Linux Audio

Check our new training course

Loading...
v5.9
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * CMAC: Cipher Block Mode for Authentication
  4 *
  5 * Copyright © 2013 Jussi Kivilinna <jussi.kivilinna@iki.fi>
  6 *
  7 * Based on work by:
  8 *  Copyright © 2013 Tom St Denis <tstdenis@elliptictech.com>
  9 * Based on crypto/xcbc.c:
 10 *  Copyright © 2006 USAGI/WIDE Project,
 11 *   Author: Kazunori Miyazawa <miyazawa@linux-ipv6.org>
 
 
 
 
 
 
 12 */
 13
 14#include <crypto/internal/hash.h>
 15#include <linux/err.h>
 16#include <linux/kernel.h>
 17#include <linux/module.h>
 18
 19/*
 20 * +------------------------
 21 * | <parent tfm>
 22 * +------------------------
 23 * | cmac_tfm_ctx
 24 * +------------------------
 25 * | consts (block size * 2)
 26 * +------------------------
 27 */
 28struct cmac_tfm_ctx {
 29	struct crypto_cipher *child;
 30	u8 ctx[];
 31};
 32
 33/*
 34 * +------------------------
 35 * | <shash desc>
 36 * +------------------------
 37 * | cmac_desc_ctx
 38 * +------------------------
 39 * | odds (block size)
 40 * +------------------------
 41 * | prev (block size)
 42 * +------------------------
 43 */
 44struct cmac_desc_ctx {
 45	unsigned int len;
 46	u8 ctx[];
 47};
 48
 49static int crypto_cmac_digest_setkey(struct crypto_shash *parent,
 50				     const u8 *inkey, unsigned int keylen)
 51{
 52	unsigned long alignmask = crypto_shash_alignmask(parent);
 53	struct cmac_tfm_ctx *ctx = crypto_shash_ctx(parent);
 54	unsigned int bs = crypto_shash_blocksize(parent);
 55	__be64 *consts = PTR_ALIGN((void *)ctx->ctx,
 56				   (alignmask | (__alignof__(__be64) - 1)) + 1);
 57	u64 _const[2];
 58	int i, err = 0;
 59	u8 msb_mask, gfmask;
 60
 61	err = crypto_cipher_setkey(ctx->child, inkey, keylen);
 62	if (err)
 63		return err;
 64
 65	/* encrypt the zero block */
 66	memset(consts, 0, bs);
 67	crypto_cipher_encrypt_one(ctx->child, (u8 *)consts, (u8 *)consts);
 68
 69	switch (bs) {
 70	case 16:
 71		gfmask = 0x87;
 72		_const[0] = be64_to_cpu(consts[1]);
 73		_const[1] = be64_to_cpu(consts[0]);
 74
 75		/* gf(2^128) multiply zero-ciphertext with u and u^2 */
 76		for (i = 0; i < 4; i += 2) {
 77			msb_mask = ((s64)_const[1] >> 63) & gfmask;
 78			_const[1] = (_const[1] << 1) | (_const[0] >> 63);
 79			_const[0] = (_const[0] << 1) ^ msb_mask;
 80
 81			consts[i + 0] = cpu_to_be64(_const[1]);
 82			consts[i + 1] = cpu_to_be64(_const[0]);
 83		}
 84
 85		break;
 86	case 8:
 87		gfmask = 0x1B;
 88		_const[0] = be64_to_cpu(consts[0]);
 89
 90		/* gf(2^64) multiply zero-ciphertext with u and u^2 */
 91		for (i = 0; i < 2; i++) {
 92			msb_mask = ((s64)_const[0] >> 63) & gfmask;
 93			_const[0] = (_const[0] << 1) ^ msb_mask;
 94
 95			consts[i] = cpu_to_be64(_const[0]);
 96		}
 97
 98		break;
 99	}
100
101	return 0;
102}
103
104static int crypto_cmac_digest_init(struct shash_desc *pdesc)
105{
106	unsigned long alignmask = crypto_shash_alignmask(pdesc->tfm);
107	struct cmac_desc_ctx *ctx = shash_desc_ctx(pdesc);
108	int bs = crypto_shash_blocksize(pdesc->tfm);
109	u8 *prev = PTR_ALIGN((void *)ctx->ctx, alignmask + 1) + bs;
110
111	ctx->len = 0;
112	memset(prev, 0, bs);
113
114	return 0;
115}
116
117static int crypto_cmac_digest_update(struct shash_desc *pdesc, const u8 *p,
118				     unsigned int len)
119{
120	struct crypto_shash *parent = pdesc->tfm;
121	unsigned long alignmask = crypto_shash_alignmask(parent);
122	struct cmac_tfm_ctx *tctx = crypto_shash_ctx(parent);
