Linux Audio

Check our new training course

Loading...
v5.9
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (C) 2017 - Cambridge Greys Ltd
  4 * Copyright (C) 2011 - 2014 Cisco Systems Inc
  5 * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
 
  6 * Derived (i.e. mostly copied) from arch/i386/kernel/irq.c:
  7 *	Copyright (C) 1992, 1998 Linus Torvalds, Ingo Molnar
  8 */
  9
 10#include <linux/cpumask.h>
 11#include <linux/hardirq.h>
 12#include <linux/interrupt.h>
 13#include <linux/kernel_stat.h>
 14#include <linux/module.h>
 15#include <linux/sched.h>
 16#include <linux/seq_file.h>
 17#include <linux/slab.h>
 18#include <as-layout.h>
 19#include <kern_util.h>
 20#include <os.h>
 21#include <irq_user.h>
 22
 23
 24extern void free_irqs(void);
 25
 26/* When epoll triggers we do not know why it did so
 27 * we can also have different IRQs for read and write.
 28 * This is why we keep a small irq_fd array for each fd -
 29 * one entry per IRQ type
 30 */
 31
 32struct irq_entry {
 33	struct irq_entry *next;
 34	int fd;
 35	struct irq_fd *irq_array[MAX_IRQ_TYPE + 1];
 36};
 37
 38static struct irq_entry *active_fds;
 39
 40static DEFINE_SPINLOCK(irq_lock);
 41
 42static void irq_io_loop(struct irq_fd *irq, struct uml_pt_regs *regs)
 43{
 44/*
 45 * irq->active guards against reentry
 46 * irq->pending accumulates pending requests
 47 * if pending is raised the irq_handler is re-run
 48 * until pending is cleared
 
 
 49 */
 50	if (irq->active) {
 51		irq->active = false;
 52		do {
 53			irq->pending = false;
 54			do_IRQ(irq->irq, regs);
 55		} while (irq->pending && (!irq->purge));
 56		if (!irq->purge)
 57			irq->active = true;
 58	} else {
 59		irq->pending = true;
 60	}
 61}
 62
 63void sigio_handler(int sig, struct siginfo *unused_si, struct uml_pt_regs *regs)
 64{
 65	struct irq_entry *irq_entry;
 66	struct irq_fd *irq;
 67
 68	int n, i, j;
 
 69
 70	while (1) {
 71		/* This is now lockless - epoll keeps back-referencesto the irqs
 72		 * which have trigger it so there is no need to walk the irq
 73		 * list and lock it every time. We avoid locking by turning off
 74		 * IO for a specific fd by executing os_del_epoll_fd(fd) before
 75		 * we do any changes to the actual data structures
 76		 */
 77		n = os_waiting_for_events_epoll();
 78
 79		if (n <= 0) {
 80			if (n == -EINTR)
 81				continue;
 82			else
 83				break;
 84		}
 85
 86		for (i = 0; i < n ; i++) {
 87			/* Epoll back reference is the entry with 3 irq_fd
 88			 * leaves - one for each irq type.
 89			 */
 90			irq_entry = (struct irq_entry *)
 91				os_epoll_get_data_pointer(i);
 92			for (j = 0; j < MAX_IRQ_TYPE ; j++) {
 93				irq = irq_entry->irq_array[j];
 94				if (irq == NULL)
 95					continue;
 96				if (os_epoll_triggered(i, irq->events) > 0)
 97					irq_io_loop(irq, regs);
 98				if (irq->purge) {
 99					irq_entry->irq_array[j] = NULL;
100					kfree(irq);
101				}
102			}
103		}
104	}
105
106	free_irqs();
107}
108
109static int assign_epoll_events_to_irq(struct irq_entry *irq_entry)
110{
111	int i;
112	int events = 0;
113	struct irq_fd *irq;
114
115	for (i = 0; i < MAX_IRQ_TYPE ; i++) {
116		irq = irq_entry->irq_array[i];
117		if (irq != NULL)
118			events = irq->events | events;
119	}
120	if (events > 0) {
121	/* os_add_epoll will call os_mod_epoll if this already exists */
122		return os_add_epoll_fd(events, irq_entry->fd, irq_entry);
123	}
124	/* No events - delete */
125	return os_del_epoll_fd(irq_entry->fd);
126}
127
128
129
130static int activate_fd(int irq, int fd, int type, void *dev_id)
131{
132	struct irq_fd *new_fd;
133	struct irq_entry *irq_entry;
134	int i, err, events;
135	unsigned long flags;
 
