Loading...
1/*
2 * Common signal handling code for both 32 and 64 bits
3 *
4 * Copyright (c) 2007 Benjamin Herrenschmidt, IBM Corporation
5 * Extracted from signal_32.c and signal_64.c
6 *
7 * This file is subject to the terms and conditions of the GNU General
8 * Public License. See the file README.legal in the main directory of
9 * this archive for more details.
10 */
11
12#include <linux/tracehook.h>
13#include <linux/signal.h>
14#include <linux/uprobes.h>
15#include <linux/key.h>
16#include <linux/context_tracking.h>
17#include <linux/livepatch.h>
18#include <linux/syscalls.h>
19#include <asm/hw_breakpoint.h>
20#include <linux/uaccess.h>
21#include <asm/switch_to.h>
22#include <asm/unistd.h>
23#include <asm/debug.h>
24#include <asm/tm.h>
25
26#include "signal.h"
27
28#ifdef CONFIG_VSX
29unsigned long copy_fpr_to_user(void __user *to,
30 struct task_struct *task)
31{
32 u64 buf[ELF_NFPREG];
33 int i;
34
35 /* save FPR copy to local buffer then write to the thread_struct */
36 for (i = 0; i < (ELF_NFPREG - 1) ; i++)
37 buf[i] = task->thread.TS_FPR(i);
38 buf[i] = task->thread.fp_state.fpscr;
39 return __copy_to_user(to, buf, ELF_NFPREG * sizeof(double));
40}
41
42unsigned long copy_fpr_from_user(struct task_struct *task,
43 void __user *from)
44{
45 u64 buf[ELF_NFPREG];
46 int i;
47
48 if (__copy_from_user(buf, from, ELF_NFPREG * sizeof(double)))
49 return 1;
50 for (i = 0; i < (ELF_NFPREG - 1) ; i++)
51 task->thread.TS_FPR(i) = buf[i];
52 task->thread.fp_state.fpscr = buf[i];
53
54 return 0;
55}
56
57unsigned long copy_vsx_to_user(void __user *to,
58 struct task_struct *task)
59{
60 u64 buf[ELF_NVSRHALFREG];
61 int i;
62
63 /* save FPR copy to local buffer then write to the thread_struct */
64 for (i = 0; i < ELF_NVSRHALFREG; i++)
65 buf[i] = task->thread.fp_state.fpr[i][TS_VSRLOWOFFSET];
66 return __copy_to_user(to, buf, ELF_NVSRHALFREG * sizeof(double));
67}
68
69unsigned long copy_vsx_from_user(struct task_struct *task,
70 void __user *from)
71{
72 u64 buf[ELF_NVSRHALFREG];
73 int i;
74
75 if (__copy_from_user(buf, from, ELF_NVSRHALFREG * sizeof(double)))
76 return 1;
77 for (i = 0; i < ELF_NVSRHALFREG ; i++)
78 task->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = buf[i];
79 return 0;
80}
81
82#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
83unsigned long copy_ckfpr_to_user(void __user *to,
84 struct task_struct *task)
85{
86 u64 buf[ELF_NFPREG];
87 int i;
88
89 /* save FPR copy to local buffer then write to the thread_struct */
90 for (i = 0; i < (ELF_NFPREG - 1) ; i++)
91 buf[i] = task->thread.TS_CKFPR(i);
92 buf[i] = task->thread.ckfp_state.fpscr;
93 return __copy_to_user(to, buf, ELF_NFPREG * sizeof(double));
94}
95
96unsigned long copy_ckfpr_from_user(struct task_struct *task,
97 void __user *from)
98{
99 u64 buf[ELF_NFPREG];
100 int i;
101
102 if (__copy_from_user(buf, from, ELF_NFPREG * sizeof(double)))
103 return 1;
104 for (i = 0; i < (ELF_NFPREG - 1) ; i++)
105 task->thread.TS_CKFPR(i) = buf[i];
106 task->thread.ckfp_state.fpscr = buf[i];
107
108 return 0;
109}
110
111unsigned long copy_ckvsx_to_user(void __user *to,
112 struct task_struct *task)
113{
114 u64 buf[ELF_NVSRHALFREG];
115 int i;
116
117 /* save FPR copy to local buffer then write to the thread_struct */
118 for (i = 0; i < ELF_NVSRHALFREG; i++)
