Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.15.
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright 2016 Broadcom
   4 */
   5
   6#include <linux/err.h>
   7#include <linux/module.h>
   8#include <linux/init.h>
   9#include <linux/errno.h>
  10#include <linux/kernel.h>
  11#include <linux/interrupt.h>
  12#include <linux/platform_device.h>
  13#include <linux/scatterlist.h>
  14#include <linux/crypto.h>
  15#include <linux/kthread.h>
  16#include <linux/rtnetlink.h>
  17#include <linux/sched.h>
  18#include <linux/of_address.h>
  19#include <linux/of_device.h>
  20#include <linux/io.h>
  21#include <linux/bitops.h>
  22
  23#include <crypto/algapi.h>
  24#include <crypto/aead.h>
  25#include <crypto/internal/aead.h>
  26#include <crypto/aes.h>
  27#include <crypto/internal/des.h>
  28#include <crypto/hmac.h>
  29#include <crypto/sha.h>
  30#include <crypto/md5.h>
  31#include <crypto/authenc.h>
  32#include <crypto/skcipher.h>
  33#include <crypto/hash.h>
  34#include <crypto/sha3.h>
  35
  36#include "util.h"
  37#include "cipher.h"
  38#include "spu.h"
  39#include "spum.h"
  40#include "spu2.h"
  41
  42/* ================= Device Structure ================== */
  43
  44struct device_private iproc_priv;
  45
  46/* ==================== Parameters ===================== */
  47
  48int flow_debug_logging;
  49module_param(flow_debug_logging, int, 0644);
  50MODULE_PARM_DESC(flow_debug_logging, "Enable Flow Debug Logging");
  51
  52int packet_debug_logging;
  53module_param(packet_debug_logging, int, 0644);
  54MODULE_PARM_DESC(packet_debug_logging, "Enable Packet Debug Logging");
  55
  56int debug_logging_sleep;
  57module_param(debug_logging_sleep, int, 0644);
  58MODULE_PARM_DESC(debug_logging_sleep, "Packet Debug Logging Sleep");
  59
  60/*
  61 * The value of these module parameters is used to set the priority for each
  62 * algo type when this driver registers algos with the kernel crypto API.
  63 * To use a priority other than the default, set the priority in the insmod or
  64 * modprobe. Changing the module priority after init time has no effect.
  65 *
  66 * The default priorities are chosen to be lower (less preferred) than ARMv8 CE
  67 * algos, but more preferred than generic software algos.
  68 */
  69static int cipher_pri = 150;
  70module_param(cipher_pri, int, 0644);
  71MODULE_PARM_DESC(cipher_pri, "Priority for cipher algos");
  72
  73static int hash_pri = 100;
  74module_param(hash_pri, int, 0644);
  75MODULE_PARM_DESC(hash_pri, "Priority for hash algos");
  76
  77static int aead_pri = 150;
  78module_param(aead_pri, int, 0644);
  79MODULE_PARM_DESC(aead_pri, "Priority for AEAD algos");
  80
  81/* A type 3 BCM header, expected to precede the SPU header for SPU-M.
  82 * Bits 3 and 4 in the first byte encode the channel number (the dma ringset).
  83 * 0x60 - ring 0
  84 * 0x68 - ring 1
  85 * 0x70 - ring 2
  86 * 0x78 - ring 3
  87 */
  88static char BCMHEADER[] = { 0x60, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x28 };
  89/*
  90 * Some SPU hw does not use BCM header on SPU messages. So BCM_HDR_LEN
  91 * is set dynamically after reading SPU type from device tree.
  92 */
  93#define BCM_HDR_LEN  iproc_priv.bcm_hdr_len
  94
  95/* min and max time to sleep before retrying when mbox queue is full. usec */
  96#define MBOX_SLEEP_MIN  800
  97#define MBOX_SLEEP_MAX 1000
  98
  99/**
 100 * select_channel() - Select a SPU channel to handle a crypto request. Selects
 101 * channel in round robin order.
 102 *
 103 * Return:  channel index
 104 */
 105static u8 select_channel(void)
 106{
 107	u8 chan_idx = atomic_inc_return(&iproc_priv.next_chan);
 108
 109	return chan_idx % iproc_priv.spu.num_chan;
 110}
 111
 112/**
 113 * spu_skcipher_rx_sg_create() - Build up the scatterlist of buffers used to
 114 * receive a SPU response message for an skcipher request. Includes buffers to
 115 * catch SPU message headers and the response data.
 116 * @mssg:	mailbox message containing the receive sg
 117 * @rctx:	crypto request context
 118 * @rx_frag_num: number of scatterlist elements required to hold the
 119 *		SPU response message
 120 * @chunksize:	Number of bytes of response data expected
 121 * @stat_pad_len: Number of bytes required to pad the STAT field to
 122 *		a 4-byte boundary
 123 *
 124 * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
 125 * when the request completes, whether the request is handled successfully or
 126 * there is an error.
 127 *
 128 * Returns:
 129 *   0 if successful
 130 *   < 0 if an error
 131 */
 132static int
 133spu_skcipher_rx_sg_create(struct brcm_message *mssg,
 134			    struct iproc_reqctx_s *rctx,
 135			    u8 rx_frag_num,
 136			    unsigned int chunksize, u32 stat_pad_len)
 137{
 138	struct spu_hw *spu = &iproc_priv.spu;
 139	struct scatterlist *sg;	/* used to build sgs in mbox message */
 140	struct iproc_ctx_s *ctx = rctx->ctx;
 141	u32 datalen;		/* Number of bytes of response data expected */
 142
 143	mssg->spu.dst = kcalloc(rx_frag_num, sizeof(struct scatterlist),
 144				rctx->gfp);
 145	if (!mssg->spu.dst)
 146		return -ENOMEM;
 147
 148	sg = mssg->spu.dst;
 149	sg_init_table(sg, rx_frag_num);
 150	/* Space for SPU message header */
 151	sg_set_buf(sg++, rctx->msg_buf.spu_resp_hdr, ctx->spu_resp_hdr_len);
 152
 153	/* If XTS tweak in payload, add buffer to receive encrypted tweak */
 154	if ((ctx->cipher.mode == CIPHER_MODE_XTS) &&
 155	    spu->spu_xts_tweak_in_payload())
 156		sg_set_buf(sg++, rctx->msg_buf.c.supdt_tweak,
 157			   SPU_XTS_TWEAK_SIZE);
 158
 159	/* Copy in each dst sg entry from request, up to chunksize */
 160	datalen = spu_msg_sg_add(&sg, &rctx->dst_sg, &rctx->dst_skip,
 161				 rctx->dst_nents, chunksize);
 162	if (datalen < chunksize) {
 163		pr_err("%s(): failed to copy dst sg to mbox msg. chunksize %u, datalen %u",
 164		       __func__, chunksize, datalen);
 165		return -EFAULT;
 166	}
 167
 168	if (ctx->cipher.alg == CIPHER_ALG_RC4)
 169		/* Add buffer to catch 260-byte SUPDT field for RC4 */
 170		sg_set_buf(sg++, rctx->msg_buf.c.supdt_tweak, SPU_SUPDT_LEN);
 171
 172	if (stat_pad_len)
 173		sg_set_buf(sg++, rctx->msg_buf.rx_stat_pad, stat_pad_len);
 174
 175	memset(rctx->msg_buf.rx_stat, 0, SPU_RX_STATUS_LEN);
 176	sg_set_buf(sg, rctx->msg_buf.rx_stat, spu->spu_rx_status_len());
 177
 178	return 0;
 179}
 180
 181/**
 182 * spu_skcipher_tx_sg_create() - Build up the scatterlist of buffers used to
 183 * send a SPU request message for an skcipher request. Includes SPU message
 184 * headers and the request data.
 185 * @mssg:	mailbox message containing the transmit sg
 186 * @rctx:	crypto request context
 187 * @tx_frag_num: number of scatterlist elements required to construct the
 188 *		SPU request message
 189 * @chunksize:	Number of bytes of request data
 190 * @pad_len:	Number of pad bytes
 191 *
 192 * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
 193 * when the request completes, whether the request is handled successfully or
 194 * there is an error.
 195 *
 196 * Returns:
 197 *   0 if successful
 198 *   < 0 if an error
 199 */
 200static int
 201spu_skcipher_tx_sg_create(struct brcm_message *mssg,
 202			    struct iproc_reqctx_s *rctx,
 203			    u8 tx_frag_num, unsigned int chunksize, u32 pad_len)
 204{
 205	struct spu_hw *spu = &iproc_priv.spu;
 206	struct scatterlist *sg;	/* used to build sgs in mbox message */
 207	struct iproc_ctx_s *ctx = rctx->ctx;
 208	u32 datalen;		/* Number of bytes of response data expected */
 209	u32 stat_len;
 210
 211	mssg->spu.src = kcalloc(tx_frag_num, sizeof(struct scatterlist),
 212				rctx->gfp);
 213	if (unlikely(!mssg->spu.src))
 214		return -ENOMEM;
 215
 216	sg = mssg->spu.src;
 217	sg_init_table(sg, tx_frag_num);
 218
 219	sg_set_buf(sg++, rctx->msg_buf.bcm_spu_req_hdr,
 220		   BCM_HDR_LEN + ctx->spu_req_hdr_len);
 221
 222	/* if XTS tweak in payload, copy from IV (where crypto API puts it) */
 223	if ((ctx->cipher.mode == CIPHER_MODE_XTS) &&
 224	    spu->spu_xts_tweak_in_payload())
 225		sg_set_buf(sg++, rctx->msg_buf.iv_ctr, SPU_XTS_TWEAK_SIZE);
 226
 227	/* Copy in each src sg entry from request, up to chunksize */
 228	datalen = spu_msg_sg_add(&sg, &rctx->src_sg, &rctx->src_skip,
 229				 rctx->src_nents, chunksize);
 230	if (unlikely(datalen < chunksize)) {
 231		pr_err("%s(): failed to copy src sg to mbox msg",
 232		       __func__);
 233		return -EFAULT;
 234	}
 235
 236	if (pad_len)
 237		sg_set_buf(sg++, rctx->msg_buf.spu_req_pad, pad_len);
 238
 239	stat_len = spu->spu_tx_status_len();
 240	if (stat_len) {
 241		memset(rctx->msg_buf.tx_stat, 0, stat_len);
 242		sg_set_buf(sg, rctx->msg_buf.tx_stat, stat_len);
 243	}
 244	return 0;
 245}
 246
 247static int mailbox_send_message(struct brcm_message *mssg, u32 flags,
 248				u8 chan_idx)
 249{
 250	int err;
 251	int retry_cnt = 0;
 252	struct device *dev = &(iproc_priv.pdev->dev);
 253
 254	err = mbox_send_message(iproc_priv.mbox[chan_idx], mssg);
 255	if (flags & CRYPTO_TFM_REQ_MAY_SLEEP) {
 256		while ((err == -ENOBUFS) && (retry_cnt < SPU_MB_RETRY_MAX)) {
 257			/*
 258			 * Mailbox queue is full. Since MAY_SLEEP is set, assume
 259			 * not in atomic context and we can wait and try again.
 260			 */
 261			retry_cnt++;
 262			usleep_range(MBOX_SLEEP_MIN, MBOX_SLEEP_MAX);
 263			err = mbox_send_message(iproc_priv.mbox[chan_idx],
 264						mssg);
 265			atomic_inc(&iproc_priv.mb_no_spc);
 266		}
 267	}
 268	if (err < 0) {
 269		atomic_inc(&iproc_priv.mb_send_fail);
 270		return err;
 271	}
 272
 273	/* Check error returned by mailbox controller */
 274	err = mssg->error;
 275	if (unlikely(err < 0)) {
 276		dev_err(dev, "message error %d", err);
 277		/* Signal txdone for mailbox channel */
 278	}
 279
 280	/* Signal txdone for mailbox channel */
 281	mbox_client_txdone(iproc_priv.mbox[chan_idx], err);
 282	return err;
 283}
 284
 285/**
 286 * handle_skcipher_req() - Submit as much of a block cipher request as fits in
 287 * a single SPU request message, starting at the current position in the request
 288 * data.
 289 * @rctx:	Crypto request context
 290 *
 291 * This may be called on the crypto API thread, or, when a request is so large
 292 * it must be broken into multiple SPU messages, on the thread used to invoke
 293 * the response callback. When requests are broken into multiple SPU
 294 * messages, we assume subsequent messages depend on previous results, and
 295 * thus always wait for previous results before submitting the next message.
 296 * Because requests are submitted in lock step like this, there is no need
 297 * to synchronize access to request data structures.
 298 *
 299 * Return: -EINPROGRESS: request has been accepted and result will be returned
 300 *			 asynchronously
 301 *         Any other value indicates an error
 302 */
 303static int handle_skcipher_req(struct iproc_reqctx_s *rctx)
 304{
 305	struct spu_hw *spu = &iproc_priv.spu;
 306	struct crypto_async_request *areq = rctx->parent;
 307	struct skcipher_request *req =
 308	    container_of(areq, struct skcipher_request, base);
 309	struct iproc_ctx_s *ctx = rctx->ctx;
 310	struct spu_cipher_parms cipher_parms;
 311	int err;
 312	unsigned int chunksize;	/* Num bytes of request to submit */
 313	int remaining;	/* Bytes of request still to process */
 314	int chunk_start;	/* Beginning of data for current SPU msg */
 315
 316	/* IV or ctr value to use in this SPU msg */
 317	u8 local_iv_ctr[MAX_IV_SIZE];
 318	u32 stat_pad_len;	/* num bytes to align status field */
 319	u32 pad_len;		/* total length of all padding */
 320	bool update_key = false;
 321	struct brcm_message *mssg;	/* mailbox message */
 322
 323	/* number of entries in src and dst sg in mailbox message. */
 324	u8 rx_frag_num = 2;	/* response header and STATUS */
 325	u8 tx_frag_num = 1;	/* request header */
 326
 327	flow_log("%s\n", __func__);
 328
 329	cipher_parms.alg = ctx->cipher.alg;
 330	cipher_parms.mode = ctx->cipher.mode;
 331	cipher_parms.type = ctx->cipher_type;
 332	cipher_parms.key_len = ctx->enckeylen;
 333	cipher_parms.key_buf = ctx->enckey;
 334	cipher_parms.iv_buf = local_iv_ctr;
 335	cipher_parms.iv_len = rctx->iv_ctr_len;
 336
 337	mssg = &rctx->mb_mssg;
 338	chunk_start = rctx->src_sent;
 339	remaining = rctx->total_todo - chunk_start;
 340
 341	/* determine the chunk we are breaking off and update the indexes */
 342	if ((ctx->max_payload != SPU_MAX_PAYLOAD_INF) &&
 343	    (remaining > ctx->max_payload))
 344		chunksize = ctx->max_payload;
 345	else
 346		chunksize = remaining;
 347
 348	rctx->src_sent += chunksize;
 349	rctx->total_sent = rctx->src_sent;
 350
 351	/* Count number of sg entries to be included in this request */
 352	rctx->src_nents = spu_sg_count(rctx->src_sg, rctx->src_skip, chunksize);
 353	rctx->dst_nents = spu_sg_count(rctx->dst_sg, rctx->dst_skip, chunksize);
 354
 355	if ((ctx->cipher.mode == CIPHER_MODE_CBC) &&
 356	    rctx->is_encrypt && chunk_start)
 357		/*
 358		 * Encrypting non-first first chunk. Copy last block of
 359		 * previous result to IV for this chunk.
 360		 */
 361		sg_copy_part_to_buf(req->dst, rctx->msg_buf.iv_ctr,
 362				    rctx->iv_ctr_len,
 363				    chunk_start - rctx->iv_ctr_len);
 364
 365	if (rctx->iv_ctr_len) {
 366		/* get our local copy of the iv */
 367		__builtin_memcpy(local_iv_ctr, rctx->msg_buf.iv_ctr,
 368				 rctx->iv_ctr_len);
 369
 370		/* generate the next IV if possible */
 371		if ((ctx->cipher.mode == CIPHER_MODE_CBC) &&
 372		    !rctx->is_encrypt) {
 373			/*
 374			 * CBC Decrypt: next IV is the last ciphertext block in
 375			 * this chunk
 376			 */
 377			sg_copy_part_to_buf(req->src, rctx->msg_buf.iv_ctr,
 378					    rctx->iv_ctr_len,
 379					    rctx->src_sent - rctx->iv_ctr_len);
 380		} else if (ctx->cipher.mode == CIPHER_MODE_CTR) {
 381			/*
 382			 * The SPU hardware increments the counter once for
 383			 * each AES block of 16 bytes. So update the counter
 384			 * for the next chunk, if there is one. Note that for
 385			 * this chunk, the counter has already been copied to
 386			 * local_iv_ctr. We can assume a block size of 16,
 387			 * because we only support CTR mode for AES, not for
 388			 * any other cipher alg.
 389			 */
 390			add_to_ctr(rctx->msg_buf.iv_ctr, chunksize >> 4);
 391		}
 392	}
 393
 394	if (ctx->cipher.alg == CIPHER_ALG_RC4) {
 395		rx_frag_num++;
 396		if (chunk_start) {
 397			/*
 398			 * for non-first RC4 chunks, use SUPDT from previous
 399			 * response as key for this chunk.
 400			 */
 401			cipher_parms.key_buf = rctx->msg_buf.c.supdt_tweak;
 402			update_key = true;
 403			cipher_parms.type = CIPHER_TYPE_UPDT;
 404		} else if (!rctx->is_encrypt) {
 405			/*
 406			 * First RC4 chunk. For decrypt, key in pre-built msg
 407			 * header may have been changed if encrypt required
 408			 * multiple chunks. So revert the key to the
 409			 * ctx->enckey value.
 410			 */
 411			update_key = true;
 412			cipher_parms.type = CIPHER_TYPE_INIT;
 413		}
 414	}
 415
 416	if (ctx->max_payload == SPU_MAX_PAYLOAD_INF)
 417		flow_log("max_payload infinite\n");
 418	else
 419		flow_log("max_payload %u\n", ctx->max_payload);
 420
 421	flow_log("sent:%u start:%u remains:%u size:%u\n",
 422		 rctx->src_sent, chunk_start, remaining, chunksize);
 423
 424	/* Copy SPU header template created at setkey time */
 425	memcpy(rctx->msg_buf.bcm_spu_req_hdr, ctx->bcm_spu_req_hdr,
 426	       sizeof(rctx->msg_buf.bcm_spu_req_hdr));
 427
 428	/*
 429	 * Pass SUPDT field as key. Key field in finish() call is only used
 430	 * when update_key has been set above for RC4. Will be ignored in
 431	 * all other cases.
 432	 */
 433	spu->spu_cipher_req_finish(rctx->msg_buf.bcm_spu_req_hdr + BCM_HDR_LEN,
 434				   ctx->spu_req_hdr_len, !(rctx->is_encrypt),
 435				   &cipher_parms, update_key, chunksize);
 436
 437	atomic64_add(chunksize, &iproc_priv.bytes_out);
 438
 439	stat_pad_len = spu->spu_wordalign_padlen(chunksize);
 440	if (stat_pad_len)
 441		rx_frag_num++;
 442	pad_len = stat_pad_len;
 443	if (pad_len) {
 444		tx_frag_num++;
 445		spu->spu_request_pad(rctx->msg_buf.spu_req_pad, 0,
 446				     0, ctx->auth.alg, ctx->auth.mode,
 447				     rctx->total_sent, stat_pad_len);
 448	}
 449
 450	spu->spu_dump_msg_hdr(rctx->msg_buf.bcm_spu_req_hdr + BCM_HDR_LEN,
 451			      ctx->spu_req_hdr_len);
 452	packet_log("payload:\n");
 453	dump_sg(rctx->src_sg, rctx->src_skip, chunksize);
 454	packet_dump("   pad: ", rctx->msg_buf.spu_req_pad, pad_len);
 455
 456	/*
 457	 * Build mailbox message containing SPU request msg and rx buffers
 458	 * to catch response message
 459	 */
 460	memset(mssg, 0, sizeof(*mssg));
 461	mssg->type = BRCM_MESSAGE_SPU;
 462	mssg->ctx = rctx;	/* Will be returned in response */
 463
 464	/* Create rx scatterlist to catch result */
 465	rx_frag_num += rctx->dst_nents;
 466
 467	if ((ctx->cipher.mode == CIPHER_MODE_XTS) &&
 468	    spu->spu_xts_tweak_in_payload())
 469		rx_frag_num++;	/* extra sg to insert tweak */
 470
 471	err = spu_skcipher_rx_sg_create(mssg, rctx, rx_frag_num, chunksize,
 472					  stat_pad_len);
 473	if (err)
 474		return err;
 475
 476	/* Create tx scatterlist containing SPU request message */
 477	tx_frag_num += rctx->src_nents;
 478	if (spu->spu_tx_status_len())
 479		tx_frag_num++;
 480
 481	if ((ctx->cipher.mode == CIPHER_MODE_XTS) &&
 482	    spu->spu_xts_tweak_in_payload())
 483		tx_frag_num++;	/* extra sg to insert tweak */
 484
 485	err = spu_skcipher_tx_sg_create(mssg, rctx, tx_frag_num, chunksize,
 486					  pad_len);
 487	if (err)
 488		return err;
 489
 490	err = mailbox_send_message(mssg, req->base.flags, rctx->chan_idx);
 491	if (unlikely(err < 0))
 492		return err;
 493
 494	return -EINPROGRESS;
 495}
 496
 497/**
 498 * handle_skcipher_resp() - Process a block cipher SPU response. Updates the
 499 * total received count for the request and updates global stats.
 500 * @rctx:	Crypto request context
 501 */
 502static void handle_skcipher_resp(struct iproc_reqctx_s *rctx)
 503{
 504	struct spu_hw *spu = &iproc_priv.spu;
 505#ifdef DEBUG
 506	struct crypto_async_request *areq = rctx->parent;
 507	struct skcipher_request *req = skcipher_request_cast(areq);
 508#endif
 509	struct iproc_ctx_s *ctx = rctx->ctx;
 510	u32 payload_len;
 511
 512	/* See how much data was returned */
 513	payload_len = spu->spu_payload_length(rctx->msg_buf.spu_resp_hdr);
 514
 515	/*
 516	 * In XTS mode, the first SPU_XTS_TWEAK_SIZE bytes may be the
 517	 * encrypted tweak ("i") value; we don't count those.
 518	 */
 519	if ((ctx->cipher.mode == CIPHER_MODE_XTS) &&
 520	    spu->spu_xts_tweak_in_payload() &&
 521	    (payload_len >= SPU_XTS_TWEAK_SIZE))
 522		payload_len -= SPU_XTS_TWEAK_SIZE;
 523
 524	atomic64_add(payload_len, &iproc_priv.bytes_in);
 525
 526	flow_log("%s() offset: %u, bd_len: %u BD:\n",
 527		 __func__, rctx->total_received, payload_len);
 528
 529	dump_sg(req->dst, rctx->total_received, payload_len);
 530	if (ctx->cipher.alg == CIPHER_ALG_RC4)
 531		packet_dump("  supdt ", rctx->msg_buf.c.supdt_tweak,
 532			    SPU_SUPDT_LEN);
 533
 534	rctx->total_received += payload_len;
 535	if (rctx->total_received == rctx->total_todo) {
 536		atomic_inc(&iproc_priv.op_counts[SPU_OP_CIPHER]);
 537		atomic_inc(
 538		   &iproc_priv.cipher_cnt[ctx->cipher.alg][ctx->cipher.mode]);
 539	}
 540}
 541
 542/**
 543 * spu_ahash_rx_sg_create() - Build up the scatterlist of buffers used to
 544 * receive a SPU response message for an ahash request.
 545 * @mssg:	mailbox message containing the receive sg
 546 * @rctx:	crypto request context
 547 * @rx_frag_num: number of scatterlist elements required to hold the
 548 *		SPU response message
 549 * @digestsize: length of hash digest, in bytes
 550 * @stat_pad_len: Number of bytes required to pad the STAT field to
 551 *		a 4-byte boundary
 552 *
 553 * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
 554 * when the request completes, whether the request is handled successfully or
 555 * there is an error.
 556 *
 557 * Return:
 558 *   0 if successful
 559 *   < 0 if an error
 560 */
 561static int
 562spu_ahash_rx_sg_create(struct brcm_message *mssg,
 563		       struct iproc_reqctx_s *rctx,
 564		       u8 rx_frag_num, unsigned int digestsize,
 565		       u32 stat_pad_len)
 566{
 567	struct spu_hw *spu = &iproc_priv.spu;
 568	struct scatterlist *sg;	/* used to build sgs in mbox message */
 569	struct iproc_ctx_s *ctx = rctx->ctx;
 570
 571	mssg->spu.dst = kcalloc(rx_frag_num, sizeof(struct scatterlist),
 572				rctx->gfp);
 573	if (!mssg->spu.dst)
 574		return -ENOMEM;
 575
 576	sg = mssg->spu.dst;
 577	sg_init_table(sg, rx_frag_num);
 578	/* Space for SPU message header */
 579	sg_set_buf(sg++, rctx->msg_buf.spu_resp_hdr, ctx->spu_resp_hdr_len);
 580
 581	/* Space for digest */
 582	sg_set_buf(sg++, rctx->msg_buf.digest, digestsize);
 583
 584	if (stat_pad_len)
 585		sg_set_buf(sg++, rctx->msg_buf.rx_stat_pad, stat_pad_len);
 586
 587	memset(rctx->msg_buf.rx_stat, 0, SPU_RX_STATUS_LEN);
 588	sg_set_buf(sg, rctx->msg_buf.rx_stat, spu->spu_rx_status_len());
 589	return 0;
 590}
 591
 592/**
 593 * spu_ahash_tx_sg_create() -  Build up the scatterlist of buffers used to send
 594 * a SPU request message for an ahash request. Includes SPU message headers and
 595 * the request data.