136
137	err = os_set_fd_async(fd);
138	if (err < 0)
139		goto out;
140
141	spin_lock_irqsave(&irq_lock, flags);
 
 
 
142
143	/* Check if we have an entry for this fd */
 
 
 
 
 
 
 
 
 
144
145	err = -EBUSY;
146	for (irq_entry = active_fds;
147		irq_entry != NULL; irq_entry = irq_entry->next) {
148		if (irq_entry->fd == fd)
149			break;
150	}
151
152	if (irq_entry == NULL) {
153		/* This needs to be atomic as it may be called from an
154		 * IRQ context.
155		 */
156		irq_entry = kmalloc(sizeof(struct irq_entry), GFP_ATOMIC);
157		if (irq_entry == NULL) {
158			printk(KERN_ERR
159				"Failed to allocate new IRQ entry\n");
160			goto out_unlock;
161		}
162		irq_entry->fd = fd;
163		for (i = 0; i < MAX_IRQ_TYPE; i++)
164			irq_entry->irq_array[i] = NULL;
165		irq_entry->next = active_fds;
166		active_fds = irq_entry;
167	}
168
169	/* Check if we are trying to re-register an interrupt for a
170	 * particular fd
171	 */
172
173	if (irq_entry->irq_array[type] != NULL) {
174		printk(KERN_ERR
175			"Trying to reregister IRQ %d FD %d TYPE %d ID %p\n",
176			irq, fd, type, dev_id
177		);
178		goto out_unlock;
179	} else {
180		/* New entry for this fd */
181
182		err = -ENOMEM;
183		new_fd = kmalloc(sizeof(struct irq_fd), GFP_ATOMIC);
184		if (new_fd == NULL)
185			goto out_unlock;
186
187		events = os_event_mask(type);
 
 
 
188
189		*new_fd = ((struct irq_fd) {
190			.id		= dev_id,
191			.irq		= irq,
192			.type		= type,
193			.events		= events,
194			.active		= true,
195			.pending	= false,
196			.purge		= false
197		});
198		/* Turn off any IO on this fd - allows us to
199		 * avoid locking the IRQ loop
200		 */
201		os_del_epoll_fd(irq_entry->fd);
202		irq_entry->irq_array[type] = new_fd;
 
 
 
 
 
 
203	}
204
205	/* Turn back IO on with the correct (new) IO event mask */
206	assign_epoll_events_to_irq(irq_entry);
 
207	spin_unlock_irqrestore(&irq_lock, flags);
208	maybe_sigio_broken(fd, (type != IRQ_NONE));
 
 
 
 
 
209
210	return 0;
211out_unlock:
 
212	spin_unlock_irqrestore(&irq_lock, flags);
213out:
 
 
214	return err;
215}
216
217/*
218 * Walk the IRQ list and dispose of any unused entries.
219 * Should be done under irq_lock.
220 */
221
222static void garbage_collect_irq_entries(void)
223{
224	int i;
225	bool reap;
226	struct irq_entry *walk;
227	struct irq_entry *previous = NULL;
228	struct irq_entry *to_free;
229
230	if (active_fds == NULL)
231		return;
232	walk = active_fds;
233	while (walk != NULL) {
234		reap = true;
235		for (i = 0; i < MAX_IRQ_TYPE ; i++) {
236			if (walk->irq_array[i] != NULL) {
237				reap = false;
238				break;
239			}
240		}
241		if (reap) {
242			if (previous == NULL)
243				active_fds = walk->next;
244			else
245				previous->next = walk->next;
246			to_free = walk;
247		} else {
248			to_free = NULL;
249		}
250		walk = walk->next;
251		kfree(to_free);
252	}
253}
254
255/*
256 * Walk the IRQ list and get the descriptor for our FD
257 */
 
258
259static struct irq_entry *get_irq_entry_by_fd(int fd)
260{
261	struct irq_entry *walk = active_fds;
262
263	while (walk != NULL) {
264		if (walk->fd == fd)
265			return walk;
266		walk = walk->next;
267	}
268	return NULL;
269}
270
 
 
 
