Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/**
3 * AMCC SoC PPC4xx Crypto Driver
4 *
5 * Copyright (c) 2008 Applied Micro Circuits Corporation.
6 * All rights reserved. James Hsiao <jhsiao@amcc.com>
7 *
8 * This file implements AMCC crypto offload Linux device driver for use with
9 * Linux CryptoAPI.
10 */
11
12#include <linux/kernel.h>
13#include <linux/interrupt.h>
14#include <linux/spinlock_types.h>
15#include <linux/random.h>
16#include <linux/scatterlist.h>
17#include <linux/crypto.h>
18#include <linux/dma-mapping.h>
19#include <linux/platform_device.h>
20#include <linux/init.h>
21#include <linux/module.h>
22#include <linux/of_address.h>
23#include <linux/of_irq.h>
24#include <linux/of_platform.h>
25#include <linux/slab.h>
26#include <asm/dcr.h>
27#include <asm/dcr-regs.h>
28#include <asm/cacheflush.h>
29#include <crypto/aead.h>
30#include <crypto/aes.h>
31#include <crypto/ctr.h>
32#include <crypto/gcm.h>
33#include <crypto/sha.h>
34#include <crypto/rng.h>
35#include <crypto/scatterwalk.h>
36#include <crypto/skcipher.h>
37#include <crypto/internal/aead.h>
38#include <crypto/internal/rng.h>
39#include <crypto/internal/skcipher.h>
40#include "crypto4xx_reg_def.h"
41#include "crypto4xx_core.h"
42#include "crypto4xx_sa.h"
43#include "crypto4xx_trng.h"
44
45#define PPC4XX_SEC_VERSION_STR "0.5"
46
47/**
48 * PPC4xx Crypto Engine Initialization Routine
49 */
50static void crypto4xx_hw_init(struct crypto4xx_device *dev)
51{
52 union ce_ring_size ring_size;
53 union ce_ring_control ring_ctrl;
54 union ce_part_ring_size part_ring_size;
55 union ce_io_threshold io_threshold;
56 u32 rand_num;
57 union ce_pe_dma_cfg pe_dma_cfg;
58 u32 device_ctrl;
59
60 writel(PPC4XX_BYTE_ORDER, dev->ce_base + CRYPTO4XX_BYTE_ORDER_CFG);
61 /* setup pe dma, include reset sg, pdr and pe, then release reset */
62 pe_dma_cfg.w = 0;
63 pe_dma_cfg.bf.bo_sgpd_en = 1;
64 pe_dma_cfg.bf.bo_data_en = 0;
65 pe_dma_cfg.bf.bo_sa_en = 1;
66 pe_dma_cfg.bf.bo_pd_en = 1;
67 pe_dma_cfg.bf.dynamic_sa_en = 1;
68 pe_dma_cfg.bf.reset_sg = 1;
69 pe_dma_cfg.bf.reset_pdr = 1;
70 pe_dma_cfg.bf.reset_pe = 1;
71 writel(pe_dma_cfg.w, dev->ce_base + CRYPTO4XX_PE_DMA_CFG);
72 /* un reset pe,sg and pdr */
73 pe_dma_cfg.bf.pe_mode = 0;
74 pe_dma_cfg.bf.reset_sg = 0;
75 pe_dma_cfg.bf.reset_pdr = 0;
76 pe_dma_cfg.bf.reset_pe = 0;
77 pe_dma_cfg.bf.bo_td_en = 0;
78 writel(pe_dma_cfg.w, dev->ce_base + CRYPTO4XX_PE_DMA_CFG);
79 writel(dev->pdr_pa, dev->ce_base + CRYPTO4XX_PDR_BASE);
80 writel(dev->pdr_pa, dev->ce_base + CRYPTO4XX_RDR_BASE);
81 writel(PPC4XX_PRNG_CTRL_AUTO_EN, dev->ce_base + CRYPTO4XX_PRNG_CTRL);
82 get_random_bytes(&rand_num, sizeof(rand_num));
83 writel(rand_num, dev->ce_base + CRYPTO4XX_PRNG_SEED_L);
84 get_random_bytes(&rand_num, sizeof(rand_num));
85 writel(rand_num, dev->ce_base + CRYPTO4XX_PRNG_SEED_H);
86 ring_size.w = 0;
87 ring_size.bf.ring_offset = PPC4XX_PD_SIZE;
88 ring_size.bf.ring_size = PPC4XX_NUM_PD;
89 writel(ring_size.w, dev->ce_base + CRYPTO4XX_RING_SIZE);
90 ring_ctrl.w = 0;
91 writel(ring_ctrl.w, dev->ce_base + CRYPTO4XX_RING_CTRL);
92 device_ctrl = readl(dev->ce_base + CRYPTO4XX_DEVICE_CTRL);
93 device_ctrl |= PPC4XX_DC_3DES_EN;
94 writel(device_ctrl, dev->ce_base + CRYPTO4XX_DEVICE_CTRL);
95 writel(dev->gdr_pa, dev->ce_base + CRYPTO4XX_GATH_RING_BASE);
96 writel(dev->sdr_pa, dev->ce_base + CRYPTO4XX_SCAT_RING_BASE);
97 part_ring_size.w = 0;
98 part_ring_size.bf.sdr_size = PPC4XX_SDR_SIZE;
99 part_ring_size.bf.gdr_size = PPC4XX_GDR_SIZE;
100 writel(part_ring_size.w, dev->ce_base + CRYPTO4XX_PART_RING_SIZE);
101 writel(PPC4XX_SD_BUFFER_SIZE, dev->ce_base + CRYPTO4XX_PART_RING_CFG);
102 io_threshold.w = 0;
103 io_threshold.bf.output_threshold = PPC4XX_OUTPUT_THRESHOLD;
104 io_threshold.bf.input_threshold = PPC4XX_INPUT_THRESHOLD;
105 writel(io_threshold.w, dev->ce_base + CRYPTO4XX_IO_THRESHOLD);
106 writel(0, dev->ce_base + CRYPTO4XX_PDR_BASE_UADDR);
107 writel(0, dev->ce_base + CRYPTO4XX_RDR_BASE_UADDR);
108 writel(0, dev->ce_base + CRYPTO4XX_PKT_SRC_UADDR);
109 writel(0, dev->ce_base + CRYPTO4XX_PKT_DEST_UADDR);
110 writel(0, dev->ce_base + CRYPTO4XX_SA_UADDR);
111 writel(0, dev->ce_base + CRYPTO4XX_GATH_RING_BASE_UADDR);
112 writel(0, dev->ce_base + CRYPTO4XX_SCAT_RING_BASE_UADDR);
113 /* un reset pe,sg and pdr */
114 pe_dma_cfg.bf.pe_mode = 1;
115 pe_dma_cfg.bf.reset_sg = 0;
116 pe_dma_cfg.bf.reset_pdr = 0;
117 pe_dma_cfg.bf.reset_pe = 0;
118 pe_dma_cfg.bf.bo_td_en = 0;
119 writel(pe_dma_cfg.w, dev->ce_base + CRYPTO4XX_PE_DMA_CFG);
120 /*clear all pending interrupt*/
121 writel(PPC4XX_INTERRUPT_CLR, dev->ce_base + CRYPTO4XX_INT_CLR);
122 writel(PPC4XX_INT_DESCR_CNT, dev->ce_base + CRYPTO4XX_INT_DESCR_CNT);
123 writel(PPC4XX_INT_DESCR_CNT, dev->ce_base + CRYPTO4XX_INT_DESCR_CNT);
124 writel(PPC4XX_INT_CFG, dev->ce_base + CRYPTO4XX_INT_CFG);
125 if (dev->is_revb) {
126 writel(PPC4XX_INT_TIMEOUT_CNT_REVB << 10,
127 dev->ce_base + CRYPTO4XX_INT_TIMEOUT_CNT);
128 writel(PPC4XX_PD_DONE_INT | PPC4XX_TMO_ERR_INT,
129 dev->ce_base + CRYPTO4XX_INT_EN);
130 } else {
131 writel(PPC4XX_PD_DONE_INT, dev->ce_base + CRYPTO4XX_INT_EN);
132 }
133}
134
135int crypto4xx_alloc_sa(struct crypto4xx_ctx *ctx, u32 size)
136{
137 ctx->sa_in = kcalloc(size, 4, GFP_ATOMIC);
138 if (ctx->sa_in == NULL)
139 return -ENOMEM;
140
141 ctx->sa_out = kcalloc(size, 4, GFP_ATOMIC);
142 if (ctx->sa_out == NULL) {
143 kfree(ctx->sa_in);
144 ctx->sa_in = NULL;
145 return -ENOMEM;
146 }
147
148 ctx->sa_len = size;
149
150 return 0;
151}
152
153void crypto4xx_free_sa(struct crypto4xx_ctx *ctx)
154{
155 kfree(ctx->sa_in);
156 ctx->sa_in = NULL;
157 kfree(ctx->sa_out);
158 ctx->sa_out = NULL;
159 ctx->sa_len = 0;
160}
161
162/**
163 * alloc memory for the gather ring
164 * no need to alloc buf for the ring
165 * gdr_tail, gdr_head and gdr_count are initialized by this function
166 */
167static u32 crypto4xx_build_pdr(struct crypto4xx_device *dev)
168{
169 int i;
170 dev->pdr = dma_alloc_coherent(dev->core_dev->device,
171 sizeof(struct ce_pd) * PPC4XX_NUM_PD,
172 &dev->pdr_pa, GFP_KERNEL);
173 if (!dev->pdr)
174 return -ENOMEM;
175
176 dev->pdr_uinfo = kcalloc(PPC4XX_NUM_PD, sizeof(struct pd_uinfo),
177 GFP_KERNEL);
178 if (!dev->pdr_uinfo) {
179 dma_free_coherent(dev->core_dev->device,
180 sizeof(struct ce_pd) * PPC4XX_NUM_PD,
181 dev->pdr,
182 dev->pdr_pa);
183 return -ENOMEM;
184 }
185 dev->shadow_sa_pool = dma_alloc_coherent(dev->core_dev->device,
186 sizeof(union shadow_sa_buf) * PPC4XX_NUM_PD,
187 &dev->shadow_sa_pool_pa,
188 GFP_KERNEL);
189 if (!dev->shadow_sa_pool)
190 return -ENOMEM;
191
192 dev->shadow_sr_pool = dma_alloc_coherent(dev->core_dev->device,
193 sizeof(struct sa_state_record) * PPC4XX_NUM_PD,
194 &dev->shadow_sr_pool_pa, GFP_KERNEL);
195 if (!dev->shadow_sr_pool)
196 return -ENOMEM;
197 for (i = 0; i < PPC4XX_NUM_PD; i++) {
198 struct ce_pd *pd = &dev->pdr[i];
199 struct pd_uinfo *pd_uinfo = &dev->pdr_uinfo[i];
200
201 pd->sa = dev->shadow_sa_pool_pa +
202 sizeof(union shadow_sa_buf) * i;
203
204 /* alloc 256 bytes which is enough for any kind of dynamic sa */
205 pd_uinfo->sa_va = &dev->shadow_sa_pool[i].sa;
206
207 /* alloc state record */
208 pd_uinfo->sr_va = &dev->shadow_sr_pool[i];
209 pd_uinfo->sr_pa = dev->shadow_sr_pool_pa +
210 sizeof(struct sa_state_record) * i;
211 }
212
213 return 0;
214}
215
216static void crypto4xx_destroy_pdr(struct crypto4xx_device *dev)
217{
218 if (dev->pdr)
219 dma_free_coherent(dev->core_dev->device,
220 sizeof(struct ce_pd) * PPC4XX_NUM_PD,
221 dev->pdr, dev->pdr_pa);
222
223 if (dev->shadow_sa_pool)
224 dma_free_coherent(dev->core_dev->device,
225 sizeof(union shadow_sa_buf) * PPC4XX_NUM_PD,
226 dev->shadow_sa_pool, dev->shadow_sa_pool_pa);
227
228 if (dev->shadow_sr_pool)
229 dma_free_coherent(dev->core_dev->device,
230 sizeof(struct sa_state_record) * PPC4XX_NUM_PD,
231 dev->shadow_sr_pool, dev->shadow_sr_pool_pa);
232
233 kfree(dev->pdr_uinfo);
234}
235
236static u32 crypto4xx_get_pd_from_pdr_nolock(struct crypto4xx_device *dev)
237{
238 u32 retval;
239 u32 tmp;
240
241 retval = dev->pdr_head;
242 tmp = (dev->pdr_head + 1) % PPC4XX_NUM_PD;
243
244 if (tmp == dev->pdr_tail)
245 return ERING_WAS_FULL;
246
247 dev->pdr_head = tmp;
248
249 return retval;
250}
251
252static u32 crypto4xx_put_pd_to_pdr(struct crypto4xx_device *dev, u32 idx)
253{
254 struct pd_uinfo *pd_uinfo = &dev->pdr_uinfo[idx];
255 u32 tail;
256 unsigned long flags;
257
258 spin_lock_irqsave(&dev->core_dev->lock, flags);
259 pd_uinfo->state = PD_ENTRY_FREE;
260
261 if (dev->pdr_tail != PPC4XX_LAST_PD)
262 dev->pdr_tail++;
263 else
264 dev->pdr_tail = 0;
265 tail = dev->pdr_tail;
266 spin_unlock_irqrestore(&dev->core_dev->lock, flags);
267
268 return tail;
269}
270
271/**
272 * alloc memory for the gather ring
273 * no need to alloc buf for the ring
274 * gdr_tail, gdr_head and gdr_count are initialized by this function
275 */
276static u32 crypto4xx_build_gdr(struct crypto4xx_device *dev)
277{
278 dev->gdr = dma_alloc_coherent(dev->core_dev->device,
279 sizeof(struct ce_gd) * PPC4XX_NUM_GD,
280 &dev->gdr_pa, GFP_KERNEL);
281 if (!dev->gdr)
282 return -ENOMEM;
283
284 return 0;
285}
286
287static inline void crypto4xx_destroy_gdr(struct crypto4xx_device *dev)
288{
289 if (dev->gdr)
290 dma_free_coherent(dev->core_dev->device,
291 sizeof(struct ce_gd) * PPC4XX_NUM_GD,
292 dev->gdr, dev->gdr_pa);
293}
294
295/*
296 * when this function is called.