 596 * @mssg:	mailbox message containing the transmit sg
 597 * @rctx:	crypto request context
 598 * @tx_frag_num: number of scatterlist elements required to construct the
 599 *		SPU request message
 600 * @spu_hdr_len: length in bytes of SPU message header
 601 * @hash_carry_len: Number of bytes of data carried over from previous req
 602 * @new_data_len: Number of bytes of new request data
 603 * @pad_len:	Number of pad bytes
 604 *
 605 * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
 606 * when the request completes, whether the request is handled successfully or
 607 * there is an error.
 608 *
 609 * Return:
 610 *   0 if successful
 611 *   < 0 if an error
 612 */
 613static int
 614spu_ahash_tx_sg_create(struct brcm_message *mssg,
 615		       struct iproc_reqctx_s *rctx,
 616		       u8 tx_frag_num,
 617		       u32 spu_hdr_len,
 618		       unsigned int hash_carry_len,
 619		       unsigned int new_data_len, u32 pad_len)
 620{
 621	struct spu_hw *spu = &iproc_priv.spu;
 622	struct scatterlist *sg;	/* used to build sgs in mbox message */
 623	u32 datalen;		/* Number of bytes of response data expected */
 624	u32 stat_len;
 625
 626	mssg->spu.src = kcalloc(tx_frag_num, sizeof(struct scatterlist),
 627				rctx->gfp);
 628	if (!mssg->spu.src)
 629		return -ENOMEM;
 630
 631	sg = mssg->spu.src;
 632	sg_init_table(sg, tx_frag_num);
 633
 634	sg_set_buf(sg++, rctx->msg_buf.bcm_spu_req_hdr,
 635		   BCM_HDR_LEN + spu_hdr_len);
 636
 637	if (hash_carry_len)
 638		sg_set_buf(sg++, rctx->hash_carry, hash_carry_len);
 639
 640	if (new_data_len) {
 641		/* Copy in each src sg entry from request, up to chunksize */
 642		datalen = spu_msg_sg_add(&sg, &rctx->src_sg, &rctx->src_skip,
 643					 rctx->src_nents, new_data_len);
 644		if (datalen < new_data_len) {
 645			pr_err("%s(): failed to copy src sg to mbox msg",
 646			       __func__);
 647			return -EFAULT;
 648		}
 649	}
 650
 651	if (pad_len)
 652		sg_set_buf(sg++, rctx->msg_buf.spu_req_pad, pad_len);
 653
 654	stat_len = spu->spu_tx_status_len();
 655	if (stat_len) {
 656		memset(rctx->msg_buf.tx_stat, 0, stat_len);
 657		sg_set_buf(sg, rctx->msg_buf.tx_stat, stat_len);
 658	}
 659
 660	return 0;
 661}
 662
 663/**
 664 * handle_ahash_req() - Process an asynchronous hash request from the crypto
 665 * API.
 666 * @rctx:  Crypto request context
 667 *
 668 * Builds a SPU request message embedded in a mailbox message and submits the
 669 * mailbox message on a selected mailbox channel. The SPU request message is
 670 * constructed as a scatterlist, including entries from the crypto API's
 671 * src scatterlist to avoid copying the data to be hashed. This function is
 672 * called either on the thread from the crypto API, or, in the case that the
 673 * crypto API request is too large to fit in a single SPU request message,
 674 * on the thread that invokes the receive callback with a response message.
 675 * Because some operations require the response from one chunk before the next
 676 * chunk can be submitted, we always wait for the response for the previous
 677 * chunk before submitting the next chunk. Because requests are submitted in
 678 * lock step like this, there is no need to synchronize access to request data
 679 * structures.
 680 *
 681 * Return:
 682 *   -EINPROGRESS: request has been submitted to SPU and response will be
 683 *		   returned asynchronously
 684 *   -EAGAIN:      non-final request included a small amount of data, which for
 685 *		   efficiency we did not submit to the SPU, but instead stored
 686 *		   to be submitted to the SPU with the next part of the request
 687 *   other:        an error code
 688 */
 689static int handle_ahash_req(struct iproc_reqctx_s *rctx)
 690{
 691	struct spu_hw *spu = &iproc_priv.spu;
 692	struct crypto_async_request *areq = rctx->parent;
 693	struct ahash_request *req = ahash_request_cast(areq);
 694	struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
 695	struct crypto_tfm *tfm = crypto_ahash_tfm(ahash);
 696	unsigned int blocksize = crypto_tfm_alg_blocksize(tfm);
 697	struct iproc_ctx_s *ctx = rctx->ctx;
 698
 699	/* number of bytes still to be hashed in this req */
 700	unsigned int nbytes_to_hash = 0;
 701	int err;
 702	unsigned int chunksize = 0;	/* length of hash carry + new data */
 703	/*
 704	 * length of new data, not from hash carry, to be submitted in
 705	 * this hw request
 706	 */
 707	unsigned int new_data_len;
 708
 709	unsigned int __maybe_unused chunk_start = 0;
 710	u32 db_size;	 /* Length of data field, incl gcm and hash padding */
 711	int pad_len = 0; /* total pad len, including gcm, hash, stat padding */
 712	u32 data_pad_len = 0;	/* length of GCM/CCM padding */
 713	u32 stat_pad_len = 0;	/* length of padding to align STATUS word */
 714	struct brcm_message *mssg;	/* mailbox message */
 715	struct spu_request_opts req_opts;
 716	struct spu_cipher_parms cipher_parms;
 717	struct spu_hash_parms hash_parms;
 718	struct spu_aead_parms aead_parms;
 719	unsigned int local_nbuf;
 720	u32 spu_hdr_len;
 721	unsigned int digestsize;
 722	u16 rem = 0;
 723
 724	/*
 725	 * number of entries in src and dst sg. Always includes SPU msg header.
 726	 * rx always includes a buffer to catch digest and STATUS.
 727	 */
 728	u8 rx_frag_num = 3;
 729	u8 tx_frag_num = 1;
 730
 731	flow_log("total_todo %u, total_sent %u\n",
 732		 rctx->total_todo, rctx->total_sent);
 733
 734	memset(&req_opts, 0, sizeof(req_opts));
 735	memset(&cipher_parms, 0, sizeof(cipher_parms));
 736	memset(&hash_parms, 0, sizeof(hash_parms));
 737	memset(&aead_parms, 0, sizeof(aead_parms));
 738
 739	req_opts.bd_suppress = true;
 740	hash_parms.alg = ctx->auth.alg;
 741	hash_parms.mode = ctx->auth.mode;
 742	hash_parms.type = HASH_TYPE_NONE;
 743	hash_parms.key_buf = (u8 *)ctx->authkey;
 744	hash_parms.key_len = ctx->authkeylen;
 745
 746	/*
 747	 * For hash algorithms below assignment looks bit odd but
 748	 * it's needed for AES-XCBC and AES-CMAC hash algorithms
 749	 * to differentiate between 128, 192, 256 bit key values.
 750	 * Based on the key values, hash algorithm is selected.
 751	 * For example for 128 bit key, hash algorithm is AES-128.
 752	 */
 753	cipher_parms.type = ctx->cipher_type;
 754
 755	mssg = &rctx->mb_mssg;
 756	chunk_start = rctx->src_sent;
 757
 758	/*
 759	 * Compute the amount remaining to hash. This may include data
 760	 * carried over from previous requests.
 761	 */
 762	nbytes_to_hash = rctx->total_todo - rctx->total_sent;
 763	chunksize = nbytes_to_hash;
 764	if ((ctx->max_payload != SPU_MAX_PAYLOAD_INF) &&
 765	    (chunksize > ctx->max_payload))
 766		chunksize = ctx->max_payload;
 767
 768	/*
 769	 * If this is not a final request and the request data is not a multiple
 770	 * of a full block, then simply park the extra data and prefix it to the
 771	 * data for the next request.
 772	 */
 773	if (!rctx->is_final) {
 774		u8 *dest = rctx->hash_carry + rctx->hash_carry_len;
 775		u16 new_len;  /* len of data to add to hash carry */
 776
 777		rem = chunksize % blocksize;   /* remainder */
 778		if (rem) {
 779			/* chunksize not a multiple of blocksize */
 780			chunksize -= rem;
 781			if (chunksize == 0) {
 782				/* Don't have a full block to submit to hw */
 783				new_len = rem - rctx->hash_carry_len;
 784				sg_copy_part_to_buf(req->src, dest, new_len,
 785						    rctx->src_sent);
 786				rctx->hash_carry_len = rem;
 787				flow_log("Exiting with hash carry len: %u\n",
 788					 rctx->hash_carry_len);
 789				packet_dump("  buf: ",
 790					    rctx->hash_carry,
 791					    rctx->hash_carry_len);
 792				return -EAGAIN;
 793			}
 794		}
 795	}
 796
 797	/* if we have hash carry, then prefix it to the data in this request */
 798	local_nbuf = rctx->hash_carry_len;
 799	rctx->hash_carry_len = 0;
 800	if (local_nbuf)
 801		tx_frag_num++;
 802	new_data_len = chunksize - local_nbuf;
 803
 804	/* Count number of sg entries to be used in this request */
 805	rctx->src_nents = spu_sg_count(rctx->src_sg, rctx->src_skip,
 806				       new_data_len);
 807
 808	/* AES hashing keeps key size in type field, so need to copy it here */
 809	if (hash_parms.alg == HASH_ALG_AES)
 810		hash_parms.type = (enum hash_type)cipher_parms.type;
 811	else
 812		hash_parms.type = spu->spu_hash_type(rctx->total_sent);
 813
 814	digestsize = spu->spu_digest_size(ctx->digestsize, ctx->auth.alg,
 815					  hash_parms.type);
 816	hash_parms.digestsize =	digestsize;
 817
 818	/* update the indexes */
 819	rctx->total_sent += chunksize;
 820	/* if you sent a prebuf then that wasn't from this req->src */
 821	rctx->src_sent += new_data_len;
 822
 823	if ((rctx->total_sent == rctx->total_todo) && rctx->is_final)
 824		hash_parms.pad_len = spu->spu_hash_pad_len(hash_parms.alg,
 825							   hash_parms.mode,
 826							   chunksize,
 827							   blocksize);
 828
 829	/*
 830	 * If a non-first chunk, then include the digest returned from the
 831	 * previous chunk so that hw can add to it (except for AES types).
 832	 */
 833	if ((hash_parms.type == HASH_TYPE_UPDT) &&
 834	    (hash_parms.alg != HASH_ALG_AES)) {
 835		hash_parms.key_buf = rctx->incr_hash;
 836		hash_parms.key_len = digestsize;
 837	}
 838
 839	atomic64_add(chunksize, &iproc_priv.bytes_out);
 840
 841	flow_log("%s() final: %u nbuf: %u ",
 842		 __func__, rctx->is_final, local_nbuf);
 843
 844	if (ctx->max_payload == SPU_MAX_PAYLOAD_INF)
 845		flow_log("max_payload infinite\n");
 846	else
 847		flow_log("max_payload %u\n", ctx->max_payload);
 848
 849	flow_log("chunk_start: %u chunk_size: %u\n", chunk_start, chunksize);
 850
 851	/* Prepend SPU header with type 3 BCM header */
 852	memcpy(rctx->msg_buf.bcm_spu_req_hdr, BCMHEADER, BCM_HDR_LEN);
 853
 854	hash_parms.prebuf_len = local_nbuf;
 855	spu_hdr_len = spu->spu_create_request(rctx->msg_buf.bcm_spu_req_hdr +
 856					      BCM_HDR_LEN,
 857					      &req_opts, &cipher_parms,
 858					      &hash_parms, &aead_parms,
 859					      new_data_len);
 860
 861	if (spu_hdr_len == 0) {
 862		pr_err("Failed to create SPU request header\n");
 863		return -EFAULT;
 864	}
 865
 866	/*
 867	 * Determine total length of padding required. Put all padding in one
 868	 * buffer.
 869	 */
 870	data_pad_len = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode, chunksize);
 871	db_size = spu_real_db_size(0, 0, local_nbuf, new_data_len,
 872				   0, 0, hash_parms.pad_len);
 873	if (spu->spu_tx_status_len())
 874		stat_pad_len = spu->spu_wordalign_padlen(db_size);
 875	if (stat_pad_len)
 876		rx_frag_num++;
 877	pad_len = hash_parms.pad_len + data_pad_len + stat_pad_len;
 878	if (pad_len) {
 879		tx_frag_num++;
 880		spu->spu_request_pad(rctx->msg_buf.spu_req_pad, data_pad_len,
 881				     hash_parms.pad_len, ctx->auth.alg,
 882				     ctx->auth.mode, rctx->total_sent,
 883				     stat_pad_len);
 884	}
 885
 886	spu->spu_dump_msg_hdr(rctx->msg_buf.bcm_spu_req_hdr + BCM_HDR_LEN,
 887			      spu_hdr_len);
 888	packet_dump("    prebuf: ", rctx->hash_carry, local_nbuf);
 889	flow_log("Data:\n");
 890	dump_sg(rctx->src_sg, rctx->src_skip, new_data_len);
 891	packet_dump("   pad: ", rctx->msg_buf.spu_req_pad, pad_len);
 892
 893	/*
 894	 * Build mailbox message containing SPU request msg and rx buffers
 895	 * to catch response message
 896	 */
 897	memset(mssg, 0, sizeof(*mssg));
 898	mssg->type = BRCM_MESSAGE_SPU;
 899	mssg->ctx = rctx;	/* Will be returned in response */
 900
 901	/* Create rx scatterlist to catch result */
 902	err = spu_ahash_rx_sg_create(mssg, rctx, rx_frag_num, digestsize,
 903				     stat_pad_len);
 904	if (err)
 905		return err;
 906
 907	/* Create tx scatterlist containing SPU request message */
 908	tx_frag_num += rctx->src_nents;
 909	if (spu->spu_tx_status_len())
 910		tx_frag_num++;
 911	err = spu_ahash_tx_sg_create(mssg, rctx, tx_frag_num, spu_hdr_len,
 912				     local_nbuf, new_data_len, pad_len);
 913	if (err)
 914		return err;
 915
 916	err = mailbox_send_message(mssg, req->base.flags, rctx->chan_idx);
 917	if (unlikely(err < 0))
 918		return err;
 919
 920	return -EINPROGRESS;
 921}
 922
 923/**
 924 * spu_hmac_outer_hash() - Request synchonous software compute of the outer hash
 925 * for an HMAC request.
 926 * @req:  The HMAC request from the crypto API
 927 * @ctx:  The session context
 928 *
 929 * Return: 0 if synchronous hash operation successful
 930 *         -EINVAL if the hash algo is unrecognized
 931 *         any other value indicates an error
 932 */
 933static int spu_hmac_outer_hash(struct ahash_request *req,
 934			       struct iproc_ctx_s *ctx)
 935{
 936	struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
 937	unsigned int blocksize =
 938		crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash));
 939	int rc;
 940
 941	switch (ctx->auth.alg) {
 942	case HASH_ALG_MD5:
 943		rc = do_shash("md5", req->result, ctx->opad, blocksize,
 944			      req->result, ctx->digestsize, NULL, 0);
 945		break;
 946	case HASH_ALG_SHA1:
 947		rc = do_shash("sha1", req->result, ctx->opad, blocksize,
 948			      req->result, ctx->digestsize, NULL, 0);
 949		break;
 950	case HASH_ALG_SHA224:
 951		rc = do_shash("sha224", req->result, ctx->opad, blocksize,
 952			      req->result, ctx->digestsize, NULL, 0);
 953		break;
 954	case HASH_ALG_SHA256:
 955		rc = do_shash("sha256", req->result, ctx->opad, blocksize,
 956			      req->result, ctx->digestsize, NULL, 0);
 957		break;
 958	case HASH_ALG_SHA384:
 959		rc = do_shash("sha384", req->result, ctx->opad, blocksize,
 960			      req->result, ctx->digestsize, NULL, 0);
 961		break;
 962	case HASH_ALG_SHA512:
 963		rc = do_shash("sha512", req->result, ctx->opad, blocksize,
 964			      req->result, ctx->digestsize, NULL, 0);
 965		break;
 966	default:
 967		pr_err("%s() Error : unknown hmac type\n", __func__);
 968		rc = -EINVAL;
 969	}
 970	return rc;
 971}
 972
 973/**
 974 * ahash_req_done() - Process a hash result from the SPU hardware.
 975 * @rctx: Crypto request context
 976 *
 977 * Return: 0 if successful
 978 *         < 0 if an error
 979 */
 980static int ahash_req_done(struct iproc_reqctx_s *rctx)
 981{
 982	struct spu_hw *spu = &iproc_priv.spu;
 983	struct crypto_async_request *areq = rctx->parent;
 984	struct ahash_request *req = ahash_request_cast(areq);
 985	struct iproc_ctx_s *ctx = rctx->ctx;
 986	int err;
 987
 988	memcpy(req->result, rctx->msg_buf.digest, ctx->digestsize);
 989
 990	if (spu->spu_type == SPU_TYPE_SPUM) {
 991		/* byte swap the output from the UPDT function to network byte
 992		 * order
 993		 */
 994		if (ctx->auth.alg == HASH_ALG_MD5) {
 995			__swab32s((u32 *)req->result);
 996			__swab32s(((u32 *)req->result) + 1);
 997			__swab32s(((u32 *)req->result) + 2);
 998			__swab32s(((u32 *)req->result) + 3);
 999			__swab32s(((u32 *)req->result) + 4);
1000		}
1001	}
1002
1003	flow_dump("  digest ", req->result, ctx->digestsize);
1004
1005	/* if this an HMAC then do the outer hash */
1006	if (rctx->is_sw_hmac) {
1007		err = spu_hmac_outer_hash(req, ctx);
1008		if (err < 0)
1009			return err;
1010		flow_dump("  hmac: ", req->result, ctx->digestsize);
1011	}
1012
1013	if (rctx->is_sw_hmac || ctx->auth.mode == HASH_MODE_HMAC) {
1014		atomic_inc(&iproc_priv.op_counts[SPU_OP_HMAC]);
1015		atomic_inc(&iproc_priv.hmac_cnt[ctx->auth.alg]);
1016	} else {
1017		atomic_inc(&iproc_priv.op_counts[SPU_OP_HASH]);
1018		atomic_inc(&iproc_priv.hash_cnt[ctx->auth.alg]);
1019	}
1020
1021	return 0;
1022}
1023
1024/**
1025 * handle_ahash_resp() - Process a SPU response message for a hash request.
1026 * Checks if the entire crypto API request has been processed, and if so,
1027 * invokes post processing on the result.
1028 * @rctx: Crypto request context
1029 */
1030static void handle_ahash_resp(struct iproc_reqctx_s *rctx)
1031{
1032	struct iproc_ctx_s *ctx = rctx->ctx;
1033#ifdef DEBUG
1034	struct crypto_async_request *areq = rctx->parent;
1035	struct ahash_request *req = ahash_request_cast(areq);
1036	struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
1037	unsigned int blocksize =
1038		crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash));
1039#endif
1040	/*
1041	 * Save hash to use as input to next op if incremental. Might be copying
1042	 * too much, but that's easier than figuring out actual digest size here
1043	 */
1044	memcpy(rctx->incr_hash, rctx->msg_buf.digest, MAX_DIGEST_SIZE);
1045
1046	flow_log("%s() blocksize:%u digestsize:%u\n",
1047		 __func__, blocksize, ctx->digestsize);
1048
1049	atomic64_add(ctx->digestsize, &iproc_priv.bytes_in);
1050
1051	if (rctx->is_final && (rctx->total_sent == rctx->total_todo))
1052		ahash_req_done(rctx);
1053}
1054
1055/**
1056 * spu_aead_rx_sg_create() - Build up the scatterlist of buffers used to receive
1057 * a SPU response message for an AEAD request. Includes buffers to catch SPU
1058 * message headers and the response data.
1059 * @mssg:	mailbox message containing the receive sg
1060 * @rctx:	crypto request context
1061 * @rx_frag_num: number of scatterlist elements required to hold the
1062 *		SPU response message
1063 * @assoc_len:	Length of associated data included in the crypto request
1064 * @ret_iv_len: Length of IV returned in response
1065 * @resp_len:	Number of bytes of response data expected to be written to
1066 *              dst buffer from crypto API
1067 * @digestsize: Length of hash digest, in bytes
1068 * @stat_pad_len: Number of bytes required to pad the STAT field to
1069 *		a 4-byte boundary
1070 *
1071 * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
1072 * when the request completes, whether the request is handled successfully or
1073 * there is an error.
1074 *
1075 * Returns:
1076 *   0 if successful
1077 *   < 0 if an error
1078 */
1079static int spu_aead_rx_sg_create(struct brcm_message *mssg,
1080				 struct aead_request *req,
1081				 struct iproc_reqctx_s *rctx,
1082				 u8 rx_frag_num,
1083				 unsigned int assoc_len,
1084				 u32 ret_iv_len, unsigned int resp_len,
1085				 unsigned int digestsize, u32 stat_pad_len)
1086{
1087	struct spu_hw *spu = &iproc_priv.spu;
1088	struct scatterlist *sg;	/* used to build sgs in mbox message */
1089	struct iproc_ctx_s *ctx = rctx->ctx;
1090	u32 datalen;		/* Number of bytes of response data expected */
1091	u32 assoc_buf_len;
1092	u8 data_padlen = 0;
1093
1094	if (ctx->is_rfc4543) {
1095		/* RFC4543: only pad after data, not after AAD */
1096		data_padlen = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode,
1097							  assoc_len + resp_len);
1098		assoc_buf_len = assoc_len;
1099	} else {
1100		data_padlen = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode,
1101							  resp_len);
1102		assoc_buf_len = spu->spu_assoc_resp_len(ctx->cipher.mode,
1103						assoc_len, ret_iv_len,
1104						rctx->is_encrypt);
1105	}
1106
1107	if (ctx->cipher.mode == CIPHER_MODE_CCM)
1108		/* ICV (after data) must be in the next 32-bit word for CCM */
1109		data_padlen += spu->spu_wordalign_padlen(assoc_buf_len +
1110							 resp_len +
1111							 data_padlen);
1112
1113	if (data_padlen)
1114		/* have to catch gcm pad in separate buffer */
1115		rx_frag_num++;
1116
1117	mssg->spu.dst = kcalloc(rx_frag_num, sizeof(struct scatterlist),
1118				rctx->gfp);
1119	if (!mssg->spu.dst)
1120		return -ENOMEM;
1121
1122	sg = mssg->spu.dst;
1123	sg_init_table(sg, rx_frag_num);
1124
1125	/* Space for SPU message header */
1126	sg_set_buf(sg++, rctx->msg_buf.spu_resp_hdr, ctx->spu_resp_hdr_len);
1127
1128	if (assoc_buf_len) {
1129		/*
1130		 * Don't write directly to req->dst, because SPU may pad the
1131		 * assoc data in the response
1132		 */
1133		memset(rctx->msg_buf.a.resp_aad, 0, assoc_buf_len);
1134		sg_set_buf(sg++, rctx->msg_buf.a.resp_aad, assoc_buf_len);
1135	}
1136
1137	if (resp_len) {
1138		/*
1139		 * Copy in each dst sg entry from request, up to chunksize.
1140		 * dst sg catches just the data. digest caught in separate buf.
1141		 */
1142		datalen = spu_msg_sg_add(&sg, &rctx->dst_sg, &rctx->dst_skip,
1143					 rctx->dst_nents, resp_len);
1144		if (datalen < (resp_len)) {
1145			pr_err("%s(): failed to copy dst sg to mbox msg. expected len %u, datalen %u",
1146			       __func__, resp_len, datalen);
1147			return -EFAULT;
1148		}
1149	}
1150
1151	/* If GCM/CCM data is padded, catch padding in separate buffer */
1152	if (data_padlen) {
1153		memset(rctx->msg_buf.a.gcmpad, 0, data_padlen);
1154		sg_set_buf(sg++, rctx->msg_buf.a.gcmpad, data_padlen);
1155	}
1156
1157	/* Always catch ICV in separate buffer */
1158	sg_set_buf(sg++, rctx->msg_buf.digest, digestsize);
1159
1160	flow_log("stat_pad_len %u\n", stat_pad_len);
1161	if (stat_pad_len) {
1162		memset(rctx->msg_buf.rx_stat_pad, 0, stat_pad_len);
1163		sg_set_buf(sg++, rctx->msg_buf.rx_stat_pad, stat_pad_len);
1164	}
1165
1166	memset(rctx->msg_buf.rx_stat, 0, SPU_RX_STATUS_LEN);
1167	sg_set_buf(sg, rctx->msg_buf.rx_stat, spu->spu_rx_status_len());
1168
1169	return 0;
1170}
1171
1172/**
1173 * spu_aead_tx_sg_create() - Build up the scatterlist of buffers used to send a
1174 * SPU request message for an AEAD request. Includes SPU message headers and the
1175 * request data.
