Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/* cpu_feature_enabled() cannot be used this early */
3#define USE_EARLY_PGTABLE_L5
4
5#include <linux/memblock.h>
6#include <linux/linkage.h>
7#include <linux/bitops.h>
8#include <linux/kernel.h>
9#include <linux/export.h>
10#include <linux/percpu.h>
11#include <linux/string.h>
12#include <linux/ctype.h>
13#include <linux/delay.h>
14#include <linux/sched/mm.h>
15#include <linux/sched/clock.h>
16#include <linux/sched/task.h>
17#include <linux/sched/smt.h>
18#include <linux/init.h>
19#include <linux/kprobes.h>
20#include <linux/kgdb.h>
21#include <linux/smp.h>
22#include <linux/io.h>
23#include <linux/syscore_ops.h>
24#include <linux/pgtable.h>
25
26#include <asm/stackprotector.h>
27#include <asm/perf_event.h>
28#include <asm/mmu_context.h>
29#include <asm/doublefault.h>
30#include <asm/archrandom.h>
31#include <asm/hypervisor.h>
32#include <asm/processor.h>
33#include <asm/tlbflush.h>
34#include <asm/debugreg.h>
35#include <asm/sections.h>
36#include <asm/vsyscall.h>
37#include <linux/topology.h>
38#include <linux/cpumask.h>
39#include <linux/atomic.h>
40#include <asm/proto.h>
41#include <asm/setup.h>
42#include <asm/apic.h>
43#include <asm/desc.h>
44#include <asm/fpu/internal.h>
45#include <asm/mtrr.h>
46#include <asm/hwcap2.h>
47#include <linux/numa.h>
48#include <asm/numa.h>
49#include <asm/asm.h>
50#include <asm/bugs.h>
51#include <asm/cpu.h>
52#include <asm/mce.h>
53#include <asm/msr.h>
54#include <asm/memtype.h>
55#include <asm/microcode.h>
56#include <asm/microcode_intel.h>
57#include <asm/intel-family.h>
58#include <asm/cpu_device_id.h>
59#include <asm/uv/uv.h>
60
61#include "cpu.h"
62
63u32 elf_hwcap2 __read_mostly;
64
65/* all of these masks are initialized in setup_cpu_local_masks() */
66cpumask_var_t cpu_initialized_mask;
67cpumask_var_t cpu_callout_mask;
68cpumask_var_t cpu_callin_mask;
69
70/* representing cpus for which sibling maps can be computed */
71cpumask_var_t cpu_sibling_setup_mask;
72
73/* Number of siblings per CPU package */
74int smp_num_siblings = 1;
75EXPORT_SYMBOL(smp_num_siblings);
76
77/* Last level cache ID of each logical CPU */
78DEFINE_PER_CPU_READ_MOSTLY(u16, cpu_llc_id) = BAD_APICID;
79
80/* correctly size the local cpu masks */
81void __init setup_cpu_local_masks(void)
82{
83 alloc_bootmem_cpumask_var(&cpu_initialized_mask);
84 alloc_bootmem_cpumask_var(&cpu_callin_mask);
85 alloc_bootmem_cpumask_var(&cpu_callout_mask);
86 alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
87}
88
89static void default_init(struct cpuinfo_x86 *c)
90{
91#ifdef CONFIG_X86_64
92 cpu_detect_cache_sizes(c);
93#else
94 /* Not much we can do here... */
95 /* Check if at least it has cpuid */
96 if (c->cpuid_level == -1) {
97 /* No cpuid. It must be an ancient CPU */
98 if (c->x86 == 4)
99 strcpy(c->x86_model_id, "486");
100 else if (c->x86 == 3)
101 strcpy(c->x86_model_id, "386");
102 }
103#endif
104}
105
106static const struct cpu_dev default_cpu = {
107 .c_init = default_init,
108 .c_vendor = "Unknown",
109 .c_x86_vendor = X86_VENDOR_UNKNOWN,
110};
111
112static const struct cpu_dev *this_cpu = &default_cpu;
113
114DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
115#ifdef CONFIG_X86_64
116 /*
117 * We need valid kernel segments for data and code in long mode too
118 * IRET will check the segment types kkeil 2000/10/28
119 * Also sysret mandates a special GDT layout
120 *
121 * TLS descriptors are currently at a different place compared to i386.
122 * Hopefully nobody expects them at a fixed place (Wine?)
123 */
124 [GDT_ENTRY_KERNEL32_CS] = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
125 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
126 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
127 [GDT_ENTRY_DEFAULT_USER32_CS] = GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
128 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
129 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
130#else
131 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
132 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
133 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
134 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
135 /*
136 * Segments used for calling PnP BIOS have byte granularity.
137 * They code segments and data segments have fixed 64k limits,
138 * the transfer segment sizes are set at run time.
139 */
140 /* 32-bit code */
141 [GDT_ENTRY_PNPBIOS_CS32] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
142 /* 16-bit code */
143 [GDT_ENTRY_PNPBIOS_CS16] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
144 /* 16-bit data */
145 [GDT_ENTRY_PNPBIOS_DS] = GDT_ENTRY_INIT(0x0092, 0, 0xffff),
146 /* 16-bit data */
147 [GDT_ENTRY_PNPBIOS_TS1] = GDT_ENTRY_INIT(0x0092, 0, 0),
148 /* 16-bit data */
149 [GDT_ENTRY_PNPBIOS_TS2] = GDT_ENTRY_INIT(0x0092, 0, 0),
150 /*
151 * The APM segments have byte granularity and their bases
152 * are set at run time. All have 64k limits.
153 */
154 /* 32-bit code */
155 [GDT_ENTRY_APMBIOS_BASE] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
156 /* 16-bit code */
157 [GDT_ENTRY_APMBIOS_BASE+1] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
158 /* data */
159 [GDT_ENTRY_APMBIOS_BASE+2] = GDT_ENTRY_INIT(0x4092, 0, 0xffff),
160
161 [GDT_ENTRY_ESPFIX_SS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
162 [GDT_ENTRY_PERCPU] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
163 GDT_STACK_CANARY_INIT
164#endif
165} };
166EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
167
168#ifdef CONFIG_X86_64
169static int __init x86_nopcid_setup(char *s)
170{
171 /* nopcid doesn't accept parameters */
172 if (s)
173 return -EINVAL;
174
175 /* do not emit a message if the feature is not present */
176 if (!boot_cpu_has(X86_FEATURE_PCID))
177 return 0;
178
179 setup_clear_cpu_cap(X86_FEATURE_PCID);
180 pr_info("nopcid: PCID feature disabled\n");
181 return 0;
182}
183early_param("nopcid", x86_nopcid_setup);
184#endif
185
186static int __init x86_noinvpcid_setup(char *s)
187{
188 /* noinvpcid doesn't accept parameters */
189 if (s)
190 return -EINVAL;
191
192 /* do not emit a message if the feature is not present */
193 if (!boot_cpu_has(X86_FEATURE_INVPCID))
194 return 0;
195
196 setup_clear_cpu_cap(X86_FEATURE_INVPCID);
197 pr_info("noinvpcid: INVPCID feature disabled\n");
198 return 0;
199}
200early_param("noinvpcid", x86_noinvpcid_setup);
201
202#ifdef CONFIG_X86_32
203static int cachesize_override = -1;
204static int disable_x86_serial_nr = 1;
205
206static int __init cachesize_setup(char *str)
207{
208 get_option(&str, &cachesize_override);
209 return 1;
210}
211__setup("cachesize=", cachesize_setup);
212
213static int __init x86_sep_setup(char *s)
214{
215 setup_clear_cpu_cap(X86_FEATURE_SEP);
216 return 1;
217}
218__setup("nosep", x86_sep_setup);
219
220/* Standard macro to see if a specific flag is changeable */
221static inline int flag_is_changeable_p(u32 flag)
222{
223 u32 f1, f2;
224
225 /*
226 * Cyrix and IDT cpus allow disabling of CPUID
227 * so the code below may return different results
228 * when it is executed before and after enabling
229 * the CPUID. Add "volatile" to not allow gcc to
230 * optimize the subsequent calls to this function.
231 */
232 asm volatile ("pushfl \n\t"
233 "pushfl \n\t"
234 "popl %0 \n\t"
235 "movl %0, %1 \n\t"
236 "xorl %2, %0 \n\t"
237 "pushl %0 \n\t"
238 "popfl \n\t"
239 "pushfl \n\t"
240 "popl %0 \n\t"
241 "popfl \n\t"
242
243 : "=&r" (f1), "=&r" (f2)
244 : "ir" (flag));
245
246 return ((f1^f2) & flag) != 0;
247}
248
249/* Probe for the CPUID instruction */
250int have_cpuid_p(void)
251{
252 return flag_is_changeable_p(X86_EFLAGS_ID);
253}
254
255static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
256{
257 unsigned long lo, hi;
258
259 if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
260 return;
261
262 /* Disable processor serial number: */
263
264 rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
265 lo |= 0x200000;
266 wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
267
268 pr_notice("CPU serial number disabled.\n");
269 clear_cpu_cap(c, X86_FEATURE_PN);
270
271 /* Disabling the serial number may affect the cpuid level */
272 c->cpuid_level = cpuid_eax(0);
273}
274
275static int __init x86_serial_nr_setup(char *s)
276{
277 disable_x86_serial_nr = 0;
278 return 1;
279}
280__setup("serialnumber", x86_serial_nr_setup);
281#else
282static inline int flag_is_changeable_p(u32 flag)
283{
284 return 1;
285}
286static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
287{
288}
289#endif
290
291static __init int setup_disable_smep(char *arg)
292{
293 setup_clear_cpu_cap(X86_FEATURE_SMEP);
294 return 1;
295}
296__setup("nosmep", setup_disable_smep);
297
298static __always_inline void setup_smep(struct cpuinfo_x86 *c)
299{
300 if (cpu_has(c, X86_FEATURE_SMEP))
301 cr4_set_bits(X86_CR4_SMEP);
302}
303
304static __init int setup_disable_smap(char *arg)
305{
306 setup_clear_cpu_cap(X86_FEATURE_SMAP);
307 return 1;
308}
309__setup("nosmap", setup_disable_smap);
310
311static __always_inline void setup_smap(struct cpuinfo_x86 *c)
312{
313 unsigned long eflags = native_save_fl();
314
315 /* This should have been cleared long ago */
316 BUG_ON(eflags & X86_EFLAGS_AC);
317
318 if (cpu_has(c, X86_FEATURE_SMAP)) {
319#ifdef CONFIG_X86_SMAP
320 cr4_set_bits(X86_CR4_SMAP);
321#else
322 cr4_clear_bits(X86_CR4_SMAP);
323#endif
324 }
325}
326
327static __always_inline void setup_umip(struct cpuinfo_x86 *c)
328{
329 /* Check the boot processor, plus build option for UMIP. */
330 if (!cpu_feature_enabled(X86_FEATURE_UMIP))
331 goto out;
332
333 /* Check the current processor's cpuid bits. */
334 if (!cpu_has(c, X86_FEATURE_UMIP))
335 goto out;
336
337 cr4_set_bits(X86_CR4_UMIP);
338
339 pr_info_once("x86/cpu: User Mode Instruction Prevention (UMIP) activated\n");
340
341 return;
342
343out:
344 /*
345 * Make sure UMIP is disabled in case it was enabled in a
346 * previous boot (e.g., via kexec).
347 */
348 cr4_clear_bits(X86_CR4_UMIP);
349}
350
351/* These bits should not change their value after CPU init is finished. */
352static const unsigned long cr4_pinned_mask =
353 X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_UMIP | X86_CR4_FSGSBASE;
354static DEFINE_STATIC_KEY_FALSE_RO(cr_pinning);
355static unsigned long cr4_pinned_bits __ro_after_init;
356
357void native_write_cr0(unsigned long val)
358{
359 unsigned long bits_missing = 0;
360
361set_register:
362 asm volatile("mov %0,%%cr0": "+r" (val), "+m" (__force_order));
363
364 if (static_branch_likely(&cr_pinning)) {
365 if (unlikely((val & X86_CR0_WP) != X86_CR0_WP)) {
366 bits_missing = X86_CR0_WP;
367 val |= bits_missing;
368 goto set_register;
369 }
370 /* Warn after we've set the missing bits. */
371 WARN_ONCE(bits_missing, "CR0 WP bit went missing!?\n");
372 }
373}
374EXPORT_SYMBOL(native_write_cr0);
375
376void native_write_cr4(unsigned long val)
377{
378 unsigned long bits_changed = 0;
379
380set_register:
381 asm volatile("mov %0,%%cr4": "+r" (val), "+m" (cr4_pinned_bits));
382
383 if (static_branch_likely(&cr_pinning)) {
384 if (unlikely((val & cr4_pinned_mask) != cr4_pinned_bits)) {
385 bits_changed = (val & cr4_pinned_mask) ^ cr4_pinned_bits;
386 val = (val & ~cr4_pinned_mask) | cr4_pinned_bits;
387 goto set_register;
388 }
389 /* Warn after we've corrected the changed bits. */
390 WARN_ONCE(bits_changed, "pinned CR4 bits changed: 0x%lx!?\n",
391 bits_changed);
392 }
393}
394#if IS_MODULE(CONFIG_LKDTM)
395EXPORT_SYMBOL_GPL(native_write_cr4);
396#endif
397
398void cr4_update_irqsoff(unsigned long set, unsigned long clear)
399{
400 unsigned long newval, cr4 = this_cpu_read(cpu_tlbstate.cr4);
401
402 lockdep_assert_irqs_disabled();
403
404 newval = (cr4 & ~clear) | set;
405 if (newval != cr4) {
406 this_cpu_write(cpu_tlbstate.cr4, newval);
407 __write_cr4(newval);
408 }
409}
410EXPORT_SYMBOL(cr4_update_irqsoff);
411
412/* Read the CR4 shadow. */
413unsigned long cr4_read_shadow(void)
414{
415 return this_cpu_read(cpu_tlbstate.cr4);
416}
417EXPORT_SYMBOL_GPL(cr4_read_shadow);
418
419void cr4_init(void)
420{
421 unsigned long cr4 = __read_cr4();
422
423 if (boot_cpu_has(X86_FEATURE_PCID))
424 cr4 |= X86_CR4_PCIDE;
425 if (static_branch_likely(&cr_pinning))
426 cr4 = (cr4 & ~cr4_pinned_mask) | cr4_pinned_bits;
427
428 __write_cr4(cr4);
429
430 /* Initialize cr4 shadow for this CPU. */
431 this_cpu_write(cpu_tlbstate.cr4, cr4);
432}
433
434/*
435 * Once CPU feature detection is finished (and boot params have been
436 * parsed), record any of the sensitive CR bits that are set, and
437 * enable CR pinning.
