
2046 void *data)
2047{
2048 struct tda998x_priv *priv = dev_get_drvdata(dev);
2049
2050 drm_encoder_cleanup(&priv->encoder);
2051}
2052
2053static const struct component_ops tda998x_ops = {
2054 .bind = tda998x_bind,
2055 .unbind = tda998x_unbind,
2056};
2057
2058static int
2059tda998x_probe(struct i2c_client *client, const struct i2c_device_id *id)
2060{
2061 int ret;
2062
2063 if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) {
2064 dev_warn(&client->dev, "adapter does not support I2C\n");
2065 return -EIO;
2066 }
2067
2068 ret = tda998x_create(&client->dev);
2069 if (ret)
2070 return ret;
2071
2072 ret = component_add(&client->dev, &tda998x_ops);
2073 if (ret)
2074 tda998x_destroy(&client->dev);
2075 return ret;
2076}
2077
2078static int tda998x_remove(struct i2c_client *client)
2079{
2080 component_del(&client->dev, &tda998x_ops);
2081 tda998x_destroy(&client->dev);
2082 return 0;
2083}
2084
2085#ifdef CONFIG_OF
2086static const struct of_device_id tda998x_dt_ids[] = {
2087 { .compatible = "nxp,tda998x", },
2088 { }
2089};
2090MODULE_DEVICE_TABLE(of, tda998x_dt_ids);
2091#endif
2092
2093static const struct i2c_device_id tda998x_ids[] = {
2094 { "tda998x", 0 },
2095 { }
2096};
2097MODULE_DEVICE_TABLE(i2c, tda998x_ids);
2098
2099static struct i2c_driver tda998x_driver = {
2100 .probe = tda998x_probe,
2101 .remove = tda998x_remove,
2102 .driver = {
2103 .name = "tda998x",
2104 .of_match_table = of_match_ptr(tda998x_dt_ids),
2105 },
2106 .id_table = tda998x_ids,
2107};
2108
2109module_i2c_driver(tda998x_driver);
2110
2111MODULE_AUTHOR("Rob Clark <robdclark@gmail.com");
2112MODULE_DESCRIPTION("NXP Semiconductors TDA998X HDMI Encoder");
2113MODULE_LICENSE("GPL");
1/*
2 * Copyright (C) 2012 Texas Instruments
3 * Author: Rob Clark <robdclark@gmail.com>
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 as published by
7 * the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * You should have received a copy of the GNU General Public License along with
15 * this program. If not, see <http://www.gnu.org/licenses/>.
16 */
17
18
19
20#include <linux/hdmi.h>
21#include <linux/module.h>
22#include <linux/irq.h>
23#include <sound/asoundef.h>
24
25#include <drm/drmP.h>
26#include <drm/drm_crtc_helper.h>
27#include <drm/drm_encoder_slave.h>
28#include <drm/drm_edid.h>
29#include <drm/i2c/tda998x.h>
30
31#define DBG(fmt, ...) DRM_DEBUG(fmt"\n", ##__VA_ARGS__)
32
33struct tda998x_priv {
34 struct i2c_client *cec;
35 struct i2c_client *hdmi;
36 uint16_t rev;
37 uint8_t current_page;
38 int dpms;
39 bool is_hdmi_sink;
40 u8 vip_cntrl_0;
41 u8 vip_cntrl_1;
42 u8 vip_cntrl_2;
43 struct tda998x_encoder_params params;
44
45 wait_queue_head_t wq_edid;
46 volatile int wq_edid_wait;
47 struct drm_encoder *encoder;
48};
49
50#define to_tda998x_priv(x) ((struct tda998x_priv *)to_encoder_slave(x)->slave_priv)
51
52/* The TDA9988 series of devices use a paged register scheme.. to simplify
53 * things we encode the page # in upper bits of the register #. To read/
54 * write a given register, we need to make sure CURPAGE register is set
55 * appropriately. Which implies reads/writes are not atomic. Fun!
56 */
57
58#define REG(page, addr) (((page) << 8) | (addr))
59#define REG2ADDR(reg) ((reg) & 0xff)
60#define REG2PAGE(reg) (((reg) >> 8) & 0xff)
61
62#define REG_CURPAGE 0xff /* write */
63
64
65/* Page 00h: General Control */
66#define REG_VERSION_LSB REG(0x00, 0x00) /* read */
67#define REG_MAIN_CNTRL0 REG(0x00, 0x01) /* read/write */
68# define MAIN_CNTRL0_SR (1 << 0)
69# define MAIN_CNTRL0_DECS (1 << 1)
70# define MAIN_CNTRL0_DEHS (1 << 2)
71# define MAIN_CNTRL0_CECS (1 << 3)
72# define MAIN_CNTRL0_CEHS (1 << 4)
73# define MAIN_CNTRL0_SCALER (1 << 7)
74#define REG_VERSION_MSB REG(0x00, 0x02) /* read */
75#define REG_SOFTRESET REG(0x00, 0x0a) /* write */
76# define SOFTRESET_AUDIO (1 << 0)
77# define SOFTRESET_I2C_MASTER (1 << 1)
78#define REG_DDC_DISABLE REG(0x00, 0x0b) /* read/write */
79#define REG_CCLK_ON REG(0x00, 0x0c) /* read/write */
80#define REG_I2C_MASTER REG(0x00, 0x0d) /* read/write */
81# define I2C_MASTER_DIS_MM (1 << 0)
82# define I2C_MASTER_DIS_FILT (1 << 1)
83# define I2C_MASTER_APP_STRT_LAT (1 << 2)
84#define REG_FEAT_POWERDOWN REG(0x00, 0x0e) /* read/write */
85# define FEAT_POWERDOWN_SPDIF (1 << 3)
86#define REG_INT_FLAGS_0 REG(0x00, 0x0f) /* read/write */
87#define REG_INT_FLAGS_1 REG(0x00, 0x10) /* read/write */
88#define REG_INT_FLAGS_2 REG(0x00, 0x11) /* read/write */
89# define INT_FLAGS_2_EDID_BLK_RD (1 << 1)
90#define REG_ENA_ACLK REG(0x00, 0x16) /* read/write */
91#define REG_ENA_VP_0 REG(0x00, 0x18) /* read/write */
92#define REG_ENA_VP_1 REG(0x00, 0x19) /* read/write */
93#define REG_ENA_VP_2 REG(0x00, 0x1a) /* read/write */
94#define REG_ENA_AP REG(0x00, 0x1e) /* read/write */
95#define REG_VIP_CNTRL_0 REG(0x00, 0x20) /* write */
96# define VIP_CNTRL_0_MIRR_A (1 << 7)
97# define VIP_CNTRL_0_SWAP_A(x) (((x) & 7) << 4)
98# define VIP_CNTRL_0_MIRR_B (1 << 3)
99# define VIP_CNTRL_0_SWAP_B(x) (((x) & 7) << 0)
100#define REG_VIP_CNTRL_1 REG(0x00, 0x21) /* write */
101# define VIP_CNTRL_1_MIRR_C (1 << 7)
102# define VIP_CNTRL_1_SWAP_C(x) (((x) & 7) << 4)
103# define VIP_CNTRL_1_MIRR_D (1 << 3)
104# define VIP_CNTRL_1_SWAP_D(x) (((x) & 7) << 0)
105#define REG_VIP_CNTRL_2 REG(0x00, 0x22) /* write */
106# define VIP_CNTRL_2_MIRR_E (1 << 7)
107# define VIP_CNTRL_2_SWAP_E(x) (((x) & 7) << 4)
108# define VIP_CNTRL_2_MIRR_F (1 << 3)
109# define VIP_CNTRL_2_SWAP_F(x) (((x) & 7) << 0)
110#define REG_VIP_CNTRL_3 REG(0x00, 0x23) /* write */
111# define VIP_CNTRL_3_X_TGL (1 << 0)
112# define VIP_CNTRL_3_H_TGL (1 << 1)
113# define VIP_CNTRL_3_V_TGL (1 << 2)
114# define VIP_CNTRL_3_EMB (1 << 3)
115# define VIP_CNTRL_3_SYNC_DE (1 << 4)
116# define VIP_CNTRL_3_SYNC_HS (1 << 5)
117# define VIP_CNTRL_3_DE_INT (1 << 6)
118# define VIP_CNTRL_3_EDGE (1 << 7)
119#define REG_VIP_CNTRL_4 REG(0x00, 0x24) /* write */
120# define VIP_CNTRL_4_BLC(x) (((x) & 3) << 0)
121# define VIP_CNTRL_4_BLANKIT(x) (((x) & 3) << 2)