1176 * @mssg:	mailbox message containing the transmit sg
1177 * @rctx:	crypto request context
1178 * @tx_frag_num: number of scatterlist elements required to construct the
1179 *		SPU request message
1180 * @spu_hdr_len: length of SPU message header in bytes
1181 * @assoc:	crypto API associated data scatterlist
1182 * @assoc_len:	length of associated data
1183 * @assoc_nents: number of scatterlist entries containing assoc data
1184 * @aead_iv_len: length of AEAD IV, if included
1185 * @chunksize:	Number of bytes of request data
1186 * @aad_pad_len: Number of bytes of padding at end of AAD. For GCM/CCM.
1187 * @pad_len:	Number of pad bytes
1188 * @incl_icv:	If true, write separate ICV buffer after data and
1189 *              any padding
1190 *
1191 * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
1192 * when the request completes, whether the request is handled successfully or
1193 * there is an error.
1194 *
1195 * Return:
1196 *   0 if successful
1197 *   < 0 if an error
1198 */
1199static int spu_aead_tx_sg_create(struct brcm_message *mssg,
1200				 struct iproc_reqctx_s *rctx,
1201				 u8 tx_frag_num,
1202				 u32 spu_hdr_len,
1203				 struct scatterlist *assoc,
1204				 unsigned int assoc_len,
1205				 int assoc_nents,
1206				 unsigned int aead_iv_len,
1207				 unsigned int chunksize,
1208				 u32 aad_pad_len, u32 pad_len, bool incl_icv)
1209{
1210	struct spu_hw *spu = &iproc_priv.spu;
1211	struct scatterlist *sg;	/* used to build sgs in mbox message */
1212	struct scatterlist *assoc_sg = assoc;
1213	struct iproc_ctx_s *ctx = rctx->ctx;
1214	u32 datalen;		/* Number of bytes of data to write */
1215	u32 written;		/* Number of bytes of data written */
1216	u32 assoc_offset = 0;
1217	u32 stat_len;
1218
1219	mssg->spu.src = kcalloc(tx_frag_num, sizeof(struct scatterlist),
1220				rctx->gfp);
1221	if (!mssg->spu.src)
1222		return -ENOMEM;
1223
1224	sg = mssg->spu.src;
1225	sg_init_table(sg, tx_frag_num);
1226
1227	sg_set_buf(sg++, rctx->msg_buf.bcm_spu_req_hdr,
1228		   BCM_HDR_LEN + spu_hdr_len);
1229
1230	if (assoc_len) {
1231		/* Copy in each associated data sg entry from request */
1232		written = spu_msg_sg_add(&sg, &assoc_sg, &assoc_offset,
1233					 assoc_nents, assoc_len);
1234		if (written < assoc_len) {
1235			pr_err("%s(): failed to copy assoc sg to mbox msg",
1236			       __func__);
1237			return -EFAULT;
1238		}
1239	}
1240
1241	if (aead_iv_len)
1242		sg_set_buf(sg++, rctx->msg_buf.iv_ctr, aead_iv_len);
1243
1244	if (aad_pad_len) {
1245		memset(rctx->msg_buf.a.req_aad_pad, 0, aad_pad_len);
1246		sg_set_buf(sg++, rctx->msg_buf.a.req_aad_pad, aad_pad_len);
1247	}
1248
1249	datalen = chunksize;
1250	if ((chunksize > ctx->digestsize) && incl_icv)
1251		datalen -= ctx->digestsize;
1252	if (datalen) {
1253		/* For aead, a single msg should consume the entire src sg */
1254		written = spu_msg_sg_add(&sg, &rctx->src_sg, &rctx->src_skip,
1255					 rctx->src_nents, datalen);
1256		if (written < datalen) {
1257			pr_err("%s(): failed to copy src sg to mbox msg",
1258			       __func__);
1259			return -EFAULT;
1260		}
1261	}
1262
1263	if (pad_len) {
1264		memset(rctx->msg_buf.spu_req_pad, 0, pad_len);
1265		sg_set_buf(sg++, rctx->msg_buf.spu_req_pad, pad_len);
1266	}
1267
1268	if (incl_icv)
1269		sg_set_buf(sg++, rctx->msg_buf.digest, ctx->digestsize);
1270
1271	stat_len = spu->spu_tx_status_len();
1272	if (stat_len) {
1273		memset(rctx->msg_buf.tx_stat, 0, stat_len);
1274		sg_set_buf(sg, rctx->msg_buf.tx_stat, stat_len);
1275	}
1276	return 0;
1277}
1278
1279/**
1280 * handle_aead_req() - Submit a SPU request message for the next chunk of the
1281 * current AEAD request.
1282 * @rctx:  Crypto request context
1283 *
1284 * Unlike other operation types, we assume the length of the request fits in
1285 * a single SPU request message. aead_enqueue() makes sure this is true.
1286 * Comments for other op types regarding threads applies here as well.
1287 *
1288 * Unlike incremental hash ops, where the spu returns the entire hash for
1289 * truncated algs like sha-224, the SPU returns just the truncated hash in
1290 * response to aead requests. So digestsize is always ctx->digestsize here.
1291 *
1292 * Return: -EINPROGRESS: crypto request has been accepted and result will be
1293 *			 returned asynchronously
1294 *         Any other value indicates an error
1295 */
1296static int handle_aead_req(struct iproc_reqctx_s *rctx)
1297{
1298	struct spu_hw *spu = &iproc_priv.spu;
1299	struct crypto_async_request *areq = rctx->parent;
1300	struct aead_request *req = container_of(areq,
1301						struct aead_request, base);
1302	struct iproc_ctx_s *ctx = rctx->ctx;
1303	int err;
1304	unsigned int chunksize;
1305	unsigned int resp_len;
1306	u32 spu_hdr_len;
1307	u32 db_size;
1308	u32 stat_pad_len;
1309	u32 pad_len;
1310	struct brcm_message *mssg;	/* mailbox message */
1311	struct spu_request_opts req_opts;
1312	struct spu_cipher_parms cipher_parms;
1313	struct spu_hash_parms hash_parms;
1314	struct spu_aead_parms aead_parms;
1315	int assoc_nents = 0;
1316	bool incl_icv = false;
1317	unsigned int digestsize = ctx->digestsize;
1318
1319	/* number of entries in src and dst sg. Always includes SPU msg header.
1320	 */
1321	u8 rx_frag_num = 2;	/* and STATUS */
1322	u8 tx_frag_num = 1;
1323
1324	/* doing the whole thing at once */
1325	chunksize = rctx->total_todo;
1326
1327	flow_log("%s: chunksize %u\n", __func__, chunksize);
1328
1329	memset(&req_opts, 0, sizeof(req_opts));
1330	memset(&hash_parms, 0, sizeof(hash_parms));
1331	memset(&aead_parms, 0, sizeof(aead_parms));
1332
1333	req_opts.is_inbound = !(rctx->is_encrypt);
1334	req_opts.auth_first = ctx->auth_first;
1335	req_opts.is_aead = true;
1336	req_opts.is_esp = ctx->is_esp;
1337
1338	cipher_parms.alg = ctx->cipher.alg;
1339	cipher_parms.mode = ctx->cipher.mode;
1340	cipher_parms.type = ctx->cipher_type;
1341	cipher_parms.key_buf = ctx->enckey;
1342	cipher_parms.key_len = ctx->enckeylen;
1343	cipher_parms.iv_buf = rctx->msg_buf.iv_ctr;
1344	cipher_parms.iv_len = rctx->iv_ctr_len;
1345
1346	hash_parms.alg = ctx->auth.alg;
1347	hash_parms.mode = ctx->auth.mode;
1348	hash_parms.type = HASH_TYPE_NONE;
1349	hash_parms.key_buf = (u8 *)ctx->authkey;
1350	hash_parms.key_len = ctx->authkeylen;
1351	hash_parms.digestsize = digestsize;
1352
1353	if ((ctx->auth.alg == HASH_ALG_SHA224) &&
1354	    (ctx->authkeylen < SHA224_DIGEST_SIZE))
1355		hash_parms.key_len = SHA224_DIGEST_SIZE;
1356
1357	aead_parms.assoc_size = req->assoclen;
1358	if (ctx->is_esp && !ctx->is_rfc4543) {
1359		/*
1360		 * 8-byte IV is included assoc data in request. SPU2
1361		 * expects AAD to include just SPI and seqno. So
1362		 * subtract off the IV len.
1363		 */
1364		aead_parms.assoc_size -= GCM_RFC4106_IV_SIZE;
1365
1366		if (rctx->is_encrypt) {
1367			aead_parms.return_iv = true;
1368			aead_parms.ret_iv_len = GCM_RFC4106_IV_SIZE;
1369			aead_parms.ret_iv_off = GCM_ESP_SALT_SIZE;
1370		}
1371	} else {
1372		aead_parms.ret_iv_len = 0;
1373	}
1374
1375	/*
1376	 * Count number of sg entries from the crypto API request that are to
1377	 * be included in this mailbox message. For dst sg, don't count space
1378	 * for digest. Digest gets caught in a separate buffer and copied back
1379	 * to dst sg when processing response.
1380	 */
1381	rctx->src_nents = spu_sg_count(rctx->src_sg, rctx->src_skip, chunksize);
1382	rctx->dst_nents = spu_sg_count(rctx->dst_sg, rctx->dst_skip, chunksize);
1383	if (aead_parms.assoc_size)
1384		assoc_nents = spu_sg_count(rctx->assoc, 0,
1385					   aead_parms.assoc_size);
1386
1387	mssg = &rctx->mb_mssg;
1388
1389	rctx->total_sent = chunksize;
1390	rctx->src_sent = chunksize;
1391	if (spu->spu_assoc_resp_len(ctx->cipher.mode,
1392				    aead_parms.assoc_size,
1393				    aead_parms.ret_iv_len,
1394				    rctx->is_encrypt))
1395		rx_frag_num++;
1396
1397	aead_parms.iv_len = spu->spu_aead_ivlen(ctx->cipher.mode,
1398						rctx->iv_ctr_len);
1399
1400	if (ctx->auth.alg == HASH_ALG_AES)
1401		hash_parms.type = (enum hash_type)ctx->cipher_type;
1402
1403	/* General case AAD padding (CCM and RFC4543 special cases below) */
1404	aead_parms.aad_pad_len = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode,
1405						 aead_parms.assoc_size);
1406
1407	/* General case data padding (CCM decrypt special case below) */
1408	aead_parms.data_pad_len = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode,
1409							   chunksize);
1410
1411	if (ctx->cipher.mode == CIPHER_MODE_CCM) {
1412		/*
1413		 * for CCM, AAD len + 2 (rather than AAD len) needs to be
1414		 * 128-bit aligned
1415		 */
1416		aead_parms.aad_pad_len = spu->spu_gcm_ccm_pad_len(
1417					 ctx->cipher.mode,
1418					 aead_parms.assoc_size + 2);
1419
1420		/*
1421		 * And when decrypting CCM, need to pad without including
1422		 * size of ICV which is tacked on to end of chunk
1423		 */
1424		if (!rctx->is_encrypt)
1425			aead_parms.data_pad_len =
1426				spu->spu_gcm_ccm_pad_len(ctx->cipher.mode,
1427							chunksize - digestsize);
1428
1429		/* CCM also requires software to rewrite portions of IV: */
1430		spu->spu_ccm_update_iv(digestsize, &cipher_parms, req->assoclen,
1431				       chunksize, rctx->is_encrypt,
1432				       ctx->is_esp);
1433	}
1434
1435	if (ctx->is_rfc4543) {
1436		/*
1437		 * RFC4543: data is included in AAD, so don't pad after AAD
1438		 * and pad data based on both AAD + data size
1439		 */
1440		aead_parms.aad_pad_len = 0;
1441		if (!rctx->is_encrypt)
1442			aead_parms.data_pad_len = spu->spu_gcm_ccm_pad_len(
1443					ctx->cipher.mode,
1444					aead_parms.assoc_size + chunksize -
1445					digestsize);
1446		else
1447			aead_parms.data_pad_len = spu->spu_gcm_ccm_pad_len(
1448					ctx->cipher.mode,
1449					aead_parms.assoc_size + chunksize);
1450
1451		req_opts.is_rfc4543 = true;
1452	}
1453
1454	if (spu_req_incl_icv(ctx->cipher.mode, rctx->is_encrypt)) {
1455		incl_icv = true;
1456		tx_frag_num++;
1457		/* Copy ICV from end of src scatterlist to digest buf */
1458		sg_copy_part_to_buf(req->src, rctx->msg_buf.digest, digestsize,
1459				    req->assoclen + rctx->total_sent -
1460				    digestsize);
1461	}
1462
1463	atomic64_add(chunksize, &iproc_priv.bytes_out);
1464
1465	flow_log("%s()-sent chunksize:%u\n", __func__, chunksize);
1466
1467	/* Prepend SPU header with type 3 BCM header */
1468	memcpy(rctx->msg_buf.bcm_spu_req_hdr, BCMHEADER, BCM_HDR_LEN);
1469
1470	spu_hdr_len = spu->spu_create_request(rctx->msg_buf.bcm_spu_req_hdr +
1471					      BCM_HDR_LEN, &req_opts,
1472					      &cipher_parms, &hash_parms,
1473					      &aead_parms, chunksize);
1474
1475	/* Determine total length of padding. Put all padding in one buffer. */
1476	db_size = spu_real_db_size(aead_parms.assoc_size, aead_parms.iv_len, 0,
1477				   chunksize, aead_parms.aad_pad_len,
1478				   aead_parms.data_pad_len, 0);
1479
1480	stat_pad_len = spu->spu_wordalign_padlen(db_size);
1481
1482	if (stat_pad_len)
1483		rx_frag_num++;
1484	pad_len = aead_parms.data_pad_len + stat_pad_len;
1485	if (pad_len) {
1486		tx_frag_num++;
1487		spu->spu_request_pad(rctx->msg_buf.spu_req_pad,
1488				     aead_parms.data_pad_len, 0,
1489				     ctx->auth.alg, ctx->auth.mode,
1490				     rctx->total_sent, stat_pad_len);
1491	}
1492
1493	spu->spu_dump_msg_hdr(rctx->msg_buf.bcm_spu_req_hdr + BCM_HDR_LEN,
1494			      spu_hdr_len);
1495	dump_sg(rctx->assoc, 0, aead_parms.assoc_size);
1496	packet_dump("    aead iv: ", rctx->msg_buf.iv_ctr, aead_parms.iv_len);
1497	packet_log("BD:\n");
1498	dump_sg(rctx->src_sg, rctx->src_skip, chunksize);
1499	packet_dump("   pad: ", rctx->msg_buf.spu_req_pad, pad_len);
1500
1501	/*
1502	 * Build mailbox message containing SPU request msg and rx buffers
1503	 * to catch response message
1504	 */
1505	memset(mssg, 0, sizeof(*mssg));
1506	mssg->type = BRCM_MESSAGE_SPU;
1507	mssg->ctx = rctx;	/* Will be returned in response */
1508
1509	/* Create rx scatterlist to catch result */
1510	rx_frag_num += rctx->dst_nents;
1511	resp_len = chunksize;
1512
1513	/*
1514	 * Always catch ICV in separate buffer. Have to for GCM/CCM because of
1515	 * padding. Have to for SHA-224 and other truncated SHAs because SPU
1516	 * sends entire digest back.
1517	 */
1518	rx_frag_num++;
1519
1520	if (((ctx->cipher.mode == CIPHER_MODE_GCM) ||
1521	     (ctx->cipher.mode == CIPHER_MODE_CCM)) && !rctx->is_encrypt) {
1522		/*
1523		 * Input is ciphertxt plus ICV, but ICV not incl
1524		 * in output.
1525		 */
1526		resp_len -= ctx->digestsize;
1527		if (resp_len == 0)
1528			/* no rx frags to catch output data */
1529			rx_frag_num -= rctx->dst_nents;
1530	}
1531
1532	err = spu_aead_rx_sg_create(mssg, req, rctx, rx_frag_num,
1533				    aead_parms.assoc_size,
1534				    aead_parms.ret_iv_len, resp_len, digestsize,
1535				    stat_pad_len);
1536	if (err)
1537		return err;
1538
1539	/* Create tx scatterlist containing SPU request message */
1540	tx_frag_num += rctx->src_nents;
1541	tx_frag_num += assoc_nents;
1542	if (aead_parms.aad_pad_len)
1543		tx_frag_num++;
1544	if (aead_parms.iv_len)
1545		tx_frag_num++;
1546	if (spu->spu_tx_status_len())
1547		tx_frag_num++;
1548	err = spu_aead_tx_sg_create(mssg, rctx, tx_frag_num, spu_hdr_len,
1549				    rctx->assoc, aead_parms.assoc_size,
1550				    assoc_nents, aead_parms.iv_len, chunksize,
1551				    aead_parms.aad_pad_len, pad_len, incl_icv);
1552	if (err)
1553		return err;
1554
1555	err = mailbox_send_message(mssg, req->base.flags, rctx->chan_idx);
1556	if (unlikely(err < 0))
1557		return err;
1558
1559	return -EINPROGRESS;
1560}
1561
1562/**
1563 * handle_aead_resp() - Process a SPU response message for an AEAD request.
1564 * @rctx:  Crypto request context
1565 */
1566static void handle_aead_resp(struct iproc_reqctx_s *rctx)
1567{
1568	struct spu_hw *spu = &iproc_priv.spu;
1569	struct crypto_async_request *areq = rctx->parent;
1570	struct aead_request *req = container_of(areq,
1571						struct aead_request, base);
1572	struct iproc_ctx_s *ctx = rctx->ctx;
1573	u32 payload_len;
1574	unsigned int icv_offset;
1575	u32 result_len;
1576
1577	/* See how much data was returned */
1578	payload_len = spu->spu_payload_length(rctx->msg_buf.spu_resp_hdr);
1579	flow_log("payload_len %u\n", payload_len);
1580
1581	/* only count payload */
1582	atomic64_add(payload_len, &iproc_priv.bytes_in);
1583
1584	if (req->assoclen)
1585		packet_dump("  assoc_data ", rctx->msg_buf.a.resp_aad,
1586			    req->assoclen);
1587
1588	/*
1589	 * Copy the ICV back to the destination
1590	 * buffer. In decrypt case, SPU gives us back the digest, but crypto
1591	 * API doesn't expect ICV in dst buffer.
1592	 */
1593	result_len = req->cryptlen;
1594	if (rctx->is_encrypt) {
1595		icv_offset = req->assoclen + rctx->total_sent;
1596		packet_dump("  ICV: ", rctx->msg_buf.digest, ctx->digestsize);
1597		flow_log("copying ICV to dst sg at offset %u\n", icv_offset);
1598		sg_copy_part_from_buf(req->dst, rctx->msg_buf.digest,
1599				      ctx->digestsize, icv_offset);
1600		result_len += ctx->digestsize;
1601	}
1602
1603	packet_log("response data:  ");
1604	dump_sg(req->dst, req->assoclen, result_len);
1605
1606	atomic_inc(&iproc_priv.op_counts[SPU_OP_AEAD]);
1607	if (ctx->cipher.alg == CIPHER_ALG_AES) {
1608		if (ctx->cipher.mode == CIPHER_MODE_CCM)
1609			atomic_inc(&iproc_priv.aead_cnt[AES_CCM]);
1610		else if (ctx->cipher.mode == CIPHER_MODE_GCM)
1611			atomic_inc(&iproc_priv.aead_cnt[AES_GCM]);
1612		else
1613			atomic_inc(&iproc_priv.aead_cnt[AUTHENC]);
1614	} else {
1615		atomic_inc(&iproc_priv.aead_cnt[AUTHENC]);
1616	}
1617}
1618
1619/**
1620 * spu_chunk_cleanup() - Do cleanup after processing one chunk of a request
1621 * @rctx:  request context
1622 *
1623 * Mailbox scatterlists are allocated for each chunk. So free them after
1624 * processing each chunk.
1625 */
1626static void spu_chunk_cleanup(struct iproc_reqctx_s *rctx)
1627{
1628	/* mailbox message used to tx request */
1629	struct brcm_message *mssg = &rctx->mb_mssg;
1630
1631	kfree(mssg->spu.src);
1632	kfree(mssg->spu.dst);
1633	memset(mssg, 0, sizeof(struct brcm_message));
1634}
1635
1636/**
1637 * finish_req() - Used to invoke the complete callback from the requester when
1638 * a request has been handled asynchronously.
1639 * @rctx:  Request context
1640 * @err:   Indicates whether the request was successful or not
1641 *
1642 * Ensures that cleanup has been done for request
1643 */
1644static void finish_req(struct iproc_reqctx_s *rctx, int err)
1645{
1646	struct crypto_async_request *areq = rctx->parent;
1647
1648	flow_log("%s() err:%d\n\n", __func__, err);
1649
1650	/* No harm done if already called */
1651	spu_chunk_cleanup(rctx);
1652
1653	if (areq)
1654		areq->complete(areq, err);
1655}
1656
1657/**
1658 * spu_rx_callback() - Callback from mailbox framework with a SPU response.
1659 * @cl:		mailbox client structure for SPU driver
1660 * @msg:	mailbox message containing SPU response
1661 */
1662static void spu_rx_callback(struct mbox_client *cl, void *msg)
1663{
1664	struct spu_hw *spu = &iproc_priv.spu;
1665	struct brcm_message *mssg = msg;
1666	struct iproc_reqctx_s *rctx;
1667	int err;
1668
1669	rctx = mssg->ctx;
1670	if (unlikely(!rctx)) {
1671		/* This is fatal */
1672		pr_err("%s(): no request context", __func__);
1673		err = -EFAULT;
1674		goto cb_finish;
1675	}
1676
1677	/* process the SPU status */
1678	err = spu->spu_status_process(rctx->msg_buf.rx_stat);
1679	if (err != 0) {
1680		if (err == SPU_INVALID_ICV)
1681			atomic_inc(&iproc_priv.bad_icv);
1682		err = -EBADMSG;
1683		goto cb_finish;
1684	}
1685
1686	/* Process the SPU response message */
1687	switch (rctx->ctx->alg->type) {
1688	case CRYPTO_ALG_TYPE_SKCIPHER:
1689		handle_skcipher_resp(rctx);
1690		break;
1691	case CRYPTO_ALG_TYPE_AHASH:
1692		handle_ahash_resp(rctx);
1693		break;
1694	case CRYPTO_ALG_TYPE_AEAD:
1695		handle_aead_resp(rctx);
1696		break;
1697	default:
1698		err = -EINVAL;
1699		goto cb_finish;
1700	}
1701
1702	/*
1703	 * If this response does not complete the request, then send the next
1704	 * request chunk.
1705	 */
1706	if (rctx->total_sent < rctx->total_todo) {
1707		/* Deallocate anything specific to previous chunk */
1708		spu_chunk_cleanup(rctx);
1709
1710		switch (rctx->ctx->alg->type) {
1711		case CRYPTO_ALG_TYPE_SKCIPHER:
1712			err = handle_skcipher_req(rctx);
1713			break;
1714		case CRYPTO_ALG_TYPE_AHASH:
1715			err = handle_ahash_req(rctx);
1716			if (err == -EAGAIN)
1717				/*
1718				 * we saved data in hash carry, but tell crypto
1719				 * API we successfully completed request.
1720				 */
1721				err = 0;
1722			break;
1723		case CRYPTO_ALG_TYPE_AEAD:
1724			err = handle_aead_req(rctx);
1725			break;
1726		default:
1727			err = -EINVAL;
1728		}
1729
1730		if (err == -EINPROGRESS)
1731			/* Successfully submitted request for next chunk */
1732			return;
1733	}
1734
1735cb_finish:
1736	finish_req(rctx, err);
1737}
1738
1739/* ==================== Kernel Cryptographic API ==================== */
1740
1741/**
1742 * skcipher_enqueue() - Handle skcipher encrypt or decrypt request.