297 * preemption or interrupt must be disabled
298 */
299static u32 crypto4xx_get_n_gd(struct crypto4xx_device *dev, int n)
300{
301 u32 retval;
302 u32 tmp;
303
304 if (n >= PPC4XX_NUM_GD)
305 return ERING_WAS_FULL;
306
307 retval = dev->gdr_head;
308 tmp = (dev->gdr_head + n) % PPC4XX_NUM_GD;
309 if (dev->gdr_head > dev->gdr_tail) {
310 if (tmp < dev->gdr_head && tmp >= dev->gdr_tail)
311 return ERING_WAS_FULL;
312 } else if (dev->gdr_head < dev->gdr_tail) {
313 if (tmp < dev->gdr_head || tmp >= dev->gdr_tail)
314 return ERING_WAS_FULL;
315 }
316 dev->gdr_head = tmp;
317
318 return retval;
319}
320
321static u32 crypto4xx_put_gd_to_gdr(struct crypto4xx_device *dev)
322{
323 unsigned long flags;
324
325 spin_lock_irqsave(&dev->core_dev->lock, flags);
326 if (dev->gdr_tail == dev->gdr_head) {
327 spin_unlock_irqrestore(&dev->core_dev->lock, flags);
328 return 0;
329 }
330
331 if (dev->gdr_tail != PPC4XX_LAST_GD)
332 dev->gdr_tail++;
333 else
334 dev->gdr_tail = 0;
335
336 spin_unlock_irqrestore(&dev->core_dev->lock, flags);
337
338 return 0;
339}
340
341static inline struct ce_gd *crypto4xx_get_gdp(struct crypto4xx_device *dev,
342 dma_addr_t *gd_dma, u32 idx)
343{
344 *gd_dma = dev->gdr_pa + sizeof(struct ce_gd) * idx;
345
346 return &dev->gdr[idx];
347}
348
349/**
350 * alloc memory for the scatter ring
351 * need to alloc buf for the ring
352 * sdr_tail, sdr_head and sdr_count are initialized by this function
353 */
354static u32 crypto4xx_build_sdr(struct crypto4xx_device *dev)
355{
356 int i;
357
358 dev->scatter_buffer_va =
359 dma_alloc_coherent(dev->core_dev->device,
360 PPC4XX_SD_BUFFER_SIZE * PPC4XX_NUM_SD,
361 &dev->scatter_buffer_pa, GFP_KERNEL);
362 if (!dev->scatter_buffer_va)
363 return -ENOMEM;
364
365 /* alloc memory for scatter descriptor ring */
366 dev->sdr = dma_alloc_coherent(dev->core_dev->device,
367 sizeof(struct ce_sd) * PPC4XX_NUM_SD,
368 &dev->sdr_pa, GFP_KERNEL);
369 if (!dev->sdr)
370 return -ENOMEM;
371
372 for (i = 0; i < PPC4XX_NUM_SD; i++) {
373 dev->sdr[i].ptr = dev->scatter_buffer_pa +
374 PPC4XX_SD_BUFFER_SIZE * i;
375 }
376
377 return 0;
378}
379
380static void crypto4xx_destroy_sdr(struct crypto4xx_device *dev)
381{
382 if (dev->sdr)
383 dma_free_coherent(dev->core_dev->device,
384 sizeof(struct ce_sd) * PPC4XX_NUM_SD,
385 dev->sdr, dev->sdr_pa);
386
387 if (dev->scatter_buffer_va)
388 dma_free_coherent(dev->core_dev->device,
389 PPC4XX_SD_BUFFER_SIZE * PPC4XX_NUM_SD,
390 dev->scatter_buffer_va,
391 dev->scatter_buffer_pa);
392}
393
394/*
395 * when this function is called.
396 * preemption or interrupt must be disabled
397 */
398static u32 crypto4xx_get_n_sd(struct crypto4xx_device *dev, int n)
399{
400 u32 retval;
401 u32 tmp;
402
403 if (n >= PPC4XX_NUM_SD)
404 return ERING_WAS_FULL;
405
406 retval = dev->sdr_head;
407 tmp = (dev->sdr_head + n) % PPC4XX_NUM_SD;
408 if (dev->sdr_head > dev->gdr_tail) {
409 if (tmp < dev->sdr_head && tmp >= dev->sdr_tail)
410 return ERING_WAS_FULL;
411 } else if (dev->sdr_head < dev->sdr_tail) {
412 if (tmp < dev->sdr_head || tmp >= dev->sdr_tail)
413 return ERING_WAS_FULL;
414 } /* the head = tail, or empty case is already take cared */
415 dev->sdr_head = tmp;
416
417 return retval;
418}
419
420static u32 crypto4xx_put_sd_to_sdr(struct crypto4xx_device *dev)
421{
422 unsigned long flags;
423
424 spin_lock_irqsave(&dev->core_dev->lock, flags);
425 if (dev->sdr_tail == dev->sdr_head) {
426 spin_unlock_irqrestore(&dev->core_dev->lock, flags);
427 return 0;
428 }
429 if (dev->sdr_tail != PPC4XX_LAST_SD)
430 dev->sdr_tail++;
431 else
432 dev->sdr_tail = 0;
433 spin_unlock_irqrestore(&dev->core_dev->lock, flags);
434
435 return 0;
436}
437
438static inline struct ce_sd *crypto4xx_get_sdp(struct crypto4xx_device *dev,
439 dma_addr_t *sd_dma, u32 idx)
440{
441 *sd_dma = dev->sdr_pa + sizeof(struct ce_sd) * idx;
442
443 return &dev->sdr[idx];
444}
445
446static void crypto4xx_copy_pkt_to_dst(struct crypto4xx_device *dev,
447 struct ce_pd *pd,
448 struct pd_uinfo *pd_uinfo,
449 u32 nbytes,
450 struct scatterlist *dst)
451{
452 unsigned int first_sd = pd_uinfo->first_sd;
453 unsigned int last_sd;
454 unsigned int overflow = 0;
455 unsigned int to_copy;
456 unsigned int dst_start = 0;
457
458 /*
459 * Because the scatter buffers are all neatly organized in one
460 * big continuous ringbuffer; scatterwalk_map_and_copy() can
461 * be instructed to copy a range of buffers in one go.
462 */
463
464 last_sd = (first_sd + pd_uinfo->num_sd);
465 if (last_sd > PPC4XX_LAST_SD) {
466 last_sd = PPC4XX_LAST_SD;
467 overflow = last_sd % PPC4XX_NUM_SD;
468 }
469
470 while (nbytes) {
471 void *buf = dev->scatter_buffer_va +
472 first_sd * PPC4XX_SD_BUFFER_SIZE;
473
474 to_copy = min(nbytes, PPC4XX_SD_BUFFER_SIZE *
475 (1 + last_sd - first_sd));
476 scatterwalk_map_and_copy(buf, dst, dst_start, to_copy, 1);
477 nbytes -= to_copy;
478
479 if (overflow) {
480 first_sd = 0;
481 last_sd = overflow;
482 dst_start += to_copy;
483 overflow = 0;
484 }
485 }
486}
487
488static void crypto4xx_copy_digest_to_dst(void *dst,
489 struct pd_uinfo *pd_uinfo,
490 struct crypto4xx_ctx *ctx)
491{
492 struct dynamic_sa_ctl *sa = (struct dynamic_sa_ctl *) ctx->sa_in;
493
494 if (sa->sa_command_0.bf.hash_alg == SA_HASH_ALG_SHA1) {
495 memcpy(dst, pd_uinfo->sr_va->save_digest,
496 SA_HASH_ALG_SHA1_DIGEST_SIZE);
497 }
498}
499
500static void crypto4xx_ret_sg_desc(struct crypto4xx_device *dev,
501 struct pd_uinfo *pd_uinfo)
502{
503 int i;
504 if (pd_uinfo->num_gd) {
505 for (i = 0; i < pd_uinfo->num_gd; i++)
506 crypto4xx_put_gd_to_gdr(dev);
507 pd_uinfo->first_gd = 0xffffffff;
508 pd_uinfo->num_gd = 0;
509 }
510 if (pd_uinfo->num_sd) {
511 for (i = 0; i < pd_uinfo->num_sd; i++)
512 crypto4xx_put_sd_to_sdr(dev);
513
514 pd_uinfo->first_sd = 0xffffffff;
515 pd_uinfo->num_sd = 0;
516 }
517}
518
519static void crypto4xx_cipher_done(struct crypto4xx_device *dev,
520 struct pd_uinfo *pd_uinfo,
521 struct ce_pd *pd)
522{
523 struct skcipher_request *req;
524 struct scatterlist *dst;
525 dma_addr_t addr;
526
527 req = skcipher_request_cast(pd_uinfo->async_req);
528
529 if (pd_uinfo->sa_va->sa_command_0.bf.scatter) {
530 crypto4xx_copy_pkt_to_dst(dev, pd, pd_uinfo,
531 req->cryptlen, req->dst);
532 } else {
533 dst = pd_uinfo->dest_va;
534 addr = dma_map_page(dev->core_dev->device, sg_page(dst),
535 dst->offset, dst->length, DMA_FROM_DEVICE);
536 }
537
538 if (pd_uinfo->sa_va->sa_command_0.bf.save_iv == SA_SAVE_IV) {
539 struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
540
541 crypto4xx_memcpy_from_le32((u32 *)req->iv,
542 pd_uinfo->sr_va->save_iv,
543 crypto_skcipher_ivsize(skcipher));
544 }
545
546 crypto4xx_ret_sg_desc(dev, pd_uinfo);
547
548 if (pd_uinfo->state & PD_ENTRY_BUSY)
549 skcipher_request_complete(req, -EINPROGRESS);
550 skcipher_request_complete(req, 0);
551}
552
553static void crypto4xx_ahash_done(struct crypto4xx_device *dev,
554 struct pd_uinfo *pd_uinfo)
555{
556 struct crypto4xx_ctx *ctx;
557 struct ahash_request *ahash_req;
558
559 ahash_req = ahash_request_cast(pd_uinfo->async_req);
560 ctx = crypto_tfm_ctx(ahash_req->base.tfm);
561
562 crypto4xx_copy_digest_to_dst(ahash_req->result, pd_uinfo,
563 crypto_tfm_ctx(ahash_req->base.tfm));
564 crypto4xx_ret_sg_desc(dev, pd_uinfo);
565
566 if (pd_uinfo->state & PD_ENTRY_BUSY)
567 ahash_request_complete(ahash_req, -EINPROGRESS);
568 ahash_request_complete(ahash_req, 0);
569}
570
571static void crypto4xx_aead_done(struct crypto4xx_device *dev,
572 struct pd_uinfo *pd_uinfo,
573 struct ce_pd *pd)
574{
575 struct aead_request *aead_req = container_of(pd_uinfo->async_req,
576 struct aead_request, base);
577 struct scatterlist *dst = pd_uinfo->dest_va;
578 size_t cp_len = crypto_aead_authsize(
579 crypto_aead_reqtfm(aead_req));
580 u32 icv[AES_BLOCK_SIZE];
581 int err = 0;
582
583 if (pd_uinfo->sa_va->sa_command_0.bf.scatter) {
584 crypto4xx_copy_pkt_to_dst(dev, pd, pd_uinfo,
585 pd->pd_ctl_len.bf.pkt_len,
586 dst);
587 } else {
588 dma_unmap_page(dev->core_dev->device, pd->dest, dst->length,
589 DMA_FROM_DEVICE);
590 }
591
592 if (pd_uinfo->sa_va->sa_command_0.bf.dir == DIR_OUTBOUND) {
593 /* append icv at the end */
594 crypto4xx_memcpy_from_le32(icv, pd_uinfo->sr_va->save_digest,
595 sizeof(icv));
596
597 scatterwalk_map_and_copy(icv, dst, aead_req->cryptlen,
598 cp_len, 1);
599 } else {
600 /* check icv at the end */
601 scatterwalk_map_and_copy(icv, aead_req->src,
602 aead_req->assoclen + aead_req->cryptlen -
603 cp_len, cp_len, 0);
604
605 crypto4xx_memcpy_from_le32(icv, icv, sizeof(icv));
606
607 if (crypto_memneq(icv, pd_uinfo->sr_va->save_digest, cp_len))
608 err = -EBADMSG;
609 }
610
611 crypto4xx_ret_sg_desc(dev, pd_uinfo);
612
613 if (pd->pd_ctl.bf.status & 0xff) {
614 if (!__ratelimit(&dev->aead_ratelimit)) {
615 if (pd->pd_ctl.bf.status & 2)
616 pr_err("pad fail error\n");
617 if (pd->pd_ctl.bf.status & 4)
618 pr_err("seqnum fail\n");
619 if (pd->pd_ctl.bf.status & 8)
620 pr_err("error _notify\n");
621 pr_err("aead return err status = 0x%02x\n",
622 pd->pd_ctl.bf.status & 0xff);
623 pr_err("pd pad_ctl = 0x%08x\n",
624 pd->pd_ctl.bf.pd_pad_ctl);
625 }
626 err = -EINVAL;
627 }
628
629 if (pd_uinfo->state & PD_ENTRY_BUSY)
630 aead_request_complete(aead_req, -EINPROGRESS);
631
632 aead_request_complete(aead_req, err);
633}
634
635static void crypto4xx_pd_done(struct crypto4xx_device *dev, u32 idx)
636{
637 struct ce_pd *pd = &dev->pdr[idx];
638 struct pd_uinfo *pd_uinfo = &dev->pdr_uinfo[idx];
639
640 switch (crypto_tfm_alg_type(pd_uinfo->async_req->tfm)) {
641 case CRYPTO_ALG_TYPE_SKCIPHER:
642 crypto4xx_cipher_done(dev, pd_uinfo, pd);
643 break;
644 case CRYPTO_ALG_TYPE_AEAD:
645 crypto4xx_aead_done(dev, pd_uinfo, pd);
646 break;
647 case CRYPTO_ALG_TYPE_AHASH:
648 crypto4xx_ahash_done(dev, pd_uinfo);
649 break;
650 }
651}
652
653static void crypto4xx_stop_all(struct crypto4xx_core_device *core_dev)
654{
655 crypto4xx_destroy_pdr(core_dev->dev);
656 crypto4xx_destroy_gdr(core_dev->dev);
657 crypto4xx_destroy_sdr(core_dev->dev);
658 iounmap(core_dev->dev->ce_base);
659 kfree(core_dev->dev);
660 kfree(core_dev);
661}
662
663static u32 get_next_gd(u32 current)
664{
665 if (current != PPC4XX_LAST_GD)
666 return current + 1;
667 else
668 return 0;
669}
670
671static u32 get_next_sd(u32 current)
672{
673 if (current != PPC4XX_LAST_SD)
674 return current + 1;
675 else
676 return 0;
677}
678
679int crypto4xx_build_pd(struct crypto_async_request *req,
680 struct crypto4xx_ctx *ctx,
681 struct scatterlist *src,
682 struct scatterlist *dst,
683 const unsigned int datalen,
684 const __le32 *iv, const u32 iv_len,
685 const struct dynamic_sa_ctl *req_sa,
686 const unsigned int sa_len,
687 const unsigned int assoclen,
688 struct scatterlist *_dst)
689{
690 struct crypto4xx_device *dev = ctx->dev;
691 struct dynamic_sa_ctl *sa;
692 struct ce_gd *gd;
693 struct ce_pd *pd;
694 u32 num_gd, num_sd;
695 u32 fst_gd = 0xffffffff;
696 u32 fst_sd = 0xffffffff;
697 u32 pd_entry;
698 unsigned long flags;
699 struct pd_uinfo *pd_uinfo;
700 unsigned int nbytes = datalen;
701 size_t offset_to_sr_ptr;
702 u32 gd_idx = 0;
703 int tmp;
704 bool is_busy, force_sd;
705
706 /*
707 * There's a very subtile/disguised "bug" in the hardware that
708 * gets indirectly mentioned in 18.1.3.5 Encryption/Decryption
709 * of the hardware spec:
710 * *drum roll* the AES/(T)DES OFB and CFB modes are listed as
711 * operation modes for >>> "Block ciphers" <<<.