119 buf[i] = task->thread.ckfp_state.fpr[i][TS_VSRLOWOFFSET];
120 return __copy_to_user(to, buf, ELF_NVSRHALFREG * sizeof(double));
121}
122
123unsigned long copy_ckvsx_from_user(struct task_struct *task,
124 void __user *from)
125{
126 u64 buf[ELF_NVSRHALFREG];
127 int i;
128
129 if (__copy_from_user(buf, from, ELF_NVSRHALFREG * sizeof(double)))
130 return 1;
131 for (i = 0; i < ELF_NVSRHALFREG ; i++)
132 task->thread.ckfp_state.fpr[i][TS_VSRLOWOFFSET] = buf[i];
133 return 0;
134}
135#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
136#else
137inline unsigned long copy_fpr_to_user(void __user *to,
138 struct task_struct *task)
139{
140 return __copy_to_user(to, task->thread.fp_state.fpr,
141 ELF_NFPREG * sizeof(double));
142}
143
144inline unsigned long copy_fpr_from_user(struct task_struct *task,
145 void __user *from)
146{
147 return __copy_from_user(task->thread.fp_state.fpr, from,
148 ELF_NFPREG * sizeof(double));
149}
150
151#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
152inline unsigned long copy_ckfpr_to_user(void __user *to,
153 struct task_struct *task)
154{
155 return __copy_to_user(to, task->thread.ckfp_state.fpr,
156 ELF_NFPREG * sizeof(double));
157}
158
159inline unsigned long copy_ckfpr_from_user(struct task_struct *task,
160 void __user *from)
161{
162 return __copy_from_user(task->thread.ckfp_state.fpr, from,
163 ELF_NFPREG * sizeof(double));
164}
165#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
166#endif
167
168/* Log an error when sending an unhandled signal to a process. Controlled
169 * through debug.exception-trace sysctl.
170 */
171
172int show_unhandled_signals = 1;
173
174/*
175 * Allocate space for the signal frame
176 */
177void __user *get_sigframe(struct ksignal *ksig, unsigned long sp,
178 size_t frame_size, int is_32)
179{
180 unsigned long oldsp, newsp;
181
182 /* Default to using normal stack */
183 oldsp = get_clean_sp(sp, is_32);
184 oldsp = sigsp(oldsp, ksig);
185 newsp = (oldsp - frame_size) & ~0xFUL;
186
187 /* Check access */
188 if (!access_ok((void __user *)newsp, oldsp - newsp))
189 return NULL;
190
191 return (void __user *)newsp;
192}
193
194static void check_syscall_restart(struct pt_regs *regs, struct k_sigaction *ka,
195 int has_handler)
196{
197 unsigned long ret = regs->gpr[3];
198 int restart = 1;
199
200 /* syscall ? */
201 if (!trap_is_syscall(regs))
202 return;
203
204 if (trap_norestart(regs))
205 return;
206
207 /* error signalled ? */
208 if (trap_is_scv(regs)) {
209 /* 32-bit compat mode sign extend? */
210 if (!IS_ERR_VALUE(ret))
211 return;
212 ret = -ret;
213 } else if (!(regs->ccr & 0x10000000)) {
214 return;
215 }
216
217 switch (ret) {
218 case ERESTART_RESTARTBLOCK:
219 case ERESTARTNOHAND:
220 /* ERESTARTNOHAND means that the syscall should only be
221 * restarted if there was no handler for the signal, and since
222 * we only get here if there is a handler, we dont restart.
223 */
224 restart = !has_handler;
225 break;
226 case ERESTARTSYS:
227 /* ERESTARTSYS means to restart the syscall if there is no
228 * handler or the handler was registered with SA_RESTART
229 */
230 restart = !has_handler || (ka->sa.sa_flags & SA_RESTART) != 0;
231 break;
232 case ERESTARTNOINTR:
233 /* ERESTARTNOINTR means that the syscall should be
234 * called again after the signal handler returns.