122# define VIP_CNTRL_4_CCIR656 (1 << 4)
123# define VIP_CNTRL_4_656_ALT (1 << 5)
124# define VIP_CNTRL_4_TST_656 (1 << 6)
125# define VIP_CNTRL_4_TST_PAT (1 << 7)
126#define REG_VIP_CNTRL_5 REG(0x00, 0x25) /* write */
127# define VIP_CNTRL_5_CKCASE (1 << 0)
128# define VIP_CNTRL_5_SP_CNT(x) (((x) & 3) << 1)
129#define REG_MUX_AP REG(0x00, 0x26) /* read/write */
130# define MUX_AP_SELECT_I2S 0x64
131# define MUX_AP_SELECT_SPDIF 0x40
132#define REG_MUX_VP_VIP_OUT REG(0x00, 0x27) /* read/write */
133#define REG_MAT_CONTRL REG(0x00, 0x80) /* write */
134# define MAT_CONTRL_MAT_SC(x) (((x) & 3) << 0)
135# define MAT_CONTRL_MAT_BP (1 << 2)
136#define REG_VIDFORMAT REG(0x00, 0xa0) /* write */
137#define REG_REFPIX_MSB REG(0x00, 0xa1) /* write */
138#define REG_REFPIX_LSB REG(0x00, 0xa2) /* write */
139#define REG_REFLINE_MSB REG(0x00, 0xa3) /* write */
140#define REG_REFLINE_LSB REG(0x00, 0xa4) /* write */
141#define REG_NPIX_MSB REG(0x00, 0xa5) /* write */
142#define REG_NPIX_LSB REG(0x00, 0xa6) /* write */
143#define REG_NLINE_MSB REG(0x00, 0xa7) /* write */
144#define REG_NLINE_LSB REG(0x00, 0xa8) /* write */
145#define REG_VS_LINE_STRT_1_MSB REG(0x00, 0xa9) /* write */
146#define REG_VS_LINE_STRT_1_LSB REG(0x00, 0xaa) /* write */
147#define REG_VS_PIX_STRT_1_MSB REG(0x00, 0xab) /* write */
148#define REG_VS_PIX_STRT_1_LSB REG(0x00, 0xac) /* write */
149#define REG_VS_LINE_END_1_MSB REG(0x00, 0xad) /* write */
150#define REG_VS_LINE_END_1_LSB REG(0x00, 0xae) /* write */
151#define REG_VS_PIX_END_1_MSB REG(0x00, 0xaf) /* write */
152#define REG_VS_PIX_END_1_LSB REG(0x00, 0xb0) /* write */
153#define REG_VS_LINE_STRT_2_MSB REG(0x00, 0xb1) /* write */
154#define REG_VS_LINE_STRT_2_LSB REG(0x00, 0xb2) /* write */
155#define REG_VS_PIX_STRT_2_MSB REG(0x00, 0xb3) /* write */
156#define REG_VS_PIX_STRT_2_LSB REG(0x00, 0xb4) /* write */
157#define REG_VS_LINE_END_2_MSB REG(0x00, 0xb5) /* write */
158#define REG_VS_LINE_END_2_LSB REG(0x00, 0xb6) /* write */
159#define REG_VS_PIX_END_2_MSB REG(0x00, 0xb7) /* write */
160#define REG_VS_PIX_END_2_LSB REG(0x00, 0xb8) /* write */
161#define REG_HS_PIX_START_MSB REG(0x00, 0xb9) /* write */
162#define REG_HS_PIX_START_LSB REG(0x00, 0xba) /* write */
163#define REG_HS_PIX_STOP_MSB REG(0x00, 0xbb) /* write */
164#define REG_HS_PIX_STOP_LSB REG(0x00, 0xbc) /* write */
165#define REG_VWIN_START_1_MSB REG(0x00, 0xbd) /* write */
166#define REG_VWIN_START_1_LSB REG(0x00, 0xbe) /* write */
167#define REG_VWIN_END_1_MSB REG(0x00, 0xbf) /* write */
168#define REG_VWIN_END_1_LSB REG(0x00, 0xc0) /* write */
169#define REG_VWIN_START_2_MSB REG(0x00, 0xc1) /* write */
170#define REG_VWIN_START_2_LSB REG(0x00, 0xc2) /* write */
171#define REG_VWIN_END_2_MSB REG(0x00, 0xc3) /* write */
172#define REG_VWIN_END_2_LSB REG(0x00, 0xc4) /* write */
173#define REG_DE_START_MSB REG(0x00, 0xc5) /* write */
174#define REG_DE_START_LSB REG(0x00, 0xc6) /* write */
175#define REG_DE_STOP_MSB REG(0x00, 0xc7) /* write */
176#define REG_DE_STOP_LSB REG(0x00, 0xc8) /* write */
177#define REG_TBG_CNTRL_0 REG(0x00, 0xca) /* write */
178# define TBG_CNTRL_0_TOP_TGL (1 << 0)
179# define TBG_CNTRL_0_TOP_SEL (1 << 1)
180# define TBG_CNTRL_0_DE_EXT (1 << 2)
181# define TBG_CNTRL_0_TOP_EXT (1 << 3)
182# define TBG_CNTRL_0_FRAME_DIS (1 << 5)
183# define TBG_CNTRL_0_SYNC_MTHD (1 << 6)
184# define TBG_CNTRL_0_SYNC_ONCE (1 << 7)
185#define REG_TBG_CNTRL_1 REG(0x00, 0xcb) /* write */
186# define TBG_CNTRL_1_H_TGL (1 << 0)
187# define TBG_CNTRL_1_V_TGL (1 << 1)
188# define TBG_CNTRL_1_TGL_EN (1 << 2)
189# define TBG_CNTRL_1_X_EXT (1 << 3)
190# define TBG_CNTRL_1_H_EXT (1 << 4)
191# define TBG_CNTRL_1_V_EXT (1 << 5)
192# define TBG_CNTRL_1_DWIN_DIS (1 << 6)
193#define REG_ENABLE_SPACE REG(0x00, 0xd6) /* write */
194#define REG_HVF_CNTRL_0 REG(0x00, 0xe4) /* write */
195# define HVF_CNTRL_0_SM (1 << 7)
196# define HVF_CNTRL_0_RWB (1 << 6)
197# define HVF_CNTRL_0_PREFIL(x) (((x) & 3) << 2)
198# define HVF_CNTRL_0_INTPOL(x) (((x) & 3) << 0)
199#define REG_HVF_CNTRL_1 REG(0x00, 0xe5) /* write */
200# define HVF_CNTRL_1_FOR (1 << 0)
201# define HVF_CNTRL_1_YUVBLK (1 << 1)
202# define HVF_CNTRL_1_VQR(x) (((x) & 3) << 2)
203# define HVF_CNTRL_1_PAD(x) (((x) & 3) << 4)
204# define HVF_CNTRL_1_SEMI_PLANAR (1 << 6)
205#define REG_RPT_CNTRL REG(0x00, 0xf0) /* write */
206#define REG_I2S_FORMAT REG(0x00, 0xfc) /* read/write */
207# define I2S_FORMAT(x) (((x) & 3) << 0)
208#define REG_AIP_CLKSEL REG(0x00, 0xfd) /* write */
209# define AIP_CLKSEL_AIP_SPDIF (0 << 3)
210# define AIP_CLKSEL_AIP_I2S (1 << 3)
211# define AIP_CLKSEL_FS_ACLK (0 << 0)
212# define AIP_CLKSEL_FS_MCLK (1 << 0)
213# define AIP_CLKSEL_FS_FS64SPDIF (2 << 0)
214
215/* Page 02h: PLL settings */
216#define REG_PLL_SERIAL_1 REG(0x02, 0x00) /* read/write */
217# define PLL_SERIAL_1_SRL_FDN (1 << 0)
218# define PLL_SERIAL_1_SRL_IZ(x) (((x) & 3) << 1)
219# define PLL_SERIAL_1_SRL_MAN_IZ (1 << 6)
220#define REG_PLL_SERIAL_2 REG(0x02, 0x01) /* read/write */
221# define PLL_SERIAL_2_SRL_NOSC(x) ((x) << 0)
222# define PLL_SERIAL_2_SRL_PR(x) (((x) & 0xf) << 4)
223#define REG_PLL_SERIAL_3 REG(0x02, 0x02) /* read/write */
224# define PLL_SERIAL_3_SRL_CCIR (1 << 0)
225# define PLL_SERIAL_3_SRL_DE (1 << 2)
226# define PLL_SERIAL_3_SRL_PXIN_SEL (1 << 4)
227#define REG_SERIALIZER REG(0x02, 0x03) /* read/write */
228#define REG_BUFFER_OUT REG(0x02, 0x04) /* read/write */
229#define REG_PLL_SCG1 REG(0x02, 0x05) /* read/write */
230#define REG_PLL_SCG2 REG(0x02, 0x06) /* read/write */
231#define REG_PLL_SCGN1 REG(0x02, 0x07) /* read/write */
232#define REG_PLL_SCGN2 REG(0x02, 0x08) /* read/write */
233#define REG_PLL_SCGR1 REG(0x02, 0x09) /* read/write */
234#define REG_PLL_SCGR2 REG(0x02, 0x0a) /* read/write */
235#define REG_AUDIO_DIV REG(0x02, 0x0e) /* read/write */
236# define AUDIO_DIV_SERCLK_1 0
237# define AUDIO_DIV_SERCLK_2 1
238# define AUDIO_DIV_SERCLK_4 2
239# define AUDIO_DIV_SERCLK_8 3
240# define AUDIO_DIV_SERCLK_16 4
241# define AUDIO_DIV_SERCLK_32 5