712 *
713 * To workaround this issue and stop the hardware from causing
714 * "overran dst buffer" on crypttexts that are not a multiple
715 * of 16 (AES_BLOCK_SIZE), we force the driver to use the
716 * scatter buffers.
717 */
718 force_sd = (req_sa->sa_command_1.bf.crypto_mode9_8 == CRYPTO_MODE_CFB
719 || req_sa->sa_command_1.bf.crypto_mode9_8 == CRYPTO_MODE_OFB)
720 && (datalen % AES_BLOCK_SIZE);
721
722 /* figure how many gd are needed */
723 tmp = sg_nents_for_len(src, assoclen + datalen);
724 if (tmp < 0) {
725 dev_err(dev->core_dev->device, "Invalid number of src SG.\n");
726 return tmp;
727 }
728 if (tmp == 1)
729 tmp = 0;
730 num_gd = tmp;
731
732 if (assoclen) {
733 nbytes += assoclen;
734 dst = scatterwalk_ffwd(_dst, dst, assoclen);
735 }
736
737 /* figure how many sd are needed */
738 if (sg_is_last(dst) && force_sd == false) {
739 num_sd = 0;
740 } else {
741 if (datalen > PPC4XX_SD_BUFFER_SIZE) {
742 num_sd = datalen / PPC4XX_SD_BUFFER_SIZE;
743 if (datalen % PPC4XX_SD_BUFFER_SIZE)
744 num_sd++;
745 } else {
746 num_sd = 1;
747 }
748 }
749
750 /*
751 * The follow section of code needs to be protected
752 * The gather ring and scatter ring needs to be consecutive
753 * In case of run out of any kind of descriptor, the descriptor
754 * already got must be return the original place.
755 */
756 spin_lock_irqsave(&dev->core_dev->lock, flags);
757 /*
758 * Let the caller know to slow down, once more than 13/16ths = 81%
759 * of the available data contexts are being used simultaneously.
760 *
761 * With PPC4XX_NUM_PD = 256, this will leave a "backlog queue" for
762 * 31 more contexts. Before new requests have to be rejected.
763 */
764 if (req->flags & CRYPTO_TFM_REQ_MAY_BACKLOG) {
765 is_busy = ((dev->pdr_head - dev->pdr_tail) % PPC4XX_NUM_PD) >=
766 ((PPC4XX_NUM_PD * 13) / 16);
767 } else {
768 /*
769 * To fix contention issues between ipsec (no blacklog) and
770 * dm-crypto (backlog) reserve 32 entries for "no backlog"
771 * data contexts.
772 */
773 is_busy = ((dev->pdr_head - dev->pdr_tail) % PPC4XX_NUM_PD) >=
774 ((PPC4XX_NUM_PD * 15) / 16);
775
776 if (is_busy) {
777 spin_unlock_irqrestore(&dev->core_dev->lock, flags);
778 return -EBUSY;
779 }
780 }
781
782 if (num_gd) {
783 fst_gd = crypto4xx_get_n_gd(dev, num_gd);
784 if (fst_gd == ERING_WAS_FULL) {
785 spin_unlock_irqrestore(&dev->core_dev->lock, flags);
786 return -EAGAIN;
787 }
788 }
789 if (num_sd) {
790 fst_sd = crypto4xx_get_n_sd(dev, num_sd);
791 if (fst_sd == ERING_WAS_FULL) {
792 if (num_gd)
793 dev->gdr_head = fst_gd;
794 spin_unlock_irqrestore(&dev->core_dev->lock, flags);
795 return -EAGAIN;
796 }
797 }
798 pd_entry = crypto4xx_get_pd_from_pdr_nolock(dev);
799 if (pd_entry == ERING_WAS_FULL) {
800 if (num_gd)
801 dev->gdr_head = fst_gd;
802 if (num_sd)
803 dev->sdr_head = fst_sd;
804 spin_unlock_irqrestore(&dev->core_dev->lock, flags);
805 return -EAGAIN;
806 }
807 spin_unlock_irqrestore(&dev->core_dev->lock, flags);
808
809 pd = &dev->pdr[pd_entry];
810 pd->sa_len = sa_len;
811
812 pd_uinfo = &dev->pdr_uinfo[pd_entry];
813 pd_uinfo->num_gd = num_gd;
814 pd_uinfo->num_sd = num_sd;
815 pd_uinfo->dest_va = dst;
816 pd_uinfo->async_req = req;
817
818 if (iv_len)
819 memcpy(pd_uinfo->sr_va->save_iv, iv, iv_len);
820
821 sa = pd_uinfo->sa_va;
822 memcpy(sa, req_sa, sa_len * 4);
823
824 sa->sa_command_1.bf.hash_crypto_offset = (assoclen >> 2);
825 offset_to_sr_ptr = get_dynamic_sa_offset_state_ptr_field(sa);
826 *(u32 *)((unsigned long)sa + offset_to_sr_ptr) = pd_uinfo->sr_pa;
827
828 if (num_gd) {
829 dma_addr_t gd_dma;
830 struct scatterlist *sg;
831
832 /* get first gd we are going to use */
833 gd_idx = fst_gd;
834 pd_uinfo->first_gd = fst_gd;
835 gd = crypto4xx_get_gdp(dev, &gd_dma, gd_idx);
836 pd->src = gd_dma;
837 /* enable gather */
838 sa->sa_command_0.bf.gather = 1;
839 /* walk the sg, and setup gather array */
840
841 sg = src;
842 while (nbytes) {
843 size_t len;
844
845 len = min(sg->length, nbytes);
846 gd->ptr = dma_map_page(dev->core_dev->device,
847 sg_page(sg), sg->offset, len, DMA_TO_DEVICE);
848 gd->ctl_len.len = len;
849 gd->ctl_len.done = 0;
850 gd->ctl_len.ready = 1;
851 if (len >= nbytes)
852 break;
853
854 nbytes -= sg->length;
855 gd_idx = get_next_gd(gd_idx);
856 gd = crypto4xx_get_gdp(dev, &gd_dma, gd_idx);
857 sg = sg_next(sg);
858 }
859 } else {
860 pd->src = (u32)dma_map_page(dev->core_dev->device, sg_page(src),
861 src->offset, min(nbytes, src->length),
862 DMA_TO_DEVICE);
863 /*
864 * Disable gather in sa command
865 */
866 sa->sa_command_0.bf.gather = 0;
867 /*
868 * Indicate gather array is not used
869 */
870 pd_uinfo->first_gd = 0xffffffff;
871 }
872 if (!num_sd) {
873 /*
874 * we know application give us dst a whole piece of memory
875 * no need to use scatter ring.
876 */
877 pd_uinfo->first_sd = 0xffffffff;
878 sa->sa_command_0.bf.scatter = 0;
879 pd->dest = (u32)dma_map_page(dev->core_dev->device,
880 sg_page(dst), dst->offset,
881 min(datalen, dst->length),
882 DMA_TO_DEVICE);
883 } else {
884 dma_addr_t sd_dma;
885 struct ce_sd *sd = NULL;
886
887 u32 sd_idx = fst_sd;
888 nbytes = datalen;
889 sa->sa_command_0.bf.scatter = 1;
890 pd_uinfo->first_sd = fst_sd;
891 sd = crypto4xx_get_sdp(dev, &sd_dma, sd_idx);
892 pd->dest = sd_dma;
893 /* setup scatter descriptor */
894 sd->ctl.done = 0;
895 sd->ctl.rdy = 1;
896 /* sd->ptr should be setup by sd_init routine*/
897 if (nbytes >= PPC4XX_SD_BUFFER_SIZE)
898 nbytes -= PPC4XX_SD_BUFFER_SIZE;
899 else
900 nbytes = 0;
901 while (nbytes) {
902 sd_idx = get_next_sd(sd_idx);
903 sd = crypto4xx_get_sdp(dev, &sd_dma, sd_idx);
904 /* setup scatter descriptor */
905 sd->ctl.done = 0;
906 sd->ctl.rdy = 1;
907 if (nbytes >= PPC4XX_SD_BUFFER_SIZE) {
908 nbytes -= PPC4XX_SD_BUFFER_SIZE;
909 } else {
910 /*
911 * SD entry can hold PPC4XX_SD_BUFFER_SIZE,
912 * which is more than nbytes, so done.
913 */
914 nbytes = 0;
915 }
916 }
917 }
918
919 pd->pd_ctl.w = PD_CTL_HOST_READY |
920 ((crypto_tfm_alg_type(req->tfm) == CRYPTO_ALG_TYPE_AHASH) |
921 (crypto_tfm_alg_type(req->tfm) == CRYPTO_ALG_TYPE_AEAD) ?
922 PD_CTL_HASH_FINAL : 0);
923 pd->pd_ctl_len.w = 0x00400000 | (assoclen + datalen);
924 pd_uinfo->state = PD_ENTRY_INUSE | (is_busy ? PD_ENTRY_BUSY : 0);
925
926 wmb();
927 /* write any value to push engine to read a pd */
928 writel(0, dev->ce_base + CRYPTO4XX_INT_DESCR_RD);
929 writel(1, dev->ce_base + CRYPTO4XX_INT_DESCR_RD);
930 return is_busy ? -EBUSY : -EINPROGRESS;
931}
932
933/**
934 * Algorithm Registration Functions
935 */
936static void crypto4xx_ctx_init(struct crypto4xx_alg *amcc_alg,
937 struct crypto4xx_ctx *ctx)
938{
939 ctx->dev = amcc_alg->dev;
940 ctx->sa_in = NULL;
941 ctx->sa_out = NULL;
942 ctx->sa_len = 0;
943}
944
945static int crypto4xx_sk_init(struct crypto_skcipher *sk)
946{
947 struct skcipher_alg *alg = crypto_skcipher_alg(sk);
948 struct crypto4xx_alg *amcc_alg;
949 struct crypto4xx_ctx *ctx = crypto_skcipher_ctx(sk);
950
951 if (alg->base.cra_flags & CRYPTO_ALG_NEED_FALLBACK) {
952 ctx->sw_cipher.cipher =
953 crypto_alloc_sync_skcipher(alg->base.cra_name, 0,
954 CRYPTO_ALG_NEED_FALLBACK);
955 if (IS_ERR(ctx->sw_cipher.cipher))
956 return PTR_ERR(ctx->sw_cipher.cipher);
957 }
958
959 amcc_alg = container_of(alg, struct crypto4xx_alg, alg.u.cipher);
960 crypto4xx_ctx_init(amcc_alg, ctx);
961 return 0;
962}
963
964static void crypto4xx_common_exit(struct crypto4xx_ctx *ctx)
965{
966 crypto4xx_free_sa(ctx);
967}
968
969static void crypto4xx_sk_exit(struct crypto_skcipher *sk)
970{
971 struct crypto4xx_ctx *ctx = crypto_skcipher_ctx(sk);
972
973 crypto4xx_common_exit(ctx);
974 if (ctx->sw_cipher.cipher)
975 crypto_free_sync_skcipher(ctx->sw_cipher.cipher);
976}
977
978static int crypto4xx_aead_init(struct crypto_aead *tfm)
979{
980 struct aead_alg *alg = crypto_aead_alg(tfm);
981 struct crypto4xx_ctx *ctx = crypto_aead_ctx(tfm);
982 struct crypto4xx_alg *amcc_alg;
983
984 ctx->sw_cipher.aead = crypto_alloc_aead(alg->base.cra_name, 0,
985 CRYPTO_ALG_NEED_FALLBACK |
986 CRYPTO_ALG_ASYNC);
987 if (IS_ERR(ctx->sw_cipher.aead))
988 return PTR_ERR(ctx->sw_cipher.aead);
989
990 amcc_alg = container_of(alg, struct crypto4xx_alg, alg.u.aead);
991 crypto4xx_ctx_init(amcc_alg, ctx);
992 crypto_aead_set_reqsize(tfm, max(sizeof(struct aead_request) + 32 +
993 crypto_aead_reqsize(ctx->sw_cipher.aead),
994 sizeof(struct crypto4xx_aead_reqctx)));
995 return 0;
996}
997
998static void crypto4xx_aead_exit(struct crypto_aead *tfm)
999{
1000 struct crypto4xx_ctx *ctx = crypto_aead_ctx(tfm);
1001
1002 crypto4xx_common_exit(ctx);
1003 crypto_free_aead(ctx->sw_cipher.aead);
1004}
1005
1006static int crypto4xx_register_alg(struct crypto4xx_device *sec_dev,
1007 struct crypto4xx_alg_common *crypto_alg,
1008 int array_size)
1009{
1010 struct crypto4xx_alg *alg;
1011 int i;
1012 int rc = 0;
1013
1014 for (i = 0; i < array_size; i++) {
1015 alg = kzalloc(sizeof(struct crypto4xx_alg), GFP_KERNEL);
1016 if (!alg)
1017 return -ENOMEM;
1018
1019 alg->alg = crypto_alg[i];
1020 alg->dev = sec_dev;
1021
1022 switch (alg->alg.type) {
1023 case CRYPTO_ALG_TYPE_AEAD:
1024 rc = crypto_register_aead(&alg->alg.u.aead);
1025 break;
1026
1027 case CRYPTO_ALG_TYPE_AHASH:
1028 rc = crypto_register_ahash(&alg->alg.u.hash);
1029 break;
1030
1031 case CRYPTO_ALG_TYPE_RNG:
1032 rc = crypto_register_rng(&alg->alg.u.rng);
1033 break;
1034
1035 default:
1036 rc = crypto_register_skcipher(&alg->alg.u.cipher);
1037 break;
1038 }
1039
1040 if (rc)
1041 kfree(alg);
1042 else
1043 list_add_tail(&alg->entry, &sec_dev->alg_list);
1044 }
1045
1046 return 0;
1047}
1048
1049static void crypto4xx_unregister_alg(struct crypto4xx_device *sec_dev)
1050{
1051 struct crypto4xx_alg *alg, *tmp;
1052
1053 list_for_each_entry_safe(alg, tmp, &sec_dev->alg_list, entry) {
1054 list_del(&alg->entry);
1055 switch (alg->alg.type) {
1056 case CRYPTO_ALG_TYPE_AHASH:
1057 crypto_unregister_ahash(&alg->alg.u.hash);
1058 break;
1059
1060 case CRYPTO_ALG_TYPE_AEAD:
1061 crypto_unregister_aead(&alg->alg.u.aead);
1062 break;
1063
1064 case CRYPTO_ALG_TYPE_RNG:
1065 crypto_unregister_rng(&alg->alg.u.rng);
1066 break;
1067
1068 default:
1069 crypto_unregister_skcipher(&alg->alg.u.cipher);
1070 }
1071 kfree(alg);
1072 }
1073}
1074
1075static void crypto4xx_bh_tasklet_cb(unsigned long data)
1076{
1077 struct device *dev = (struct device *)data;
1078 struct crypto4xx_core_device *core_dev = dev_get_drvdata(dev);
1079 struct pd_uinfo *pd_uinfo;
1080 struct ce_pd *pd;
1081 u32 tail = core_dev->dev->pdr_tail;
1082 u32 head = core_dev->dev->pdr_head;
1083
1084 do {
1085 pd_uinfo = &core_dev->dev->pdr_uinfo[tail];
1086 pd = &core_dev->dev->pdr[tail];
1087 if ((pd_uinfo->state & PD_ENTRY_INUSE) &&
1088 ((READ_ONCE(pd->pd_ctl.w) &
1089 (PD_CTL_PE_DONE | PD_CTL_HOST_READY)) ==
1090 PD_CTL_PE_DONE)) {
1091 crypto4xx_pd_done(core_dev->dev, tail);
1092 tail = crypto4xx_put_pd_to_pdr(core_dev->dev, tail);
1093 } else {
1094 /* if tail not done, break */
1095 break;
1096 }
1097 } while (head != tail);
1098}
1099
1100/**
1101 * Top Half of isr.
