Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/* cpu_feature_enabled() cannot be used this early */
   3#define USE_EARLY_PGTABLE_L5
   4
   5#include <linux/memblock.h>
   6#include <linux/linkage.h>
   7#include <linux/bitops.h>
   8#include <linux/kernel.h>
   9#include <linux/export.h>
  10#include <linux/percpu.h>
  11#include <linux/string.h>
  12#include <linux/ctype.h>
  13#include <linux/delay.h>
  14#include <linux/sched/mm.h>
  15#include <linux/sched/clock.h>
  16#include <linux/sched/task.h>
  17#include <linux/sched/smt.h>
  18#include <linux/init.h>
  19#include <linux/kprobes.h>
  20#include <linux/kgdb.h>
  21#include <linux/smp.h>
  22#include <linux/io.h>
  23#include <linux/syscore_ops.h>
  24#include <linux/pgtable.h>
  25
  26#include <asm/stackprotector.h>
  27#include <asm/perf_event.h>
  28#include <asm/mmu_context.h>
  29#include <asm/doublefault.h>
  30#include <asm/archrandom.h>
  31#include <asm/hypervisor.h>
  32#include <asm/processor.h>
  33#include <asm/tlbflush.h>
  34#include <asm/debugreg.h>
  35#include <asm/sections.h>
  36#include <asm/vsyscall.h>
  37#include <linux/topology.h>
  38#include <linux/cpumask.h>
 
  39#include <linux/atomic.h>
  40#include <asm/proto.h>
  41#include <asm/setup.h>
  42#include <asm/apic.h>
  43#include <asm/desc.h>
  44#include <asm/fpu/internal.h>
 
  45#include <asm/mtrr.h>
  46#include <asm/hwcap2.h>
  47#include <linux/numa.h>
  48#include <asm/numa.h>
  49#include <asm/asm.h>
  50#include <asm/bugs.h>
  51#include <asm/cpu.h>
  52#include <asm/mce.h>
  53#include <asm/msr.h>
  54#include <asm/memtype.h>
  55#include <asm/microcode.h>
  56#include <asm/microcode_intel.h>
  57#include <asm/intel-family.h>
  58#include <asm/cpu_device_id.h>
  59#include <asm/uv/uv.h>
 
  60
  61#include "cpu.h"
  62
  63u32 elf_hwcap2 __read_mostly;
  64
  65/* all of these masks are initialized in setup_cpu_local_masks() */
  66cpumask_var_t cpu_initialized_mask;
  67cpumask_var_t cpu_callout_mask;
  68cpumask_var_t cpu_callin_mask;
  69
  70/* representing cpus for which sibling maps can be computed */
  71cpumask_var_t cpu_sibling_setup_mask;
  72
  73/* Number of siblings per CPU package */
  74int smp_num_siblings = 1;
  75EXPORT_SYMBOL(smp_num_siblings);
  76
  77/* Last level cache ID of each logical CPU */
  78DEFINE_PER_CPU_READ_MOSTLY(u16, cpu_llc_id) = BAD_APICID;
  79
  80/* correctly size the local cpu masks */
  81void __init setup_cpu_local_masks(void)
  82{
  83	alloc_bootmem_cpumask_var(&cpu_initialized_mask);
  84	alloc_bootmem_cpumask_var(&cpu_callin_mask);
  85	alloc_bootmem_cpumask_var(&cpu_callout_mask);
  86	alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
  87}
  88
  89static void default_init(struct cpuinfo_x86 *c)
  90{
  91#ifdef CONFIG_X86_64
  92	cpu_detect_cache_sizes(c);
  93#else
  94	/* Not much we can do here... */
  95	/* Check if at least it has cpuid */
  96	if (c->cpuid_level == -1) {
  97		/* No cpuid. It must be an ancient CPU */
  98		if (c->x86 == 4)
  99			strcpy(c->x86_model_id, "486");
 100		else if (c->x86 == 3)
 101			strcpy(c->x86_model_id, "386");
 102	}
 103#endif
 104}
 105
 106static const struct cpu_dev default_cpu = {
 107	.c_init		= default_init,
 108	.c_vendor	= "Unknown",
 109	.c_x86_vendor	= X86_VENDOR_UNKNOWN,
 110};
 111
 112static const struct cpu_dev *this_cpu = &default_cpu;
 113
 114DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
 115#ifdef CONFIG_X86_64
 116	/*
 117	 * We need valid kernel segments for data and code in long mode too
 118	 * IRET will check the segment types  kkeil 2000/10/28
 119	 * Also sysret mandates a special GDT layout
 120	 *
 121	 * TLS descriptors are currently at a different place compared to i386.
 122	 * Hopefully nobody expects them at a fixed place (Wine?)
 123	 */
 124	[GDT_ENTRY_KERNEL32_CS]		= GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
 125	[GDT_ENTRY_KERNEL_CS]		= GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
 126	[GDT_ENTRY_KERNEL_DS]		= GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
 127	[GDT_ENTRY_DEFAULT_USER32_CS]	= GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
 128	[GDT_ENTRY_DEFAULT_USER_DS]	= GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
 129	[GDT_ENTRY_DEFAULT_USER_CS]	= GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
 130#else
 131	[GDT_ENTRY_KERNEL_CS]		= GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
 132	[GDT_ENTRY_KERNEL_DS]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
 133	[GDT_ENTRY_DEFAULT_USER_CS]	= GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
 134	[GDT_ENTRY_DEFAULT_USER_DS]	= GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
 135	/*
 136	 * Segments used for calling PnP BIOS have byte granularity.
 137	 * They code segments and data segments have fixed 64k limits,
 138	 * the transfer segment sizes are set at run time.
 139	 */
 140	/* 32-bit code */
 141	[GDT_ENTRY_PNPBIOS_CS32]	= GDT_ENTRY_INIT(0x409a, 0, 0xffff),
 142	/* 16-bit code */
 143	[GDT_ENTRY_PNPBIOS_CS16]	= GDT_ENTRY_INIT(0x009a, 0, 0xffff),
 144	/* 16-bit data */
 145	[GDT_ENTRY_PNPBIOS_DS]		= GDT_ENTRY_INIT(0x0092, 0, 0xffff),
 146	/* 16-bit data */
 147	[GDT_ENTRY_PNPBIOS_TS1]		= GDT_ENTRY_INIT(0x0092, 0, 0),
 148	/* 16-bit data */
 149	[GDT_ENTRY_PNPBIOS_TS2]		= GDT_ENTRY_INIT(0x0092, 0, 0),
 150	/*
 151	 * The APM segments have byte granularity and their bases
 152	 * are set at run time.  All have 64k limits.
 153	 */
 154	/* 32-bit code */
 155	[GDT_ENTRY_APMBIOS_BASE]	= GDT_ENTRY_INIT(0x409a, 0, 0xffff),
 156	/* 16-bit code */
 157	[GDT_ENTRY_APMBIOS_BASE+1]	= GDT_ENTRY_INIT(0x009a, 0, 0xffff),
 158	/* data */
 159	[GDT_ENTRY_APMBIOS_BASE+2]	= GDT_ENTRY_INIT(0x4092, 0, 0xffff),
 160
 161	[GDT_ENTRY_ESPFIX_SS]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
 162	[GDT_ENTRY_PERCPU]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
 163	GDT_STACK_CANARY_INIT
 164#endif
 165} };
 166EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
 167
 168#ifdef CONFIG_X86_64
 169static int __init x86_nopcid_setup(char *s)
 170{
 171	/* nopcid doesn't accept parameters */
 172	if (s)
 173		return -EINVAL;
 174
 175	/* do not emit a message if the feature is not present */
 176	if (!boot_cpu_has(X86_FEATURE_PCID))
 177		return 0;
 178
 179	setup_clear_cpu_cap(X86_FEATURE_PCID);
 180	pr_info("nopcid: PCID feature disabled\n");
 181	return 0;
 182}
 183early_param("nopcid", x86_nopcid_setup);
 184#endif
 185
 186static int __init x86_noinvpcid_setup(char *s)
 187{
 188	/* noinvpcid doesn't accept parameters */
 189	if (s)
 190		return -EINVAL;
 191
 192	/* do not emit a message if the feature is not present */
 193	if (!boot_cpu_has(X86_FEATURE_INVPCID))
 194		return 0;
 195
 196	setup_clear_cpu_cap(X86_FEATURE_INVPCID);
 197	pr_info("noinvpcid: INVPCID feature disabled\n");
 198	return 0;
 199}
 200early_param("noinvpcid", x86_noinvpcid_setup);
 201
 202#ifdef CONFIG_X86_32
 203static int cachesize_override = -1;
 204static int disable_x86_serial_nr = 1;
 205
 206static int __init cachesize_setup(char *str)
 207{
 208	get_option(&str, &cachesize_override);
 209	return 1;
 210}
 211__setup("cachesize=", cachesize_setup);
 212
 
 
 
 
 
 
 
 
 213static int __init x86_sep_setup(char *s)
 214{
 215	setup_clear_cpu_cap(X86_FEATURE_SEP);
 216	return 1;
 217}
 218__setup("nosep", x86_sep_setup);
 219
 220/* Standard macro to see if a specific flag is changeable */
 221static inline int flag_is_changeable_p(u32 flag)
 222{
 223	u32 f1, f2;
 224
 225	/*
 226	 * Cyrix and IDT cpus allow disabling of CPUID
 227	 * so the code below may return different results
 228	 * when it is executed before and after enabling
 229	 * the CPUID. Add "volatile" to not allow gcc to
 230	 * optimize the subsequent calls to this function.
 231	 */
 232	asm volatile ("pushfl		\n\t"
 233		      "pushfl		\n\t"
 234		      "popl %0		\n\t"
 235		      "movl %0, %1	\n\t"
 236		      "xorl %2, %0	\n\t"
 237		      "pushl %0		\n\t"
 238		      "popfl		\n\t"
 239		      "pushfl		\n\t"
 240		      "popl %0		\n\t"
 241		      "popfl		\n\t"
 242
 243		      : "=&r" (f1), "=&r" (f2)
 244		      : "ir" (flag));
 245
 246	return ((f1^f2) & flag) != 0;
 247}
 248
 249/* Probe for the CPUID instruction */
 250int have_cpuid_p(void)
 251{
 252	return flag_is_changeable_p(X86_EFLAGS_ID);
 253}
 254
 255static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
 256{
 257	unsigned long lo, hi;
 258
 259	if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
 260		return;
 261
 262	/* Disable processor serial number: */
 263
 264	rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
 265	lo |= 0x200000;
 266	wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
 267
 268	pr_notice("CPU serial number disabled.\n");
 269	clear_cpu_cap(c, X86_FEATURE_PN);
 270
 271	/* Disabling the serial number may affect the cpuid level */
 272	c->cpuid_level = cpuid_eax(0);
 273}
 274
 275static int __init x86_serial_nr_setup(char *s)
 276{
 277	disable_x86_serial_nr = 0;
 278	return 1;
 279}
 280__setup("serialnumber", x86_serial_nr_setup);
 281#else
 282static inline int flag_is_changeable_p(u32 flag)
 283{
 284	return 1;
 285}
 286static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
 287{
 288}
 289#endif
 290
 291static __init int setup_disable_smep(char *arg)
 292{
 293	setup_clear_cpu_cap(X86_FEATURE_SMEP);
 294	return 1;
 295}
 296__setup("nosmep", setup_disable_smep);
 297
 298static __always_inline void setup_smep(struct cpuinfo_x86 *c)
 299{
 300	if (cpu_has(c, X86_FEATURE_SMEP))
 301		cr4_set_bits(X86_CR4_SMEP);
 302}
 303
 304static __init int setup_disable_smap(char *arg)
 305{
 306	setup_clear_cpu_cap(X86_FEATURE_SMAP);
 307	return 1;
 308}
 309__setup("nosmap", setup_disable_smap);
 310
 311static __always_inline void setup_smap(struct cpuinfo_x86 *c)
 312{
 313	unsigned long eflags = native_save_fl();
 314
 315	/* This should have been cleared long ago */
 