242#define REG_SEL_CLK REG(0x02, 0x11) /* read/write */
243# define SEL_CLK_SEL_CLK1 (1 << 0)
244# define SEL_CLK_SEL_VRF_CLK(x) (((x) & 3) << 1)
245# define SEL_CLK_ENA_SC_CLK (1 << 3)
246#define REG_ANA_GENERAL REG(0x02, 0x12) /* read/write */
247
248
249/* Page 09h: EDID Control */
250#define REG_EDID_DATA_0 REG(0x09, 0x00) /* read */
251/* next 127 successive registers are the EDID block */
252#define REG_EDID_CTRL REG(0x09, 0xfa) /* read/write */
253#define REG_DDC_ADDR REG(0x09, 0xfb) /* read/write */
254#define REG_DDC_OFFS REG(0x09, 0xfc) /* read/write */
255#define REG_DDC_SEGM_ADDR REG(0x09, 0xfd) /* read/write */
256#define REG_DDC_SEGM REG(0x09, 0xfe) /* read/write */
257
258
259/* Page 10h: information frames and packets */
260#define REG_IF1_HB0 REG(0x10, 0x20) /* read/write */
261#define REG_IF2_HB0 REG(0x10, 0x40) /* read/write */
262#define REG_IF3_HB0 REG(0x10, 0x60) /* read/write */
263#define REG_IF4_HB0 REG(0x10, 0x80) /* read/write */
264#define REG_IF5_HB0 REG(0x10, 0xa0) /* read/write */
265
266
267/* Page 11h: audio settings and content info packets */
268#define REG_AIP_CNTRL_0 REG(0x11, 0x00) /* read/write */
269# define AIP_CNTRL_0_RST_FIFO (1 << 0)
270# define AIP_CNTRL_0_SWAP (1 << 1)
271# define AIP_CNTRL_0_LAYOUT (1 << 2)
272# define AIP_CNTRL_0_ACR_MAN (1 << 5)
273# define AIP_CNTRL_0_RST_CTS (1 << 6)
274#define REG_CA_I2S REG(0x11, 0x01) /* read/write */
275# define CA_I2S_CA_I2S(x) (((x) & 31) << 0)
276# define CA_I2S_HBR_CHSTAT (1 << 6)
277#define REG_LATENCY_RD REG(0x11, 0x04) /* read/write */
278#define REG_ACR_CTS_0 REG(0x11, 0x05) /* read/write */
279#define REG_ACR_CTS_1 REG(0x11, 0x06) /* read/write */
280#define REG_ACR_CTS_2 REG(0x11, 0x07) /* read/write */
281#define REG_ACR_N_0 REG(0x11, 0x08) /* read/write */
282#define REG_ACR_N_1 REG(0x11, 0x09) /* read/write */
283#define REG_ACR_N_2 REG(0x11, 0x0a) /* read/write */
284#define REG_CTS_N REG(0x11, 0x0c) /* read/write */
285# define CTS_N_K(x) (((x) & 7) << 0)
286# define CTS_N_M(x) (((x) & 3) << 4)
287#define REG_ENC_CNTRL REG(0x11, 0x0d) /* read/write */
288# define ENC_CNTRL_RST_ENC (1 << 0)
289# define ENC_CNTRL_RST_SEL (1 << 1)
290# define ENC_CNTRL_CTL_CODE(x) (((x) & 3) << 2)
291#define REG_DIP_FLAGS REG(0x11, 0x0e) /* read/write */
292# define DIP_FLAGS_ACR (1 << 0)
293# define DIP_FLAGS_GC (1 << 1)
294#define REG_DIP_IF_FLAGS REG(0x11, 0x0f) /* read/write */
295# define DIP_IF_FLAGS_IF1 (1 << 1)
296# define DIP_IF_FLAGS_IF2 (1 << 2)
297# define DIP_IF_FLAGS_IF3 (1 << 3)
298# define DIP_IF_FLAGS_IF4 (1 << 4)
299# define DIP_IF_FLAGS_IF5 (1 << 5)
300#define REG_CH_STAT_B(x) REG(0x11, 0x14 + (x)) /* read/write */
301
302
303/* Page 12h: HDCP and OTP */
304#define REG_TX3 REG(0x12, 0x9a) /* read/write */
305#define REG_TX4 REG(0x12, 0x9b) /* read/write */
306# define TX4_PD_RAM (1 << 1)
307#define REG_TX33 REG(0x12, 0xb8) /* read/write */
308# define TX33_HDMI (1 << 1)
309
310
311/* Page 13h: Gamut related metadata packets */
312
313
314
315/* CEC registers: (not paged)
316 */
317#define REG_CEC_INTSTATUS 0xee /* read */
318# define CEC_INTSTATUS_CEC (1 << 0)
319# define CEC_INTSTATUS_HDMI (1 << 1)
320#define REG_CEC_FRO_IM_CLK_CTRL 0xfb /* read/write */
321# define CEC_FRO_IM_CLK_CTRL_GHOST_DIS (1 << 7)
322# define CEC_FRO_IM_CLK_CTRL_ENA_OTP (1 << 6)
323# define CEC_FRO_IM_CLK_CTRL_IMCLK_SEL (1 << 1)
324# define CEC_FRO_IM_CLK_CTRL_FRO_DIV (1 << 0)
325#define REG_CEC_RXSHPDINTENA 0xfc /* read/write */
326#define REG_CEC_RXSHPDINT 0xfd /* read */
327#define REG_CEC_RXSHPDLEV 0xfe /* read */
328# define CEC_RXSHPDLEV_RXSENS (1 << 0)
329# define CEC_RXSHPDLEV_HPD (1 << 1)
330
331#define REG_CEC_ENAMODS 0xff /* read/write */
332# define CEC_ENAMODS_DIS_FRO (1 << 6)
333# define CEC_ENAMODS_DIS_CCLK (1 << 5)
334# define CEC_ENAMODS_EN_RXSENS (1 << 2)
335# define CEC_ENAMODS_EN_HDMI (1 << 1)
336# define CEC_ENAMODS_EN_CEC (1 << 0)
337
338
339/* Device versions: */
340#define TDA9989N2 0x0101
341#define TDA19989 0x0201
342#define TDA19989N2 0x0202
343#define TDA19988 0x0301
344
345static void
346cec_write(struct tda998x_priv *priv, uint16_t addr, uint8_t val)
347{
348 struct i2c_client *client = priv->cec;
349 uint8_t buf[] = {addr, val};
350 int ret;
351
352 ret = i2c_master_send(client, buf, sizeof(buf));
353 if (ret < 0)
354 dev_err(&client->dev, "Error %d writing to cec:0x%x\n", ret, addr);
355}
356
357static uint8_t
358cec_read(struct tda998x_priv *priv, uint8_t addr)
359{
360 struct i2c_client *client = priv->cec;
361 uint8_t val;
362 int ret;
363
364 ret = i2c_master_send(client, &addr, sizeof(addr));
365 if (ret < 0)
366 goto fail;
367
368 ret = i2c_master_recv(client, &val, sizeof(val));
369 if (ret < 0)
370 goto fail;
371
372 return val;
373
374fail:
375 dev_err(&client->dev, "Error %d reading from cec:0x%x\n", ret, addr);
376 return 0;
377}
378
379static int
380set_page(struct tda998x_priv *priv, uint16_t reg)
381{
382 if (REG2PAGE(reg) != priv->current_page) {
383 struct i2c_client *client = priv->hdmi;
384 uint8_t buf[] = {
385 REG_CURPAGE, REG2PAGE(reg)
386 };
387 int ret = i2c_master_send(client, buf, sizeof(buf));
388 if (ret < 0) {
389 dev_err(&client->dev, "setpage %04x err %d\n",
390 reg, ret);
391 return ret;
392 }
393
394 priv->current_page = REG2PAGE(reg);
395 }
396 return 0;
397}
398
399static int
400reg_read_range(struct tda998x_priv *priv, uint16_t reg, char *buf, int cnt)
401{
402 struct i2c_client *client = priv->hdmi;
403 uint8_t addr = REG2ADDR(reg);
404 int ret;
405
406 ret = set_page(priv, reg);
407 if (ret < 0)
408 return ret;
409
410 ret = i2c_master_send(client, &addr, sizeof(addr));
411 if (ret < 0)
412 goto fail;
413
414 ret = i2c_master_recv(client, buf, cnt);
415 if (ret < 0)
416 goto fail;
417
418 return ret;
419
420fail:
421 dev_err(&client->dev, "Error %d reading from 0x%x\n", ret, reg);
422 return ret;
423}
424
425static void
426reg_write_range(struct tda998x_priv *priv, uint16_t reg, uint8_t *p, int cnt)
427{
428 struct i2c_client *client = priv->hdmi;