1102 */
1103static inline irqreturn_t crypto4xx_interrupt_handler(int irq, void *data,
1104 u32 clr_val)
1105{
1106 struct device *dev = (struct device *)data;
1107 struct crypto4xx_core_device *core_dev = dev_get_drvdata(dev);
1108
1109 writel(clr_val, core_dev->dev->ce_base + CRYPTO4XX_INT_CLR);
1110 tasklet_schedule(&core_dev->tasklet);
1111
1112 return IRQ_HANDLED;
1113}
1114
1115static irqreturn_t crypto4xx_ce_interrupt_handler(int irq, void *data)
1116{
1117 return crypto4xx_interrupt_handler(irq, data, PPC4XX_INTERRUPT_CLR);
1118}
1119
1120static irqreturn_t crypto4xx_ce_interrupt_handler_revb(int irq, void *data)
1121{
1122 return crypto4xx_interrupt_handler(irq, data, PPC4XX_INTERRUPT_CLR |
1123 PPC4XX_TMO_ERR_INT);
1124}
1125
1126static int ppc4xx_prng_data_read(struct crypto4xx_device *dev,
1127 u8 *data, unsigned int max)
1128{
1129 unsigned int i, curr = 0;
1130 u32 val[2];
1131
1132 do {
1133 /* trigger PRN generation */
1134 writel(PPC4XX_PRNG_CTRL_AUTO_EN,
1135 dev->ce_base + CRYPTO4XX_PRNG_CTRL);
1136
1137 for (i = 0; i < 1024; i++) {
1138 /* usually 19 iterations are enough */
1139 if ((readl(dev->ce_base + CRYPTO4XX_PRNG_STAT) &
1140 CRYPTO4XX_PRNG_STAT_BUSY))
1141 continue;
1142
1143 val[0] = readl_be(dev->ce_base + CRYPTO4XX_PRNG_RES_0);
1144 val[1] = readl_be(dev->ce_base + CRYPTO4XX_PRNG_RES_1);
1145 break;
1146 }
1147 if (i == 1024)
1148 return -ETIMEDOUT;
1149
1150 if ((max - curr) >= 8) {
1151 memcpy(data, &val, 8);
1152 data += 8;
1153 curr += 8;
1154 } else {
1155 /* copy only remaining bytes */
1156 memcpy(data, &val, max - curr);
1157 break;
1158 }
1159 } while (curr < max);
1160
1161 return curr;
1162}
1163
1164static int crypto4xx_prng_generate(struct crypto_rng *tfm,
1165 const u8 *src, unsigned int slen,
1166 u8 *dstn, unsigned int dlen)
1167{
1168 struct rng_alg *alg = crypto_rng_alg(tfm);
1169 struct crypto4xx_alg *amcc_alg;
1170 struct crypto4xx_device *dev;
1171 int ret;
1172
1173 amcc_alg = container_of(alg, struct crypto4xx_alg, alg.u.rng);
1174 dev = amcc_alg->dev;
1175
1176 mutex_lock(&dev->core_dev->rng_lock);
1177 ret = ppc4xx_prng_data_read(dev, dstn, dlen);
1178 mutex_unlock(&dev->core_dev->rng_lock);
1179 return ret;
1180}
1181
1182
1183static int crypto4xx_prng_seed(struct crypto_rng *tfm, const u8 *seed,
1184 unsigned int slen)
1185{
1186 return 0;
1187}
1188
1189/**
1190 * Supported Crypto Algorithms
1191 */
1192static struct crypto4xx_alg_common crypto4xx_alg[] = {
1193 /* Crypto AES modes */
1194 { .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = {
1195 .base = {
1196 .cra_name = "cbc(aes)",
1197 .cra_driver_name = "cbc-aes-ppc4xx",
1198 .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
1199 .cra_flags = CRYPTO_ALG_ASYNC |
1200 CRYPTO_ALG_KERN_DRIVER_ONLY,
1201 .cra_blocksize = AES_BLOCK_SIZE,
1202 .cra_ctxsize = sizeof(struct crypto4xx_ctx),
1203 .cra_module = THIS_MODULE,
1204 },
1205 .min_keysize = AES_MIN_KEY_SIZE,
1206 .max_keysize = AES_MAX_KEY_SIZE,
1207 .ivsize = AES_IV_SIZE,
1208 .setkey = crypto4xx_setkey_aes_cbc,
1209 .encrypt = crypto4xx_encrypt_iv_block,
1210 .decrypt = crypto4xx_decrypt_iv_block,
1211 .init = crypto4xx_sk_init,
1212 .exit = crypto4xx_sk_exit,
1213 } },
1214 { .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = {
1215 .base = {
1216 .cra_name = "cfb(aes)",
1217 .cra_driver_name = "cfb-aes-ppc4xx",
1218 .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
1219 .cra_flags = CRYPTO_ALG_ASYNC |
1220 CRYPTO_ALG_KERN_DRIVER_ONLY,
1221 .cra_blocksize = 1,
1222 .cra_ctxsize = sizeof(struct crypto4xx_ctx),
1223 .cra_module = THIS_MODULE,
1224 },
1225 .min_keysize = AES_MIN_KEY_SIZE,
1226 .max_keysize = AES_MAX_KEY_SIZE,
1227 .ivsize = AES_IV_SIZE,
1228 .setkey = crypto4xx_setkey_aes_cfb,
1229 .encrypt = crypto4xx_encrypt_iv_stream,
1230 .decrypt = crypto4xx_decrypt_iv_stream,
1231 .init = crypto4xx_sk_init,
1232 .exit = crypto4xx_sk_exit,
1233 } },
1234 { .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = {
1235 .base = {
1236 .cra_name = "ctr(aes)",
1237 .cra_driver_name = "ctr-aes-ppc4xx",
1238 .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
1239 .cra_flags = CRYPTO_ALG_NEED_FALLBACK |
1240 CRYPTO_ALG_ASYNC |
1241 CRYPTO_ALG_KERN_DRIVER_ONLY,
1242 .cra_blocksize = 1,
1243 .cra_ctxsize = sizeof(struct crypto4xx_ctx),
1244 .cra_module = THIS_MODULE,
1245 },
1246 .min_keysize = AES_MIN_KEY_SIZE,
1247 .max_keysize = AES_MAX_KEY_SIZE,
1248 .ivsize = AES_IV_SIZE,
1249 .setkey = crypto4xx_setkey_aes_ctr,
1250 .encrypt = crypto4xx_encrypt_ctr,
1251 .decrypt = crypto4xx_decrypt_ctr,
1252 .init = crypto4xx_sk_init,
1253 .exit = crypto4xx_sk_exit,
1254 } },
1255 { .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = {
1256 .base = {
1257 .cra_name = "rfc3686(ctr(aes))",
1258 .cra_driver_name = "rfc3686-ctr-aes-ppc4xx",
1259 .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
1260 .cra_flags = CRYPTO_ALG_ASYNC |
1261 CRYPTO_ALG_KERN_DRIVER_ONLY,
1262 .cra_blocksize = 1,
1263 .cra_ctxsize = sizeof(struct crypto4xx_ctx),
1264 .cra_module = THIS_MODULE,
1265 },
1266 .min_keysize = AES_MIN_KEY_SIZE + CTR_RFC3686_NONCE_SIZE,
1267 .max_keysize = AES_MAX_KEY_SIZE + CTR_RFC3686_NONCE_SIZE,
1268 .ivsize = CTR_RFC3686_IV_SIZE,
1269 .setkey = crypto4xx_setkey_rfc3686,
1270 .encrypt = crypto4xx_rfc3686_encrypt,
1271 .decrypt = crypto4xx_rfc3686_decrypt,
1272 .init = crypto4xx_sk_init,
1273 .exit = crypto4xx_sk_exit,
1274 } },
1275 { .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = {
1276 .base = {
1277 .cra_name = "ecb(aes)",
1278 .cra_driver_name = "ecb-aes-ppc4xx",
1279 .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
1280 .cra_flags = CRYPTO_ALG_ASYNC |
1281 CRYPTO_ALG_KERN_DRIVER_ONLY,
1282 .cra_blocksize = AES_BLOCK_SIZE,
1283 .cra_ctxsize = sizeof(struct crypto4xx_ctx),
1284 .cra_module = THIS_MODULE,
1285 },
1286 .min_keysize = AES_MIN_KEY_SIZE,
1287 .max_keysize = AES_MAX_KEY_SIZE,
1288 .setkey = crypto4xx_setkey_aes_ecb,
1289 .encrypt = crypto4xx_encrypt_noiv_block,
1290 .decrypt = crypto4xx_decrypt_noiv_block,
1291 .init = crypto4xx_sk_init,
1292 .exit = crypto4xx_sk_exit,
1293 } },
1294 { .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = {
1295 .base = {
1296 .cra_name = "ofb(aes)",
1297 .cra_driver_name = "ofb-aes-ppc4xx",
1298 .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
1299 .cra_flags = CRYPTO_ALG_ASYNC |
1300 CRYPTO_ALG_KERN_DRIVER_ONLY,
1301 .cra_blocksize = 1,
1302 .cra_ctxsize = sizeof(struct crypto4xx_ctx),
1303 .cra_module = THIS_MODULE,
1304 },
1305 .min_keysize = AES_MIN_KEY_SIZE,
1306 .max_keysize = AES_MAX_KEY_SIZE,
1307 .ivsize = AES_IV_SIZE,
1308 .setkey = crypto4xx_setkey_aes_ofb,
1309 .encrypt = crypto4xx_encrypt_iv_stream,
1310 .decrypt = crypto4xx_decrypt_iv_stream,
1311 .init = crypto4xx_sk_init,
1312 .exit = crypto4xx_sk_exit,
1313 } },
1314
1315 /* AEAD */
1316 { .type = CRYPTO_ALG_TYPE_AEAD, .u.aead = {
1317 .setkey = crypto4xx_setkey_aes_ccm,
1318 .setauthsize = crypto4xx_setauthsize_aead,
1319 .encrypt = crypto4xx_encrypt_aes_ccm,
1320 .decrypt = crypto4xx_decrypt_aes_ccm,
1321 .init = crypto4xx_aead_init,
1322 .exit = crypto4xx_aead_exit,
1323 .ivsize = AES_BLOCK_SIZE,
1324 .maxauthsize = 16,
1325 .base = {
1326 .cra_name = "ccm(aes)",
1327 .cra_driver_name = "ccm-aes-ppc4xx",
1328 .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
1329 .cra_flags = CRYPTO_ALG_ASYNC |
1330 CRYPTO_ALG_NEED_FALLBACK |
1331 CRYPTO_ALG_KERN_DRIVER_ONLY,
1332 .cra_blocksize = 1,
1333 .cra_ctxsize = sizeof(struct crypto4xx_ctx),
1334 .cra_module = THIS_MODULE,
1335 },
1336 } },
1337 { .type = CRYPTO_ALG_TYPE_AEAD, .u.aead = {
1338 .setkey = crypto4xx_setkey_aes_gcm,
1339 .setauthsize = crypto4xx_setauthsize_aead,
1340 .encrypt = crypto4xx_encrypt_aes_gcm,
1341 .decrypt = crypto4xx_decrypt_aes_gcm,
1342 .init = crypto4xx_aead_init,
1343 .exit = crypto4xx_aead_exit,
1344 .ivsize = GCM_AES_IV_SIZE,
1345 .maxauthsize = 16,
1346 .base = {
1347 .cra_name = "gcm(aes)",
1348 .cra_driver_name = "gcm-aes-ppc4xx",
1349 .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
1350 .cra_flags = CRYPTO_ALG_ASYNC |
1351 CRYPTO_ALG_NEED_FALLBACK |
1352 CRYPTO_ALG_KERN_DRIVER_ONLY,
1353 .cra_blocksize = 1,
1354 .cra_ctxsize = sizeof(struct crypto4xx_ctx),
1355 .cra_module = THIS_MODULE,
1356 },
1357 } },
1358 { .type = CRYPTO_ALG_TYPE_RNG, .u.rng = {
1359 .base = {
1360 .cra_name = "stdrng",
1361 .cra_driver_name = "crypto4xx_rng",
1362 .cra_priority = 300,
1363 .cra_ctxsize = 0,
1364 .cra_module = THIS_MODULE,
1365 },
1366 .generate = crypto4xx_prng_generate,
1367 .seed = crypto4xx_prng_seed,
1368 .seedsize = 0,
1369 } },
1370};
1371
1372/**
1373 * Module Initialization Routine
1374 */
1375static int crypto4xx_probe(struct platform_device *ofdev)
1376{
1377 int rc;
1378 struct resource res;
1379 struct device *dev = &ofdev->dev;
1380 struct crypto4xx_core_device *core_dev;
1381 u32 pvr;
1382 bool is_revb = true;
1383
1384 rc = of_address_to_resource(ofdev->dev.of_node, 0, &res);
1385 if (rc)
1386 return -ENODEV;
1387
1388 if (of_find_compatible_node(NULL, NULL, "amcc,ppc460ex-crypto")) {
1389 mtdcri(SDR0, PPC460EX_SDR0_SRST,
1390 mfdcri(SDR0, PPC460EX_SDR0_SRST) | PPC460EX_CE_RESET);
1391 mtdcri(SDR0, PPC460EX_SDR0_SRST,
1392 mfdcri(SDR0, PPC460EX_SDR0_SRST) & ~PPC460EX_CE_RESET);
1393 } else if (of_find_compatible_node(NULL, NULL,
1394 "amcc,ppc405ex-crypto")) {
1395 mtdcri(SDR0, PPC405EX_SDR0_SRST,
1396 mfdcri(SDR0, PPC405EX_SDR0_SRST) | PPC405EX_CE_RESET);
1397 mtdcri(SDR0, PPC405EX_SDR0_SRST,
1398 mfdcri(SDR0, PPC405EX_SDR0_SRST) & ~PPC405EX_CE_RESET);
1399 is_revb = false;
1400 } else if (of_find_compatible_node(NULL, NULL,
1401 "amcc,ppc460sx-crypto")) {
1402 mtdcri(SDR0, PPC460SX_SDR0_SRST,
1403 mfdcri(SDR0, PPC460SX_SDR0_SRST) | PPC460SX_CE_RESET);
1404 mtdcri(SDR0, PPC460SX_SDR0_SRST,
1405 mfdcri(SDR0, PPC460SX_SDR0_SRST) & ~PPC460SX_CE_RESET);
1406 } else {
1407 printk(KERN_ERR "Crypto Function Not supported!\n");
1408 return -EINVAL;
1409 }
1410
1411 core_dev = kzalloc(sizeof(struct crypto4xx_core_device), GFP_KERNEL);
1412 if (!core_dev)
1413 return -ENOMEM;
1414
1415 dev_set_drvdata(dev, core_dev);
1416 core_dev->ofdev = ofdev;
1417 core_dev->dev = kzalloc(sizeof(struct crypto4xx_device), GFP_KERNEL);
1418 rc = -ENOMEM;
1419 if (!core_dev->dev)
1420 goto err_alloc_dev;
1421
1422 /*
1423 * Older version of 460EX/GT have a hardware bug.