 
271
272/*
273 * Walk the IRQ list and dispose of an entry for a specific
274 * device, fd and number. Note - if sharing an IRQ for read
275 * and writefor the same FD it will be disposed in either case.
276 * If this behaviour is undesirable use different IRQ ids.
277 */
278
279#define IGNORE_IRQ 1
280#define IGNORE_DEV (1<<1)
281
282static void do_free_by_irq_and_dev(
283	struct irq_entry *irq_entry,
284	unsigned int irq,
285	void *dev,
286	int flags
287)
288{
289	int i;
290	struct irq_fd *to_free;
291
292	for (i = 0; i < MAX_IRQ_TYPE ; i++) {
293		if (irq_entry->irq_array[i] != NULL) {
294			if (
295			((flags & IGNORE_IRQ) ||
296				(irq_entry->irq_array[i]->irq == irq)) &&
297			((flags & IGNORE_DEV) ||
298				(irq_entry->irq_array[i]->id == dev))
299			) {
300				/* Turn off any IO on this fd - allows us to
301				 * avoid locking the IRQ loop
302				 */
303				os_del_epoll_fd(irq_entry->fd);
304				to_free = irq_entry->irq_array[i];
305				irq_entry->irq_array[i] = NULL;
306				assign_epoll_events_to_irq(irq_entry);
307				if (to_free->active)
308					to_free->purge = true;
309				else
310					kfree(to_free);
311			}
312		}
313	}
314}
315
316void free_irq_by_fd(int fd)
317{
318	struct irq_entry *to_free;
319	unsigned long flags;
320
321	spin_lock_irqsave(&irq_lock, flags);
322	to_free = get_irq_entry_by_fd(fd);
323	if (to_free != NULL) {
324		do_free_by_irq_and_dev(
325			to_free,
326			-1,
327			NULL,
328			IGNORE_IRQ | IGNORE_DEV
329		);
 
 
330	}
331	garbage_collect_irq_entries();
332	spin_unlock_irqrestore(&irq_lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
333}
334EXPORT_SYMBOL(free_irq_by_fd);
335
336static void free_irq_by_irq_and_dev(unsigned int irq, void *dev)
337{
338	struct irq_entry *to_free;
339	unsigned long flags;
 
340
341	spin_lock_irqsave(&irq_lock, flags);
342	to_free = active_fds;
343	while (to_free != NULL) {
344		do_free_by_irq_and_dev(
345			to_free,
346			irq,
347			dev,
348			0
349		);
350		to_free = to_free->next;
351	}
352	garbage_collect_irq_entries();
353	spin_unlock_irqrestore(&irq_lock, flags);
354}
355
 
 
356
357void deactivate_fd(int fd, int irqnum)
358{
359	struct irq_entry *to_free;
360	unsigned long flags;
 
361
362	os_del_epoll_fd(fd);
363	spin_lock_irqsave(&irq_lock, flags);
364	to_free = get_irq_entry_by_fd(fd);
365	if (to_free != NULL) {
366		do_free_by_irq_and_dev(
367			to_free,
368			irqnum,
369			NULL,
370			IGNORE_DEV
371		);
372	}
373	garbage_collect_irq_entries();
 
374	spin_unlock_irqrestore(&irq_lock, flags);
 
375	ignore_sigio_fd(fd);
376}
377EXPORT_SYMBOL(deactivate_fd);
378
379/*
380 * Called just before shutdown in order to provide a clean exec
381 * environment in case the system is rebooting.  No locking because
382 * that would cause a pointless shutdown hang if something hadn't
383 * released the lock.
384 */
385int deactivate_all_fds(void)
386{
387	struct irq_entry *to_free;
 
388
389	/* Stop IO. The IRQ loop has no lock so this is our
390	 * only way of making sure we are safe to dispose
391	 * of all IRQ handlers
392	 */
393	os_set_ioignore();
394	to_free = active_fds;
395	while (to_free != NULL) {
396		do_free_by_irq_and_dev(
397			to_free,
398			-1,
399			NULL,
400			IGNORE_IRQ | IGNORE_DEV
401		);
402		to_free = to_free->next;
403	}
404	/* don't garbage collect - we can no longer call kfree() here */
405	os_close_epoll_fd();
 
