Linux Audio

Check our new training course

Loading...
Note: File does not exist in v5.9.
   1/*
   2 * Support for Marvell's crypto engine which can be found on some Orion5X
   3 * boards.
   4 *
   5 * Author: Sebastian Andrzej Siewior < sebastian at breakpoint dot cc >
   6 * License: GPLv2
   7 *
   8 */
   9#include <crypto/aes.h>
  10#include <crypto/algapi.h>
  11#include <linux/crypto.h>
  12#include <linux/interrupt.h>
  13#include <linux/io.h>
  14#include <linux/kthread.h>
  15#include <linux/platform_device.h>
  16#include <linux/scatterlist.h>
  17#include <linux/slab.h>
  18#include <linux/module.h>
  19#include <linux/clk.h>
  20#include <crypto/internal/hash.h>
  21#include <crypto/sha.h>
  22#include <linux/of.h>
  23#include <linux/of_platform.h>
  24#include <linux/of_irq.h>
  25
  26#include "mv_cesa.h"
  27
  28#define MV_CESA	"MV-CESA:"
  29#define MAX_HW_HASH_SIZE	0xFFFF
  30#define MV_CESA_EXPIRE		500 /* msec */
  31
  32/*
  33 * STM:
  34 *   /---------------------------------------\
  35 *   |					     | request complete
  36 *  \./					     |
  37 * IDLE -> new request -> BUSY -> done -> DEQUEUE
  38 *                         /°\               |
  39 *			    |		     | more scatter entries
  40 *			    \________________/
  41 */
  42enum engine_status {
  43	ENGINE_IDLE,
  44	ENGINE_BUSY,
  45	ENGINE_W_DEQUEUE,
  46};
  47
  48/**
  49 * struct req_progress - used for every crypt request
  50 * @src_sg_it:		sg iterator for src
  51 * @dst_sg_it:		sg iterator for dst
  52 * @sg_src_left:	bytes left in src to process (scatter list)
  53 * @src_start:		offset to add to src start position (scatter list)
  54 * @crypt_len:		length of current hw crypt/hash process
  55 * @hw_nbytes:		total bytes to process in hw for this request
  56 * @copy_back:		whether to copy data back (crypt) or not (hash)
  57 * @sg_dst_left:	bytes left dst to process in this scatter list
  58 * @dst_start:		offset to add to dst start position (scatter list)
  59 * @hw_processed_bytes:	number of bytes processed by hw (request).
  60 *
  61 * sg helper are used to iterate over the scatterlist. Since the size of the
  62 * SRAM may be less than the scatter size, this struct struct is used to keep
  63 * track of progress within current scatterlist.
  64 */
  65struct req_progress {
  66	struct sg_mapping_iter src_sg_it;
  67	struct sg_mapping_iter dst_sg_it;
  68	void (*complete) (void);
  69	void (*process) (int is_first);
  70
  71	/* src mostly */
  72	int sg_src_left;
  73	int src_start;
  74	int crypt_len;
  75	int hw_nbytes;
  76	/* dst mostly */
  77	int copy_back;
  78	int sg_dst_left;
  79	int dst_start;
  80	int hw_processed_bytes;
  81};
  82
  83struct crypto_priv {
  84	void __iomem *reg;
  85	void __iomem *sram;
  86	int irq;
  87	struct clk *clk;
  88	struct task_struct *queue_th;
  89
  90	/* the lock protects queue and eng_st */
  91	spinlock_t lock;
  92	struct crypto_queue queue;
  93	enum engine_status eng_st;
  94	struct timer_list completion_timer;
  95	struct crypto_async_request *cur_req;
  96	struct req_progress p;
  97	int max_req_size;
  98	int sram_size;
  99	int has_sha1;
 100	int has_hmac_sha1;
 101};
 102
 103static struct crypto_priv *cpg;
 104
 105struct mv_ctx {
 106	u8 aes_enc_key[AES_KEY_LEN];
 107	u32 aes_dec_key[8];
 108	int key_len;
 109	u32 need_calc_aes_dkey;
 110};
 111
 112enum crypto_op {
 113	COP_AES_ECB,
 114	COP_AES_CBC,
 115};
 116
 117struct mv_req_ctx {
 118	enum crypto_op op;
 119	int decrypt;
 120};
 121
 122enum hash_op {
 123	COP_SHA1,
 124	COP_HMAC_SHA1
 125};
 126
 127struct mv_tfm_hash_ctx {
 128	struct crypto_shash *fallback;
 129	struct crypto_shash *base_hash;
 130	u32 ivs[2 * SHA1_DIGEST_SIZE / 4];
 131	int count_add;
 132	enum hash_op op;
 133};
 134
 135struct mv_req_hash_ctx {
 136	u64 count;
 137	u32 state[SHA1_DIGEST_SIZE / 4];
 138	u8 buffer[SHA1_BLOCK_SIZE];
 139	int first_hash;		/* marks that we don't have previous state */
 140	int last_chunk;		/* marks that this is the 'final' request */
 141	int extra_bytes;	/* unprocessed bytes in buffer */
 142	enum hash_op op;
 143	int count_add;