429 uint8_t buf[cnt+1];
430 int ret;
431
432 buf[0] = REG2ADDR(reg);
433 memcpy(&buf[1], p, cnt);
434
435 ret = set_page(priv, reg);
436 if (ret < 0)
437 return;
438
439 ret = i2c_master_send(client, buf, cnt + 1);
440 if (ret < 0)
441 dev_err(&client->dev, "Error %d writing to 0x%x\n", ret, reg);
442}
443
444static int
445reg_read(struct tda998x_priv *priv, uint16_t reg)
446{
447 uint8_t val = 0;
448 int ret;
449
450 ret = reg_read_range(priv, reg, &val, sizeof(val));
451 if (ret < 0)
452 return ret;
453 return val;
454}
455
456static void
457reg_write(struct tda998x_priv *priv, uint16_t reg, uint8_t val)
458{
459 struct i2c_client *client = priv->hdmi;
460 uint8_t buf[] = {REG2ADDR(reg), val};
461 int ret;
462
463 ret = set_page(priv, reg);
464 if (ret < 0)
465 return;
466
467 ret = i2c_master_send(client, buf, sizeof(buf));
468 if (ret < 0)
469 dev_err(&client->dev, "Error %d writing to 0x%x\n", ret, reg);
470}
471
472static void
473reg_write16(struct tda998x_priv *priv, uint16_t reg, uint16_t val)
474{
475 struct i2c_client *client = priv->hdmi;
476 uint8_t buf[] = {REG2ADDR(reg), val >> 8, val};
477 int ret;
478
479 ret = set_page(priv, reg);
480 if (ret < 0)
481 return;
482
483 ret = i2c_master_send(client, buf, sizeof(buf));
484 if (ret < 0)
485 dev_err(&client->dev, "Error %d writing to 0x%x\n", ret, reg);
486}
487
488static void
489reg_set(struct tda998x_priv *priv, uint16_t reg, uint8_t val)
490{
491 int old_val;
492
493 old_val = reg_read(priv, reg);
494 if (old_val >= 0)
495 reg_write(priv, reg, old_val | val);
496}
497
498static void
499reg_clear(struct tda998x_priv *priv, uint16_t reg, uint8_t val)
500{
501 int old_val;
502
503 old_val = reg_read(priv, reg);
504 if (old_val >= 0)
505 reg_write(priv, reg, old_val & ~val);
506}
507
508static void
509tda998x_reset(struct tda998x_priv *priv)
510{
511 /* reset audio and i2c master: */
512 reg_write(priv, REG_SOFTRESET, SOFTRESET_AUDIO | SOFTRESET_I2C_MASTER);
513 msleep(50);
514 reg_write(priv, REG_SOFTRESET, 0);
515 msleep(50);
516
517 /* reset transmitter: */
518 reg_set(priv, REG_MAIN_CNTRL0, MAIN_CNTRL0_SR);
519 reg_clear(priv, REG_MAIN_CNTRL0, MAIN_CNTRL0_SR);
520
521 /* PLL registers common configuration */
522 reg_write(priv, REG_PLL_SERIAL_1, 0x00);
523 reg_write(priv, REG_PLL_SERIAL_2, PLL_SERIAL_2_SRL_NOSC(1));
524 reg_write(priv, REG_PLL_SERIAL_3, 0x00);
525 reg_write(priv, REG_SERIALIZER, 0x00);
526 reg_write(priv, REG_BUFFER_OUT, 0x00);
527 reg_write(priv, REG_PLL_SCG1, 0x00);
528 reg_write(priv, REG_AUDIO_DIV, AUDIO_DIV_SERCLK_8);
529 reg_write(priv, REG_SEL_CLK, SEL_CLK_SEL_CLK1 | SEL_CLK_ENA_SC_CLK);
530 reg_write(priv, REG_PLL_SCGN1, 0xfa);
531 reg_write(priv, REG_PLL_SCGN2, 0x00);
532 reg_write(priv, REG_PLL_SCGR1, 0x5b);
533 reg_write(priv, REG_PLL_SCGR2, 0x00);
534 reg_write(priv, REG_PLL_SCG2, 0x10);
535
536 /* Write the default value MUX register */
537 reg_write(priv, REG_MUX_VP_VIP_OUT, 0x24);
538}
539
540/*
541 * only 2 interrupts may occur: screen plug/unplug and EDID read
542 */
543static irqreturn_t tda998x_irq_thread(int irq, void *data)
544{
545 struct tda998x_priv *priv = data;
546 u8 sta, cec, lvl, flag0, flag1, flag2;
547
548 if (!priv)
549 return IRQ_HANDLED;
550 sta = cec_read(priv, REG_CEC_INTSTATUS);
551 cec = cec_read(priv, REG_CEC_RXSHPDINT);
552 lvl = cec_read(priv, REG_CEC_RXSHPDLEV);
553 flag0 = reg_read(priv, REG_INT_FLAGS_0);
554 flag1 = reg_read(priv, REG_INT_FLAGS_1);
555 flag2 = reg_read(priv, REG_INT_FLAGS_2);
556 DRM_DEBUG_DRIVER(
557 "tda irq sta %02x cec %02x lvl %02x f0 %02x f1 %02x f2 %02x\n",
558 sta, cec, lvl, flag0, flag1, flag2);
559 if ((flag2 & INT_FLAGS_2_EDID_BLK_RD) && priv->wq_edid_wait) {
560 priv->wq_edid_wait = 0;
561 wake_up(&priv->wq_edid);
562 } else if (cec != 0) { /* HPD change */
563 if (priv->encoder && priv->encoder->dev)
564 drm_helper_hpd_irq_event(priv->encoder->dev);
565 }
566 return IRQ_HANDLED;
567}
568
569static uint8_t tda998x_cksum(uint8_t *buf, size_t bytes)
570{
571 uint8_t sum = 0;
572
573 while (bytes--)
574 sum += *buf++;
575 return (255 - sum) + 1;
576}
577
578#define HB(x) (x)
579#define PB(x) (HB(2) + 1 + (x))
580
581static void
582tda998x_write_if(struct tda998x_priv *priv, uint8_t bit, uint16_t addr,
583 uint8_t *buf, size_t size)
584{
585 buf[PB(0)] = tda998x_cksum(buf, size);
586
587 reg_clear(priv, REG_DIP_IF_FLAGS, bit);
588 reg_write_range(priv, addr, buf, size);
589 reg_set(priv, REG_DIP_IF_FLAGS, bit);
590}
591
592static void
593tda998x_write_aif(struct tda998x_priv *priv, struct tda998x_encoder_params *p)
594{
595 u8 buf[PB(HDMI_AUDIO_INFOFRAME_SIZE) + 1];
596
597 memset(buf, 0, sizeof(buf));
598 buf[HB(0)] = HDMI_INFOFRAME_TYPE_AUDIO;
599 buf[HB(1)] = 0x01;
600 buf[HB(2)] = HDMI_AUDIO_INFOFRAME_SIZE;
601 buf[PB(1)] = p->audio_frame[1] & 0x07; /* CC */
602 buf[PB(2)] = p->audio_frame[2] & 0x1c; /* SF */
603 buf[PB(4)] = p->audio_frame[4];
604 buf[PB(5)] = p->audio_frame[5] & 0xf8; /* DM_INH + LSV */
605
606 tda998x_write_if(priv, DIP_IF_FLAGS_IF4, REG_IF4_HB0, buf,
607 sizeof(buf));
608}
609
610static void
611tda998x_write_avi(struct tda998x_priv *priv, struct drm_display_mode *mode)
612{
613 u8 buf[PB(HDMI_AVI_INFOFRAME_SIZE) + 1];
614
615 memset(buf, 0, sizeof(buf));
616 buf[HB(0)] = HDMI_INFOFRAME_TYPE_AVI;
617 buf[HB(1)] = 0x02;
618 buf[HB(2)] = HDMI_AVI_INFOFRAME_SIZE;
619 buf[PB(1)] = HDMI_SCAN_MODE_UNDERSCAN;
620 buf[PB(2)] = HDMI_ACTIVE_ASPECT_PICTURE;
621 buf[PB(3)] = HDMI_QUANTIZATION_RANGE_FULL << 2;
622 buf[PB(4)] = drm_match_cea_mode(mode);
623
624 tda998x_write_if(priv, DIP_IF_FLAGS_IF2, REG_IF2_HB0, buf,
625 sizeof(buf));
626}
627
628static void tda998x_audio_mute(struct tda998x_priv *priv, bool on)
629{
630 if (on) {
631 reg_set(priv, REG_SOFTRESET, SOFTRESET_AUDIO);
632 reg_clear(priv, REG_SOFTRESET, SOFTRESET_AUDIO);
633 reg_set(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_FIFO);
634 } else {
635 reg_clear(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_FIFO);
636 }
637}
638
639static void
