Linux Audio

Check our new training course

In-person Linux kernel drivers training

Jun 16-20, 2025
Register
Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * numa.c
   4 *
   5 * numa: Simulate NUMA-sensitive workload and measure their NUMA performance
   6 */
   7
   8#include <inttypes.h>
   9/* For the CLR_() macros */
  10#include <pthread.h>
  11
  12#include <subcmd/parse-options.h>
  13#include "../util/cloexec.h"
  14
  15#include "bench.h"
  16
  17#include <errno.h>
  18#include <sched.h>
  19#include <stdio.h>
  20#include <assert.h>
  21#include <malloc.h>
  22#include <signal.h>
  23#include <stdlib.h>
  24#include <string.h>
  25#include <unistd.h>
 
  26#include <sys/mman.h>
  27#include <sys/time.h>
  28#include <sys/resource.h>
  29#include <sys/wait.h>
  30#include <sys/prctl.h>
  31#include <sys/types.h>
  32#include <linux/kernel.h>
  33#include <linux/time64.h>
  34#include <linux/numa.h>
  35#include <linux/zalloc.h>
  36
  37#include <numa.h>
  38#include <numaif.h>
  39
  40#ifndef RUSAGE_THREAD
  41# define RUSAGE_THREAD 1
  42#endif
  43
  44/*
  45 * Regular printout to the terminal, supressed if -q is specified:
  46 */
  47#define tprintf(x...) do { if (g && g->p.show_details >= 0) printf(x); } while (0)
  48
  49/*
  50 * Debug printf:
  51 */
  52#undef dprintf
  53#define dprintf(x...) do { if (g && g->p.show_details >= 1) printf(x); } while (0)
  54
  55struct thread_data {
  56	int			curr_cpu;
  57	cpu_set_t		bind_cpumask;
  58	int			bind_node;
  59	u8			*process_data;
  60	int			process_nr;
  61	int			thread_nr;
  62	int			task_nr;
  63	unsigned int		loops_done;
  64	u64			val;
  65	u64			runtime_ns;
  66	u64			system_time_ns;
  67	u64			user_time_ns;
  68	double			speed_gbs;
  69	pthread_mutex_t		*process_lock;
  70};
  71
  72/* Parameters set by options: */
  73
  74struct params {
  75	/* Startup synchronization: */
  76	bool			serialize_startup;
  77
  78	/* Task hierarchy: */
  79	int			nr_proc;
  80	int			nr_threads;
  81
  82	/* Working set sizes: */
  83	const char		*mb_global_str;
  84	const char		*mb_proc_str;
  85	const char		*mb_proc_locked_str;
  86	const char		*mb_thread_str;
  87
  88	double			mb_global;
  89	double			mb_proc;
  90	double			mb_proc_locked;
  91	double			mb_thread;
  92
  93	/* Access patterns to the working set: */
  94	bool			data_reads;
  95	bool			data_writes;
  96	bool			data_backwards;
  97	bool			data_zero_memset;
  98	bool			data_rand_walk;
  99	u32			nr_loops;
 100	u32			nr_secs;
 101	u32			sleep_usecs;
 102
 103	/* Working set initialization: */
 104	bool			init_zero;
 105	bool			init_random;
 106	bool			init_cpu0;
 107
 108	/* Misc options: */
 109	int			show_details;
 110	int			run_all;
 111	int			thp;
 112
 113	long			bytes_global;
 114	long			bytes_process;
 115	long			bytes_process_locked;
 116	long			bytes_thread;
 117
 118	int			nr_tasks;
 119	bool			show_quiet;
 120
 121	bool			show_convergence;