1743 * @req:	Crypto API request
1744 * @encrypt:	true if encrypting; false if decrypting
1745 *
1746 * Return: -EINPROGRESS if request accepted and result will be returned
1747 *			asynchronously
1748 *	   < 0 if an error
1749 */
1750static int skcipher_enqueue(struct skcipher_request *req, bool encrypt)
1751{
1752	struct iproc_reqctx_s *rctx = skcipher_request_ctx(req);
1753	struct iproc_ctx_s *ctx =
1754	    crypto_skcipher_ctx(crypto_skcipher_reqtfm(req));
1755	int err;
1756
1757	flow_log("%s() enc:%u\n", __func__, encrypt);
1758
1759	rctx->gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
1760		       CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
1761	rctx->parent = &req->base;
1762	rctx->is_encrypt = encrypt;
1763	rctx->bd_suppress = false;
1764	rctx->total_todo = req->cryptlen;
1765	rctx->src_sent = 0;
1766	rctx->total_sent = 0;
1767	rctx->total_received = 0;
1768	rctx->ctx = ctx;
1769
1770	/* Initialize current position in src and dst scatterlists */
1771	rctx->src_sg = req->src;
1772	rctx->src_nents = 0;
1773	rctx->src_skip = 0;
1774	rctx->dst_sg = req->dst;
1775	rctx->dst_nents = 0;
1776	rctx->dst_skip = 0;
1777
1778	if (ctx->cipher.mode == CIPHER_MODE_CBC ||
1779	    ctx->cipher.mode == CIPHER_MODE_CTR ||
1780	    ctx->cipher.mode == CIPHER_MODE_OFB ||
1781	    ctx->cipher.mode == CIPHER_MODE_XTS ||
1782	    ctx->cipher.mode == CIPHER_MODE_GCM ||
1783	    ctx->cipher.mode == CIPHER_MODE_CCM) {
1784		rctx->iv_ctr_len =
1785		    crypto_skcipher_ivsize(crypto_skcipher_reqtfm(req));
1786		memcpy(rctx->msg_buf.iv_ctr, req->iv, rctx->iv_ctr_len);
1787	} else {
1788		rctx->iv_ctr_len = 0;
1789	}
1790
1791	/* Choose a SPU to process this request */
1792	rctx->chan_idx = select_channel();
1793	err = handle_skcipher_req(rctx);
1794	if (err != -EINPROGRESS)
1795		/* synchronous result */
1796		spu_chunk_cleanup(rctx);
1797
1798	return err;
1799}
1800
1801static int des_setkey(struct crypto_skcipher *cipher, const u8 *key,
1802		      unsigned int keylen)
1803{
1804	struct iproc_ctx_s *ctx = crypto_skcipher_ctx(cipher);
1805	int err;
1806
1807	err = verify_skcipher_des_key(cipher, key);
1808	if (err)
1809		return err;
1810
1811	ctx->cipher_type = CIPHER_TYPE_DES;
1812	return 0;
1813}
1814
1815static int threedes_setkey(struct crypto_skcipher *cipher, const u8 *key,
1816			   unsigned int keylen)
1817{
1818	struct iproc_ctx_s *ctx = crypto_skcipher_ctx(cipher);
1819	int err;
1820
1821	err = verify_skcipher_des3_key(cipher, key);
1822	if (err)
1823		return err;
1824
1825	ctx->cipher_type = CIPHER_TYPE_3DES;
1826	return 0;
1827}
1828
1829static int aes_setkey(struct crypto_skcipher *cipher, const u8 *key,
1830		      unsigned int keylen)
1831{
1832	struct iproc_ctx_s *ctx = crypto_skcipher_ctx(cipher);
1833
1834	if (ctx->cipher.mode == CIPHER_MODE_XTS)
1835		/* XTS includes two keys of equal length */
1836		keylen = keylen / 2;
1837
1838	switch (keylen) {
1839	case AES_KEYSIZE_128:
1840		ctx->cipher_type = CIPHER_TYPE_AES128;
1841		break;
1842	case AES_KEYSIZE_192:
1843		ctx->cipher_type = CIPHER_TYPE_AES192;
1844		break;
1845	case AES_KEYSIZE_256:
1846		ctx->cipher_type = CIPHER_TYPE_AES256;
1847		break;
1848	default:
1849		return -EINVAL;
1850	}
1851	WARN_ON((ctx->max_payload != SPU_MAX_PAYLOAD_INF) &&
1852		((ctx->max_payload % AES_BLOCK_SIZE) != 0));
1853	return 0;
1854}
1855
1856static int rc4_setkey(struct crypto_skcipher *cipher, const u8 *key,
1857		      unsigned int keylen)
1858{
1859	struct iproc_ctx_s *ctx = crypto_skcipher_ctx(cipher);
1860	int i;
1861
1862	ctx->enckeylen = ARC4_MAX_KEY_SIZE + ARC4_STATE_SIZE;
1863
1864	ctx->enckey[0] = 0x00;	/* 0x00 */
1865	ctx->enckey[1] = 0x00;	/* i    */
1866	ctx->enckey[2] = 0x00;	/* 0x00 */
1867	ctx->enckey[3] = 0x00;	/* j    */
1868	for (i = 0; i < ARC4_MAX_KEY_SIZE; i++)
1869		ctx->enckey[i + ARC4_STATE_SIZE] = key[i % keylen];
1870
1871	ctx->cipher_type = CIPHER_TYPE_INIT;
1872
1873	return 0;
1874}
1875
1876static int skcipher_setkey(struct crypto_skcipher *cipher, const u8 *key,
1877			     unsigned int keylen)
1878{
1879	struct spu_hw *spu = &iproc_priv.spu;
1880	struct iproc_ctx_s *ctx = crypto_skcipher_ctx(cipher);
1881	struct spu_cipher_parms cipher_parms;
1882	u32 alloc_len = 0;
1883	int err;
1884
1885	flow_log("skcipher_setkey() keylen: %d\n", keylen);
1886	flow_dump("  key: ", key, keylen);
1887
1888	switch (ctx->cipher.alg) {
1889	case CIPHER_ALG_DES:
1890		err = des_setkey(cipher, key, keylen);
1891		break;
1892	case CIPHER_ALG_3DES:
1893		err = threedes_setkey(cipher, key, keylen);
1894		break;
1895	case CIPHER_ALG_AES:
1896		err = aes_setkey(cipher, key, keylen);
1897		break;
1898	case CIPHER_ALG_RC4:
1899		err = rc4_setkey(cipher, key, keylen);
1900		break;
1901	default:
1902		pr_err("%s() Error: unknown cipher alg\n", __func__);
1903		err = -EINVAL;
1904	}
1905	if (err)
1906		return err;
1907
1908	/* RC4 already populated ctx->enkey */
1909	if (ctx->cipher.alg != CIPHER_ALG_RC4) {
1910		memcpy(ctx->enckey, key, keylen);
1911		ctx->enckeylen = keylen;
1912	}
1913	/* SPU needs XTS keys in the reverse order the crypto API presents */
1914	if ((ctx->cipher.alg == CIPHER_ALG_AES) &&
1915	    (ctx->cipher.mode == CIPHER_MODE_XTS)) {
1916		unsigned int xts_keylen = keylen / 2;
1917
1918		memcpy(ctx->enckey, key + xts_keylen, xts_keylen);
1919		memcpy(ctx->enckey + xts_keylen, key, xts_keylen);
1920	}
1921
1922	if (spu->spu_type == SPU_TYPE_SPUM)
1923		alloc_len = BCM_HDR_LEN + SPU_HEADER_ALLOC_LEN;
1924	else if (spu->spu_type == SPU_TYPE_SPU2)
1925		alloc_len = BCM_HDR_LEN + SPU2_HEADER_ALLOC_LEN;
1926	memset(ctx->bcm_spu_req_hdr, 0, alloc_len);
1927	cipher_parms.iv_buf = NULL;
1928	cipher_parms.iv_len = crypto_skcipher_ivsize(cipher);
1929	flow_log("%s: iv_len %u\n", __func__, cipher_parms.iv_len);
1930
1931	cipher_parms.alg = ctx->cipher.alg;
1932	cipher_parms.mode = ctx->cipher.mode;
1933	cipher_parms.type = ctx->cipher_type;
1934	cipher_parms.key_buf = ctx->enckey;
1935	cipher_parms.key_len = ctx->enckeylen;
1936
1937	/* Prepend SPU request message with BCM header */
1938	memcpy(ctx->bcm_spu_req_hdr, BCMHEADER, BCM_HDR_LEN);
1939	ctx->spu_req_hdr_len =
1940	    spu->spu_cipher_req_init(ctx->bcm_spu_req_hdr + BCM_HDR_LEN,
1941				     &cipher_parms);
1942
1943	ctx->spu_resp_hdr_len = spu->spu_response_hdr_len(ctx->authkeylen,
1944							  ctx->enckeylen,
1945							  false);
1946
1947	atomic_inc(&iproc_priv.setkey_cnt[SPU_OP_CIPHER]);
1948
1949	return 0;
1950}
1951
1952static int skcipher_encrypt(struct skcipher_request *req)
1953{
1954	flow_log("skcipher_encrypt() nbytes:%u\n", req->cryptlen);
1955
1956	return skcipher_enqueue(req, true);
1957}
1958
1959static int skcipher_decrypt(struct skcipher_request *req)
1960{
1961	flow_log("skcipher_decrypt() nbytes:%u\n", req->cryptlen);
1962	return skcipher_enqueue(req, false);
1963}
1964
1965static int ahash_enqueue(struct ahash_request *req)
1966{
1967	struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
1968	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1969	struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
1970	int err;
1971	const char *alg_name;
1972
1973	flow_log("ahash_enqueue() nbytes:%u\n", req->nbytes);
1974
1975	rctx->gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
1976		       CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
1977	rctx->parent = &req->base;
1978	rctx->ctx = ctx;
1979	rctx->bd_suppress = true;
1980	memset(&rctx->mb_mssg, 0, sizeof(struct brcm_message));
1981
1982	/* Initialize position in src scatterlist */
1983	rctx->src_sg = req->src;
1984	rctx->src_skip = 0;
1985	rctx->src_nents = 0;
1986	rctx->dst_sg = NULL;
1987	rctx->dst_skip = 0;
1988	rctx->dst_nents = 0;
1989
1990	/* SPU2 hardware does not compute hash of zero length data */
1991	if ((rctx->is_final == 1) && (rctx->total_todo == 0) &&
1992	    (iproc_priv.spu.spu_type == SPU_TYPE_SPU2)) {
1993		alg_name = crypto_tfm_alg_name(crypto_ahash_tfm(tfm));
1994		flow_log("Doing %sfinal %s zero-len hash request in software\n",
1995			 rctx->is_final ? "" : "non-", alg_name);
1996		err = do_shash((unsigned char *)alg_name, req->result,
1997			       NULL, 0, NULL, 0, ctx->authkey,
1998			       ctx->authkeylen);
1999		if (err < 0)
2000			flow_log("Hash request failed with error %d\n", err);
2001		return err;
2002	}
2003	/* Choose a SPU to process this request */
2004	rctx->chan_idx = select_channel();
2005
2006	err = handle_ahash_req(rctx);
2007	if (err != -EINPROGRESS)
2008		/* synchronous result */
2009		spu_chunk_cleanup(rctx);
2010
2011	if (err == -EAGAIN)
2012		/*
2013		 * we saved data in hash carry, but tell crypto API
2014		 * we successfully completed request.
2015		 */
2016		err = 0;
2017
2018	return err;
2019}
2020
2021static int __ahash_init(struct ahash_request *req)
2022{
2023	struct spu_hw *spu = &iproc_priv.spu;
2024	struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2025	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2026	struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2027
2028	flow_log("%s()\n", __func__);
2029
2030	/* Initialize the context */
2031	rctx->hash_carry_len = 0;
2032	rctx->is_final = 0;
2033
2034	rctx->total_todo = 0;
2035	rctx->src_sent = 0;
2036	rctx->total_sent = 0;
2037	rctx->total_received = 0;
2038
2039	ctx->digestsize = crypto_ahash_digestsize(tfm);
2040	/* If we add a hash whose digest is larger, catch it here. */
2041	WARN_ON(ctx->digestsize > MAX_DIGEST_SIZE);
2042
2043	rctx->is_sw_hmac = false;
2044
2045	ctx->spu_resp_hdr_len = spu->spu_response_hdr_len(ctx->authkeylen, 0,
2046							  true);
2047
2048	return 0;
2049}
2050
2051/**
2052 * spu_no_incr_hash() - Determine whether incremental hashing is supported.
2053 * @ctx:  Crypto session context
2054 *
2055 * SPU-2 does not support incremental hashing (we'll have to revisit and
2056 * condition based on chip revision or device tree entry if future versions do
2057 * support incremental hash)
2058 *
2059 * SPU-M also doesn't support incremental hashing of AES-XCBC
2060 *
2061 * Return: true if incremental hashing is not supported
2062 *         false otherwise
2063 */
2064static bool spu_no_incr_hash(struct iproc_ctx_s *ctx)
2065{
2066	struct spu_hw *spu = &iproc_priv.spu;
2067
2068	if (spu->spu_type == SPU_TYPE_SPU2)
2069		return true;
2070
2071	if ((ctx->auth.alg == HASH_ALG_AES) &&
2072	    (ctx->auth.mode == HASH_MODE_XCBC))
2073		return true;
2074
2075	/* Otherwise, incremental hashing is supported */
2076	return false;
2077}
2078
2079static int ahash_init(struct ahash_request *req)
2080{
2081	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2082	struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2083	const char *alg_name;
2084	struct crypto_shash *hash;
2085	int ret;
2086	gfp_t gfp;
2087
2088	if (spu_no_incr_hash(ctx)) {
2089		/*
2090		 * If we get an incremental hashing request and it's not
2091		 * supported by the hardware, we need to handle it in software
2092		 * by calling synchronous hash functions.
2093		 */
2094		alg_name = crypto_tfm_alg_name(crypto_ahash_tfm(tfm));
2095		hash = crypto_alloc_shash(alg_name, 0, 0);
2096		if (IS_ERR(hash)) {
2097			ret = PTR_ERR(hash);
2098			goto err;
2099		}
2100
2101		gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
2102		       CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
2103		ctx->shash = kmalloc(sizeof(*ctx->shash) +
2104				     crypto_shash_descsize(hash), gfp);
2105		if (!ctx->shash) {
2106			ret = -ENOMEM;
2107			goto err_hash;
2108		}
2109		ctx->shash->tfm = hash;
2110
2111		/* Set the key using data we already have from setkey */
2112		if (ctx->authkeylen > 0) {
2113			ret = crypto_shash_setkey(hash, ctx->authkey,
2114						  ctx->authkeylen);
2115			if (ret)
2116				goto err_shash;
2117		}
2118
2119		/* Initialize hash w/ this key and other params */
2120		ret = crypto_shash_init(ctx->shash);
2121		if (ret)
2122			goto err_shash;
2123	} else {
2124		/* Otherwise call the internal function which uses SPU hw */
2125		ret = __ahash_init(req);
2126	}
2127
2128	return ret;
2129
2130err_shash:
2131	kfree(ctx->shash);
2132err_hash:
2133	crypto_free_shash(hash);
2134err:
2135	return ret;
2136}
2137
2138static int __ahash_update(struct ahash_request *req)
2139{
2140	struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2141
2142	flow_log("ahash_update() nbytes:%u\n", req->nbytes);
2143
2144	if (!req->nbytes)
2145		return 0;
2146	rctx->total_todo += req->nbytes;
2147	rctx->src_sent = 0;
2148
2149	return ahash_enqueue(req);
2150}
2151
2152static int ahash_update(struct ahash_request *req)
2153{
2154	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2155	struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2156	u8 *tmpbuf;
2157	int ret;
2158	int nents;
2159	gfp_t gfp;
2160
2161	if (spu_no_incr_hash(ctx)) {
2162		/*
2163		 * If we get an incremental hashing request and it's not
2164		 * supported by the hardware, we need to handle it in software
2165		 * by calling synchronous hash functions.
2166		 */
2167		if (req->src)
2168			nents = sg_nents(req->src);
2169		else
2170			return -EINVAL;
2171
2172		/* Copy data from req scatterlist to tmp buffer */
2173		gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
2174		       CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
2175		tmpbuf = kmalloc(req->nbytes, gfp);
2176		if (!tmpbuf)
2177			return -ENOMEM;
2178
2179		if (sg_copy_to_buffer(req->src, nents, tmpbuf, req->nbytes) !=
2180				req->nbytes) {
2181			kfree(tmpbuf);
2182			return -EINVAL;
2183		}
2184
2185		/* Call synchronous update */
2186		ret = crypto_shash_update(ctx->shash, tmpbuf, req->nbytes);
2187		kfree(tmpbuf);
2188	} else {
2189		/* Otherwise call the internal function which uses SPU hw */
2190		ret = __ahash_update(req);
2191	}
2192
2193	return ret;
2194}
2195
2196static int __ahash_final(struct ahash_request *req)
2197{
2198	struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2199
2200	flow_log("ahash_final() nbytes:%u\n", req->nbytes);
2201
2202	rctx->is_final = 1;
2203
2204	return ahash_enqueue(req);
2205}
2206
2207static int ahash_final(struct ahash_request *req)
2208{
2209	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2210	struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2211	int ret;
2212
2213	if (spu_no_incr_hash(ctx)) {
2214		/*
2215		 * If we get an incremental hashing request and it's not
2216		 * supported by the hardware, we need to handle it in software
2217		 * by calling synchronous hash functions.
2218		 */
2219		ret = crypto_shash_final(ctx->shash, req->result);
2220
2221		/* Done with hash, can deallocate it now */
2222		crypto_free_shash(ctx->shash->tfm);
2223		kfree(ctx->shash);
2224
2225	} else {
2226		/* Otherwise call the internal function which uses SPU hw */
2227		ret = __ahash_final(req);
2228	}
2229
2230	return ret;
2231}
2232
2233static int __ahash_finup(struct ahash_request *req)
2234{
2235	struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2236
2237	flow_log("ahash_finup() nbytes:%u\n", req->nbytes);
2238
2239	rctx->total_todo += req->nbytes;
2240	rctx->src_sent = 0;
2241	rctx->is_final = 1;
2242
2243	return ahash_enqueue(req);
2244}
2245
2246static int ahash_finup(struct ahash_request *req)
2247{
2248	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2249	struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2250	u8 *tmpbuf;
2251	int ret;
2252	int nents;
2253	gfp_t gfp;
2254
2255	if (spu_no_incr_hash(ctx)) {
2256		/*
2257		 * If we get an incremental hashing request and it's not
2258		 * supported by the hardware, we need to handle it in software
2259		 * by calling synchronous hash functions.
2260		 */
2261		if (req->src) {
2262			nents = sg_nents(req->src);
2263		} else {
2264			ret = -EINVAL;
2265			goto ahash_finup_exit;
2266		}
2267
2268		/* Copy data from req scatterlist to tmp buffer */
2269		gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
2270		       CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
2271		tmpbuf = kmalloc(req->nbytes, gfp);
2272		if (!tmpbuf) {
2273			ret = -ENOMEM;
2274			goto ahash_finup_exit;
2275		}
2276
2277		if (sg_copy_to_buffer(req->src, nents, tmpbuf, req->nbytes) !=
2278				req->nbytes) {
2279			ret = -EINVAL;
2280			goto ahash_finup_free;
2281		}
2282
2283		/* Call synchronous update */
2284		ret = crypto_shash_finup(ctx->shash, tmpbuf, req->nbytes,
2285					 req->result);
2286	} else {
2287		/* Otherwise call the internal function which uses SPU hw */
2288		return __ahash_finup(req);
2289	}
2290ahash_finup_free:
2291	kfree(tmpbuf);
2292
2293ahash_finup_exit:
2294	/* Done with hash, can deallocate it now */
2295	crypto_free_shash(ctx->shash->tfm);
2296	kfree(ctx->shash);
2297	return ret;
2298}
2299
2300static int ahash_digest(struct ahash_request *req)
2301{
2302	int err;
2303
2304	flow_log("ahash_digest() nbytes:%u\n", req->nbytes);
2305
2306	/* whole thing at once */
2307	err = __ahash_init(req);
2308	if (!err)
2309		err = __ahash_finup(req);
2310
2311	return err;
2312}
2313
2314static int ahash_setkey(struct crypto_ahash *ahash, const u8 *key,
2315			unsigned int keylen)
2316{
2317	struct iproc_ctx_s *ctx = crypto_ahash_ctx(ahash);
2318
2319	flow_log("%s() ahash:%p key:%p keylen:%u\n",
2320		 __func__, ahash, key, keylen);
2321	flow_dump("  key: ", key, keylen);
2322
2323	if (ctx->auth.alg == HASH_ALG_AES) {
2324		switch (keylen) {
2325		case AES_KEYSIZE_128:
2326			ctx->cipher_type = CIPHER_TYPE_AES128;
2327			break;
2328		case AES_KEYSIZE_192:
2329			ctx->cipher_type = CIPHER_TYPE_AES192;
2330			break;
2331		case AES_KEYSIZE_256:
2332			ctx->cipher_type = CIPHER_TYPE_AES256;
2333			break;
2334		default:
2335			pr_err("%s() Error: Invalid key length\n", __func__);
2336			return -EINVAL;
2337		}
2338	} else {
2339		pr_err("%s() Error: unknown hash alg\n", __func__);
2340		return -EINVAL;
2341	}
2342	memcpy(ctx->authkey, key, keylen);
2343	ctx->authkeylen = keylen;
2344
2345	return 0;
2346}
2347
2348static int ahash_export(struct ahash_request *req, void *out)
2349{
2350	const struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2351	struct spu_hash_export_s *spu_exp = (struct spu_hash_export_s *)out;
2352
2353	spu_exp->total_todo = rctx->total_todo;
2354	spu_exp->total_sent = rctx->total_sent;
2355	spu_exp->is_sw_hmac = rctx->is_sw_hmac;
2356	memcpy(spu_exp->hash_carry, rctx->hash_carry, sizeof(rctx->hash_carry));
2357	spu_exp->hash_carry_len = rctx->hash_carry_len;
2358	memcpy(spu_exp->incr_hash, rctx->incr_hash, sizeof(rctx->incr_hash));
2359
2360	return 0;
2361}
2362
2363static int ahash_import(struct ahash_request *req, const void *in)
2364{
2365	struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2366	struct spu_hash_export_s *spu_exp = (struct spu_hash_export_s *)in;
2367
2368	rctx->total_todo = spu_exp->total_todo;
2369	rctx->total_sent = spu_exp->total_sent;
2370	rctx->is_sw_hmac = spu_exp->is_sw_hmac;
2371	memcpy(rctx->hash_carry, spu_exp->hash_carry, sizeof(rctx->hash_carry));
2372	rctx->hash_carry_len = spu_exp->hash_carry_len;
2373	memcpy(rctx->incr_hash, spu_exp->incr_hash, sizeof(rctx->incr_hash));
2374
2375	return 0;
2376}
2377
2378static int ahash_hmac_setkey(struct crypto_ahash *ahash, const u8 *key,
2379			     unsigned int keylen)
2380{
2381	struct iproc_ctx_s *ctx = crypto_ahash_ctx(ahash);
2382	unsigned int blocksize =
2383		crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash));
2384	unsigned int digestsize = crypto_ahash_digestsize(ahash);
2385	unsigned int index;
2386	int rc;
2387
2388	flow_log("%s() ahash:%p key:%p keylen:%u blksz:%u digestsz:%u\n",
2389		 __func__, ahash, key, keylen, blocksize, digestsize);
2390	flow_dump("  key: ", key, keylen);
2391
2392	if (keylen > blocksize) {
2393		switch (ctx->auth.alg) {
2394		case HASH_ALG_MD5:
2395			rc = do_shash("md5", ctx->authkey, key, keylen, NULL,
2396				      0, NULL, 0);
2397			break;
2398		case HASH_ALG_SHA1:
2399			rc = do_shash("sha1", ctx->authkey, key, keylen, NULL,
2400				      0, NULL, 0);
2401			break;
2402		case HASH_ALG_SHA224:
2403			rc = do_shash("sha224", ctx->authkey, key, keylen, NULL,
2404				      0, NULL, 0);
2405			break;
2406		case HASH_ALG_SHA256:
2407			rc = do_shash("sha256", ctx->authkey, key, keylen, NULL,
2408				      0, NULL, 0);
2409			break;
2410		case HASH_ALG_SHA384:
2411			rc = do_shash("sha384", ctx->authkey, key, keylen, NULL,
2412				      0, NULL, 0);
2413			break;
2414		case HASH_ALG_SHA512:
2415			rc = do_shash("sha512", ctx->authkey, key, keylen, NULL,
2416				      0, NULL, 0);
2417			break;
2418		case HASH_ALG_SHA3_224:
2419			rc = do_shash("sha3-224", ctx->authkey, key, keylen,
2420				      NULL, 0, NULL, 0);
2421			break;
2422		case HASH_ALG_SHA3_256:
2423			rc = do_shash("sha3-256", ctx->authkey, key, keylen,
2424				      NULL, 0, NULL, 0);
2425			break;
2426		case HASH_ALG_SHA3_384:
2427			rc = do_shash("sha3-384", ctx->authkey, key, keylen,
2428				      NULL, 0, NULL, 0);
2429			break;
2430		case HASH_ALG_SHA3_512:
2431			rc = do_shash("sha3-512", ctx->authkey, key, keylen,
2432				      NULL, 0, NULL, 0);
2433			break;
2434		default:
2435			pr_err("%s() Error: unknown hash alg\n", __func__);
2436			return -EINVAL;
2437		}
2438		if (rc < 0) {
2439			pr_err("%s() Error %d computing shash for %s\n",
2440			       __func__, rc, hash_alg_name[ctx->auth.alg]);
2441			return rc;
2442		}
2443		ctx->authkeylen = digestsize;
2444
2445		flow_log("  keylen > digestsize... hashed\n");
2446		flow_dump("  newkey: ", ctx->authkey, ctx->authkeylen);
2447	} else {
2448		memcpy(ctx->authkey, key, keylen);
2449		ctx->authkeylen = keylen;
2450	}
2451
2452	/*
2453	 * Full HMAC operation in SPUM is not verified,
2454	 * So keeping the generation of IPAD, OPAD and
2455	 * outer hashing in software.