640tda998x_configure_audio(struct tda998x_priv *priv,
641 struct drm_display_mode *mode, struct tda998x_encoder_params *p)
642{
643 uint8_t buf[6], clksel_aip, clksel_fs, cts_n, adiv;
644 uint32_t n;
645
646 /* Enable audio ports */
647 reg_write(priv, REG_ENA_AP, p->audio_cfg);
648 reg_write(priv, REG_ENA_ACLK, p->audio_clk_cfg);
649
650 /* Set audio input source */
651 switch (p->audio_format) {
652 case AFMT_SPDIF:
653 reg_write(priv, REG_MUX_AP, MUX_AP_SELECT_SPDIF);
654 clksel_aip = AIP_CLKSEL_AIP_SPDIF;
655 clksel_fs = AIP_CLKSEL_FS_FS64SPDIF;
656 cts_n = CTS_N_M(3) | CTS_N_K(3);
657 break;
658
659 case AFMT_I2S:
660 reg_write(priv, REG_MUX_AP, MUX_AP_SELECT_I2S);
661 clksel_aip = AIP_CLKSEL_AIP_I2S;
662 clksel_fs = AIP_CLKSEL_FS_ACLK;
663 cts_n = CTS_N_M(3) | CTS_N_K(3);
664 break;
665
666 default:
667 BUG();
668 return;
669 }
670
671 reg_write(priv, REG_AIP_CLKSEL, clksel_aip);
672 reg_clear(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_LAYOUT |
673 AIP_CNTRL_0_ACR_MAN); /* auto CTS */
674 reg_write(priv, REG_CTS_N, cts_n);
675
676 /*
677 * Audio input somehow depends on HDMI line rate which is
678 * related to pixclk. Testing showed that modes with pixclk
679 * >100MHz need a larger divider while <40MHz need the default.
680 * There is no detailed info in the datasheet, so we just
681 * assume 100MHz requires larger divider.
682 */
683 adiv = AUDIO_DIV_SERCLK_8;
684 if (mode->clock > 100000)
685 adiv++; /* AUDIO_DIV_SERCLK_16 */
686
687 /* S/PDIF asks for a larger divider */
688 if (p->audio_format == AFMT_SPDIF)
689 adiv++; /* AUDIO_DIV_SERCLK_16 or _32 */
690
691 reg_write(priv, REG_AUDIO_DIV, adiv);
692
693 /*
694 * This is the approximate value of N, which happens to be
695 * the recommended values for non-coherent clocks.
696 */
697 n = 128 * p->audio_sample_rate / 1000;
698
699 /* Write the CTS and N values */
700 buf[0] = 0x44;
701 buf[1] = 0x42;
702 buf[2] = 0x01;
703 buf[3] = n;
704 buf[4] = n >> 8;
705 buf[5] = n >> 16;
706 reg_write_range(priv, REG_ACR_CTS_0, buf, 6);
707
708 /* Set CTS clock reference */
709 reg_write(priv, REG_AIP_CLKSEL, clksel_aip | clksel_fs);
710
711 /* Reset CTS generator */
712 reg_set(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_CTS);
713 reg_clear(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_CTS);
714
715 /* Write the channel status */
716 buf[0] = IEC958_AES0_CON_NOT_COPYRIGHT;
717 buf[1] = 0x00;
718 buf[2] = IEC958_AES3_CON_FS_NOTID;
719 buf[3] = IEC958_AES4_CON_ORIGFS_NOTID |
720 IEC958_AES4_CON_MAX_WORDLEN_24;
721 reg_write_range(priv, REG_CH_STAT_B(0), buf, 4);
722
723 tda998x_audio_mute(priv, true);
724 msleep(20);
725 tda998x_audio_mute(priv, false);
726
727 /* Write the audio information packet */
728 tda998x_write_aif(priv, p);
729}
730
731/* DRM encoder functions */
732
733static void
734tda998x_encoder_set_config(struct drm_encoder *encoder, void *params)
735{
736 struct tda998x_priv *priv = to_tda998x_priv(encoder);
737 struct tda998x_encoder_params *p = params;
738
739 priv->vip_cntrl_0 = VIP_CNTRL_0_SWAP_A(p->swap_a) |
740 (p->mirr_a ? VIP_CNTRL_0_MIRR_A : 0) |
741 VIP_CNTRL_0_SWAP_B(p->swap_b) |
742 (p->mirr_b ? VIP_CNTRL_0_MIRR_B : 0);
743 priv->vip_cntrl_1 = VIP_CNTRL_1_SWAP_C(p->swap_c) |
744 (p->mirr_c ? VIP_CNTRL_1_MIRR_C : 0) |
745 VIP_CNTRL_1_SWAP_D(p->swap_d) |
746 (p->mirr_d ? VIP_CNTRL_1_MIRR_D : 0);
747 priv->vip_cntrl_2 = VIP_CNTRL_2_SWAP_E(p->swap_e) |
748 (p->mirr_e ? VIP_CNTRL_2_MIRR_E : 0) |
749 VIP_CNTRL_2_SWAP_F(p->swap_f) |
750 (p->mirr_f ? VIP_CNTRL_2_MIRR_F : 0);
751
752 priv->params = *p;
753}
754
755static void
756tda998x_encoder_dpms(struct drm_encoder *encoder, int mode)
757{
758 struct tda998x_priv *priv = to_tda998x_priv(encoder);
759
760 /* we only care about on or off: */
761 if (mode != DRM_MODE_DPMS_ON)
762 mode = DRM_MODE_DPMS_OFF;
763
764 if (mode == priv->dpms)
765 return;
766
767 switch (mode) {
768 case DRM_MODE_DPMS_ON:
769 /* enable video ports, audio will be enabled later */
770 reg_write(priv, REG_ENA_VP_0, 0xff);
771 reg_write(priv, REG_ENA_VP_1, 0xff);
772 reg_write(priv, REG_ENA_VP_2, 0xff);
773 /* set muxing after enabling ports: */
774 reg_write(priv, REG_VIP_CNTRL_0, priv->vip_cntrl_0);
775 reg_write(priv, REG_VIP_CNTRL_1, priv->vip_cntrl_1);
776 reg_write(priv, REG_VIP_CNTRL_2, priv->vip_cntrl_2);
777 break;
778 case DRM_MODE_DPMS_OFF:
779 /* disable video ports */
780 reg_write(priv, REG_ENA_VP_0, 0x00);
781 reg_write(priv, REG_ENA_VP_1, 0x00);
782 reg_write(priv, REG_ENA_VP_2, 0x00);
783 break;
784 }
785
786 priv->dpms = mode;
787}
788
789static void
790tda998x_encoder_save(struct drm_encoder *encoder)
791{
792 DBG("");
793}
794
795static void
796tda998x_encoder_restore(struct drm_encoder *encoder)
797{
798 DBG("");
799}
800
801static bool
802tda998x_encoder_mode_fixup(struct drm_encoder *encoder,
803 const struct drm_display_mode *mode,
804 struct drm_display_mode *adjusted_mode)
805{
806 return true;
807}
808
809static int
810tda998x_encoder_mode_valid(struct drm_encoder *encoder,
811 struct drm_display_mode *mode)
812{
813 return MODE_OK;
814}
815
816static void
817tda998x_encoder_mode_set(struct drm_encoder *encoder,
818 struct drm_display_mode *mode,
819 struct drm_display_mode *adjusted_mode)
820{
821 struct tda998x_priv *priv = to_tda998x_priv(encoder);
822 uint16_t ref_pix, ref_line, n_pix, n_line;
823 uint16_t hs_pix_s, hs_pix_e;
824 uint16_t vs1_pix_s, vs1_pix_e, vs1_line_s, vs1_line_e;
825 uint16_t vs2_pix_s, vs2_pix_e, vs2_line_s, vs2_line_e;
826 uint16_t vwin1_line_s, vwin1_line_e;
827 uint16_t vwin2_line_s, vwin2_line_e;
828 uint16_t de_pix_s, de_pix_e;
829 uint8_t reg, div, rep;
830
831 /*
832 * Internally TDA998x is using ITU-R BT.656 style sync but
833 * we get VESA style sync. TDA998x is using a reference pixel
834 * relative to ITU to sync to the input frame and for output
835 * sync generation. Currently, we are using reference detection
836 * from HS/VS, i.e. REFPIX/REFLINE denote frame start sync point
837 * which is position of rising VS with coincident rising HS.