 122	bool			measure_convergence;
 123
 124	int			perturb_secs;
 125	int			nr_cpus;
 126	int			nr_nodes;
 127
 128	/* Affinity options -C and -N: */
 129	char			*cpu_list_str;
 130	char			*node_list_str;
 131};
 132
 133
 134/* Global, read-writable area, accessible to all processes and threads: */
 135
 136struct global_info {
 137	u8			*data;
 138
 139	pthread_mutex_t		startup_mutex;
 140	int			nr_tasks_started;
 141
 142	pthread_mutex_t		startup_done_mutex;
 143
 144	pthread_mutex_t		start_work_mutex;
 145	int			nr_tasks_working;
 146
 147	pthread_mutex_t		stop_work_mutex;
 148	u64			bytes_done;
 149
 150	struct thread_data	*threads;
 151
 152	/* Convergence latency measurement: */
 153	bool			all_converged;
 154	bool			stop_work;
 155
 156	int			print_once;
 157
 158	struct params		p;
 159};
 160
 161static struct global_info	*g = NULL;
 162
 163static int parse_cpus_opt(const struct option *opt, const char *arg, int unset);
 164static int parse_nodes_opt(const struct option *opt, const char *arg, int unset);
 165
 166struct params p0;
 167
 168static const struct option options[] = {
 169	OPT_INTEGER('p', "nr_proc"	, &p0.nr_proc,		"number of processes"),
 170	OPT_INTEGER('t', "nr_threads"	, &p0.nr_threads,	"number of threads per process"),
 171
 172	OPT_STRING('G', "mb_global"	, &p0.mb_global_str,	"MB", "global  memory (MBs)"),
 173	OPT_STRING('P', "mb_proc"	, &p0.mb_proc_str,	"MB", "process memory (MBs)"),
 174	OPT_STRING('L', "mb_proc_locked", &p0.mb_proc_locked_str,"MB", "process serialized/locked memory access (MBs), <= process_memory"),
 175	OPT_STRING('T', "mb_thread"	, &p0.mb_thread_str,	"MB", "thread  memory (MBs)"),
 176
 177	OPT_UINTEGER('l', "nr_loops"	, &p0.nr_loops,		"max number of loops to run (default: unlimited)"),
 178	OPT_UINTEGER('s', "nr_secs"	, &p0.nr_secs,		"max number of seconds to run (default: 5 secs)"),
 179	OPT_UINTEGER('u', "usleep"	, &p0.sleep_usecs,	"usecs to sleep per loop iteration"),
 180
 181	OPT_BOOLEAN('R', "data_reads"	, &p0.data_reads,	"access the data via reads (can be mixed with -W)"),
 182	OPT_BOOLEAN('W', "data_writes"	, &p0.data_writes,	"access the data via writes (can be mixed with -R)"),
 183	OPT_BOOLEAN('B', "data_backwards", &p0.data_backwards,	"access the data backwards as well"),
 184	OPT_BOOLEAN('Z', "data_zero_memset", &p0.data_zero_memset,"access the data via glibc bzero only"),
 185	OPT_BOOLEAN('r', "data_rand_walk", &p0.data_rand_walk,	"access the data with random (32bit LFSR) walk"),
 186
 187
 188	OPT_BOOLEAN('z', "init_zero"	, &p0.init_zero,	"bzero the initial allocations"),
 189	OPT_BOOLEAN('I', "init_random"	, &p0.init_random,	"randomize the contents of the initial allocations"),
 190	OPT_BOOLEAN('0', "init_cpu0"	, &p0.init_cpu0,	"do the initial allocations on CPU#0"),
 191	OPT_INTEGER('x', "perturb_secs", &p0.perturb_secs,	"perturb thread 0/0 every X secs, to test convergence stability"),
 192
 193	OPT_INCR   ('d', "show_details"	, &p0.show_details,	"Show details"),