1424 * Hence they do not support H/W based security intr coalescing
1425 */
1426 pvr = mfspr(SPRN_PVR);
1427 if (is_revb && ((pvr >> 4) == 0x130218A)) {
1428 u32 min = PVR_MIN(pvr);
1429
1430 if (min < 4) {
1431 dev_info(dev, "RevA detected - disable interrupt coalescing\n");
1432 is_revb = false;
1433 }
1434 }
1435
1436 core_dev->dev->core_dev = core_dev;
1437 core_dev->dev->is_revb = is_revb;
1438 core_dev->device = dev;
1439 mutex_init(&core_dev->rng_lock);
1440 spin_lock_init(&core_dev->lock);
1441 INIT_LIST_HEAD(&core_dev->dev->alg_list);
1442 ratelimit_default_init(&core_dev->dev->aead_ratelimit);
1443 rc = crypto4xx_build_sdr(core_dev->dev);
1444 if (rc)
1445 goto err_build_sdr;
1446 rc = crypto4xx_build_pdr(core_dev->dev);
1447 if (rc)
1448 goto err_build_sdr;
1449
1450 rc = crypto4xx_build_gdr(core_dev->dev);
1451 if (rc)
1452 goto err_build_sdr;
1453
1454 /* Init tasklet for bottom half processing */
1455 tasklet_init(&core_dev->tasklet, crypto4xx_bh_tasklet_cb,
1456 (unsigned long) dev);
1457
1458 core_dev->dev->ce_base = of_iomap(ofdev->dev.of_node, 0);
1459 if (!core_dev->dev->ce_base) {
1460 dev_err(dev, "failed to of_iomap\n");
1461 rc = -ENOMEM;
1462 goto err_iomap;
1463 }
1464
1465 /* Register for Crypto isr, Crypto Engine IRQ */
1466 core_dev->irq = irq_of_parse_and_map(ofdev->dev.of_node, 0);
1467 rc = request_irq(core_dev->irq, is_revb ?
1468 crypto4xx_ce_interrupt_handler_revb :
1469 crypto4xx_ce_interrupt_handler, 0,
1470 KBUILD_MODNAME, dev);
1471 if (rc)
1472 goto err_request_irq;
1473
1474 /* need to setup pdr, rdr, gdr and sdr before this */
1475 crypto4xx_hw_init(core_dev->dev);
1476
1477 /* Register security algorithms with Linux CryptoAPI */
1478 rc = crypto4xx_register_alg(core_dev->dev, crypto4xx_alg,
1479 ARRAY_SIZE(crypto4xx_alg));
1480 if (rc)
1481 goto err_start_dev;
1482
1483 ppc4xx_trng_probe(core_dev);
1484 return 0;
1485
1486err_start_dev:
1487 free_irq(core_dev->irq, dev);
1488err_request_irq:
1489 irq_dispose_mapping(core_dev->irq);
1490 iounmap(core_dev->dev->ce_base);
1491err_iomap:
1492 tasklet_kill(&core_dev->tasklet);
1493err_build_sdr:
1494 crypto4xx_destroy_sdr(core_dev->dev);
1495 crypto4xx_destroy_gdr(core_dev->dev);
1496 crypto4xx_destroy_pdr(core_dev->dev);
1497 kfree(core_dev->dev);
1498err_alloc_dev:
1499 kfree(core_dev);
1500
1501 return rc;
1502}
1503
1504static int crypto4xx_remove(struct platform_device *ofdev)
1505{
1506 struct device *dev = &ofdev->dev;
1507 struct crypto4xx_core_device *core_dev = dev_get_drvdata(dev);
1508
1509 ppc4xx_trng_remove(core_dev);
1510
1511 free_irq(core_dev->irq, dev);
1512 irq_dispose_mapping(core_dev->irq);
1513
1514 tasklet_kill(&core_dev->tasklet);
1515 /* Un-register with Linux CryptoAPI */
1516 crypto4xx_unregister_alg(core_dev->dev);
1517 mutex_destroy(&core_dev->rng_lock);
1518 /* Free all allocated memory */
1519 crypto4xx_stop_all(core_dev);
1520
1521 return 0;
1522}
1523
1524static const struct of_device_id crypto4xx_match[] = {
1525 { .compatible = "amcc,ppc4xx-crypto",},
1526 { },
1527};
1528MODULE_DEVICE_TABLE(of, crypto4xx_match);
1529
1530static struct platform_driver crypto4xx_driver = {
1531 .driver = {
1532 .name = KBUILD_MODNAME,
1533 .of_match_table = crypto4xx_match,
1534 },
1535 .probe = crypto4xx_probe,
1536 .remove = crypto4xx_remove,
1537};
1538
1539module_platform_driver(crypto4xx_driver);
1540
1541MODULE_LICENSE("GPL");
1542MODULE_AUTHOR("James Hsiao <jhsiao@amcc.com>");
1543MODULE_DESCRIPTION("Driver for AMCC PPC4xx crypto accelerator");
1/**
2 * AMCC SoC PPC4xx Crypto Driver
3 *
4 * Copyright (c) 2008 Applied Micro Circuits Corporation.
5 * All rights reserved. James Hsiao <jhsiao@amcc.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * This file implements AMCC crypto offload Linux device driver for use with
18 * Linux CryptoAPI.
19 */
20
21#include <linux/kernel.h>
22#include <linux/interrupt.h>
23#include <linux/spinlock_types.h>
24#include <linux/random.h>
25#include <linux/scatterlist.h>
26#include <linux/crypto.h>
27#include <linux/dma-mapping.h>
28#include <linux/platform_device.h>
29#include <linux/init.h>
30#include <linux/module.h>
31#include <linux/of_address.h>
32#include <linux/of_irq.h>
33#include <linux/of_platform.h>
34#include <linux/slab.h>
35#include <asm/dcr.h>
36#include <asm/dcr-regs.h>
37#include <asm/cacheflush.h>
38#include <crypto/aes.h>
39#include <crypto/sha.h>
40#include "crypto4xx_reg_def.h"
41#include "crypto4xx_core.h"
42#include "crypto4xx_sa.h"
43
44#define PPC4XX_SEC_VERSION_STR "0.5"
45
46/**
47 * PPC4xx Crypto Engine Initialization Routine
48 */
49static void crypto4xx_hw_init(struct crypto4xx_device *dev)
50{
51 union ce_ring_size ring_size;
52 union ce_ring_contol ring_ctrl;
53 union ce_part_ring_size part_ring_size;
54 union ce_io_threshold io_threshold;
55 u32 rand_num;
56 union ce_pe_dma_cfg pe_dma_cfg;
57 u32 device_ctrl;
58
59 writel(PPC4XX_BYTE_ORDER, dev->ce_base + CRYPTO4XX_BYTE_ORDER_CFG);
60 /* setup pe dma, include reset sg, pdr and pe, then release reset */
61 pe_dma_cfg.w = 0;
62 pe_dma_cfg.bf.bo_sgpd_en = 1;
63 pe_dma_cfg.bf.bo_data_en = 0;
64 pe_dma_cfg.bf.bo_sa_en = 1;
65 pe_dma_cfg.bf.bo_pd_en = 1;
66 pe_dma_cfg.bf.dynamic_sa_en = 1;
67 pe_dma_cfg.bf.reset_sg = 1;
68 pe_dma_cfg.bf.reset_pdr = 1;
69 pe_dma_cfg.bf.reset_pe = 1;
70 writel(pe_dma_cfg.w, dev->ce_base + CRYPTO4XX_PE_DMA_CFG);
71 /* un reset pe,sg and pdr */
72 pe_dma_cfg.bf.pe_mode = 0;
73 pe_dma_cfg.bf.reset_sg = 0;
74 pe_dma_cfg.bf.reset_pdr = 0;
75 pe_dma_cfg.bf.reset_pe = 0;
76 pe_dma_cfg.bf.bo_td_en = 0;
77 writel(pe_dma_cfg.w, dev->ce_base + CRYPTO4XX_PE_DMA_CFG);
78 writel(dev->pdr_pa, dev->ce_base + CRYPTO4XX_PDR_BASE);
79 writel(dev->pdr_pa, dev->ce_base + CRYPTO4XX_RDR_BASE);
80 writel(PPC4XX_PRNG_CTRL_AUTO_EN, dev->ce_base + CRYPTO4XX_PRNG_CTRL);
81 get_random_bytes(&rand_num, sizeof(rand_num));
82 writel(rand_num, dev->ce_base + CRYPTO4XX_PRNG_SEED_L);
83 get_random_bytes(&rand_num, sizeof(rand_num));
84 writel(rand_num, dev->ce_base + CRYPTO4XX_PRNG_SEED_H);
85 ring_size.w = 0;
86 ring_size.bf.ring_offset = PPC4XX_PD_SIZE;
87 ring_size.bf.ring_size = PPC4XX_NUM_PD;
88 writel(ring_size.w, dev->ce_base + CRYPTO4XX_RING_SIZE);
89 ring_ctrl.w = 0;
90 writel(ring_ctrl.w, dev->ce_base + CRYPTO4XX_RING_CTRL);
91 device_ctrl = readl(dev->ce_base + CRYPTO4XX_DEVICE_CTRL);
92 device_ctrl |= PPC4XX_DC_3DES_EN;
93 writel(device_ctrl, dev->ce_base + CRYPTO4XX_DEVICE_CTRL);
94 writel(dev->gdr_pa, dev->ce_base + CRYPTO4XX_GATH_RING_BASE);
95 writel(dev->sdr_pa, dev->ce_base + CRYPTO4XX_SCAT_RING_BASE);
96 part_ring_size.w = 0;
97 part_ring_size.bf.sdr_size = PPC4XX_SDR_SIZE;
98 part_ring_size.bf.gdr_size = PPC4XX_GDR_SIZE;
99 writel(part_ring_size.w, dev->ce_base + CRYPTO4XX_PART_RING_SIZE);
100 writel(PPC4XX_SD_BUFFER_SIZE, dev->ce_base + CRYPTO4XX_PART_RING_CFG);
101 io_threshold.w = 0;
102 io_threshold.bf.output_threshold = PPC4XX_OUTPUT_THRESHOLD;
103 io_threshold.bf.input_threshold = PPC4XX_INPUT_THRESHOLD;
104 writel(io_threshold.w, dev->ce_base + CRYPTO4XX_IO_THRESHOLD);
105 writel(0, dev->ce_base + CRYPTO4XX_PDR_BASE_UADDR);
106 writel(0, dev->ce_base + CRYPTO4XX_RDR_BASE_UADDR);
107 writel(0, dev->ce_base + CRYPTO4XX_PKT_SRC_UADDR);
108 writel(0, dev->ce_base + CRYPTO4XX_PKT_DEST_UADDR);
109 writel(0, dev->ce_base + CRYPTO4XX_SA_UADDR);
110 writel(0, dev->ce_base + CRYPTO4XX_GATH_RING_BASE_UADDR);
111 writel(0, dev->ce_base + CRYPTO4XX_SCAT_RING_BASE_UADDR);
112 /* un reset pe,sg and pdr */
113 pe_dma_cfg.bf.pe_mode = 1;
114 pe_dma_cfg.bf.reset_sg = 0;
115 pe_dma_cfg.bf.reset_pdr = 0;
116 pe_dma_cfg.bf.reset_pe = 0;
117 pe_dma_cfg.bf.bo_td_en = 0;
118 writel(pe_dma_cfg.w, dev->ce_base + CRYPTO4XX_PE_DMA_CFG);
119 /*clear all pending interrupt*/
120 writel(PPC4XX_INTERRUPT_CLR, dev->ce_base + CRYPTO4XX_INT_CLR);
121 writel(PPC4XX_INT_DESCR_CNT, dev->ce_base + CRYPTO4XX_INT_DESCR_CNT);
122 writel(PPC4XX_INT_DESCR_CNT, dev->ce_base + CRYPTO4XX_INT_DESCR_CNT);
123 writel(PPC4XX_INT_CFG, dev->ce_base + CRYPTO4XX_INT_CFG);
124 writel(PPC4XX_PD_DONE_INT, dev->ce_base + CRYPTO4XX_INT_EN);
125}
126
127int crypto4xx_alloc_sa(struct crypto4xx_ctx *ctx, u32 size)
128{
129 ctx->sa_in = dma_alloc_coherent(ctx->dev->core_dev->device, size * 4,
130 &ctx->sa_in_dma_addr, GFP_ATOMIC);
131 if (ctx->sa_in == NULL)
132 return -ENOMEM;
133
134 ctx->sa_out = dma_alloc_coherent(ctx->dev->core_dev->device, size * 4,
135 &ctx->sa_out_dma_addr, GFP_ATOMIC);
136 if (ctx->sa_out == NULL) {
137 dma_free_coherent(ctx->dev->core_dev->device,
138 ctx->sa_len * 4,
139 ctx->sa_in, ctx->sa_in_dma_addr);
140 return -ENOMEM;
141 }
142
143 memset(ctx->sa_in, 0, size * 4);
144 memset(ctx->sa_out, 0, size * 4);
145 ctx->sa_len = size;
146
147 return 0;
148}
149
150void crypto4xx_free_sa(struct crypto4xx_ctx *ctx)
151{
152 if (ctx->sa_in != NULL)
153 dma_free_coherent(ctx->dev->core_dev->device, ctx->sa_len * 4,
154 ctx->sa_in, ctx->sa_in_dma_addr);
155 if (ctx->sa_out != NULL)
156 dma_free_coherent(ctx->dev->core_dev->device, ctx->sa_len * 4,
157 ctx->sa_out, ctx->sa_out_dma_addr);
158
159 ctx->sa_in_dma_addr = 0;
160 ctx->sa_out_dma_addr = 0;
161 ctx->sa_len = 0;
162}
163
164u32 crypto4xx_alloc_state_record(struct crypto4xx_ctx *ctx)
165{
166 ctx->state_record = dma_alloc_coherent(ctx->dev->core_dev->device,
167 sizeof(struct sa_state_record),
168 &ctx->state_record_dma_addr, GFP_ATOMIC);
169 if (!ctx->state_record_dma_addr)
170 return -ENOMEM;
171 memset(ctx->state_record, 0, sizeof(struct sa_state_record));
172
173 return 0;
174}
175
176void crypto4xx_free_state_record(struct crypto4xx_ctx *ctx)
177{