838 *
839 * Now there is some issues to take care of:
840 * - HDMI data islands require sync-before-active
841 * - TDA998x register values must be > 0 to be enabled
842 * - REFLINE needs an additional offset of +1
843 * - REFPIX needs an addtional offset of +1 for UYUV and +3 for RGB
844 *
845 * So we add +1 to all horizontal and vertical register values,
846 * plus an additional +3 for REFPIX as we are using RGB input only.
847 */
848 n_pix = mode->htotal;
849 n_line = mode->vtotal;
850
851 hs_pix_e = mode->hsync_end - mode->hdisplay;
852 hs_pix_s = mode->hsync_start - mode->hdisplay;
853 de_pix_e = mode->htotal;
854 de_pix_s = mode->htotal - mode->hdisplay;
855 ref_pix = 3 + hs_pix_s;
856
857 /*
858 * Attached LCD controllers may generate broken sync. Allow
859 * those to adjust the position of the rising VS edge by adding
860 * HSKEW to ref_pix.
861 */
862 if (adjusted_mode->flags & DRM_MODE_FLAG_HSKEW)
863 ref_pix += adjusted_mode->hskew;
864
865 if ((mode->flags & DRM_MODE_FLAG_INTERLACE) == 0) {
866 ref_line = 1 + mode->vsync_start - mode->vdisplay;
867 vwin1_line_s = mode->vtotal - mode->vdisplay - 1;
868 vwin1_line_e = vwin1_line_s + mode->vdisplay;
869 vs1_pix_s = vs1_pix_e = hs_pix_s;
870 vs1_line_s = mode->vsync_start - mode->vdisplay;
871 vs1_line_e = vs1_line_s +
872 mode->vsync_end - mode->vsync_start;
873 vwin2_line_s = vwin2_line_e = 0;
874 vs2_pix_s = vs2_pix_e = 0;
875 vs2_line_s = vs2_line_e = 0;
876 } else {
877 ref_line = 1 + (mode->vsync_start - mode->vdisplay)/2;
878 vwin1_line_s = (mode->vtotal - mode->vdisplay)/2;
879 vwin1_line_e = vwin1_line_s + mode->vdisplay/2;
880 vs1_pix_s = vs1_pix_e = hs_pix_s;
881 vs1_line_s = (mode->vsync_start - mode->vdisplay)/2;
882 vs1_line_e = vs1_line_s +
883 (mode->vsync_end - mode->vsync_start)/2;
884 vwin2_line_s = vwin1_line_s + mode->vtotal/2;
885 vwin2_line_e = vwin2_line_s + mode->vdisplay/2;
886 vs2_pix_s = vs2_pix_e = hs_pix_s + mode->htotal/2;
887 vs2_line_s = vs1_line_s + mode->vtotal/2 ;
888 vs2_line_e = vs2_line_s +
889 (mode->vsync_end - mode->vsync_start)/2;
890 }
891
892 div = 148500 / mode->clock;
893 if (div != 0) {
894 div--;
895 if (div > 3)
896 div = 3;
897 }
898
899 /* mute the audio FIFO: */
900 reg_set(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_FIFO);
901
902 /* set HDMI HDCP mode off: */
903 reg_write(priv, REG_TBG_CNTRL_1, TBG_CNTRL_1_DWIN_DIS);
904 reg_clear(priv, REG_TX33, TX33_HDMI);
905 reg_write(priv, REG_ENC_CNTRL, ENC_CNTRL_CTL_CODE(0));
906
907 /* no pre-filter or interpolator: */
908 reg_write(priv, REG_HVF_CNTRL_0, HVF_CNTRL_0_PREFIL(0) |
909 HVF_CNTRL_0_INTPOL(0));
910 reg_write(priv, REG_VIP_CNTRL_5, VIP_CNTRL_5_SP_CNT(0));
911 reg_write(priv, REG_VIP_CNTRL_4, VIP_CNTRL_4_BLANKIT(0) |
912 VIP_CNTRL_4_BLC(0));
913
914 reg_clear(priv, REG_PLL_SERIAL_1, PLL_SERIAL_1_SRL_MAN_IZ);
915 reg_clear(priv, REG_PLL_SERIAL_3, PLL_SERIAL_3_SRL_CCIR |
916 PLL_SERIAL_3_SRL_DE);
917 reg_write(priv, REG_SERIALIZER, 0);
918 reg_write(priv, REG_HVF_CNTRL_1, HVF_CNTRL_1_VQR(0));
919
920 /* TODO enable pixel repeat for pixel rates less than 25Msamp/s */
921 rep = 0;
922 reg_write(priv, REG_RPT_CNTRL, 0);
923 reg_write(priv, REG_SEL_CLK, SEL_CLK_SEL_VRF_CLK(0) |
924 SEL_CLK_SEL_CLK1 | SEL_CLK_ENA_SC_CLK);
925
926 reg_write(priv, REG_PLL_SERIAL_2, PLL_SERIAL_2_SRL_NOSC(div) |
927 PLL_SERIAL_2_SRL_PR(rep));
928
929 /* set color matrix bypass flag: */
930 reg_write(priv, REG_MAT_CONTRL, MAT_CONTRL_MAT_BP |
931 MAT_CONTRL_MAT_SC(1));
932
933 /* set BIAS tmds value: */
934 reg_write(priv, REG_ANA_GENERAL, 0x09);
935
936 /*
937 * Sync on rising HSYNC/VSYNC
938 */
939 reg = VIP_CNTRL_3_SYNC_HS;
940
941 /*
942 * TDA19988 requires high-active sync at input stage,
943 * so invert low-active sync provided by master encoder here
944 */
945 if (mode->flags & DRM_MODE_FLAG_NHSYNC)
946 reg |= VIP_CNTRL_3_H_TGL;
947 if (mode->flags & DRM_MODE_FLAG_NVSYNC)
948 reg |= VIP_CNTRL_3_V_TGL;
949 reg_write(priv, REG_VIP_CNTRL_3, reg);
950
951 reg_write(priv, REG_VIDFORMAT, 0x00);
952 reg_write16(priv, REG_REFPIX_MSB, ref_pix);
953 reg_write16(priv, REG_REFLINE_MSB, ref_line);
954 reg_write16(priv, REG_NPIX_MSB, n_pix);
955 reg_write16(priv, REG_NLINE_MSB, n_line);
956 reg_write16(priv, REG_VS_LINE_STRT_1_MSB, vs1_line_s);
957 reg_write16(priv, REG_VS_PIX_STRT_1_MSB, vs1_pix_s);
958 reg_write16(priv, REG_VS_LINE_END_1_MSB, vs1_line_e);
959 reg_write16(priv, REG_VS_PIX_END_1_MSB, vs1_pix_e);
960 reg_write16(priv, REG_VS_LINE_STRT_2_MSB, vs2_line_s);
961 reg_write16(priv, REG_VS_PIX_STRT_2_MSB, vs2_pix_s);
962 reg_write16(priv, REG_VS_LINE_END_2_MSB, vs2_line_e);
963 reg_write16(priv, REG_VS_PIX_END_2_MSB, vs2_pix_e);
964 reg_write16(priv, REG_HS_PIX_START_MSB, hs_pix_s);
965 reg_write16(priv, REG_HS_PIX_STOP_MSB, hs_pix_e);
966 reg_write16(priv, REG_VWIN_START_1_MSB, vwin1_line_s);
967 reg_write16(priv, REG_VWIN_END_1_MSB, vwin1_line_e);
968 reg_write16(priv, REG_VWIN_START_2_MSB, vwin2_line_s);
969 reg_write16(priv, REG_VWIN_END_2_MSB, vwin2_line_e);
970 reg_write16(priv, REG_DE_START_MSB, de_pix_s);
971 reg_write16(priv, REG_DE_STOP_MSB, de_pix_e);
972
973 if (priv->rev == TDA19988) {
974 /* let incoming pixels fill the active space (if any) */
975 reg_write(priv, REG_ENABLE_SPACE, 0x00);
976 }
977
978 /*
979 * Always generate sync polarity relative to input sync and
980 * revert input stage toggled sync at output stage
981 */
982 reg = TBG_CNTRL_1_DWIN_DIS | TBG_CNTRL_1_TGL_EN;
983 if (mode->flags & DRM_MODE_FLAG_NHSYNC)
984 reg |= TBG_CNTRL_1_H_TGL;
985 if (mode->flags & DRM_MODE_FLAG_NVSYNC)
986 reg |= TBG_CNTRL_1_V_TGL;
987 reg_write(priv, REG_TBG_CNTRL_1, reg);
988
989 /* must be last register set: */
990 reg_write(priv, REG_TBG_CNTRL_0, 0);
991
992 /* Only setup the info frames if the sink is HDMI */