235 */
236 break;
237 default:
238 return;
239 }
240 if (restart) {
241 if (ret == ERESTART_RESTARTBLOCK)
242 regs->gpr[0] = __NR_restart_syscall;
243 else
244 regs->gpr[3] = regs->orig_gpr3;
245 regs->nip -= 4;
246 regs->result = 0;
247 } else {
248 if (trap_is_scv(regs)) {
249 regs->result = -EINTR;
250 regs->gpr[3] = -EINTR;
251 } else {
252 regs->result = -EINTR;
253 regs->gpr[3] = EINTR;
254 regs->ccr |= 0x10000000;
255 }
256 }
257}
258
259static void do_signal(struct task_struct *tsk)
260{
261 sigset_t *oldset = sigmask_to_save();
262 struct ksignal ksig = { .sig = 0 };
263 int ret;
264
265 BUG_ON(tsk != current);
266
267 get_signal(&ksig);
268
269 /* Is there any syscall restart business here ? */
270 check_syscall_restart(tsk->thread.regs, &ksig.ka, ksig.sig > 0);
271
272 if (ksig.sig <= 0) {
273 /* No signal to deliver -- put the saved sigmask back */
274 restore_saved_sigmask();
275 set_trap_norestart(tsk->thread.regs);
276 return; /* no signals delivered */
277 }
278
279 /*
280 * Reenable the DABR before delivering the signal to
281 * user space. The DABR will have been cleared if it
282 * triggered inside the kernel.
283 */
284 if (!IS_ENABLED(CONFIG_PPC_ADV_DEBUG_REGS)) {
285 int i;
286
287 for (i = 0; i < nr_wp_slots(); i++) {
288 if (tsk->thread.hw_brk[i].address && tsk->thread.hw_brk[i].type)
289 __set_breakpoint(i, &tsk->thread.hw_brk[i]);
290 }
291 }
292
293 /* Re-enable the breakpoints for the signal stack */
294 thread_change_pc(tsk, tsk->thread.regs);
295
296 rseq_signal_deliver(&ksig, tsk->thread.regs);
297
298 if (is_32bit_task()) {
299 if (ksig.ka.sa.sa_flags & SA_SIGINFO)
300 ret = handle_rt_signal32(&ksig, oldset, tsk);
301 else
302 ret = handle_signal32(&ksig, oldset, tsk);
303 } else {
304 ret = handle_rt_signal64(&ksig, oldset, tsk);
305 }
306
307 set_trap_norestart(tsk->thread.regs);
308 signal_setup_done(ret, &ksig, test_thread_flag(TIF_SINGLESTEP));
309}
310
311void do_notify_resume(struct pt_regs *regs, unsigned long thread_info_flags)
312{
313 user_exit();
314
315 /* Check valid addr_limit, TIF check is done there */
316 addr_limit_user_check();
317
318 if (thread_info_flags & _TIF_UPROBE)
319 uprobe_notify_resume(regs);
320
321 if (thread_info_flags & _TIF_PATCH_PENDING)
322 klp_update_patch_state(current);
323
324 if (thread_info_flags & _TIF_SIGPENDING) {
325 BUG_ON(regs != current->thread.regs);
326 do_signal(current);
327 }
328
329 if (thread_info_flags & _TIF_NOTIFY_RESUME) {
330 clear_thread_flag(TIF_NOTIFY_RESUME);
331 tracehook_notify_resume(regs);
332 rseq_handle_notify_resume(NULL, regs);
333 }
334
335 user_enter();
336}
337
338unsigned long get_tm_stackpointer(struct task_struct *tsk)
339{
340 /* When in an active transaction that takes a signal, we need to be
341 * careful with the stack. It's possible that the stack has moved back
342 * up after the tbegin. The obvious case here is when the tbegin is
343 * called inside a function that returns before a tend. In this case,
344 * the stack is part of the checkpointed transactional memory state.
345 * If we write over this non transactionally or in suspend, we are in
346 * trouble because if we get a tm abort, the program counter and stack
347 * pointer will be back at the tbegin but our in memory stack won't be
348 * valid anymore.
349 *
350 * To avoid this, when taking a signal in an active transaction, we
351 * need to use the stack pointer from the checkpointed state, rather
352 * than the speculated state. This ensures that the signal context
353 * (written tm suspended) will be written below the stack required for
354 * the rollback. The transaction is aborted because of the treclaim,
355 * so any memory written between the tbegin and the signal will be
356 * rolled back anyway.