438 */
439static void __init setup_cr_pinning(void)
440{
441 cr4_pinned_bits = this_cpu_read(cpu_tlbstate.cr4) & cr4_pinned_mask;
442 static_key_enable(&cr_pinning.key);
443}
444
445static __init int x86_nofsgsbase_setup(char *arg)
446{
447 /* Require an exact match without trailing characters. */
448 if (strlen(arg))
449 return 0;
450
451 /* Do not emit a message if the feature is not present. */
452 if (!boot_cpu_has(X86_FEATURE_FSGSBASE))
453 return 1;
454
455 setup_clear_cpu_cap(X86_FEATURE_FSGSBASE);
456 pr_info("FSGSBASE disabled via kernel command line\n");
457 return 1;
458}
459__setup("nofsgsbase", x86_nofsgsbase_setup);
460
461/*
462 * Protection Keys are not available in 32-bit mode.
463 */
464static bool pku_disabled;
465
466static __always_inline void setup_pku(struct cpuinfo_x86 *c)
467{
468 struct pkru_state *pk;
469
470 /* check the boot processor, plus compile options for PKU: */
471 if (!cpu_feature_enabled(X86_FEATURE_PKU))
472 return;
473 /* checks the actual processor's cpuid bits: */
474 if (!cpu_has(c, X86_FEATURE_PKU))
475 return;
476 if (pku_disabled)
477 return;
478
479 cr4_set_bits(X86_CR4_PKE);
480 pk = get_xsave_addr(&init_fpstate.xsave, XFEATURE_PKRU);
481 if (pk)
482 pk->pkru = init_pkru_value;
483 /*
484 * Seting X86_CR4_PKE will cause the X86_FEATURE_OSPKE
485 * cpuid bit to be set. We need to ensure that we
486 * update that bit in this CPU's "cpu_info".
487 */
488 set_cpu_cap(c, X86_FEATURE_OSPKE);
489}
490
491#ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
492static __init int setup_disable_pku(char *arg)
493{
494 /*
495 * Do not clear the X86_FEATURE_PKU bit. All of the
496 * runtime checks are against OSPKE so clearing the
497 * bit does nothing.
498 *
499 * This way, we will see "pku" in cpuinfo, but not
500 * "ospke", which is exactly what we want. It shows
501 * that the CPU has PKU, but the OS has not enabled it.
502 * This happens to be exactly how a system would look
503 * if we disabled the config option.
504 */
505 pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
506 pku_disabled = true;
507 return 1;
508}
509__setup("nopku", setup_disable_pku);
510#endif /* CONFIG_X86_64 */
511
512/*
513 * Some CPU features depend on higher CPUID levels, which may not always
514 * be available due to CPUID level capping or broken virtualization
515 * software. Add those features to this table to auto-disable them.
516 */
517struct cpuid_dependent_feature {
518 u32 feature;
519 u32 level;
520};
521
522static const struct cpuid_dependent_feature
523cpuid_dependent_features[] = {
524 { X86_FEATURE_MWAIT, 0x00000005 },
525 { X86_FEATURE_DCA, 0x00000009 },
526 { X86_FEATURE_XSAVE, 0x0000000d },
527 { 0, 0 }
528};
529
530static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
531{
532 const struct cpuid_dependent_feature *df;
533
534 for (df = cpuid_dependent_features; df->feature; df++) {
535
536 if (!cpu_has(c, df->feature))
537 continue;
538 /*
539 * Note: cpuid_level is set to -1 if unavailable, but
540 * extended_extended_level is set to 0 if unavailable
541 * and the legitimate extended levels are all negative
542 * when signed; hence the weird messing around with
543 * signs here...
544 */
545 if (!((s32)df->level < 0 ?
546 (u32)df->level > (u32)c->extended_cpuid_level :
547 (s32)df->level > (s32)c->cpuid_level))
548 continue;
549
550 clear_cpu_cap(c, df->feature);
551 if (!warn)
552 continue;
553
554 pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
555 x86_cap_flag(df->feature), df->level);
556 }
557}
558
559/*
560 * Naming convention should be: <Name> [(<Codename>)]
561 * This table only is used unless init_<vendor>() below doesn't set it;
562 * in particular, if CPUID levels 0x80000002..4 are supported, this
563 * isn't used
564 */
565
566/* Look up CPU names by table lookup. */
567static const char *table_lookup_model(struct cpuinfo_x86 *c)
568{
569#ifdef CONFIG_X86_32
570 const struct legacy_cpu_model_info *info;
571
572 if (c->x86_model >= 16)
573 return NULL; /* Range check */
574
575 if (!this_cpu)
576 return NULL;
577
578 info = this_cpu->legacy_models;
579
580 while (info->family) {
581 if (info->family == c->x86)
582 return info->model_names[c->x86_model];
583 info++;
584 }
585#endif
586 return NULL; /* Not found */
587}
588
589/* Aligned to unsigned long to avoid split lock in atomic bitmap ops */
590__u32 cpu_caps_cleared[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
591__u32 cpu_caps_set[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
592
593void load_percpu_segment(int cpu)
594{
595#ifdef CONFIG_X86_32
596 loadsegment(fs, __KERNEL_PERCPU);
597#else
598 __loadsegment_simple(gs, 0);
599 wrmsrl(MSR_GS_BASE, cpu_kernelmode_gs_base(cpu));
600#endif
601 load_stack_canary_segment();
602}
603
604#ifdef CONFIG_X86_32
605/* The 32-bit entry code needs to find cpu_entry_area. */
606DEFINE_PER_CPU(struct cpu_entry_area *, cpu_entry_area);
607#endif
608
609/* Load the original GDT from the per-cpu structure */
610void load_direct_gdt(int cpu)
611{
612 struct desc_ptr gdt_descr;
613
614 gdt_descr.address = (long)get_cpu_gdt_rw(cpu);
615 gdt_descr.size = GDT_SIZE - 1;
616 load_gdt(&gdt_descr);
617}
618EXPORT_SYMBOL_GPL(load_direct_gdt);
619
620/* Load a fixmap remapping of the per-cpu GDT */
621void load_fixmap_gdt(int cpu)
622{
623 struct desc_ptr gdt_descr;
624
625 gdt_descr.address = (long)get_cpu_gdt_ro(cpu);
626 gdt_descr.size = GDT_SIZE - 1;
627 load_gdt(&gdt_descr);
628}
629EXPORT_SYMBOL_GPL(load_fixmap_gdt);
630
631/*
632 * Current gdt points %fs at the "master" per-cpu area: after this,
633 * it's on the real one.
634 */
635void switch_to_new_gdt(int cpu)
636{
637 /* Load the original GDT */
638 load_direct_gdt(cpu);
639 /* Reload the per-cpu base */
640 load_percpu_segment(cpu);
641}
642
643static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
644
645static void get_model_name(struct cpuinfo_x86 *c)
646{
647 unsigned int *v;
648 char *p, *q, *s;
649
650 if (c->extended_cpuid_level < 0x80000004)
651 return;
652
653 v = (unsigned int *)c->x86_model_id;
654 cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
655 cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
656 cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
657 c->x86_model_id[48] = 0;
658
659 /* Trim whitespace */
660 p = q = s = &c->x86_model_id[0];
661
662 while (*p == ' ')
663 p++;
664
665 while (*p) {
666 /* Note the last non-whitespace index */
667 if (!isspace(*p))
668 s = q;
669
670 *q++ = *p++;
671 }
672
673 *(s + 1) = '\0';
674}
675
676void detect_num_cpu_cores(struct cpuinfo_x86 *c)
677{
678 unsigned int eax, ebx, ecx, edx;
679
680 c->x86_max_cores = 1;
681 if (!IS_ENABLED(CONFIG_SMP) || c->cpuid_level < 4)
682 return;
683
684 cpuid_count(4, 0, &eax, &ebx, &ecx, &edx);
685 if (eax & 0x1f)
686 c->x86_max_cores = (eax >> 26) + 1;
687}
688
689void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
690{
691 unsigned int n, dummy, ebx, ecx, edx, l2size;
692
693 n = c->extended_cpuid_level;
694
695 if (n >= 0x80000005) {
696 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
697 c->x86_cache_size = (ecx>>24) + (edx>>24);
698#ifdef CONFIG_X86_64
699 /* On K8 L1 TLB is inclusive, so don't count it */
700 c->x86_tlbsize = 0;
701#endif
702 }
703
704 if (n < 0x80000006) /* Some chips just has a large L1. */
705 return;
706
707 cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
708 l2size = ecx >> 16;
709
710#ifdef CONFIG_X86_64
711 c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
712#else
713 /* do processor-specific cache resizing */
714 if (this_cpu->legacy_cache_size)
715 l2size = this_cpu->legacy_cache_size(c, l2size);
716
717 /* Allow user to override all this if necessary. */
718 if (cachesize_override != -1)
719 l2size = cachesize_override;
720
721 if (l2size == 0)
722 return; /* Again, no L2 cache is possible */
723#endif
724
725 c->x86_cache_size = l2size;
726}
727
728u16 __read_mostly tlb_lli_4k[NR_INFO];
729u16 __read_mostly tlb_lli_2m[NR_INFO];
730u16 __read_mostly tlb_lli_4m[NR_INFO];
731u16 __read_mostly tlb_lld_4k[NR_INFO];
732u16 __read_mostly tlb_lld_2m[NR_INFO];
733u16 __read_mostly tlb_lld_4m[NR_INFO];
734u16 __read_mostly tlb_lld_1g[NR_INFO];
735
736static void cpu_detect_tlb(struct cpuinfo_x86 *c)
737{
738 if (this_cpu->c_detect_tlb)
739 this_cpu->c_detect_tlb(c);
740
741 pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
742 tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
743 tlb_lli_4m[ENTRIES]);
744
745 pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
746 tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
747 tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
748}
749
750int detect_ht_early(struct cpuinfo_x86 *c)
751{
752#ifdef CONFIG_SMP
753 u32 eax, ebx, ecx, edx;
754
755 if (!cpu_has(c, X86_FEATURE_HT))
756 return -1;
757
758 if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
759 return -1;
760
761 if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
762 return -1;
763
764 cpuid(1, &eax, &ebx, &ecx, &edx);
765
766 smp_num_siblings = (ebx & 0xff0000) >> 16;
767 if (smp_num_siblings == 1)
768 pr_info_once("CPU0: Hyper-Threading is disabled\n");
769#endif
770 return 0;
771}
772
773void detect_ht(struct cpuinfo_x86 *c)
774{
775#ifdef CONFIG_SMP
776 int index_msb, core_bits;
777
778 if (detect_ht_early(c) < 0)
779 return;
780
781 index_msb = get_count_order(smp_num_siblings);
782 c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
783
784 smp_num_siblings = smp_num_siblings / c->x86_max_cores;
785
786 index_msb = get_count_order(smp_num_siblings);
787
788 core_bits = get_count_order(c->x86_max_cores);
789
790 c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
791 ((1 << core_bits) - 1);
792#endif
793}
794
795static void get_cpu_vendor(struct cpuinfo_x86 *c)
796{
797 char *v = c->x86_vendor_id;
798 int i;
799
800 for (i = 0; i < X86_VENDOR_NUM; i++) {
801 if (!cpu_devs[i])
802 break;
803
804 if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
805 (cpu_devs[i]->c_ident[1] &&
806 !strcmp(v, cpu_devs[i]->c_ident[1]))) {
807
808 this_cpu = cpu_devs[i];
809 c->x86_vendor = this_cpu->c_x86_vendor;
810 return;
811 }
812 }
813
814 pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
815 "CPU: Your system may be unstable.\n", v);
816
817 c->x86_vendor = X86_VENDOR_UNKNOWN;
818 this_cpu = &default_cpu;
819}
820
821void cpu_detect(struct cpuinfo_x86 *c)
822{
823 /* Get vendor name */
824 cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
825 (unsigned int *)&c->x86_vendor_id[0],
826 (unsigned int *)&c->x86_vendor_id[8],
827 (unsigned int *)&c->x86_vendor_id[4]);
828
829 c->x86 = 4;
830 /* Intel-defined flags: level 0x00000001 */
831 if (c->cpuid_level >= 0x00000001) {
832 u32 junk, tfms, cap0, misc;
833
834 cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
835 c->x86 = x86_family(tfms);
836 c->x86_model = x86_model(tfms);
837 c->x86_stepping = x86_stepping(tfms);
838
839 if (cap0 & (1<<19)) {
840 c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
841 c->x86_cache_alignment = c->x86_clflush_size;
842 }
843 }
844}
845
846static void apply_forced_caps(struct cpuinfo_x86 *c)
847{
848 int i;
849
850 for (i = 0; i < NCAPINTS + NBUGINTS; i++) {
851 c->x86_capability[i] &= ~cpu_caps_cleared[i];
852 c->x86_capability[i] |= cpu_caps_set[i];
853 }
854}
855
856static void init_speculation_control(struct cpuinfo_x86 *c)
857{
858 /*
859 * The Intel SPEC_CTRL CPUID bit implies IBRS and IBPB support,
860 * and they also have a different bit for STIBP support. Also,
861 * a hypervisor might have set the individual AMD bits even on
862 * Intel CPUs, for finer-grained selection of what's available.