 144};
 145
 146static void mv_completion_timer_callback(unsigned long unused)
 147{
 148	int active = readl(cpg->reg + SEC_ACCEL_CMD) & SEC_CMD_EN_SEC_ACCL0;
 149
 150	printk(KERN_ERR MV_CESA
 151	       "completion timer expired (CESA %sactive), cleaning up.\n",
 152	       active ? "" : "in");
 153
 154	del_timer(&cpg->completion_timer);
 155	writel(SEC_CMD_DISABLE_SEC, cpg->reg + SEC_ACCEL_CMD);
 156	while(readl(cpg->reg + SEC_ACCEL_CMD) & SEC_CMD_DISABLE_SEC)
 157		printk(KERN_INFO MV_CESA "%s: waiting for engine finishing\n", __func__);
 158	cpg->eng_st = ENGINE_W_DEQUEUE;
 159	wake_up_process(cpg->queue_th);
 160}
 161
 162static void mv_setup_timer(void)
 163{
 164	setup_timer(&cpg->completion_timer, &mv_completion_timer_callback, 0);
 165	mod_timer(&cpg->completion_timer,
 166			jiffies + msecs_to_jiffies(MV_CESA_EXPIRE));
 167}
 168
 169static void compute_aes_dec_key(struct mv_ctx *ctx)
 170{
 171	struct crypto_aes_ctx gen_aes_key;
 172	int key_pos;
 173
 174	if (!ctx->need_calc_aes_dkey)
 175		return;
 176
 177	crypto_aes_expand_key(&gen_aes_key, ctx->aes_enc_key, ctx->key_len);
 178
 179	key_pos = ctx->key_len + 24;
 180	memcpy(ctx->aes_dec_key, &gen_aes_key.key_enc[key_pos], 4 * 4);
 181	switch (ctx->key_len) {
 182	case AES_KEYSIZE_256:
 183		key_pos -= 2;
 184		/* fall */
 185	case AES_KEYSIZE_192:
 186		key_pos -= 2;
 187		memcpy(&ctx->aes_dec_key[4], &gen_aes_key.key_enc[key_pos],
 188				4 * 4);
 189		break;
 190	}
 191	ctx->need_calc_aes_dkey = 0;
 192}
 193
 194static int mv_setkey_aes(struct crypto_ablkcipher *cipher, const u8 *key,
 195		unsigned int len)
 196{
 197	struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
 198	struct mv_ctx *ctx = crypto_tfm_ctx(tfm);
 199
 200	switch (len) {
 201	case AES_KEYSIZE_128:
 202	case AES_KEYSIZE_192:
 203	case AES_KEYSIZE_256:
 204		break;
 205	default:
 206		crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
 207		return -EINVAL;
 208	}
 209	ctx->key_len = len;
 210	ctx->need_calc_aes_dkey = 1;
 211
 212	memcpy(ctx->aes_enc_key, key, AES_KEY_LEN);
 213	return 0;
 214}
 215
 216static void copy_src_to_buf(struct req_progress *p, char *dbuf, int len)
 217{
 218	int ret;
 219	void *sbuf;
 220	int copy_len;
 221
 222	while (len) {
 223		if (!p->sg_src_left) {
 224			ret = sg_miter_next(&p->src_sg_it);
 225			BUG_ON(!ret);
 226			p->sg_src_left = p->src_sg_it.length;
 227			p->src_start = 0;
 228		}
 229
 230		sbuf = p->src_sg_it.addr + p->src_start;
 231
 232		copy_len = min(p->sg_src_left, len);
 233		memcpy(dbuf, sbuf, copy_len);
 234
 235		p->src_start += copy_len;
 236		p->sg_src_left -= copy_len;
 237
 238		len -= copy_len;
 239		dbuf += copy_len;
 240	}
 241}
 242
 243static void setup_data_in(void)
 244{
 245	struct req_progress *p = &cpg->p;
 246	int data_in_sram =
 247	    min(p->hw_nbytes - p->hw_processed_bytes, cpg->max_req_size);
 248	copy_src_to_buf(p, cpg->sram + SRAM_DATA_IN_START + p->crypt_len,
 249			data_in_sram - p->crypt_len);
 250	p->crypt_len = data_in_sram;
 251}
 252
 253static void mv_process_current_q(int first_block)
 254{
 255	struct ablkcipher_request *req = ablkcipher_request_cast(cpg->cur_req);
 256	struct mv_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
 257	struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
 258	struct sec_accel_config op;
 259
 260	switch (req_ctx->op) {
 261	case COP_AES_ECB:
 262		op.config = CFG_OP_CRYPT_ONLY | CFG_ENCM_AES | CFG_ENC_MODE_ECB;
 263		break;
 264	case COP_AES_CBC:
 265	default:
 266		op.config = CFG_OP_CRYPT_ONLY | CFG_ENCM_AES | CFG_ENC_MODE_CBC;
 267		op.enc_iv = ENC_IV_POINT(SRAM_DATA_IV) |
 268			ENC_IV_BUF_POINT(SRAM_DATA_IV_BUF);
 269		if (first_block)
 270			memcpy(cpg->sram + SRAM_DATA_IV, req->info, 16);
 271		break;
 272	}
 273	if (req_ctx->decrypt) {
 274		op.config |= CFG_DIR_DEC;
 275		memcpy(cpg->sram + SRAM_DATA_KEY_P, ctx->aes_dec_key,
 276				AES_KEY_LEN);
 277	} else {
 278		op.config |= CFG_DIR_ENC;
 279		memcpy(cpg->sram + SRAM_DATA_KEY_P, ctx->aes_enc_key,
 280				AES_KEY_LEN);
 281	}
 282
 283	switch (ctx->key_len) {
 284	case AES_KEYSIZE_128:
 285		op.config |= CFG_AES_LEN_128;
 286		break;
 287	case AES_KEYSIZE_192:
 288		op.config |= CFG_AES_LEN_192;
 289		break;
 290	case AES_KEYSIZE_256:
 291		op.config |= CFG_AES_LEN_256;
 292		break;
 293	}
 294	op.enc_p = ENC_P_SRC(SRAM_DATA_IN_START) |
 295		ENC_P_DST(SRAM_DATA_OUT_START);
 296	op.enc_key_p = SRAM_DATA_KEY_P;
 297
 298	setup_data_in();
 299	op.enc_len = cpg->p.crypt_len;
 300	memcpy(cpg->sram + SRAM_CONFIG, &op,
 301			sizeof(struct sec_accel_config));
 302
 303	/* GO */
 304	mv_setup_timer();
 305	writel(SEC_CMD_EN_SEC_ACCL0, cpg->reg + SEC_ACCEL_CMD);
 306}
 307
 308static void mv_crypto_algo_completion(void)
 309{
 310	struct ablkcipher_request *req = ablkcipher_request_cast(cpg->cur_req);
 311	struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
 312
 313	sg_miter_stop(&cpg->p.src_sg_it);
 314	sg_miter_stop(&cpg->p.dst_sg_it);
 315
 316	if (req_ctx->op != COP_AES_CBC)
 317		return ;
 318
 319	memcpy(req->info, cpg->sram + SRAM_DATA_IV_BUF, 16);
 320}
 321
 322static void mv_process_hash_current(int first_block)
 323{
 324	struct ahash_request *req = ahash_request_cast(cpg->cur_req);
 325	const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm);
 326	struct mv_req_hash_ctx *req_ctx = ahash_request_ctx(req);
 327	struct req_progress *p = &cpg->p;
 328	struct sec_accel_config op = { 0 };
 329	int is_last;
 330
 331	switch (req_ctx->op) {
 332	case COP_SHA1:
 333	default:
 334		op.config = CFG_OP_MAC_ONLY | CFG_MACM_SHA1;
 335		break;
 336	case COP_HMAC_SHA1:
 337		op.config = CFG_OP_MAC_ONLY | CFG_MACM_HMAC_SHA1;
 338		memcpy(cpg->sram + SRAM_HMAC_IV_IN,
 339				tfm_ctx->ivs, sizeof(tfm_ctx->ivs));
 340		break;
 341	}
 342
 343	op.mac_src_p =
 344		MAC_SRC_DATA_P(SRAM_DATA_IN_START) | MAC_SRC_TOTAL_LEN((u32)
 345		req_ctx->
 346		count);
 347
 348	setup_data_in();
 349
 350	op.mac_digest =
 351		MAC_DIGEST_P(SRAM_DIGEST_BUF) | MAC_FRAG_LEN(p->crypt_len);
 352	op.mac_iv =
 353		MAC_INNER_IV_P(SRAM_HMAC_IV_IN) |
 354		MAC_OUTER_IV_P(SRAM_HMAC_IV_OUT);
 355
 356	is_last = req_ctx->last_chunk
 357		&& (p->hw_processed_bytes + p->crypt_len >= p->hw_nbytes)
 358		&& (req_ctx->count <= MAX_HW_HASH_SIZE);
 359	if (req_ctx->first_hash) {
 360		if (is_last)
 361			op.config |= CFG_NOT_FRAG;
 362		else
 363			op.config |= CFG_FIRST_FRAG;
 364
 365		req_ctx->first_hash = 0;
 366	} else {
 367		if (is_last)
 368			op.config |= CFG_LAST_FRAG;
 369		else
 370			op.config |= CFG_MID_FRAG;
 371
 372		if (first_block) {
 373			writel(req_ctx->state[0], cpg->reg + DIGEST_INITIAL_VAL_A);
 374			writel(req_ctx->state[1], cpg->reg + DIGEST_INITIAL_VAL_B);
 375			writel(req_ctx->state[2], cpg->reg + DIGEST_INITIAL_VAL_C);
 376			writel(req_ctx->state[3], cpg->reg + DIGEST_INITIAL_VAL_D);
 377			writel(req_ctx->state[4], cpg->reg + DIGEST_INITIAL_VAL_E);
 378		}
 379	}
 380
 381	memcpy(cpg->sram + SRAM_CONFIG, &op, sizeof(struct sec_accel_config));
 382
 383	/* GO */
 384	mv_setup_timer();
 385	writel(SEC_CMD_EN_SEC_ACCL0, cpg->reg + SEC_ACCEL_CMD);
 386}
 387
 388static inline int mv_hash_import_sha1_ctx(const struct mv_req_hash_ctx *ctx,
 389					  struct shash_desc *desc)
 390{
 391	int i;
 392	struct sha1_state shash_state;
 393
 394	shash_state.count = ctx->count + ctx->count_add;
 395	for (i = 0; i < 5; i++)
 396		shash_state.state[i] = ctx->state[i];
 397	memcpy(shash_state.buffer, ctx->buffer, sizeof(shash_state.buffer));
 398	return crypto_shash_import(desc, &shash_state);
 399}
 400
 401static int mv_hash_final_fallback(struct ahash_request *req)
 402{
 403	const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm);
 404	struct mv_req_hash_ctx *req_ctx = ahash_request_ctx(req);
 405	struct {
 406		struct shash_desc shash;
 407		char ctx[crypto_shash_descsize(tfm_ctx->fallback)];
 408	} desc;
 409	int rc;
 410
 411	desc.shash.tfm = tfm_ctx->fallback;
 412	desc.shash.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
 413	if (unlikely(req_ctx->first_hash)) {
 414		crypto_shash_init(&desc.shash);
 415		crypto_shash_update(&desc.shash, req_ctx->buffer,
 416				    req_ctx->extra_bytes);
 417	} else {
 418		/* only SHA1 for now....