406	return 0;
407}
408
409/*
410 * do_IRQ handles all normal device IRQs (the special
411 * SMP cross-CPU interrupts have their own specific
412 * handlers).
413 */
414unsigned int do_IRQ(int irq, struct uml_pt_regs *regs)
415{
416	struct pt_regs *old_regs = set_irq_regs((struct pt_regs *)regs);
417	irq_enter();
418	generic_handle_irq(irq);
419	irq_exit();
420	set_irq_regs(old_regs);
421	return 1;
422}
423
424void um_free_irq(unsigned int irq, void *dev)
425{
426	free_irq_by_irq_and_dev(irq, dev);
427	free_irq(irq, dev);
428}
429EXPORT_SYMBOL(um_free_irq);
430
431int um_request_irq(unsigned int irq, int fd, int type,
432		   irq_handler_t handler,
433		   unsigned long irqflags, const char * devname,
434		   void *dev_id)
435{
436	int err;
437
438	if (fd != -1) {
439		err = activate_fd(irq, fd, type, dev_id);
440		if (err)
441			return err;
442	}
443
444	return request_irq(irq, handler, irqflags, devname, dev_id);
445}
446
447EXPORT_SYMBOL(um_request_irq);
 
448
449/*
450 * irq_chip must define at least enable/disable and ack when
451 * the edge handler is used.
452 */
453static void dummy(struct irq_data *d)
454{
455}
456
457/* This is used for everything else than the timer. */
458static struct irq_chip normal_irq_type = {
459	.name = "SIGIO",
460	.irq_disable = dummy,
461	.irq_enable = dummy,
462	.irq_ack = dummy,
463	.irq_mask = dummy,
464	.irq_unmask = dummy,
465};
466
467static struct irq_chip SIGVTALRM_irq_type = {
468	.name = "SIGVTALRM",
469	.irq_disable = dummy,
470	.irq_enable = dummy,
471	.irq_ack = dummy,
472	.irq_mask = dummy,
473	.irq_unmask = dummy,
474};
475
476void __init init_IRQ(void)
477{
478	int i;
479
480	irq_set_chip_and_handler(TIMER_IRQ, &SIGVTALRM_irq_type, handle_edge_irq);
481
482
483	for (i = 1; i <= LAST_IRQ; i++)
484		irq_set_chip_and_handler(i, &normal_irq_type, handle_edge_irq);
485	/* Initialize EPOLL Loop */
486	os_setup_epoll();
487}
488
489/*
490 * IRQ stack entry and exit:
491 *
492 * Unlike i386, UML doesn't receive IRQs on the normal kernel stack
493 * and switch over to the IRQ stack after some preparation.  We use
494 * sigaltstack to receive signals on a separate stack from the start.
495 * These two functions make sure the rest of the kernel won't be too
496 * upset by being on a different stack.  The IRQ stack has a
497 * thread_info structure at the bottom so that current et al continue
498 * to work.
499 *
500 * to_irq_stack copies the current task's thread_info to the IRQ stack
501 * thread_info and sets the tasks's stack to point to the IRQ stack.
502 *
503 * from_irq_stack copies the thread_info struct back (flags may have
504 * been modified) and resets the task's stack pointer.
505 *
506 * Tricky bits -
507 *
508 * What happens when two signals race each other?  UML doesn't block
509 * signals with sigprocmask, SA_DEFER, or sa_mask, so a second signal
510 * could arrive while a previous one is still setting up the
511 * thread_info.
512 *
513 * There are three cases -
514 *     The first interrupt on the stack - sets up the thread_info and
515 * handles the interrupt
516 *     A nested interrupt interrupting the copying of the thread_info -
517 * can't handle the interrupt, as the stack is in an unknown state
518 *     A nested interrupt not interrupting the copying of the
519 * thread_info - doesn't do any setup, just handles the interrupt
520 *
521 * The first job is to figure out whether we interrupted stack setup.
522 * This is done by xchging the signal mask with thread_info->pending.
523 * If the value that comes back is zero, then there is no setup in
524 * progress, and the interrupt can be handled.  If the value is
525 * non-zero, then there is stack setup in progress.  In order to have
526 * the interrupt handled, we leave our signal in the mask, and it will
527 * be handled by the upper handler after it has set up the stack.
528 *
529 * Next is to figure out whether we are the outer handler or a nested
530 * one.  As part of setting up the stack, thread_info->real_thread is
531 * set to non-NULL (and is reset to NULL on exit).  This is the
532 * nesting indicator.  If it is non-NULL, then the stack is already
533 * set up and the handler can run.
534 */
535
536static unsigned long pending_mask;
537
538unsigned long to_irq_stack(unsigned long *mask_out)
539{
540	struct thread_info *ti;
541	unsigned long mask, old;
542	int nested;
543
544	mask = xchg(&pending_mask, *mask_out);
545	if (mask != 0) {
546		/*
547		 * If any interrupts come in at this point, we want to
548		 * make sure that their bits aren't lost by our
549		 * putting our bit in.  So, this loop accumulates bits
550		 * until xchg returns the same value that we put in.
551		 * When that happens, there were no new interrupts,
552		 * and pending_mask contains a bit for each interrupt
553		 * that came in.
554		 */
555		old = *mask_out;
556		do {
557			old |= mask;
558			mask = xchg(&pending_mask, old);
559		} while (mask != old);
560		return 1;
561	}
562
563	ti = current_thread_info();
564	nested = (ti->real_thread != NULL);
565	if (!nested) {
566		struct task_struct *task;
567		struct thread_info *tti;
568
569		task = cpu_tasks[ti->cpu].task;
570		tti = task_thread_info(task);
571
572		*ti = *tti;
573		ti->real_thread = tti;
574		task->stack = ti;
575	}
576
577	mask = xchg(&pending_mask, 0);
578	*mask_out |= mask | nested;
579	return 0;
580}
581
582unsigned long from_irq_stack(int nested)
583{
584	struct thread_info *ti, *to;
585	unsigned long mask;
586
587	ti = current_thread_info();
588
589	pending_mask = 1;
590
591	to = ti->real_thread;
592	current->stack = to;
593	ti->real_thread = NULL;
594	*to = *ti;
595
596	mask = xchg(&pending_mask, 0);
597	return mask & ~1;
598}
599
v3.15
 