863 */
864 if (cpu_has(c, X86_FEATURE_SPEC_CTRL)) {
865 set_cpu_cap(c, X86_FEATURE_IBRS);
866 set_cpu_cap(c, X86_FEATURE_IBPB);
867 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
868 }
869
870 if (cpu_has(c, X86_FEATURE_INTEL_STIBP))
871 set_cpu_cap(c, X86_FEATURE_STIBP);
872
873 if (cpu_has(c, X86_FEATURE_SPEC_CTRL_SSBD) ||
874 cpu_has(c, X86_FEATURE_VIRT_SSBD))
875 set_cpu_cap(c, X86_FEATURE_SSBD);
876
877 if (cpu_has(c, X86_FEATURE_AMD_IBRS)) {
878 set_cpu_cap(c, X86_FEATURE_IBRS);
879 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
880 }
881
882 if (cpu_has(c, X86_FEATURE_AMD_IBPB))
883 set_cpu_cap(c, X86_FEATURE_IBPB);
884
885 if (cpu_has(c, X86_FEATURE_AMD_STIBP)) {
886 set_cpu_cap(c, X86_FEATURE_STIBP);
887 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
888 }
889
890 if (cpu_has(c, X86_FEATURE_AMD_SSBD)) {
891 set_cpu_cap(c, X86_FEATURE_SSBD);
892 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
893 clear_cpu_cap(c, X86_FEATURE_VIRT_SSBD);
894 }
895}
896
897void get_cpu_cap(struct cpuinfo_x86 *c)
898{
899 u32 eax, ebx, ecx, edx;
900
901 /* Intel-defined flags: level 0x00000001 */
902 if (c->cpuid_level >= 0x00000001) {
903 cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
904
905 c->x86_capability[CPUID_1_ECX] = ecx;
906 c->x86_capability[CPUID_1_EDX] = edx;
907 }
908
909 /* Thermal and Power Management Leaf: level 0x00000006 (eax) */
910 if (c->cpuid_level >= 0x00000006)
911 c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
912
913 /* Additional Intel-defined flags: level 0x00000007 */
914 if (c->cpuid_level >= 0x00000007) {
915 cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
916 c->x86_capability[CPUID_7_0_EBX] = ebx;
917 c->x86_capability[CPUID_7_ECX] = ecx;
918 c->x86_capability[CPUID_7_EDX] = edx;
919
920 /* Check valid sub-leaf index before accessing it */
921 if (eax >= 1) {
922 cpuid_count(0x00000007, 1, &eax, &ebx, &ecx, &edx);
923 c->x86_capability[CPUID_7_1_EAX] = eax;
924 }
925 }
926
927 /* Extended state features: level 0x0000000d */
928 if (c->cpuid_level >= 0x0000000d) {
929 cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
930
931 c->x86_capability[CPUID_D_1_EAX] = eax;
932 }
933
934 /* AMD-defined flags: level 0x80000001 */
935 eax = cpuid_eax(0x80000000);
936 c->extended_cpuid_level = eax;
937
938 if ((eax & 0xffff0000) == 0x80000000) {
939 if (eax >= 0x80000001) {
940 cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
941
942 c->x86_capability[CPUID_8000_0001_ECX] = ecx;
943 c->x86_capability[CPUID_8000_0001_EDX] = edx;
944 }
945 }
946
947 if (c->extended_cpuid_level >= 0x80000007) {
948 cpuid(0x80000007, &eax, &ebx, &ecx, &edx);
949
950 c->x86_capability[CPUID_8000_0007_EBX] = ebx;
951 c->x86_power = edx;
952 }
953
954 if (c->extended_cpuid_level >= 0x80000008) {
955 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
956 c->x86_capability[CPUID_8000_0008_EBX] = ebx;
957 }
958
959 if (c->extended_cpuid_level >= 0x8000000a)
960 c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
961
962 init_scattered_cpuid_features(c);
963 init_speculation_control(c);
964
965 /*
966 * Clear/Set all flags overridden by options, after probe.
967 * This needs to happen each time we re-probe, which may happen
968 * several times during CPU initialization.
969 */
970 apply_forced_caps(c);
971}
972
973void get_cpu_address_sizes(struct cpuinfo_x86 *c)
974{
975 u32 eax, ebx, ecx, edx;
976
977 if (c->extended_cpuid_level >= 0x80000008) {
978 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
979
980 c->x86_virt_bits = (eax >> 8) & 0xff;
981 c->x86_phys_bits = eax & 0xff;
982 }
983#ifdef CONFIG_X86_32
984 else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
985 c->x86_phys_bits = 36;
986#endif
987 c->x86_cache_bits = c->x86_phys_bits;
988}
989
990static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
991{
992#ifdef CONFIG_X86_32
993 int i;
994
995 /*
996 * First of all, decide if this is a 486 or higher
997 * It's a 486 if we can modify the AC flag
998 */
999 if (flag_is_changeable_p(X86_EFLAGS_AC))
1000 c->x86 = 4;
1001 else
1002 c->x86 = 3;
1003
1004 for (i = 0; i < X86_VENDOR_NUM; i++)
1005 if (cpu_devs[i] && cpu_devs[i]->c_identify) {
1006 c->x86_vendor_id[0] = 0;
1007 cpu_devs[i]->c_identify(c);
1008 if (c->x86_vendor_id[0]) {
1009 get_cpu_vendor(c);
1010 break;
1011 }
1012 }
1013#endif
1014}
1015
1016#define NO_SPECULATION BIT(0)
1017#define NO_MELTDOWN BIT(1)
1018#define NO_SSB BIT(2)
1019#define NO_L1TF BIT(3)
1020#define NO_MDS BIT(4)
1021#define MSBDS_ONLY BIT(5)
1022#define NO_SWAPGS BIT(6)
1023#define NO_ITLB_MULTIHIT BIT(7)
1024#define NO_SPECTRE_V2 BIT(8)
1025
1026#define VULNWL(vendor, family, model, whitelist) \
1027 X86_MATCH_VENDOR_FAM_MODEL(vendor, family, model, whitelist)
1028
1029#define VULNWL_INTEL(model, whitelist) \
1030 VULNWL(INTEL, 6, INTEL_FAM6_##model, whitelist)
1031
1032#define VULNWL_AMD(family, whitelist) \
1033 VULNWL(AMD, family, X86_MODEL_ANY, whitelist)
1034
1035#define VULNWL_HYGON(family, whitelist) \
1036 VULNWL(HYGON, family, X86_MODEL_ANY, whitelist)
1037
1038static const __initconst struct x86_cpu_id cpu_vuln_whitelist[] = {
1039 VULNWL(ANY, 4, X86_MODEL_ANY, NO_SPECULATION),
1040 VULNWL(CENTAUR, 5, X86_MODEL_ANY, NO_SPECULATION),
1041 VULNWL(INTEL, 5, X86_MODEL_ANY, NO_SPECULATION),
1042 VULNWL(NSC, 5, X86_MODEL_ANY, NO_SPECULATION),
1043
1044 /* Intel Family 6 */
1045 VULNWL_INTEL(ATOM_SALTWELL, NO_SPECULATION | NO_ITLB_MULTIHIT),
1046 VULNWL_INTEL(ATOM_SALTWELL_TABLET, NO_SPECULATION | NO_ITLB_MULTIHIT),
1047 VULNWL_INTEL(ATOM_SALTWELL_MID, NO_SPECULATION | NO_ITLB_MULTIHIT),
1048 VULNWL_INTEL(ATOM_BONNELL, NO_SPECULATION | NO_ITLB_MULTIHIT),
1049 VULNWL_INTEL(ATOM_BONNELL_MID, NO_SPECULATION | NO_ITLB_MULTIHIT),
1050
1051 VULNWL_INTEL(ATOM_SILVERMONT, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1052 VULNWL_INTEL(ATOM_SILVERMONT_D, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1053 VULNWL_INTEL(ATOM_SILVERMONT_MID, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1054 VULNWL_INTEL(ATOM_AIRMONT, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1055 VULNWL_INTEL(XEON_PHI_KNL, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1056 VULNWL_INTEL(XEON_PHI_KNM, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1057
1058 VULNWL_INTEL(CORE_YONAH, NO_SSB),
1059
1060 VULNWL_INTEL(ATOM_AIRMONT_MID, NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1061 VULNWL_INTEL(ATOM_AIRMONT_NP, NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1062
1063 VULNWL_INTEL(ATOM_GOLDMONT, NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1064 VULNWL_INTEL(ATOM_GOLDMONT_D, NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1065 VULNWL_INTEL(ATOM_GOLDMONT_PLUS, NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1066
1067 /*
1068 * Technically, swapgs isn't serializing on AMD (despite it previously
1069 * being documented as such in the APM). But according to AMD, %gs is
1070 * updated non-speculatively, and the issuing of %gs-relative memory
1071 * operands will be blocked until the %gs update completes, which is
1072 * good enough for our purposes.
1073 */
1074
1075 VULNWL_INTEL(ATOM_TREMONT_D, NO_ITLB_MULTIHIT),
1076
1077 /* AMD Family 0xf - 0x12 */
1078 VULNWL_AMD(0x0f, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1079 VULNWL_AMD(0x10, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1080 VULNWL_AMD(0x11, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1081 VULNWL_AMD(0x12, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1082
1083 /* FAMILY_ANY must be last, otherwise 0x0f - 0x12 matches won't work */
1084 VULNWL_AMD(X86_FAMILY_ANY, NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1085 VULNWL_HYGON(X86_FAMILY_ANY, NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1086
1087 /* Zhaoxin Family 7 */
1088 VULNWL(CENTAUR, 7, X86_MODEL_ANY, NO_SPECTRE_V2 | NO_SWAPGS),
1089 VULNWL(ZHAOXIN, 7, X86_MODEL_ANY, NO_SPECTRE_V2 | NO_SWAPGS),
1090 {}
1091};
1092
1093#define VULNBL_INTEL_STEPPINGS(model, steppings, issues) \
1094 X86_MATCH_VENDOR_FAM_MODEL_STEPPINGS_FEATURE(INTEL, 6, \
1095 INTEL_FAM6_##model, steppings, \
1096 X86_FEATURE_ANY, issues)
1097
1098#define SRBDS BIT(0)
1099
1100static const struct x86_cpu_id cpu_vuln_blacklist[] __initconst = {
1101 VULNBL_INTEL_STEPPINGS(IVYBRIDGE, X86_STEPPING_ANY, SRBDS),
1102 VULNBL_INTEL_STEPPINGS(HASWELL, X86_STEPPING_ANY, SRBDS),
1103 VULNBL_INTEL_STEPPINGS(HASWELL_L, X86_STEPPING_ANY, SRBDS),
1104 VULNBL_INTEL_STEPPINGS(HASWELL_G, X86_STEPPING_ANY, SRBDS),
1105 VULNBL_INTEL_STEPPINGS(BROADWELL_G, X86_STEPPING_ANY, SRBDS),
1106 VULNBL_INTEL_STEPPINGS(BROADWELL, X86_STEPPING_ANY, SRBDS),
1107 VULNBL_INTEL_STEPPINGS(SKYLAKE_L, X86_STEPPING_ANY, SRBDS),
1108 VULNBL_INTEL_STEPPINGS(SKYLAKE, X86_STEPPING_ANY, SRBDS),
1109 VULNBL_INTEL_STEPPINGS(KABYLAKE_L, X86_STEPPINGS(0x0, 0xC), SRBDS),
1110 VULNBL_INTEL_STEPPINGS(KABYLAKE, X86_STEPPINGS(0x0, 0xD), SRBDS),
1111 {}
1112};
1113
1114static bool __init cpu_matches(const struct x86_cpu_id *table, unsigned long which)
1115{
1116 const struct x86_cpu_id *m = x86_match_cpu(table);
1117
1118 return m && !!(m->driver_data & which);
1119}
1120
1121u64 x86_read_arch_cap_msr(void)
1122{
1123 u64 ia32_cap = 0;
1124
1125 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1126 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, ia32_cap);
1127
1128 return ia32_cap;
1129}
1130
1131static void __init cpu_set_bug_bits(struct cpuinfo_x86 *c)
1132{
1133 u64 ia32_cap = x86_read_arch_cap_msr();
1134
1135 /* Set ITLB_MULTIHIT bug if cpu is not in the whitelist and not mitigated */
1136 if (!cpu_matches(cpu_vuln_whitelist, NO_ITLB_MULTIHIT) &&
1137 !(ia32_cap & ARCH_CAP_PSCHANGE_MC_NO))
1138 setup_force_cpu_bug(X86_BUG_ITLB_MULTIHIT);
1139
1140 if (cpu_matches(cpu_vuln_whitelist, NO_SPECULATION))
1141 return;
1142
1143 setup_force_cpu_bug(X86_BUG_SPECTRE_V1);
1144
1145 if (!cpu_matches(cpu_vuln_whitelist, NO_SPECTRE_V2))
1146 setup_force_cpu_bug(X86_BUG_SPECTRE_V2);
1147
1148 if (!cpu_matches(cpu_vuln_whitelist, NO_SSB) &&
1149 !(ia32_cap & ARCH_CAP_SSB_NO) &&
1150 !cpu_has(c, X86_FEATURE_AMD_SSB_NO))
1151 setup_force_cpu_bug(X86_BUG_SPEC_STORE_BYPASS);
1152
1153 if (ia32_cap & ARCH_CAP_IBRS_ALL)
1154 setup_force_cpu_cap(X86_FEATURE_IBRS_ENHANCED);
1155
1156 if (!cpu_matches(cpu_vuln_whitelist, NO_MDS) &&
1157 !(ia32_cap & ARCH_CAP_MDS_NO)) {
1158 setup_force_cpu_bug(X86_BUG_MDS);
1159 if (cpu_matches(cpu_vuln_whitelist, MSBDS_ONLY))
1160 setup_force_cpu_bug(X86_BUG_MSBDS_ONLY);
1161 }
1162
1163 if (!cpu_matches(cpu_vuln_whitelist, NO_SWAPGS))
1164 setup_force_cpu_bug(X86_BUG_SWAPGS);
1165
1166 /*
1167 * When the CPU is not mitigated for TAA (TAA_NO=0) set TAA bug when:
1168 * - TSX is supported or
1169 * - TSX_CTRL is present
1170 *
1171 * TSX_CTRL check is needed for cases when TSX could be disabled before
1172 * the kernel boot e.g. kexec.
1173 * TSX_CTRL check alone is not sufficient for cases when the microcode
1174 * update is not present or running as guest that don't get TSX_CTRL.
1175 */
1176 if (!(ia32_cap & ARCH_CAP_TAA_NO) &&
1177 (cpu_has(c, X86_FEATURE_RTM) ||
1178 (ia32_cap & ARCH_CAP_TSX_CTRL_MSR)))
1179 setup_force_cpu_bug(X86_BUG_TAA);
1180
1181 /*
1182 * SRBDS affects CPUs which support RDRAND or RDSEED and are listed
1183 * in the vulnerability blacklist.
1184 */
1185 if ((cpu_has(c, X86_FEATURE_RDRAND) ||
1186 cpu_has(c, X86_FEATURE_RDSEED)) &&
1187 cpu_matches(cpu_vuln_blacklist, SRBDS))
1188 setup_force_cpu_bug(X86_BUG_SRBDS);
1189
1190 if (cpu_matches(cpu_vuln_whitelist, NO_MELTDOWN))
1191 return;
1192
1193 /* Rogue Data Cache Load? No! */
1194 if (ia32_cap & ARCH_CAP_RDCL_NO)
1195 return;
1196
1197 setup_force_cpu_bug(X86_BUG_CPU_MELTDOWN);
1198
1199 if (cpu_matches(cpu_vuln_whitelist, NO_L1TF))
1200 return;
1201
1202 setup_force_cpu_bug(X86_BUG_L1TF);
1203}
1204
1205/*
1206 * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
1207 * unfortunately, that's not true in practice because of early VIA
1208 * chips and (more importantly) broken virtualizers that are not easy
1209 * to detect. In the latter case it doesn't even *fail* reliably, so
1210 * probing for it doesn't even work. Disable it completely on 32-bit
1211 * unless we can find a reliable way to detect all the broken cases.