123	struct cmac_desc_ctx *ctx = shash_desc_ctx(pdesc);
124	struct crypto_cipher *tfm = tctx->child;
125	int bs = crypto_shash_blocksize(parent);
126	u8 *odds = PTR_ALIGN((void *)ctx->ctx, alignmask + 1);
127	u8 *prev = odds + bs;
128
129	/* checking the data can fill the block */
130	if ((ctx->len + len) <= bs) {
131		memcpy(odds + ctx->len, p, len);
132		ctx->len += len;
133		return 0;
134	}
135
136	/* filling odds with new data and encrypting it */
137	memcpy(odds + ctx->len, p, bs - ctx->len);
138	len -= bs - ctx->len;
139	p += bs - ctx->len;
140
141	crypto_xor(prev, odds, bs);
142	crypto_cipher_encrypt_one(tfm, prev, prev);
143
144	/* clearing the length */
145	ctx->len = 0;
146
147	/* encrypting the rest of data */
148	while (len > bs) {
149		crypto_xor(prev, p, bs);
150		crypto_cipher_encrypt_one(tfm, prev, prev);
151		p += bs;
152		len -= bs;
153	}
154
155	/* keeping the surplus of blocksize */
156	if (len) {
157		memcpy(odds, p, len);
158		ctx->len = len;
159	}
160
161	return 0;
162}
163
164static int crypto_cmac_digest_final(struct shash_desc *pdesc, u8 *out)
165{
166	struct crypto_shash *parent = pdesc->tfm;
167	unsigned long alignmask = crypto_shash_alignmask(parent);
168	struct cmac_tfm_ctx *tctx = crypto_shash_ctx(parent);
169	struct cmac_desc_ctx *ctx = shash_desc_ctx(pdesc);
170	struct crypto_cipher *tfm = tctx->child;
171	int bs = crypto_shash_blocksize(parent);
172	u8 *consts = PTR_ALIGN((void *)tctx->ctx,
173			       (alignmask | (__alignof__(__be64) - 1)) + 1);
174	u8 *odds = PTR_ALIGN((void *)ctx->ctx, alignmask + 1);
175	u8 *prev = odds + bs;
176	unsigned int offset = 0;
177
178	if (ctx->len != bs) {
179		unsigned int rlen;
180		u8 *p = odds + ctx->len;
181
182		*p = 0x80;
183		p++;
184
185		rlen = bs - ctx->len - 1;
186		if (rlen)
187			memset(p, 0, rlen);
188
189		offset += bs;
190	}
191
192	crypto_xor(prev, odds, bs);
193	crypto_xor(prev, consts + offset, bs);
194
195	crypto_cipher_encrypt_one(tfm, out, prev);
196
197	return 0;
198}
199
200static int cmac_init_tfm(struct crypto_tfm *tfm)
201{
202	struct crypto_cipher *cipher;
203	struct crypto_instance *inst = (void *)tfm->__crt_alg;
204	struct crypto_cipher_spawn *spawn = crypto_instance_ctx(inst);
205	struct cmac_tfm_ctx *ctx = crypto_tfm_ctx(tfm);
206
207	cipher = crypto_spawn_cipher(spawn);
208	if (IS_ERR(cipher))
209		return PTR_ERR(cipher);
210
211	ctx->child = cipher;
212
213	return 0;
214};
215
216static void cmac_exit_tfm(struct crypto_tfm *tfm)
217{
218	struct cmac_tfm_ctx *ctx = crypto_tfm_ctx(tfm);
219	crypto_free_cipher(ctx->child);
220}
221
222static int cmac_create(struct crypto_template *tmpl, struct rtattr **tb)
223{
224	struct shash_instance *inst;
225	struct crypto_cipher_spawn *spawn;
226	struct crypto_alg *alg;
227	unsigned long alignmask;
228	u32 mask;
229	int err;
230
231	err = crypto_check_attr_type(tb, CRYPTO_ALG_TYPE_SHASH, &mask);
232	if (err)
233		return err;
234
235	inst = kzalloc(sizeof(*inst) + sizeof(*spawn), GFP_KERNEL);
236	if (!inst)
237		return -ENOMEM;
238	spawn = shash_instance_ctx(inst);
239
240	err = crypto_grab_cipher(spawn, shash_crypto_instance(inst),
241				 crypto_attr_alg_name(tb[1]), 0, mask);
242	if (err)
243		goto err_free_inst;
244	alg = crypto_spawn_cipher_alg(spawn);
245
246	switch (alg->cra_blocksize) {
247	case 16:
248	case 8:
249		break;
250	default:
251		err = -EINVAL;
252		goto err_free_inst;
253	}
254
255	err = crypto_inst_setname(shash_crypto_instance(inst), tmpl->name, alg);
 