 316	BUG_ON(eflags & X86_EFLAGS_AC);
 317
 318	if (cpu_has(c, X86_FEATURE_SMAP)) {
 319#ifdef CONFIG_X86_SMAP
 320		cr4_set_bits(X86_CR4_SMAP);
 321#else
 322		cr4_clear_bits(X86_CR4_SMAP);
 323#endif
 324	}
 325}
 326
 327static __always_inline void setup_umip(struct cpuinfo_x86 *c)
 328{
 329	/* Check the boot processor, plus build option for UMIP. */
 330	if (!cpu_feature_enabled(X86_FEATURE_UMIP))
 331		goto out;
 332
 333	/* Check the current processor's cpuid bits. */
 334	if (!cpu_has(c, X86_FEATURE_UMIP))
 335		goto out;
 336
 337	cr4_set_bits(X86_CR4_UMIP);
 338
 339	pr_info_once("x86/cpu: User Mode Instruction Prevention (UMIP) activated\n");
 340
 341	return;
 342
 343out:
 344	/*
 345	 * Make sure UMIP is disabled in case it was enabled in a
 346	 * previous boot (e.g., via kexec).
 347	 */
 348	cr4_clear_bits(X86_CR4_UMIP);
 349}
 350
 351/* These bits should not change their value after CPU init is finished. */
 352static const unsigned long cr4_pinned_mask =
 353	X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_UMIP | X86_CR4_FSGSBASE;
 354static DEFINE_STATIC_KEY_FALSE_RO(cr_pinning);
 355static unsigned long cr4_pinned_bits __ro_after_init;
 356
 357void native_write_cr0(unsigned long val)
 358{
 359	unsigned long bits_missing = 0;
 360
 361set_register:
 362	asm volatile("mov %0,%%cr0": "+r" (val), "+m" (__force_order));
 363
 364	if (static_branch_likely(&cr_pinning)) {
 365		if (unlikely((val & X86_CR0_WP) != X86_CR0_WP)) {
 366			bits_missing = X86_CR0_WP;
 367			val |= bits_missing;
 368			goto set_register;
 369		}
 370		/* Warn after we've set the missing bits. */
 371		WARN_ONCE(bits_missing, "CR0 WP bit went missing!?\n");
 372	}
 373}
 374EXPORT_SYMBOL(native_write_cr0);
 375
 376void native_write_cr4(unsigned long val)
 377{
 378	unsigned long bits_changed = 0;
 379
 380set_register:
 381	asm volatile("mov %0,%%cr4": "+r" (val), "+m" (cr4_pinned_bits));
 382
 383	if (static_branch_likely(&cr_pinning)) {
 384		if (unlikely((val & cr4_pinned_mask) != cr4_pinned_bits)) {
 385			bits_changed = (val & cr4_pinned_mask) ^ cr4_pinned_bits;
 386			val = (val & ~cr4_pinned_mask) | cr4_pinned_bits;
 387			goto set_register;
 388		}
 389		/* Warn after we've corrected the changed bits. */
 390		WARN_ONCE(bits_changed, "pinned CR4 bits changed: 0x%lx!?\n",
 391			  bits_changed);
 392	}
 393}
 394#if IS_MODULE(CONFIG_LKDTM)
 395EXPORT_SYMBOL_GPL(native_write_cr4);
 396#endif
 397
 398void cr4_update_irqsoff(unsigned long set, unsigned long clear)
 399{
 400	unsigned long newval, cr4 = this_cpu_read(cpu_tlbstate.cr4);
 401
 402	lockdep_assert_irqs_disabled();
 403
 404	newval = (cr4 & ~clear) | set;
 405	if (newval != cr4) {
 406		this_cpu_write(cpu_tlbstate.cr4, newval);
 407		__write_cr4(newval);
 408	}
 409}
 410EXPORT_SYMBOL(cr4_update_irqsoff);
 411
 412/* Read the CR4 shadow. */
 413unsigned long cr4_read_shadow(void)
 414{
 415	return this_cpu_read(cpu_tlbstate.cr4);
 416}
 417EXPORT_SYMBOL_GPL(cr4_read_shadow);
 418
 419void cr4_init(void)
 420{
 421	unsigned long cr4 = __read_cr4();
 422
 423	if (boot_cpu_has(X86_FEATURE_PCID))
 424		cr4 |= X86_CR4_PCIDE;
 425	if (static_branch_likely(&cr_pinning))
 426		cr4 = (cr4 & ~cr4_pinned_mask) | cr4_pinned_bits;
 427
 428	__write_cr4(cr4);
 429
 430	/* Initialize cr4 shadow for this CPU. */
 431	this_cpu_write(cpu_tlbstate.cr4, cr4);
 432}
 433
 434/*
 435 * Once CPU feature detection is finished (and boot params have been
 436 * parsed), record any of the sensitive CR bits that are set, and
 437 * enable CR pinning.
 438 */
 439static void __init setup_cr_pinning(void)
 440{
 441	cr4_pinned_bits = this_cpu_read(cpu_tlbstate.cr4) & cr4_pinned_mask;
 442	static_key_enable(&cr_pinning.key);
 443}
 444
 445static __init int x86_nofsgsbase_setup(char *arg)
 446{
 447	/* Require an exact match without trailing characters. */
 448	if (strlen(arg))
 449		return 0;
 450
 451	/* Do not emit a message if the feature is not present. */
 452	if (!boot_cpu_has(X86_FEATURE_FSGSBASE))
 453		return 1;
 454
 455	setup_clear_cpu_cap(X86_FEATURE_FSGSBASE);
 456	pr_info("FSGSBASE disabled via kernel command line\n");
 457	return 1;
 458}
 459__setup("nofsgsbase", x86_nofsgsbase_setup);
 460
 461/*
 462 * Protection Keys are not available in 32-bit mode.
 463 */
 464static bool pku_disabled;
 465
 466static __always_inline void setup_pku(struct cpuinfo_x86 *c)
 467{
 468	struct pkru_state *pk;
 469
 470	/* check the boot processor, plus compile options for PKU: */
 471	if (!cpu_feature_enabled(X86_FEATURE_PKU))
 472		return;
 473	/* checks the actual processor's cpuid bits: */
 474	if (!cpu_has(c, X86_FEATURE_PKU))
 475		return;
 476	if (pku_disabled)
 477		return;
 478
 479	cr4_set_bits(X86_CR4_PKE);
 480	pk = get_xsave_addr(&init_fpstate.xsave, XFEATURE_PKRU);
 481	if (pk)
 482		pk->pkru = init_pkru_value;
 483	/*
 484	 * Seting X86_CR4_PKE will cause the X86_FEATURE_OSPKE
 485	 * cpuid bit to be set.  We need to ensure that we
 486	 * update that bit in this CPU's "cpu_info".
 487	 */
 488	set_cpu_cap(c, X86_FEATURE_OSPKE);
 489}
 490
 491#ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
 492static __init int setup_disable_pku(char *arg)
 493{
 494	/*
 495	 * Do not clear the X86_FEATURE_PKU bit.  All of the
 496	 * runtime checks are against OSPKE so clearing the
 497	 * bit does nothing.
 498	 *
 499	 * This way, we will see "pku" in cpuinfo, but not
 500	 * "ospke", which is exactly what we want.  It shows
 501	 * that the CPU has PKU, but the OS has not enabled it.
 502	 * This happens to be exactly how a system would look
 503	 * if we disabled the config option.
 504	 */
 505	pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
 506	pku_disabled = true;
 507	return 1;
 508}
 509__setup("nopku", setup_disable_pku);
 510#endif /* CONFIG_X86_64 */
 511
 512/*
 513 * Some CPU features depend on higher CPUID levels, which may not always
 514 * be available due to CPUID level capping or broken virtualization
 515 * software.  Add those features to this table to auto-disable them.
 516 */
 517struct cpuid_dependent_feature {
 518	u32 feature;
 519	u32 level;
 520};
 521
 522static const struct cpuid_dependent_feature
 523cpuid_dependent_features[] = {
 524	{ X86_FEATURE_MWAIT,		0x00000005 },
 525	{ X86_FEATURE_DCA,		0x00000009 },
 526	{ X86_FEATURE_XSAVE,		0x0000000d },
 527	{ 0, 0 }
 528};
 529
 530static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
 531{
 532	const struct cpuid_dependent_feature *df;
 533
 534	for (df = cpuid_dependent_features; df->feature; df++) {
 535
 536		if (!cpu_has(c, df->feature))
 537			continue;
 538		/*
 539		 * Note: cpuid_level is set to -1 if unavailable, but
 540		 * extended_extended_level is set to 0 if unavailable
 541		 * and the legitimate extended levels are all negative
 542		 * when signed; hence the weird messing around with
 543		 * signs here...
 544		 */
 545		if (!((s32)df->level < 0 ?
 546		     (u32)df->level > (u32)c->extended_cpuid_level :
 547		     (s32)df->level > (s32)c->cpuid_level))
 548			continue;
 549
 550		clear_cpu_cap(c, df->feature);
 551		if (!warn)
 552			continue;
 553
 554		pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
 555			x86_cap_flag(df->feature), df->level);
 
 556	}
 557}
 558
 559/*
 560 * Naming convention should be: <Name> [(<Codename>)]
 561 * This table only is used unless init_<vendor>() below doesn't set it;
 562 * in particular, if CPUID levels 0x80000002..4 are supported, this
 563 * isn't used
 564 */
 565
 566/* Look up CPU names by table lookup. */
 567static const char *table_lookup_model(struct cpuinfo_x86 *c)
 568{
 569#ifdef CONFIG_X86_32
 570	const struct legacy_cpu_model_info *info;
 571
 572	if (c->x86_model >= 16)
 573		return NULL;	/* Range check */
 574
 575	if (!this_cpu)
 576		return NULL;
 577
 578	info = this_cpu->legacy_models;
 579
 580	while (info->family) {
 581		if (info->family == c->x86)
 582			return info->model_names[c->x86_model];
 583		info++;
 584	}
 585#endif
 586	return NULL;		/* Not found */
 587}
 588
 589/* Aligned to unsigned long to avoid split lock in atomic bitmap ops */
 590__u32 cpu_caps_cleared[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
 591__u32 cpu_caps_set[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
 592
 593void load_percpu_segment(int cpu)
 594{
 595#ifdef CONFIG_X86_32
 596	loadsegment(fs, __KERNEL_PERCPU);
 597#else
 598	__loadsegment_simple(gs, 0);
 599	wrmsrl(MSR_GS_BASE, cpu_kernelmode_gs_base(cpu));
 600#endif
 601	load_stack_canary_segment();
 602}
 603
 604#ifdef CONFIG_X86_32
 605/* The 32-bit entry code needs to find cpu_entry_area. */
 606DEFINE_PER_CPU(struct cpu_entry_area *, cpu_entry_area);
 607#endif
 608
 609/* Load the original GDT from the per-cpu structure */
 610void load_direct_gdt(int cpu)
 611{
 612	struct desc_ptr gdt_descr;
 613
 614	gdt_descr.address = (long)get_cpu_gdt_rw(cpu);
 615	gdt_descr.size = GDT_SIZE - 1;
 616	load_gdt(&gdt_descr);
 617}
 618EXPORT_SYMBOL_GPL(load_direct_gdt);
 619
 620/* Load a fixmap remapping of the per-cpu GDT */
 621void load_fixmap_gdt(int cpu)
 622{
 623	struct desc_ptr gdt_descr;
 624
 625	gdt_descr.address = (long)get_cpu_gdt_ro(cpu);
 626	gdt_descr.size = GDT_SIZE - 1;
 627	load_gdt(&gdt_descr);
 628}
 629EXPORT_SYMBOL_GPL(load_fixmap_gdt);
 630
 631/*
 632 * Current gdt points %fs at the "master" per-cpu area: after this,
 633 * it's on the real one.
 634 */
 635void switch_to_new_gdt(int cpu)
 636{
 637	/* Load the original GDT */
 638	load_direct_gdt(cpu);
 
 
 
 639	/* Reload the per-cpu base */
 
 640	load_percpu_segment(cpu);
 641}
 642
 643static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
 644
 645static void get_model_name(struct cpuinfo_x86 *c)
 646{
 647	unsigned int *v;
 648	char *p, *q, *s;
 649
 650	if (c->extended_cpuid_level < 0x80000004)
 651		return;
 652
 653	v = (unsigned int *)c->x86_model_id;
 654	cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
 655	cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
 656	cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
 657	c->x86_model_id[48] = 0;
 658
 659	/* Trim whitespace */
 660	p = q = s = &c->x86_model_id[0];
 661
 
 
 662	while (*p == ' ')
 663		p++;
 664
 665	while (*p) {
 666		/* Note the last non-whitespace index */
 667		if (!isspace(*p))
 668			s = q;
 669
 670		*q++ = *p++;
 671	}
 672
 673	*(s + 1) = '\0';
 674}
 675
 676void detect_num_cpu_cores(struct cpuinfo_x86 *c)
 677{
 678	unsigned int eax, ebx, ecx, edx;
 679
 680	c->x86_max_cores = 1;
 681	if (!IS_ENABLED(CONFIG_SMP) || c->cpuid_level < 4)
 682		return;
 683
 684	cpuid_count(4, 0, &eax, &ebx, &ecx, &edx);
 685	if (eax & 0x1f)
 686		c->x86_max_cores = (eax >> 26) + 1;
 687}
 688
 689void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
 690{
 691	unsigned int n, dummy, ebx, ecx, edx, l2size;
 692
 693	n = c->extended_cpuid_level;
 694
 695	if (n >= 0x80000005) {
 696		cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
 697		c->x86_cache_size = (ecx>>24) + (edx>>24);
 698#ifdef CONFIG_X86_64
 699		/* On K8 L1 TLB is inclusive, so don't count it */
 700		c->x86_tlbsize = 0;
 701#endif
 702	}
 703
 704	if (n < 0x80000006)	/* Some chips just has a large L1. */
 705		return;
 706
 707	cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
 708	l2size = ecx >> 16;
 709
 710#ifdef CONFIG_X86_64
 711	c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
 712#else
 713	/* do processor-specific cache resizing */
 714	if (this_cpu->legacy_cache_size)
 715		l2size = this_cpu->legacy_cache_size(c, l2size);
 716
 717	/* Allow user to override all this if necessary. */
 718	if (cachesize_override != -1)
 719		l2size = cachesize_override;
 720
 721	if (l2size == 0)
 722		return;		/* Again, no L2 cache is possible */
 723#endif
 724
 725	c->x86_cache_size = l2size;
 726}
 727
 728u16 __read_mostly tlb_lli_4k[NR_INFO];
 729u16 __read_mostly tlb_lli_2m[NR_INFO];
 730u16 __read_mostly tlb_lli_4m[NR_INFO];
 731u16 __read_mostly tlb_lld_4k[NR_INFO];
 732u16 __read_mostly tlb_lld_2m[NR_INFO];
 733u16 __read_mostly tlb_lld_4m[NR_INFO];
 734u16 __read_mostly tlb_lld_1g[NR_INFO];
 735
 736static void cpu_detect_tlb(struct cpuinfo_x86 *c)
 
 
 
 
 
 
 
 
 737{
 738	if (this_cpu->c_detect_tlb)
 739		this_cpu->c_detect_tlb(c);
 740
 741	pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
 
 
 742		tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
 743		tlb_lli_4m[ENTRIES]);
 744
 745	pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
 746		tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
 747		tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
 748}
 749
 750int detect_ht_early(struct cpuinfo_x86 *c)
 751{
 752#ifdef CONFIG_SMP
 753	u32 eax, ebx, ecx, edx;
 
 
 754
 755	if (!cpu_has(c, X86_FEATURE_HT))
 756		return -1;
 757
 758	if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
 759		return -1;
 760
 761	if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
 762		return -1;
 763
 764	cpuid(1, &eax, &ebx, &ecx, &edx);
 765
 766	smp_num_siblings = (ebx & 0xff0000) >> 16;
 767	if (smp_num_siblings == 1)
 768		pr_info_once("CPU0: Hyper-Threading is disabled\n");
 769#endif
 770	return 0;
 771}
 772
 773void detect_ht(struct cpuinfo_x86 *c)
 774{
 775#ifdef CONFIG_SMP
 776	int index_msb, core_bits;
 777
 778	if (detect_ht_early(c) < 0)
 779		return;
 780
 781	index_msb = get_count_order(smp_num_siblings);
 782	c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
 783
 784	smp_num_siblings = smp_num_siblings / c->x86_max_cores;
 785
 786	index_msb = get_count_order(smp_num_siblings);
 787
 788	core_bits = get_count_order(c->x86_max_cores);
 789
 790	c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
 791				       ((1 << core_bits) - 1);
 
 
 
 
 
 
 
 
 
 792#endif
 793}
 794
 795static void get_cpu_vendor(struct cpuinfo_x86 *c)
 796{
 797	char *v = c->x86_vendor_id;
 798	int i;
 799
 800	for (i = 0; i < X86_VENDOR_NUM; i++) {
 801		if (!cpu_devs[i])
 802			break;
 803
 804		if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
 805		    (cpu_devs[i]->c_ident[1] &&
 806		     !strcmp(v, cpu_devs[i]->c_ident[1]))) {
 807
 808			this_cpu = cpu_devs[i];
 809			c->x86_vendor = this_cpu->c_x86_vendor;
 810			return;
 811		}
 812	}
 813
 814	pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
 815		    "CPU: Your system may be unstable.\n", v);
 
 816
 817	c->x86_vendor = X86_VENDOR_UNKNOWN;
 818	this_cpu = &default_cpu;
 819}
 820
 821void cpu_detect(struct cpuinfo_x86 *c)
 822{
 823	/* Get vendor name */
 824	cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
 825	      (unsigned int *)&c->x86_vendor_id[0],
 826	      (unsigned int *)&c->x86_vendor_id[8],
 827	      (unsigned int *)&c->x86_vendor_id[4]);
 828
 829	c->x86 = 4;
 830	/* Intel-defined flags: level 0x00000001 */
 831	if (c->cpuid_level >= 0x00000001) {
 832		u32 junk, tfms, cap0, misc;
 833
 834		cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
 835		c->x86		= x86_family(tfms);
 836		c->x86_model	= x86_model(tfms);
 837		c->x86_stepping	= x86_stepping(tfms);
 
 
 
 
 