  1/*
 
 
  2 * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
  3 * Licensed under the GPL
  4 * Derived (i.e. mostly copied) from arch/i386/kernel/irq.c:
  5 *	Copyright (C) 1992, 1998 Linus Torvalds, Ingo Molnar
  6 */
  7
  8#include <linux/cpumask.h>
  9#include <linux/hardirq.h>
 10#include <linux/interrupt.h>
 11#include <linux/kernel_stat.h>
 12#include <linux/module.h>
 13#include <linux/sched.h>
 14#include <linux/seq_file.h>
 15#include <linux/slab.h>
 16#include <as-layout.h>
 17#include <kern_util.h>
 18#include <os.h>
 
 19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 20/*
 21 * This list is accessed under irq_lock, except in sigio_handler,
 22 * where it is safe from being modified.  IRQ handlers won't change it -
 23 * if an IRQ source has vanished, it will be freed by free_irqs just
 24 * before returning from sigio_handler.  That will process a separate
 25 * list of irqs to free, with its own locking, coming back here to
 26 * remove list elements, taking the irq_lock to do so.
 27 */
 28static struct irq_fd *active_fds = NULL;
 29static struct irq_fd **last_irq_ptr = &active_fds;
 30
 31extern void free_irqs(void);
 
 
 
 
 
 
 
 
 32
 33void sigio_handler(int sig, struct siginfo *unused_si, struct uml_pt_regs *regs)
 34{
 35	struct irq_fd *irq_fd;
 36	int n;
 37
 38	if (smp_sigio_handler())
 39		return;
 40
 41	while (1) {
 42		n = os_waiting_for_events(active_fds);
 
 
 
 
 
 
 
 43		if (n <= 0) {
 44			if (n == -EINTR)
 45				continue;
 46			else break;
 
 47		}
 48
 49		for (irq_fd = active_fds; irq_fd != NULL;
 50		     irq_fd = irq_fd->next) {
 51			if (irq_fd->current_events != 0) {
 52				irq_fd->current_events = 0;
 53				do_IRQ(irq_fd->irq, regs);
 
 
 
 
 
 
 
 
 
 
 
 54			}
 55		}
 56	}
 57
 58	free_irqs();
 59}
 60
 61static DEFINE_SPINLOCK(irq_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 62
 63static int activate_fd(int irq, int fd, int type, void *dev_id)
 64{
 65	struct pollfd *tmp_pfd;
 66	struct irq_fd *new_fd, *irq_fd;
 