 
 
 
 
 
 
256	if (err)
257		goto err_free_inst;
258
259	alignmask = alg->cra_alignmask;
260	inst->alg.base.cra_alignmask = alignmask;
261	inst->alg.base.cra_priority = alg->cra_priority;
262	inst->alg.base.cra_blocksize = alg->cra_blocksize;
263
264	inst->alg.digestsize = alg->cra_blocksize;
265	inst->alg.descsize =
266		ALIGN(sizeof(struct cmac_desc_ctx), crypto_tfm_ctx_alignment())
267		+ (alignmask & ~(crypto_tfm_ctx_alignment() - 1))
268		+ alg->cra_blocksize * 2;
269
270	inst->alg.base.cra_ctxsize =
271		ALIGN(sizeof(struct cmac_tfm_ctx), crypto_tfm_ctx_alignment())
272		+ ((alignmask | (__alignof__(__be64) - 1)) &
273		   ~(crypto_tfm_ctx_alignment() - 1))
274		+ alg->cra_blocksize * 2;
275
276	inst->alg.base.cra_init = cmac_init_tfm;
277	inst->alg.base.cra_exit = cmac_exit_tfm;
278
279	inst->alg.init = crypto_cmac_digest_init;
280	inst->alg.update = crypto_cmac_digest_update;
281	inst->alg.final = crypto_cmac_digest_final;
282	inst->alg.setkey = crypto_cmac_digest_setkey;
283
284	inst->free = shash_free_singlespawn_instance;
285
286	err = shash_register_instance(tmpl, inst);
287	if (err) {
288err_free_inst:
289		shash_free_singlespawn_instance(inst);
290	}
 
 
 
291	return err;
292}
293
294static struct crypto_template crypto_cmac_tmpl = {
295	.name = "cmac",
296	.create = cmac_create,
 
297	.module = THIS_MODULE,
298};
299
300static int __init crypto_cmac_module_init(void)
301{
302	return crypto_register_template(&crypto_cmac_tmpl);
303}
304
305static void __exit crypto_cmac_module_exit(void)
306{
307	crypto_unregister_template(&crypto_cmac_tmpl);
308}
309
310subsys_initcall(crypto_cmac_module_init);
311module_exit(crypto_cmac_module_exit);
312
313MODULE_LICENSE("GPL");
314MODULE_DESCRIPTION("CMAC keyed hash algorithm");
315MODULE_ALIAS_CRYPTO("cmac");
v3.15
 