 838
 839		if (cap0 & (1<<19)) {
 840			c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
 841			c->x86_cache_alignment = c->x86_clflush_size;
 842		}
 843	}
 844}
 845
 846static void apply_forced_caps(struct cpuinfo_x86 *c)
 847{
 848	int i;
 849
 850	for (i = 0; i < NCAPINTS + NBUGINTS; i++) {
 851		c->x86_capability[i] &= ~cpu_caps_cleared[i];
 852		c->x86_capability[i] |= cpu_caps_set[i];
 853	}
 854}
 855
 856static void init_speculation_control(struct cpuinfo_x86 *c)
 857{
 858	/*
 859	 * The Intel SPEC_CTRL CPUID bit implies IBRS and IBPB support,
 860	 * and they also have a different bit for STIBP support. Also,
 861	 * a hypervisor might have set the individual AMD bits even on
 862	 * Intel CPUs, for finer-grained selection of what's available.
 863	 */
 864	if (cpu_has(c, X86_FEATURE_SPEC_CTRL)) {
 865		set_cpu_cap(c, X86_FEATURE_IBRS);
 866		set_cpu_cap(c, X86_FEATURE_IBPB);
 867		set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
 868	}
 869
 870	if (cpu_has(c, X86_FEATURE_INTEL_STIBP))
 871		set_cpu_cap(c, X86_FEATURE_STIBP);
 872
 873	if (cpu_has(c, X86_FEATURE_SPEC_CTRL_SSBD) ||
 874	    cpu_has(c, X86_FEATURE_VIRT_SSBD))
 875		set_cpu_cap(c, X86_FEATURE_SSBD);
 876
 877	if (cpu_has(c, X86_FEATURE_AMD_IBRS)) {
 878		set_cpu_cap(c, X86_FEATURE_IBRS);
 879		set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
 880	}
 881
 882	if (cpu_has(c, X86_FEATURE_AMD_IBPB))
 883		set_cpu_cap(c, X86_FEATURE_IBPB);
 884
 885	if (cpu_has(c, X86_FEATURE_AMD_STIBP)) {
 886		set_cpu_cap(c, X86_FEATURE_STIBP);
 887		set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
 888	}
 889
 890	if (cpu_has(c, X86_FEATURE_AMD_SSBD)) {
 891		set_cpu_cap(c, X86_FEATURE_SSBD);
 892		set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
 893		clear_cpu_cap(c, X86_FEATURE_VIRT_SSBD);
 894	}
 895}
 896
 897void get_cpu_cap(struct cpuinfo_x86 *c)
 898{
 899	u32 eax, ebx, ecx, edx;
 
 900
 901	/* Intel-defined flags: level 0x00000001 */
 902	if (c->cpuid_level >= 0x00000001) {
 903		cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
 904
 905		c->x86_capability[CPUID_1_ECX] = ecx;
 906		c->x86_capability[CPUID_1_EDX] = edx;
 
 907	}
 908
 909	/* Thermal and Power Management Leaf: level 0x00000006 (eax) */
 910	if (c->cpuid_level >= 0x00000006)
 911		c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
 912
 913	/* Additional Intel-defined flags: level 0x00000007 */
 914	if (c->cpuid_level >= 0x00000007) {
 915		cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
 916		c->x86_capability[CPUID_7_0_EBX] = ebx;
 917		c->x86_capability[CPUID_7_ECX] = ecx;
 918		c->x86_capability[CPUID_7_EDX] = edx;
 919
 920		/* Check valid sub-leaf index before accessing it */
 921		if (eax >= 1) {
 922			cpuid_count(0x00000007, 1, &eax, &ebx, &ecx, &edx);
 923			c->x86_capability[CPUID_7_1_EAX] = eax;
 924		}
 925	}
 926
 927	/* Extended state features: level 0x0000000d */
 928	if (c->cpuid_level >= 0x0000000d) {
 929		cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
 930
 931		c->x86_capability[CPUID_D_1_EAX] = eax;
 932	}
 933
 934	/* AMD-defined flags: level 0x80000001 */
 935	eax = cpuid_eax(0x80000000);
 936	c->extended_cpuid_level = eax;
 937
 938	if ((eax & 0xffff0000) == 0x80000000) {
 939		if (eax >= 0x80000001) {
 940			cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
 941
 942			c->x86_capability[CPUID_8000_0001_ECX] = ecx;
 943			c->x86_capability[CPUID_8000_0001_EDX] = edx;
 
 
 944		}
 945	}
 946
 947	if (c->extended_cpuid_level >= 0x80000007) {
 948		cpuid(0x80000007, &eax, &ebx, &ecx, &edx);
 949
 950		c->x86_capability[CPUID_8000_0007_EBX] = ebx;
 951		c->x86_power = edx;
 952	}
 953
 954	if (c->extended_cpuid_level >= 0x80000008) {
 955		cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
 956		c->x86_capability[CPUID_8000_0008_EBX] = ebx;
 957	}
 958
 959	if (c->extended_cpuid_level >= 0x8000000a)
 960		c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
 961
 962	init_scattered_cpuid_features(c);
 963	init_speculation_control(c);
 964
 965	/*
 966	 * Clear/Set all flags overridden by options, after probe.
 967	 * This needs to happen each time we re-probe, which may happen
 968	 * several times during CPU initialization.
 969	 */
 970	apply_forced_caps(c);
 971}
 972
 973void get_cpu_address_sizes(struct cpuinfo_x86 *c)
 974{
 975	u32 eax, ebx, ecx, edx;
 976
 977	if (c->extended_cpuid_level >= 0x80000008) {
 978		cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
 979
 980		c->x86_virt_bits = (eax >> 8) & 0xff;
 981		c->x86_phys_bits = eax & 0xff;
 982	}
 983#ifdef CONFIG_X86_32
 984	else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
 985		c->x86_phys_bits = 36;
 986#endif
 987	c->x86_cache_bits = c->x86_phys_bits;
 
 
 
 
 988}
 989
 990static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
 991{
 992#ifdef CONFIG_X86_32
 993	int i;
 994
 995	/*
 996	 * First of all, decide if this is a 486 or higher
 997	 * It's a 486 if we can modify the AC flag
 998	 */
 999	if (flag_is_changeable_p(X86_EFLAGS_AC))
1000		c->x86 = 4;
1001	else
1002		c->x86 = 3;
1003
1004	for (i = 0; i < X86_VENDOR_NUM; i++)
1005		if (cpu_devs[i] && cpu_devs[i]->c_identify) {
1006			c->x86_vendor_id[0] = 0;
1007			cpu_devs[i]->c_identify(c);
1008			if (c->x86_vendor_id[0]) {
1009				get_cpu_vendor(c);
1010				break;
1011			}
1012		}
1013#endif
1014}
1015
1016#define NO_SPECULATION		BIT(0)
1017#define NO_MELTDOWN		BIT(1)
1018#define NO_SSB			BIT(2)
1019#define NO_L1TF			BIT(3)
1020#define NO_MDS			BIT(4)
1021#define MSBDS_ONLY		BIT(5)
1022#define NO_SWAPGS		BIT(6)
1023#define NO_ITLB_MULTIHIT	BIT(7)
1024#define NO_SPECTRE_V2		BIT(8)
1025
1026#define VULNWL(vendor, family, model, whitelist)	\
1027	X86_MATCH_VENDOR_FAM_MODEL(vendor, family, model, whitelist)
1028
1029#define VULNWL_INTEL(model, whitelist)		\
1030	VULNWL(INTEL, 6, INTEL_FAM6_##model, whitelist)
1031
1032#define VULNWL_AMD(family, whitelist)		\
1033	VULNWL(AMD, family, X86_MODEL_ANY, whitelist)
1034
1035#define VULNWL_HYGON(family, whitelist)		\
1036	VULNWL(HYGON, family, X86_MODEL_ANY, whitelist)
1037
1038static const __initconst struct x86_cpu_id cpu_vuln_whitelist[] = {
1039	VULNWL(ANY,	4, X86_MODEL_ANY,	NO_SPECULATION),
1040	VULNWL(CENTAUR,	5, X86_MODEL_ANY,	NO_SPECULATION),
1041	VULNWL(INTEL,	5, X86_MODEL_ANY,	NO_SPECULATION),
1042	VULNWL(NSC,	5, X86_MODEL_ANY,	NO_SPECULATION),
1043
1044	/* Intel Family 6 */
1045	VULNWL_INTEL(ATOM_SALTWELL,		NO_SPECULATION | NO_ITLB_MULTIHIT),
1046	VULNWL_INTEL(ATOM_SALTWELL_TABLET,	NO_SPECULATION | NO_ITLB_MULTIHIT),
1047	VULNWL_INTEL(ATOM_SALTWELL_MID,		NO_SPECULATION | NO_ITLB_MULTIHIT),
1048	VULNWL_INTEL(ATOM_BONNELL,		NO_SPECULATION | NO_ITLB_MULTIHIT),
1049	VULNWL_INTEL(ATOM_BONNELL_MID,		NO_SPECULATION | NO_ITLB_MULTIHIT),
1050
1051	VULNWL_INTEL(ATOM_SILVERMONT,		NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1052	VULNWL_INTEL(ATOM_SILVERMONT_D,		NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1053	VULNWL_INTEL(ATOM_SILVERMONT_MID,	NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1054	VULNWL_INTEL(ATOM_AIRMONT,		NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1055	VULNWL_INTEL(XEON_PHI_KNL,		NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1056	VULNWL_INTEL(XEON_PHI_KNM,		NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1057
1058	VULNWL_INTEL(CORE_YONAH,		NO_SSB),
1059
1060	VULNWL_INTEL(ATOM_AIRMONT_MID,		NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1061	VULNWL_INTEL(ATOM_AIRMONT_NP,		NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1062
1063	VULNWL_INTEL(ATOM_GOLDMONT,		NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1064	VULNWL_INTEL(ATOM_GOLDMONT_D,		NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1065	VULNWL_INTEL(ATOM_GOLDMONT_PLUS,	NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1066
1067	/*
1068	 * Technically, swapgs isn't serializing on AMD (despite it previously
1069	 * being documented as such in the APM).  But according to AMD, %gs is
1070	 * updated non-speculatively, and the issuing of %gs-relative memory
1071	 * operands will be blocked until the %gs update completes, which is
1072	 * good enough for our purposes.
1073	 */
1074
1075	VULNWL_INTEL(ATOM_TREMONT_D,		NO_ITLB_MULTIHIT),
1076
1077	/* AMD Family 0xf - 0x12 */
1078	VULNWL_AMD(0x0f,	NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1079	VULNWL_AMD(0x10,	NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1080	VULNWL_AMD(0x11,	NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1081	VULNWL_AMD(0x12,	NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1082
1083	/* FAMILY_ANY must be last, otherwise 0x0f - 0x12 matches won't work */
1084	VULNWL_AMD(X86_FAMILY_ANY,	NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1085	VULNWL_HYGON(X86_FAMILY_ANY,	NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1086
1087	/* Zhaoxin Family 7 */
1088	VULNWL(CENTAUR,	7, X86_MODEL_ANY,	NO_SPECTRE_V2 | NO_SWAPGS),
1089	VULNWL(ZHAOXIN,	7, X86_MODEL_ANY,	NO_SPECTRE_V2 | NO_SWAPGS),
1090	{}
1091};
1092
1093#define VULNBL_INTEL_STEPPINGS(model, steppings, issues)		   \
1094	X86_MATCH_VENDOR_FAM_MODEL_STEPPINGS_FEATURE(INTEL, 6,		   \
1095					    INTEL_FAM6_##model, steppings, \
1096					    X86_FEATURE_ANY, issues)
1097
1098#define SRBDS		BIT(0)
1099
1100static const struct x86_cpu_id cpu_vuln_blacklist[] __initconst = {
1101	VULNBL_INTEL_STEPPINGS(IVYBRIDGE,	X86_STEPPING_ANY,		SRBDS),
1102	VULNBL_INTEL_STEPPINGS(HASWELL,		X86_STEPPING_ANY,		SRBDS),
1103	VULNBL_INTEL_STEPPINGS(HASWELL_L,	X86_STEPPING_ANY,		SRBDS),
1104	VULNBL_INTEL_STEPPINGS(HASWELL_G,	X86_STEPPING_ANY,		SRBDS),
1105	VULNBL_INTEL_STEPPINGS(BROADWELL_G,	X86_STEPPING_ANY,		SRBDS),
1106	VULNBL_INTEL_STEPPINGS(BROADWELL,	X86_STEPPING_ANY,		SRBDS),
1107	VULNBL_INTEL_STEPPINGS(SKYLAKE_L,	X86_STEPPING_ANY,		SRBDS),
1108	VULNBL_INTEL_STEPPINGS(SKYLAKE,		X86_STEPPING_ANY,		SRBDS),
1109	VULNBL_INTEL_STEPPINGS(KABYLAKE_L,	X86_STEPPINGS(0x0, 0xC),	SRBDS),
1110	VULNBL_INTEL_STEPPINGS(KABYLAKE,	X86_STEPPINGS(0x0, 0xD),	SRBDS),
1111	{}
1112};
1113
1114static bool __init cpu_matches(const struct x86_cpu_id *table, unsigned long which)
1115{
1116	const struct x86_cpu_id *m = x86_match_cpu(table);
1117
1118	return m && !!(m->driver_data & which);
1119}
1120
1121u64 x86_read_arch_cap_msr(void)
1122{
1123	u64 ia32_cap = 0;
1124
1125	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1126		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, ia32_cap);
1127
1128	return ia32_cap;
1129}
1130
1131static void __init cpu_set_bug_bits(struct cpuinfo_x86 *c)
1132{
1133	u64 ia32_cap = x86_read_arch_cap_msr();
1134
1135	/* Set ITLB_MULTIHIT bug if cpu is not in the whitelist and not mitigated */
1136	if (!cpu_matches(cpu_vuln_whitelist, NO_ITLB_MULTIHIT) &&
1137	    !(ia32_cap & ARCH_CAP_PSCHANGE_MC_NO))
1138		setup_force_cpu_bug(X86_BUG_ITLB_MULTIHIT);
1139
1140	if (cpu_matches(cpu_vuln_whitelist, NO_SPECULATION))
1141		return;
1142
1143	setup_force_cpu_bug(X86_BUG_SPECTRE_V1);
1144
1145	if (!cpu_matches(cpu_vuln_whitelist, NO_SPECTRE_V2))
1146		setup_force_cpu_bug(X86_BUG_SPECTRE_V2);
1147
1148	if (!cpu_matches(cpu_vuln_whitelist, NO_SSB) &&
1149	    !(ia32_cap & ARCH_CAP_SSB_NO) &&
1150	   !cpu_has(c, X86_FEATURE_AMD_SSB_NO))
1151		setup_force_cpu_bug(X86_BUG_SPEC_STORE_BYPASS);
1152
1153	if (ia32_cap & ARCH_CAP_IBRS_ALL)
1154		setup_force_cpu_cap(X86_FEATURE_IBRS_ENHANCED);
1155
1156	if (!cpu_matches(cpu_vuln_whitelist, NO_MDS) &&
1157	    !(ia32_cap & ARCH_CAP_MDS_NO)) {
1158		setup_force_cpu_bug(X86_BUG_MDS);
1159		if (cpu_matches(cpu_vuln_whitelist, MSBDS_ONLY))
1160			setup_force_cpu_bug(X86_BUG_MSBDS_ONLY);
1161	}
1162
1163	if (!cpu_matches(cpu_vuln_whitelist, NO_SWAPGS))
1164		setup_force_cpu_bug(X86_BUG_SWAPGS);
1165
1166	/*
1167	 * When the CPU is not mitigated for TAA (TAA_NO=0) set TAA bug when:
1168	 *	- TSX is supported or
1169	 *	- TSX_CTRL is present
1170	 *
1171	 * TSX_CTRL check is needed for cases when TSX could be disabled before
1172	 * the kernel boot e.g. kexec.
1173	 * TSX_CTRL check alone is not sufficient for cases when the microcode
1174	 * update is not present or running as guest that don't get TSX_CTRL.
1175	 */
1176	if (!(ia32_cap & ARCH_CAP_TAA_NO) &&
1177	    (cpu_has(c, X86_FEATURE_RTM) ||
1178	     (ia32_cap & ARCH_CAP_TSX_CTRL_MSR)))
1179		setup_force_cpu_bug(X86_BUG_TAA);
1180
1181	/*
1182	 * SRBDS affects CPUs which support RDRAND or RDSEED and are listed
1183	 * in the vulnerability blacklist.
1184	 */
1185	if ((cpu_has(c, X86_FEATURE_RDRAND) ||
1186	     cpu_has(c, X86_FEATURE_RDSEED)) &&
1187	    cpu_matches(cpu_vuln_blacklist, SRBDS))
1188		    setup_force_cpu_bug(X86_BUG_SRBDS);
1189
1190	if (cpu_matches(cpu_vuln_whitelist, NO_MELTDOWN))
1191		return;
1192
1193	/* Rogue Data Cache Load? No! */
1194	if (ia32_cap & ARCH_CAP_RDCL_NO)
1195		return;
1196
1197	setup_force_cpu_bug(X86_BUG_CPU_MELTDOWN);
1198
1199	if (cpu_matches(cpu_vuln_whitelist, NO_L1TF))
1200		return;
1201
1202	setup_force_cpu_bug(X86_BUG_L1TF);
1203}
1204
1205/*
1206 * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
1207 * unfortunately, that's not true in practice because of early VIA
1208 * chips and (more importantly) broken virtualizers that are not easy
1209 * to detect. In the latter case it doesn't even *fail* reliably, so
1210 * probing for it doesn't even work. Disable it completely on 32-bit
1211 * unless we can find a reliable way to detect all the broken cases.
1212 * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
1213 */
1214static void detect_nopl(void)
1215{
1216#ifdef CONFIG_X86_32
1217	setup_clear_cpu_cap(X86_FEATURE_NOPL);
1218#else
1219	setup_force_cpu_cap(X86_FEATURE_NOPL);
1220#endif
1221}
1222
1223/*
1224 * Do minimum CPU detection early.
1225 * Fields really needed: vendor, cpuid_level, family, model, mask,
1226 * cache alignment.
1227 * The others are not touched to avoid unwanted side effects.
1228 *
1229 * WARNING: this function is only called on the boot CPU.  Don't add code
1230 * here that is supposed to run on all CPUs.
1231 */
1232static void __init early_identify_cpu(struct cpuinfo_x86 *c)
1233{
1234#ifdef CONFIG_X86_64
1235	c->x86_clflush_size = 64;
1236	c->x86_phys_bits = 36;
1237	c->x86_virt_bits = 48;
1238#else
1239	c->x86_clflush_size = 32;
1240	c->x86_phys_bits = 32;
1241	c->x86_virt_bits = 32;
1242#endif
1243	c->x86_cache_alignment = c->x86_clflush_size;
1244
1245	memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1246	c->extended_cpuid_level = 0;
1247
1248	if (!have_cpuid_p())
1249		identify_cpu_without_cpuid(c);
1250
1251	/* cyrix could have cpuid enabled via c_identify()*/
1252	if (have_cpuid_p()) {
1253		cpu_detect(c);
1254		get_cpu_vendor(c);
1255		get_cpu_cap(c);
1256		get_cpu_address_sizes(c);
1257		setup_force_cpu_cap(X86_FEATURE_CPUID);
1258
1259		if (this_cpu->c_early_init)
1260			this_cpu->c_early_init(c);
1261
1262		c->cpu_index = 0;
1263		filter_cpuid_features(c, false);
1264
1265		if (this_cpu->c_bsp_init)
1266			this_cpu->c_bsp_init(c);
1267	} else {
1268		setup_clear_cpu_cap(X86_FEATURE_CPUID);
1269	}
1270
1271	setup_force_cpu_cap(X86_FEATURE_ALWAYS);
1272
1273	cpu_set_bug_bits(c);
1274
1275	cpu_set_core_cap_bits(c);
 