2456	 */
2457	if (iproc_priv.spu.spu_type == SPU_TYPE_SPUM) {
2458		memcpy(ctx->ipad, ctx->authkey, ctx->authkeylen);
2459		memset(ctx->ipad + ctx->authkeylen, 0,
2460		       blocksize - ctx->authkeylen);
2461		ctx->authkeylen = 0;
2462		memcpy(ctx->opad, ctx->ipad, blocksize);
2463
2464		for (index = 0; index < blocksize; index++) {
2465			ctx->ipad[index] ^= HMAC_IPAD_VALUE;
2466			ctx->opad[index] ^= HMAC_OPAD_VALUE;
2467		}
2468
2469		flow_dump("  ipad: ", ctx->ipad, blocksize);
2470		flow_dump("  opad: ", ctx->opad, blocksize);
2471	}
2472	ctx->digestsize = digestsize;
2473	atomic_inc(&iproc_priv.setkey_cnt[SPU_OP_HMAC]);
2474
2475	return 0;
2476}
2477
2478static int ahash_hmac_init(struct ahash_request *req)
2479{
2480	struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2481	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2482	struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2483	unsigned int blocksize =
2484			crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
2485
2486	flow_log("ahash_hmac_init()\n");
2487
2488	/* init the context as a hash */
2489	ahash_init(req);
2490
2491	if (!spu_no_incr_hash(ctx)) {
2492		/* SPU-M can do incr hashing but needs sw for outer HMAC */
2493		rctx->is_sw_hmac = true;
2494		ctx->auth.mode = HASH_MODE_HASH;
2495		/* start with a prepended ipad */
2496		memcpy(rctx->hash_carry, ctx->ipad, blocksize);
2497		rctx->hash_carry_len = blocksize;
2498		rctx->total_todo += blocksize;
2499	}
2500
2501	return 0;
2502}
2503
2504static int ahash_hmac_update(struct ahash_request *req)
2505{
2506	flow_log("ahash_hmac_update() nbytes:%u\n", req->nbytes);
2507
2508	if (!req->nbytes)
2509		return 0;
2510
2511	return ahash_update(req);
2512}
2513
2514static int ahash_hmac_final(struct ahash_request *req)
2515{
2516	flow_log("ahash_hmac_final() nbytes:%u\n", req->nbytes);
2517
2518	return ahash_final(req);
2519}
2520
2521static int ahash_hmac_finup(struct ahash_request *req)
2522{
2523	flow_log("ahash_hmac_finupl() nbytes:%u\n", req->nbytes);
2524
2525	return ahash_finup(req);
2526}
2527
2528static int ahash_hmac_digest(struct ahash_request *req)
2529{
2530	struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2531	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2532	struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2533	unsigned int blocksize =
2534			crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
2535
2536	flow_log("ahash_hmac_digest() nbytes:%u\n", req->nbytes);
2537
2538	/* Perform initialization and then call finup */
2539	__ahash_init(req);
2540
2541	if (iproc_priv.spu.spu_type == SPU_TYPE_SPU2) {
2542		/*
2543		 * SPU2 supports full HMAC implementation in the
2544		 * hardware, need not to generate IPAD, OPAD and
2545		 * outer hash in software.
2546		 * Only for hash key len > hash block size, SPU2
2547		 * expects to perform hashing on the key, shorten
2548		 * it to digest size and feed it as hash key.
2549		 */
2550		rctx->is_sw_hmac = false;
2551		ctx->auth.mode = HASH_MODE_HMAC;
2552	} else {
2553		rctx->is_sw_hmac = true;
2554		ctx->auth.mode = HASH_MODE_HASH;
2555		/* start with a prepended ipad */
2556		memcpy(rctx->hash_carry, ctx->ipad, blocksize);
2557		rctx->hash_carry_len = blocksize;
2558		rctx->total_todo += blocksize;
2559	}
2560
2561	return __ahash_finup(req);
2562}
2563
2564/* aead helpers */
2565
2566static int aead_need_fallback(struct aead_request *req)
2567{
2568	struct iproc_reqctx_s *rctx = aead_request_ctx(req);
2569	struct spu_hw *spu = &iproc_priv.spu;
2570	struct crypto_aead *aead = crypto_aead_reqtfm(req);
2571	struct iproc_ctx_s *ctx = crypto_aead_ctx(aead);
2572	u32 payload_len;
2573
2574	/*
2575	 * SPU hardware cannot handle the AES-GCM/CCM case where plaintext
2576	 * and AAD are both 0 bytes long. So use fallback in this case.
2577	 */
2578	if (((ctx->cipher.mode == CIPHER_MODE_GCM) ||
2579	     (ctx->cipher.mode == CIPHER_MODE_CCM)) &&
2580	    (req->assoclen == 0)) {
2581		if ((rctx->is_encrypt && (req->cryptlen == 0)) ||
2582		    (!rctx->is_encrypt && (req->cryptlen == ctx->digestsize))) {
2583			flow_log("AES GCM/CCM needs fallback for 0 len req\n");
2584			return 1;
2585		}
2586	}
2587
2588	/* SPU-M hardware only supports CCM digest size of 8, 12, or 16 bytes */
2589	if ((ctx->cipher.mode == CIPHER_MODE_CCM) &&
2590	    (spu->spu_type == SPU_TYPE_SPUM) &&
2591	    (ctx->digestsize != 8) && (ctx->digestsize != 12) &&
2592	    (ctx->digestsize != 16)) {
2593		flow_log("%s() AES CCM needs fallback for digest size %d\n",
2594			 __func__, ctx->digestsize);
2595		return 1;
2596	}
2597
2598	/*
2599	 * SPU-M on NSP has an issue where AES-CCM hash is not correct
2600	 * when AAD size is 0
2601	 */
2602	if ((ctx->cipher.mode == CIPHER_MODE_CCM) &&
2603	    (spu->spu_subtype == SPU_SUBTYPE_SPUM_NSP) &&
2604	    (req->assoclen == 0)) {
2605		flow_log("%s() AES_CCM needs fallback for 0 len AAD on NSP\n",
2606			 __func__);
2607		return 1;
2608	}
2609
2610	/*
2611	 * RFC4106 and RFC4543 cannot handle the case where AAD is other than
2612	 * 16 or 20 bytes long. So use fallback in this case.
2613	 */
2614	if (ctx->cipher.mode == CIPHER_MODE_GCM &&
2615	    ctx->cipher.alg == CIPHER_ALG_AES &&
2616	    rctx->iv_ctr_len == GCM_RFC4106_IV_SIZE &&
2617	    req->assoclen != 16 && req->assoclen != 20) {
2618		flow_log("RFC4106/RFC4543 needs fallback for assoclen"
2619			 " other than 16 or 20 bytes\n");
2620		return 1;
2621	}
2622
2623	payload_len = req->cryptlen;
2624	if (spu->spu_type == SPU_TYPE_SPUM)
2625		payload_len += req->assoclen;
2626
2627	flow_log("%s() payload len: %u\n", __func__, payload_len);
2628
2629	if (ctx->max_payload == SPU_MAX_PAYLOAD_INF)
2630		return 0;
2631	else
2632		return payload_len > ctx->max_payload;
2633}
2634
2635static void aead_complete(struct crypto_async_request *areq, int err)
2636{
2637	struct aead_request *req =
2638	    container_of(areq, struct aead_request, base);
2639	struct iproc_reqctx_s *rctx = aead_request_ctx(req);
2640	struct crypto_aead *aead = crypto_aead_reqtfm(req);
2641
2642	flow_log("%s() err:%d\n", __func__, err);
2643
2644	areq->tfm = crypto_aead_tfm(aead);
2645
2646	areq->complete = rctx->old_complete;
2647	areq->data = rctx->old_data;
2648
2649	areq->complete(areq, err);
2650}
2651
2652static int aead_do_fallback(struct aead_request *req, bool is_encrypt)
2653{
2654	struct crypto_aead *aead = crypto_aead_reqtfm(req);
2655	struct crypto_tfm *tfm = crypto_aead_tfm(aead);
2656	struct iproc_reqctx_s *rctx = aead_request_ctx(req);
2657	struct iproc_ctx_s *ctx = crypto_tfm_ctx(tfm);
2658	int err;
2659	u32 req_flags;
2660
2661	flow_log("%s() enc:%u\n", __func__, is_encrypt);
2662
2663	if (ctx->fallback_cipher) {
2664		/* Store the cipher tfm and then use the fallback tfm */
2665		rctx->old_tfm = tfm;
2666		aead_request_set_tfm(req, ctx->fallback_cipher);
2667		/*
2668		 * Save the callback and chain ourselves in, so we can restore
2669		 * the tfm
2670		 */
2671		rctx->old_complete = req->base.complete;
2672		rctx->old_data = req->base.data;
2673		req_flags = aead_request_flags(req);
2674		aead_request_set_callback(req, req_flags, aead_complete, req);
2675		err = is_encrypt ? crypto_aead_encrypt(req) :
2676		    crypto_aead_decrypt(req);
2677
2678		if (err == 0) {
2679			/*
2680			 * fallback was synchronous (did not return
2681			 * -EINPROGRESS). So restore request state here.
2682			 */
2683			aead_request_set_callback(req, req_flags,
2684						  rctx->old_complete, req);
2685			req->base.data = rctx->old_data;
2686			aead_request_set_tfm(req, aead);
2687			flow_log("%s() fallback completed successfully\n\n",
2688				 __func__);
2689		}
2690	} else {
2691		err = -EINVAL;
2692	}
2693
2694	return err;
2695}
2696
2697static int aead_enqueue(struct aead_request *req, bool is_encrypt)
2698{
2699	struct iproc_reqctx_s *rctx = aead_request_ctx(req);
2700	struct crypto_aead *aead = crypto_aead_reqtfm(req);
2701	struct iproc_ctx_s *ctx = crypto_aead_ctx(aead);
2702	int err;
2703
2704	flow_log("%s() enc:%u\n", __func__, is_encrypt);
2705
2706	if (req->assoclen > MAX_ASSOC_SIZE) {
2707		pr_err
2708		    ("%s() Error: associated data too long. (%u > %u bytes)\n",
2709		     __func__, req->assoclen, MAX_ASSOC_SIZE);
2710		return -EINVAL;
2711	}
2712
2713	rctx->gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
2714		       CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
2715	rctx->parent = &req->base;
2716	rctx->is_encrypt = is_encrypt;
2717	rctx->bd_suppress = false;
2718	rctx->total_todo = req->cryptlen;
2719	rctx->src_sent = 0;
2720	rctx->total_sent = 0;
2721	rctx->total_received = 0;
2722	rctx->is_sw_hmac = false;
2723	rctx->ctx = ctx;
2724	memset(&rctx->mb_mssg, 0, sizeof(struct brcm_message));
2725
2726	/* assoc data is at start of src sg */
2727	rctx->assoc = req->src;
2728
2729	/*
2730	 * Init current position in src scatterlist to be after assoc data.
2731	 * src_skip set to buffer offset where data begins. (Assoc data could
2732	 * end in the middle of a buffer.)
2733	 */
2734	if (spu_sg_at_offset(req->src, req->assoclen, &rctx->src_sg,
2735			     &rctx->src_skip) < 0) {
2736		pr_err("%s() Error: Unable to find start of src data\n",
2737		       __func__);
2738		return -EINVAL;
2739	}
2740
2741	rctx->src_nents = 0;
2742	rctx->dst_nents = 0;
2743	if (req->dst == req->src) {
2744		rctx->dst_sg = rctx->src_sg;
2745		rctx->dst_skip = rctx->src_skip;
2746	} else {
2747		/*
2748		 * Expect req->dst to have room for assoc data followed by
2749		 * output data and ICV, if encrypt. So initialize dst_sg
2750		 * to point beyond assoc len offset.
2751		 */
2752		if (spu_sg_at_offset(req->dst, req->assoclen, &rctx->dst_sg,
2753				     &rctx->dst_skip) < 0) {
2754			pr_err("%s() Error: Unable to find start of dst data\n",
2755			       __func__);
2756			return -EINVAL;
2757		}
2758	}
2759
2760	if (ctx->cipher.mode == CIPHER_MODE_CBC ||
2761	    ctx->cipher.mode == CIPHER_MODE_CTR ||
2762	    ctx->cipher.mode == CIPHER_MODE_OFB ||
2763	    ctx->cipher.mode == CIPHER_MODE_XTS ||
2764	    ctx->cipher.mode == CIPHER_MODE_GCM) {
2765		rctx->iv_ctr_len =
2766			ctx->salt_len +
2767			crypto_aead_ivsize(crypto_aead_reqtfm(req));
2768	} else if (ctx->cipher.mode == CIPHER_MODE_CCM) {
2769		rctx->iv_ctr_len = CCM_AES_IV_SIZE;
2770	} else {
2771		rctx->iv_ctr_len = 0;
2772	}
2773
2774	rctx->hash_carry_len = 0;
2775
2776	flow_log("  src sg: %p\n", req->src);
2777	flow_log("  rctx->src_sg: %p, src_skip %u\n",
2778		 rctx->src_sg, rctx->src_skip);
2779	flow_log("  assoc:  %p, assoclen %u\n", rctx->assoc, req->assoclen);
2780	flow_log("  dst sg: %p\n", req->dst);
2781	flow_log("  rctx->dst_sg: %p, dst_skip %u\n",
2782		 rctx->dst_sg, rctx->dst_skip);
2783	flow_log("  iv_ctr_len:%u\n", rctx->iv_ctr_len);
2784	flow_dump("  iv: ", req->iv, rctx->iv_ctr_len);
2785	flow_log("  authkeylen:%u\n", ctx->authkeylen);
2786	flow_log("  is_esp: %s\n", ctx->is_esp ? "yes" : "no");
2787
2788	if (ctx->max_payload == SPU_MAX_PAYLOAD_INF)
2789		flow_log("  max_payload infinite");
2790	else
2791		flow_log("  max_payload: %u\n", ctx->max_payload);
2792
2793	if (unlikely(aead_need_fallback(req)))
2794		return aead_do_fallback(req, is_encrypt);
2795
2796	/*
2797	 * Do memory allocations for request after fallback check, because if we
2798	 * do fallback, we won't call finish_req() to dealloc.
2799	 */
2800	if (rctx->iv_ctr_len) {
2801		if (ctx->salt_len)
2802			memcpy(rctx->msg_buf.iv_ctr + ctx->salt_offset,
2803			       ctx->salt, ctx->salt_len);
2804		memcpy(rctx->msg_buf.iv_ctr + ctx->salt_offset + ctx->salt_len,
2805		       req->iv,
2806		       rctx->iv_ctr_len - ctx->salt_len - ctx->salt_offset);
2807	}
2808
2809	rctx->chan_idx = select_channel();
2810	err = handle_aead_req(rctx);
2811	if (err != -EINPROGRESS)
2812		/* synchronous result */
2813		spu_chunk_cleanup(rctx);
2814
2815	return err;
2816}
2817
2818static int aead_authenc_setkey(struct crypto_aead *cipher,
2819			       const u8 *key, unsigned int keylen)
2820{
2821	struct spu_hw *spu = &iproc_priv.spu;
2822	struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher);
2823	struct crypto_tfm *tfm = crypto_aead_tfm(cipher);
2824	struct crypto_authenc_keys keys;
2825	int ret;
2826
2827	flow_log("%s() aead:%p key:%p keylen:%u\n", __func__, cipher, key,
2828		 keylen);
2829	flow_dump("  key: ", key, keylen);
2830
2831	ret = crypto_authenc_extractkeys(&keys, key, keylen);
2832	if (ret)
2833		goto badkey;
2834
2835	if (keys.enckeylen > MAX_KEY_SIZE ||
2836	    keys.authkeylen > MAX_KEY_SIZE)
2837		goto badkey;
2838
2839	ctx->enckeylen = keys.enckeylen;
2840	ctx->authkeylen = keys.authkeylen;
2841
2842	memcpy(ctx->enckey, keys.enckey, keys.enckeylen);
2843	/* May end up padding auth key. So make sure it's zeroed. */
2844	memset(ctx->authkey, 0, sizeof(ctx->authkey));
2845	memcpy(ctx->authkey, keys.authkey, keys.authkeylen);
2846
2847	switch (ctx->alg->cipher_info.alg) {
2848	case CIPHER_ALG_DES:
2849		if (verify_aead_des_key(cipher, keys.enckey, keys.enckeylen))
2850			return -EINVAL;
2851
2852		ctx->cipher_type = CIPHER_TYPE_DES;
2853		break;
2854	case CIPHER_ALG_3DES:
2855		if (verify_aead_des3_key(cipher, keys.enckey, keys.enckeylen))
2856			return -EINVAL;
2857
2858		ctx->cipher_type = CIPHER_TYPE_3DES;
2859		break;
2860	case CIPHER_ALG_AES:
2861		switch (ctx->enckeylen) {
2862		case AES_KEYSIZE_128:
2863			ctx->cipher_type = CIPHER_TYPE_AES128;
2864			break;
2865		case AES_KEYSIZE_192:
2866			ctx->cipher_type = CIPHER_TYPE_AES192;
2867			break;
2868		case AES_KEYSIZE_256:
2869			ctx->cipher_type = CIPHER_TYPE_AES256;
2870			break;
2871		default:
2872			goto badkey;
2873		}
2874		break;
2875	case CIPHER_ALG_RC4:
2876		ctx->cipher_type = CIPHER_TYPE_INIT;
2877		break;
2878	default:
2879		pr_err("%s() Error: Unknown cipher alg\n", __func__);
2880		return -EINVAL;
2881	}
2882
2883	flow_log("  enckeylen:%u authkeylen:%u\n", ctx->enckeylen,
2884		 ctx->authkeylen);
2885	flow_dump("  enc: ", ctx->enckey, ctx->enckeylen);
2886	flow_dump("  auth: ", ctx->authkey, ctx->authkeylen);
2887
2888	/* setkey the fallback just in case we needto use it */
2889	if (ctx->fallback_cipher) {
2890		flow_log("  running fallback setkey()\n");
2891
2892		ctx->fallback_cipher->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK;
2893		ctx->fallback_cipher->base.crt_flags |=
2894		    tfm->crt_flags & CRYPTO_TFM_REQ_MASK;
2895		ret = crypto_aead_setkey(ctx->fallback_cipher, key, keylen);
2896		if (ret)
2897			flow_log("  fallback setkey() returned:%d\n", ret);
2898	}
2899
2900	ctx->spu_resp_hdr_len = spu->spu_response_hdr_len(ctx->authkeylen,
2901							  ctx->enckeylen,
2902							  false);
2903
2904	atomic_inc(&iproc_priv.setkey_cnt[SPU_OP_AEAD]);
2905
2906	return ret;
2907
2908badkey:
2909	ctx->enckeylen = 0;
2910	ctx->authkeylen = 0;
2911	ctx->digestsize = 0;
2912
2913	return -EINVAL;
2914}
2915
2916static int aead_gcm_ccm_setkey(struct crypto_aead *cipher,
2917			       const u8 *key, unsigned int keylen)
2918{
2919	struct spu_hw *spu = &iproc_priv.spu;
2920	struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher);
2921	struct crypto_tfm *tfm = crypto_aead_tfm(cipher);
2922
2923	int ret = 0;
2924
2925	flow_log("%s() keylen:%u\n", __func__, keylen);
2926	flow_dump("  key: ", key, keylen);
2927
2928	if (!ctx->is_esp)
2929		ctx->digestsize = keylen;
2930
2931	ctx->enckeylen = keylen;
2932	ctx->authkeylen = 0;
2933	memcpy(ctx->enckey, key, ctx->enckeylen);
2934
2935	switch (ctx->enckeylen) {
2936	case AES_KEYSIZE_128:
2937		ctx->cipher_type = CIPHER_TYPE_AES128;
2938		break;
2939	case AES_KEYSIZE_192:
2940		ctx->cipher_type = CIPHER_TYPE_AES192;
2941		break;
2942	case AES_KEYSIZE_256:
2943		ctx->cipher_type = CIPHER_TYPE_AES256;
2944		break;
2945	default:
2946		goto badkey;
2947	}
2948
2949	flow_log("  enckeylen:%u authkeylen:%u\n", ctx->enckeylen,
2950		 ctx->authkeylen);
2951	flow_dump("  enc: ", ctx->enckey, ctx->enckeylen);
2952	flow_dump("  auth: ", ctx->authkey, ctx->authkeylen);
2953
2954	/* setkey the fallback just in case we need to use it */
2955	if (ctx->fallback_cipher) {
2956		flow_log("  running fallback setkey()\n");
2957
2958		ctx->fallback_cipher->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK;
2959		ctx->fallback_cipher->base.crt_flags |=
2960		    tfm->crt_flags & CRYPTO_TFM_REQ_MASK;
2961		ret = crypto_aead_setkey(ctx->fallback_cipher, key,
2962					 keylen + ctx->salt_len);
2963		if (ret)
2964			flow_log("  fallback setkey() returned:%d\n", ret);
2965	}
2966
2967	ctx->spu_resp_hdr_len = spu->spu_response_hdr_len(ctx->authkeylen,
2968							  ctx->enckeylen,
2969							  false);
2970
2971	atomic_inc(&iproc_priv.setkey_cnt[SPU_OP_AEAD]);
2972
2973	flow_log("  enckeylen:%u authkeylen:%u\n", ctx->enckeylen,
2974		 ctx->authkeylen);
2975
2976	return ret;
2977
2978badkey:
2979	ctx->enckeylen = 0;
2980	ctx->authkeylen = 0;
2981	ctx->digestsize = 0;
2982
2983	return -EINVAL;
2984}
2985
2986/**
2987 * aead_gcm_esp_setkey() - setkey() operation for ESP variant of GCM AES.
2988 * @cipher: AEAD structure
2989 * @key:    Key followed by 4 bytes of salt
2990 * @keylen: Length of key plus salt, in bytes
2991 *
2992 * Extracts salt from key and stores it to be prepended to IV on each request.
2993 * Digest is always 16 bytes
2994 *
2995 * Return: Value from generic gcm setkey.
2996 */
2997static int aead_gcm_esp_setkey(struct crypto_aead *cipher,
2998			       const u8 *key, unsigned int keylen)
2999{
3000	struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher);
3001
3002	flow_log("%s\n", __func__);
3003	ctx->salt_len = GCM_ESP_SALT_SIZE;
3004	ctx->salt_offset = GCM_ESP_SALT_OFFSET;
3005	memcpy(ctx->salt, key + keylen - GCM_ESP_SALT_SIZE, GCM_ESP_SALT_SIZE);
3006	keylen -= GCM_ESP_SALT_SIZE;
3007	ctx->digestsize = GCM_ESP_DIGESTSIZE;
3008	ctx->is_esp = true;
3009	flow_dump("salt: ", ctx->salt, GCM_ESP_SALT_SIZE);
3010
3011	return aead_gcm_ccm_setkey(cipher, key, keylen);
3012}
3013
3014/**
3015 * rfc4543_gcm_esp_setkey() - setkey operation for RFC4543 variant of GCM/GMAC.
3016 * cipher: AEAD structure
3017 * key:    Key followed by 4 bytes of salt
3018 * keylen: Length of key plus salt, in bytes
3019 *
3020 * Extracts salt from key and stores it to be prepended to IV on each request.
3021 * Digest is always 16 bytes
3022 *
3023 * Return: Value from generic gcm setkey.
3024 */
3025static int rfc4543_gcm_esp_setkey(struct crypto_aead *cipher,
3026				  const u8 *key, unsigned int keylen)
3027{
3028	struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher);
3029
3030	flow_log("%s\n", __func__);
3031	ctx->salt_len = GCM_ESP_SALT_SIZE;
3032	ctx->salt_offset = GCM_ESP_SALT_OFFSET;
3033	memcpy(ctx->salt, key + keylen - GCM_ESP_SALT_SIZE, GCM_ESP_SALT_SIZE);
3034	keylen -= GCM_ESP_SALT_SIZE;
3035	ctx->digestsize = GCM_ESP_DIGESTSIZE;
3036	ctx->is_esp = true;
3037	ctx->is_rfc4543 = true;
3038	flow_dump("salt: ", ctx->salt, GCM_ESP_SALT_SIZE);
3039
3040	return aead_gcm_ccm_setkey(cipher, key, keylen);
3041}
3042
3043/**
3044 * aead_ccm_esp_setkey() - setkey() operation for ESP variant of CCM AES.
3045 * @cipher: AEAD structure
3046 * @key:    Key followed by 4 bytes of salt
3047 * @keylen: Length of key plus salt, in bytes
3048 *
3049 * Extracts salt from key and stores it to be prepended to IV on each request.
3050 * Digest is always 16 bytes
3051 *
3052 * Return: Value from generic ccm setkey.