  1/*
  2 * CMAC: Cipher Block Mode for Authentication
  3 *
  4 * Copyright © 2013 Jussi Kivilinna <jussi.kivilinna@iki.fi>
  5 *
  6 * Based on work by:
  7 *  Copyright © 2013 Tom St Denis <tstdenis@elliptictech.com>
  8 * Based on crypto/xcbc.c:
  9 *  Copyright © 2006 USAGI/WIDE Project,
 10 *   Author: Kazunori Miyazawa <miyazawa@linux-ipv6.org>
 11 *
 12 * This program is free software; you can redistribute it and/or modify
 13 * it under the terms of the GNU General Public License as published by
 14 * the Free Software Foundation; either version 2 of the License, or
 15 * (at your option) any later version.
 16 *
 17 */
 18
 19#include <crypto/internal/hash.h>
 20#include <linux/err.h>
 21#include <linux/kernel.h>
 22#include <linux/module.h>
 23
 24/*
 25 * +------------------------
 26 * | <parent tfm>
 27 * +------------------------
 28 * | cmac_tfm_ctx
 29 * +------------------------
 30 * | consts (block size * 2)
 31 * +------------------------
 32 */
 33struct cmac_tfm_ctx {
 34	struct crypto_cipher *child;
 35	u8 ctx[];
 36};
 37
 38/*
 39 * +------------------------
 40 * | <shash desc>
 41 * +------------------------
 42 * | cmac_desc_ctx
 43 * +------------------------
 44 * | odds (block size)
 45 * +------------------------
 46 * | prev (block size)
 47 * +------------------------
 48 */
 49struct cmac_desc_ctx {
 50	unsigned int len;
 51	u8 ctx[];
 52};
 53
 54static int crypto_cmac_digest_setkey(struct crypto_shash *parent,
 55				     const u8 *inkey, unsigned int keylen)
 56{
 57	unsigned long alignmask = crypto_shash_alignmask(parent);
 58	struct cmac_tfm_ctx *ctx = crypto_shash_ctx(parent);
 59	unsigned int bs = crypto_shash_blocksize(parent);
 60	__be64 *consts = PTR_ALIGN((void *)ctx->ctx, alignmask + 1);
 