993 if (priv->is_hdmi_sink) {
994 /* We need to turn HDMI HDCP stuff on to get audio through */
995 reg &= ~TBG_CNTRL_1_DWIN_DIS;
996 reg_write(priv, REG_TBG_CNTRL_1, reg);
997 reg_write(priv, REG_ENC_CNTRL, ENC_CNTRL_CTL_CODE(1));
998 reg_set(priv, REG_TX33, TX33_HDMI);
999
1000 tda998x_write_avi(priv, adjusted_mode);
1001
1002 if (priv->params.audio_cfg)
1003 tda998x_configure_audio(priv, adjusted_mode,
1004 &priv->params);
1005 }
1006}
1007
1008static enum drm_connector_status
1009tda998x_encoder_detect(struct drm_encoder *encoder,
1010 struct drm_connector *connector)
1011{
1012 struct tda998x_priv *priv = to_tda998x_priv(encoder);
1013 uint8_t val = cec_read(priv, REG_CEC_RXSHPDLEV);
1014
1015 return (val & CEC_RXSHPDLEV_HPD) ? connector_status_connected :
1016 connector_status_disconnected;
1017}
1018
1019static int
1020read_edid_block(struct drm_encoder *encoder, uint8_t *buf, int blk)
1021{
1022 struct tda998x_priv *priv = to_tda998x_priv(encoder);
1023 uint8_t offset, segptr;
1024 int ret, i;
1025
1026 offset = (blk & 1) ? 128 : 0;
1027 segptr = blk / 2;
1028
1029 reg_write(priv, REG_DDC_ADDR, 0xa0);
1030 reg_write(priv, REG_DDC_OFFS, offset);
1031 reg_write(priv, REG_DDC_SEGM_ADDR, 0x60);
1032 reg_write(priv, REG_DDC_SEGM, segptr);
1033
1034 /* enable reading EDID: */
1035 priv->wq_edid_wait = 1;
1036 reg_write(priv, REG_EDID_CTRL, 0x1);
1037
1038 /* flag must be cleared by sw: */
1039 reg_write(priv, REG_EDID_CTRL, 0x0);
1040
1041 /* wait for block read to complete: */
1042 if (priv->hdmi->irq) {
1043 i = wait_event_timeout(priv->wq_edid,
1044 !priv->wq_edid_wait,
1045 msecs_to_jiffies(100));
1046 if (i < 0) {
1047 dev_err(&priv->hdmi->dev, "read edid wait err %d\n", i);
1048 return i;
1049 }
1050 } else {
1051 for (i = 10; i > 0; i--) {
1052 msleep(10);
1053 ret = reg_read(priv, REG_INT_FLAGS_2);
1054 if (ret < 0)
1055 return ret;
1056 if (ret & INT_FLAGS_2_EDID_BLK_RD)
1057 break;
1058 }
1059 }
1060
1061 if (i == 0) {
1062 dev_err(&priv->hdmi->dev, "read edid timeout\n");
1063 return -ETIMEDOUT;
1064 }
1065
1066 ret = reg_read_range(priv, REG_EDID_DATA_0, buf, EDID_LENGTH);
1067 if (ret != EDID_LENGTH) {
1068 dev_err(&priv->hdmi->dev, "failed to read edid block %d: %d\n",
1069 blk, ret);
1070 return ret;
1071 }
1072
1073 return 0;
1074}
1075
1076static uint8_t *
1077do_get_edid(struct drm_encoder *encoder)
1078{
1079 struct tda998x_priv *priv = to_tda998x_priv(encoder);
1080 int j, valid_extensions = 0;
1081 uint8_t *block, *new;
1082 bool print_bad_edid = drm_debug & DRM_UT_KMS;
1083
1084 if ((block = kmalloc(EDID_LENGTH, GFP_KERNEL)) == NULL)
1085 return NULL;
1086
1087 if (priv->rev == TDA19988)
1088 reg_clear(priv, REG_TX4, TX4_PD_RAM);
1089
1090 /* base block fetch */
1091 if (read_edid_block(encoder, block, 0))
1092 goto fail;
1093
1094 if (!drm_edid_block_valid(block, 0, print_bad_edid))
1095 goto fail;
1096
1097 /* if there's no extensions, we're done */
1098 if (block[0x7e] == 0)
1099 goto done;
1100
1101 new = krealloc(block, (block[0x7e] + 1) * EDID_LENGTH, GFP_KERNEL);
1102 if (!new)
1103 goto fail;
1104 block = new;
1105
1106 for (j = 1; j <= block[0x7e]; j++) {
1107 uint8_t *ext_block = block + (valid_extensions + 1) * EDID_LENGTH;
1108 if (read_edid_block(encoder, ext_block, j))
1109 goto fail;
1110
1111 if (!drm_edid_block_valid(ext_block, j, print_bad_edid))
1112 goto fail;
1113
1114 valid_extensions++;
1115 }
1116
1117 if (valid_extensions != block[0x7e]) {
1118 block[EDID_LENGTH-1] += block[0x7e] - valid_extensions;
1119 block[0x7e] = valid_extensions;
1120 new = krealloc(block, (valid_extensions + 1) * EDID_LENGTH, GFP_KERNEL);
1121 if (!new)
1122 goto fail;
1123 block = new;
1124 }
1125
1126done:
1127 if (priv->rev == TDA19988)
1128 reg_set(priv, REG_TX4, TX4_PD_RAM);
1129
1130 return block;
1131
1132fail:
1133 if (priv->rev == TDA19988)
1134 reg_set(priv, REG_TX4, TX4_PD_RAM);
1135 dev_warn(&priv->hdmi->dev, "failed to read EDID\n");
1136 kfree(block);
1137 return NULL;
1138}
1139
1140static int
1141tda998x_encoder_get_modes(struct drm_encoder *encoder,
1142 struct drm_connector *connector)
1143{
1144 struct tda998x_priv *priv = to_tda998x_priv(encoder);
1145 struct edid *edid = (struct edid *)do_get_edid(encoder);
1146 int n = 0;
1147
1148 if (edid) {
1149 drm_mode_connector_update_edid_property(connector, edid);
1150 n = drm_add_edid_modes(connector, edid);
1151 priv->is_hdmi_sink = drm_detect_hdmi_monitor(edid);
1152 kfree(edid);
1153 }
1154
1155 return n;
1156}
1157
1158static int
1159tda998x_encoder_create_resources(struct drm_encoder *encoder,
1160 struct drm_connector *connector)
1161{
1162 struct tda998x_priv *priv = to_tda998x_priv(encoder);
1163
1164 if (priv->hdmi->irq)
1165 connector->polled = DRM_CONNECTOR_POLL_HPD;
1166 else
1167 connector->polled = DRM_CONNECTOR_POLL_CONNECT |
1168 DRM_CONNECTOR_POLL_DISCONNECT;
1169 return 0;
1170}
1171
1172static int
1173tda998x_encoder_set_property(struct drm_encoder *encoder,
1174 struct drm_connector *connector,
1175 struct drm_property *property,
1176 uint64_t val)
1177{
1178 DBG("");
1179 return 0;
1180}
1181
1182static void
1183tda998x_encoder_destroy(struct drm_encoder *encoder)
1184{
1185 struct tda998x_priv *priv = to_tda998x_priv(encoder);
1186 drm_i2c_encoder_destroy(encoder);
1187
1188 /* disable all IRQs and free the IRQ handler */
1189 cec_write(priv, REG_CEC_RXSHPDINTENA, 0);
1190 reg_clear(priv, REG_INT_FLAGS_2, INT_FLAGS_2_EDID_BLK_RD);
1191 if (priv->hdmi->irq)
1192 free_irq(priv->hdmi->irq, priv);
1193
1194 if (priv->cec)
1195 i2c_unregister_device(priv->cec);
1196 kfree(priv);
1197}
1198
1199static struct drm_encoder_slave_funcs tda998x_encoder_funcs = {
1200 .set_config = tda998x_encoder_set_config,
1201 .destroy = tda998x_encoder_destroy,