3053 */
3054static int aead_ccm_esp_setkey(struct crypto_aead *cipher,
3055			       const u8 *key, unsigned int keylen)
3056{
3057	struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher);
3058
3059	flow_log("%s\n", __func__);
3060	ctx->salt_len = CCM_ESP_SALT_SIZE;
3061	ctx->salt_offset = CCM_ESP_SALT_OFFSET;
3062	memcpy(ctx->salt, key + keylen - CCM_ESP_SALT_SIZE, CCM_ESP_SALT_SIZE);
3063	keylen -= CCM_ESP_SALT_SIZE;
3064	ctx->is_esp = true;
3065	flow_dump("salt: ", ctx->salt, CCM_ESP_SALT_SIZE);
3066
3067	return aead_gcm_ccm_setkey(cipher, key, keylen);
3068}
3069
3070static int aead_setauthsize(struct crypto_aead *cipher, unsigned int authsize)
3071{
3072	struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher);
3073	int ret = 0;
3074
3075	flow_log("%s() authkeylen:%u authsize:%u\n",
3076		 __func__, ctx->authkeylen, authsize);
3077
3078	ctx->digestsize = authsize;
3079
3080	/* setkey the fallback just in case we needto use it */
3081	if (ctx->fallback_cipher) {
3082		flow_log("  running fallback setauth()\n");
3083
3084		ret = crypto_aead_setauthsize(ctx->fallback_cipher, authsize);
3085		if (ret)
3086			flow_log("  fallback setauth() returned:%d\n", ret);
3087	}
3088
3089	return ret;
3090}
3091
3092static int aead_encrypt(struct aead_request *req)
3093{
3094	flow_log("%s() cryptlen:%u %08x\n", __func__, req->cryptlen,
3095		 req->cryptlen);
3096	dump_sg(req->src, 0, req->cryptlen + req->assoclen);
3097	flow_log("  assoc_len:%u\n", req->assoclen);
3098
3099	return aead_enqueue(req, true);
3100}
3101
3102static int aead_decrypt(struct aead_request *req)
3103{
3104	flow_log("%s() cryptlen:%u\n", __func__, req->cryptlen);
3105	dump_sg(req->src, 0, req->cryptlen + req->assoclen);
3106	flow_log("  assoc_len:%u\n", req->assoclen);
3107
3108	return aead_enqueue(req, false);
3109}
3110
3111/* ==================== Supported Cipher Algorithms ==================== */
3112
3113static struct iproc_alg_s driver_algs[] = {
3114	{
3115	 .type = CRYPTO_ALG_TYPE_AEAD,
3116	 .alg.aead = {
3117		 .base = {
3118			.cra_name = "gcm(aes)",
3119			.cra_driver_name = "gcm-aes-iproc",
3120			.cra_blocksize = AES_BLOCK_SIZE,
3121			.cra_flags = CRYPTO_ALG_NEED_FALLBACK
3122		 },
3123		 .setkey = aead_gcm_ccm_setkey,
3124		 .ivsize = GCM_AES_IV_SIZE,
3125		.maxauthsize = AES_BLOCK_SIZE,
3126	 },
3127	 .cipher_info = {
3128			 .alg = CIPHER_ALG_AES,
3129			 .mode = CIPHER_MODE_GCM,
3130			 },
3131	 .auth_info = {
3132		       .alg = HASH_ALG_AES,
3133		       .mode = HASH_MODE_GCM,
3134		       },
3135	 .auth_first = 0,
3136	 },
3137	{
3138	 .type = CRYPTO_ALG_TYPE_AEAD,
3139	 .alg.aead = {
3140		 .base = {
3141			.cra_name = "ccm(aes)",
3142			.cra_driver_name = "ccm-aes-iproc",
3143			.cra_blocksize = AES_BLOCK_SIZE,
3144			.cra_flags = CRYPTO_ALG_NEED_FALLBACK
3145		 },
3146		 .setkey = aead_gcm_ccm_setkey,
3147		 .ivsize = CCM_AES_IV_SIZE,
3148		.maxauthsize = AES_BLOCK_SIZE,
3149	 },
3150	 .cipher_info = {
3151			 .alg = CIPHER_ALG_AES,
3152			 .mode = CIPHER_MODE_CCM,
3153			 },
3154	 .auth_info = {
3155		       .alg = HASH_ALG_AES,
3156		       .mode = HASH_MODE_CCM,
3157		       },
3158	 .auth_first = 0,
3159	 },
3160	{
3161	 .type = CRYPTO_ALG_TYPE_AEAD,
3162	 .alg.aead = {
3163		 .base = {
3164			.cra_name = "rfc4106(gcm(aes))",
3165			.cra_driver_name = "gcm-aes-esp-iproc",
3166			.cra_blocksize = AES_BLOCK_SIZE,
3167			.cra_flags = CRYPTO_ALG_NEED_FALLBACK
3168		 },
3169		 .setkey = aead_gcm_esp_setkey,
3170		 .ivsize = GCM_RFC4106_IV_SIZE,
3171		 .maxauthsize = AES_BLOCK_SIZE,
3172	 },
3173	 .cipher_info = {
3174			 .alg = CIPHER_ALG_AES,
3175			 .mode = CIPHER_MODE_GCM,
3176			 },
3177	 .auth_info = {
3178		       .alg = HASH_ALG_AES,
3179		       .mode = HASH_MODE_GCM,
3180		       },
3181	 .auth_first = 0,
3182	 },
3183	{
3184	 .type = CRYPTO_ALG_TYPE_AEAD,
3185	 .alg.aead = {
3186		 .base = {
3187			.cra_name = "rfc4309(ccm(aes))",
3188			.cra_driver_name = "ccm-aes-esp-iproc",
3189			.cra_blocksize = AES_BLOCK_SIZE,
3190			.cra_flags = CRYPTO_ALG_NEED_FALLBACK
3191		 },
3192		 .setkey = aead_ccm_esp_setkey,
3193		 .ivsize = CCM_AES_IV_SIZE,
3194		 .maxauthsize = AES_BLOCK_SIZE,
3195	 },
3196	 .cipher_info = {
3197			 .alg = CIPHER_ALG_AES,
3198			 .mode = CIPHER_MODE_CCM,
3199			 },
3200	 .auth_info = {
3201		       .alg = HASH_ALG_AES,
3202		       .mode = HASH_MODE_CCM,
3203		       },
3204	 .auth_first = 0,
3205	 },
3206	{
3207	 .type = CRYPTO_ALG_TYPE_AEAD,
3208	 .alg.aead = {
3209		 .base = {
3210			.cra_name = "rfc4543(gcm(aes))",
3211			.cra_driver_name = "gmac-aes-esp-iproc",
3212			.cra_blocksize = AES_BLOCK_SIZE,
3213			.cra_flags = CRYPTO_ALG_NEED_FALLBACK
3214		 },
3215		 .setkey = rfc4543_gcm_esp_setkey,
3216		 .ivsize = GCM_RFC4106_IV_SIZE,
3217		 .maxauthsize = AES_BLOCK_SIZE,
3218	 },
3219	 .cipher_info = {
3220			 .alg = CIPHER_ALG_AES,
3221			 .mode = CIPHER_MODE_GCM,
3222			 },
3223	 .auth_info = {
3224		       .alg = HASH_ALG_AES,
3225		       .mode = HASH_MODE_GCM,
3226		       },
3227	 .auth_first = 0,
3228	 },
3229	{
3230	 .type = CRYPTO_ALG_TYPE_AEAD,
3231	 .alg.aead = {
3232		 .base = {
3233			.cra_name = "authenc(hmac(md5),cbc(aes))",
3234			.cra_driver_name = "authenc-hmac-md5-cbc-aes-iproc",
3235			.cra_blocksize = AES_BLOCK_SIZE,
3236			.cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3237				     CRYPTO_ALG_ASYNC |
3238				     CRYPTO_ALG_ALLOCATES_MEMORY
3239		 },
3240		 .setkey = aead_authenc_setkey,
3241		.ivsize = AES_BLOCK_SIZE,
3242		.maxauthsize = MD5_DIGEST_SIZE,
3243	 },
3244	 .cipher_info = {
3245			 .alg = CIPHER_ALG_AES,
3246			 .mode = CIPHER_MODE_CBC,
3247			 },
3248	 .auth_info = {
3249		       .alg = HASH_ALG_MD5,
3250		       .mode = HASH_MODE_HMAC,
3251		       },
3252	 .auth_first = 0,
3253	 },
3254	{
3255	 .type = CRYPTO_ALG_TYPE_AEAD,
3256	 .alg.aead = {
3257		 .base = {
3258			.cra_name = "authenc(hmac(sha1),cbc(aes))",
3259			.cra_driver_name = "authenc-hmac-sha1-cbc-aes-iproc",
3260			.cra_blocksize = AES_BLOCK_SIZE,
3261			.cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3262				     CRYPTO_ALG_ASYNC |
3263				     CRYPTO_ALG_ALLOCATES_MEMORY
3264		 },
3265		 .setkey = aead_authenc_setkey,
3266		 .ivsize = AES_BLOCK_SIZE,
3267		 .maxauthsize = SHA1_DIGEST_SIZE,
3268	 },
3269	 .cipher_info = {
3270			 .alg = CIPHER_ALG_AES,
3271			 .mode = CIPHER_MODE_CBC,
3272			 },
3273	 .auth_info = {
3274		       .alg = HASH_ALG_SHA1,
3275		       .mode = HASH_MODE_HMAC,
3276		       },
3277	 .auth_first = 0,
3278	 },
3279	{
3280	 .type = CRYPTO_ALG_TYPE_AEAD,
3281	 .alg.aead = {
3282		 .base = {
3283			.cra_name = "authenc(hmac(sha256),cbc(aes))",
3284			.cra_driver_name = "authenc-hmac-sha256-cbc-aes-iproc",
3285			.cra_blocksize = AES_BLOCK_SIZE,
3286			.cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3287				     CRYPTO_ALG_ASYNC |
3288				     CRYPTO_ALG_ALLOCATES_MEMORY
3289		 },
3290		 .setkey = aead_authenc_setkey,
3291		 .ivsize = AES_BLOCK_SIZE,
3292		 .maxauthsize = SHA256_DIGEST_SIZE,
3293	 },
3294	 .cipher_info = {
3295			 .alg = CIPHER_ALG_AES,
3296			 .mode = CIPHER_MODE_CBC,
3297			 },
3298	 .auth_info = {
3299		       .alg = HASH_ALG_SHA256,
3300		       .mode = HASH_MODE_HMAC,
3301		       },
3302	 .auth_first = 0,
3303	 },
3304	{
3305	 .type = CRYPTO_ALG_TYPE_AEAD,
3306	 .alg.aead = {
3307		 .base = {
3308			.cra_name = "authenc(hmac(md5),cbc(des))",
3309			.cra_driver_name = "authenc-hmac-md5-cbc-des-iproc",
3310			.cra_blocksize = DES_BLOCK_SIZE,
3311			.cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3312				     CRYPTO_ALG_ASYNC |
3313				     CRYPTO_ALG_ALLOCATES_MEMORY
3314		 },
3315		 .setkey = aead_authenc_setkey,
3316		 .ivsize = DES_BLOCK_SIZE,
3317		 .maxauthsize = MD5_DIGEST_SIZE,
3318	 },
3319	 .cipher_info = {
3320			 .alg = CIPHER_ALG_DES,
3321			 .mode = CIPHER_MODE_CBC,
3322			 },
3323	 .auth_info = {
3324		       .alg = HASH_ALG_MD5,
3325		       .mode = HASH_MODE_HMAC,
3326		       },
3327	 .auth_first = 0,
3328	 },
3329	{
3330	 .type = CRYPTO_ALG_TYPE_AEAD,
3331	 .alg.aead = {
3332		 .base = {
3333			.cra_name = "authenc(hmac(sha1),cbc(des))",
3334			.cra_driver_name = "authenc-hmac-sha1-cbc-des-iproc",
3335			.cra_blocksize = DES_BLOCK_SIZE,
3336			.cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3337				     CRYPTO_ALG_ASYNC |
3338				     CRYPTO_ALG_ALLOCATES_MEMORY
3339		 },
3340		 .setkey = aead_authenc_setkey,
3341		 .ivsize = DES_BLOCK_SIZE,
3342		 .maxauthsize = SHA1_DIGEST_SIZE,
3343	 },
3344	 .cipher_info = {
3345			 .alg = CIPHER_ALG_DES,
3346			 .mode = CIPHER_MODE_CBC,
3347			 },
3348	 .auth_info = {
3349		       .alg = HASH_ALG_SHA1,
3350		       .mode = HASH_MODE_HMAC,
3351		       },
3352	 .auth_first = 0,
3353	 },
3354	{
3355	 .type = CRYPTO_ALG_TYPE_AEAD,
3356	 .alg.aead = {
3357		 .base = {
3358			.cra_name = "authenc(hmac(sha224),cbc(des))",
3359			.cra_driver_name = "authenc-hmac-sha224-cbc-des-iproc",
3360			.cra_blocksize = DES_BLOCK_SIZE,
3361			.cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3362				     CRYPTO_ALG_ASYNC |
3363				     CRYPTO_ALG_ALLOCATES_MEMORY
3364		 },
3365		 .setkey = aead_authenc_setkey,
3366		 .ivsize = DES_BLOCK_SIZE,
3367		 .maxauthsize = SHA224_DIGEST_SIZE,
3368	 },
3369	 .cipher_info = {
3370			 .alg = CIPHER_ALG_DES,
3371			 .mode = CIPHER_MODE_CBC,
3372			 },
3373	 .auth_info = {
3374		       .alg = HASH_ALG_SHA224,
3375		       .mode = HASH_MODE_HMAC,
3376		       },
3377	 .auth_first = 0,
3378	 },
3379	{
3380	 .type = CRYPTO_ALG_TYPE_AEAD,
3381	 .alg.aead = {
3382		 .base = {
3383			.cra_name = "authenc(hmac(sha256),cbc(des))",
3384			.cra_driver_name = "authenc-hmac-sha256-cbc-des-iproc",
3385			.cra_blocksize = DES_BLOCK_SIZE,
3386			.cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3387				     CRYPTO_ALG_ASYNC |
3388				     CRYPTO_ALG_ALLOCATES_MEMORY
3389		 },
3390		 .setkey = aead_authenc_setkey,
3391		 .ivsize = DES_BLOCK_SIZE,
3392		 .maxauthsize = SHA256_DIGEST_SIZE,
3393	 },
3394	 .cipher_info = {
3395			 .alg = CIPHER_ALG_DES,
3396			 .mode = CIPHER_MODE_CBC,
3397			 },
3398	 .auth_info = {
3399		       .alg = HASH_ALG_SHA256,
3400		       .mode = HASH_MODE_HMAC,
3401		       },
3402	 .auth_first = 0,
3403	 },
3404	{
3405	 .type = CRYPTO_ALG_TYPE_AEAD,
3406	 .alg.aead = {
3407		 .base = {
3408			.cra_name = "authenc(hmac(sha384),cbc(des))",
3409			.cra_driver_name = "authenc-hmac-sha384-cbc-des-iproc",
3410			.cra_blocksize = DES_BLOCK_SIZE,
3411			.cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3412				     CRYPTO_ALG_ASYNC |
3413				     CRYPTO_ALG_ALLOCATES_MEMORY
3414		 },
3415		 .setkey = aead_authenc_setkey,
3416		 .ivsize = DES_BLOCK_SIZE,
3417		 .maxauthsize = SHA384_DIGEST_SIZE,
3418	 },
3419	 .cipher_info = {
3420			 .alg = CIPHER_ALG_DES,
3421			 .mode = CIPHER_MODE_CBC,
3422			 },
3423	 .auth_info = {
3424		       .alg = HASH_ALG_SHA384,
3425		       .mode = HASH_MODE_HMAC,
3426		       },
3427	 .auth_first = 0,
3428	 },
3429	{
3430	 .type = CRYPTO_ALG_TYPE_AEAD,
3431	 .alg.aead = {
3432		 .base = {
3433			.cra_name = "authenc(hmac(sha512),cbc(des))",
3434			.cra_driver_name = "authenc-hmac-sha512-cbc-des-iproc",
3435			.cra_blocksize = DES_BLOCK_SIZE,
3436			.cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3437				     CRYPTO_ALG_ASYNC |
3438				     CRYPTO_ALG_ALLOCATES_MEMORY
3439		 },
3440		 .setkey = aead_authenc_setkey,
3441		 .ivsize = DES_BLOCK_SIZE,
3442		 .maxauthsize = SHA512_DIGEST_SIZE,
3443	 },
3444	 .cipher_info = {
3445			 .alg = CIPHER_ALG_DES,
3446			 .mode = CIPHER_MODE_CBC,
3447			 },
3448	 .auth_info = {
3449		       .alg = HASH_ALG_SHA512,
3450		       .mode = HASH_MODE_HMAC,
3451		       },
3452	 .auth_first = 0,
3453	 },
3454	{
3455	 .type = CRYPTO_ALG_TYPE_AEAD,
3456	 .alg.aead = {
3457		 .base = {
3458			.cra_name = "authenc(hmac(md5),cbc(des3_ede))",
3459			.cra_driver_name = "authenc-hmac-md5-cbc-des3-iproc",
3460			.cra_blocksize = DES3_EDE_BLOCK_SIZE,
3461			.cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3462				     CRYPTO_ALG_ASYNC |
3463				     CRYPTO_ALG_ALLOCATES_MEMORY
3464		 },
3465		 .setkey = aead_authenc_setkey,
3466		 .ivsize = DES3_EDE_BLOCK_SIZE,
3467		 .maxauthsize = MD5_DIGEST_SIZE,
3468	 },
3469	 .cipher_info = {
3470			 .alg = CIPHER_ALG_3DES,
3471			 .mode = CIPHER_MODE_CBC,
3472			 },
3473	 .auth_info = {
3474		       .alg = HASH_ALG_MD5,
3475		       .mode = HASH_MODE_HMAC,
3476		       },
3477	 .auth_first = 0,
3478	 },
3479	{
3480	 .type = CRYPTO_ALG_TYPE_AEAD,
3481	 .alg.aead = {
3482		 .base = {
3483			.cra_name = "authenc(hmac(sha1),cbc(des3_ede))",
3484			.cra_driver_name = "authenc-hmac-sha1-cbc-des3-iproc",
3485			.cra_blocksize = DES3_EDE_BLOCK_SIZE,
3486			.cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3487				     CRYPTO_ALG_ASYNC |
3488				     CRYPTO_ALG_ALLOCATES_MEMORY
3489		 },
3490		 .setkey = aead_authenc_setkey,
3491		 .ivsize = DES3_EDE_BLOCK_SIZE,
3492		 .maxauthsize = SHA1_DIGEST_SIZE,
3493	 },
3494	 .cipher_info = {
3495			 .alg = CIPHER_ALG_3DES,
3496			 .mode = CIPHER_MODE_CBC,
3497			 },
3498	 .auth_info = {
3499		       .alg = HASH_ALG_SHA1,
3500		       .mode = HASH_MODE_HMAC,
3501		       },
3502	 .auth_first = 0,
3503	 },
3504	{
3505	 .type = CRYPTO_ALG_TYPE_AEAD,
3506	 .alg.aead = {
3507		 .base = {
3508			.cra_name = "authenc(hmac(sha224),cbc(des3_ede))",
3509			.cra_driver_name = "authenc-hmac-sha224-cbc-des3-iproc",
3510			.cra_blocksize = DES3_EDE_BLOCK_SIZE,
3511			.cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3512				     CRYPTO_ALG_ASYNC |
3513				     CRYPTO_ALG_ALLOCATES_MEMORY
3514		 },
3515		 .setkey = aead_authenc_setkey,
3516		 .ivsize = DES3_EDE_BLOCK_SIZE,
3517		 .maxauthsize = SHA224_DIGEST_SIZE,
3518	 },
3519	 .cipher_info = {
3520			 .alg = CIPHER_ALG_3DES,
3521			 .mode = CIPHER_MODE_CBC,
3522			 },
3523	 .auth_info = {
3524		       .alg = HASH_ALG_SHA224,
3525		       .mode = HASH_MODE_HMAC,
3526		       },
3527	 .auth_first = 0,
3528	 },
3529	{
3530	 .type = CRYPTO_ALG_TYPE_AEAD,
3531	 .alg.aead = {
3532		 .base = {
3533			.cra_name = "authenc(hmac(sha256),cbc(des3_ede))",
3534			.cra_driver_name = "authenc-hmac-sha256-cbc-des3-iproc",
3535			.cra_blocksize = DES3_EDE_BLOCK_SIZE,
3536			.cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3537				     CRYPTO_ALG_ASYNC |
3538				     CRYPTO_ALG_ALLOCATES_MEMORY
3539		 },
3540		 .setkey = aead_authenc_setkey,
3541		 .ivsize = DES3_EDE_BLOCK_SIZE,
3542		 .maxauthsize = SHA256_DIGEST_SIZE,
3543	 },
3544	 .cipher_info = {
3545			 .alg = CIPHER_ALG_3DES,
3546			 .mode = CIPHER_MODE_CBC,
3547			 },
3548	 .auth_info = {
3549		       .alg = HASH_ALG_SHA256,
3550		       .mode = HASH_MODE_HMAC,
3551		       },
3552	 .auth_first = 0,
3553	 },
3554	{
3555	 .type = CRYPTO_ALG_TYPE_AEAD,
3556	 .alg.aead = {
3557		 .base = {
3558			.cra_name = "authenc(hmac(sha384),cbc(des3_ede))",
3559			.cra_driver_name = "authenc-hmac-sha384-cbc-des3-iproc",
3560			.cra_blocksize = DES3_EDE_BLOCK_SIZE,
3561			.cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3562				     CRYPTO_ALG_ASYNC |
3563				     CRYPTO_ALG_ALLOCATES_MEMORY
3564		 },
3565		 .setkey = aead_authenc_setkey,
3566		 .ivsize = DES3_EDE_BLOCK_SIZE,
3567		 .maxauthsize = SHA384_DIGEST_SIZE,
3568	 },
3569	 .cipher_info = {
3570			 .alg = CIPHER_ALG_3DES,
3571			 .mode = CIPHER_MODE_CBC,
3572			 },
3573	 .auth_info = {
3574		       .alg = HASH_ALG_SHA384,
3575		       .mode = HASH_MODE_HMAC,
3576		       },
3577	 .auth_first = 0,
3578	 },
3579	{
3580	 .type = CRYPTO_ALG_TYPE_AEAD,
3581	 .alg.aead = {
3582		 .base = {
3583			.cra_name = "authenc(hmac(sha512),cbc(des3_ede))",
3584			.cra_driver_name = "authenc-hmac-sha512-cbc-des3-iproc",
3585			.cra_blocksize = DES3_EDE_BLOCK_SIZE,
3586			.cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3587				     CRYPTO_ALG_ASYNC |
3588				     CRYPTO_ALG_ALLOCATES_MEMORY
3589		 },
3590		 .setkey = aead_authenc_setkey,
3591		 .ivsize = DES3_EDE_BLOCK_SIZE,
3592		 .maxauthsize = SHA512_DIGEST_SIZE,
3593	 },
3594	 .cipher_info = {
3595			 .alg = CIPHER_ALG_3DES,
3596			 .mode = CIPHER_MODE_CBC,
3597			 },
3598	 .auth_info = {
3599		       .alg = HASH_ALG_SHA512,
3600		       .mode = HASH_MODE_HMAC,
3601		       },
3602	 .auth_first = 0,
3603	 },
3604
3605/* SKCIPHER algorithms. */
3606	{
3607	 .type = CRYPTO_ALG_TYPE_SKCIPHER,
3608	 .alg.skcipher = {
3609			.base.cra_name = "ecb(arc4)",
3610			.base.cra_driver_name = "ecb-arc4-iproc",
3611			.base.cra_blocksize = ARC4_BLOCK_SIZE,
3612			.min_keysize = ARC4_MIN_KEY_SIZE,
3613			.max_keysize = ARC4_MAX_KEY_SIZE,
3614			.ivsize = 0,
3615			},
3616	 .cipher_info = {
3617			 .alg = CIPHER_ALG_RC4,
3618			 .mode = CIPHER_MODE_NONE,
3619			 },
3620	 .auth_info = {
3621		       .alg = HASH_ALG_NONE,
3622		       .mode = HASH_MODE_NONE,
3623		       },
3624	 },
3625	{
3626	 .type = CRYPTO_ALG_TYPE_SKCIPHER,
3627	 .alg.skcipher = {
3628			.base.cra_name = "ofb(des)",
3629			.base.cra_driver_name = "ofb-des-iproc",
3630			.base.cra_blocksize = DES_BLOCK_SIZE,
3631			.min_keysize = DES_KEY_SIZE,
3632			.max_keysize = DES_KEY_SIZE,
3633			.ivsize = DES_BLOCK_SIZE,
3634			},
3635	 .cipher_info = {
3636			 .alg = CIPHER_ALG_DES,
3637			 .mode = CIPHER_MODE_OFB,
3638			 },
3639	 .auth_info = {
3640		       .alg = HASH_ALG_NONE,
3641		       .mode = HASH_MODE_NONE,
3642		       },
3643	 },
3644	{
3645	 .type = CRYPTO_ALG_TYPE_SKCIPHER,
3646	 .alg.skcipher = {
3647			.base.cra_name = "cbc(des)",
3648			.base.cra_driver_name = "cbc-des-iproc",
3649			.base.cra_blocksize = DES_BLOCK_SIZE,
3650			.min_keysize = DES_KEY_SIZE,
3651			.max_keysize = DES_KEY_SIZE,
3652			.ivsize = DES_BLOCK_SIZE,
3653			},
3654	 .cipher_info = {
3655			 .alg = CIPHER_ALG_DES,
3656			 .mode = CIPHER_MODE_CBC,
3657			 },
3658	 .auth_info = {
3659		       .alg = HASH_ALG_NONE,
3660		       .mode = HASH_MODE_NONE,
3661		       },
3662	 },
3663	{
3664	 .type = CRYPTO_ALG_TYPE_SKCIPHER,
3665	 .alg.skcipher = {
3666			.base.cra_name = "ecb(des)",
3667			.base.cra_driver_name = "ecb-des-iproc",