 61	u64 _const[2];
 62	int i, err = 0;
 63	u8 msb_mask, gfmask;
 64
 65	err = crypto_cipher_setkey(ctx->child, inkey, keylen);
 66	if (err)
 67		return err;
 68
 69	/* encrypt the zero block */
 70	memset(consts, 0, bs);
 71	crypto_cipher_encrypt_one(ctx->child, (u8 *)consts, (u8 *)consts);
 72
 73	switch (bs) {
 74	case 16:
 75		gfmask = 0x87;
 76		_const[0] = be64_to_cpu(consts[1]);
 77		_const[1] = be64_to_cpu(consts[0]);
 78
 79		/* gf(2^128) multiply zero-ciphertext with u and u^2 */
 80		for (i = 0; i < 4; i += 2) {
 81			msb_mask = ((s64)_const[1] >> 63) & gfmask;
 82			_const[1] = (_const[1] << 1) | (_const[0] >> 63);
 83			_const[0] = (_const[0] << 1) ^ msb_mask;
 84
 85			consts[i + 0] = cpu_to_be64(_const[1]);
 86			consts[i + 1] = cpu_to_be64(_const[0]);
 87		}
 88
 89		break;
 90	case 8:
 91		gfmask = 0x1B;
 92		_const[0] = be64_to_cpu(consts[0]);
 93
 94		/* gf(2^64) multiply zero-ciphertext with u and u^2 */
 95		for (i = 0; i < 2; i++) {
 96			msb_mask = ((s64)_const[0] >> 63) & gfmask;
 97			_const[0] = (_const[0] << 1) ^ msb_mask;
 98
 99			consts[i] = cpu_to_be64(_const[0]);
100		}
101
102		break;
103	}
104
105	return 0;
106}
107
108static int crypto_cmac_digest_init(struct shash_desc *pdesc)
109{
110	unsigned long alignmask = crypto_shash_alignmask(pdesc->tfm);
111	struct cmac_desc_ctx *ctx = shash_desc_ctx(pdesc);
112	int bs = crypto_shash_blocksize(pdesc->tfm);
113	u8 *prev = PTR_ALIGN((void *)ctx->ctx, alignmask + 1) + bs;
114
115	ctx->len = 0;
116	memset(prev, 0, bs);
117
118	return 0;
119}
120
121static int crypto_cmac_digest_update(struct shash_desc *pdesc, const u8 *p,
122				     unsigned int len)
123{
124	struct crypto_shash *parent = pdesc->tfm;
125	unsigned long alignmask = crypto_shash_alignmask(parent);
126	struct cmac_tfm_ctx *tctx = crypto_shash_ctx(parent);
127	struct cmac_desc_ctx *ctx = shash_desc_ctx(pdesc);
128	struct crypto_cipher *tfm = tctx->child;
129	int bs = crypto_shash_blocksize(parent);
130	u8 *odds = PTR_ALIGN((void *)ctx->ctx, alignmask + 1);
131	u8 *prev = odds + bs;
132
133	/* checking the data can fill the block */
134	if ((ctx->len + len) <= bs) {
135		memcpy(odds + ctx->len, p, len);
136		ctx->len += len;
137		return 0;
138	}
139
140	/* filling odds with new data and encrypting it */
141	memcpy(odds + ctx->len, p, bs - ctx->len);
142	len -= bs - ctx->len;
143	p += bs - ctx->len;
144
145	crypto_xor(prev, odds, bs);
146	crypto_cipher_encrypt_one(tfm, prev, prev);
147
148	/* clearing the length */
149	ctx->len = 0;
150
151	/* encrypting the rest of data */
152	while (len > bs) {
153		crypto_xor(prev, p, bs);
154		crypto_cipher_encrypt_one(tfm, prev, prev);
155		p += bs;
156		len -= bs;
157	}
158
159	/* keeping the surplus of blocksize */
160	if (len) {
161		memcpy(odds, p, len);
162		ctx->len = len;
163	}
164
165	return 0;
166}
167
168static int crypto_cmac_digest_final(struct shash_desc *pdesc, u8 *out)
169{
170	struct crypto_shash *parent = pdesc->tfm;
171	unsigned long alignmask = crypto_shash_alignmask(parent);
172	struct cmac_tfm_ctx *tctx = crypto_shash_ctx(parent);
173	struct cmac_desc_ctx *ctx = shash_desc_ctx(pdesc);
174	struct crypto_cipher *tfm = tctx->child;
175	int bs = crypto_shash_blocksize(parent);
176	u8 *consts = PTR_ALIGN((void *)tctx->ctx, alignmask + 1);
 
177	u8 *odds = PTR_ALIGN((void *)ctx->ctx, alignmask + 1);
178	u8 *prev = odds + bs;
179	unsigned int offset = 0;
180
181	if (ctx->len != bs) {
182		unsigned int rlen;
183		u8 *p = odds + ctx->len;
184
185		*p = 0x80;
186		p++;
187
188		rlen = bs - ctx->len - 1;
189		if (rlen)
190			memset(p, 0, rlen);
191
192		offset += bs;
193	}
194
195	crypto_xor(prev, odds, bs);
196	crypto_xor(prev, consts + offset, bs);
197
198	crypto_cipher_encrypt_one(tfm, out, prev);
199
200	return 0;
201}
202
203static int cmac_init_tfm(struct crypto_tfm *tfm)
204{
205	struct crypto_cipher *cipher;
206	struct crypto_instance *inst = (void *)tfm->__crt_alg;
207	struct crypto_spawn *spawn = crypto_instance_ctx(inst);
208	struct cmac_tfm_ctx *ctx = crypto_tfm_ctx(tfm);
209
210	cipher = crypto_spawn_cipher(spawn);
211	if (IS_ERR(cipher))
212		return PTR_ERR(cipher);
213
214	ctx->child = cipher;
215
216	return 0;
217};
218
219static void cmac_exit_tfm(struct crypto_tfm *tfm)
220{
221	struct cmac_tfm_ctx *ctx = crypto_tfm_ctx(tfm);
222	crypto_free_cipher(ctx->child);
223}
224
225static int cmac_create(struct crypto_template *tmpl, struct rtattr **tb)
226{
227	struct shash_instance *inst;
 