 194	OPT_INCR   ('a', "all"		, &p0.run_all,		"Run all tests in the suite"),
 195	OPT_INTEGER('H', "thp"		, &p0.thp,		"MADV_NOHUGEPAGE < 0 < MADV_HUGEPAGE"),
 196	OPT_BOOLEAN('c', "show_convergence", &p0.show_convergence, "show convergence details, "
 197		    "convergence is reached when each process (all its threads) is running on a single NUMA node."),
 198	OPT_BOOLEAN('m', "measure_convergence",	&p0.measure_convergence, "measure convergence latency"),
 199	OPT_BOOLEAN('q', "quiet"	, &p0.show_quiet,	"quiet mode"),
 200	OPT_BOOLEAN('S', "serialize-startup", &p0.serialize_startup,"serialize thread startup"),
 201
 202	/* Special option string parsing callbacks: */
 203        OPT_CALLBACK('C', "cpus", NULL, "cpu[,cpu2,...cpuN]",
 204			"bind the first N tasks to these specific cpus (the rest is unbound)",
 205			parse_cpus_opt),
 206        OPT_CALLBACK('M', "memnodes", NULL, "node[,node2,...nodeN]",
 207			"bind the first N tasks to these specific memory nodes (the rest is unbound)",
 208			parse_nodes_opt),
 209	OPT_END()
 210};
 211
 212static const char * const bench_numa_usage[] = {
 213	"perf bench numa <options>",
 214	NULL
 215};
 216
 217static const char * const numa_usage[] = {
 218	"perf bench numa mem [<options>]",
 219	NULL
 220};
 221
 222/*
 223 * To get number of numa nodes present.
 224 */
 225static int nr_numa_nodes(void)
 226{
 227	int i, nr_nodes = 0;
 228
 229	for (i = 0; i < g->p.nr_nodes; i++) {
 230		if (numa_bitmask_isbitset(numa_nodes_ptr, i))
 231			nr_nodes++;
 232	}
 233
 234	return nr_nodes;
 235}
 236
 237/*
 238 * To check if given numa node is present.
 239 */
 240static int is_node_present(int node)
 241{
 242	return numa_bitmask_isbitset(numa_nodes_ptr, node);
 243}
 244
 245/*
 246 * To check given numa node has cpus.
 247 */
 248static bool node_has_cpus(int node)
 249{
 250	struct bitmask *cpumask = numa_allocate_cpumask();
 251	bool ret = false; /* fall back to nocpus */
 252	int cpu;
 253
 254	BUG_ON(!cpumask);
 255	if (!numa_node_to_cpus(node, cpumask)) {
 256		for (cpu = 0; cpu < (int)cpumask->size; cpu++) {
 257			if (numa_bitmask_isbitset(cpumask, cpu)) {
 258				ret = true;
 259				break;
 260			}
 261		}
 262	}
 263	numa_free_cpumask(cpumask);
 264
 265	return ret;
 266}
 267
 268static cpu_set_t bind_to_cpu(int target_cpu)
 269{
 270	cpu_set_t orig_mask, mask;
 271	int ret;
 272
 273	ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask);
 274	BUG_ON(ret);
 275
 276	CPU_ZERO(&mask);
 277
 278	if (target_cpu == -1) {
 279		int cpu;
 280
 281		for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
 282			CPU_SET(cpu, &mask);
 283	} else {
 284		BUG_ON(target_cpu < 0 || target_cpu >= g->p.nr_cpus);
 285		CPU_SET(target_cpu, &mask);
 286	}
 287
 288	ret = sched_setaffinity(0, sizeof(mask), &mask);
 289	BUG_ON(ret);
 290
 291	return orig_mask;
 292}
 293
 294static cpu_set_t bind_to_node(int target_node)
 295{
 