 67	unsigned long flags;
 68	int events, err, n;
 69
 70	err = os_set_fd_async(fd);
 71	if (err < 0)
 72		goto out;
 73
 74	err = -ENOMEM;
 75	new_fd = kmalloc(sizeof(struct irq_fd), GFP_KERNEL);
 76	if (new_fd == NULL)
 77		goto out;
 78
 79	if (type == IRQ_READ)
 80		events = UM_POLLIN | UM_POLLPRI;
 81	else events = UM_POLLOUT;
 82	*new_fd = ((struct irq_fd) { .next  		= NULL,
 83				     .id 		= dev_id,
 84				     .fd 		= fd,
 85				     .type 		= type,
 86				     .irq 		= irq,
 87				     .events 		= events,
 88				     .current_events 	= 0 } );
 89
 90	err = -EBUSY;
 91	spin_lock_irqsave(&irq_lock, flags);
 92	for (irq_fd = active_fds; irq_fd != NULL; irq_fd = irq_fd->next) {
 93		if ((irq_fd->fd == fd) && (irq_fd->type == type)) {
 94			printk(KERN_ERR "Registering fd %d twice\n", fd);
 95			printk(KERN_ERR "Irqs : %d, %d\n", irq_fd->irq, irq);
 96			printk(KERN_ERR "Ids : 0x%p, 0x%p\n", irq_fd->id,
 97			       dev_id);
 
 
 
 
 
 
 
 98			goto out_unlock;
 99		}
 
 
 
 
 
100	}
101
102	if (type == IRQ_WRITE)
103		fd = -1;
 
104
105	tmp_pfd = NULL;
106	n = 0;
 
 
 
 
 
 
 
 
 
 
 
107
108	while (1) {
109		n = os_create_pollfd(fd, events, tmp_pfd, n);
110		if (n == 0)
111			break;
112
113		/*
114		 * n > 0
115		 * It means we couldn't put new pollfd to current pollfds
116		 * and tmp_fds is NULL or too small for new pollfds array.
117		 * Needed size is equal to n as minimum.
118		 *
119		 * Here we have to drop the lock in order to call
120		 * kmalloc, which might sleep.
121		 * If something else came in and changed the pollfds array
122		 * so we will not be able to put new pollfd struct to pollfds
123		 * then we free the buffer tmp_fds and try again.
124		 */
125		spin_unlock_irqrestore(&irq_lock, flags);
126		kfree(tmp_pfd);
127
128		tmp_pfd = kmalloc(n, GFP_KERNEL);
129		if (tmp_pfd == NULL)
130			goto out_kfree;
131
132		spin_lock_irqsave(&irq_lock, flags);
133	}
134
135	*last_irq_ptr = new_fd;
136	last_irq_ptr = &new_fd->next;
137
138	spin_unlock_irqrestore(&irq_lock, flags);
139
140	/*
141	 * This calls activate_fd, so it has to be outside the critical
142	 * section.
143	 */
144	maybe_sigio_broken(fd, (type == IRQ_READ));
145
146	return 0;
147
148 out_unlock:
149	spin_unlock_irqrestore(&irq_lock, flags);
150 out_kfree:
151	kfree(new_fd);
152 out:
153	return err;
154}
155
156static void free_irq_by_cb(int (*test)(struct irq_fd *, void *), void *arg)
 
 
 
 
 
157{
158	unsigned long flags;
 
 
 
 
159
160	spin_lock_irqsave(&irq_lock, flags);
161	os_free_irq_by_cb(test, arg, active_fds, &last_irq_ptr);
162	spin_unlock_irqrestore(&irq_lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
163}
164
165struct irq_and_dev {
166	int irq;
167	void *dev;
168};
169
170static int same_irq_and_dev(struct irq_fd *irq, void *d)
171{
172	struct irq_and_dev *data = d;
173
174	return ((irq->irq == data->irq) && (irq->id == data->dev));
 
 
 
 
 
175}
176
177static void free_irq_by_irq_and_dev(unsigned int irq, void *dev)
178{
179	struct irq_and_dev data = ((struct irq_and_dev) { .irq  = irq,
180							  .dev  = dev });
181
182	free_irq_by_cb(same_irq_and_dev, &data);
183}
 
 
 
 
 
 
 
184
185static int same_fd(struct irq_fd *irq, void *fd)
 
 
 
 
 