 419		 */
 420		rc = mv_hash_import_sha1_ctx(req_ctx, &desc.shash);
 421		if (rc)
 422			goto out;
 423	}
 424	rc = crypto_shash_final(&desc.shash, req->result);
 425out:
 426	return rc;
 427}
 428
 429static void mv_save_digest_state(struct mv_req_hash_ctx *ctx)
 430{
 431	ctx->state[0] = readl(cpg->reg + DIGEST_INITIAL_VAL_A);
 432	ctx->state[1] = readl(cpg->reg + DIGEST_INITIAL_VAL_B);
 433	ctx->state[2] = readl(cpg->reg + DIGEST_INITIAL_VAL_C);
 434	ctx->state[3] = readl(cpg->reg + DIGEST_INITIAL_VAL_D);
 435	ctx->state[4] = readl(cpg->reg + DIGEST_INITIAL_VAL_E);
 436}
 437
 438static void mv_hash_algo_completion(void)
 439{
 440	struct ahash_request *req = ahash_request_cast(cpg->cur_req);
 441	struct mv_req_hash_ctx *ctx = ahash_request_ctx(req);
 442
 443	if (ctx->extra_bytes)
 444		copy_src_to_buf(&cpg->p, ctx->buffer, ctx->extra_bytes);
 445	sg_miter_stop(&cpg->p.src_sg_it);
 446
 447	if (likely(ctx->last_chunk)) {
 448		if (likely(ctx->count <= MAX_HW_HASH_SIZE)) {
 449			memcpy(req->result, cpg->sram + SRAM_DIGEST_BUF,
 450			       crypto_ahash_digestsize(crypto_ahash_reqtfm
 451						       (req)));
 452		} else {
 453			mv_save_digest_state(ctx);
 454			mv_hash_final_fallback(req);
 455		}
 456	} else {
 457		mv_save_digest_state(ctx);
 458	}
 459}
 460
 461static void dequeue_complete_req(void)
 462{
 463	struct crypto_async_request *req = cpg->cur_req;
 464	void *buf;
 465	int ret;
 466	cpg->p.hw_processed_bytes += cpg->p.crypt_len;
 467	if (cpg->p.copy_back) {
 468		int need_copy_len = cpg->p.crypt_len;
 469		int sram_offset = 0;
 470		do {
 471			int dst_copy;
 472
 473			if (!cpg->p.sg_dst_left) {
 474				ret = sg_miter_next(&cpg->p.dst_sg_it);
 475				BUG_ON(!ret);
 476				cpg->p.sg_dst_left = cpg->p.dst_sg_it.length;
 477				cpg->p.dst_start = 0;
 478			}
 479
 480			buf = cpg->p.dst_sg_it.addr;
 481			buf += cpg->p.dst_start;
 482
 483			dst_copy = min(need_copy_len, cpg->p.sg_dst_left);
 484
 485			memcpy(buf,
 486			       cpg->sram + SRAM_DATA_OUT_START + sram_offset,
 487			       dst_copy);
 488			sram_offset += dst_copy;
 489			cpg->p.sg_dst_left -= dst_copy;
 490			need_copy_len -= dst_copy;
 491			cpg->p.dst_start += dst_copy;
 492		} while (need_copy_len > 0);
 493	}
 494
 495	cpg->p.crypt_len = 0;
 496
 497	BUG_ON(cpg->eng_st != ENGINE_W_DEQUEUE);
 498	if (cpg->p.hw_processed_bytes < cpg->p.hw_nbytes) {
 499		/* process next scatter list entry */
 500		cpg->eng_st = ENGINE_BUSY;
 501		cpg->p.process(0);
 502	} else {
 503		cpg->p.complete();
 504		cpg->eng_st = ENGINE_IDLE;
 505		local_bh_disable();
 506		req->complete(req, 0);
 507		local_bh_enable();
 508	}
 509}
 510
 511static int count_sgs(struct scatterlist *sl, unsigned int total_bytes)
 512{
 513	int i = 0;
 514	size_t cur_len;
 515
 516	while (sl) {
 517		cur_len = sl[i].length;
 518		++i;
 519		if (total_bytes > cur_len)
 520			total_bytes -= cur_len;
 521		else
 522			break;
 523	}
 524
 525	return i;
 526}
 527
 528static void mv_start_new_crypt_req(struct ablkcipher_request *req)
 529{
 530	struct req_progress *p = &cpg->p;
 531	int num_sgs;
 532
 533	cpg->cur_req = &req->base;
 534	memset(p, 0, sizeof(struct req_progress));
 535	p->hw_nbytes = req->nbytes;
 536	p->complete = mv_crypto_algo_completion;
 537	p->process = mv_process_current_q;
 538	p->copy_back = 1;
 539
 540	num_sgs = count_sgs(req->src, req->nbytes);
 541	sg_miter_start(&p->src_sg_it, req->src, num_sgs, SG_MITER_FROM_SG);
 542
 543	num_sgs = count_sgs(req->dst, req->nbytes);
 544	sg_miter_start(&p->dst_sg_it, req->dst, num_sgs, SG_MITER_TO_SG);
 545
 546	mv_process_current_q(1);
 547}
 548
 549static void mv_start_new_hash_req(struct ahash_request *req)
 550{
 551	struct req_progress *p = &cpg->p;
 552	struct mv_req_hash_ctx *ctx = ahash_request_ctx(req);
 553	int num_sgs, hw_bytes, old_extra_bytes, rc;
 554	cpg->cur_req = &req->base;
 555	memset(p, 0, sizeof(struct req_progress));
 556	hw_bytes = req->nbytes + ctx->extra_bytes;
 557	old_extra_bytes = ctx->extra_bytes;
 558
 559	ctx->extra_bytes = hw_bytes % SHA1_BLOCK_SIZE;
 560	if (ctx->extra_bytes != 0
 561	    && (!ctx->last_chunk || ctx->count > MAX_HW_HASH_SIZE))
 562		hw_bytes -= ctx->extra_bytes;
 563	else
 564		ctx->extra_bytes = 0;
 565
 566	num_sgs = count_sgs(req->src, req->nbytes);
 567	sg_miter_start(&p->src_sg_it, req->src, num_sgs, SG_MITER_FROM_SG);
 568
 569	if (hw_bytes) {
 570		p->hw_nbytes = hw_bytes;
 571		p->complete = mv_hash_algo_completion;