357 *
358 * For signals taken in non-TM or suspended mode, we use the
359 * normal/non-checkpointed stack pointer.
360 */
361
362 unsigned long ret = tsk->thread.regs->gpr[1];
363
364#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
365 BUG_ON(tsk != current);
366
367 if (MSR_TM_ACTIVE(tsk->thread.regs->msr)) {
368 preempt_disable();
369 tm_reclaim_current(TM_CAUSE_SIGNAL);
370 if (MSR_TM_TRANSACTIONAL(tsk->thread.regs->msr))
371 ret = tsk->thread.ckpt_regs.gpr[1];
372
373 /*
374 * If we treclaim, we must clear the current thread's TM bits
375 * before re-enabling preemption. Otherwise we might be
376 * preempted and have the live MSR[TS] changed behind our back
377 * (tm_recheckpoint_new_task() would recheckpoint). Besides, we
378 * enter the signal handler in non-transactional state.
379 */
380 tsk->thread.regs->msr &= ~MSR_TS_MASK;
381 preempt_enable();
382 }
383#endif
384 return ret;
385}
1/*
2 * Common signal handling code for both 32 and 64 bits
3 *
4 * Copyright (c) 2007 Benjamin Herrenschmidt, IBM Coproration
5 * Extracted from signal_32.c and signal_64.c
6 *
7 * This file is subject to the terms and conditions of the GNU General
8 * Public License. See the file README.legal in the main directory of
9 * this archive for more details.
10 */
11
12#include <linux/tracehook.h>
13#include <linux/signal.h>
14#include <linux/uprobes.h>
15#include <linux/key.h>
16#include <linux/context_tracking.h>
17#include <asm/hw_breakpoint.h>
18#include <asm/uaccess.h>
19#include <asm/unistd.h>
20#include <asm/debug.h>
21#include <asm/tm.h>
22
23#include "signal.h"
24
25/* Log an error when sending an unhandled signal to a process. Controlled
26 * through debug.exception-trace sysctl.
27 */
28
29int show_unhandled_signals = 1;
30
31/*
32 * Allocate space for the signal frame
33 */
34void __user * get_sigframe(struct k_sigaction *ka, unsigned long sp,
35 size_t frame_size, int is_32)
36{
37 unsigned long oldsp, newsp;
38
39 /* Default to using normal stack */
40 oldsp = get_clean_sp(sp, is_32);
41
42 /* Check for alt stack */
43 if ((ka->sa.sa_flags & SA_ONSTACK) &&
44 current->sas_ss_size && !on_sig_stack(oldsp))
45 oldsp = (current->sas_ss_sp + current->sas_ss_size);
46
47 /* Get aligned frame */
48 newsp = (oldsp - frame_size) & ~0xFUL;
49
50 /* Check access */
51 if (!access_ok(VERIFY_WRITE, (void __user *)newsp, oldsp - newsp))
52 return NULL;
53
54 return (void __user *)newsp;
55}
56
57static void check_syscall_restart(struct pt_regs *regs, struct k_sigaction *ka,
58 int has_handler)
59{
60 unsigned long ret = regs->gpr[3];
61 int restart = 1;
62
63 /* syscall ? */
64 if (TRAP(regs) != 0x0C00)
65 return;
66
67 /* error signalled ? */
68 if (!(regs->ccr & 0x10000000))
69 return;
70
71 switch (ret) {
72 case ERESTART_RESTARTBLOCK:
73 case ERESTARTNOHAND:
74 /* ERESTARTNOHAND means that the syscall should only be
75 * restarted if there was no handler for the signal, and since
76 * we only get here if there is a handler, we dont restart.
77 */
78 restart = !has_handler;
79 break;
80 case ERESTARTSYS:
81 /* ERESTARTSYS means to restart the syscall if there is no
82 * handler or the handler was registered with SA_RESTART
83 */
84 restart = !has_handler || (ka->sa.sa_flags & SA_RESTART) != 0;
85 break;
86 case ERESTARTNOINTR:
87 /* ERESTARTNOINTR means that the syscall should be
88 * called again after the signal handler returns.