1202 .dpms = tda998x_encoder_dpms,
1203 .save = tda998x_encoder_save,
1204 .restore = tda998x_encoder_restore,
1205 .mode_fixup = tda998x_encoder_mode_fixup,
1206 .mode_valid = tda998x_encoder_mode_valid,
1207 .mode_set = tda998x_encoder_mode_set,
1208 .detect = tda998x_encoder_detect,
1209 .get_modes = tda998x_encoder_get_modes,
1210 .create_resources = tda998x_encoder_create_resources,
1211 .set_property = tda998x_encoder_set_property,
1212};
1213
1214/* I2C driver functions */
1215
1216static int
1217tda998x_probe(struct i2c_client *client, const struct i2c_device_id *id)
1218{
1219 return 0;
1220}
1221
1222static int
1223tda998x_remove(struct i2c_client *client)
1224{
1225 return 0;
1226}
1227
1228static int
1229tda998x_encoder_init(struct i2c_client *client,
1230 struct drm_device *dev,
1231 struct drm_encoder_slave *encoder_slave)
1232{
1233 struct tda998x_priv *priv;
1234 struct device_node *np = client->dev.of_node;
1235 u32 video;
1236 int rev_lo, rev_hi, ret;
1237
1238 priv = kzalloc(sizeof(*priv), GFP_KERNEL);
1239 if (!priv)
1240 return -ENOMEM;
1241
1242 priv->vip_cntrl_0 = VIP_CNTRL_0_SWAP_A(2) | VIP_CNTRL_0_SWAP_B(3);
1243 priv->vip_cntrl_1 = VIP_CNTRL_1_SWAP_C(0) | VIP_CNTRL_1_SWAP_D(1);
1244 priv->vip_cntrl_2 = VIP_CNTRL_2_SWAP_E(4) | VIP_CNTRL_2_SWAP_F(5);
1245
1246 priv->current_page = 0xff;
1247 priv->hdmi = client;
1248 priv->cec = i2c_new_dummy(client->adapter, 0x34);
1249 if (!priv->cec) {
1250 kfree(priv);
1251 return -ENODEV;
1252 }
1253
1254 priv->encoder = &encoder_slave->base;
1255 priv->dpms = DRM_MODE_DPMS_OFF;
1256
1257 encoder_slave->slave_priv = priv;
1258 encoder_slave->slave_funcs = &tda998x_encoder_funcs;
1259
1260 /* wake up the device: */
1261 cec_write(priv, REG_CEC_ENAMODS,
1262 CEC_ENAMODS_EN_RXSENS | CEC_ENAMODS_EN_HDMI);
1263
1264 tda998x_reset(priv);
1265
1266 /* read version: */
1267 rev_lo = reg_read(priv, REG_VERSION_LSB);
1268 rev_hi = reg_read(priv, REG_VERSION_MSB);
1269 if (rev_lo < 0 || rev_hi < 0) {
1270 ret = rev_lo < 0 ? rev_lo : rev_hi;
1271 goto fail;
1272 }
1273
1274 priv->rev = rev_lo | rev_hi << 8;
1275
1276 /* mask off feature bits: */
1277 priv->rev &= ~0x30; /* not-hdcp and not-scalar bit */
1278
1279 switch (priv->rev) {
1280 case TDA9989N2:
1281 dev_info(&client->dev, "found TDA9989 n2");
1282 break;
1283 case TDA19989:
1284 dev_info(&client->dev, "found TDA19989");
1285 break;
1286 case TDA19989N2:
1287 dev_info(&client->dev, "found TDA19989 n2");
1288 break;
1289 case TDA19988:
1290 dev_info(&client->dev, "found TDA19988");
1291 break;
1292 default:
1293 dev_err(&client->dev, "found unsupported device: %04x\n",
1294 priv->rev);
1295 goto fail;
1296 }
1297
1298 /* after reset, enable DDC: */
1299 reg_write(priv, REG_DDC_DISABLE, 0x00);
1300
1301 /* set clock on DDC channel: */
1302 reg_write(priv, REG_TX3, 39);
1303
1304 /* if necessary, disable multi-master: */
1305 if (priv->rev == TDA19989)
1306 reg_set(priv, REG_I2C_MASTER, I2C_MASTER_DIS_MM);
1307
1308 cec_write(priv, REG_CEC_FRO_IM_CLK_CTRL,
1309 CEC_FRO_IM_CLK_CTRL_GHOST_DIS | CEC_FRO_IM_CLK_CTRL_IMCLK_SEL);
1310
1311 /* initialize the optional IRQ */
1312 if (client->irq) {
1313 int irqf_trigger;
1314
1315 /* init read EDID waitqueue */
1316 init_waitqueue_head(&priv->wq_edid);
1317
1318 /* clear pending interrupts */
1319 reg_read(priv, REG_INT_FLAGS_0);
1320 reg_read(priv, REG_INT_FLAGS_1);
1321 reg_read(priv, REG_INT_FLAGS_2);
1322
1323 irqf_trigger =
1324 irqd_get_trigger_type(irq_get_irq_data(client->irq));
1325 ret = request_threaded_irq(client->irq, NULL,
1326 tda998x_irq_thread,
1327 irqf_trigger | IRQF_ONESHOT,
1328 "tda998x", priv);
1329 if (ret) {
1330 dev_err(&client->dev,
1331 "failed to request IRQ#%u: %d\n",
1332 client->irq, ret);
1333 goto fail;
1334 }
1335
1336 /* enable HPD irq */
1337 cec_write(priv, REG_CEC_RXSHPDINTENA, CEC_RXSHPDLEV_HPD);
1338 }
1339
1340 /* enable EDID read irq: */
1341 reg_set(priv, REG_INT_FLAGS_2, INT_FLAGS_2_EDID_BLK_RD);
1342
1343 if (!np)
1344 return 0; /* non-DT */
1345
1346 /* get the optional video properties */
1347 ret = of_property_read_u32(np, "video-ports", &video);
1348 if (ret == 0) {
1349 priv->vip_cntrl_0 = video >> 16;
1350 priv->vip_cntrl_1 = video >> 8;
1351 priv->vip_cntrl_2 = video;
1352 }
1353
1354 return 0;
1355
1356fail:
1357 /* if encoder_init fails, the encoder slave is never registered,
1358 * so cleanup here:
1359 */
1360 if (priv->cec)
1361 i2c_unregister_device(priv->cec);
1362 kfree(priv);
1363 encoder_slave->slave_priv = NULL;
1364 encoder_slave->slave_funcs = NULL;
1365 return -ENXIO;
1366}
1367
1368#ifdef CONFIG_OF
1369static const struct of_device_id tda998x_dt_ids[] = {
1370 { .compatible = "nxp,tda998x", },
1371 { }
1372};
1373MODULE_DEVICE_TABLE(of, tda998x_dt_ids);
1374#endif
1375
1376static struct i2c_device_id tda998x_ids[] = {
1377 { "tda998x", 0 },
1378 { }
1379};
1380MODULE_DEVICE_TABLE(i2c, tda998x_ids);
1381
1382static struct drm_i2c_encoder_driver tda998x_driver = {
1383 .i2c_driver = {
1384 .probe = tda998x_probe,
1385 .remove = tda998x_remove,
1386 .driver = {
1387 .name = "tda998x",
1388 .of_match_table = of_match_ptr(tda998x_dt_ids),
1389 },
1390 .id_table = tda998x_ids,
1391 },
1392 .encoder_init = tda998x_encoder_init,
1393};
1394
1395/* Module initialization */
1396
1397static int __init
1398tda998x_init(void)
1399{
1400 DBG("");
1401 return drm_i2c_encoder_register(THIS_MODULE, &tda998x_driver);
1402}
1403
1404static void __exit
1405tda998x_exit(void)
1406{
1407 DBG("");
1408 drm_i2c_encoder_unregister(&tda998x_driver);
1409}
1410
1411MODULE_AUTHOR("Rob Clark <robdclark@gmail.com");
1412MODULE_DESCRIPTION("NXP Semiconductors TDA998X HDMI Encoder");
1413MODULE_LICENSE("GPL");
1414
1415module_init(tda998x_init);
1416module_exit(tda998x_exit);