 572		p->process = mv_process_hash_current;
 573
 574		if (unlikely(old_extra_bytes)) {
 575			memcpy(cpg->sram + SRAM_DATA_IN_START, ctx->buffer,
 576			       old_extra_bytes);
 577			p->crypt_len = old_extra_bytes;
 578		}
 579
 580		mv_process_hash_current(1);
 581	} else {
 582		copy_src_to_buf(p, ctx->buffer + old_extra_bytes,
 583				ctx->extra_bytes - old_extra_bytes);
 584		sg_miter_stop(&p->src_sg_it);
 585		if (ctx->last_chunk)
 586			rc = mv_hash_final_fallback(req);
 587		else
 588			rc = 0;
 589		cpg->eng_st = ENGINE_IDLE;
 590		local_bh_disable();
 591		req->base.complete(&req->base, rc);
 592		local_bh_enable();
 593	}
 594}
 595
 596static int queue_manag(void *data)
 597{
 598	cpg->eng_st = ENGINE_IDLE;
 599	do {
 600		struct crypto_async_request *async_req = NULL;
 601		struct crypto_async_request *backlog;
 602
 603		__set_current_state(TASK_INTERRUPTIBLE);
 604
 605		if (cpg->eng_st == ENGINE_W_DEQUEUE)
 606			dequeue_complete_req();
 607
 608		spin_lock_irq(&cpg->lock);
 609		if (cpg->eng_st == ENGINE_IDLE) {
 610			backlog = crypto_get_backlog(&cpg->queue);
 611			async_req = crypto_dequeue_request(&cpg->queue);
 612			if (async_req) {
 613				BUG_ON(cpg->eng_st != ENGINE_IDLE);
 614				cpg->eng_st = ENGINE_BUSY;
 615			}
 616		}
 617		spin_unlock_irq(&cpg->lock);
 618
 619		if (backlog) {
 620			backlog->complete(backlog, -EINPROGRESS);
 621			backlog = NULL;
 622		}
 623
 624		if (async_req) {
 625			if (async_req->tfm->__crt_alg->cra_type !=
 626			    &crypto_ahash_type) {
 627				struct ablkcipher_request *req =
 628				    ablkcipher_request_cast(async_req);
 629				mv_start_new_crypt_req(req);
 630			} else {
 631				struct ahash_request *req =
 632				    ahash_request_cast(async_req);
 633				mv_start_new_hash_req(req);
 634			}
 635			async_req = NULL;
 636		}
 637
 638		schedule();
 639
 640	} while (!kthread_should_stop());
 641	return 0;
 642}
 643
 644static int mv_handle_req(struct crypto_async_request *req)
 645{
 646	unsigned long flags;
 647	int ret;
 648
 649	spin_lock_irqsave(&cpg->lock, flags);
 650	ret = crypto_enqueue_request(&cpg->queue, req);
 651	spin_unlock_irqrestore(&cpg->lock, flags);
 652	wake_up_process(cpg->queue_th);
 653	return ret;
 654}
 655
 656static int mv_enc_aes_ecb(struct ablkcipher_request *req)
 657{
 658	struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
 659
 660	req_ctx->op = COP_AES_ECB;
 661	req_ctx->decrypt = 0;
 662
 663	return mv_handle_req(&req->base);
 664}
 665
 666static int mv_dec_aes_ecb(struct ablkcipher_request *req)
 667{
 668	struct mv_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
 669	struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
 670
 671	req_ctx->op = COP_AES_ECB;
 672	req_ctx->decrypt = 1;
 673
 674	compute_aes_dec_key(ctx);
 675	return mv_handle_req(&req->base);
 676}
 677
 678static int mv_enc_aes_cbc(struct ablkcipher_request *req)
 679{
 680	struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
 681
 682	req_ctx->op = COP_AES_CBC;
 683	req_ctx->decrypt = 0;
 684
 685	return mv_handle_req(&req->base);
 686}
 687
 688static int mv_dec_aes_cbc(struct ablkcipher_request *req)
 689{
 690	struct mv_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
 691	struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
 692
 693	req_ctx->op = COP_AES_CBC;
 694	req_ctx->decrypt = 1;
 695
 696	compute_aes_dec_key(ctx);
 697	return mv_handle_req(&req->base);
 698}
 699
 700static int mv_cra_init(struct crypto_tfm *tfm)
 701{
 702	tfm->crt_ablkcipher.reqsize = sizeof(struct mv_req_ctx);
 703	return 0;
 704}
 705
 706static void mv_init_hash_req_ctx(struct mv_req_hash_ctx *ctx, int op,
 707				 int is_last, unsigned int req_len,
 708				 int count_add)
 709{
 710	memset(ctx, 0, sizeof(*ctx));
 711	ctx->op = op;
 712	ctx->count = req_len;
 713	ctx->first_hash = 1;
 714	ctx->last_chunk = is_last;
 715	ctx->count_add = count_add;
 716}
 717
 718static void mv_update_hash_req_ctx(struct mv_req_hash_ctx *ctx, int is_last,
 719				   unsigned req_len)
 720{
 721	ctx->last_chunk = is_last;
 722	ctx->count += req_len;
 723}
 724
 725static int mv_hash_init(struct ahash_request *req)
 726{
 727	const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm);
 728	mv_init_hash_req_ctx(ahash_request_ctx(req), tfm_ctx->op, 0, 0,
 729			     tfm_ctx->count_add);
 730	return 0;
 731}
 732
 733static int mv_hash_update(struct ahash_request *req)
 734{
 735	if (!req->nbytes)