186{
187	return (irq->fd == *((int *)fd));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
188}
189
190void free_irq_by_fd(int fd)
191{
192	free_irq_by_cb(same_fd, &fd);
193}
194
195/* Must be called with irq_lock held */
196static struct irq_fd *find_irq_by_fd(int fd, int irqnum, int *index_out)
197{
198	struct irq_fd *irq;
199	int i = 0;
200	int fdi;
201
202	for (irq = active_fds; irq != NULL; irq = irq->next) {
203		if ((irq->fd == fd) && (irq->irq == irqnum))
204			break;
205		i++;
206	}
207	if (irq == NULL) {
208		printk(KERN_ERR "find_irq_by_fd doesn't have descriptor %d\n",
209		       fd);
210		goto out;
211	}
212	fdi = os_get_pollfd(i);
213	if ((fdi != -1) && (fdi != fd)) {
214		printk(KERN_ERR "find_irq_by_fd - mismatch between active_fds "
215		       "and pollfds, fd %d vs %d, need %d\n", irq->fd,
216		       fdi, fd);
217		irq = NULL;
218		goto out;
219	}
220	*index_out = i;
221 out:
222	return irq;
223}
 
224
225void reactivate_fd(int fd, int irqnum)
226{
227	struct irq_fd *irq;
228	unsigned long flags;
229	int i;
230
231	spin_lock_irqsave(&irq_lock, flags);
232	irq = find_irq_by_fd(fd, irqnum, &i);
233	if (irq == NULL) {
234		spin_unlock_irqrestore(&irq_lock, flags);
235		return;
 
 
 
 
 
236	}
237	os_set_pollfd(i, irq->fd);
238	spin_unlock_irqrestore(&irq_lock, flags);
 
239
240	add_sigio_fd(fd);
241}
242
243void deactivate_fd(int fd, int irqnum)
244{
245	struct irq_fd *irq;
246	unsigned long flags;
247	int i;
248
 
249	spin_lock_irqsave(&irq_lock, flags);
250	irq = find_irq_by_fd(fd, irqnum, &i);
251	if (irq == NULL) {
252		spin_unlock_irqrestore(&irq_lock, flags);
253		return;
 
 
 
 
254	}
255
256	os_set_pollfd(i, -1);
257	spin_unlock_irqrestore(&irq_lock, flags);
258
259	ignore_sigio_fd(fd);
260}
261EXPORT_SYMBOL(deactivate_fd);
262
263/*
264 * Called just before shutdown in order to provide a clean exec
265 * environment in case the system is rebooting.  No locking because
266 * that would cause a pointless shutdown hang if something hadn't
267 * released the lock.
268 */
269int deactivate_all_fds(void)
270{
271	struct irq_fd *irq;
272	int err;
273
274	for (irq = active_fds; irq != NULL; irq = irq->next) {
275		err = os_clear_fd_async(irq->fd);
276		if (err)
277			return err;
 
 
 
 
 
 
 
 
 
 
278	}
279	/* If there is a signal already queued, after unblocking ignore it */
280	os_set_ioignore();
281
282	return 0;
283}
284
285/*
286 * do_IRQ handles all normal device IRQs (the special
287 * SMP cross-CPU interrupts have their own specific
288 * handlers).
289 */
290unsigned int do_IRQ(int irq, struct uml_pt_regs *regs)
291{
292	struct pt_regs *old_regs = set_irq_regs((struct pt_regs *)regs);
293	irq_enter();
294	generic_handle_irq(irq);
295	irq_exit();
296	set_irq_regs(old_regs);
297	return 1;
298}
299
300void um_free_irq(unsigned int irq, void *dev)
301{
302	free_irq_by_irq_and_dev(irq, dev);
303	free_irq(irq, dev);
304}
305EXPORT_SYMBOL(um_free_irq);
306
307int um_request_irq(unsigned int irq, int fd, int type,
308		   irq_handler_t handler,
309		   unsigned long irqflags, const char * devname,
310		   void *dev_id)
311{
312	int err;
313
314	if (fd != -1) {
315		err = activate_fd(irq, fd, type, dev_id);
316		if (err)
317			return err;
318	}
319
320	return request_irq(irq, handler, irqflags, devname, dev_id);
321}
322
323EXPORT_SYMBOL(um_request_irq);
324EXPORT_SYMBOL(reactivate_fd);
325
326/*
327 * irq_chip must define at least enable/disable and ack when
328 * the edge handler is used.
329 */
330static void dummy(struct irq_data *d)
331{
332}
333
334/* This is used for everything else than the timer. */
335static struct irq_chip normal_irq_type = {
336	.name = "SIGIO",
337	.irq_disable = dummy,
338	.irq_enable = dummy,
339	.irq_ack = dummy,
340	.irq_mask = dummy,
341	.irq_unmask = dummy,
342};
343
344static struct irq_chip SIGVTALRM_irq_type = {
345	.name = "SIGVTALRM",
346	.irq_disable = dummy,
347	.irq_enable = dummy,
348	.irq_ack = dummy,
349	.irq_mask = dummy,
350	.irq_unmask = dummy,
351};
352
353void __init init_IRQ(void)
354{
355	int i;
356
357	irq_set_chip_and_handler(TIMER_IRQ, &SIGVTALRM_irq_type, handle_edge_irq);
358
359	for (i = 1; i < NR_IRQS; i++)
 