3668			.base.cra_blocksize = DES_BLOCK_SIZE,
3669			.min_keysize = DES_KEY_SIZE,
3670			.max_keysize = DES_KEY_SIZE,
3671			.ivsize = 0,
3672			},
3673	 .cipher_info = {
3674			 .alg = CIPHER_ALG_DES,
3675			 .mode = CIPHER_MODE_ECB,
3676			 },
3677	 .auth_info = {
3678		       .alg = HASH_ALG_NONE,
3679		       .mode = HASH_MODE_NONE,
3680		       },
3681	 },
3682	{
3683	 .type = CRYPTO_ALG_TYPE_SKCIPHER,
3684	 .alg.skcipher = {
3685			.base.cra_name = "ofb(des3_ede)",
3686			.base.cra_driver_name = "ofb-des3-iproc",
3687			.base.cra_blocksize = DES3_EDE_BLOCK_SIZE,
3688			.min_keysize = DES3_EDE_KEY_SIZE,
3689			.max_keysize = DES3_EDE_KEY_SIZE,
3690			.ivsize = DES3_EDE_BLOCK_SIZE,
3691			},
3692	 .cipher_info = {
3693			 .alg = CIPHER_ALG_3DES,
3694			 .mode = CIPHER_MODE_OFB,
3695			 },
3696	 .auth_info = {
3697		       .alg = HASH_ALG_NONE,
3698		       .mode = HASH_MODE_NONE,
3699		       },
3700	 },
3701	{
3702	 .type = CRYPTO_ALG_TYPE_SKCIPHER,
3703	 .alg.skcipher = {
3704			.base.cra_name = "cbc(des3_ede)",
3705			.base.cra_driver_name = "cbc-des3-iproc",
3706			.base.cra_blocksize = DES3_EDE_BLOCK_SIZE,
3707			.min_keysize = DES3_EDE_KEY_SIZE,
3708			.max_keysize = DES3_EDE_KEY_SIZE,
3709			.ivsize = DES3_EDE_BLOCK_SIZE,
3710			},
3711	 .cipher_info = {
3712			 .alg = CIPHER_ALG_3DES,
3713			 .mode = CIPHER_MODE_CBC,
3714			 },
3715	 .auth_info = {
3716		       .alg = HASH_ALG_NONE,
3717		       .mode = HASH_MODE_NONE,
3718		       },
3719	 },
3720	{
3721	 .type = CRYPTO_ALG_TYPE_SKCIPHER,
3722	 .alg.skcipher = {
3723			.base.cra_name = "ecb(des3_ede)",
3724			.base.cra_driver_name = "ecb-des3-iproc",
3725			.base.cra_blocksize = DES3_EDE_BLOCK_SIZE,
3726			.min_keysize = DES3_EDE_KEY_SIZE,
3727			.max_keysize = DES3_EDE_KEY_SIZE,
3728			.ivsize = 0,
3729			},
3730	 .cipher_info = {
3731			 .alg = CIPHER_ALG_3DES,
3732			 .mode = CIPHER_MODE_ECB,
3733			 },
3734	 .auth_info = {
3735		       .alg = HASH_ALG_NONE,
3736		       .mode = HASH_MODE_NONE,
3737		       },
3738	 },
3739	{
3740	 .type = CRYPTO_ALG_TYPE_SKCIPHER,
3741	 .alg.skcipher = {
3742			.base.cra_name = "ofb(aes)",
3743			.base.cra_driver_name = "ofb-aes-iproc",
3744			.base.cra_blocksize = AES_BLOCK_SIZE,
3745			.min_keysize = AES_MIN_KEY_SIZE,
3746			.max_keysize = AES_MAX_KEY_SIZE,
3747			.ivsize = AES_BLOCK_SIZE,
3748			},
3749	 .cipher_info = {
3750			 .alg = CIPHER_ALG_AES,
3751			 .mode = CIPHER_MODE_OFB,
3752			 },
3753	 .auth_info = {
3754		       .alg = HASH_ALG_NONE,
3755		       .mode = HASH_MODE_NONE,
3756		       },
3757	 },
3758	{
3759	 .type = CRYPTO_ALG_TYPE_SKCIPHER,
3760	 .alg.skcipher = {
3761			.base.cra_name = "cbc(aes)",
3762			.base.cra_driver_name = "cbc-aes-iproc",
3763			.base.cra_blocksize = AES_BLOCK_SIZE,
3764			.min_keysize = AES_MIN_KEY_SIZE,
3765			.max_keysize = AES_MAX_KEY_SIZE,
3766			.ivsize = AES_BLOCK_SIZE,
3767			},
3768	 .cipher_info = {
3769			 .alg = CIPHER_ALG_AES,
3770			 .mode = CIPHER_MODE_CBC,
3771			 },
3772	 .auth_info = {
3773		       .alg = HASH_ALG_NONE,
3774		       .mode = HASH_MODE_NONE,
3775		       },
3776	 },
3777	{
3778	 .type = CRYPTO_ALG_TYPE_SKCIPHER,
3779	 .alg.skcipher = {
3780			.base.cra_name = "ecb(aes)",
3781			.base.cra_driver_name = "ecb-aes-iproc",
3782			.base.cra_blocksize = AES_BLOCK_SIZE,
3783			.min_keysize = AES_MIN_KEY_SIZE,
3784			.max_keysize = AES_MAX_KEY_SIZE,
3785			.ivsize = 0,
3786			},
3787	 .cipher_info = {
3788			 .alg = CIPHER_ALG_AES,
3789			 .mode = CIPHER_MODE_ECB,
3790			 },
3791	 .auth_info = {
3792		       .alg = HASH_ALG_NONE,
3793		       .mode = HASH_MODE_NONE,
3794		       },
3795	 },
3796	{
3797	 .type = CRYPTO_ALG_TYPE_SKCIPHER,
3798	 .alg.skcipher = {
3799			.base.cra_name = "ctr(aes)",
3800			.base.cra_driver_name = "ctr-aes-iproc",
3801			.base.cra_blocksize = AES_BLOCK_SIZE,
3802			.min_keysize = AES_MIN_KEY_SIZE,
3803			.max_keysize = AES_MAX_KEY_SIZE,
3804			.ivsize = AES_BLOCK_SIZE,
3805			},
3806	 .cipher_info = {
3807			 .alg = CIPHER_ALG_AES,
3808			 .mode = CIPHER_MODE_CTR,
3809			 },
3810	 .auth_info = {
3811		       .alg = HASH_ALG_NONE,
3812		       .mode = HASH_MODE_NONE,
3813		       },
3814	 },
3815{
3816	 .type = CRYPTO_ALG_TYPE_SKCIPHER,
3817	 .alg.skcipher = {
3818			.base.cra_name = "xts(aes)",
3819			.base.cra_driver_name = "xts-aes-iproc",
3820			.base.cra_blocksize = AES_BLOCK_SIZE,
3821			.min_keysize = 2 * AES_MIN_KEY_SIZE,
3822			.max_keysize = 2 * AES_MAX_KEY_SIZE,
3823			.ivsize = AES_BLOCK_SIZE,
3824			},
3825	 .cipher_info = {
3826			 .alg = CIPHER_ALG_AES,
3827			 .mode = CIPHER_MODE_XTS,
3828			 },
3829	 .auth_info = {
3830		       .alg = HASH_ALG_NONE,
3831		       .mode = HASH_MODE_NONE,
3832		       },
3833	 },
3834
3835/* AHASH algorithms. */
3836	{
3837	 .type = CRYPTO_ALG_TYPE_AHASH,
3838	 .alg.hash = {
3839		      .halg.digestsize = MD5_DIGEST_SIZE,
3840		      .halg.base = {
3841				    .cra_name = "md5",
3842				    .cra_driver_name = "md5-iproc",
3843				    .cra_blocksize = MD5_BLOCK_WORDS * 4,
3844				    .cra_flags = CRYPTO_ALG_ASYNC |
3845						 CRYPTO_ALG_ALLOCATES_MEMORY,
3846				}
3847		      },
3848	 .cipher_info = {
3849			 .alg = CIPHER_ALG_NONE,
3850			 .mode = CIPHER_MODE_NONE,
3851			 },
3852	 .auth_info = {
3853		       .alg = HASH_ALG_MD5,
3854		       .mode = HASH_MODE_HASH,
3855		       },
3856	 },
3857	{
3858	 .type = CRYPTO_ALG_TYPE_AHASH,
3859	 .alg.hash = {
3860		      .halg.digestsize = MD5_DIGEST_SIZE,
3861		      .halg.base = {
3862				    .cra_name = "hmac(md5)",
3863				    .cra_driver_name = "hmac-md5-iproc",
3864				    .cra_blocksize = MD5_BLOCK_WORDS * 4,
3865				}
3866		      },
3867	 .cipher_info = {
3868			 .alg = CIPHER_ALG_NONE,
3869			 .mode = CIPHER_MODE_NONE,
3870			 },
3871	 .auth_info = {
3872		       .alg = HASH_ALG_MD5,
3873		       .mode = HASH_MODE_HMAC,
3874		       },
3875	 },
3876	{.type = CRYPTO_ALG_TYPE_AHASH,
3877	 .alg.hash = {
3878		      .halg.digestsize = SHA1_DIGEST_SIZE,
3879		      .halg.base = {
3880				    .cra_name = "sha1",
3881				    .cra_driver_name = "sha1-iproc",
3882				    .cra_blocksize = SHA1_BLOCK_SIZE,
3883				}
3884		      },
3885	 .cipher_info = {
3886			 .alg = CIPHER_ALG_NONE,
3887			 .mode = CIPHER_MODE_NONE,
3888			 },
3889	 .auth_info = {
3890		       .alg = HASH_ALG_SHA1,
3891		       .mode = HASH_MODE_HASH,
3892		       },
3893	 },
3894	{.type = CRYPTO_ALG_TYPE_AHASH,
3895	 .alg.hash = {
3896		      .halg.digestsize = SHA1_DIGEST_SIZE,
3897		      .halg.base = {
3898				    .cra_name = "hmac(sha1)",
3899				    .cra_driver_name = "hmac-sha1-iproc",
3900				    .cra_blocksize = SHA1_BLOCK_SIZE,
3901				}
3902		      },
3903	 .cipher_info = {
3904			 .alg = CIPHER_ALG_NONE,
3905			 .mode = CIPHER_MODE_NONE,
3906			 },
3907	 .auth_info = {
3908		       .alg = HASH_ALG_SHA1,
3909		       .mode = HASH_MODE_HMAC,
3910		       },
3911	 },
3912	{.type = CRYPTO_ALG_TYPE_AHASH,
3913	 .alg.hash = {
3914			.halg.digestsize = SHA224_DIGEST_SIZE,
3915			.halg.base = {
3916				    .cra_name = "sha224",
3917				    .cra_driver_name = "sha224-iproc",
3918				    .cra_blocksize = SHA224_BLOCK_SIZE,
3919			}
3920		      },
3921	 .cipher_info = {
3922			 .alg = CIPHER_ALG_NONE,
3923			 .mode = CIPHER_MODE_NONE,
3924			 },
3925	 .auth_info = {
3926		       .alg = HASH_ALG_SHA224,
3927		       .mode = HASH_MODE_HASH,
3928		       },
3929	 },
3930	{.type = CRYPTO_ALG_TYPE_AHASH,
3931	 .alg.hash = {
3932		      .halg.digestsize = SHA224_DIGEST_SIZE,
3933		      .halg.base = {
3934				    .cra_name = "hmac(sha224)",
3935				    .cra_driver_name = "hmac-sha224-iproc",
3936				    .cra_blocksize = SHA224_BLOCK_SIZE,
3937				}
3938		      },
3939	 .cipher_info = {
3940			 .alg = CIPHER_ALG_NONE,
3941			 .mode = CIPHER_MODE_NONE,
3942			 },
3943	 .auth_info = {
3944		       .alg = HASH_ALG_SHA224,
3945		       .mode = HASH_MODE_HMAC,
3946		       },
3947	 },
3948	{.type = CRYPTO_ALG_TYPE_AHASH,
3949	 .alg.hash = {
3950		      .halg.digestsize = SHA256_DIGEST_SIZE,
3951		      .halg.base = {
3952				    .cra_name = "sha256",
3953				    .cra_driver_name = "sha256-iproc",
3954				    .cra_blocksize = SHA256_BLOCK_SIZE,
3955				}
3956		      },
3957	 .cipher_info = {
3958			 .alg = CIPHER_ALG_NONE,
3959			 .mode = CIPHER_MODE_NONE,
3960			 },
3961	 .auth_info = {
3962		       .alg = HASH_ALG_SHA256,
3963		       .mode = HASH_MODE_HASH,
3964		       },
3965	 },
3966	{.type = CRYPTO_ALG_TYPE_AHASH,
3967	 .alg.hash = {
3968		      .halg.digestsize = SHA256_DIGEST_SIZE,
3969		      .halg.base = {
3970				    .cra_name = "hmac(sha256)",
3971				    .cra_driver_name = "hmac-sha256-iproc",
3972				    .cra_blocksize = SHA256_BLOCK_SIZE,
3973				}
3974		      },
3975	 .cipher_info = {
3976			 .alg = CIPHER_ALG_NONE,
3977			 .mode = CIPHER_MODE_NONE,
3978			 },
3979	 .auth_info = {
3980		       .alg = HASH_ALG_SHA256,
3981		       .mode = HASH_MODE_HMAC,
3982		       },
3983	 },
3984	{
3985	.type = CRYPTO_ALG_TYPE_AHASH,
3986	 .alg.hash = {
3987		      .halg.digestsize = SHA384_DIGEST_SIZE,
3988		      .halg.base = {
3989				    .cra_name = "sha384",
3990				    .cra_driver_name = "sha384-iproc",
3991				    .cra_blocksize = SHA384_BLOCK_SIZE,
3992				}
3993		      },
3994	 .cipher_info = {
3995			 .alg = CIPHER_ALG_NONE,
3996			 .mode = CIPHER_MODE_NONE,
3997			 },
3998	 .auth_info = {
3999		       .alg = HASH_ALG_SHA384,
4000		       .mode = HASH_MODE_HASH,
4001		       },
4002	 },
4003	{
4004	 .type = CRYPTO_ALG_TYPE_AHASH,
4005	 .alg.hash = {
4006		      .halg.digestsize = SHA384_DIGEST_SIZE,
4007		      .halg.base = {
4008				    .cra_name = "hmac(sha384)",
4009				    .cra_driver_name = "hmac-sha384-iproc",
4010				    .cra_blocksize = SHA384_BLOCK_SIZE,
4011				}
4012		      },
4013	 .cipher_info = {
4014			 .alg = CIPHER_ALG_NONE,
4015			 .mode = CIPHER_MODE_NONE,
4016			 },
4017	 .auth_info = {
4018		       .alg = HASH_ALG_SHA384,
4019		       .mode = HASH_MODE_HMAC,
4020		       },
4021	 },
4022	{
4023	 .type = CRYPTO_ALG_TYPE_AHASH,
4024	 .alg.hash = {
4025		      .halg.digestsize = SHA512_DIGEST_SIZE,
4026		      .halg.base = {
4027				    .cra_name = "sha512",
4028				    .cra_driver_name = "sha512-iproc",
4029				    .cra_blocksize = SHA512_BLOCK_SIZE,
4030				}
4031		      },
4032	 .cipher_info = {
4033			 .alg = CIPHER_ALG_NONE,
4034			 .mode = CIPHER_MODE_NONE,
4035			 },
4036	 .auth_info = {
4037		       .alg = HASH_ALG_SHA512,
4038		       .mode = HASH_MODE_HASH,
4039		       },
4040	 },
4041	{
4042	 .type = CRYPTO_ALG_TYPE_AHASH,
4043	 .alg.hash = {
4044		      .halg.digestsize = SHA512_DIGEST_SIZE,
4045		      .halg.base = {
4046				    .cra_name = "hmac(sha512)",
4047				    .cra_driver_name = "hmac-sha512-iproc",
4048				    .cra_blocksize = SHA512_BLOCK_SIZE,
4049				}
4050		      },
4051	 .cipher_info = {
4052			 .alg = CIPHER_ALG_NONE,
4053			 .mode = CIPHER_MODE_NONE,
4054			 },
4055	 .auth_info = {
4056		       .alg = HASH_ALG_SHA512,
4057		       .mode = HASH_MODE_HMAC,
4058		       },
4059	 },
4060	{
4061	 .type = CRYPTO_ALG_TYPE_AHASH,
4062	 .alg.hash = {
4063		      .halg.digestsize = SHA3_224_DIGEST_SIZE,
4064		      .halg.base = {
4065				    .cra_name = "sha3-224",
4066				    .cra_driver_name = "sha3-224-iproc",
4067				    .cra_blocksize = SHA3_224_BLOCK_SIZE,
4068				}
4069		      },
4070	 .cipher_info = {
4071			 .alg = CIPHER_ALG_NONE,
4072			 .mode = CIPHER_MODE_NONE,
4073			 },
4074	 .auth_info = {
4075		       .alg = HASH_ALG_SHA3_224,
4076		       .mode = HASH_MODE_HASH,
4077		       },
4078	 },
4079	{
4080	 .type = CRYPTO_ALG_TYPE_AHASH,
4081	 .alg.hash = {
4082		      .halg.digestsize = SHA3_224_DIGEST_SIZE,
4083		      .halg.base = {
4084				    .cra_name = "hmac(sha3-224)",
4085				    .cra_driver_name = "hmac-sha3-224-iproc",
4086				    .cra_blocksize = SHA3_224_BLOCK_SIZE,
4087				}
4088		      },
4089	 .cipher_info = {
4090			 .alg = CIPHER_ALG_NONE,
4091			 .mode = CIPHER_MODE_NONE,
4092			 },
4093	 .auth_info = {
4094		       .alg = HASH_ALG_SHA3_224,
4095		       .mode = HASH_MODE_HMAC
4096		       },
4097	 },
4098	{
4099	 .type = CRYPTO_ALG_TYPE_AHASH,
4100	 .alg.hash = {
4101		      .halg.digestsize = SHA3_256_DIGEST_SIZE,
4102		      .halg.base = {
4103				    .cra_name = "sha3-256",
4104				    .cra_driver_name = "sha3-256-iproc",
4105				    .cra_blocksize = SHA3_256_BLOCK_SIZE,
4106				}
4107		      },
4108	 .cipher_info = {
4109			 .alg = CIPHER_ALG_NONE,
4110			 .mode = CIPHER_MODE_NONE,
4111			 },
4112	 .auth_info = {
4113		       .alg = HASH_ALG_SHA3_256,
4114		       .mode = HASH_MODE_HASH,
4115		       },
4116	 },
4117	{
4118	 .type = CRYPTO_ALG_TYPE_AHASH,
4119	 .alg.hash = {
4120		      .halg.digestsize = SHA3_256_DIGEST_SIZE,
4121		      .halg.base = {
4122				    .cra_name = "hmac(sha3-256)",
4123				    .cra_driver_name = "hmac-sha3-256-iproc",
4124				    .cra_blocksize = SHA3_256_BLOCK_SIZE,
4125				}
4126		      },
4127	 .cipher_info = {
4128			 .alg = CIPHER_ALG_NONE,
4129			 .mode = CIPHER_MODE_NONE,
4130			 },
4131	 .auth_info = {
4132		       .alg = HASH_ALG_SHA3_256,
4133		       .mode = HASH_MODE_HMAC,
4134		       },
4135	 },
4136	{
4137	 .type = CRYPTO_ALG_TYPE_AHASH,
4138	 .alg.hash = {
4139		      .halg.digestsize = SHA3_384_DIGEST_SIZE,
4140		      .halg.base = {
4141				    .cra_name = "sha3-384",
4142				    .cra_driver_name = "sha3-384-iproc",
4143				    .cra_blocksize = SHA3_224_BLOCK_SIZE,
4144				}
4145		      },
4146	 .cipher_info = {
4147			 .alg = CIPHER_ALG_NONE,
4148			 .mode = CIPHER_MODE_NONE,
4149			 },
4150	 .auth_info = {
4151		       .alg = HASH_ALG_SHA3_384,
4152		       .mode = HASH_MODE_HASH,
4153		       },
4154	 },
4155	{
4156	 .type = CRYPTO_ALG_TYPE_AHASH,
4157	 .alg.hash = {
4158		      .halg.digestsize = SHA3_384_DIGEST_SIZE,
4159		      .halg.base = {
4160				    .cra_name = "hmac(sha3-384)",
4161				    .cra_driver_name = "hmac-sha3-384-iproc",
4162				    .cra_blocksize = SHA3_384_BLOCK_SIZE,
4163				}
4164		      },
4165	 .cipher_info = {
4166			 .alg = CIPHER_ALG_NONE,
4167			 .mode = CIPHER_MODE_NONE,
4168			 },
4169	 .auth_info = {
4170		       .alg = HASH_ALG_SHA3_384,
4171		       .mode = HASH_MODE_HMAC,
4172		       },
4173	 },
4174	{
4175	 .type = CRYPTO_ALG_TYPE_AHASH,
4176	 .alg.hash = {
4177		      .halg.digestsize = SHA3_512_DIGEST_SIZE,
4178		      .halg.base = {
4179				    .cra_name = "sha3-512",
4180				    .cra_driver_name = "sha3-512-iproc",
4181				    .cra_blocksize = SHA3_512_BLOCK_SIZE,
4182				}
4183		      },
4184	 .cipher_info = {
4185			 .alg = CIPHER_ALG_NONE,
4186			 .mode = CIPHER_MODE_NONE,
4187			 },
4188	 .auth_info = {
4189		       .alg = HASH_ALG_SHA3_512,
4190		       .mode = HASH_MODE_HASH,
4191		       },
4192	 },
4193	{
4194	 .type = CRYPTO_ALG_TYPE_AHASH,
4195	 .alg.hash = {
4196		      .halg.digestsize = SHA3_512_DIGEST_SIZE,
4197		      .halg.base = {
4198				    .cra_name = "hmac(sha3-512)",
4199				    .cra_driver_name = "hmac-sha3-512-iproc",
4200				    .cra_blocksize = SHA3_512_BLOCK_SIZE,
4201				}
4202		      },
4203	 .cipher_info = {
4204			 .alg = CIPHER_ALG_NONE,
4205			 .mode = CIPHER_MODE_NONE,
4206			 },
4207	 .auth_info = {
4208		       .alg = HASH_ALG_SHA3_512,
4209		       .mode = HASH_MODE_HMAC,
4210		       },
4211	 },
4212	{
4213	 .type = CRYPTO_ALG_TYPE_AHASH,
4214	 .alg.hash = {
4215		      .halg.digestsize = AES_BLOCK_SIZE,
4216		      .halg.base = {
4217				    .cra_name = "xcbc(aes)",
4218				    .cra_driver_name = "xcbc-aes-iproc",
4219				    .cra_blocksize = AES_BLOCK_SIZE,
4220				}
4221		      },
4222	 .cipher_info = {
4223			 .alg = CIPHER_ALG_NONE,
4224			 .mode = CIPHER_MODE_NONE,
4225			 },
4226	 .auth_info = {
4227		       .alg = HASH_ALG_AES,
4228		       .mode = HASH_MODE_XCBC,
4229		       },
4230	 },
4231	{
4232	 .type = CRYPTO_ALG_TYPE_AHASH,
4233	 .alg.hash = {
4234		      .halg.digestsize = AES_BLOCK_SIZE,
4235		      .halg.base = {
4236				    .cra_name = "cmac(aes)",
4237				    .cra_driver_name = "cmac-aes-iproc",
4238				    .cra_blocksize = AES_BLOCK_SIZE,
4239				}
4240		      },
4241	 .cipher_info = {
4242			 .alg = CIPHER_ALG_NONE,
4243			 .mode = CIPHER_MODE_NONE,
4244			 },
4245	 .auth_info = {
4246		       .alg = HASH_ALG_AES,
4247		       .mode = HASH_MODE_CMAC,
4248		       },
4249	 },
4250};
4251
4252static int generic_cra_init(struct crypto_tfm *tfm,
4253			    struct iproc_alg_s *cipher_alg)
4254{
4255	struct spu_hw *spu = &iproc_priv.spu;
4256	struct iproc_ctx_s *ctx = crypto_tfm_ctx(tfm);
4257	unsigned int blocksize = crypto_tfm_alg_blocksize(tfm);
4258
4259	flow_log("%s()\n", __func__);
4260
4261	ctx->alg = cipher_alg;
4262	ctx->cipher = cipher_alg->cipher_info;
4263	ctx->auth = cipher_alg->auth_info;
4264	ctx->auth_first = cipher_alg->auth_first;
4265	ctx->max_payload = spu->spu_ctx_max_payload(ctx->cipher.alg,
4266						    ctx->cipher.mode,
4267						    blocksize);
4268	ctx->fallback_cipher = NULL;
4269
4270	ctx->enckeylen = 0;
4271	ctx->authkeylen = 0;
4272
4273	atomic_inc(&iproc_priv.stream_count);
4274	atomic_inc(&iproc_priv.session_count);
4275
4276	return 0;
4277}
4278
4279static int skcipher_init_tfm(struct crypto_skcipher *skcipher)
4280{
4281	struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
4282	struct skcipher_alg *alg = crypto_skcipher_alg(skcipher);
4283	struct iproc_alg_s *cipher_alg;
4284
4285	flow_log("%s()\n", __func__);
4286
4287	crypto_skcipher_set_reqsize(skcipher, sizeof(struct iproc_reqctx_s));
4288
4289	cipher_alg = container_of(alg, struct iproc_alg_s, alg.skcipher);
4290	return generic_cra_init(tfm, cipher_alg);
4291}
4292
4293static int ahash_cra_init(struct crypto_tfm *tfm)
4294{
4295	int err;
4296	struct crypto_alg *alg = tfm->__crt_alg;
4297	struct iproc_alg_s *cipher_alg;
4298
4299	cipher_alg = container_of(__crypto_ahash_alg(alg), struct iproc_alg_s,
4300				  alg.hash);
4301
4302	err = generic_cra_init(tfm, cipher_alg);
4303	flow_log("%s()\n", __func__);
4304
4305	/*
4306	 * export state size has to be < 512 bytes. So don't include msg bufs
4307	 * in state size.