228	struct crypto_alg *alg;
229	unsigned long alignmask;
 
230	int err;
231
232	err = crypto_check_attr_type(tb, CRYPTO_ALG_TYPE_SHASH);
233	if (err)
234		return err;
235
236	alg = crypto_get_attr_alg(tb, CRYPTO_ALG_TYPE_CIPHER,
237				  CRYPTO_ALG_TYPE_MASK);
238	if (IS_ERR(alg))
239		return PTR_ERR(alg);
 
 
 
 
 
 
240
241	switch (alg->cra_blocksize) {
242	case 16:
243	case 8:
244		break;
245	default:
246		goto out_put_alg;
 
247	}
248
249	inst = shash_alloc_instance("cmac", alg);
250	err = PTR_ERR(inst);
251	if (IS_ERR(inst))
252		goto out_put_alg;
253
254	err = crypto_init_spawn(shash_instance_ctx(inst), alg,
255				shash_crypto_instance(inst),
256				CRYPTO_ALG_TYPE_MASK);
257	if (err)
258		goto out_free_inst;
259
260	alignmask = alg->cra_alignmask | (sizeof(long) - 1);
261	inst->alg.base.cra_alignmask = alignmask;
262	inst->alg.base.cra_priority = alg->cra_priority;
263	inst->alg.base.cra_blocksize = alg->cra_blocksize;
264
265	inst->alg.digestsize = alg->cra_blocksize;
266	inst->alg.descsize =
267		ALIGN(sizeof(struct cmac_desc_ctx), crypto_tfm_ctx_alignment())
268		+ (alignmask & ~(crypto_tfm_ctx_alignment() - 1))
269		+ alg->cra_blocksize * 2;
270
271	inst->alg.base.cra_ctxsize =
272		ALIGN(sizeof(struct cmac_tfm_ctx), alignmask + 1)
 
 
273		+ alg->cra_blocksize * 2;
274
275	inst->alg.base.cra_init = cmac_init_tfm;
276	inst->alg.base.cra_exit = cmac_exit_tfm;
277
278	inst->alg.init = crypto_cmac_digest_init;
279	inst->alg.update = crypto_cmac_digest_update;
280	inst->alg.final = crypto_cmac_digest_final;
281	inst->alg.setkey = crypto_cmac_digest_setkey;
282
 
 
283	err = shash_register_instance(tmpl, inst);
284	if (err) {
285out_free_inst:
286		shash_free_instance(shash_crypto_instance(inst));
287	}
288
289out_put_alg:
290	crypto_mod_put(alg);
291	return err;
292}
293
294static struct crypto_template crypto_cmac_tmpl = {
295	.name = "cmac",
296	.create = cmac_create,
297	.free = shash_free_instance,
298	.module = THIS_MODULE,
299};
300
301static int __init crypto_cmac_module_init(void)
302{
303	return crypto_register_template(&crypto_cmac_tmpl);
304}
305
306static void __exit crypto_cmac_module_exit(void)
307{
308	crypto_unregister_template(&crypto_cmac_tmpl);
309}
310
311module_init(crypto_cmac_module_init);
312module_exit(crypto_cmac_module_exit);
313
314MODULE_LICENSE("GPL");
315MODULE_DESCRIPTION("CMAC keyed hash algorithm");