 
 
1276
1277	fpu__init_system(c);
 
1278
1279#ifdef CONFIG_X86_32
1280	/*
1281	 * Regardless of whether PCID is enumerated, the SDM says
1282	 * that it can't be enabled in 32-bit mode.
1283	 */
1284	setup_clear_cpu_cap(X86_FEATURE_PCID);
1285#endif
1286
1287	/*
1288	 * Later in the boot process pgtable_l5_enabled() relies on
1289	 * cpu_feature_enabled(X86_FEATURE_LA57). If 5-level paging is not
1290	 * enabled by this point we need to clear the feature bit to avoid
1291	 * false-positives at the later stage.
1292	 *
1293	 * pgtable_l5_enabled() can be false here for several reasons:
1294	 *  - 5-level paging is disabled compile-time;
1295	 *  - it's 32-bit kernel;
1296	 *  - machine doesn't support 5-level paging;
1297	 *  - user specified 'no5lvl' in kernel command line.
1298	 */
1299	if (!pgtable_l5_enabled())
1300		setup_clear_cpu_cap(X86_FEATURE_LA57);
1301
1302	detect_nopl();
1303}
1304
1305void __init early_cpu_init(void)
1306{
1307	const struct cpu_dev *const *cdev;
1308	int count = 0;
1309
1310#ifdef CONFIG_PROCESSOR_SELECT
1311	pr_info("KERNEL supported cpus:\n");
1312#endif
1313
1314	for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
1315		const struct cpu_dev *cpudev = *cdev;
1316
1317		if (count >= X86_VENDOR_NUM)
1318			break;
1319		cpu_devs[count] = cpudev;
1320		count++;
1321
1322#ifdef CONFIG_PROCESSOR_SELECT
1323		{
1324			unsigned int j;
1325
1326			for (j = 0; j < 2; j++) {
1327				if (!cpudev->c_ident[j])
1328					continue;
1329				pr_info("  %s %s\n", cpudev->c_vendor,
1330					cpudev->c_ident[j]);
1331			}
1332		}
1333#endif
1334	}
1335	early_identify_cpu(&boot_cpu_data);
1336}
1337
1338static void detect_null_seg_behavior(struct cpuinfo_x86 *c)
 
 
 
 
 
 
 
 
 
1339{
1340#ifdef CONFIG_X86_64
1341	/*
1342	 * Empirically, writing zero to a segment selector on AMD does
1343	 * not clear the base, whereas writing zero to a segment
1344	 * selector on Intel does clear the base.  Intel's behavior
1345	 * allows slightly faster context switches in the common case
1346	 * where GS is unused by the prev and next threads.
1347	 *
1348	 * Since neither vendor documents this anywhere that I can see,
1349	 * detect it directly instead of hardcoding the choice by
1350	 * vendor.
1351	 *
1352	 * I've designated AMD's behavior as the "bug" because it's
1353	 * counterintuitive and less friendly.
1354	 */
1355
1356	unsigned long old_base, tmp;
1357	rdmsrl(MSR_FS_BASE, old_base);
1358	wrmsrl(MSR_FS_BASE, 1);
1359	loadsegment(fs, 0);
1360	rdmsrl(MSR_FS_BASE, tmp);
1361	if (tmp != 0)
1362		set_cpu_bug(c, X86_BUG_NULL_SEG);
1363	wrmsrl(MSR_FS_BASE, old_base);
1364#endif
1365}
1366
1367static void generic_identify(struct cpuinfo_x86 *c)
1368{
1369	c->extended_cpuid_level = 0;
1370
1371	if (!have_cpuid_p())
1372		identify_cpu_without_cpuid(c);
1373
1374	/* cyrix could have cpuid enabled via c_identify()*/
1375	if (!have_cpuid_p())
1376		return;
1377
1378	cpu_detect(c);
1379
1380	get_cpu_vendor(c);
1381
1382	get_cpu_cap(c);
1383
1384	get_cpu_address_sizes(c);
1385
1386	if (c->cpuid_level >= 0x00000001) {
1387		c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
1388#ifdef CONFIG_X86_32
1389# ifdef CONFIG_SMP
1390		c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1391# else
1392		c->apicid = c->initial_apicid;
1393# endif
1394#endif
1395		c->phys_proc_id = c->initial_apicid;
1396	}
1397
1398	get_model_name(c); /* Default name */
1399
1400	detect_null_seg_behavior(c);
1401
1402	/*
1403	 * ESPFIX is a strange bug.  All real CPUs have it.  Paravirt
1404	 * systems that run Linux at CPL > 0 may or may not have the
1405	 * issue, but, even if they have the issue, there's absolutely
1406	 * nothing we can do about it because we can't use the real IRET
1407	 * instruction.
1408	 *
1409	 * NB: For the time being, only 32-bit kernels support
1410	 * X86_BUG_ESPFIX as such.  64-bit kernels directly choose
1411	 * whether to apply espfix using paravirt hooks.  If any
1412	 * non-paravirt system ever shows up that does *not* have the
1413	 * ESPFIX issue, we can change this.
1414	 */
1415#ifdef CONFIG_X86_32
1416# ifdef CONFIG_PARAVIRT_XXL
1417	do {
1418		extern void native_iret(void);
1419		if (pv_ops.cpu.iret == native_iret)
1420			set_cpu_bug(c, X86_BUG_ESPFIX);
1421	} while (0);
1422# else
1423	set_cpu_bug(c, X86_BUG_ESPFIX);
1424# endif
1425#endif
1426}
1427
1428/*
1429 * Validate that ACPI/mptables have the same information about the
1430 * effective APIC id and update the package map.
1431 */
1432static void validate_apic_and_package_id(struct cpuinfo_x86 *c)
1433{
1434#ifdef CONFIG_SMP
1435	unsigned int apicid, cpu = smp_processor_id();
1436
1437	apicid = apic->cpu_present_to_apicid(cpu);
1438
1439	if (apicid != c->apicid) {
1440		pr_err(FW_BUG "CPU%u: APIC id mismatch. Firmware: %x APIC: %x\n",
1441		       cpu, apicid, c->initial_apicid);
1442	}
1443	BUG_ON(topology_update_package_map(c->phys_proc_id, cpu));
1444	BUG_ON(topology_update_die_map(c->cpu_die_id, cpu));
1445#else
1446	c->logical_proc_id = 0;
1447#endif
1448}
1449
1450/*
1451 * This does the hard work of actually picking apart the CPU stuff...
1452 */
1453static void identify_cpu(struct cpuinfo_x86 *c)
1454{
1455	int i;
1456
1457	c->loops_per_jiffy = loops_per_jiffy;
1458	c->x86_cache_size = 0;
1459	c->x86_vendor = X86_VENDOR_UNKNOWN;
1460	c->x86_model = c->x86_stepping = 0;	/* So far unknown... */
1461	c->x86_vendor_id[0] = '\0'; /* Unset */
1462	c->x86_model_id[0] = '\0';  /* Unset */
1463	c->x86_max_cores = 1;
1464	c->x86_coreid_bits = 0;
1465	c->cu_id = 0xff;
1466#ifdef CONFIG_X86_64
1467	c->x86_clflush_size = 64;
1468	c->x86_phys_bits = 36;
1469	c->x86_virt_bits = 48;
1470#else
1471	c->cpuid_level = -1;	/* CPUID not detected */
1472	c->x86_clflush_size = 32;
1473	c->x86_phys_bits = 32;
1474	c->x86_virt_bits = 32;
1475#endif
1476	c->x86_cache_alignment = c->x86_clflush_size;
1477	memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1478#ifdef CONFIG_X86_VMX_FEATURE_NAMES
1479	memset(&c->vmx_capability, 0, sizeof(c->vmx_capability));
1480#endif
1481
1482	generic_identify(c);
1483
1484	if (this_cpu->c_identify)
1485		this_cpu->c_identify(c);
1486
1487	/* Clear/Set all flags overridden by options, after probe */
1488	apply_forced_caps(c);
 
 
 
1489
1490#ifdef CONFIG_X86_64
1491	c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1492#endif
1493
1494	/*
1495	 * Vendor-specific initialization.  In this section we
1496	 * canonicalize the feature flags, meaning if there are
1497	 * features a certain CPU supports which CPUID doesn't
1498	 * tell us, CPUID claiming incorrect flags, or other bugs,
1499	 * we handle them here.
1500	 *
1501	 * At the end of this section, c->x86_capability better
1502	 * indicate the features this CPU genuinely supports!
1503	 */
1504	if (this_cpu->c_init)
1505		this_cpu->c_init(c);
1506
1507	/* Disable the PN if appropriate */
1508	squash_the_stupid_serial_number(c);
1509
1510	/* Set up SMEP/SMAP/UMIP */
1511	setup_smep(c);
1512	setup_smap(c);
1513	setup_umip(c);
1514
1515	/* Enable FSGSBASE instructions if available. */
1516	if (cpu_has(c, X86_FEATURE_FSGSBASE)) {
1517		cr4_set_bits(X86_CR4_FSGSBASE);
1518		elf_hwcap2 |= HWCAP2_FSGSBASE;
1519	}
1520
1521	/*
1522	 * The vendor-specific functions might have changed features.
1523	 * Now we do "generic changes."
1524	 */
1525
1526	/* Filter out anything that depends on CPUID levels we don't have */
1527	filter_cpuid_features(c, true);
1528
1529	/* If the model name is still unset, do table lookup. */
1530	if (!c->x86_model_id[0]) {
1531		const char *p;
1532		p = table_lookup_model(c);
1533		if (p)
1534			strcpy(c->x86_model_id, p);
1535		else
1536			/* Last resort... */
1537			sprintf(c->x86_model_id, "%02x/%02x",
1538				c->x86, c->x86_model);
1539	}
1540
1541#ifdef CONFIG_X86_64
1542	detect_ht(c);
1543#endif
1544
 
1545	x86_init_rdrand(c);
1546	setup_pku(c);
1547
1548	/*
1549	 * Clear/Set all flags overridden by options, need do it
1550	 * before following smp all cpus cap AND.
1551	 */
1552	apply_forced_caps(c);
 
 
 
1553
1554	/*
1555	 * On SMP, boot_cpu_data holds the common feature set between
1556	 * all CPUs; so make sure that we indicate which features are
1557	 * common between the CPUs.  The first time this routine gets
1558	 * executed, c == &boot_cpu_data.
1559	 */
1560	if (c != &boot_cpu_data) {
1561		/* AND the already accumulated flags with these */
1562		for (i = 0; i < NCAPINTS; i++)
1563			boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
1564
1565		/* OR, i.e. replicate the bug flags */
1566		for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
1567			c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
1568	}
1569
1570	/* Init Machine Check Exception if available. */
1571	mcheck_cpu_init(c);
1572
1573	select_idle_routine(c);
1574
1575#ifdef CONFIG_NUMA
1576	numa_add_cpu(smp_processor_id());
1577#endif
1578}
1579
1580/*
1581 * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
1582 * on 32-bit kernels:
1583 */
1584#ifdef CONFIG_X86_32
1585void enable_sep_cpu(void)
1586{
1587	struct tss_struct *tss;
1588	int cpu;
1589
1590	if (!boot_cpu_has(X86_FEATURE_SEP))
1591		return;
1592
1593	cpu = get_cpu();
1594	tss = &per_cpu(cpu_tss_rw, cpu);
1595
1596	/*
1597	 * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
1598	 * see the big comment in struct x86_hw_tss's definition.
1599	 */
1600
1601	tss->x86_tss.ss1 = __KERNEL_CS;
1602	wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
1603	wrmsr(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1), 0);
1604	wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
1605
1606	put_cpu();
1607}
1608#endif
1609
1610void __init identify_boot_cpu(void)
1611{
1612	identify_cpu(&boot_cpu_data);
 
1613#ifdef CONFIG_X86_32
1614	sysenter_setup();
1615	enable_sep_cpu();
 