4308	 */
4309	crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
4310				 sizeof(struct iproc_reqctx_s));
4311
4312	return err;
4313}
4314
4315static int aead_cra_init(struct crypto_aead *aead)
4316{
4317	struct crypto_tfm *tfm = crypto_aead_tfm(aead);
4318	struct iproc_ctx_s *ctx = crypto_tfm_ctx(tfm);
4319	struct crypto_alg *alg = tfm->__crt_alg;
4320	struct aead_alg *aalg = container_of(alg, struct aead_alg, base);
4321	struct iproc_alg_s *cipher_alg = container_of(aalg, struct iproc_alg_s,
4322						      alg.aead);
4323
4324	int err = generic_cra_init(tfm, cipher_alg);
4325
4326	flow_log("%s()\n", __func__);
4327
4328	crypto_aead_set_reqsize(aead, sizeof(struct iproc_reqctx_s));
4329	ctx->is_esp = false;
4330	ctx->salt_len = 0;
4331	ctx->salt_offset = 0;
4332
4333	/* random first IV */
4334	get_random_bytes(ctx->iv, MAX_IV_SIZE);
4335	flow_dump("  iv: ", ctx->iv, MAX_IV_SIZE);
4336
4337	if (!err) {
4338		if (alg->cra_flags & CRYPTO_ALG_NEED_FALLBACK) {
4339			flow_log("%s() creating fallback cipher\n", __func__);
4340
4341			ctx->fallback_cipher =
4342			    crypto_alloc_aead(alg->cra_name, 0,
4343					      CRYPTO_ALG_ASYNC |
4344					      CRYPTO_ALG_NEED_FALLBACK);
4345			if (IS_ERR(ctx->fallback_cipher)) {
4346				pr_err("%s() Error: failed to allocate fallback for %s\n",
4347				       __func__, alg->cra_name);
4348				return PTR_ERR(ctx->fallback_cipher);
4349			}
4350		}
4351	}
4352
4353	return err;
4354}
4355
4356static void generic_cra_exit(struct crypto_tfm *tfm)
4357{
4358	atomic_dec(&iproc_priv.session_count);
4359}
4360
4361static void skcipher_exit_tfm(struct crypto_skcipher *tfm)
4362{
4363	generic_cra_exit(crypto_skcipher_tfm(tfm));
4364}
4365
4366static void aead_cra_exit(struct crypto_aead *aead)
4367{
4368	struct crypto_tfm *tfm = crypto_aead_tfm(aead);
4369	struct iproc_ctx_s *ctx = crypto_tfm_ctx(tfm);
4370
4371	generic_cra_exit(tfm);
4372
4373	if (ctx->fallback_cipher) {
4374		crypto_free_aead(ctx->fallback_cipher);
4375		ctx->fallback_cipher = NULL;
4376	}
4377}
4378
4379/**
4380 * spu_functions_register() - Specify hardware-specific SPU functions based on
4381 * SPU type read from device tree.
4382 * @dev:	device structure
4383 * @spu_type:	SPU hardware generation
4384 * @spu_subtype: SPU hardware version
4385 */
4386static void spu_functions_register(struct device *dev,
4387				   enum spu_spu_type spu_type,
4388				   enum spu_spu_subtype spu_subtype)
4389{
4390	struct spu_hw *spu = &iproc_priv.spu;
4391
4392	if (spu_type == SPU_TYPE_SPUM) {
4393		dev_dbg(dev, "Registering SPUM functions");
4394		spu->spu_dump_msg_hdr = spum_dump_msg_hdr;
4395		spu->spu_payload_length = spum_payload_length;
4396		spu->spu_response_hdr_len = spum_response_hdr_len;
4397		spu->spu_hash_pad_len = spum_hash_pad_len;
4398		spu->spu_gcm_ccm_pad_len = spum_gcm_ccm_pad_len;
4399		spu->spu_assoc_resp_len = spum_assoc_resp_len;
4400		spu->spu_aead_ivlen = spum_aead_ivlen;
4401		spu->spu_hash_type = spum_hash_type;
4402		spu->spu_digest_size = spum_digest_size;
4403		spu->spu_create_request = spum_create_request;
4404		spu->spu_cipher_req_init = spum_cipher_req_init;
4405		spu->spu_cipher_req_finish = spum_cipher_req_finish;
4406		spu->spu_request_pad = spum_request_pad;
4407		spu->spu_tx_status_len = spum_tx_status_len;
4408		spu->spu_rx_status_len = spum_rx_status_len;
4409		spu->spu_status_process = spum_status_process;
4410		spu->spu_xts_tweak_in_payload = spum_xts_tweak_in_payload;
4411		spu->spu_ccm_update_iv = spum_ccm_update_iv;
4412		spu->spu_wordalign_padlen = spum_wordalign_padlen;
4413		if (spu_subtype == SPU_SUBTYPE_SPUM_NS2)
4414			spu->spu_ctx_max_payload = spum_ns2_ctx_max_payload;
4415		else
4416			spu->spu_ctx_max_payload = spum_nsp_ctx_max_payload;
4417	} else {
4418		dev_dbg(dev, "Registering SPU2 functions");
4419		spu->spu_dump_msg_hdr = spu2_dump_msg_hdr;
4420		spu->spu_ctx_max_payload = spu2_ctx_max_payload;
4421		spu->spu_payload_length = spu2_payload_length;
4422		spu->spu_response_hdr_len = spu2_response_hdr_len;
4423		spu->spu_hash_pad_len = spu2_hash_pad_len;
4424		spu->spu_gcm_ccm_pad_len = spu2_gcm_ccm_pad_len;
4425		spu->spu_assoc_resp_len = spu2_assoc_resp_len;
4426		spu->spu_aead_ivlen = spu2_aead_ivlen;
4427		spu->spu_hash_type = spu2_hash_type;
4428		spu->spu_digest_size = spu2_digest_size;
4429		spu->spu_create_request = spu2_create_request;
4430		spu->spu_cipher_req_init = spu2_cipher_req_init;
4431		spu->spu_cipher_req_finish = spu2_cipher_req_finish;
4432		spu->spu_request_pad = spu2_request_pad;
4433		spu->spu_tx_status_len = spu2_tx_status_len;
4434		spu->spu_rx_status_len = spu2_rx_status_len;
4435		spu->spu_status_process = spu2_status_process;
4436		spu->spu_xts_tweak_in_payload = spu2_xts_tweak_in_payload;
4437		spu->spu_ccm_update_iv = spu2_ccm_update_iv;
4438		spu->spu_wordalign_padlen = spu2_wordalign_padlen;
4439	}
4440}
4441
4442/**
4443 * spu_mb_init() - Initialize mailbox client. Request ownership of a mailbox
4444 * channel for the SPU being probed.
4445 * @dev:  SPU driver device structure
4446 *
4447 * Return: 0 if successful
4448 *	   < 0 otherwise
4449 */
4450static int spu_mb_init(struct device *dev)
4451{
4452	struct mbox_client *mcl = &iproc_priv.mcl;
4453	int err, i;
4454
4455	iproc_priv.mbox = devm_kcalloc(dev, iproc_priv.spu.num_chan,
4456				  sizeof(struct mbox_chan *), GFP_KERNEL);
4457	if (!iproc_priv.mbox)
4458		return -ENOMEM;
4459
4460	mcl->dev = dev;
4461	mcl->tx_block = false;
4462	mcl->tx_tout = 0;
4463	mcl->knows_txdone = true;
4464	mcl->rx_callback = spu_rx_callback;
4465	mcl->tx_done = NULL;
4466
4467	for (i = 0; i < iproc_priv.spu.num_chan; i++) {
4468		iproc_priv.mbox[i] = mbox_request_channel(mcl, i);
4469		if (IS_ERR(iproc_priv.mbox[i])) {
4470			err = PTR_ERR(iproc_priv.mbox[i]);
4471			dev_err(dev,
4472				"Mbox channel %d request failed with err %d",
4473				i, err);
4474			iproc_priv.mbox[i] = NULL;
4475			goto free_channels;
4476		}
4477	}
4478
4479	return 0;
4480free_channels:
4481	for (i = 0; i < iproc_priv.spu.num_chan; i++) {
4482		if (iproc_priv.mbox[i])
4483			mbox_free_channel(iproc_priv.mbox[i]);
4484	}
4485
4486	return err;
4487}
4488
4489static void spu_mb_release(struct platform_device *pdev)
4490{
4491	int i;
4492
4493	for (i = 0; i < iproc_priv.spu.num_chan; i++)
4494		mbox_free_channel(iproc_priv.mbox[i]);
4495}
4496
4497static void spu_counters_init(void)
4498{
4499	int i;
4500	int j;
4501
4502	atomic_set(&iproc_priv.session_count, 0);
4503	atomic_set(&iproc_priv.stream_count, 0);
4504	atomic_set(&iproc_priv.next_chan, (int)iproc_priv.spu.num_chan);
4505	atomic64_set(&iproc_priv.bytes_in, 0);
4506	atomic64_set(&iproc_priv.bytes_out, 0);
4507	for (i = 0; i < SPU_OP_NUM; i++) {
4508		atomic_set(&iproc_priv.op_counts[i], 0);
4509		atomic_set(&iproc_priv.setkey_cnt[i], 0);
4510	}
4511	for (i = 0; i < CIPHER_ALG_LAST; i++)
4512		for (j = 0; j < CIPHER_MODE_LAST; j++)
4513			atomic_set(&iproc_priv.cipher_cnt[i][j], 0);
4514
4515	for (i = 0; i < HASH_ALG_LAST; i++) {
4516		atomic_set(&iproc_priv.hash_cnt[i], 0);
4517		atomic_set(&iproc_priv.hmac_cnt[i], 0);
4518	}
4519	for (i = 0; i < AEAD_TYPE_LAST; i++)
4520		atomic_set(&iproc_priv.aead_cnt[i], 0);
4521
4522	atomic_set(&iproc_priv.mb_no_spc, 0);
4523	atomic_set(&iproc_priv.mb_send_fail, 0);
4524	atomic_set(&iproc_priv.bad_icv, 0);
4525}
4526
4527static int spu_register_skcipher(struct iproc_alg_s *driver_alg)
4528{
4529	struct spu_hw *spu = &iproc_priv.spu;
4530	struct skcipher_alg *crypto = &driver_alg->alg.skcipher;
4531	int err;
4532
4533	/* SPU2 does not support RC4 */
4534	if ((driver_alg->cipher_info.alg == CIPHER_ALG_RC4) &&
4535	    (spu->spu_type == SPU_TYPE_SPU2))
4536		return 0;
4537
4538	crypto->base.cra_module = THIS_MODULE;
4539	crypto->base.cra_priority = cipher_pri;
4540	crypto->base.cra_alignmask = 0;
4541	crypto->base.cra_ctxsize = sizeof(struct iproc_ctx_s);
4542	crypto->base.cra_flags = CRYPTO_ALG_ASYNC |
4543				 CRYPTO_ALG_ALLOCATES_MEMORY |
4544				 CRYPTO_ALG_KERN_DRIVER_ONLY;
4545
4546	crypto->init = skcipher_init_tfm;
4547	crypto->exit = skcipher_exit_tfm;
4548	crypto->setkey = skcipher_setkey;
4549	crypto->encrypt = skcipher_encrypt;
4550	crypto->decrypt = skcipher_decrypt;
4551
4552	err = crypto_register_skcipher(crypto);
4553	/* Mark alg as having been registered, if successful */
4554	if (err == 0)
4555		driver_alg->registered = true;
4556	pr_debug("  registered skcipher %s\n", crypto->base.cra_driver_name);
4557	return err;
4558}
4559
4560static int spu_register_ahash(struct iproc_alg_s *driver_alg)
4561{
4562	struct spu_hw *spu = &iproc_priv.spu;
4563	struct ahash_alg *hash = &driver_alg->alg.hash;
4564	int err;
4565
4566	/* AES-XCBC is the only AES hash type currently supported on SPU-M */
4567	if ((driver_alg->auth_info.alg == HASH_ALG_AES) &&
4568	    (driver_alg->auth_info.mode != HASH_MODE_XCBC) &&
4569	    (spu->spu_type == SPU_TYPE_SPUM))
4570		return 0;
4571
4572	/* SHA3 algorithm variants are not registered for SPU-M or SPU2. */
4573	if ((driver_alg->auth_info.alg >= HASH_ALG_SHA3_224) &&
4574	    (spu->spu_subtype != SPU_SUBTYPE_SPU2_V2))
4575		return 0;
4576
4577	hash->halg.base.cra_module = THIS_MODULE;
4578	hash->halg.base.cra_priority = hash_pri;
4579	hash->halg.base.cra_alignmask = 0;
4580	hash->halg.base.cra_ctxsize = sizeof(struct iproc_ctx_s);
4581	hash->halg.base.cra_init = ahash_cra_init;
4582	hash->halg.base.cra_exit = generic_cra_exit;
4583	hash->halg.base.cra_flags = CRYPTO_ALG_ASYNC |
4584				    CRYPTO_ALG_ALLOCATES_MEMORY;
4585	hash->halg.statesize = sizeof(struct spu_hash_export_s);
4586
4587	if (driver_alg->auth_info.mode != HASH_MODE_HMAC) {
4588		hash->init = ahash_init;
4589		hash->update = ahash_update;
4590		hash->final = ahash_final;
4591		hash->finup = ahash_finup;
4592		hash->digest = ahash_digest;
4593		if ((driver_alg->auth_info.alg == HASH_ALG_AES) &&
4594		    ((driver_alg->auth_info.mode == HASH_MODE_XCBC) ||
4595		    (driver_alg->auth_info.mode == HASH_MODE_CMAC))) {
4596			hash->setkey = ahash_setkey;
4597		}
4598	} else {
4599		hash->setkey = ahash_hmac_setkey;
4600		hash->init = ahash_hmac_init;
4601		hash->update = ahash_hmac_update;
4602		hash->final = ahash_hmac_final;
4603		hash->finup = ahash_hmac_finup;
4604		hash->digest = ahash_hmac_digest;
4605	}
4606	hash->export = ahash_export;
4607	hash->import = ahash_import;
4608
4609	err = crypto_register_ahash(hash);
4610	/* Mark alg as having been registered, if successful */
4611	if (err == 0)
4612		driver_alg->registered = true;
4613	pr_debug("  registered ahash %s\n",
4614		 hash->halg.base.cra_driver_name);
4615	return err;
4616}
4617
4618static int spu_register_aead(struct iproc_alg_s *driver_alg)
4619{
4620	struct aead_alg *aead = &driver_alg->alg.aead;
4621	int err;
4622
4623	aead->base.cra_module = THIS_MODULE;
4624	aead->base.cra_priority = aead_pri;
4625	aead->base.cra_alignmask = 0;
4626	aead->base.cra_ctxsize = sizeof(struct iproc_ctx_s);
4627
4628	aead->base.cra_flags |= CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY;
4629	/* setkey set in alg initialization */
4630	aead->setauthsize = aead_setauthsize;
4631	aead->encrypt = aead_encrypt;
4632	aead->decrypt = aead_decrypt;
4633	aead->init = aead_cra_init;
4634	aead->exit = aead_cra_exit;
4635
4636	err = crypto_register_aead(aead);
4637	/* Mark alg as having been registered, if successful */
4638	if (err == 0)
4639		driver_alg->registered = true;
4640	pr_debug("  registered aead %s\n", aead->base.cra_driver_name);
4641	return err;
4642}
4643
4644/* register crypto algorithms the device supports */
4645static int spu_algs_register(struct device *dev)
4646{
4647	int i, j;
4648	int err;
4649
4650	for (i = 0; i < ARRAY_SIZE(driver_algs); i++) {
4651		switch (driver_algs[i].type) {
4652		case CRYPTO_ALG_TYPE_SKCIPHER:
4653			err = spu_register_skcipher(&driver_algs[i]);
4654			break;
4655		case CRYPTO_ALG_TYPE_AHASH:
4656			err = spu_register_ahash(&driver_algs[i]);
4657			break;
4658		case CRYPTO_ALG_TYPE_AEAD:
4659			err = spu_register_aead(&driver_algs[i]);
4660			break;
4661		default:
4662			dev_err(dev,
4663				"iproc-crypto: unknown alg type: %d",
4664				driver_algs[i].type);
4665			err = -EINVAL;
4666		}
4667
4668		if (err) {
4669			dev_err(dev, "alg registration failed with error %d\n",
4670				err);
4671			goto err_algs;
4672		}
4673	}
4674
4675	return 0;
4676
4677err_algs:
4678	for (j = 0; j < i; j++) {
4679		/* Skip any algorithm not registered */
4680		if (!driver_algs[j].registered)
4681			continue;
4682		switch (driver_algs[j].type) {
4683		case CRYPTO_ALG_TYPE_SKCIPHER:
4684			crypto_unregister_skcipher(&driver_algs[j].alg.skcipher);
4685			driver_algs[j].registered = false;
4686			break;
4687		case CRYPTO_ALG_TYPE_AHASH:
4688			crypto_unregister_ahash(&driver_algs[j].alg.hash);
4689			driver_algs[j].registered = false;
4690			break;
4691		case CRYPTO_ALG_TYPE_AEAD:
4692			crypto_unregister_aead(&driver_algs[j].alg.aead);
4693			driver_algs[j].registered = false;
4694			break;
4695		}
4696	}
4697	return err;
4698}
4699
4700/* ==================== Kernel Platform API ==================== */
4701
4702static struct spu_type_subtype spum_ns2_types = {
4703	SPU_TYPE_SPUM, SPU_SUBTYPE_SPUM_NS2
4704};
4705
4706static struct spu_type_subtype spum_nsp_types = {
4707	SPU_TYPE_SPUM, SPU_SUBTYPE_SPUM_NSP
4708};
4709
4710static struct spu_type_subtype spu2_types = {
4711	SPU_TYPE_SPU2, SPU_SUBTYPE_SPU2_V1
4712};
4713
4714static struct spu_type_subtype spu2_v2_types = {
4715	SPU_TYPE_SPU2, SPU_SUBTYPE_SPU2_V2
4716};
4717
4718static const struct of_device_id bcm_spu_dt_ids[] = {
4719	{
4720		.compatible = "brcm,spum-crypto",
4721		.data = &spum_ns2_types,
4722	},
4723	{
4724		.compatible = "brcm,spum-nsp-crypto",
4725		.data = &spum_nsp_types,
4726	},
4727	{
4728		.compatible = "brcm,spu2-crypto",
4729		.data = &spu2_types,
4730	},
4731	{
4732		.compatible = "brcm,spu2-v2-crypto",
4733		.data = &spu2_v2_types,
4734	},
4735	{ /* sentinel */ }
4736};
4737
4738MODULE_DEVICE_TABLE(of, bcm_spu_dt_ids);
4739
4740static int spu_dt_read(struct platform_device *pdev)
4741{
4742	struct device *dev = &pdev->dev;
4743	struct spu_hw *spu = &iproc_priv.spu;
4744	struct resource *spu_ctrl_regs;
4745	const struct spu_type_subtype *matched_spu_type;
4746	struct device_node *dn = pdev->dev.of_node;
4747	int err, i;
4748
4749	/* Count number of mailbox channels */
4750	spu->num_chan = of_count_phandle_with_args(dn, "mboxes", "#mbox-cells");
4751
4752	matched_spu_type = of_device_get_match_data(dev);
4753	if (!matched_spu_type) {
4754		dev_err(dev, "Failed to match device\n");
4755		return -ENODEV;
4756	}
4757
4758	spu->spu_type = matched_spu_type->type;
4759	spu->spu_subtype = matched_spu_type->subtype;
4760
4761	for (i = 0; (i < MAX_SPUS) && ((spu_ctrl_regs =
4762		platform_get_resource(pdev, IORESOURCE_MEM, i)) != NULL); i++) {
4763
4764		spu->reg_vbase[i] = devm_ioremap_resource(dev, spu_ctrl_regs);
4765		if (IS_ERR(spu->reg_vbase[i])) {
4766			err = PTR_ERR(spu->reg_vbase[i]);
4767			dev_err(dev, "Failed to map registers: %d\n",
4768				err);
4769			spu->reg_vbase[i] = NULL;
4770			return err;
4771		}
4772	}
4773	spu->num_spu = i;
4774	dev_dbg(dev, "Device has %d SPUs", spu->num_spu);
4775
4776	return 0;
4777}
4778
4779static int bcm_spu_probe(struct platform_device *pdev)
4780{
4781	struct device *dev = &pdev->dev;
4782	struct spu_hw *spu = &iproc_priv.spu;
4783	int err;
4784
4785	iproc_priv.pdev  = pdev;
4786	platform_set_drvdata(iproc_priv.pdev,
4787			     &iproc_priv);
4788
4789	err = spu_dt_read(pdev);
4790	if (err < 0)
4791		goto failure;
4792
4793	err = spu_mb_init(dev);
4794	if (err < 0)
4795		goto failure;
4796
4797	if (spu->spu_type == SPU_TYPE_SPUM)
4798		iproc_priv.bcm_hdr_len = 8;
4799	else if (spu->spu_type == SPU_TYPE_SPU2)
4800		iproc_priv.bcm_hdr_len = 0;
4801
4802	spu_functions_register(dev, spu->spu_type, spu->spu_subtype);
4803
4804	spu_counters_init();
4805
4806	spu_setup_debugfs();
4807
4808	err = spu_algs_register(dev);
4809	if (err < 0)
4810		goto fail_reg;
4811
4812	return 0;
4813
4814fail_reg:
4815	spu_free_debugfs();
4816failure:
4817	spu_mb_release(pdev);
4818	dev_err(dev, "%s failed with error %d.\n", __func__, err);
4819
4820	return err;
4821}
4822
4823static int bcm_spu_remove(struct platform_device *pdev)
4824{
4825	int i;
4826	struct device *dev = &pdev->dev;
4827	char *cdn;
4828
4829	for (i = 0; i < ARRAY_SIZE(driver_algs); i++) {
4830		/*
4831		 * Not all algorithms were registered, depending on whether
4832		 * hardware is SPU or SPU2.  So here we make sure to skip
4833		 * those algorithms that were not previously registered.
4834		 */
4835		if (!driver_algs[i].registered)
4836			continue;
4837
4838		switch (driver_algs[i].type) {
4839		case CRYPTO_ALG_TYPE_SKCIPHER:
4840			crypto_unregister_skcipher(&driver_algs[i].alg.skcipher);
4841			dev_dbg(dev, "  unregistered cipher %s\n",
4842				driver_algs[i].alg.skcipher.base.cra_driver_name);
4843			driver_algs[i].registered = false;
4844			break;
4845		case CRYPTO_ALG_TYPE_AHASH:
4846			crypto_unregister_ahash(&driver_algs[i].alg.hash);
4847			cdn = driver_algs[i].alg.hash.halg.base.cra_driver_name;
4848			dev_dbg(dev, "  unregistered hash %s\n", cdn);
4849			driver_algs[i].registered = false;
4850			break;
4851		case CRYPTO_ALG_TYPE_AEAD:
4852			crypto_unregister_aead(&driver_algs[i].alg.aead);
4853			dev_dbg(dev, "  unregistered aead %s\n",
4854				driver_algs[i].alg.aead.base.cra_driver_name);
4855			driver_algs[i].registered = false;
4856			break;
4857		}
4858	}
4859	spu_free_debugfs();
4860	spu_mb_release(pdev);
4861	return 0;
4862}
4863
4864/* ===== Kernel Module API ===== */
4865
4866static struct platform_driver bcm_spu_pdriver = {
4867	.driver = {
4868		   .name = "brcm-spu-crypto",
4869		   .of_match_table = of_match_ptr(bcm_spu_dt_ids),
4870		   },
4871	.probe = bcm_spu_probe,
4872	.remove = bcm_spu_remove,
4873};
4874module_platform_driver(bcm_spu_pdriver);
4875
4876MODULE_AUTHOR("Rob Rice <rob.rice@broadcom.com>");
4877MODULE_DESCRIPTION("Broadcom symmetric crypto offload driver");
4878MODULE_LICENSE("GPL v2");