89 */
90 break;
91 default:
92 return;
93 }
94 if (restart) {
95 if (ret == ERESTART_RESTARTBLOCK)
96 regs->gpr[0] = __NR_restart_syscall;
97 else
98 regs->gpr[3] = regs->orig_gpr3;
99 regs->nip -= 4;
100 regs->result = 0;
101 } else {
102 regs->result = -EINTR;
103 regs->gpr[3] = EINTR;
104 regs->ccr |= 0x10000000;
105 }
106}
107
108static int do_signal(struct pt_regs *regs)
109{
110 sigset_t *oldset = sigmask_to_save();
111 siginfo_t info;
112 int signr;
113 struct k_sigaction ka;
114 int ret;
115 int is32 = is_32bit_task();
116
117 signr = get_signal_to_deliver(&info, &ka, regs, NULL);
118
119 /* Is there any syscall restart business here ? */
120 check_syscall_restart(regs, &ka, signr > 0);
121
122 if (signr <= 0) {
123 /* No signal to deliver -- put the saved sigmask back */
124 restore_saved_sigmask();
125 regs->trap = 0;
126 return 0; /* no signals delivered */
127 }
128
129#ifndef CONFIG_PPC_ADV_DEBUG_REGS
130 /*
131 * Reenable the DABR before delivering the signal to
132 * user space. The DABR will have been cleared if it
133 * triggered inside the kernel.
134 */
135 if (current->thread.hw_brk.address &&
136 current->thread.hw_brk.type)
137 set_breakpoint(¤t->thread.hw_brk);
138#endif
139 /* Re-enable the breakpoints for the signal stack */
140 thread_change_pc(current, regs);
141
142 if (is32) {
143 if (ka.sa.sa_flags & SA_SIGINFO)
144 ret = handle_rt_signal32(signr, &ka, &info, oldset,
145 regs);
146 else
147 ret = handle_signal32(signr, &ka, &info, oldset,
148 regs);
149 } else {
150 ret = handle_rt_signal64(signr, &ka, &info, oldset, regs);
151 }
152
153 regs->trap = 0;
154 if (ret) {
155 signal_delivered(signr, &info, &ka, regs,
156 test_thread_flag(TIF_SINGLESTEP));
157 }
158
159 return ret;
160}
161
162void do_notify_resume(struct pt_regs *regs, unsigned long thread_info_flags)
163{
164 user_exit();
165
166 if (thread_info_flags & _TIF_UPROBE)
167 uprobe_notify_resume(regs);
168
169 if (thread_info_flags & _TIF_SIGPENDING)
170 do_signal(regs);
171
172 if (thread_info_flags & _TIF_NOTIFY_RESUME) {
173 clear_thread_flag(TIF_NOTIFY_RESUME);
174 tracehook_notify_resume(regs);
175 }
176
177 user_enter();
178}
179
180unsigned long get_tm_stackpointer(struct pt_regs *regs)
181{
182 /* When in an active transaction that takes a signal, we need to be
183 * careful with the stack. It's possible that the stack has moved back
184 * up after the tbegin. The obvious case here is when the tbegin is
185 * called inside a function that returns before a tend. In this case,
186 * the stack is part of the checkpointed transactional memory state.
187 * If we write over this non transactionally or in suspend, we are in
188 * trouble because if we get a tm abort, the program counter and stack
189 * pointer will be back at the tbegin but our in memory stack won't be
190 * valid anymore.
191 *
192 * To avoid this, when taking a signal in an active transaction, we
193 * need to use the stack pointer from the checkpointed state, rather
194 * than the speculated state. This ensures that the signal context
195 * (written tm suspended) will be written below the stack required for
196 * the rollback. The transaction is aborted becuase of the treclaim,
197 * so any memory written between the tbegin and the signal will be
198 * rolled back anyway.
199 *
200 * For signals taken in non-TM or suspended mode, we use the
201 * normal/non-checkpointed stack pointer.
202 */
203
204#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
205 if (MSR_TM_ACTIVE(regs->msr)) {
206 tm_reclaim_current(TM_CAUSE_SIGNAL);
207 if (MSR_TM_TRANSACTIONAL(regs->msr))
208 return current->thread.ckpt_regs.gpr[1];
209 }
210#endif
211 return regs->gpr[1];
212}