 
1616#endif
1617	cpu_detect_tlb(&boot_cpu_data);
1618	setup_cr_pinning();
1619
1620	tsx_init();
1621}
1622
1623void identify_secondary_cpu(struct cpuinfo_x86 *c)
1624{
1625	BUG_ON(c == &boot_cpu_data);
1626	identify_cpu(c);
1627#ifdef CONFIG_X86_32
1628	enable_sep_cpu();
1629#endif
1630	mtrr_ap_init();
1631	validate_apic_and_package_id(c);
1632	x86_spec_ctrl_setup_ap();
1633	update_srbds_msr();
1634}
1635
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1636static __init int setup_noclflush(char *arg)
1637{
1638	setup_clear_cpu_cap(X86_FEATURE_CLFLUSH);
1639	setup_clear_cpu_cap(X86_FEATURE_CLFLUSHOPT);
1640	return 1;
1641}
1642__setup("noclflush", setup_noclflush);
1643
1644void print_cpu_info(struct cpuinfo_x86 *c)
1645{
1646	const char *vendor = NULL;
1647
1648	if (c->x86_vendor < X86_VENDOR_NUM) {
1649		vendor = this_cpu->c_vendor;
1650	} else {
1651		if (c->cpuid_level >= 0)
1652			vendor = c->x86_vendor_id;
1653	}
1654
1655	if (vendor && !strstr(c->x86_model_id, vendor))
1656		pr_cont("%s ", vendor);
1657
1658	if (c->x86_model_id[0])
1659		pr_cont("%s", c->x86_model_id);
1660	else
1661		pr_cont("%d86", c->x86);
1662
1663	pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
1664
1665	if (c->x86_stepping || c->cpuid_level >= 0)
1666		pr_cont(", stepping: 0x%x)\n", c->x86_stepping);
1667	else
1668		pr_cont(")\n");
 
 
1669}
1670
1671/*
1672 * clearcpuid= was already parsed in fpu__init_parse_early_param.
1673 * But we need to keep a dummy __setup around otherwise it would
1674 * show up as an environment variable for init.
1675 */
1676static __init int setup_clearcpuid(char *arg)
 
1677{
 
 
 
 
 
 
 
1678	return 1;
1679}
1680__setup("clearcpuid=", setup_clearcpuid);
 
 
 
 
1681
1682#ifdef CONFIG_X86_64
1683DEFINE_PER_CPU_FIRST(struct fixed_percpu_data,
1684		     fixed_percpu_data) __aligned(PAGE_SIZE) __visible;
1685EXPORT_PER_CPU_SYMBOL_GPL(fixed_percpu_data);
 
 
 
1686
1687/*
1688 * The following percpu variables are hot.  Align current_task to
1689 * cacheline size such that they fall in the same cacheline.
1690 */
1691DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
1692	&init_task;
1693EXPORT_PER_CPU_SYMBOL(current_task);
1694
1695DEFINE_PER_CPU(struct irq_stack *, hardirq_stack_ptr);
 
 
1696DEFINE_PER_CPU(unsigned int, irq_count) __visible = -1;
1697
1698DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1699EXPORT_PER_CPU_SYMBOL(__preempt_count);
1700
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1701/* May not be marked __init: used by software suspend */
1702void syscall_init(void)
1703{
1704	wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
1705	wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
 
 
 
 
 
 
1706
1707#ifdef CONFIG_IA32_EMULATION
1708	wrmsrl(MSR_CSTAR, (unsigned long)entry_SYSCALL_compat);
1709	/*
1710	 * This only works on Intel CPUs.
1711	 * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
1712	 * This does not cause SYSENTER to jump to the wrong location, because
1713	 * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
1714	 */
1715	wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
1716	wrmsrl_safe(MSR_IA32_SYSENTER_ESP,
1717		    (unsigned long)(cpu_entry_stack(smp_processor_id()) + 1));
1718	wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
1719#else
1720	wrmsrl(MSR_CSTAR, (unsigned long)ignore_sysret);
1721	wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
1722	wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
1723	wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
1724#endif
1725
1726	/* Flags to clear on syscall */
1727	wrmsrl(MSR_SYSCALL_MASK,
1728	       X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|
1729	       X86_EFLAGS_IOPL|X86_EFLAGS_AC|X86_EFLAGS_NT);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1730}
1731
1732#else	/* CONFIG_X86_64 */
1733
1734DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
1735EXPORT_PER_CPU_SYMBOL(current_task);
1736DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1737EXPORT_PER_CPU_SYMBOL(__preempt_count);
 
1738
1739/*
1740 * On x86_32, vm86 modifies tss.sp0, so sp0 isn't a reliable way to find
1741 * the top of the kernel stack.  Use an extra percpu variable to track the
1742 * top of the kernel stack directly.
1743 */
1744DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) =
1745	(unsigned long)&init_thread_union + THREAD_SIZE;
1746EXPORT_PER_CPU_SYMBOL(cpu_current_top_of_stack);
1747
1748#ifdef CONFIG_STACKPROTECTOR
1749DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
1750#endif
1751
1752#endif	/* CONFIG_X86_64 */
1753
1754/*
1755 * Clear all 6 debug registers:
1756 */
1757static void clear_all_debug_regs(void)
1758{
1759	int i;
1760
1761	for (i = 0; i < 8; i++) {
1762		/* Ignore db4, db5 */
1763		if ((i == 4) || (i == 5))
1764			continue;
1765
1766		set_debugreg(0, i);
1767	}
1768}
1769
1770#ifdef CONFIG_KGDB
1771/*
1772 * Restore debug regs if using kgdbwait and you have a kernel debugger
1773 * connection established.
1774 */
1775static void dbg_restore_debug_regs(void)
1776{
1777	if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
1778		arch_kgdb_ops.correct_hw_break();
1779}
1780#else /* ! CONFIG_KGDB */
1781#define dbg_restore_debug_regs()
1782#endif /* ! CONFIG_KGDB */
1783
1784static void wait_for_master_cpu(int cpu)
1785{
1786#ifdef CONFIG_SMP
1787	/*
1788	 * wait for ACK from master CPU before continuing
1789	 * with AP initialization
1790	 */
1791	WARN_ON(cpumask_test_and_set_cpu(cpu, cpu_initialized_mask));
1792	while (!cpumask_test_cpu(cpu, cpu_callout_mask))
1793		cpu_relax();
1794#endif
1795}
1796
1797#ifdef CONFIG_X86_64
1798static inline void setup_getcpu(int cpu)
1799{
1800	unsigned long cpudata = vdso_encode_cpunode(cpu, early_cpu_to_node(cpu));
1801	struct desc_struct d = { };
1802
1803	if (boot_cpu_has(X86_FEATURE_RDTSCP))
1804		write_rdtscp_aux(cpudata);
1805
1806	/* Store CPU and node number in limit. */
1807	d.limit0 = cpudata;
1808	d.limit1 = cpudata >> 16;
1809
1810	d.type = 5;		/* RO data, expand down, accessed */
1811	d.dpl = 3;		/* Visible to user code */
1812	d.s = 1;		/* Not a system segment */
1813	d.p = 1;		/* Present */
1814	d.d = 1;		/* 32-bit */
1815
1816	write_gdt_entry(get_cpu_gdt_rw(cpu), GDT_ENTRY_CPUNODE, &d, DESCTYPE_S);
1817}
1818
1819static inline void ucode_cpu_init(int cpu)
1820{
1821	if (cpu)
1822		load_ucode_ap();
1823}
1824
1825static inline void tss_setup_ist(struct tss_struct *tss)
1826{
1827	/* Set up the per-CPU TSS IST stacks */
1828	tss->x86_tss.ist[IST_INDEX_DF] = __this_cpu_ist_top_va(DF);
1829	tss->x86_tss.ist[IST_INDEX_NMI] = __this_cpu_ist_top_va(NMI);
1830	tss->x86_tss.ist[IST_INDEX_DB] = __this_cpu_ist_top_va(DB);
1831	tss->x86_tss.ist[IST_INDEX_MCE] = __this_cpu_ist_top_va(MCE);
1832}
1833
1834#else /* CONFIG_X86_64 */
1835
1836static inline void setup_getcpu(int cpu) { }
1837
1838static inline void ucode_cpu_init(int cpu)
1839{
1840	show_ucode_info_early();
1841}
1842
1843static inline void tss_setup_ist(struct tss_struct *tss) { }
1844
1845#endif /* !CONFIG_X86_64 */
1846
1847static inline void tss_setup_io_bitmap(struct tss_struct *tss)
1848{
1849	tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET_INVALID;
1850
1851#ifdef CONFIG_X86_IOPL_IOPERM
1852	tss->io_bitmap.prev_max = 0;
1853	tss->io_bitmap.prev_sequence = 0;
1854	memset(tss->io_bitmap.bitmap, 0xff, sizeof(tss->io_bitmap.bitmap));
1855	/*
1856	 * Invalidate the extra array entry past the end of the all
1857	 * permission bitmap as required by the hardware.
1858	 */
1859	tss->io_bitmap.mapall[IO_BITMAP_LONGS] = ~0UL;
1860#endif
1861}
1862
1863/*
1864 * cpu_init() initializes state that is per-CPU. Some data is already
1865 * initialized (naturally) in the bootstrap process, such as the GDT
1866 * and IDT. We reload them nevertheless, this function acts as a
1867 * 'CPU state barrier', nothing should get across.
 
1868 */
 
 
1869void cpu_init(void)
1870{
1871	struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
1872	struct task_struct *cur = current;
1873	int cpu = raw_smp_processor_id();
 
 
 
1874
1875	wait_for_master_cpu(cpu);
 
 
 
 
1876
1877	ucode_cpu_init(cpu);
 
 
1878
1879#ifdef CONFIG_NUMA
1880	if (this_cpu_read(numa_node) == 0 &&
1881	    early_cpu_to_node(cpu) != NUMA_NO_NODE)
1882		set_numa_node(early_cpu_to_node(cpu));
1883#endif
1884	setup_getcpu(cpu);
 
 
 
 
1885
1886	pr_debug("Initializing CPU#%d\n", cpu);
1887
1888	if (IS_ENABLED(CONFIG_X86_64) || cpu_feature_enabled(X86_FEATURE_VME) ||
1889	    boot_cpu_has(X86_FEATURE_TSC) || boot_cpu_has(X86_FEATURE_DE))
1890		cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1891
1892	/*
1893	 * Initialize the per-CPU GDT with the boot GDT,
1894	 * and set up the GDT descriptor:
1895	 */
 
1896	switch_to_new_gdt(cpu);
 
 
1897	load_current_idt();
1898
1899	if (IS_ENABLED(CONFIG_X86_64)) {
1900		loadsegment(fs, 0);
1901		memset(cur->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
1902		syscall_init();
1903
1904		wrmsrl(MSR_FS_BASE, 0);
1905		wrmsrl(MSR_KERNEL_GS_BASE, 0);
1906		barrier();
1907
1908		x2apic_setup();
1909	}
1910
1911	mmgrab(&init_mm);
1912	cur->active_mm = &init_mm;
1913	BUG_ON(cur->mm);
1914	initialize_tlbstate_and_flush();
1915	enter_lazy_tlb(&init_mm, cur);
1916
1917	/* Initialize the TSS. */
1918	tss_setup_ist(tss);
1919	tss_setup_io_bitmap(tss);
1920	set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
 
 
 
 
1921
1922	load_TR_desc();
1923	/*
1924	 * sp0 points to the entry trampoline stack regardless of what task
1925	 * is running.
1926	 */
1927	load_sp0((unsigned long)(cpu_entry_stack(cpu) + 1));
 
1928
1929	load_mm_ldt(&init_mm);
 
 
 
 
 
 
 
 
1930
1931	clear_all_debug_regs();
1932	dbg_restore_debug_regs();
1933
1934	doublefault_init_cpu_tss();
1935
1936	fpu__init_cpu();
1937
1938	if (is_uv_system())
1939		uv_cpu_init();
1940
1941	load_fixmap_gdt(cpu);
1942}
1943
1944/*
1945 * The microcode loader calls this upon late microcode load to recheck features,
1946 * only when microcode has been updated. Caller holds microcode_mutex and CPU
1947 * hotplug lock.
1948 */
1949void microcode_check(void)
1950{
1951	struct cpuinfo_x86 info;
 
 
 
 
 
1952
1953	perf_check_microcode();
 
 
 
 
1954
1955	/* Reload CPUID max function as it might've changed. */
1956	info.cpuid_level = cpuid_eax(0);
 
 
 
 
 
1957
1958	/*
1959	 * Copy all capability leafs to pick up the synthetic ones so that
1960	 * memcmp() below doesn't fail on that. The ones coming from CPUID will
1961	 * get overwritten in get_cpu_cap().
1962	 */
1963	memcpy(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability));
 
 
 
 
 
 
 
 
1964
1965	get_cpu_cap(&info);
1966
1967	if (!memcmp(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability)))
1968		return;
 
 
 
 
 
1969
1970	pr_warn("x86/CPU: CPU features have changed after loading microcode, but might not take effect.\n");
1971	pr_warn("x86/CPU: Please consider either early loading through initrd/built-in or a potential BIOS update.\n");
1972}
 
1973
1974/*
1975 * Invoked from core CPU hotplug code after hotplug operations
1976 */
1977void arch_smt_update(void)
 
 
 
 
 
1978{
1979	/* Handle the speculative execution misfeatures */
1980	cpu_bugs_smt_update();
1981	/* Check whether IPI broadcasting can be enabled */
1982	apic_smt_update();
1983}
v3.15
   1#include <linux/bootmem.h>
 
 
 
 
   2#include <linux/linkage.h>
   3#include <linux/bitops.h>
   4#include <linux/kernel.h>
   5#include <linux/module.h>
   6#include <linux/percpu.h>
   7#include <linux/string.h>
 
   8#include <linux/delay.h>
   9#include <linux/sched.h>
 
 
 
  10#include <linux/init.h>
 
  11#include <linux/kgdb.h>
  12#include <linux/smp.h>
  13#include <linux/io.h>
 
 
  14
  15#include <asm/stackprotector.h>
  16#include <asm/perf_event.h>
  17#include <asm/mmu_context.h>
 
  18#include <asm/archrandom.h>
  19#include <asm/hypervisor.h>
  20#include <asm/processor.h>
 
  21#include <asm/debugreg.h>
  22#include <asm/sections.h>
 
  23#include <linux/topology.h>
  24#include <linux/cpumask.h>
  25#include <asm/pgtable.h>
  26#include <linux/atomic.h>
  27#include <asm/proto.h>
  28#include <asm/setup.h>
  29#include <asm/apic.h>
  30#include <asm/desc.h>
  31#include <asm/i387.h>
  32#include <asm/fpu-internal.h>
  33#include <asm/mtrr.h>
 
  34#include <linux/numa.h>
 
  35#include <asm/asm.h>
 
  36#include <asm/cpu.h>
  37#include <asm/mce.h>
  38#include <asm/msr.h>
  39#include <asm/pat.h>
  40#include <asm/microcode.h>
  41#include <asm/microcode_intel.h>
  42
  43#ifdef CONFIG_X86_LOCAL_APIC
  44#include <asm/uv/uv.h>
  45#endif
  46
  47#include "cpu.h"
  48
 
 
  49/* all of these masks are initialized in setup_cpu_local_masks() */
  50cpumask_var_t cpu_initialized_mask;
  51cpumask_var_t cpu_callout_mask;
  52cpumask_var_t cpu_callin_mask;
  53
  54/* representing cpus for which sibling maps can be computed */
  55cpumask_var_t cpu_sibling_setup_mask;
  56
 
 
 
 
 
 
 