 736		return 0;
 737
 738	mv_update_hash_req_ctx(ahash_request_ctx(req), 0, req->nbytes);
 739	return mv_handle_req(&req->base);
 740}
 741
 742static int mv_hash_final(struct ahash_request *req)
 743{
 744	struct mv_req_hash_ctx *ctx = ahash_request_ctx(req);
 745
 746	ahash_request_set_crypt(req, NULL, req->result, 0);
 747	mv_update_hash_req_ctx(ctx, 1, 0);
 748	return mv_handle_req(&req->base);
 749}
 750
 751static int mv_hash_finup(struct ahash_request *req)
 752{
 753	mv_update_hash_req_ctx(ahash_request_ctx(req), 1, req->nbytes);
 754	return mv_handle_req(&req->base);
 755}
 756
 757static int mv_hash_digest(struct ahash_request *req)
 758{
 759	const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm);
 760	mv_init_hash_req_ctx(ahash_request_ctx(req), tfm_ctx->op, 1,
 761			     req->nbytes, tfm_ctx->count_add);
 762	return mv_handle_req(&req->base);
 763}
 764
 765static void mv_hash_init_ivs(struct mv_tfm_hash_ctx *ctx, const void *istate,
 766			     const void *ostate)
 767{
 768	const struct sha1_state *isha1_state = istate, *osha1_state = ostate;
 769	int i;
 770	for (i = 0; i < 5; i++) {
 771		ctx->ivs[i] = cpu_to_be32(isha1_state->state[i]);
 772		ctx->ivs[i + 5] = cpu_to_be32(osha1_state->state[i]);
 773	}
 774}
 775
 776static int mv_hash_setkey(struct crypto_ahash *tfm, const u8 * key,
 777			  unsigned int keylen)
 778{
 779	int rc;
 780	struct mv_tfm_hash_ctx *ctx = crypto_tfm_ctx(&tfm->base);
 781	int bs, ds, ss;
 782
 783	if (!ctx->base_hash)
 784		return 0;
 785
 786	rc = crypto_shash_setkey(ctx->fallback, key, keylen);
 787	if (rc)
 788		return rc;
 789
 790	/* Can't see a way to extract the ipad/opad from the fallback tfm
 791	   so I'm basically copying code from the hmac module */
 792	bs = crypto_shash_blocksize(ctx->base_hash);
 793	ds = crypto_shash_digestsize(ctx->base_hash);
 794	ss = crypto_shash_statesize(ctx->base_hash);
 795
 796	{
 797		struct {
 798			struct shash_desc shash;
 799			char ctx[crypto_shash_descsize(ctx->base_hash)];
 800		} desc;
 801		unsigned int i;
 802		char ipad[ss];
 803		char opad[ss];
 804
 805		desc.shash.tfm = ctx->base_hash;
 806		desc.shash.flags = crypto_shash_get_flags(ctx->base_hash) &
 807		    CRYPTO_TFM_REQ_MAY_SLEEP;
 808
 809		if (keylen > bs) {
 810			int err;
 811
 812			err =
 813			    crypto_shash_digest(&desc.shash, key, keylen, ipad);
 814			if (err)
 815				return err;
 816
 817			keylen = ds;
 818		} else
 819			memcpy(ipad, key, keylen);
 820
 821		memset(ipad + keylen, 0, bs - keylen);
 822		memcpy(opad, ipad, bs);
 823
 824		for (i = 0; i < bs; i++) {
 825			ipad[i] ^= 0x36;
 826			opad[i] ^= 0x5c;
 827		}
 828
 829		rc = crypto_shash_init(&desc.shash) ? :
 830		    crypto_shash_update(&desc.shash, ipad, bs) ? :
 831		    crypto_shash_export(&desc.shash, ipad) ? :
 832		    crypto_shash_init(&desc.shash) ? :
 833		    crypto_shash_update(&desc.shash, opad, bs) ? :
 834		    crypto_shash_export(&desc.shash, opad);
 835
 836		if (rc == 0)
 837			mv_hash_init_ivs(ctx, ipad, opad);
 838
 839		return rc;
 840	}
 841}
 842
 843static int mv_cra_hash_init(struct crypto_tfm *tfm, const char *base_hash_name,
 844			    enum hash_op op, int count_add)
 845{
 846	const char *fallback_driver_name = tfm->__crt_alg->cra_name;
 847	struct mv_tfm_hash_ctx *ctx = crypto_tfm_ctx(tfm);
 848	struct crypto_shash *fallback_tfm = NULL;
 849	struct crypto_shash *base_hash = NULL;
 850	int err = -ENOMEM;
 851
 852	ctx->op = op;
 853	ctx->count_add = count_add;
 854
 855	/* Allocate a fallback and abort if it failed. */
 856	fallback_tfm = crypto_alloc_shash(fallback_driver_name, 0,
 857					  CRYPTO_ALG_NEED_FALLBACK);
 858	if (IS_ERR(fallback_tfm)) {
 859		printk(KERN_WARNING MV_CESA
 860		       "Fallback driver '%s' could not be loaded!\n",
 861		       fallback_driver_name);
 862		err = PTR_ERR(fallback_tfm);
 863		goto out;
 864	}
 865	ctx->fallback = fallback_tfm;
 866
 867	if (base_hash_name) {
 868		/* Allocate a hash to compute the ipad/opad of hmac. */
 869		base_hash = crypto_alloc_shash(base_hash_name, 0,
 870					       CRYPTO_ALG_NEED_FALLBACK);
 871		if (IS_ERR(base_hash)) {
 872			printk(KERN_WARNING MV_CESA
 873			       "Base driver '%s' could not be loaded!\n",
 874			       base_hash_name);
 875			err = PTR_ERR(base_hash);
 876			goto err_bad_base;
 877		}
 878	}
 879	ctx->base_hash = base_hash;
 880
 881	crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
 882				 sizeof(struct mv_req_hash_ctx) +