178 if (ctx->state_record != NULL)
179 dma_free_coherent(ctx->dev->core_dev->device,
180 sizeof(struct sa_state_record),
181 ctx->state_record,
182 ctx->state_record_dma_addr);
183 ctx->state_record_dma_addr = 0;
184}
185
186/**
187 * alloc memory for the gather ring
188 * no need to alloc buf for the ring
189 * gdr_tail, gdr_head and gdr_count are initialized by this function
190 */
191static u32 crypto4xx_build_pdr(struct crypto4xx_device *dev)
192{
193 int i;
194 struct pd_uinfo *pd_uinfo;
195 dev->pdr = dma_alloc_coherent(dev->core_dev->device,
196 sizeof(struct ce_pd) * PPC4XX_NUM_PD,
197 &dev->pdr_pa, GFP_ATOMIC);
198 if (!dev->pdr)
199 return -ENOMEM;
200
201 dev->pdr_uinfo = kzalloc(sizeof(struct pd_uinfo) * PPC4XX_NUM_PD,
202 GFP_KERNEL);
203 if (!dev->pdr_uinfo) {
204 dma_free_coherent(dev->core_dev->device,
205 sizeof(struct ce_pd) * PPC4XX_NUM_PD,
206 dev->pdr,
207 dev->pdr_pa);
208 return -ENOMEM;
209 }
210 memset(dev->pdr, 0, sizeof(struct ce_pd) * PPC4XX_NUM_PD);
211 dev->shadow_sa_pool = dma_alloc_coherent(dev->core_dev->device,
212 256 * PPC4XX_NUM_PD,
213 &dev->shadow_sa_pool_pa,
214 GFP_ATOMIC);
215 if (!dev->shadow_sa_pool)
216 return -ENOMEM;
217
218 dev->shadow_sr_pool = dma_alloc_coherent(dev->core_dev->device,
219 sizeof(struct sa_state_record) * PPC4XX_NUM_PD,
220 &dev->shadow_sr_pool_pa, GFP_ATOMIC);
221 if (!dev->shadow_sr_pool)
222 return -ENOMEM;
223 for (i = 0; i < PPC4XX_NUM_PD; i++) {
224 pd_uinfo = (struct pd_uinfo *) (dev->pdr_uinfo +
225 sizeof(struct pd_uinfo) * i);
226
227 /* alloc 256 bytes which is enough for any kind of dynamic sa */
228 pd_uinfo->sa_va = dev->shadow_sa_pool + 256 * i;
229 pd_uinfo->sa_pa = dev->shadow_sa_pool_pa + 256 * i;
230
231 /* alloc state record */
232 pd_uinfo->sr_va = dev->shadow_sr_pool +
233 sizeof(struct sa_state_record) * i;
234 pd_uinfo->sr_pa = dev->shadow_sr_pool_pa +
235 sizeof(struct sa_state_record) * i;
236 }
237
238 return 0;
239}
240
241static void crypto4xx_destroy_pdr(struct crypto4xx_device *dev)
242{
243 if (dev->pdr != NULL)
244 dma_free_coherent(dev->core_dev->device,
245 sizeof(struct ce_pd) * PPC4XX_NUM_PD,
246 dev->pdr, dev->pdr_pa);
247 if (dev->shadow_sa_pool)
248 dma_free_coherent(dev->core_dev->device, 256 * PPC4XX_NUM_PD,
249 dev->shadow_sa_pool, dev->shadow_sa_pool_pa);
250 if (dev->shadow_sr_pool)
251 dma_free_coherent(dev->core_dev->device,
252 sizeof(struct sa_state_record) * PPC4XX_NUM_PD,
253 dev->shadow_sr_pool, dev->shadow_sr_pool_pa);
254
255 kfree(dev->pdr_uinfo);
256}
257
258static u32 crypto4xx_get_pd_from_pdr_nolock(struct crypto4xx_device *dev)
259{
260 u32 retval;
261 u32 tmp;
262
263 retval = dev->pdr_head;
264 tmp = (dev->pdr_head + 1) % PPC4XX_NUM_PD;
265
266 if (tmp == dev->pdr_tail)
267 return ERING_WAS_FULL;
268
269 dev->pdr_head = tmp;
270
271 return retval;
272}
273
274static u32 crypto4xx_put_pd_to_pdr(struct crypto4xx_device *dev, u32 idx)
275{
276 struct pd_uinfo *pd_uinfo;
277 unsigned long flags;
278
279 pd_uinfo = (struct pd_uinfo *)(dev->pdr_uinfo +
280 sizeof(struct pd_uinfo) * idx);
281 spin_lock_irqsave(&dev->core_dev->lock, flags);
282 if (dev->pdr_tail != PPC4XX_LAST_PD)
283 dev->pdr_tail++;
284 else
285 dev->pdr_tail = 0;
286 pd_uinfo->state = PD_ENTRY_FREE;
287 spin_unlock_irqrestore(&dev->core_dev->lock, flags);
288
289 return 0;
290}
291
292static struct ce_pd *crypto4xx_get_pdp(struct crypto4xx_device *dev,
293 dma_addr_t *pd_dma, u32 idx)
294{
295 *pd_dma = dev->pdr_pa + sizeof(struct ce_pd) * idx;
296
297 return dev->pdr + sizeof(struct ce_pd) * idx;
298}
299
300/**
301 * alloc memory for the gather ring
302 * no need to alloc buf for the ring
303 * gdr_tail, gdr_head and gdr_count are initialized by this function
304 */
305static u32 crypto4xx_build_gdr(struct crypto4xx_device *dev)
306{
307 dev->gdr = dma_alloc_coherent(dev->core_dev->device,
308 sizeof(struct ce_gd) * PPC4XX_NUM_GD,
309 &dev->gdr_pa, GFP_ATOMIC);
310 if (!dev->gdr)
311 return -ENOMEM;
312
313 memset(dev->gdr, 0, sizeof(struct ce_gd) * PPC4XX_NUM_GD);
314
315 return 0;
316}
317
318static inline void crypto4xx_destroy_gdr(struct crypto4xx_device *dev)
319{
320 dma_free_coherent(dev->core_dev->device,
321 sizeof(struct ce_gd) * PPC4XX_NUM_GD,
322 dev->gdr, dev->gdr_pa);
323}
324
325/*
326 * when this function is called.
327 * preemption or interrupt must be disabled
328 */
329u32 crypto4xx_get_n_gd(struct crypto4xx_device *dev, int n)
330{
331 u32 retval;
332 u32 tmp;
333 if (n >= PPC4XX_NUM_GD)
334 return ERING_WAS_FULL;
335
336 retval = dev->gdr_head;
337 tmp = (dev->gdr_head + n) % PPC4XX_NUM_GD;
338 if (dev->gdr_head > dev->gdr_tail) {
339 if (tmp < dev->gdr_head && tmp >= dev->gdr_tail)
340 return ERING_WAS_FULL;
341 } else if (dev->gdr_head < dev->gdr_tail) {
342 if (tmp < dev->gdr_head || tmp >= dev->gdr_tail)
343 return ERING_WAS_FULL;
344 }
345 dev->gdr_head = tmp;
346
347 return retval;
348}
349
350static u32 crypto4xx_put_gd_to_gdr(struct crypto4xx_device *dev)
351{
352 unsigned long flags;
353
354 spin_lock_irqsave(&dev->core_dev->lock, flags);
355 if (dev->gdr_tail == dev->gdr_head) {
356 spin_unlock_irqrestore(&dev->core_dev->lock, flags);
357 return 0;
358 }
359
360 if (dev->gdr_tail != PPC4XX_LAST_GD)
361 dev->gdr_tail++;
362 else
363 dev->gdr_tail = 0;
364
365 spin_unlock_irqrestore(&dev->core_dev->lock, flags);
366
367 return 0;
368}
369
370static inline struct ce_gd *crypto4xx_get_gdp(struct crypto4xx_device *dev,
371 dma_addr_t *gd_dma, u32 idx)
372{
373 *gd_dma = dev->gdr_pa + sizeof(struct ce_gd) * idx;
374
375 return (struct ce_gd *) (dev->gdr + sizeof(struct ce_gd) * idx);
376}
377
378/**
379 * alloc memory for the scatter ring
380 * need to alloc buf for the ring
381 * sdr_tail, sdr_head and sdr_count are initialized by this function
382 */
383static u32 crypto4xx_build_sdr(struct crypto4xx_device *dev)
384{
385 int i;
386 struct ce_sd *sd_array;
387
388 /* alloc memory for scatter descriptor ring */
389 dev->sdr = dma_alloc_coherent(dev->core_dev->device,
390 sizeof(struct ce_sd) * PPC4XX_NUM_SD,
391 &dev->sdr_pa, GFP_ATOMIC);
392 if (!dev->sdr)
393 return -ENOMEM;
394
395 dev->scatter_buffer_size = PPC4XX_SD_BUFFER_SIZE;
396 dev->scatter_buffer_va =
397 dma_alloc_coherent(dev->core_dev->device,
398 dev->scatter_buffer_size * PPC4XX_NUM_SD,
399 &dev->scatter_buffer_pa, GFP_ATOMIC);
400 if (!dev->scatter_buffer_va) {
401 dma_free_coherent(dev->core_dev->device,
402 sizeof(struct ce_sd) * PPC4XX_NUM_SD,
403 dev->sdr, dev->sdr_pa);
404 return -ENOMEM;
405 }
406
407 sd_array = dev->sdr;
408
409 for (i = 0; i < PPC4XX_NUM_SD; i++) {
410 sd_array[i].ptr = dev->scatter_buffer_pa +
411 dev->scatter_buffer_size * i;
412 }
413
414 return 0;
415}
416
417static void crypto4xx_destroy_sdr(struct crypto4xx_device *dev)
418{
419 if (dev->sdr != NULL)
420 dma_free_coherent(dev->core_dev->device,
421 sizeof(struct ce_sd) * PPC4XX_NUM_SD,
422 dev->sdr, dev->sdr_pa);
423
424 if (dev->scatter_buffer_va != NULL)
425 dma_free_coherent(dev->core_dev->device,
426 dev->scatter_buffer_size * PPC4XX_NUM_SD,
427 dev->scatter_buffer_va,
428 dev->scatter_buffer_pa);
429}
430
431/*
432 * when this function is called.
433 * preemption or interrupt must be disabled
434 */
435static u32 crypto4xx_get_n_sd(struct crypto4xx_device *dev, int n)
436{
437 u32 retval;
438 u32 tmp;
439
440 if (n >= PPC4XX_NUM_SD)
441 return ERING_WAS_FULL;
442
443 retval = dev->sdr_head;
444 tmp = (dev->sdr_head + n) % PPC4XX_NUM_SD;
445 if (dev->sdr_head > dev->gdr_tail) {
446 if (tmp < dev->sdr_head && tmp >= dev->sdr_tail)
447 return ERING_WAS_FULL;
448 } else if (dev->sdr_head < dev->sdr_tail) {
449 if (tmp < dev->sdr_head || tmp >= dev->sdr_tail)
450 return ERING_WAS_FULL;
451 } /* the head = tail, or empty case is already take cared */
452 dev->sdr_head = tmp;
453
454 return retval;
455}
456
457static u32 crypto4xx_put_sd_to_sdr(struct crypto4xx_device *dev)
458{
459 unsigned long flags;
460
461 spin_lock_irqsave(&dev->core_dev->lock, flags);
462 if (dev->sdr_tail == dev->sdr_head) {
463 spin_unlock_irqrestore(&dev->core_dev->lock, flags);
464 return 0;
465 }
466 if (dev->sdr_tail != PPC4XX_LAST_SD)
467 dev->sdr_tail++;
468 else
469 dev->sdr_tail = 0;
470 spin_unlock_irqrestore(&dev->core_dev->lock, flags);
471
472 return 0;
473}
474
475static inline struct ce_sd *crypto4xx_get_sdp(struct crypto4xx_device *dev,
476 dma_addr_t *sd_dma, u32 idx)
477{
478 *sd_dma = dev->sdr_pa + sizeof(struct ce_sd) * idx;
479
480 return (struct ce_sd *)(dev->sdr + sizeof(struct ce_sd) * idx);
481}
482
483static u32 crypto4xx_fill_one_page(struct crypto4xx_device *dev,
484 dma_addr_t *addr, u32 *length,
485 u32 *idx, u32 *offset, u32 *nbytes)
486{
487 u32 len;
488
489 if (*length > dev->scatter_buffer_size) {
490 memcpy(phys_to_virt(*addr),
491 dev->scatter_buffer_va +
492 *idx * dev->scatter_buffer_size + *offset,
493 dev->scatter_buffer_size);
494 *offset = 0;
495 *length -= dev->scatter_buffer_size;
496 *nbytes -= dev->scatter_buffer_size;
497 if (*idx == PPC4XX_LAST_SD)
498 *idx = 0;
499 else
500 (*idx)++;
501 *addr = *addr + dev->scatter_buffer_size;
502 return 1;
503 } else if (*length < dev->scatter_buffer_size) {
504 memcpy(phys_to_virt(*addr),
505 dev->scatter_buffer_va +
506 *idx * dev->scatter_buffer_size + *offset, *length);
507 if ((*offset + *length) == dev->scatter_buffer_size) {
508 if (*idx == PPC4XX_LAST_SD)
509 *idx = 0;
510 else
511 (*idx)++;
512 *nbytes -= *length;
513 *offset = 0;
514 } else {
515 *nbytes -= *length;
516 *offset += *length;
517 }
518
519 return 0;
520 } else {
521 len = (*nbytes <= dev->scatter_buffer_size) ?