  57/* correctly size the local cpu masks */
  58void __init setup_cpu_local_masks(void)
  59{
  60	alloc_bootmem_cpumask_var(&cpu_initialized_mask);
  61	alloc_bootmem_cpumask_var(&cpu_callin_mask);
  62	alloc_bootmem_cpumask_var(&cpu_callout_mask);
  63	alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
  64}
  65
  66static void default_init(struct cpuinfo_x86 *c)
  67{
  68#ifdef CONFIG_X86_64
  69	cpu_detect_cache_sizes(c);
  70#else
  71	/* Not much we can do here... */
  72	/* Check if at least it has cpuid */
  73	if (c->cpuid_level == -1) {
  74		/* No cpuid. It must be an ancient CPU */
  75		if (c->x86 == 4)
  76			strcpy(c->x86_model_id, "486");
  77		else if (c->x86 == 3)
  78			strcpy(c->x86_model_id, "386");
  79	}
  80#endif
  81}
  82
  83static const struct cpu_dev default_cpu = {
  84	.c_init		= default_init,
  85	.c_vendor	= "Unknown",
  86	.c_x86_vendor	= X86_VENDOR_UNKNOWN,
  87};
  88
  89static const struct cpu_dev *this_cpu = &default_cpu;
  90
  91DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
  92#ifdef CONFIG_X86_64
  93	/*
  94	 * We need valid kernel segments for data and code in long mode too
  95	 * IRET will check the segment types  kkeil 2000/10/28
  96	 * Also sysret mandates a special GDT layout
  97	 *
  98	 * TLS descriptors are currently at a different place compared to i386.
  99	 * Hopefully nobody expects them at a fixed place (Wine?)
 100	 */
 101	[GDT_ENTRY_KERNEL32_CS]		= GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
 102	[GDT_ENTRY_KERNEL_CS]		= GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
 103	[GDT_ENTRY_KERNEL_DS]		= GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
 104	[GDT_ENTRY_DEFAULT_USER32_CS]	= GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
 105	[GDT_ENTRY_DEFAULT_USER_DS]	= GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
 106	[GDT_ENTRY_DEFAULT_USER_CS]	= GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
 107#else
 108	[GDT_ENTRY_KERNEL_CS]		= GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
 109	[GDT_ENTRY_KERNEL_DS]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
 110	[GDT_ENTRY_DEFAULT_USER_CS]	= GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
 111	[GDT_ENTRY_DEFAULT_USER_DS]	= GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
 112	/*
 113	 * Segments used for calling PnP BIOS have byte granularity.
 114	 * They code segments and data segments have fixed 64k limits,
 115	 * the transfer segment sizes are set at run time.
 116	 */
 117	/* 32-bit code */
 118	[GDT_ENTRY_PNPBIOS_CS32]	= GDT_ENTRY_INIT(0x409a, 0, 0xffff),
 119	/* 16-bit code */
 120	[GDT_ENTRY_PNPBIOS_CS16]	= GDT_ENTRY_INIT(0x009a, 0, 0xffff),
 121	/* 16-bit data */
 122	[GDT_ENTRY_PNPBIOS_DS]		= GDT_ENTRY_INIT(0x0092, 0, 0xffff),
 123	/* 16-bit data */
 124	[GDT_ENTRY_PNPBIOS_TS1]		= GDT_ENTRY_INIT(0x0092, 0, 0),
 125	/* 16-bit data */
 126	[GDT_ENTRY_PNPBIOS_TS2]		= GDT_ENTRY_INIT(0x0092, 0, 0),
 127	/*
 128	 * The APM segments have byte granularity and their bases
 129	 * are set at run time.  All have 64k limits.
 130	 */
 131	/* 32-bit code */
 132	[GDT_ENTRY_APMBIOS_BASE]	= GDT_ENTRY_INIT(0x409a, 0, 0xffff),
 133	/* 16-bit code */
 134	[GDT_ENTRY_APMBIOS_BASE+1]	= GDT_ENTRY_INIT(0x009a, 0, 0xffff),
 135	/* data */
 136	[GDT_ENTRY_APMBIOS_BASE+2]	= GDT_ENTRY_INIT(0x4092, 0, 0xffff),
 137
 138	[GDT_ENTRY_ESPFIX_SS]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
 139	[GDT_ENTRY_PERCPU]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
 140	GDT_STACK_CANARY_INIT
 141#endif
 142} };
 143EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
 144
 145static int __init x86_xsave_setup(char *s)
 
 146{
 147	setup_clear_cpu_cap(X86_FEATURE_XSAVE);
 148	setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
 149	setup_clear_cpu_cap(X86_FEATURE_AVX);
 150	setup_clear_cpu_cap(X86_FEATURE_AVX2);
 151	return 1;
 
 
 
 
 
 
 152}
 153__setup("noxsave", x86_xsave_setup);
 
 154
 155static int __init x86_xsaveopt_setup(char *s)
 156{
 157	setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
 158	return 1;
 
 
 
 
 
 
 
 
 
 159}
 160__setup("noxsaveopt", x86_xsaveopt_setup);
 161
 162#ifdef CONFIG_X86_32
 163static int cachesize_override = -1;
 164static int disable_x86_serial_nr = 1;
 165
 166static int __init cachesize_setup(char *str)
 167{
 168	get_option(&str, &cachesize_override);
 169	return 1;
 170}
 171__setup("cachesize=", cachesize_setup);
 172
 173static int __init x86_fxsr_setup(char *s)
 174{
 175	setup_clear_cpu_cap(X86_FEATURE_FXSR);
 176	setup_clear_cpu_cap(X86_FEATURE_XMM);
 177	return 1;
 178}
 179__setup("nofxsr", x86_fxsr_setup);
 180
 181static int __init x86_sep_setup(char *s)
 182{
 183	setup_clear_cpu_cap(X86_FEATURE_SEP);
 184	return 1;
 185}
 186__setup("nosep", x86_sep_setup);
 187
 188/* Standard macro to see if a specific flag is changeable */
 189static inline int flag_is_changeable_p(u32 flag)
 190{
 191	u32 f1, f2;
 192
 193	/*
 194	 * Cyrix and IDT cpus allow disabling of CPUID
 195	 * so the code below may return different results
 196	 * when it is executed before and after enabling
 197	 * the CPUID. Add "volatile" to not allow gcc to
 198	 * optimize the subsequent calls to this function.
 199	 */
 200	asm volatile ("pushfl		\n\t"
 201		      "pushfl		\n\t"
 202		      "popl %0		\n\t"
 203		      "movl %0, %1	\n\t"
 204		      "xorl %2, %0	\n\t"
 205		      "pushl %0		\n\t"
 206		      "popfl		\n\t"
 207		      "pushfl		\n\t"
 208		      "popl %0		\n\t"
 209		      "popfl		\n\t"
 210
 211		      : "=&r" (f1), "=&r" (f2)
 212		      : "ir" (flag));
 213
 214	return ((f1^f2) & flag) != 0;
 215}
 216
 217/* Probe for the CPUID instruction */
 218int have_cpuid_p(void)
 219{
 220	return flag_is_changeable_p(X86_EFLAGS_ID);
 221}
 222
 223static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
 224{
 225	unsigned long lo, hi;
 226
 227	if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
 228		return;
 229
 230	/* Disable processor serial number: */
 231
 232	rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
 233	lo |= 0x200000;
 234	wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
 235
 236	printk(KERN_NOTICE "CPU serial number disabled.\n");
 237	clear_cpu_cap(c, X86_FEATURE_PN);
 238
 239	/* Disabling the serial number may affect the cpuid level */
 240	c->cpuid_level = cpuid_eax(0);
 241}
 242
 243static int __init x86_serial_nr_setup(char *s)
 244{
 245	disable_x86_serial_nr = 0;
 246	return 1;
 247}
 248__setup("serialnumber", x86_serial_nr_setup);
 249#else
 250static inline int flag_is_changeable_p(u32 flag)
 251{
 252	return 1;
 253}
 254static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
 255{
 256}
 257#endif
 258
 259static __init int setup_disable_smep(char *arg)
 260{
 261	setup_clear_cpu_cap(X86_FEATURE_SMEP);
 262	return 1;
 263}
 264__setup("nosmep", setup_disable_smep);
 265
 266static __always_inline void setup_smep(struct cpuinfo_x86 *c)
 267{
 268	if (cpu_has(c, X86_FEATURE_SMEP))
 269		set_in_cr4(X86_CR4_SMEP);
 270}
 271
 272static __init int setup_disable_smap(char *arg)
 273{
 274	setup_clear_cpu_cap(X86_FEATURE_SMAP);
 275	return 1;
 276}
 277__setup("nosmap", setup_disable_smap);
 278
 279static __always_inline void setup_smap(struct cpuinfo_x86 *c)
 280{
 281	unsigned long eflags;
 282
 283	/* This should have been cleared long ago */
 284	raw_local_save_flags(eflags);
 285	BUG_ON(eflags & X86_EFLAGS_AC);
 286
 287	if (cpu_has(c, X86_FEATURE_SMAP)) {
 288#ifdef CONFIG_X86_SMAP
 289		set_in_cr4(X86_CR4_SMAP);
 290#else
 291		clear_in_cr4(X86_CR4_SMAP);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 292#endif
 
 
 
 
 
 
 
 
 
 
 
 293	}
 294}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 295
 296/*
 297 * Some CPU features depend on higher CPUID levels, which may not always
 298 * be available due to CPUID level capping or broken virtualization
 299 * software.  Add those features to this table to auto-disable them.
 300 */
 301struct cpuid_dependent_feature {
 302	u32 feature;
 303	u32 level;
 304};
 305
 306static const struct cpuid_dependent_feature
 307cpuid_dependent_features[] = {
 308	{ X86_FEATURE_MWAIT,		0x00000005 },
 309	{ X86_FEATURE_DCA,		0x00000009 },
 310	{ X86_FEATURE_XSAVE,		0x0000000d },
 311	{ 0, 0 }
 312};
 313
 314static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
 315{
 316	const struct cpuid_dependent_feature *df;
 317
 318	for (df = cpuid_dependent_features; df->feature; df++) {
 319
 320		if (!cpu_has(c, df->feature))
 321			continue;
 322		/*
 323		 * Note: cpuid_level is set to -1 if unavailable, but
 324		 * extended_extended_level is set to 0 if unavailable
 325		 * and the legitimate extended levels are all negative
 326		 * when signed; hence the weird messing around with
 327		 * signs here...
 328		 */
 329		if (!((s32)df->level < 0 ?
 330		     (u32)df->level > (u32)c->extended_cpuid_level :
 331		     (s32)df->level > (s32)c->cpuid_level))
 332			continue;
 333
 334		clear_cpu_cap(c, df->feature);
 335		if (!warn)
 336			continue;
 337
 338		printk(KERN_WARNING
 339		       "CPU: CPU feature %s disabled, no CPUID level 0x%x\n",
 340				x86_cap_flags[df->feature], df->level);
 341	}
 342}
 343
 344/*
 345 * Naming convention should be: <Name> [(<Codename>)]
 346 * This table only is used unless init_<vendor>() below doesn't set it;
 347 * in particular, if CPUID levels 0x80000002..4 are supported, this
 348 * isn't used
 349 */
 350
 351/* Look up CPU names by table lookup. */
 352static const char *table_lookup_model(struct cpuinfo_x86 *c)
 353{
 354#ifdef CONFIG_X86_32
 355	const struct legacy_cpu_model_info *info;
 356
 357	if (c->x86_model >= 16)
 358		return NULL;	/* Range check */
 359
 360	if (!this_cpu)
 361		return NULL;
 362
 363	info = this_cpu->legacy_models;
 364
 365	while (info->family) {
 366		if (info->family == c->x86)
 367			return info->model_names[c->x86_model];
 368		info++;
 369	}
 370#endif
 371	return NULL;		/* Not found */
 372}
 373
 374__u32 cpu_caps_cleared[NCAPINTS];
 375__u32 cpu_caps_set[NCAPINTS];
 
 376
 377void load_percpu_segment(int cpu)
 378{
 379#ifdef CONFIG_X86_32
 380	loadsegment(fs, __KERNEL_PERCPU);
 381#else
 382	loadsegment(gs, 0);
 383	wrmsrl(MSR_GS_BASE, (unsigned long)per_cpu(irq_stack_union.gs_base, cpu));
 384#endif
 385	load_stack_canary_segment();
 386}
 387
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 388/*
 389 * Current gdt points %fs at the "master" per-cpu area: after this,
 390 * it's on the real one.
 391 */
 392void switch_to_new_gdt(int cpu)
 393{
 394	struct desc_ptr gdt_descr;
 395
 396	gdt_descr.address = (long)get_cpu_gdt_table(cpu);
 397	gdt_descr.size = GDT_SIZE - 1;
 398	load_gdt(&gdt_descr);
 399	/* Reload the per-cpu base */
 400
 401	load_percpu_segment(cpu);
 402}
 403
 404static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
 405
 406static void get_model_name(struct cpuinfo_x86 *c)
 407{
 408	unsigned int *v;
 409	char *p, *q;
 410
 411	if (c->extended_cpuid_level < 0x80000004)
 412		return;
 413
 414	v = (unsigned int *)c->x86_model_id;
 415	cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
 416	cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
 417	cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
 418	c->x86_model_id[48] = 0;
 419
 420	/*
 421	 * Intel chips right-justify this string for some dumb reason;
 422	 * undo that brain damage:
 423	 */
 424	p = q = &c->x86_model_id[0];
 425	while (*p == ' ')
 426		p++;
 427	if (p != q) {
 428		while (*p)
 429			*q++ = *p++;
 430		while (q <= &c->x86_model_id[48])
 431			*q++ = '\0';	/* Zero-pad the rest */
 
 
 432	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 433}
 434
 435void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
 436{
 437	unsigned int n, dummy, ebx, ecx, edx, l2size;
 438
 439	n = c->extended_cpuid_level;
 440
 441	if (n >= 0x80000005) {
 442		cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
 443		c->x86_cache_size = (ecx>>24) + (edx>>24);
 444#ifdef CONFIG_X86_64
 445		/* On K8 L1 TLB is inclusive, so don't count it */
 446		c->x86_tlbsize = 0;
 447#endif
 448	}
 449
 450	if (n < 0x80000006)	/* Some chips just has a large L1. */
 451		return;
 452
 453	cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
 454	l2size = ecx >> 16;
 455
 456#ifdef CONFIG_X86_64
 457	c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
 458#else
 459	/* do processor-specific cache resizing */
 460	if (this_cpu->legacy_cache_size)
 461		l2size = this_cpu->legacy_cache_size(c, l2size);
 462
 463	/* Allow user to override all this if necessary. */
 464	if (cachesize_override != -1)
 465		l2size = cachesize_override;
 466
 467	if (l2size == 0)
 468		return;		/* Again, no L2 cache is possible */
 469#endif
 470
 471	c->x86_cache_size = l2size;
 472}
 473
 474u16 __read_mostly tlb_lli_4k[NR_INFO];
 475u16 __read_mostly tlb_lli_2m[NR_INFO];
 476u16 __read_mostly tlb_lli_4m[NR_INFO];
 477u16 __read_mostly tlb_lld_4k[NR_INFO];
 478u16 __read_mostly tlb_lld_2m[NR_INFO];
 479u16 __read_mostly tlb_lld_4m[NR_INFO];
 480u16 __read_mostly tlb_lld_1g[NR_INFO];
 481
 482/*
 483 * tlb_flushall_shift shows the balance point in replacing cr3 write
 484 * with multiple 'invlpg'. It will do this replacement when
 485 *   flush_tlb_lines <= active_lines/2^tlb_flushall_shift.
 486 * If tlb_flushall_shift is -1, means the replacement will be disabled.
 487 */
 488s8  __read_mostly tlb_flushall_shift = -1;
 489
 490void cpu_detect_tlb(struct cpuinfo_x86 *c)
 491{
 492	if (this_cpu->c_detect_tlb)
 493		this_cpu->c_detect_tlb(c);
 494
 495	printk(KERN_INFO "Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n"
 496		"Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n"
 497		"tlb_flushall_shift: %d\n",
 498		tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
 499		tlb_lli_4m[ENTRIES], tlb_lld_4k[ENTRIES],
 500		tlb_lld_2m[ENTRIES], tlb_lld_4m[ENTRIES],
 501		tlb_lld_1g[ENTRIES], tlb_flushall_shift);
 