1212 * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
1213 */
1214static void detect_nopl(void)
1215{
1216#ifdef CONFIG_X86_32
1217 setup_clear_cpu_cap(X86_FEATURE_NOPL);
1218#else
1219 setup_force_cpu_cap(X86_FEATURE_NOPL);
1220#endif
1221}
1222
1223/*
1224 * Do minimum CPU detection early.
1225 * Fields really needed: vendor, cpuid_level, family, model, mask,
1226 * cache alignment.
1227 * The others are not touched to avoid unwanted side effects.
1228 *
1229 * WARNING: this function is only called on the boot CPU. Don't add code
1230 * here that is supposed to run on all CPUs.
1231 */
1232static void __init early_identify_cpu(struct cpuinfo_x86 *c)
1233{
1234#ifdef CONFIG_X86_64
1235 c->x86_clflush_size = 64;
1236 c->x86_phys_bits = 36;
1237 c->x86_virt_bits = 48;
1238#else
1239 c->x86_clflush_size = 32;
1240 c->x86_phys_bits = 32;
1241 c->x86_virt_bits = 32;
1242#endif
1243 c->x86_cache_alignment = c->x86_clflush_size;
1244
1245 memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1246 c->extended_cpuid_level = 0;
1247
1248 if (!have_cpuid_p())
1249 identify_cpu_without_cpuid(c);
1250
1251 /* cyrix could have cpuid enabled via c_identify()*/
1252 if (have_cpuid_p()) {
1253 cpu_detect(c);
1254 get_cpu_vendor(c);
1255 get_cpu_cap(c);
1256 get_cpu_address_sizes(c);
1257 setup_force_cpu_cap(X86_FEATURE_CPUID);
1258
1259 if (this_cpu->c_early_init)
1260 this_cpu->c_early_init(c);
1261
1262 c->cpu_index = 0;
1263 filter_cpuid_features(c, false);
1264
1265 if (this_cpu->c_bsp_init)
1266 this_cpu->c_bsp_init(c);
1267 } else {
1268 setup_clear_cpu_cap(X86_FEATURE_CPUID);
1269 }
1270
1271 setup_force_cpu_cap(X86_FEATURE_ALWAYS);
1272
1273 cpu_set_bug_bits(c);
1274
1275 cpu_set_core_cap_bits(c);
1276
1277 fpu__init_system(c);
1278
1279#ifdef CONFIG_X86_32
1280 /*
1281 * Regardless of whether PCID is enumerated, the SDM says
1282 * that it can't be enabled in 32-bit mode.
1283 */
1284 setup_clear_cpu_cap(X86_FEATURE_PCID);
1285#endif
1286
1287 /*
1288 * Later in the boot process pgtable_l5_enabled() relies on
1289 * cpu_feature_enabled(X86_FEATURE_LA57). If 5-level paging is not
1290 * enabled by this point we need to clear the feature bit to avoid
1291 * false-positives at the later stage.
1292 *
1293 * pgtable_l5_enabled() can be false here for several reasons:
1294 * - 5-level paging is disabled compile-time;
1295 * - it's 32-bit kernel;
1296 * - machine doesn't support 5-level paging;
1297 * - user specified 'no5lvl' in kernel command line.
1298 */
1299 if (!pgtable_l5_enabled())
1300 setup_clear_cpu_cap(X86_FEATURE_LA57);
1301
1302 detect_nopl();
1303}
1304
1305void __init early_cpu_init(void)
1306{
1307 const struct cpu_dev *const *cdev;
1308 int count = 0;
1309
1310#ifdef CONFIG_PROCESSOR_SELECT
1311 pr_info("KERNEL supported cpus:\n");
1312#endif
1313
1314 for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
1315 const struct cpu_dev *cpudev = *cdev;
1316
1317 if (count >= X86_VENDOR_NUM)
1318 break;
1319 cpu_devs[count] = cpudev;
1320 count++;
1321
1322#ifdef CONFIG_PROCESSOR_SELECT
1323 {
1324 unsigned int j;
1325
1326 for (j = 0; j < 2; j++) {
1327 if (!cpudev->c_ident[j])
1328 continue;
1329 pr_info(" %s %s\n", cpudev->c_vendor,
1330 cpudev->c_ident[j]);
1331 }
1332 }
1333#endif
1334 }
1335 early_identify_cpu(&boot_cpu_data);
1336}
1337
1338static void detect_null_seg_behavior(struct cpuinfo_x86 *c)
1339{
1340#ifdef CONFIG_X86_64
1341 /*
1342 * Empirically, writing zero to a segment selector on AMD does
1343 * not clear the base, whereas writing zero to a segment
1344 * selector on Intel does clear the base. Intel's behavior
1345 * allows slightly faster context switches in the common case
1346 * where GS is unused by the prev and next threads.
1347 *
1348 * Since neither vendor documents this anywhere that I can see,
1349 * detect it directly instead of hardcoding the choice by
1350 * vendor.
1351 *
1352 * I've designated AMD's behavior as the "bug" because it's
1353 * counterintuitive and less friendly.
1354 */
1355
1356 unsigned long old_base, tmp;
1357 rdmsrl(MSR_FS_BASE, old_base);
1358 wrmsrl(MSR_FS_BASE, 1);
1359 loadsegment(fs, 0);
1360 rdmsrl(MSR_FS_BASE, tmp);
1361 if (tmp != 0)
1362 set_cpu_bug(c, X86_BUG_NULL_SEG);
1363 wrmsrl(MSR_FS_BASE, old_base);
1364#endif
1365}
1366
1367static void generic_identify(struct cpuinfo_x86 *c)
1368{
1369 c->extended_cpuid_level = 0;
1370
1371 if (!have_cpuid_p())
1372 identify_cpu_without_cpuid(c);
1373
1374 /* cyrix could have cpuid enabled via c_identify()*/
1375 if (!have_cpuid_p())
1376 return;
1377
1378 cpu_detect(c);
1379
1380 get_cpu_vendor(c);
1381
1382 get_cpu_cap(c);
1383
1384 get_cpu_address_sizes(c);
1385
1386 if (c->cpuid_level >= 0x00000001) {
1387 c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
1388#ifdef CONFIG_X86_32
1389# ifdef CONFIG_SMP
1390 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1391# else
1392 c->apicid = c->initial_apicid;
1393# endif
1394#endif
1395 c->phys_proc_id = c->initial_apicid;
1396 }
1397
1398 get_model_name(c); /* Default name */
1399
1400 detect_null_seg_behavior(c);
1401
1402 /*
1403 * ESPFIX is a strange bug. All real CPUs have it. Paravirt
1404 * systems that run Linux at CPL > 0 may or may not have the
1405 * issue, but, even if they have the issue, there's absolutely
1406 * nothing we can do about it because we can't use the real IRET
1407 * instruction.
1408 *
1409 * NB: For the time being, only 32-bit kernels support
1410 * X86_BUG_ESPFIX as such. 64-bit kernels directly choose
1411 * whether to apply espfix using paravirt hooks. If any
1412 * non-paravirt system ever shows up that does *not* have the
1413 * ESPFIX issue, we can change this.
1414 */
1415#ifdef CONFIG_X86_32
1416# ifdef CONFIG_PARAVIRT_XXL
1417 do {
1418 extern void native_iret(void);
1419 if (pv_ops.cpu.iret == native_iret)
1420 set_cpu_bug(c, X86_BUG_ESPFIX);
1421 } while (0);
1422# else
1423 set_cpu_bug(c, X86_BUG_ESPFIX);
1424# endif
1425#endif
1426}
1427
1428/*
1429 * Validate that ACPI/mptables have the same information about the
1430 * effective APIC id and update the package map.
1431 */
1432static void validate_apic_and_package_id(struct cpuinfo_x86 *c)
1433{
1434#ifdef CONFIG_SMP
1435 unsigned int apicid, cpu = smp_processor_id();
1436
1437 apicid = apic->cpu_present_to_apicid(cpu);
1438
1439 if (apicid != c->apicid) {
1440 pr_err(FW_BUG "CPU%u: APIC id mismatch. Firmware: %x APIC: %x\n",
1441 cpu, apicid, c->initial_apicid);
1442 }
1443 BUG_ON(topology_update_package_map(c->phys_proc_id, cpu));
1444 BUG_ON(topology_update_die_map(c->cpu_die_id, cpu));
1445#else
1446 c->logical_proc_id = 0;
1447#endif
1448}
1449
1450/*
1451 * This does the hard work of actually picking apart the CPU stuff...
1452 */
1453static void identify_cpu(struct cpuinfo_x86 *c)
1454{
1455 int i;
1456
1457 c->loops_per_jiffy = loops_per_jiffy;
1458 c->x86_cache_size = 0;
1459 c->x86_vendor = X86_VENDOR_UNKNOWN;
1460 c->x86_model = c->x86_stepping = 0; /* So far unknown... */
1461 c->x86_vendor_id[0] = '\0'; /* Unset */
1462 c->x86_model_id[0] = '\0'; /* Unset */
1463 c->x86_max_cores = 1;
1464 c->x86_coreid_bits = 0;
1465 c->cu_id = 0xff;
1466#ifdef CONFIG_X86_64
1467 c->x86_clflush_size = 64;
1468 c->x86_phys_bits = 36;
1469 c->x86_virt_bits = 48;
1470#else
1471 c->cpuid_level = -1; /* CPUID not detected */
1472 c->x86_clflush_size = 32;
1473 c->x86_phys_bits = 32;
1474 c->x86_virt_bits = 32;
1475#endif
1476 c->x86_cache_alignment = c->x86_clflush_size;
1477 memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1478#ifdef CONFIG_X86_VMX_FEATURE_NAMES
1479 memset(&c->vmx_capability, 0, sizeof(c->vmx_capability));
1480#endif
1481
1482 generic_identify(c);
1483
1484 if (this_cpu->c_identify)
1485 this_cpu->c_identify(c);
1486
1487 /* Clear/Set all flags overridden by options, after probe */
1488 apply_forced_caps(c);
1489
1490#ifdef CONFIG_X86_64
1491 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1492#endif
1493
1494 /*
1495 * Vendor-specific initialization. In this section we
1496 * canonicalize the feature flags, meaning if there are
1497 * features a certain CPU supports which CPUID doesn't
1498 * tell us, CPUID claiming incorrect flags, or other bugs,
1499 * we handle them here.
1500 *
1501 * At the end of this section, c->x86_capability better
1502 * indicate the features this CPU genuinely supports!
1503 */
1504 if (this_cpu->c_init)
1505 this_cpu->c_init(c);
1506
1507 /* Disable the PN if appropriate */
1508 squash_the_stupid_serial_number(c);
1509
1510 /* Set up SMEP/SMAP/UMIP */
1511 setup_smep(c);
1512 setup_smap(c);
1513 setup_umip(c);
1514
1515 /* Enable FSGSBASE instructions if available. */
1516 if (cpu_has(c, X86_FEATURE_FSGSBASE)) {
1517 cr4_set_bits(X86_CR4_FSGSBASE);
1518 elf_hwcap2 |= HWCAP2_FSGSBASE;
1519 }
1520
1521 /*
1522 * The vendor-specific functions might have changed features.
1523 * Now we do "generic changes."
1524 */
1525
1526 /* Filter out anything that depends on CPUID levels we don't have */
1527 filter_cpuid_features(c, true);
1528
1529 /* If the model name is still unset, do table lookup. */
1530 if (!c->x86_model_id[0]) {
1531 const char *p;
1532 p = table_lookup_model(c);
1533 if (p)
1534 strcpy(c->x86_model_id, p);
1535 else
1536 /* Last resort... */
1537 sprintf(c->x86_model_id, "%02x/%02x",
1538 c->x86, c->x86_model);
1539 }
1540
1541#ifdef CONFIG_X86_64
1542 detect_ht(c);
1543#endif
1544
1545 x86_init_rdrand(c);
1546 setup_pku(c);
1547
1548 /*
1549 * Clear/Set all flags overridden by options, need do it
1550 * before following smp all cpus cap AND.
1551 */
1552 apply_forced_caps(c);
1553
1554 /*
1555 * On SMP, boot_cpu_data holds the common feature set between
1556 * all CPUs; so make sure that we indicate which features are
1557 * common between the CPUs. The first time this routine gets
1558 * executed, c == &boot_cpu_data.
1559 */
1560 if (c != &boot_cpu_data) {
1561 /* AND the already accumulated flags with these */
1562 for (i = 0; i < NCAPINTS; i++)
1563 boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
1564
1565 /* OR, i.e. replicate the bug flags */
1566 for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
1567 c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
1568 }
1569
1570 /* Init Machine Check Exception if available. */
1571 mcheck_cpu_init(c);
1572
1573 select_idle_routine(c);
1574
1575#ifdef CONFIG_NUMA
1576 numa_add_cpu(smp_processor_id());
1577#endif
1578}
1579
1580/*
1581 * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
1582 * on 32-bit kernels:
1583 */
1584#ifdef CONFIG_X86_32
1585void enable_sep_cpu(void)
1586{
1587 struct tss_struct *tss;
1588 int cpu;
1589
1590 if (!boot_cpu_has(X86_FEATURE_SEP))
1591 return;
1592
1593 cpu = get_cpu();
1594 tss = &per_cpu(cpu_tss_rw, cpu);
1595
1596 /*
1597 * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
1598 * see the big comment in struct x86_hw_tss's definition.