 883				 crypto_shash_descsize(ctx->fallback));
 884	return 0;
 885err_bad_base:
 886	crypto_free_shash(fallback_tfm);
 887out:
 888	return err;
 889}
 890
 891static void mv_cra_hash_exit(struct crypto_tfm *tfm)
 892{
 893	struct mv_tfm_hash_ctx *ctx = crypto_tfm_ctx(tfm);
 894
 895	crypto_free_shash(ctx->fallback);
 896	if (ctx->base_hash)
 897		crypto_free_shash(ctx->base_hash);
 898}
 899
 900static int mv_cra_hash_sha1_init(struct crypto_tfm *tfm)
 901{
 902	return mv_cra_hash_init(tfm, NULL, COP_SHA1, 0);
 903}
 904
 905static int mv_cra_hash_hmac_sha1_init(struct crypto_tfm *tfm)
 906{
 907	return mv_cra_hash_init(tfm, "sha1", COP_HMAC_SHA1, SHA1_BLOCK_SIZE);
 908}
 909
 910static irqreturn_t crypto_int(int irq, void *priv)
 911{
 912	u32 val;
 913
 914	val = readl(cpg->reg + SEC_ACCEL_INT_STATUS);
 915	if (!(val & SEC_INT_ACCEL0_DONE))
 916		return IRQ_NONE;
 917
 918	if (!del_timer(&cpg->completion_timer)) {
 919		printk(KERN_WARNING MV_CESA
 920		       "got an interrupt but no pending timer?\n");
 921	}
 922	val &= ~SEC_INT_ACCEL0_DONE;
 923	writel(val, cpg->reg + FPGA_INT_STATUS);
 924	writel(val, cpg->reg + SEC_ACCEL_INT_STATUS);
 925	BUG_ON(cpg->eng_st != ENGINE_BUSY);
 926	cpg->eng_st = ENGINE_W_DEQUEUE;
 927	wake_up_process(cpg->queue_th);
 928	return IRQ_HANDLED;
 929}
 930
 931static struct crypto_alg mv_aes_alg_ecb = {
 932	.cra_name		= "ecb(aes)",
 933	.cra_driver_name	= "mv-ecb-aes",
 934	.cra_priority	= 300,
 935	.cra_flags	= CRYPTO_ALG_TYPE_ABLKCIPHER |
 936			  CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC,
 937	.cra_blocksize	= 16,
 938	.cra_ctxsize	= sizeof(struct mv_ctx),
 939	.cra_alignmask	= 0,
 940	.cra_type	= &crypto_ablkcipher_type,
 941	.cra_module	= THIS_MODULE,
 942	.cra_init	= mv_cra_init,
 943	.cra_u		= {
 944		.ablkcipher = {
 945			.min_keysize	=	AES_MIN_KEY_SIZE,
 946			.max_keysize	=	AES_MAX_KEY_SIZE,
 947			.setkey		=	mv_setkey_aes,
 948			.encrypt	=	mv_enc_aes_ecb,
 949			.decrypt	=	mv_dec_aes_ecb,
 950		},
 951	},
 952};
 953
 954static struct crypto_alg mv_aes_alg_cbc = {
 955	.cra_name		= "cbc(aes)",
 956	.cra_driver_name	= "mv-cbc-aes",
 957	.cra_priority	= 300,
 958	.cra_flags	= CRYPTO_ALG_TYPE_ABLKCIPHER |
 959			  CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC,
 960	.cra_blocksize	= AES_BLOCK_SIZE,
 961	.cra_ctxsize	= sizeof(struct mv_ctx),
 962	.cra_alignmask	= 0,
 963	.cra_type	= &crypto_ablkcipher_type,
 964	.cra_module	= THIS_MODULE,
 965	.cra_init	= mv_cra_init,
 966	.cra_u		= {
 967		.ablkcipher = {
 968			.ivsize		=	AES_BLOCK_SIZE,
 969			.min_keysize	=	AES_MIN_KEY_SIZE,
 970			.max_keysize	=	AES_MAX_KEY_SIZE,
 971			.setkey		=	mv_setkey_aes,
 972			.encrypt	=	mv_enc_aes_cbc,
 973			.decrypt	=	mv_dec_aes_cbc,
 974		},
 975	},
 976};
 977
 978static struct ahash_alg mv_sha1_alg = {
 979	.init = mv_hash_init,
 980	.update = mv_hash_update,
 981	.final = mv_hash_final,
 982	.finup = mv_hash_finup,
 983	.digest = mv_hash_digest,
 984	.halg = {
 985		 .digestsize = SHA1_DIGEST_SIZE,
 986		 .base = {
 987			  .cra_name = "sha1",
 988			  .cra_driver_name = "mv-sha1",
 989			  .cra_priority = 300,
 990			  .cra_flags =
 991			  CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY |
 992			  CRYPTO_ALG_NEED_FALLBACK,
 993			  .cra_blocksize = SHA1_BLOCK_SIZE,
 994			  .cra_ctxsize = sizeof(struct mv_tfm_hash_ctx),
 995			  .cra_init = mv_cra_hash_sha1_init,
 996			  .cra_exit = mv_cra_hash_exit,
 997			  .cra_module = THIS_MODULE,
 998			  }
 999		 }
1000};
1001
1002static struct ahash_alg mv_hmac_sha1_alg = {
1003	.init = mv_hash_init,
1004	.update = mv_hash_update,
1005	.final = mv_hash_final,
1006	.finup = mv_hash_finup,
1007	.digest = mv_hash_digest,
1008	.setkey = mv_hash_setkey,
1009	.halg = {
1010		 .digestsize = SHA1_DIGEST_SIZE,
1011		 .base = {
1012			  .cra_name = "hmac(sha1)",
1013			  .cra_driver_name = "mv-hmac-sha1",
1014			  .cra_priority = 300,
1015			  .cra_flags =
1016			  CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY |
1017			  CRYPTO_ALG_NEED_FALLBACK,
1018			  .cra_blocksize = SHA1_BLOCK_SIZE,
1019			  .cra_ctxsize = sizeof(struct mv_tfm_hash_ctx),
1020			  .cra_init = mv_cra_hash_hmac_sha1_init,
1021			  .cra_exit = mv_cra_hash_exit,
1022			  .cra_module = THIS_MODULE,
1023			  }
1024		 }
1025};
1026
1027static int mv_probe(struct platform_device *pdev)
1028{
1029	struct crypto_priv *cp;
1030	struct resource *res;
1031	int irq;
1032	int ret;
1033
1034	if (cpg) {