 
 502}
 503
 504void detect_ht(struct cpuinfo_x86 *c)
 505{
 506#ifdef CONFIG_X86_HT
 507	u32 eax, ebx, ecx, edx;
 508	int index_msb, core_bits;
 509	static bool printed;
 510
 511	if (!cpu_has(c, X86_FEATURE_HT))
 512		return;
 513
 514	if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
 515		goto out;
 516
 517	if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
 518		return;
 519
 520	cpuid(1, &eax, &ebx, &ecx, &edx);
 521
 522	smp_num_siblings = (ebx & 0xff0000) >> 16;
 
 
 
 
 
 523
 524	if (smp_num_siblings == 1) {
 525		printk_once(KERN_INFO "CPU0: Hyper-Threading is disabled\n");
 526		goto out;
 527	}
 528
 529	if (smp_num_siblings <= 1)
 530		goto out;
 531
 532	index_msb = get_count_order(smp_num_siblings);
 533	c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
 534
 535	smp_num_siblings = smp_num_siblings / c->x86_max_cores;
 536
 537	index_msb = get_count_order(smp_num_siblings);
 538
 539	core_bits = get_count_order(c->x86_max_cores);
 540
 541	c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
 542				       ((1 << core_bits) - 1);
 543
 544out:
 545	if (!printed && (c->x86_max_cores * smp_num_siblings) > 1) {
 546		printk(KERN_INFO  "CPU: Physical Processor ID: %d\n",
 547		       c->phys_proc_id);
 548		printk(KERN_INFO  "CPU: Processor Core ID: %d\n",
 549		       c->cpu_core_id);
 550		printed = 1;
 551	}
 552#endif
 553}
 554
 555static void get_cpu_vendor(struct cpuinfo_x86 *c)
 556{
 557	char *v = c->x86_vendor_id;
 558	int i;
 559
 560	for (i = 0; i < X86_VENDOR_NUM; i++) {
 561		if (!cpu_devs[i])
 562			break;
 563
 564		if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
 565		    (cpu_devs[i]->c_ident[1] &&
 566		     !strcmp(v, cpu_devs[i]->c_ident[1]))) {
 567
 568			this_cpu = cpu_devs[i];
 569			c->x86_vendor = this_cpu->c_x86_vendor;
 570			return;
 571		}
 572	}
 573
 574	printk_once(KERN_ERR
 575			"CPU: vendor_id '%s' unknown, using generic init.\n" \
 576			"CPU: Your system may be unstable.\n", v);
 577
 578	c->x86_vendor = X86_VENDOR_UNKNOWN;
 579	this_cpu = &default_cpu;
 580}
 581
 582void cpu_detect(struct cpuinfo_x86 *c)
 583{
 584	/* Get vendor name */
 585	cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
 586	      (unsigned int *)&c->x86_vendor_id[0],
 587	      (unsigned int *)&c->x86_vendor_id[8],
 588	      (unsigned int *)&c->x86_vendor_id[4]);
 589
 590	c->x86 = 4;
 591	/* Intel-defined flags: level 0x00000001 */
 592	if (c->cpuid_level >= 0x00000001) {
 593		u32 junk, tfms, cap0, misc;
 594
 595		cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
 596		c->x86 = (tfms >> 8) & 0xf;
 597		c->x86_model = (tfms >> 4) & 0xf;
 598		c->x86_mask = tfms & 0xf;
 599
 600		if (c->x86 == 0xf)
 601			c->x86 += (tfms >> 20) & 0xff;
 602		if (c->x86 >= 0x6)
 603			c->x86_model += ((tfms >> 16) & 0xf) << 4;
 604
 605		if (cap0 & (1<<19)) {
 606			c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
 607			c->x86_cache_alignment = c->x86_clflush_size;
 608		}
 609	}
 610}
 611
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 612void get_cpu_cap(struct cpuinfo_x86 *c)
 613{
 614	u32 tfms, xlvl;
 615	u32 ebx;
 616
 617	/* Intel-defined flags: level 0x00000001 */
 618	if (c->cpuid_level >= 0x00000001) {
 619		u32 capability, excap;
 620
 621		cpuid(0x00000001, &tfms, &ebx, &excap, &capability);
 622		c->x86_capability[0] = capability;
 623		c->x86_capability[4] = excap;
 624	}
 625
 
 
 
 
 626	/* Additional Intel-defined flags: level 0x00000007 */
 627	if (c->cpuid_level >= 0x00000007) {
 628		u32 eax, ebx, ecx, edx;
 
 
 
 
 
 
 
 
 
 
 629
 630		cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
 
 
 631
 632		c->x86_capability[9] = ebx;
 633	}
 634
 635	/* AMD-defined flags: level 0x80000001 */
 636	xlvl = cpuid_eax(0x80000000);
 637	c->extended_cpuid_level = xlvl;
 
 
 
 
 638
 639	if ((xlvl & 0xffff0000) == 0x80000000) {
 640		if (xlvl >= 0x80000001) {
 641			c->x86_capability[1] = cpuid_edx(0x80000001);
 642			c->x86_capability[6] = cpuid_ecx(0x80000001);
 643		}
 644	}
 645
 
 
 
 
 
 
 
 646	if (c->extended_cpuid_level >= 0x80000008) {
 647		u32 eax = cpuid_eax(0x80000008);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 648
 649		c->x86_virt_bits = (eax >> 8) & 0xff;
 650		c->x86_phys_bits = eax & 0xff;
 651	}
 652#ifdef CONFIG_X86_32
 653	else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
 654		c->x86_phys_bits = 36;
 655#endif
 656
 657	if (c->extended_cpuid_level >= 0x80000007)
 658		c->x86_power = cpuid_edx(0x80000007);
 659
 660	init_scattered_cpuid_features(c);
 661}
 662
 663static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
 664{
 665#ifdef CONFIG_X86_32
 666	int i;
 667
 668	/*
 669	 * First of all, decide if this is a 486 or higher
 670	 * It's a 486 if we can modify the AC flag
 671	 */
 672	if (flag_is_changeable_p(X86_EFLAGS_AC))
 673		c->x86 = 4;
 674	else
 675		c->x86 = 3;
 676
 677	for (i = 0; i < X86_VENDOR_NUM; i++)
 678		if (cpu_devs[i] && cpu_devs[i]->c_identify) {
 679			c->x86_vendor_id[0] = 0;
 680			cpu_devs[i]->c_identify(c);
 681			if (c->x86_vendor_id[0]) {
 682				get_cpu_vendor(c);
 683				break;
 684			}
 685		}
 686#endif
 687}
 688
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 689/*
 690 * Do minimum CPU detection early.
 691 * Fields really needed: vendor, cpuid_level, family, model, mask,
 692 * cache alignment.
 693 * The others are not touched to avoid unwanted side effects.
 694 *
 695 * WARNING: this function is only called on the BP.  Don't add code here
 696 * that is supposed to run on all CPUs.
 697 */
 698static void __init early_identify_cpu(struct cpuinfo_x86 *c)
 699{
 700#ifdef CONFIG_X86_64
 701	c->x86_clflush_size = 64;
 702	c->x86_phys_bits = 36;
 703	c->x86_virt_bits = 48;
 704#else
 705	c->x86_clflush_size = 32;
 706	c->x86_phys_bits = 32;
 707	c->x86_virt_bits = 32;
 708#endif
 709	c->x86_cache_alignment = c->x86_clflush_size;
 710
 711	memset(&c->x86_capability, 0, sizeof c->x86_capability);
 712	c->extended_cpuid_level = 0;
 713
 714	if (!have_cpuid_p())
 715		identify_cpu_without_cpuid(c);
 716
 717	/* cyrix could have cpuid enabled via c_identify()*/
 718	if (!have_cpuid_p())
 719		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 720
 721	cpu_detect(c);
 722	get_cpu_vendor(c);
 723	get_cpu_cap(c);
 724	fpu_detect(c);
 725
 726	if (this_cpu->c_early_init)
 727		this_cpu->c_early_init(c);
 728
 729	c->cpu_index = 0;
 730	filter_cpuid_features(c, false);
 
 
 
 
 
 731
 732	if (this_cpu->c_bsp_init)
 733		this_cpu->c_bsp_init(c);
 
 
 
 
 
 
 
 
 
 
 
 
 734
 735	setup_force_cpu_cap(X86_FEATURE_ALWAYS);
 736}
 737
 738void __init early_cpu_init(void)
 739{
 740	const struct cpu_dev *const *cdev;
 741	int count = 0;
 742
 743#ifdef CONFIG_PROCESSOR_SELECT
 744	printk(KERN_INFO "KERNEL supported cpus:\n");
 745#endif
 746
 747	for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
 748		const struct cpu_dev *cpudev = *cdev;
 749
 750		if (count >= X86_VENDOR_NUM)
 751			break;
 752		cpu_devs[count] = cpudev;
 753		count++;
 754
 755#ifdef CONFIG_PROCESSOR_SELECT
 756		{
 757			unsigned int j;
 758
 759			for (j = 0; j < 2; j++) {
 760				if (!cpudev->c_ident[j])
 761					continue;
 762				printk(KERN_INFO "  %s %s\n", cpudev->c_vendor,
 763					cpudev->c_ident[j]);
 764			}
 765		}
 766#endif
 767	}
 768	early_identify_cpu(&boot_cpu_data);
 769}
 770
 771/*
 772 * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
 773 * unfortunately, that's not true in practice because of early VIA
 774 * chips and (more importantly) broken virtualizers that are not easy
 775 * to detect. In the latter case it doesn't even *fail* reliably, so
 776 * probing for it doesn't even work. Disable it completely on 32-bit
 777 * unless we can find a reliable way to detect all the broken cases.
 778 * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
 779 */
 780static void detect_nopl(struct cpuinfo_x86 *c)
 781{
 782#ifdef CONFIG_X86_32
 783	clear_cpu_cap(c, X86_FEATURE_NOPL);
 784#else
 785	set_cpu_cap(c, X86_FEATURE_NOPL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 786#endif
 787}
 788
 789static void generic_identify(struct cpuinfo_x86 *c)
 790{
 791	c->extended_cpuid_level = 0;
 792
 793	if (!have_cpuid_p())
 794		identify_cpu_without_cpuid(c);
 795
 796	/* cyrix could have cpuid enabled via c_identify()*/
 797	if (!have_cpuid_p())
 798		return;
 799
 800	cpu_detect(c);
 801
 802	get_cpu_vendor(c);
 803
 804	get_cpu_cap(c);
 805
 
 
 806	if (c->cpuid_level >= 0x00000001) {
 807		c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
 808#ifdef CONFIG_X86_32
 809# ifdef CONFIG_X86_HT
 810		c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
 811# else
 812		c->apicid = c->initial_apicid;
 813# endif
 814#endif
 815		c->phys_proc_id = c->initial_apicid;
 816	}
 817
 818	get_model_name(c); /* Default name */
 819
 820	detect_nopl(c);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 821}
 822
 823/*
 824 * This does the hard work of actually picking apart the CPU stuff...
 825 */
 826static void identify_cpu(struct cpuinfo_x86 *c)
 827{
 828	int i;
 829
 830	c->loops_per_jiffy = loops_per_jiffy;
 831	c->x86_cache_size = -1;
 832	c->x86_vendor = X86_VENDOR_UNKNOWN;
 833	c->x86_model = c->x86_mask = 0;	/* So far unknown... */
 834	c->x86_vendor_id[0] = '\0'; /* Unset */
 835	c->x86_model_id[0] = '\0';  /* Unset */
 836	c->x86_max_cores = 1;
 837	c->x86_coreid_bits = 0;
 
 838#ifdef CONFIG_X86_64
 839	c->x86_clflush_size = 64;
 840	c->x86_phys_bits = 36;
 841	c->x86_virt_bits = 48;
 842#else
 843	c->cpuid_level = -1;	/* CPUID not detected */
 844	c->x86_clflush_size = 32;
 845	c->x86_phys_bits = 32;
 846	c->x86_virt_bits = 32;
 847#endif
 848	c->x86_cache_alignment = c->x86_clflush_size;
 849	memset(&c->x86_capability, 0, sizeof c->x86_capability);
 
 
 
 850
 851	generic_identify(c);
 852
 853	if (this_cpu->c_identify)
 854		this_cpu->c_identify(c);
 855
 856	/* Clear/Set all flags overriden by options, after probe */
 857	for (i = 0; i < NCAPINTS; i++) {
 858		c->x86_capability[i] &= ~cpu_caps_cleared[i];
 859		c->x86_capability[i] |= cpu_caps_set[i];
 860	}
 861
 862#ifdef CONFIG_X86_64
 863	c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
 864#endif
 865
 866	/*
 867	 * Vendor-specific initialization.  In this section we
 868	 * canonicalize the feature flags, meaning if there are
 869	 * features a certain CPU supports which CPUID doesn't
 870	 * tell us, CPUID claiming incorrect flags, or other bugs,
 871	 * we handle them here.
 872	 *
 873	 * At the end of this section, c->x86_capability better
 874	 * indicate the features this CPU genuinely supports!
 875	 */
 876	if (this_cpu->c_init)
 877		this_cpu->c_init(c);
 878
 879	/* Disable the PN if appropriate */
 880	squash_the_stupid_serial_number(c);
 881
 882	/* Set up SMEP/SMAP */
 883	setup_smep(c);
 884	setup_smap(c);
 
 
 
 
 
 
 
 885
 886	/*
 887	 * The vendor-specific functions might have changed features.
 888	 * Now we do "generic changes."
 889	 */
 890
 891	/* Filter out anything that depends on CPUID levels we don't have */
 892	filter_cpuid_features(c, true);
 893
 894	/* If the model name is still unset, do table lookup. */
 895	if (!c->x86_model_id[0]) {
 896		const char *p;
 897		p = table_lookup_model(c);
 898		if (p)
 899			strcpy(c->x86_model_id, p);
 900		else
 901			/* Last resort... */
 902			sprintf(c->x86_model_id, "%02x/%02x",
 903				c->x86, c->x86_model);
 904	}
 905
 906#ifdef CONFIG_X86_64
 907	detect_ht(c);
 908#endif
 909
 910	init_hypervisor(c);
 911	x86_init_rdrand(c);
 
 912
 913	/*
 914	 * Clear/Set all flags overriden by options, need do it
 915	 * before following smp all cpus cap AND.
 916	 */
 917	for (i = 0; i < NCAPINTS; i++) {
 918		c->x86_capability[i] &= ~cpu_caps_cleared[i];
 919		c->x86_capability[i] |= cpu_caps_set[i];
 920	}
 921
 922	/*
 923	 * On SMP, boot_cpu_data holds the common feature set between
 924	 * all CPUs; so make sure that we indicate which features are
 925	 * common between the CPUs.  The first time this routine gets
 926	 * executed, c == &boot_cpu_data.
 927	 */
 928	if (c != &boot_cpu_data) {
 929		/* AND the already accumulated flags with these */
 930		for (i = 0; i < NCAPINTS; i++)
 931			boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
 932
 933		/* OR, i.e. replicate the bug flags */
 934		for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
 935			c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
 936	}
 937
 938	/* Init Machine Check Exception if available. */
 939	mcheck_cpu_init(c);
 940
 941	select_idle_routine(c);
 942
 943#ifdef CONFIG_NUMA
 944	numa_add_cpu(smp_processor_id());
 945#endif
 946}
 947
 948#ifdef CONFIG_X86_64
 949static void vgetcpu_set_mode(void)
 