1599 */
1600
1601 tss->x86_tss.ss1 = __KERNEL_CS;
1602 wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
1603 wrmsr(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1), 0);
1604 wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
1605
1606 put_cpu();
1607}
1608#endif
1609
1610void __init identify_boot_cpu(void)
1611{
1612 identify_cpu(&boot_cpu_data);
1613#ifdef CONFIG_X86_32
1614 sysenter_setup();
1615 enable_sep_cpu();
1616#endif
1617 cpu_detect_tlb(&boot_cpu_data);
1618 setup_cr_pinning();
1619
1620 tsx_init();
1621}
1622
1623void identify_secondary_cpu(struct cpuinfo_x86 *c)
1624{
1625 BUG_ON(c == &boot_cpu_data);
1626 identify_cpu(c);
1627#ifdef CONFIG_X86_32
1628 enable_sep_cpu();
1629#endif
1630 mtrr_ap_init();
1631 validate_apic_and_package_id(c);
1632 x86_spec_ctrl_setup_ap();
1633 update_srbds_msr();
1634}
1635
1636static __init int setup_noclflush(char *arg)
1637{
1638 setup_clear_cpu_cap(X86_FEATURE_CLFLUSH);
1639 setup_clear_cpu_cap(X86_FEATURE_CLFLUSHOPT);
1640 return 1;
1641}
1642__setup("noclflush", setup_noclflush);
1643
1644void print_cpu_info(struct cpuinfo_x86 *c)
1645{
1646 const char *vendor = NULL;
1647
1648 if (c->x86_vendor < X86_VENDOR_NUM) {
1649 vendor = this_cpu->c_vendor;
1650 } else {
1651 if (c->cpuid_level >= 0)
1652 vendor = c->x86_vendor_id;
1653 }
1654
1655 if (vendor && !strstr(c->x86_model_id, vendor))
1656 pr_cont("%s ", vendor);
1657
1658 if (c->x86_model_id[0])
1659 pr_cont("%s", c->x86_model_id);
1660 else
1661 pr_cont("%d86", c->x86);
1662
1663 pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
1664
1665 if (c->x86_stepping || c->cpuid_level >= 0)
1666 pr_cont(", stepping: 0x%x)\n", c->x86_stepping);
1667 else
1668 pr_cont(")\n");
1669}
1670
1671/*
1672 * clearcpuid= was already parsed in fpu__init_parse_early_param.
1673 * But we need to keep a dummy __setup around otherwise it would
1674 * show up as an environment variable for init.
1675 */
1676static __init int setup_clearcpuid(char *arg)
1677{
1678 return 1;
1679}
1680__setup("clearcpuid=", setup_clearcpuid);
1681
1682#ifdef CONFIG_X86_64
1683DEFINE_PER_CPU_FIRST(struct fixed_percpu_data,
1684 fixed_percpu_data) __aligned(PAGE_SIZE) __visible;
1685EXPORT_PER_CPU_SYMBOL_GPL(fixed_percpu_data);
1686
1687/*
1688 * The following percpu variables are hot. Align current_task to
1689 * cacheline size such that they fall in the same cacheline.
1690 */
1691DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
1692 &init_task;
1693EXPORT_PER_CPU_SYMBOL(current_task);
1694
1695DEFINE_PER_CPU(struct irq_stack *, hardirq_stack_ptr);
1696DEFINE_PER_CPU(unsigned int, irq_count) __visible = -1;
1697
1698DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1699EXPORT_PER_CPU_SYMBOL(__preempt_count);
1700
1701/* May not be marked __init: used by software suspend */
1702void syscall_init(void)
1703{
1704 wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
1705 wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
1706
1707#ifdef CONFIG_IA32_EMULATION
1708 wrmsrl(MSR_CSTAR, (unsigned long)entry_SYSCALL_compat);
1709 /*
1710 * This only works on Intel CPUs.
1711 * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
1712 * This does not cause SYSENTER to jump to the wrong location, because
1713 * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
1714 */
1715 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
1716 wrmsrl_safe(MSR_IA32_SYSENTER_ESP,
1717 (unsigned long)(cpu_entry_stack(smp_processor_id()) + 1));
1718 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
1719#else
1720 wrmsrl(MSR_CSTAR, (unsigned long)ignore_sysret);
1721 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
1722 wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
1723 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
1724#endif
1725
1726 /* Flags to clear on syscall */
1727 wrmsrl(MSR_SYSCALL_MASK,
1728 X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|
1729 X86_EFLAGS_IOPL|X86_EFLAGS_AC|X86_EFLAGS_NT);
1730}
1731
1732#else /* CONFIG_X86_64 */
1733
1734DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
1735EXPORT_PER_CPU_SYMBOL(current_task);
1736DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1737EXPORT_PER_CPU_SYMBOL(__preempt_count);
1738
1739/*
1740 * On x86_32, vm86 modifies tss.sp0, so sp0 isn't a reliable way to find
1741 * the top of the kernel stack. Use an extra percpu variable to track the
1742 * top of the kernel stack directly.
1743 */
1744DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) =
1745 (unsigned long)&init_thread_union + THREAD_SIZE;
1746EXPORT_PER_CPU_SYMBOL(cpu_current_top_of_stack);
1747
1748#ifdef CONFIG_STACKPROTECTOR
1749DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
1750#endif
1751
1752#endif /* CONFIG_X86_64 */
1753
1754/*
1755 * Clear all 6 debug registers:
1756 */
1757static void clear_all_debug_regs(void)
1758{
1759 int i;
1760
1761 for (i = 0; i < 8; i++) {
1762 /* Ignore db4, db5 */
1763 if ((i == 4) || (i == 5))
1764 continue;
1765
1766 set_debugreg(0, i);
1767 }
1768}
1769
1770#ifdef CONFIG_KGDB
1771/*
1772 * Restore debug regs if using kgdbwait and you have a kernel debugger
1773 * connection established.
1774 */
1775static void dbg_restore_debug_regs(void)
1776{
1777 if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
1778 arch_kgdb_ops.correct_hw_break();
1779}
1780#else /* ! CONFIG_KGDB */
1781#define dbg_restore_debug_regs()
1782#endif /* ! CONFIG_KGDB */
1783
1784static void wait_for_master_cpu(int cpu)
1785{
1786#ifdef CONFIG_SMP
1787 /*
1788 * wait for ACK from master CPU before continuing
1789 * with AP initialization
1790 */
1791 WARN_ON(cpumask_test_and_set_cpu(cpu, cpu_initialized_mask));
1792 while (!cpumask_test_cpu(cpu, cpu_callout_mask))
1793 cpu_relax();
1794#endif
1795}
1796
1797#ifdef CONFIG_X86_64
1798static inline void setup_getcpu(int cpu)
1799{
1800 unsigned long cpudata = vdso_encode_cpunode(cpu, early_cpu_to_node(cpu));
1801 struct desc_struct d = { };
1802
1803 if (boot_cpu_has(X86_FEATURE_RDTSCP))
1804 write_rdtscp_aux(cpudata);
1805
1806 /* Store CPU and node number in limit. */
1807 d.limit0 = cpudata;
1808 d.limit1 = cpudata >> 16;
1809
1810 d.type = 5; /* RO data, expand down, accessed */
1811 d.dpl = 3; /* Visible to user code */
1812 d.s = 1; /* Not a system segment */
1813 d.p = 1; /* Present */
1814 d.d = 1; /* 32-bit */
1815
1816 write_gdt_entry(get_cpu_gdt_rw(cpu), GDT_ENTRY_CPUNODE, &d, DESCTYPE_S);
1817}
1818
1819static inline void ucode_cpu_init(int cpu)
1820{
1821 if (cpu)
1822 load_ucode_ap();
1823}
1824
1825static inline void tss_setup_ist(struct tss_struct *tss)
1826{
1827 /* Set up the per-CPU TSS IST stacks */
1828 tss->x86_tss.ist[IST_INDEX_DF] = __this_cpu_ist_top_va(DF);
1829 tss->x86_tss.ist[IST_INDEX_NMI] = __this_cpu_ist_top_va(NMI);
1830 tss->x86_tss.ist[IST_INDEX_DB] = __this_cpu_ist_top_va(DB);
1831 tss->x86_tss.ist[IST_INDEX_MCE] = __this_cpu_ist_top_va(MCE);
1832}
1833
1834#else /* CONFIG_X86_64 */
1835
1836static inline void setup_getcpu(int cpu) { }
1837
1838static inline void ucode_cpu_init(int cpu)
1839{
1840 show_ucode_info_early();
1841}
1842
1843static inline void tss_setup_ist(struct tss_struct *tss) { }
1844
1845#endif /* !CONFIG_X86_64 */
1846
1847static inline void tss_setup_io_bitmap(struct tss_struct *tss)
1848{
1849 tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET_INVALID;
1850
1851#ifdef CONFIG_X86_IOPL_IOPERM
1852 tss->io_bitmap.prev_max = 0;
1853 tss->io_bitmap.prev_sequence = 0;
1854 memset(tss->io_bitmap.bitmap, 0xff, sizeof(tss->io_bitmap.bitmap));
1855 /*
1856 * Invalidate the extra array entry past the end of the all
1857 * permission bitmap as required by the hardware.
1858 */
1859 tss->io_bitmap.mapall[IO_BITMAP_LONGS] = ~0UL;
1860#endif
1861}
1862
1863/*
1864 * cpu_init() initializes state that is per-CPU. Some data is already
1865 * initialized (naturally) in the bootstrap process, such as the GDT
1866 * and IDT. We reload them nevertheless, this function acts as a
1867 * 'CPU state barrier', nothing should get across.
1868 */
1869void cpu_init(void)
1870{
1871 struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
1872 struct task_struct *cur = current;
1873 int cpu = raw_smp_processor_id();
1874
1875 wait_for_master_cpu(cpu);
1876
1877 ucode_cpu_init(cpu);
1878
1879#ifdef CONFIG_NUMA
1880 if (this_cpu_read(numa_node) == 0 &&
1881 early_cpu_to_node(cpu) != NUMA_NO_NODE)
1882 set_numa_node(early_cpu_to_node(cpu));
1883#endif
1884 setup_getcpu(cpu);
1885
1886 pr_debug("Initializing CPU#%d\n", cpu);
1887
1888 if (IS_ENABLED(CONFIG_X86_64) || cpu_feature_enabled(X86_FEATURE_VME) ||
1889 boot_cpu_has(X86_FEATURE_TSC) || boot_cpu_has(X86_FEATURE_DE))
1890 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1891
1892 /*
1893 * Initialize the per-CPU GDT with the boot GDT,
1894 * and set up the GDT descriptor:
1895 */
1896 switch_to_new_gdt(cpu);
1897 load_current_idt();
1898
1899 if (IS_ENABLED(CONFIG_X86_64)) {
1900 loadsegment(fs, 0);
1901 memset(cur->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
1902 syscall_init();
1903
1904 wrmsrl(MSR_FS_BASE, 0);
1905 wrmsrl(MSR_KERNEL_GS_BASE, 0);
1906 barrier();
1907
1908 x2apic_setup();
1909 }
1910
1911 mmgrab(&init_mm);
1912 cur->active_mm = &init_mm;
1913 BUG_ON(cur->mm);
1914 initialize_tlbstate_and_flush();
1915 enter_lazy_tlb(&init_mm, cur);
1916
1917 /* Initialize the TSS. */
1918 tss_setup_ist(tss);
1919 tss_setup_io_bitmap(tss);
1920 set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
1921
1922 load_TR_desc();
1923 /*
1924 * sp0 points to the entry trampoline stack regardless of what task
1925 * is running.
1926 */
1927 load_sp0((unsigned long)(cpu_entry_stack(cpu) + 1));
1928
1929 load_mm_ldt(&init_mm);
1930
1931 clear_all_debug_regs();
1932 dbg_restore_debug_regs();
1933
1934 doublefault_init_cpu_tss();
1935
1936 fpu__init_cpu();
1937
1938 if (is_uv_system())
1939 uv_cpu_init();
1940
1941 load_fixmap_gdt(cpu);
1942}
1943
1944/*
1945 * The microcode loader calls this upon late microcode load to recheck features,
1946 * only when microcode has been updated. Caller holds microcode_mutex and CPU
1947 * hotplug lock.
1948 */
1949void microcode_check(void)
1950{
1951 struct cpuinfo_x86 info;
1952
1953 perf_check_microcode();
1954
1955 /* Reload CPUID max function as it might've changed. */
1956 info.cpuid_level = cpuid_eax(0);
1957
1958 /*
1959 * Copy all capability leafs to pick up the synthetic ones so that
1960 * memcmp() below doesn't fail on that. The ones coming from CPUID will
1961 * get overwritten in get_cpu_cap().
1962 */
1963 memcpy(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability));
1964
1965 get_cpu_cap(&info);
1966
1967 if (!memcmp(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability)))
1968 return;
1969
1970 pr_warn("x86/CPU: CPU features have changed after loading microcode, but might not take effect.\n");
1971 pr_warn("x86/CPU: Please consider either early loading through initrd/built-in or a potential BIOS update.\n");
1972}
1973
1974/*
1975 * Invoked from core CPU hotplug code after hotplug operations
1976 */
1977void arch_smt_update(void)
1978{
1979 /* Handle the speculative execution misfeatures */
1980 cpu_bugs_smt_update();
1981 /* Check whether IPI broadcasting can be enabled */
1982 apic_smt_update();
1983}
1#include <linux/bootmem.h>
2#include <linux/linkage.h>
3#include <linux/bitops.h>
4#include <linux/kernel.h>
5#include <linux/module.h>
6#include <linux/percpu.h>
7#include <linux/string.h>
8#include <linux/delay.h>
9#include <linux/sched.h>
10#include <linux/init.h>
11#include <linux/kgdb.h>
12#include <linux/smp.h>
13#include <linux/io.h>
14
15#include <asm/stackprotector.h>
16#include <asm/perf_event.h>
17#include <asm/mmu_context.h>
18#include <asm/archrandom.h>
19#include <asm/hypervisor.h>
20#include <asm/processor.h>
21#include <asm/debugreg.h>
22#include <asm/sections.h>
23#include <linux/topology.h>
24#include <linux/cpumask.h>
25#include <asm/pgtable.h>
26#include <linux/atomic.h>
27#include <asm/proto.h>
28#include <asm/setup.h>
29#include <asm/apic.h>
30#include <asm/desc.h>
31#include <asm/i387.h>
32#include <asm/fpu-internal.h>
33#include <asm/mtrr.h>
34#include <linux/numa.h>
35#include <asm/asm.h>
36#include <asm/cpu.h>
37#include <asm/mce.h>
38#include <asm/msr.h>
39#include <asm/pat.h>
40#include <asm/microcode.h>
41#include <asm/microcode_intel.h>
42
43#ifdef CONFIG_X86_LOCAL_APIC
44#include <asm/uv/uv.h>
45#endif
46
47#include "cpu.h"
48
49/* all of these masks are initialized in setup_cpu_local_masks() */
50cpumask_var_t cpu_initialized_mask;
51cpumask_var_t cpu_callout_mask;
52cpumask_var_t cpu_callin_mask;
53
54/* representing cpus for which sibling maps can be computed */
55cpumask_var_t cpu_sibling_setup_mask;
56
57/* correctly size the local cpu masks */
58void __init setup_cpu_local_masks(void)
59{
60 alloc_bootmem_cpumask_var(&cpu_initialized_mask);
61 alloc_bootmem_cpumask_var(&cpu_callin_mask);
62 alloc_bootmem_cpumask_var(&cpu_callout_mask);
63 alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
64}
65
66static void default_init(struct cpuinfo_x86 *c)
67{
68#ifdef CONFIG_X86_64
69 cpu_detect_cache_sizes(c);
70#else
71 /* Not much we can do here... */
72 /* Check if at least it has cpuid */
73 if (c->cpuid_level == -1) {
74 /* No cpuid. It must be an ancient CPU */
75 if (c->x86 == 4)
76 strcpy(c->x86_model_id, "486");
77 else if (c->x86 == 3)
78 strcpy(c->x86_model_id, "386");
79 }
80#endif
81}
82
83static const struct cpu_dev default_cpu = {
84 .c_init = default_init,
85 .c_vendor = "Unknown",
86 .c_x86_vendor = X86_VENDOR_UNKNOWN,
87};
88
89static const struct cpu_dev *this_cpu = &default_cpu;
90
91DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
92#ifdef CONFIG_X86_64
93 /*
94 * We need valid kernel segments for data and code in long mode too
95 * IRET will check the segment types kkeil 2000/10/28
96 * Also sysret mandates a special GDT layout
97 *
98 * TLS descriptors are currently at a different place compared to i386.