360		irq_set_chip_and_handler(i, &normal_irq_type, handle_edge_irq);
 
 
361}
362
363/*
364 * IRQ stack entry and exit:
365 *
366 * Unlike i386, UML doesn't receive IRQs on the normal kernel stack
367 * and switch over to the IRQ stack after some preparation.  We use
368 * sigaltstack to receive signals on a separate stack from the start.
369 * These two functions make sure the rest of the kernel won't be too
370 * upset by being on a different stack.  The IRQ stack has a
371 * thread_info structure at the bottom so that current et al continue
372 * to work.
373 *
374 * to_irq_stack copies the current task's thread_info to the IRQ stack
375 * thread_info and sets the tasks's stack to point to the IRQ stack.
376 *
377 * from_irq_stack copies the thread_info struct back (flags may have
378 * been modified) and resets the task's stack pointer.
379 *
380 * Tricky bits -
381 *
382 * What happens when two signals race each other?  UML doesn't block
383 * signals with sigprocmask, SA_DEFER, or sa_mask, so a second signal
384 * could arrive while a previous one is still setting up the
385 * thread_info.
386 *
387 * There are three cases -
388 *     The first interrupt on the stack - sets up the thread_info and
389 * handles the interrupt
390 *     A nested interrupt interrupting the copying of the thread_info -
391 * can't handle the interrupt, as the stack is in an unknown state
392 *     A nested interrupt not interrupting the copying of the
393 * thread_info - doesn't do any setup, just handles the interrupt
394 *
395 * The first job is to figure out whether we interrupted stack setup.
396 * This is done by xchging the signal mask with thread_info->pending.
397 * If the value that comes back is zero, then there is no setup in
398 * progress, and the interrupt can be handled.  If the value is
399 * non-zero, then there is stack setup in progress.  In order to have
400 * the interrupt handled, we leave our signal in the mask, and it will
401 * be handled by the upper handler after it has set up the stack.
402 *
403 * Next is to figure out whether we are the outer handler or a nested
404 * one.  As part of setting up the stack, thread_info->real_thread is
405 * set to non-NULL (and is reset to NULL on exit).  This is the
406 * nesting indicator.  If it is non-NULL, then the stack is already
407 * set up and the handler can run.
408 */
409
410static unsigned long pending_mask;
411
412unsigned long to_irq_stack(unsigned long *mask_out)
413{
414	struct thread_info *ti;
415	unsigned long mask, old;
416	int nested;
417
418	mask = xchg(&pending_mask, *mask_out);
419	if (mask != 0) {
420		/*
421		 * If any interrupts come in at this point, we want to
422		 * make sure that their bits aren't lost by our
423		 * putting our bit in.  So, this loop accumulates bits
424		 * until xchg returns the same value that we put in.
425		 * When that happens, there were no new interrupts,
426		 * and pending_mask contains a bit for each interrupt
427		 * that came in.
428		 */
429		old = *mask_out;
430		do {
431			old |= mask;
432			mask = xchg(&pending_mask, old);
433		} while (mask != old);
434		return 1;
435	}
436
437	ti = current_thread_info();
438	nested = (ti->real_thread != NULL);
439	if (!nested) {
440		struct task_struct *task;
441		struct thread_info *tti;
442
443		task = cpu_tasks[ti->cpu].task;
444		tti = task_thread_info(task);
445
446		*ti = *tti;
447		ti->real_thread = tti;
448		task->stack = ti;
449	}
450
451	mask = xchg(&pending_mask, 0);
452	*mask_out |= mask | nested;
453	return 0;
454}
455
456unsigned long from_irq_stack(int nested)
457{
458	struct thread_info *ti, *to;
459	unsigned long mask;
460
461	ti = current_thread_info();
462
463	pending_mask = 1;
464
465	to = ti->real_thread;
466	current->stack = to;
467	ti->real_thread = NULL;
468	*to = *ti;
469
470	mask = xchg(&pending_mask, 0);
471	return mask & ~1;
472}
473