522 (*nbytes) : dev->scatter_buffer_size;
523 memcpy(phys_to_virt(*addr),
524 dev->scatter_buffer_va +
525 *idx * dev->scatter_buffer_size + *offset,
526 len);
527 *offset = 0;
528 *nbytes -= len;
529
530 if (*idx == PPC4XX_LAST_SD)
531 *idx = 0;
532 else
533 (*idx)++;
534
535 return 0;
536 }
537}
538
539static void crypto4xx_copy_pkt_to_dst(struct crypto4xx_device *dev,
540 struct ce_pd *pd,
541 struct pd_uinfo *pd_uinfo,
542 u32 nbytes,
543 struct scatterlist *dst)
544{
545 dma_addr_t addr;
546 u32 this_sd;
547 u32 offset;
548 u32 len;
549 u32 i;
550 u32 sg_len;
551 struct scatterlist *sg;
552
553 this_sd = pd_uinfo->first_sd;
554 offset = 0;
555 i = 0;
556
557 while (nbytes) {
558 sg = &dst[i];
559 sg_len = sg->length;
560 addr = dma_map_page(dev->core_dev->device, sg_page(sg),
561 sg->offset, sg->length, DMA_TO_DEVICE);
562
563 if (offset == 0) {
564 len = (nbytes <= sg->length) ? nbytes : sg->length;
565 while (crypto4xx_fill_one_page(dev, &addr, &len,
566 &this_sd, &offset, &nbytes))
567 ;
568 if (!nbytes)
569 return;
570 i++;
571 } else {
572 len = (nbytes <= (dev->scatter_buffer_size - offset)) ?
573 nbytes : (dev->scatter_buffer_size - offset);
574 len = (sg->length < len) ? sg->length : len;
575 while (crypto4xx_fill_one_page(dev, &addr, &len,
576 &this_sd, &offset, &nbytes))
577 ;
578 if (!nbytes)
579 return;
580 sg_len -= len;
581 if (sg_len) {
582 addr += len;
583 while (crypto4xx_fill_one_page(dev, &addr,
584 &sg_len, &this_sd, &offset, &nbytes))
585 ;
586 }
587 i++;
588 }
589 }
590}
591
592static u32 crypto4xx_copy_digest_to_dst(struct pd_uinfo *pd_uinfo,
593 struct crypto4xx_ctx *ctx)
594{
595 struct dynamic_sa_ctl *sa = (struct dynamic_sa_ctl *) ctx->sa_in;
596 struct sa_state_record *state_record =
597 (struct sa_state_record *) pd_uinfo->sr_va;
598
599 if (sa->sa_command_0.bf.hash_alg == SA_HASH_ALG_SHA1) {
600 memcpy((void *) pd_uinfo->dest_va, state_record->save_digest,
601 SA_HASH_ALG_SHA1_DIGEST_SIZE);
602 }
603
604 return 0;
605}
606
607static void crypto4xx_ret_sg_desc(struct crypto4xx_device *dev,
608 struct pd_uinfo *pd_uinfo)
609{
610 int i;
611 if (pd_uinfo->num_gd) {
612 for (i = 0; i < pd_uinfo->num_gd; i++)
613 crypto4xx_put_gd_to_gdr(dev);
614 pd_uinfo->first_gd = 0xffffffff;
615 pd_uinfo->num_gd = 0;
616 }
617 if (pd_uinfo->num_sd) {
618 for (i = 0; i < pd_uinfo->num_sd; i++)
619 crypto4xx_put_sd_to_sdr(dev);
620
621 pd_uinfo->first_sd = 0xffffffff;
622 pd_uinfo->num_sd = 0;
623 }
624}
625
626static u32 crypto4xx_ablkcipher_done(struct crypto4xx_device *dev,
627 struct pd_uinfo *pd_uinfo,
628 struct ce_pd *pd)
629{
630 struct crypto4xx_ctx *ctx;
631 struct ablkcipher_request *ablk_req;
632 struct scatterlist *dst;
633 dma_addr_t addr;
634
635 ablk_req = ablkcipher_request_cast(pd_uinfo->async_req);
636 ctx = crypto_tfm_ctx(ablk_req->base.tfm);
637
638 if (pd_uinfo->using_sd) {
639 crypto4xx_copy_pkt_to_dst(dev, pd, pd_uinfo, ablk_req->nbytes,
640 ablk_req->dst);
641 } else {
642 dst = pd_uinfo->dest_va;
643 addr = dma_map_page(dev->core_dev->device, sg_page(dst),
644 dst->offset, dst->length, DMA_FROM_DEVICE);
645 }
646 crypto4xx_ret_sg_desc(dev, pd_uinfo);
647 if (ablk_req->base.complete != NULL)
648 ablk_req->base.complete(&ablk_req->base, 0);
649
650 return 0;
651}
652
653static u32 crypto4xx_ahash_done(struct crypto4xx_device *dev,
654 struct pd_uinfo *pd_uinfo)
655{
656 struct crypto4xx_ctx *ctx;
657 struct ahash_request *ahash_req;
658
659 ahash_req = ahash_request_cast(pd_uinfo->async_req);
660 ctx = crypto_tfm_ctx(ahash_req->base.tfm);
661
662 crypto4xx_copy_digest_to_dst(pd_uinfo,
663 crypto_tfm_ctx(ahash_req->base.tfm));
664 crypto4xx_ret_sg_desc(dev, pd_uinfo);
665 /* call user provided callback function x */
666 if (ahash_req->base.complete != NULL)
667 ahash_req->base.complete(&ahash_req->base, 0);
668
669 return 0;
670}
671
672static u32 crypto4xx_pd_done(struct crypto4xx_device *dev, u32 idx)
673{
674 struct ce_pd *pd;
675 struct pd_uinfo *pd_uinfo;
676
677 pd = dev->pdr + sizeof(struct ce_pd)*idx;
678 pd_uinfo = dev->pdr_uinfo + sizeof(struct pd_uinfo)*idx;
679 if (crypto_tfm_alg_type(pd_uinfo->async_req->tfm) ==
680 CRYPTO_ALG_TYPE_ABLKCIPHER)
681 return crypto4xx_ablkcipher_done(dev, pd_uinfo, pd);
682 else
683 return crypto4xx_ahash_done(dev, pd_uinfo);
684}
685
686/**
687 * Note: Only use this function to copy items that is word aligned.
688 */
689void crypto4xx_memcpy_le(unsigned int *dst,
690 const unsigned char *buf,
691 int len)
692{
693 u8 *tmp;
694 for (; len >= 4; buf += 4, len -= 4)
695 *dst++ = cpu_to_le32(*(unsigned int *) buf);
696
697 tmp = (u8 *)dst;
698 switch (len) {
699 case 3:
700 *tmp++ = 0;
701 *tmp++ = *(buf+2);
702 *tmp++ = *(buf+1);
703 *tmp++ = *buf;
704 break;
705 case 2:
706 *tmp++ = 0;
707 *tmp++ = 0;
708 *tmp++ = *(buf+1);
709 *tmp++ = *buf;
710 break;
711 case 1:
712 *tmp++ = 0;
713 *tmp++ = 0;
714 *tmp++ = 0;
715 *tmp++ = *buf;
716 break;
717 default:
718 break;
719 }
720}
721
722static void crypto4xx_stop_all(struct crypto4xx_core_device *core_dev)
723{
724 crypto4xx_destroy_pdr(core_dev->dev);
725 crypto4xx_destroy_gdr(core_dev->dev);
726 crypto4xx_destroy_sdr(core_dev->dev);
727 iounmap(core_dev->dev->ce_base);
728 kfree(core_dev->dev);
729 kfree(core_dev);
730}
731
732void crypto4xx_return_pd(struct crypto4xx_device *dev,
733 u32 pd_entry, struct ce_pd *pd,
734 struct pd_uinfo *pd_uinfo)
735{
736 /* irq should be already disabled */
737 dev->pdr_head = pd_entry;
738 pd->pd_ctl.w = 0;
739 pd->pd_ctl_len.w = 0;
740 pd_uinfo->state = PD_ENTRY_FREE;
741}
742
743/*
744 * derive number of elements in scatterlist
745 * Shamlessly copy from talitos.c
746 */
747static int get_sg_count(struct scatterlist *sg_list, int nbytes)
748{
749 struct scatterlist *sg = sg_list;
750 int sg_nents = 0;
751
752 while (nbytes) {
753 sg_nents++;
754 if (sg->length > nbytes)
755 break;
756 nbytes -= sg->length;
757 sg = sg_next(sg);
758 }
759
760 return sg_nents;
761}
762
763static u32 get_next_gd(u32 current)
764{
765 if (current != PPC4XX_LAST_GD)
766 return current + 1;
767 else
768 return 0;
769}
770
771static u32 get_next_sd(u32 current)
772{
773 if (current != PPC4XX_LAST_SD)
774 return current + 1;
775 else
776 return 0;
777}
778
779u32 crypto4xx_build_pd(struct crypto_async_request *req,
780 struct crypto4xx_ctx *ctx,
781 struct scatterlist *src,
782 struct scatterlist *dst,
783 unsigned int datalen,
784 void *iv, u32 iv_len)
785{
786 struct crypto4xx_device *dev = ctx->dev;
787 dma_addr_t addr, pd_dma, sd_dma, gd_dma;
788 struct dynamic_sa_ctl *sa;
789 struct scatterlist *sg;
790 struct ce_gd *gd;
791 struct ce_pd *pd;
792 u32 num_gd, num_sd;
793 u32 fst_gd = 0xffffffff;
794 u32 fst_sd = 0xffffffff;
795 u32 pd_entry;
796 unsigned long flags;
797 struct pd_uinfo *pd_uinfo = NULL;
798 unsigned int nbytes = datalen, idx;
799 unsigned int ivlen = 0;
800 u32 gd_idx = 0;
801
802 /* figure how many gd is needed */
803 num_gd = get_sg_count(src, datalen);
804 if (num_gd == 1)
805 num_gd = 0;
806
807 /* figure how many sd is needed */
808 if (sg_is_last(dst) || ctx->is_hash) {
809 num_sd = 0;
810 } else {
811 if (datalen > PPC4XX_SD_BUFFER_SIZE) {
812 num_sd = datalen / PPC4XX_SD_BUFFER_SIZE;
813 if (datalen % PPC4XX_SD_BUFFER_SIZE)
814 num_sd++;
815 } else {
816 num_sd = 1;
817 }
818 }
819
820 /*
821 * The follow section of code needs to be protected
822 * The gather ring and scatter ring needs to be consecutive
823 * In case of run out of any kind of descriptor, the descriptor
824 * already got must be return the original place.
825 */
826 spin_lock_irqsave(&dev->core_dev->lock, flags);
827 if (num_gd) {
828 fst_gd = crypto4xx_get_n_gd(dev, num_gd);
829 if (fst_gd == ERING_WAS_FULL) {
830 spin_unlock_irqrestore(&dev->core_dev->lock, flags);
831 return -EAGAIN;
832 }
833 }
834 if (num_sd) {
835 fst_sd = crypto4xx_get_n_sd(dev, num_sd);
836 if (fst_sd == ERING_WAS_FULL) {
837 if (num_gd)
838 dev->gdr_head = fst_gd;
839 spin_unlock_irqrestore(&dev->core_dev->lock, flags);
840 return -EAGAIN;
841 }
842 }
843 pd_entry = crypto4xx_get_pd_from_pdr_nolock(dev);
844 if (pd_entry == ERING_WAS_FULL) {
845 if (num_gd)
846 dev->gdr_head = fst_gd;
847 if (num_sd)
848 dev->sdr_head = fst_sd;
849 spin_unlock_irqrestore(&dev->core_dev->lock, flags);
850 return -EAGAIN;
851 }
852 spin_unlock_irqrestore(&dev->core_dev->lock, flags);
853
854 pd_uinfo = (struct pd_uinfo *)(dev->pdr_uinfo +
855 sizeof(struct pd_uinfo) * pd_entry);
856 pd = crypto4xx_get_pdp(dev, &pd_dma, pd_entry);
857 pd_uinfo->async_req = req;
858 pd_uinfo->num_gd = num_gd;
859 pd_uinfo->num_sd = num_sd;
860
861 if (iv_len || ctx->is_hash) {
862 ivlen = iv_len;
863 pd->sa = pd_uinfo->sa_pa;
864 sa = (struct dynamic_sa_ctl *) pd_uinfo->sa_va;
865 if (ctx->direction == DIR_INBOUND)
866 memcpy(sa, ctx->sa_in, ctx->sa_len * 4);
867 else
868 memcpy(sa, ctx->sa_out, ctx->sa_len * 4);
869
870 memcpy((void *) sa + ctx->offset_to_sr_ptr,
871 &pd_uinfo->sr_pa, 4);
872
873 if (iv_len)
874 crypto4xx_memcpy_le(pd_uinfo->sr_va, iv, iv_len);
875 } else {
876 if (ctx->direction == DIR_INBOUND) {
877 pd->sa = ctx->sa_in_dma_addr;
878 sa = (struct dynamic_sa_ctl *) ctx->sa_in;
879 } else {
880 pd->sa = ctx->sa_out_dma_addr;
881 sa = (struct dynamic_sa_ctl *) ctx->sa_out;
882 }
883 }
884 pd->sa_len = ctx->sa_len;
885 if (num_gd) {
886 /* get first gd we are going to use */
887 gd_idx = fst_gd;
888 pd_uinfo->first_gd = fst_gd;
889 pd_uinfo->num_gd = num_gd;
890 gd = crypto4xx_get_gdp(dev, &gd_dma, gd_idx);
891 pd->src = gd_dma;
892 /* enable gather */
893 sa->sa_command_0.bf.gather = 1;
894 idx = 0;
895 src = &src[0];
896 /* walk the sg, and setup gather array */
897 while (nbytes) {
898 sg = &src[idx];
899 addr = dma_map_page(dev->core_dev->device, sg_page(sg),
900 sg->offset, sg->length, DMA_TO_DEVICE);
901 gd->ptr = addr;
902 gd->ctl_len.len = sg->length;
903 gd->ctl_len.done = 0;
904 gd->ctl_len.ready = 1;
905 if (sg->length >= nbytes)
906 break;
907 nbytes -= sg->length;
908 gd_idx = get_next_gd(gd_idx);
909 gd = crypto4xx_get_gdp(dev, &gd_dma, gd_idx);
910 idx++;
911 }
912 } else {
913 pd->src = (u32)dma_map_page(dev->core_dev->device, sg_page(src),
914 src->offset, src->length, DMA_TO_DEVICE);
915 /*
916 * Disable gather in sa command
917 */
918 sa->sa_command_0.bf.gather = 0;
919 /*
920 * Indicate gather array is not used
921 */
922 pd_uinfo->first_gd = 0xffffffff;
923 pd_uinfo->num_gd = 0;
924 }
925 if (ctx->is_hash || sg_is_last(dst)) {
926 /*
927 * we know application give us dst a whole piece of memory
928 * no need to use scatter ring.
929 * In case of is_hash, the icv is always at end of src data.