99 * Hopefully nobody expects them at a fixed place (Wine?)
100 */
101 [GDT_ENTRY_KERNEL32_CS] = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
102 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
103 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
104 [GDT_ENTRY_DEFAULT_USER32_CS] = GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
105 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
106 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
107#else
108 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
109 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
110 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
111 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
112 /*
113 * Segments used for calling PnP BIOS have byte granularity.
114 * They code segments and data segments have fixed 64k limits,
115 * the transfer segment sizes are set at run time.
116 */
117 /* 32-bit code */
118 [GDT_ENTRY_PNPBIOS_CS32] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
119 /* 16-bit code */
120 [GDT_ENTRY_PNPBIOS_CS16] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
121 /* 16-bit data */
122 [GDT_ENTRY_PNPBIOS_DS] = GDT_ENTRY_INIT(0x0092, 0, 0xffff),
123 /* 16-bit data */
124 [GDT_ENTRY_PNPBIOS_TS1] = GDT_ENTRY_INIT(0x0092, 0, 0),
125 /* 16-bit data */
126 [GDT_ENTRY_PNPBIOS_TS2] = GDT_ENTRY_INIT(0x0092, 0, 0),
127 /*
128 * The APM segments have byte granularity and their bases
129 * are set at run time. All have 64k limits.
130 */
131 /* 32-bit code */
132 [GDT_ENTRY_APMBIOS_BASE] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
133 /* 16-bit code */
134 [GDT_ENTRY_APMBIOS_BASE+1] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
135 /* data */
136 [GDT_ENTRY_APMBIOS_BASE+2] = GDT_ENTRY_INIT(0x4092, 0, 0xffff),
137
138 [GDT_ENTRY_ESPFIX_SS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
139 [GDT_ENTRY_PERCPU] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
140 GDT_STACK_CANARY_INIT
141#endif
142} };
143EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
144
145static int __init x86_xsave_setup(char *s)
146{
147 setup_clear_cpu_cap(X86_FEATURE_XSAVE);
148 setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
149 setup_clear_cpu_cap(X86_FEATURE_AVX);
150 setup_clear_cpu_cap(X86_FEATURE_AVX2);
151 return 1;
152}
153__setup("noxsave", x86_xsave_setup);
154
155static int __init x86_xsaveopt_setup(char *s)
156{
157 setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
158 return 1;
159}
160__setup("noxsaveopt", x86_xsaveopt_setup);
161
162#ifdef CONFIG_X86_32
163static int cachesize_override = -1;
164static int disable_x86_serial_nr = 1;
165
166static int __init cachesize_setup(char *str)
167{
168 get_option(&str, &cachesize_override);
169 return 1;
170}
171__setup("cachesize=", cachesize_setup);
172
173static int __init x86_fxsr_setup(char *s)
174{
175 setup_clear_cpu_cap(X86_FEATURE_FXSR);
176 setup_clear_cpu_cap(X86_FEATURE_XMM);
177 return 1;
178}
179__setup("nofxsr", x86_fxsr_setup);
180
181static int __init x86_sep_setup(char *s)
182{
183 setup_clear_cpu_cap(X86_FEATURE_SEP);
184 return 1;
185}
186__setup("nosep", x86_sep_setup);
187
188/* Standard macro to see if a specific flag is changeable */
189static inline int flag_is_changeable_p(u32 flag)
190{
191 u32 f1, f2;
192
193 /*
194 * Cyrix and IDT cpus allow disabling of CPUID
195 * so the code below may return different results
196 * when it is executed before and after enabling
197 * the CPUID. Add "volatile" to not allow gcc to
198 * optimize the subsequent calls to this function.
199 */
200 asm volatile ("pushfl \n\t"
201 "pushfl \n\t"
202 "popl %0 \n\t"
203 "movl %0, %1 \n\t"
204 "xorl %2, %0 \n\t"
205 "pushl %0 \n\t"
206 "popfl \n\t"
207 "pushfl \n\t"
208 "popl %0 \n\t"
209 "popfl \n\t"
210
211 : "=&r" (f1), "=&r" (f2)
212 : "ir" (flag));
213
214 return ((f1^f2) & flag) != 0;
215}
216
217/* Probe for the CPUID instruction */
218int have_cpuid_p(void)
219{
220 return flag_is_changeable_p(X86_EFLAGS_ID);
221}
222
223static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
224{
225 unsigned long lo, hi;
226
227 if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
228 return;
229
230 /* Disable processor serial number: */
231
232 rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
233 lo |= 0x200000;
234 wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
235
236 printk(KERN_NOTICE "CPU serial number disabled.\n");
237 clear_cpu_cap(c, X86_FEATURE_PN);
238
239 /* Disabling the serial number may affect the cpuid level */
240 c->cpuid_level = cpuid_eax(0);
241}
242
243static int __init x86_serial_nr_setup(char *s)
244{
245 disable_x86_serial_nr = 0;
246 return 1;
247}
248__setup("serialnumber", x86_serial_nr_setup);
249#else
250static inline int flag_is_changeable_p(u32 flag)
251{
252 return 1;
253}
254static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
255{
256}
257#endif
258
259static __init int setup_disable_smep(char *arg)
260{
261 setup_clear_cpu_cap(X86_FEATURE_SMEP);
262 return 1;
263}
264__setup("nosmep", setup_disable_smep);
265
266static __always_inline void setup_smep(struct cpuinfo_x86 *c)
267{
268 if (cpu_has(c, X86_FEATURE_SMEP))
269 set_in_cr4(X86_CR4_SMEP);
270}
271
272static __init int setup_disable_smap(char *arg)
273{
274 setup_clear_cpu_cap(X86_FEATURE_SMAP);
275 return 1;
276}
277__setup("nosmap", setup_disable_smap);
278
279static __always_inline void setup_smap(struct cpuinfo_x86 *c)
280{
281 unsigned long eflags;
282
283 /* This should have been cleared long ago */
284 raw_local_save_flags(eflags);
285 BUG_ON(eflags & X86_EFLAGS_AC);
286
287 if (cpu_has(c, X86_FEATURE_SMAP)) {
288#ifdef CONFIG_X86_SMAP
289 set_in_cr4(X86_CR4_SMAP);
290#else
291 clear_in_cr4(X86_CR4_SMAP);
292#endif
293 }
294}
295
296/*
297 * Some CPU features depend on higher CPUID levels, which may not always
298 * be available due to CPUID level capping or broken virtualization
299 * software. Add those features to this table to auto-disable them.
300 */
301struct cpuid_dependent_feature {
302 u32 feature;
303 u32 level;
304};
305
306static const struct cpuid_dependent_feature
307cpuid_dependent_features[] = {
308 { X86_FEATURE_MWAIT, 0x00000005 },
309 { X86_FEATURE_DCA, 0x00000009 },
310 { X86_FEATURE_XSAVE, 0x0000000d },
311 { 0, 0 }
312};
313
314static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
315{
316 const struct cpuid_dependent_feature *df;
317
318 for (df = cpuid_dependent_features; df->feature; df++) {
319
320 if (!cpu_has(c, df->feature))
321 continue;
322 /*
323 * Note: cpuid_level is set to -1 if unavailable, but
324 * extended_extended_level is set to 0 if unavailable
325 * and the legitimate extended levels are all negative
326 * when signed; hence the weird messing around with
327 * signs here...
328 */
329 if (!((s32)df->level < 0 ?
330 (u32)df->level > (u32)c->extended_cpuid_level :
331 (s32)df->level > (s32)c->cpuid_level))
332 continue;
333
334 clear_cpu_cap(c, df->feature);
335 if (!warn)
336 continue;
337
338 printk(KERN_WARNING
339 "CPU: CPU feature %s disabled, no CPUID level 0x%x\n",
340 x86_cap_flags[df->feature], df->level);
341 }
342}
343
344/*
345 * Naming convention should be: <Name> [(<Codename>)]
346 * This table only is used unless init_<vendor>() below doesn't set it;
347 * in particular, if CPUID levels 0x80000002..4 are supported, this
348 * isn't used
349 */
350
351/* Look up CPU names by table lookup. */
352static const char *table_lookup_model(struct cpuinfo_x86 *c)
353{
354#ifdef CONFIG_X86_32
355 const struct legacy_cpu_model_info *info;
356
357 if (c->x86_model >= 16)
358 return NULL; /* Range check */
359
360 if (!this_cpu)
361 return NULL;
362
363 info = this_cpu->legacy_models;
364
365 while (info->family) {
366 if (info->family == c->x86)
367 return info->model_names[c->x86_model];
368 info++;
369 }
370#endif
371 return NULL; /* Not found */
372}
373
374__u32 cpu_caps_cleared[NCAPINTS];
375__u32 cpu_caps_set[NCAPINTS];
376
377void load_percpu_segment(int cpu)
378{
379#ifdef CONFIG_X86_32
380 loadsegment(fs, __KERNEL_PERCPU);
381#else
382 loadsegment(gs, 0);
383 wrmsrl(MSR_GS_BASE, (unsigned long)per_cpu(irq_stack_union.gs_base, cpu));
384#endif
385 load_stack_canary_segment();
386}
387
388/*
389 * Current gdt points %fs at the "master" per-cpu area: after this,
390 * it's on the real one.
391 */
392void switch_to_new_gdt(int cpu)
393{
394 struct desc_ptr gdt_descr;
395
396 gdt_descr.address = (long)get_cpu_gdt_table(cpu);
397 gdt_descr.size = GDT_SIZE - 1;
398 load_gdt(&gdt_descr);
399 /* Reload the per-cpu base */
400
401 load_percpu_segment(cpu);
402}
403
404static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
405
406static void get_model_name(struct cpuinfo_x86 *c)
407{
408 unsigned int *v;
409 char *p, *q;
410
411 if (c->extended_cpuid_level < 0x80000004)
412 return;
413
414 v = (unsigned int *)c->x86_model_id;
415 cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
416 cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
417 cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
418 c->x86_model_id[48] = 0;
419
420 /*
421 * Intel chips right-justify this string for some dumb reason;
422 * undo that brain damage:
423 */
424 p = q = &c->x86_model_id[0];
425 while (*p == ' ')
426 p++;
427 if (p != q) {
428 while (*p)
429 *q++ = *p++;
430 while (q <= &c->x86_model_id[48])
431 *q++ = '\0'; /* Zero-pad the rest */
432 }
433}
434
435void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
436{
437 unsigned int n, dummy, ebx, ecx, edx, l2size;
438
439 n = c->extended_cpuid_level;
440
441 if (n >= 0x80000005) {
442 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
443 c->x86_cache_size = (ecx>>24) + (edx>>24);
444#ifdef CONFIG_X86_64
445 /* On K8 L1 TLB is inclusive, so don't count it */
446 c->x86_tlbsize = 0;
447#endif
448 }
449
450 if (n < 0x80000006) /* Some chips just has a large L1. */
451 return;
452
453 cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
454 l2size = ecx >> 16;
455
456#ifdef CONFIG_X86_64
457 c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
458#else
459 /* do processor-specific cache resizing */
460 if (this_cpu->legacy_cache_size)
461 l2size = this_cpu->legacy_cache_size(c, l2size);
462
463 /* Allow user to override all this if necessary. */
464 if (cachesize_override != -1)
465 l2size = cachesize_override;
466
467 if (l2size == 0)
468 return; /* Again, no L2 cache is possible */
469#endif
470
471 c->x86_cache_size = l2size;
472}
473
474u16 __read_mostly tlb_lli_4k[NR_INFO];
475u16 __read_mostly tlb_lli_2m[NR_INFO];
476u16 __read_mostly tlb_lli_4m[NR_INFO];
477u16 __read_mostly tlb_lld_4k[NR_INFO];
478u16 __read_mostly tlb_lld_2m[NR_INFO];
479u16 __read_mostly tlb_lld_4m[NR_INFO];
480u16 __read_mostly tlb_lld_1g[NR_INFO];
481
482/*
483 * tlb_flushall_shift shows the balance point in replacing cr3 write
484 * with multiple 'invlpg'. It will do this replacement when
485 * flush_tlb_lines <= active_lines/2^tlb_flushall_shift.
486 * If tlb_flushall_shift is -1, means the replacement will be disabled.