 
 
 
 950{
 951	if (cpu_has(&boot_cpu_data, X86_FEATURE_RDTSCP))
 952		vgetcpu_mode = VGETCPU_RDTSCP;
 953	else
 954		vgetcpu_mode = VGETCPU_LSL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 955}
 956#endif
 957
 958void __init identify_boot_cpu(void)
 959{
 960	identify_cpu(&boot_cpu_data);
 961	init_amd_e400_c1e_mask();
 962#ifdef CONFIG_X86_32
 963	sysenter_setup();
 964	enable_sep_cpu();
 965#else
 966	vgetcpu_set_mode();
 967#endif
 968	cpu_detect_tlb(&boot_cpu_data);
 
 
 
 969}
 970
 971void identify_secondary_cpu(struct cpuinfo_x86 *c)
 972{
 973	BUG_ON(c == &boot_cpu_data);
 974	identify_cpu(c);
 975#ifdef CONFIG_X86_32
 976	enable_sep_cpu();
 977#endif
 978	mtrr_ap_init();
 
 
 
 979}
 980
 981struct msr_range {
 982	unsigned	min;
 983	unsigned	max;
 984};
 985
 986static const struct msr_range msr_range_array[] = {
 987	{ 0x00000000, 0x00000418},
 988	{ 0xc0000000, 0xc000040b},
 989	{ 0xc0010000, 0xc0010142},
 990	{ 0xc0011000, 0xc001103b},
 991};
 992
 993static void __print_cpu_msr(void)
 994{
 995	unsigned index_min, index_max;
 996	unsigned index;
 997	u64 val;
 998	int i;
 999
1000	for (i = 0; i < ARRAY_SIZE(msr_range_array); i++) {
1001		index_min = msr_range_array[i].min;
1002		index_max = msr_range_array[i].max;
1003
1004		for (index = index_min; index < index_max; index++) {
1005			if (rdmsrl_safe(index, &val))
1006				continue;
1007			printk(KERN_INFO " MSR%08x: %016llx\n", index, val);
1008		}
1009	}
1010}
1011
1012static int show_msr;
1013
1014static __init int setup_show_msr(char *arg)
1015{
1016	int num;
1017
1018	get_option(&arg, &num);
1019
1020	if (num > 0)
1021		show_msr = num;
1022	return 1;
1023}
1024__setup("show_msr=", setup_show_msr);
1025
1026static __init int setup_noclflush(char *arg)
1027{
1028	setup_clear_cpu_cap(X86_FEATURE_CLFLUSH);
1029	setup_clear_cpu_cap(X86_FEATURE_CLFLUSHOPT);
1030	return 1;
1031}
1032__setup("noclflush", setup_noclflush);
1033
1034void print_cpu_info(struct cpuinfo_x86 *c)
1035{
1036	const char *vendor = NULL;
1037
1038	if (c->x86_vendor < X86_VENDOR_NUM) {
1039		vendor = this_cpu->c_vendor;
1040	} else {
1041		if (c->cpuid_level >= 0)
1042			vendor = c->x86_vendor_id;
1043	}
1044
1045	if (vendor && !strstr(c->x86_model_id, vendor))
1046		printk(KERN_CONT "%s ", vendor);
1047
1048	if (c->x86_model_id[0])
1049		printk(KERN_CONT "%s", strim(c->x86_model_id));
1050	else
1051		printk(KERN_CONT "%d86", c->x86);
1052
1053	printk(KERN_CONT " (fam: %02x, model: %02x", c->x86, c->x86_model);
1054
1055	if (c->x86_mask || c->cpuid_level >= 0)
1056		printk(KERN_CONT ", stepping: %02x)\n", c->x86_mask);
1057	else
1058		printk(KERN_CONT ")\n");
1059
1060	print_cpu_msr(c);
1061}
1062
1063void print_cpu_msr(struct cpuinfo_x86 *c)
1064{
1065	if (c->cpu_index < show_msr)
1066		__print_cpu_msr();
1067}
1068
1069static __init int setup_disablecpuid(char *arg)
1070{
1071	int bit;
1072
1073	if (get_option(&arg, &bit) && bit < NCAPINTS*32)
1074		setup_clear_cpu_cap(bit);
1075	else
1076		return 0;
1077
1078	return 1;
1079}
1080__setup("clearcpuid=", setup_disablecpuid);
1081
1082DEFINE_PER_CPU(unsigned long, kernel_stack) =
1083	(unsigned long)&init_thread_union - KERNEL_STACK_OFFSET + THREAD_SIZE;
1084EXPORT_PER_CPU_SYMBOL(kernel_stack);
1085
1086#ifdef CONFIG_X86_64
1087struct desc_ptr idt_descr = { NR_VECTORS * 16 - 1, (unsigned long) idt_table };
1088struct desc_ptr debug_idt_descr = { NR_VECTORS * 16 - 1,
1089				    (unsigned long) debug_idt_table };
1090
1091DEFINE_PER_CPU_FIRST(union irq_stack_union,
1092		     irq_stack_union) __aligned(PAGE_SIZE) __visible;
1093
1094/*
1095 * The following four percpu variables are hot.  Align current_task to
1096 * cacheline size such that all four fall in the same cacheline.
1097 */
1098DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
1099	&init_task;
1100EXPORT_PER_CPU_SYMBOL(current_task);
1101
1102DEFINE_PER_CPU(char *, irq_stack_ptr) =
1103	init_per_cpu_var(irq_stack_union.irq_stack) + IRQ_STACK_SIZE - 64;
1104
1105DEFINE_PER_CPU(unsigned int, irq_count) __visible = -1;
1106
1107DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1108EXPORT_PER_CPU_SYMBOL(__preempt_count);
1109
1110DEFINE_PER_CPU(struct task_struct *, fpu_owner_task);
1111
1112/*
1113 * Special IST stacks which the CPU switches to when it calls
1114 * an IST-marked descriptor entry. Up to 7 stacks (hardware
1115 * limit), all of them are 4K, except the debug stack which
1116 * is 8K.
1117 */
1118static const unsigned int exception_stack_sizes[N_EXCEPTION_STACKS] = {
1119	  [0 ... N_EXCEPTION_STACKS - 1]	= EXCEPTION_STKSZ,
1120	  [DEBUG_STACK - 1]			= DEBUG_STKSZ
1121};
1122
1123static DEFINE_PER_CPU_PAGE_ALIGNED(char, exception_stacks
1124	[(N_EXCEPTION_STACKS - 1) * EXCEPTION_STKSZ + DEBUG_STKSZ]);
1125
1126/* May not be marked __init: used by software suspend */
1127void syscall_init(void)
1128{
1129	/*
1130	 * LSTAR and STAR live in a bit strange symbiosis.
1131	 * They both write to the same internal register. STAR allows to
1132	 * set CS/DS but only a 32bit target. LSTAR sets the 64bit rip.
1133	 */
1134	wrmsrl(MSR_STAR,  ((u64)__USER32_CS)<<48  | ((u64)__KERNEL_CS)<<32);
1135	wrmsrl(MSR_LSTAR, system_call);
1136	wrmsrl(MSR_CSTAR, ignore_sysret);
1137
1138#ifdef CONFIG_IA32_EMULATION
1139	syscall32_cpu_init();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1140#endif
1141
1142	/* Flags to clear on syscall */
1143	wrmsrl(MSR_SYSCALL_MASK,
1144	       X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|
1145	       X86_EFLAGS_IOPL|X86_EFLAGS_AC);
1146}
1147
1148/*
1149 * Copies of the original ist values from the tss are only accessed during
1150 * debugging, no special alignment required.
1151 */
1152DEFINE_PER_CPU(struct orig_ist, orig_ist);
1153
1154static DEFINE_PER_CPU(unsigned long, debug_stack_addr);
1155DEFINE_PER_CPU(int, debug_stack_usage);
1156
1157int is_debug_stack(unsigned long addr)
1158{
1159	return __get_cpu_var(debug_stack_usage) ||
1160		(addr <= __get_cpu_var(debug_stack_addr) &&
1161		 addr > (__get_cpu_var(debug_stack_addr) - DEBUG_STKSZ));
1162}
1163
1164DEFINE_PER_CPU(u32, debug_idt_ctr);
1165
1166void debug_stack_set_zero(void)
1167{
1168	this_cpu_inc(debug_idt_ctr);
1169	load_current_idt();
1170}
1171
1172void debug_stack_reset(void)
1173{
1174	if (WARN_ON(!this_cpu_read(debug_idt_ctr)))
1175		return;
1176	if (this_cpu_dec_return(debug_idt_ctr) == 0)
1177		load_current_idt();
1178}
1179
1180#else	/* CONFIG_X86_64 */
1181
1182DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
1183EXPORT_PER_CPU_SYMBOL(current_task);
1184DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1185EXPORT_PER_CPU_SYMBOL(__preempt_count);
1186DEFINE_PER_CPU(struct task_struct *, fpu_owner_task);
1187
1188#ifdef CONFIG_CC_STACKPROTECTOR
 
 
 
 
 
 
 
 
 
1189DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
1190#endif
1191
1192#endif	/* CONFIG_X86_64 */
1193
1194/*
1195 * Clear all 6 debug registers:
1196 */
1197static void clear_all_debug_regs(void)
1198{
1199	int i;
1200
1201	for (i = 0; i < 8; i++) {
1202		/* Ignore db4, db5 */
1203		if ((i == 4) || (i == 5))
1204			continue;
1205
1206		set_debugreg(0, i);
1207	}
1208}
1209
1210#ifdef CONFIG_KGDB
1211/*
1212 * Restore debug regs if using kgdbwait and you have a kernel debugger
1213 * connection established.
1214 */
1215static void dbg_restore_debug_regs(void)
1216{
1217	if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
1218		arch_kgdb_ops.correct_hw_break();
1219}
1220#else /* ! CONFIG_KGDB */
1221#define dbg_restore_debug_regs()
1222#endif /* ! CONFIG_KGDB */
1223
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1224/*
1225 * cpu_init() initializes state that is per-CPU. Some data is already
1226 * initialized (naturally) in the bootstrap process, such as the GDT
1227 * and IDT. We reload them nevertheless, this function acts as a
1228 * 'CPU state barrier', nothing should get across.
1229 * A lot of state is already set up in PDA init for 64 bit
1230 */
1231#ifdef CONFIG_X86_64
1232
1233void cpu_init(void)
1234{
1235	struct orig_ist *oist;
1236	struct task_struct *me;
1237	struct tss_struct *t;
1238	unsigned long v;
1239	int cpu;
1240	int i;
1241
1242	/*
1243	 * Load microcode on this cpu if a valid microcode is available.
1244	 * This is early microcode loading procedure.
1245	 */
1246	load_ucode_ap();
1247
1248	cpu = stack_smp_processor_id();
1249	t = &per_cpu(init_tss, cpu);
1250	oist = &per_cpu(orig_ist, cpu);
1251
1252#ifdef CONFIG_NUMA
1253	if (this_cpu_read(numa_node) == 0 &&
1254	    early_cpu_to_node(cpu) != NUMA_NO_NODE)
1255		set_numa_node(early_cpu_to_node(cpu));
1256#endif
1257
1258	me = current;
1259
1260	if (cpumask_test_and_set_cpu(cpu, cpu_initialized_mask))
1261		panic("CPU#%d already initialized!\n", cpu);
1262
1263	pr_debug("Initializing CPU#%d\n", cpu);
1264
1265	clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
 
 
1266
1267	/*
1268	 * Initialize the per-CPU GDT with the boot GDT,
1269	 * and set up the GDT descriptor:
1270	 */
1271
1272	switch_to_new_gdt(cpu);
1273	loadsegment(fs, 0);
1274
1275	load_current_idt();
1276
1277	memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
1278	syscall_init();
1279
1280	wrmsrl(MSR_FS_BASE, 0);
1281	wrmsrl(MSR_KERNEL_GS_BASE, 0);
1282	barrier();
1283
1284	x86_configure_nx();
1285	enable_x2apic();
1286
1287	/*
1288	 * set up and load the per-CPU TSS
1289	 */
1290	if (!oist->ist[0]) {
1291		char *estacks = per_cpu(exception_stacks, cpu);
1292
1293		for (v = 0; v < N_EXCEPTION_STACKS; v++) {
1294			estacks += exception_stack_sizes[v];
1295			oist->ist[v] = t->x86_tss.ist[v] =
1296					(unsigned long)estacks;
1297			if (v == DEBUG_STACK-1)
1298				per_cpu(debug_stack_addr, cpu) = (unsigned long)estacks;
1299		}
1300	}
1301
1302	t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
1303
 
1304	/*
1305	 * <= is required because the CPU will access up to
1306	 * 8 bits beyond the end of the IO permission bitmap.
1307	 */
1308	for (i = 0; i <= IO_BITMAP_LONGS; i++)
1309		t->io_bitmap[i] = ~0UL;
1310
1311	atomic_inc(&init_mm.mm_count);
1312	me->active_mm = &init_mm;
1313	BUG_ON(me->mm);
1314	enter_lazy_tlb(&init_mm, me);
1315
1316	load_sp0(t, &current->thread);
1317	set_tss_desc(cpu, t);
1318	load_TR_desc();
1319	load_LDT(&init_mm.context);
1320
1321	clear_all_debug_regs();
1322	dbg_restore_debug_regs();
1323
1324	fpu_init();
 
 
1325
1326	if (is_uv_system())
1327		uv_cpu_init();
 
 
1328}
1329
1330#else
1331
1332void cpu_init(void)
 
 
 
1333{
1334	int cpu = smp_processor_id();
1335	struct task_struct *curr = current;
1336	struct tss_struct *t = &per_cpu(init_tss, cpu);
1337	struct thread_struct *thread = &curr->thread;
1338
1339	show_ucode_info_early();
1340
1341	if (cpumask_test_and_set_cpu(cpu, cpu_initialized_mask)) {
1342		printk(KERN_WARNING "CPU#%d already initialized!\n", cpu);
1343		for (;;)
1344			local_irq_enable();
1345	}
1346
1347	printk(KERN_INFO "Initializing CPU#%d\n", cpu);
1348
1349	if (cpu_has_vme || cpu_has_tsc || cpu_has_de)
1350		clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1351
1352	load_current_idt();
1353	switch_to_new_gdt(cpu);
1354
1355	/*
1356	 * Set up and load the per-CPU TSS and LDT
 
 
1357	 */
1358	atomic_inc(&init_mm.mm_count);
1359	curr->active_mm = &init_mm;
1360	BUG_ON(curr->mm);
1361	enter_lazy_tlb(&init_mm, curr);
1362
1363	load_sp0(t, thread);
1364	set_tss_desc(cpu, t);
1365	load_TR_desc();
1366	load_LDT(&init_mm.context);
1367
1368	t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
1369
1370#ifdef CONFIG_DOUBLEFAULT
1371	/* Set up doublefault TSS pointer in the GDT */
1372	__set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
1373#endif
1374
1375	clear_all_debug_regs();
1376	dbg_restore_debug_regs();
1377
1378	fpu_init();
 
1379}
1380#endif
1381
1382#ifdef CONFIG_X86_DEBUG_STATIC_CPU_HAS
1383void warn_pre_alternatives(void)
1384{
1385	WARN(1, "You're using static_cpu_has before alternatives have run!\n");
1386}
1387EXPORT_SYMBOL_GPL(warn_pre_alternatives);
1388#endif
1389
1390inline bool __static_cpu_has_safe(u16 bit)
1391{
1392	return boot_cpu_has(bit);
 
 
 
1393}
1394EXPORT_SYMBOL_GPL(__static_cpu_has_safe);