930 */
931 pd_uinfo->using_sd = 0;
932 pd_uinfo->first_sd = 0xffffffff;
933 pd_uinfo->num_sd = 0;
934 pd_uinfo->dest_va = dst;
935 sa->sa_command_0.bf.scatter = 0;
936 if (ctx->is_hash)
937 pd->dest = virt_to_phys((void *)dst);
938 else
939 pd->dest = (u32)dma_map_page(dev->core_dev->device,
940 sg_page(dst), dst->offset,
941 dst->length, DMA_TO_DEVICE);
942 } else {
943 struct ce_sd *sd = NULL;
944 u32 sd_idx = fst_sd;
945 nbytes = datalen;
946 sa->sa_command_0.bf.scatter = 1;
947 pd_uinfo->using_sd = 1;
948 pd_uinfo->dest_va = dst;
949 pd_uinfo->first_sd = fst_sd;
950 pd_uinfo->num_sd = num_sd;
951 sd = crypto4xx_get_sdp(dev, &sd_dma, sd_idx);
952 pd->dest = sd_dma;
953 /* setup scatter descriptor */
954 sd->ctl.done = 0;
955 sd->ctl.rdy = 1;
956 /* sd->ptr should be setup by sd_init routine*/
957 idx = 0;
958 if (nbytes >= PPC4XX_SD_BUFFER_SIZE)
959 nbytes -= PPC4XX_SD_BUFFER_SIZE;
960 else
961 nbytes = 0;
962 while (nbytes) {
963 sd_idx = get_next_sd(sd_idx);
964 sd = crypto4xx_get_sdp(dev, &sd_dma, sd_idx);
965 /* setup scatter descriptor */
966 sd->ctl.done = 0;
967 sd->ctl.rdy = 1;
968 if (nbytes >= PPC4XX_SD_BUFFER_SIZE)
969 nbytes -= PPC4XX_SD_BUFFER_SIZE;
970 else
971 /*
972 * SD entry can hold PPC4XX_SD_BUFFER_SIZE,
973 * which is more than nbytes, so done.
974 */
975 nbytes = 0;
976 }
977 }
978
979 sa->sa_command_1.bf.hash_crypto_offset = 0;
980 pd->pd_ctl.w = ctx->pd_ctl;
981 pd->pd_ctl_len.w = 0x00400000 | (ctx->bypass << 24) | datalen;
982 pd_uinfo->state = PD_ENTRY_INUSE;
983 wmb();
984 /* write any value to push engine to read a pd */
985 writel(1, dev->ce_base + CRYPTO4XX_INT_DESCR_RD);
986 return -EINPROGRESS;
987}
988
989/**
990 * Algorithm Registration Functions
991 */
992static int crypto4xx_alg_init(struct crypto_tfm *tfm)
993{
994 struct crypto_alg *alg = tfm->__crt_alg;
995 struct crypto4xx_alg *amcc_alg = crypto_alg_to_crypto4xx_alg(alg);
996 struct crypto4xx_ctx *ctx = crypto_tfm_ctx(tfm);
997
998 ctx->dev = amcc_alg->dev;
999 ctx->sa_in = NULL;
1000 ctx->sa_out = NULL;
1001 ctx->sa_in_dma_addr = 0;
1002 ctx->sa_out_dma_addr = 0;
1003 ctx->sa_len = 0;
1004
1005 switch (alg->cra_flags & CRYPTO_ALG_TYPE_MASK) {
1006 default:
1007 tfm->crt_ablkcipher.reqsize = sizeof(struct crypto4xx_ctx);
1008 break;
1009 case CRYPTO_ALG_TYPE_AHASH:
1010 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
1011 sizeof(struct crypto4xx_ctx));
1012 break;
1013 }
1014
1015 return 0;
1016}
1017
1018static void crypto4xx_alg_exit(struct crypto_tfm *tfm)
1019{
1020 struct crypto4xx_ctx *ctx = crypto_tfm_ctx(tfm);
1021
1022 crypto4xx_free_sa(ctx);
1023 crypto4xx_free_state_record(ctx);
1024}
1025
1026int crypto4xx_register_alg(struct crypto4xx_device *sec_dev,
1027 struct crypto4xx_alg_common *crypto_alg,
1028 int array_size)
1029{
1030 struct crypto4xx_alg *alg;
1031 int i;
1032 int rc = 0;
1033
1034 for (i = 0; i < array_size; i++) {
1035 alg = kzalloc(sizeof(struct crypto4xx_alg), GFP_KERNEL);
1036 if (!alg)
1037 return -ENOMEM;
1038
1039 alg->alg = crypto_alg[i];
1040 alg->dev = sec_dev;
1041
1042 switch (alg->alg.type) {
1043 case CRYPTO_ALG_TYPE_AHASH:
1044 rc = crypto_register_ahash(&alg->alg.u.hash);
1045 break;
1046
1047 default:
1048 rc = crypto_register_alg(&alg->alg.u.cipher);
1049 break;
1050 }
1051
1052 if (rc) {
1053 list_del(&alg->entry);
1054 kfree(alg);
1055 } else {
1056 list_add_tail(&alg->entry, &sec_dev->alg_list);
1057 }
1058 }
1059
1060 return 0;
1061}
1062
1063static void crypto4xx_unregister_alg(struct crypto4xx_device *sec_dev)
1064{
1065 struct crypto4xx_alg *alg, *tmp;
1066
1067 list_for_each_entry_safe(alg, tmp, &sec_dev->alg_list, entry) {
1068 list_del(&alg->entry);
1069 switch (alg->alg.type) {
1070 case CRYPTO_ALG_TYPE_AHASH:
1071 crypto_unregister_ahash(&alg->alg.u.hash);
1072 break;
1073
1074 default:
1075 crypto_unregister_alg(&alg->alg.u.cipher);
1076 }
1077 kfree(alg);
1078 }
1079}
1080
1081static void crypto4xx_bh_tasklet_cb(unsigned long data)
1082{
1083 struct device *dev = (struct device *)data;
1084 struct crypto4xx_core_device *core_dev = dev_get_drvdata(dev);
1085 struct pd_uinfo *pd_uinfo;
1086 struct ce_pd *pd;
1087 u32 tail;
1088
1089 while (core_dev->dev->pdr_head != core_dev->dev->pdr_tail) {
1090 tail = core_dev->dev->pdr_tail;
1091 pd_uinfo = core_dev->dev->pdr_uinfo +
1092 sizeof(struct pd_uinfo)*tail;
1093 pd = core_dev->dev->pdr + sizeof(struct ce_pd) * tail;
1094 if ((pd_uinfo->state == PD_ENTRY_INUSE) &&
1095 pd->pd_ctl.bf.pe_done &&
1096 !pd->pd_ctl.bf.host_ready) {
1097 pd->pd_ctl.bf.pe_done = 0;
1098 crypto4xx_pd_done(core_dev->dev, tail);
1099 crypto4xx_put_pd_to_pdr(core_dev->dev, tail);
1100 pd_uinfo->state = PD_ENTRY_FREE;
1101 } else {
1102 /* if tail not done, break */
1103 break;
1104 }
1105 }
1106}
1107
1108/**
1109 * Top Half of isr.
1110 */
1111static irqreturn_t crypto4xx_ce_interrupt_handler(int irq, void *data)
1112{
1113 struct device *dev = (struct device *)data;
1114 struct crypto4xx_core_device *core_dev = dev_get_drvdata(dev);
1115
1116 if (core_dev->dev->ce_base == 0)
1117 return 0;
1118
1119 writel(PPC4XX_INTERRUPT_CLR,
1120 core_dev->dev->ce_base + CRYPTO4XX_INT_CLR);
1121 tasklet_schedule(&core_dev->tasklet);
1122
1123 return IRQ_HANDLED;
1124}
1125
1126/**
1127 * Supported Crypto Algorithms
1128 */
1129struct crypto4xx_alg_common crypto4xx_alg[] = {
1130 /* Crypto AES modes */
1131 { .type = CRYPTO_ALG_TYPE_ABLKCIPHER, .u.cipher = {
1132 .cra_name = "cbc(aes)",
1133 .cra_driver_name = "cbc-aes-ppc4xx",
1134 .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
1135 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1136 .cra_blocksize = AES_BLOCK_SIZE,
1137 .cra_ctxsize = sizeof(struct crypto4xx_ctx),
1138 .cra_type = &crypto_ablkcipher_type,
1139 .cra_init = crypto4xx_alg_init,
1140 .cra_exit = crypto4xx_alg_exit,
1141 .cra_module = THIS_MODULE,
1142 .cra_u = {
1143 .ablkcipher = {
1144 .min_keysize = AES_MIN_KEY_SIZE,
1145 .max_keysize = AES_MAX_KEY_SIZE,
1146 .ivsize = AES_IV_SIZE,
1147 .setkey = crypto4xx_setkey_aes_cbc,
1148 .encrypt = crypto4xx_encrypt,
1149 .decrypt = crypto4xx_decrypt,
1150 }
1151 }
1152 }},
1153};
1154
1155/**
1156 * Module Initialization Routine
1157 */
1158static int __init crypto4xx_probe(struct platform_device *ofdev)
1159{
1160 int rc;
1161 struct resource res;
1162 struct device *dev = &ofdev->dev;
1163 struct crypto4xx_core_device *core_dev;
1164
1165 rc = of_address_to_resource(ofdev->dev.of_node, 0, &res);
1166 if (rc)
1167 return -ENODEV;
1168
1169 if (of_find_compatible_node(NULL, NULL, "amcc,ppc460ex-crypto")) {
1170 mtdcri(SDR0, PPC460EX_SDR0_SRST,
1171 mfdcri(SDR0, PPC460EX_SDR0_SRST) | PPC460EX_CE_RESET);
1172 mtdcri(SDR0, PPC460EX_SDR0_SRST,
1173 mfdcri(SDR0, PPC460EX_SDR0_SRST) & ~PPC460EX_CE_RESET);
1174 } else if (of_find_compatible_node(NULL, NULL,
1175 "amcc,ppc405ex-crypto")) {
1176 mtdcri(SDR0, PPC405EX_SDR0_SRST,
1177 mfdcri(SDR0, PPC405EX_SDR0_SRST) | PPC405EX_CE_RESET);
1178 mtdcri(SDR0, PPC405EX_SDR0_SRST,
1179 mfdcri(SDR0, PPC405EX_SDR0_SRST) & ~PPC405EX_CE_RESET);
1180 } else if (of_find_compatible_node(NULL, NULL,
1181 "amcc,ppc460sx-crypto")) {
1182 mtdcri(SDR0, PPC460SX_SDR0_SRST,
1183 mfdcri(SDR0, PPC460SX_SDR0_SRST) | PPC460SX_CE_RESET);
1184 mtdcri(SDR0, PPC460SX_SDR0_SRST,
1185 mfdcri(SDR0, PPC460SX_SDR0_SRST) & ~PPC460SX_CE_RESET);
1186 } else {
1187 printk(KERN_ERR "Crypto Function Not supported!\n");
1188 return -EINVAL;
1189 }
1190
1191 core_dev = kzalloc(sizeof(struct crypto4xx_core_device), GFP_KERNEL);
1192 if (!core_dev)
1193 return -ENOMEM;
1194
1195 dev_set_drvdata(dev, core_dev);
1196 core_dev->ofdev = ofdev;
1197 core_dev->dev = kzalloc(sizeof(struct crypto4xx_device), GFP_KERNEL);
1198 if (!core_dev->dev)
1199 goto err_alloc_dev;
1200
1201 core_dev->dev->core_dev = core_dev;
1202 core_dev->device = dev;
1203 spin_lock_init(&core_dev->lock);
1204 INIT_LIST_HEAD(&core_dev->dev->alg_list);
1205 rc = crypto4xx_build_pdr(core_dev->dev);
1206 if (rc)
1207 goto err_build_pdr;
1208
1209 rc = crypto4xx_build_gdr(core_dev->dev);
1210 if (rc)
1211 goto err_build_gdr;
1212
1213 rc = crypto4xx_build_sdr(core_dev->dev);
1214 if (rc)
1215 goto err_build_sdr;
1216
1217 /* Init tasklet for bottom half processing */
1218 tasklet_init(&core_dev->tasklet, crypto4xx_bh_tasklet_cb,
1219 (unsigned long) dev);
1220
1221 /* Register for Crypto isr, Crypto Engine IRQ */
1222 core_dev->irq = irq_of_parse_and_map(ofdev->dev.of_node, 0);
1223 rc = request_irq(core_dev->irq, crypto4xx_ce_interrupt_handler, 0,
1224 core_dev->dev->name, dev);
1225 if (rc)
1226 goto err_request_irq;
1227
1228 core_dev->dev->ce_base = of_iomap(ofdev->dev.of_node, 0);
1229 if (!core_dev->dev->ce_base) {
1230 dev_err(dev, "failed to of_iomap\n");
1231 rc = -ENOMEM;
1232 goto err_iomap;
1233 }
1234
1235 /* need to setup pdr, rdr, gdr and sdr before this */
1236 crypto4xx_hw_init(core_dev->dev);
1237
1238 /* Register security algorithms with Linux CryptoAPI */
1239 rc = crypto4xx_register_alg(core_dev->dev, crypto4xx_alg,
1240 ARRAY_SIZE(crypto4xx_alg));
1241 if (rc)
1242 goto err_start_dev;
1243
1244 return 0;
1245
1246err_start_dev:
1247 iounmap(core_dev->dev->ce_base);
1248err_iomap:
1249 free_irq(core_dev->irq, dev);
1250err_request_irq:
1251 irq_dispose_mapping(core_dev->irq);
1252 tasklet_kill(&core_dev->tasklet);
1253 crypto4xx_destroy_sdr(core_dev->dev);
1254err_build_sdr:
1255 crypto4xx_destroy_gdr(core_dev->dev);
1256err_build_gdr:
1257 crypto4xx_destroy_pdr(core_dev->dev);
1258err_build_pdr:
1259 kfree(core_dev->dev);
1260err_alloc_dev:
1261 kfree(core_dev);
1262
1263 return rc;
1264}
1265
1266static int __exit crypto4xx_remove(struct platform_device *ofdev)
1267{
1268 struct device *dev = &ofdev->dev;
1269 struct crypto4xx_core_device *core_dev = dev_get_drvdata(dev);
1270
1271 free_irq(core_dev->irq, dev);
1272 irq_dispose_mapping(core_dev->irq);
1273
1274 tasklet_kill(&core_dev->tasklet);
1275 /* Un-register with Linux CryptoAPI */
1276 crypto4xx_unregister_alg(core_dev->dev);
1277 /* Free all allocated memory */
1278 crypto4xx_stop_all(core_dev);
1279
1280 return 0;
1281}
1282
1283static const struct of_device_id crypto4xx_match[] = {
1284 { .compatible = "amcc,ppc4xx-crypto",},
1285 { },
1286};
1287
1288static struct platform_driver crypto4xx_driver = {
1289 .driver = {
1290 .name = "crypto4xx",
1291 .owner = THIS_MODULE,
1292 .of_match_table = crypto4xx_match,
1293 },
1294 .probe = crypto4xx_probe,
1295 .remove = crypto4xx_remove,
1296};
1297
1298module_platform_driver(crypto4xx_driver);
1299
1300MODULE_LICENSE("GPL");
1301MODULE_AUTHOR("James Hsiao <jhsiao@amcc.com>");
1302MODULE_DESCRIPTION("Driver for AMCC PPC4xx crypto accelerator");
1303