487 */
488s8 __read_mostly tlb_flushall_shift = -1;
489
490void cpu_detect_tlb(struct cpuinfo_x86 *c)
491{
492 if (this_cpu->c_detect_tlb)
493 this_cpu->c_detect_tlb(c);
494
495 printk(KERN_INFO "Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n"
496 "Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n"
497 "tlb_flushall_shift: %d\n",
498 tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
499 tlb_lli_4m[ENTRIES], tlb_lld_4k[ENTRIES],
500 tlb_lld_2m[ENTRIES], tlb_lld_4m[ENTRIES],
501 tlb_lld_1g[ENTRIES], tlb_flushall_shift);
502}
503
504void detect_ht(struct cpuinfo_x86 *c)
505{
506#ifdef CONFIG_X86_HT
507 u32 eax, ebx, ecx, edx;
508 int index_msb, core_bits;
509 static bool printed;
510
511 if (!cpu_has(c, X86_FEATURE_HT))
512 return;
513
514 if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
515 goto out;
516
517 if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
518 return;
519
520 cpuid(1, &eax, &ebx, &ecx, &edx);
521
522 smp_num_siblings = (ebx & 0xff0000) >> 16;
523
524 if (smp_num_siblings == 1) {
525 printk_once(KERN_INFO "CPU0: Hyper-Threading is disabled\n");
526 goto out;
527 }
528
529 if (smp_num_siblings <= 1)
530 goto out;
531
532 index_msb = get_count_order(smp_num_siblings);
533 c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
534
535 smp_num_siblings = smp_num_siblings / c->x86_max_cores;
536
537 index_msb = get_count_order(smp_num_siblings);
538
539 core_bits = get_count_order(c->x86_max_cores);
540
541 c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
542 ((1 << core_bits) - 1);
543
544out:
545 if (!printed && (c->x86_max_cores * smp_num_siblings) > 1) {
546 printk(KERN_INFO "CPU: Physical Processor ID: %d\n",
547 c->phys_proc_id);
548 printk(KERN_INFO "CPU: Processor Core ID: %d\n",
549 c->cpu_core_id);
550 printed = 1;
551 }
552#endif
553}
554
555static void get_cpu_vendor(struct cpuinfo_x86 *c)
556{
557 char *v = c->x86_vendor_id;
558 int i;
559
560 for (i = 0; i < X86_VENDOR_NUM; i++) {
561 if (!cpu_devs[i])
562 break;
563
564 if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
565 (cpu_devs[i]->c_ident[1] &&
566 !strcmp(v, cpu_devs[i]->c_ident[1]))) {
567
568 this_cpu = cpu_devs[i];
569 c->x86_vendor = this_cpu->c_x86_vendor;
570 return;
571 }
572 }
573
574 printk_once(KERN_ERR
575 "CPU: vendor_id '%s' unknown, using generic init.\n" \
576 "CPU: Your system may be unstable.\n", v);
577
578 c->x86_vendor = X86_VENDOR_UNKNOWN;
579 this_cpu = &default_cpu;
580}
581
582void cpu_detect(struct cpuinfo_x86 *c)
583{
584 /* Get vendor name */
585 cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
586 (unsigned int *)&c->x86_vendor_id[0],
587 (unsigned int *)&c->x86_vendor_id[8],
588 (unsigned int *)&c->x86_vendor_id[4]);
589
590 c->x86 = 4;
591 /* Intel-defined flags: level 0x00000001 */
592 if (c->cpuid_level >= 0x00000001) {
593 u32 junk, tfms, cap0, misc;
594
595 cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
596 c->x86 = (tfms >> 8) & 0xf;
597 c->x86_model = (tfms >> 4) & 0xf;
598 c->x86_mask = tfms & 0xf;
599
600 if (c->x86 == 0xf)
601 c->x86 += (tfms >> 20) & 0xff;
602 if (c->x86 >= 0x6)
603 c->x86_model += ((tfms >> 16) & 0xf) << 4;
604
605 if (cap0 & (1<<19)) {
606 c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
607 c->x86_cache_alignment = c->x86_clflush_size;
608 }
609 }
610}
611
612void get_cpu_cap(struct cpuinfo_x86 *c)
613{
614 u32 tfms, xlvl;
615 u32 ebx;
616
617 /* Intel-defined flags: level 0x00000001 */
618 if (c->cpuid_level >= 0x00000001) {
619 u32 capability, excap;
620
621 cpuid(0x00000001, &tfms, &ebx, &excap, &capability);
622 c->x86_capability[0] = capability;
623 c->x86_capability[4] = excap;
624 }
625
626 /* Additional Intel-defined flags: level 0x00000007 */
627 if (c->cpuid_level >= 0x00000007) {
628 u32 eax, ebx, ecx, edx;
629
630 cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
631
632 c->x86_capability[9] = ebx;
633 }
634
635 /* AMD-defined flags: level 0x80000001 */
636 xlvl = cpuid_eax(0x80000000);
637 c->extended_cpuid_level = xlvl;
638
639 if ((xlvl & 0xffff0000) == 0x80000000) {
640 if (xlvl >= 0x80000001) {
641 c->x86_capability[1] = cpuid_edx(0x80000001);
642 c->x86_capability[6] = cpuid_ecx(0x80000001);
643 }
644 }
645
646 if (c->extended_cpuid_level >= 0x80000008) {
647 u32 eax = cpuid_eax(0x80000008);
648
649 c->x86_virt_bits = (eax >> 8) & 0xff;
650 c->x86_phys_bits = eax & 0xff;
651 }
652#ifdef CONFIG_X86_32
653 else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
654 c->x86_phys_bits = 36;
655#endif
656
657 if (c->extended_cpuid_level >= 0x80000007)
658 c->x86_power = cpuid_edx(0x80000007);
659
660 init_scattered_cpuid_features(c);
661}
662
663static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
664{
665#ifdef CONFIG_X86_32
666 int i;
667
668 /*
669 * First of all, decide if this is a 486 or higher
670 * It's a 486 if we can modify the AC flag
671 */
672 if (flag_is_changeable_p(X86_EFLAGS_AC))
673 c->x86 = 4;
674 else
675 c->x86 = 3;
676
677 for (i = 0; i < X86_VENDOR_NUM; i++)
678 if (cpu_devs[i] && cpu_devs[i]->c_identify) {
679 c->x86_vendor_id[0] = 0;
680 cpu_devs[i]->c_identify(c);
681 if (c->x86_vendor_id[0]) {
682 get_cpu_vendor(c);
683 break;
684 }
685 }
686#endif
687}
688
689/*
690 * Do minimum CPU detection early.
691 * Fields really needed: vendor, cpuid_level, family, model, mask,
692 * cache alignment.
693 * The others are not touched to avoid unwanted side effects.
694 *
695 * WARNING: this function is only called on the BP. Don't add code here
696 * that is supposed to run on all CPUs.
697 */
698static void __init early_identify_cpu(struct cpuinfo_x86 *c)
699{
700#ifdef CONFIG_X86_64
701 c->x86_clflush_size = 64;
702 c->x86_phys_bits = 36;
703 c->x86_virt_bits = 48;
704#else
705 c->x86_clflush_size = 32;
706 c->x86_phys_bits = 32;
707 c->x86_virt_bits = 32;
708#endif
709 c->x86_cache_alignment = c->x86_clflush_size;
710
711 memset(&c->x86_capability, 0, sizeof c->x86_capability);
712 c->extended_cpuid_level = 0;
713
714 if (!have_cpuid_p())
715 identify_cpu_without_cpuid(c);
716
717 /* cyrix could have cpuid enabled via c_identify()*/
718 if (!have_cpuid_p())
719 return;
720
721 cpu_detect(c);
722 get_cpu_vendor(c);
723 get_cpu_cap(c);
724 fpu_detect(c);
725
726 if (this_cpu->c_early_init)
727 this_cpu->c_early_init(c);
728
729 c->cpu_index = 0;
730 filter_cpuid_features(c, false);
731
732 if (this_cpu->c_bsp_init)
733 this_cpu->c_bsp_init(c);
734
735 setup_force_cpu_cap(X86_FEATURE_ALWAYS);
736}
737
738void __init early_cpu_init(void)
739{
740 const struct cpu_dev *const *cdev;
741 int count = 0;
742
743#ifdef CONFIG_PROCESSOR_SELECT
744 printk(KERN_INFO "KERNEL supported cpus:\n");
745#endif
746
747 for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
748 const struct cpu_dev *cpudev = *cdev;
749
750 if (count >= X86_VENDOR_NUM)
751 break;
752 cpu_devs[count] = cpudev;
753 count++;
754
755#ifdef CONFIG_PROCESSOR_SELECT
756 {
757 unsigned int j;
758
759 for (j = 0; j < 2; j++) {
760 if (!cpudev->c_ident[j])
761 continue;
762 printk(KERN_INFO " %s %s\n", cpudev->c_vendor,
763 cpudev->c_ident[j]);
764 }
765 }
766#endif
767 }
768 early_identify_cpu(&boot_cpu_data);
769}
770
771/*
772 * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
773 * unfortunately, that's not true in practice because of early VIA
774 * chips and (more importantly) broken virtualizers that are not easy
775 * to detect. In the latter case it doesn't even *fail* reliably, so
776 * probing for it doesn't even work. Disable it completely on 32-bit
777 * unless we can find a reliable way to detect all the broken cases.
778 * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
779 */
780static void detect_nopl(struct cpuinfo_x86 *c)
781{
782#ifdef CONFIG_X86_32
783 clear_cpu_cap(c, X86_FEATURE_NOPL);
784#else
785 set_cpu_cap(c, X86_FEATURE_NOPL);
786#endif
787}
788
789static void generic_identify(struct cpuinfo_x86 *c)
790{
791 c->extended_cpuid_level = 0;
792
793 if (!have_cpuid_p())
794 identify_cpu_without_cpuid(c);
795
796 /* cyrix could have cpuid enabled via c_identify()*/
797 if (!have_cpuid_p())
798 return;
799
800 cpu_detect(c);
801
802 get_cpu_vendor(c);
803
804 get_cpu_cap(c);
805
806 if (c->cpuid_level >= 0x00000001) {
807 c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
808#ifdef CONFIG_X86_32
809# ifdef CONFIG_X86_HT
810 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
811# else
812 c->apicid = c->initial_apicid;
813# endif
814#endif
815 c->phys_proc_id = c->initial_apicid;
816 }
817
818 get_model_name(c); /* Default name */
819
820 detect_nopl(c);
821}
822
823/*
824 * This does the hard work of actually picking apart the CPU stuff...
825 */
826static void identify_cpu(struct cpuinfo_x86 *c)
827{
828 int i;
829
830 c->loops_per_jiffy = loops_per_jiffy;
831 c->x86_cache_size = -1;
832 c->x86_vendor = X86_VENDOR_UNKNOWN;
833 c->x86_model = c->x86_mask = 0; /* So far unknown... */
834 c->x86_vendor_id[0] = '\0'; /* Unset */
835 c->x86_model_id[0] = '\0'; /* Unset */
836 c->x86_max_cores = 1;
837 c->x86_coreid_bits = 0;
838#ifdef CONFIG_X86_64
839 c->x86_clflush_size = 64;
840 c->x86_phys_bits = 36;
841 c->x86_virt_bits = 48;
842#else
843 c->cpuid_level = -1; /* CPUID not detected */
844 c->x86_clflush_size = 32;
845 c->x86_phys_bits = 32;
846 c->x86_virt_bits = 32;
847#endif
848 c->x86_cache_alignment = c->x86_clflush_size;
849 memset(&c->x86_capability, 0, sizeof c->x86_capability);
850
851 generic_identify(c);
852
853 if (this_cpu->c_identify)
854 this_cpu->c_identify(c);
855
856 /* Clear/Set all flags overriden by options, after probe */
857 for (i = 0; i < NCAPINTS; i++) {
858 c->x86_capability[i] &= ~cpu_caps_cleared[i];
859 c->x86_capability[i] |= cpu_caps_set[i];
860 }
861
862#ifdef CONFIG_X86_64
863 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
864#endif
865
866 /*
867 * Vendor-specific initialization. In this section we
868 * canonicalize the feature flags, meaning if there are
869 * features a certain CPU supports which CPUID doesn't
870 * tell us, CPUID claiming incorrect flags, or other bugs,
871 * we handle them here.
872 *
873 * At the end of this section, c->x86_capability better
874 * indicate the features this CPU genuinely supports!
875 */
876 if (this_cpu->c_init)
877 this_cpu->c_init(c);
878
879 /* Disable the PN if appropriate */
880 squash_the_stupid_serial_number(c);
881
882 /* Set up SMEP/SMAP */
883 setup_smep(c);
884 setup_smap(c);
885
886 /*
887 * The vendor-specific functions might have changed features.
888 * Now we do "generic changes."
889 */
890
891 /* Filter out anything that depends on CPUID levels we don't have */
892 filter_cpuid_features(c, true);
893
894 /* If the model name is still unset, do table lookup. */
895 if (!c->x86_model_id[0]) {
896 const char *p;
897 p = table_lookup_model(c);
898 if (p)
899 strcpy(c->x86_model_id, p);
900 else
901 /* Last resort... */
902 sprintf(c->x86_model_id, "%02x/%02x",
903 c->x86, c->x86_model);
904 }
905
906#ifdef CONFIG_X86_64
907 detect_ht(c);
908#endif
909
910 init_hypervisor(c);
911 x86_init_rdrand(c);
912
913 /*
914 * Clear/Set all flags overriden by options, need do it
915 * before following smp all cpus cap AND.
916 */
917 for (i = 0; i < NCAPINTS; i++) {
918 c->x86_capability[i] &= ~cpu_caps_cleared[i];
919 c->x86_capability[i] |= cpu_caps_set[i];
920 }
921
922 /*
923 * On SMP, boot_cpu_data holds the common feature set between
924 * all CPUs; so make sure that we indicate which features are
925 * common between the CPUs. The first time this routine gets
926 * executed, c == &boot_cpu_data.