1035		printk(KERN_ERR MV_CESA "Second crypto dev?\n");
1036		return -EEXIST;
1037	}
1038
1039	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "regs");
1040	if (!res)
1041		return -ENXIO;
1042
1043	cp = kzalloc(sizeof(*cp), GFP_KERNEL);
1044	if (!cp)
1045		return -ENOMEM;
1046
1047	spin_lock_init(&cp->lock);
1048	crypto_init_queue(&cp->queue, 50);
1049	cp->reg = ioremap(res->start, resource_size(res));
1050	if (!cp->reg) {
1051		ret = -ENOMEM;
1052		goto err;
1053	}
1054
1055	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "sram");
1056	if (!res) {
1057		ret = -ENXIO;
1058		goto err_unmap_reg;
1059	}
1060	cp->sram_size = resource_size(res);
1061	cp->max_req_size = cp->sram_size - SRAM_CFG_SPACE;
1062	cp->sram = ioremap(res->start, cp->sram_size);
1063	if (!cp->sram) {
1064		ret = -ENOMEM;
1065		goto err_unmap_reg;
1066	}
1067
1068	if (pdev->dev.of_node)
1069		irq = irq_of_parse_and_map(pdev->dev.of_node, 0);
1070	else
1071		irq = platform_get_irq(pdev, 0);
1072	if (irq < 0 || irq == NO_IRQ) {
1073		ret = irq;
1074		goto err_unmap_sram;
1075	}
1076	cp->irq = irq;
1077
1078	platform_set_drvdata(pdev, cp);
1079	cpg = cp;
1080
1081	cp->queue_th = kthread_run(queue_manag, cp, "mv_crypto");
1082	if (IS_ERR(cp->queue_th)) {
1083		ret = PTR_ERR(cp->queue_th);
1084		goto err_unmap_sram;
1085	}
1086
1087	ret = request_irq(irq, crypto_int, 0, dev_name(&pdev->dev),
1088			cp);
1089	if (ret)
1090		goto err_thread;
1091
1092	/* Not all platforms can gate the clock, so it is not
1093	   an error if the clock does not exists. */
1094	cp->clk = clk_get(&pdev->dev, NULL);
1095	if (!IS_ERR(cp->clk))
1096		clk_prepare_enable(cp->clk);
1097
1098	writel(0, cpg->reg + SEC_ACCEL_INT_STATUS);
1099	writel(SEC_INT_ACCEL0_DONE, cpg->reg + SEC_ACCEL_INT_MASK);
1100	writel(SEC_CFG_STOP_DIG_ERR, cpg->reg + SEC_ACCEL_CFG);
1101	writel(SRAM_CONFIG, cpg->reg + SEC_ACCEL_DESC_P0);
1102
1103	ret = crypto_register_alg(&mv_aes_alg_ecb);
1104	if (ret) {
1105		printk(KERN_WARNING MV_CESA
1106		       "Could not register aes-ecb driver\n");
1107		goto err_irq;
1108	}
1109
1110	ret = crypto_register_alg(&mv_aes_alg_cbc);
1111	if (ret) {
1112		printk(KERN_WARNING MV_CESA
1113		       "Could not register aes-cbc driver\n");
1114		goto err_unreg_ecb;
1115	}
1116
1117	ret = crypto_register_ahash(&mv_sha1_alg);
1118	if (ret == 0)
1119		cpg->has_sha1 = 1;
1120	else
1121		printk(KERN_WARNING MV_CESA "Could not register sha1 driver\n");
1122
1123	ret = crypto_register_ahash(&mv_hmac_sha1_alg);
1124	if (ret == 0) {
1125		cpg->has_hmac_sha1 = 1;
1126	} else {
1127		printk(KERN_WARNING MV_CESA
1128		       "Could not register hmac-sha1 driver\n");
1129	}
1130
1131	return 0;
1132err_unreg_ecb:
1133	crypto_unregister_alg(&mv_aes_alg_ecb);
1134err_irq:
1135	free_irq(irq, cp);
1136	if (!IS_ERR(cp->clk)) {
1137		clk_disable_unprepare(cp->clk);
1138		clk_put(cp->clk);
1139	}
1140err_thread:
1141	kthread_stop(cp->queue_th);
1142err_unmap_sram:
1143	iounmap(cp->sram);
1144err_unmap_reg:
1145	iounmap(cp->reg);
1146err:
1147	kfree(cp);
1148	cpg = NULL;
1149	return ret;
1150}
1151
1152static int mv_remove(struct platform_device *pdev)
1153{
1154	struct crypto_priv *cp = platform_get_drvdata(pdev);
1155
1156	crypto_unregister_alg(&mv_aes_alg_ecb);
1157	crypto_unregister_alg(&mv_aes_alg_cbc);
1158	if (cp->has_sha1)
1159		crypto_unregister_ahash(&mv_sha1_alg);
1160	if (cp->has_hmac_sha1)
1161		crypto_unregister_ahash(&mv_hmac_sha1_alg);
1162	kthread_stop(cp->queue_th);
1163	free_irq(cp->irq, cp);
1164	memset(cp->sram, 0, cp->sram_size);
1165	iounmap(cp->sram);
1166	iounmap(cp->reg);
1167
1168	if (!IS_ERR(cp->clk)) {
1169		clk_disable_unprepare(cp->clk);
1170		clk_put(cp->clk);
1171	}
1172
1173	kfree(cp);
1174	cpg = NULL;
1175	return 0;
1176}
1177
1178static const struct of_device_id mv_cesa_of_match_table[] = {
1179	{ .compatible = "marvell,orion-crypto", },
1180	{}
1181};
1182MODULE_DEVICE_TABLE(of, mv_cesa_of_match_table);
1183
1184static struct platform_driver marvell_crypto = {
1185	.probe		= mv_probe,
1186	.remove		= mv_remove,
1187	.driver		= {
1188		.owner	= THIS_MODULE,
1189		.name	= "mv_crypto",
1190		.of_match_table = mv_cesa_of_match_table,
1191	},
1192};
1193MODULE_ALIAS("platform:mv_crypto");
1194
1195module_platform_driver(marvell_crypto);
1196
1197MODULE_AUTHOR("Sebastian Andrzej Siewior <sebastian@breakpoint.cc>");
1198MODULE_DESCRIPTION("Support for Marvell's cryptographic engine");
1199MODULE_LICENSE("GPL");