927 */
928 if (c != &boot_cpu_data) {
929 /* AND the already accumulated flags with these */
930 for (i = 0; i < NCAPINTS; i++)
931 boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
932
933 /* OR, i.e. replicate the bug flags */
934 for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
935 c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
936 }
937
938 /* Init Machine Check Exception if available. */
939 mcheck_cpu_init(c);
940
941 select_idle_routine(c);
942
943#ifdef CONFIG_NUMA
944 numa_add_cpu(smp_processor_id());
945#endif
946}
947
948#ifdef CONFIG_X86_64
949static void vgetcpu_set_mode(void)
950{
951 if (cpu_has(&boot_cpu_data, X86_FEATURE_RDTSCP))
952 vgetcpu_mode = VGETCPU_RDTSCP;
953 else
954 vgetcpu_mode = VGETCPU_LSL;
955}
956#endif
957
958void __init identify_boot_cpu(void)
959{
960 identify_cpu(&boot_cpu_data);
961 init_amd_e400_c1e_mask();
962#ifdef CONFIG_X86_32
963 sysenter_setup();
964 enable_sep_cpu();
965#else
966 vgetcpu_set_mode();
967#endif
968 cpu_detect_tlb(&boot_cpu_data);
969}
970
971void identify_secondary_cpu(struct cpuinfo_x86 *c)
972{
973 BUG_ON(c == &boot_cpu_data);
974 identify_cpu(c);
975#ifdef CONFIG_X86_32
976 enable_sep_cpu();
977#endif
978 mtrr_ap_init();
979}
980
981struct msr_range {
982 unsigned min;
983 unsigned max;
984};
985
986static const struct msr_range msr_range_array[] = {
987 { 0x00000000, 0x00000418},
988 { 0xc0000000, 0xc000040b},
989 { 0xc0010000, 0xc0010142},
990 { 0xc0011000, 0xc001103b},
991};
992
993static void __print_cpu_msr(void)
994{
995 unsigned index_min, index_max;
996 unsigned index;
997 u64 val;
998 int i;
999
1000 for (i = 0; i < ARRAY_SIZE(msr_range_array); i++) {
1001 index_min = msr_range_array[i].min;
1002 index_max = msr_range_array[i].max;
1003
1004 for (index = index_min; index < index_max; index++) {
1005 if (rdmsrl_safe(index, &val))
1006 continue;
1007 printk(KERN_INFO " MSR%08x: %016llx\n", index, val);
1008 }
1009 }
1010}
1011
1012static int show_msr;
1013
1014static __init int setup_show_msr(char *arg)
1015{
1016 int num;
1017
1018 get_option(&arg, &num);
1019
1020 if (num > 0)
1021 show_msr = num;
1022 return 1;
1023}
1024__setup("show_msr=", setup_show_msr);
1025
1026static __init int setup_noclflush(char *arg)
1027{
1028 setup_clear_cpu_cap(X86_FEATURE_CLFLUSH);
1029 setup_clear_cpu_cap(X86_FEATURE_CLFLUSHOPT);
1030 return 1;
1031}
1032__setup("noclflush", setup_noclflush);
1033
1034void print_cpu_info(struct cpuinfo_x86 *c)
1035{
1036 const char *vendor = NULL;
1037
1038 if (c->x86_vendor < X86_VENDOR_NUM) {
1039 vendor = this_cpu->c_vendor;
1040 } else {
1041 if (c->cpuid_level >= 0)
1042 vendor = c->x86_vendor_id;
1043 }
1044
1045 if (vendor && !strstr(c->x86_model_id, vendor))
1046 printk(KERN_CONT "%s ", vendor);
1047
1048 if (c->x86_model_id[0])
1049 printk(KERN_CONT "%s", strim(c->x86_model_id));
1050 else
1051 printk(KERN_CONT "%d86", c->x86);
1052
1053 printk(KERN_CONT " (fam: %02x, model: %02x", c->x86, c->x86_model);
1054
1055 if (c->x86_mask || c->cpuid_level >= 0)
1056 printk(KERN_CONT ", stepping: %02x)\n", c->x86_mask);
1057 else
1058 printk(KERN_CONT ")\n");
1059
1060 print_cpu_msr(c);
1061}
1062
1063void print_cpu_msr(struct cpuinfo_x86 *c)
1064{
1065 if (c->cpu_index < show_msr)
1066 __print_cpu_msr();
1067}
1068
1069static __init int setup_disablecpuid(char *arg)
1070{
1071 int bit;
1072
1073 if (get_option(&arg, &bit) && bit < NCAPINTS*32)
1074 setup_clear_cpu_cap(bit);
1075 else
1076 return 0;
1077
1078 return 1;
1079}
1080__setup("clearcpuid=", setup_disablecpuid);
1081
1082DEFINE_PER_CPU(unsigned long, kernel_stack) =
1083 (unsigned long)&init_thread_union - KERNEL_STACK_OFFSET + THREAD_SIZE;
1084EXPORT_PER_CPU_SYMBOL(kernel_stack);
1085
1086#ifdef CONFIG_X86_64
1087struct desc_ptr idt_descr = { NR_VECTORS * 16 - 1, (unsigned long) idt_table };
1088struct desc_ptr debug_idt_descr = { NR_VECTORS * 16 - 1,
1089 (unsigned long) debug_idt_table };
1090
1091DEFINE_PER_CPU_FIRST(union irq_stack_union,
1092 irq_stack_union) __aligned(PAGE_SIZE) __visible;
1093
1094/*
1095 * The following four percpu variables are hot. Align current_task to
1096 * cacheline size such that all four fall in the same cacheline.
1097 */
1098DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
1099 &init_task;
1100EXPORT_PER_CPU_SYMBOL(current_task);
1101
1102DEFINE_PER_CPU(char *, irq_stack_ptr) =
1103 init_per_cpu_var(irq_stack_union.irq_stack) + IRQ_STACK_SIZE - 64;
1104
1105DEFINE_PER_CPU(unsigned int, irq_count) __visible = -1;
1106
1107DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1108EXPORT_PER_CPU_SYMBOL(__preempt_count);
1109
1110DEFINE_PER_CPU(struct task_struct *, fpu_owner_task);
1111
1112/*
1113 * Special IST stacks which the CPU switches to when it calls
1114 * an IST-marked descriptor entry. Up to 7 stacks (hardware
1115 * limit), all of them are 4K, except the debug stack which
1116 * is 8K.
1117 */
1118static const unsigned int exception_stack_sizes[N_EXCEPTION_STACKS] = {
1119 [0 ... N_EXCEPTION_STACKS - 1] = EXCEPTION_STKSZ,
1120 [DEBUG_STACK - 1] = DEBUG_STKSZ
1121};
1122
1123static DEFINE_PER_CPU_PAGE_ALIGNED(char, exception_stacks
1124 [(N_EXCEPTION_STACKS - 1) * EXCEPTION_STKSZ + DEBUG_STKSZ]);
1125
1126/* May not be marked __init: used by software suspend */
1127void syscall_init(void)
1128{
1129 /*
1130 * LSTAR and STAR live in a bit strange symbiosis.
1131 * They both write to the same internal register. STAR allows to
1132 * set CS/DS but only a 32bit target. LSTAR sets the 64bit rip.
1133 */
1134 wrmsrl(MSR_STAR, ((u64)__USER32_CS)<<48 | ((u64)__KERNEL_CS)<<32);
1135 wrmsrl(MSR_LSTAR, system_call);
1136 wrmsrl(MSR_CSTAR, ignore_sysret);
1137
1138#ifdef CONFIG_IA32_EMULATION
1139 syscall32_cpu_init();
1140#endif
1141
1142 /* Flags to clear on syscall */
1143 wrmsrl(MSR_SYSCALL_MASK,
1144 X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|
1145 X86_EFLAGS_IOPL|X86_EFLAGS_AC);
1146}
1147
1148/*
1149 * Copies of the original ist values from the tss are only accessed during
1150 * debugging, no special alignment required.
1151 */
1152DEFINE_PER_CPU(struct orig_ist, orig_ist);
1153
1154static DEFINE_PER_CPU(unsigned long, debug_stack_addr);
1155DEFINE_PER_CPU(int, debug_stack_usage);
1156
1157int is_debug_stack(unsigned long addr)
1158{
1159 return __get_cpu_var(debug_stack_usage) ||
1160 (addr <= __get_cpu_var(debug_stack_addr) &&
1161 addr > (__get_cpu_var(debug_stack_addr) - DEBUG_STKSZ));
1162}
1163
1164DEFINE_PER_CPU(u32, debug_idt_ctr);
1165
1166void debug_stack_set_zero(void)
1167{
1168 this_cpu_inc(debug_idt_ctr);
1169 load_current_idt();
1170}
1171
1172void debug_stack_reset(void)
1173{
1174 if (WARN_ON(!this_cpu_read(debug_idt_ctr)))
1175 return;
1176 if (this_cpu_dec_return(debug_idt_ctr) == 0)
1177 load_current_idt();
1178}
1179
1180#else /* CONFIG_X86_64 */
1181
1182DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
1183EXPORT_PER_CPU_SYMBOL(current_task);
1184DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1185EXPORT_PER_CPU_SYMBOL(__preempt_count);
1186DEFINE_PER_CPU(struct task_struct *, fpu_owner_task);
1187
1188#ifdef CONFIG_CC_STACKPROTECTOR
1189DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
1190#endif
1191
1192#endif /* CONFIG_X86_64 */
1193
1194/*
1195 * Clear all 6 debug registers:
1196 */
1197static void clear_all_debug_regs(void)
1198{
1199 int i;
1200
1201 for (i = 0; i < 8; i++) {
1202 /* Ignore db4, db5 */
1203 if ((i == 4) || (i == 5))
1204 continue;
1205
1206 set_debugreg(0, i);
1207 }
1208}
1209
1210#ifdef CONFIG_KGDB
1211/*
1212 * Restore debug regs if using kgdbwait and you have a kernel debugger
1213 * connection established.
1214 */
1215static void dbg_restore_debug_regs(void)
1216{
1217 if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
1218 arch_kgdb_ops.correct_hw_break();
1219}
1220#else /* ! CONFIG_KGDB */
1221#define dbg_restore_debug_regs()
1222#endif /* ! CONFIG_KGDB */
1223
1224/*
1225 * cpu_init() initializes state that is per-CPU. Some data is already
1226 * initialized (naturally) in the bootstrap process, such as the GDT
1227 * and IDT. We reload them nevertheless, this function acts as a
1228 * 'CPU state barrier', nothing should get across.
1229 * A lot of state is already set up in PDA init for 64 bit
1230 */
1231#ifdef CONFIG_X86_64
1232
1233void cpu_init(void)
1234{
1235 struct orig_ist *oist;
1236 struct task_struct *me;
1237 struct tss_struct *t;
1238 unsigned long v;
1239 int cpu;
1240 int i;
1241
1242 /*
1243 * Load microcode on this cpu if a valid microcode is available.
1244 * This is early microcode loading procedure.
1245 */
1246 load_ucode_ap();
1247
1248 cpu = stack_smp_processor_id();
1249 t = &per_cpu(init_tss, cpu);
1250 oist = &per_cpu(orig_ist, cpu);
1251
1252#ifdef CONFIG_NUMA
1253 if (this_cpu_read(numa_node) == 0 &&
1254 early_cpu_to_node(cpu) != NUMA_NO_NODE)
1255 set_numa_node(early_cpu_to_node(cpu));
1256#endif
1257
1258 me = current;
1259
1260 if (cpumask_test_and_set_cpu(cpu, cpu_initialized_mask))
1261 panic("CPU#%d already initialized!\n", cpu);
1262
1263 pr_debug("Initializing CPU#%d\n", cpu);
1264
1265 clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1266
1267 /*
1268 * Initialize the per-CPU GDT with the boot GDT,
1269 * and set up the GDT descriptor:
1270 */
1271
1272 switch_to_new_gdt(cpu);
1273 loadsegment(fs, 0);
1274
1275 load_current_idt();
1276
1277 memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
1278 syscall_init();
1279
1280 wrmsrl(MSR_FS_BASE, 0);
1281 wrmsrl(MSR_KERNEL_GS_BASE, 0);
1282 barrier();
1283
1284 x86_configure_nx();
1285 enable_x2apic();
1286
1287 /*
1288 * set up and load the per-CPU TSS
1289 */
1290 if (!oist->ist[0]) {
1291 char *estacks = per_cpu(exception_stacks, cpu);
1292
1293 for (v = 0; v < N_EXCEPTION_STACKS; v++) {
1294 estacks += exception_stack_sizes[v];
1295 oist->ist[v] = t->x86_tss.ist[v] =
1296 (unsigned long)estacks;
1297 if (v == DEBUG_STACK-1)
1298 per_cpu(debug_stack_addr, cpu) = (unsigned long)estacks;
1299 }
1300 }
1301
1302 t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
1303
1304 /*
1305 * <= is required because the CPU will access up to
1306 * 8 bits beyond the end of the IO permission bitmap.
1307 */
1308 for (i = 0; i <= IO_BITMAP_LONGS; i++)
1309 t->io_bitmap[i] = ~0UL;
1310
1311 atomic_inc(&init_mm.mm_count);
1312 me->active_mm = &init_mm;
1313 BUG_ON(me->mm);
1314 enter_lazy_tlb(&init_mm, me);
1315
1316 load_sp0(t, ¤t->thread);
1317 set_tss_desc(cpu, t);
1318 load_TR_desc();
1319 load_LDT(&init_mm.context);
1320
1321 clear_all_debug_regs();
1322 dbg_restore_debug_regs();
1323
1324 fpu_init();
1325
1326 if (is_uv_system())
1327 uv_cpu_init();
1328}
1329
1330#else
1331
1332void cpu_init(void)
1333{
1334 int cpu = smp_processor_id();
1335 struct task_struct *curr = current;
1336 struct tss_struct *t = &per_cpu(init_tss, cpu);
1337 struct thread_struct *thread = &curr->thread;
1338
1339 show_ucode_info_early();
1340
1341 if (cpumask_test_and_set_cpu(cpu, cpu_initialized_mask)) {
1342 printk(KERN_WARNING "CPU#%d already initialized!\n", cpu);
1343 for (;;)
1344 local_irq_enable();
1345 }
1346
1347 printk(KERN_INFO "Initializing CPU#%d\n", cpu);
1348
1349 if (cpu_has_vme || cpu_has_tsc || cpu_has_de)
1350 clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1351
1352 load_current_idt();
1353 switch_to_new_gdt(cpu);
1354
1355 /*
1356 * Set up and load the per-CPU TSS and LDT
1357 */
1358 atomic_inc(&init_mm.mm_count);
1359 curr->active_mm = &init_mm;
1360 BUG_ON(curr->mm);
1361 enter_lazy_tlb(&init_mm, curr);
1362
1363 load_sp0(t, thread);
1364 set_tss_desc(cpu, t);
1365 load_TR_desc();
1366 load_LDT(&init_mm.context);
1367
1368 t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
1369
1370#ifdef CONFIG_DOUBLEFAULT
1371 /* Set up doublefault TSS pointer in the GDT */
1372 __set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
1373#endif
1374
1375 clear_all_debug_regs();
1376 dbg_restore_debug_regs();
1377
1378 fpu_init();
1379}
1380#endif
1381
1382#ifdef CONFIG_X86_DEBUG_STATIC_CPU_HAS
1383void warn_pre_alternatives(void)
1384{
1385 WARN(1, "You're using static_cpu_has before alternatives have run!\n");
1386}
1387EXPORT_SYMBOL_GPL(warn_pre_alternatives);
1388#endif
1389
1390inline bool __static_cpu_has_safe(u16 bit)
1391{
1392 return boot_cpu_has(bit);
1393}
1394EXPORT_SYMBOL_GPL(__static_cpu_has_safe);