 296	cpu_set_t orig_mask, mask;
 297	int cpu;
 298	int ret;
 299
 
 
 
 300	ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask);
 301	BUG_ON(ret);
 302
 303	CPU_ZERO(&mask);
 304
 305	if (target_node == NUMA_NO_NODE) {
 306		for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
 307			CPU_SET(cpu, &mask);
 308	} else {
 309		struct bitmask *cpumask = numa_allocate_cpumask();
 
 310
 311		BUG_ON(!cpumask);
 312		if (!numa_node_to_cpus(target_node, cpumask)) {
 313			for (cpu = 0; cpu < (int)cpumask->size; cpu++) {
 314				if (numa_bitmask_isbitset(cpumask, cpu))
 315					CPU_SET(cpu, &mask);
 316			}
 317		}
 318		numa_free_cpumask(cpumask);
 319	}
 320
 321	ret = sched_setaffinity(0, sizeof(mask), &mask);
 322	BUG_ON(ret);
 323
 324	return orig_mask;
 325}
 326
 327static void bind_to_cpumask(cpu_set_t mask)
 328{
 329	int ret;
 330
 331	ret = sched_setaffinity(0, sizeof(mask), &mask);
 332	BUG_ON(ret);
 333}
 334
 335static void mempol_restore(void)
 336{
 337	int ret;
 338
 339	ret = set_mempolicy(MPOL_DEFAULT, NULL, g->p.nr_nodes-1);
 340
 341	BUG_ON(ret);
 342}
 343
 344static void bind_to_memnode(int node)
 345{
 346	unsigned long nodemask;
 347	int ret;
 348
 349	if (node == NUMA_NO_NODE)
 350		return;
 351
 352	BUG_ON(g->p.nr_nodes > (int)sizeof(nodemask)*8);
 353	nodemask = 1L << node;
 354
 355	ret = set_mempolicy(MPOL_BIND, &nodemask, sizeof(nodemask)*8);
 356	dprintf("binding to node %d, mask: %016lx => %d\n", node, nodemask, ret);
 357
 358	BUG_ON(ret);
 359}
 360
 361#define HPSIZE (2*1024*1024)
 362
 363#define set_taskname(fmt...)				\
 364do {							\
 365	char name[20];					\
 366							\
 367	snprintf(name, 20, fmt);			\
 368	prctl(PR_SET_NAME, name);			\
 369} while (0)
 370
 371static u8 *alloc_data(ssize_t bytes0, int map_flags,
 372		      int init_zero, int init_cpu0, int thp, int init_random)
 373{
 374	cpu_set_t orig_mask;
 375	ssize_t bytes;
 376	u8 *buf;
 377	int ret;
 378
 379	if (!bytes0)
 380		return NULL;
 381
 382	/* Allocate and initialize all memory on CPU#0: */
 383	if (init_cpu0) {
 384		int node = numa_node_of_cpu(0);
 385
 386		orig_mask = bind_to_node(node);
 387		bind_to_memnode(node);
 388	}
 389
 390	bytes = bytes0 + HPSIZE;
 391
 392	buf = (void *)mmap(0, bytes, PROT_READ|PROT_WRITE, MAP_ANON|map_flags, -1, 0);
 393	BUG_ON(buf == (void *)-1);
 394
 395	if (map_flags == MAP_PRIVATE) {
 396		if (thp > 0) {
 397			ret = madvise(buf, bytes, MADV_HUGEPAGE);
 398			if (ret && !g->print_once) {
 399				g->print_once = 1;
 400				printf("WARNING: Could not enable THP - do: 'echo madvise > /sys/kernel/mm/transparent_hugepage/enabled'\n");
 401			}
 402		}
 403		if (thp < 0) {
 404			ret = madvise(buf, bytes, MADV_NOHUGEPAGE);
 405			if (ret && !g->print_once) {
 406				g->print_once = 1;
 407				printf("WARNING: Could not disable THP: run a CONFIG_TRANSPARENT_HUGEPAGE kernel?\n");
 408			}
 409		}
 410	}
 411
 412	if (init_zero) {
 413		bzero(buf, bytes);
 414	} else {
 415		/* Initialize random contents, different in each word: */
 416		if (init_random) {
 417			u64 *wbuf = (void *)buf;
 418			long off = rand();
 419			long i;
 420
 421			for (i = 0; i < bytes/8; i++)
 422				wbuf[i] = i + off;
 423		}
 424	}
 425
 426	/* Align to 2MB boundary: */
 427	buf = (void *)(((unsigned long)buf + HPSIZE-1) & ~(HPSIZE-1));
 428
 429	/* Restore affinity: */
 430	if (init_cpu0) {
 431		bind_to_cpumask(orig_mask);
 432		mempol_restore();
 433	}
 434
 435	return buf;
 436}
 437
 438static void free_data(void *data, ssize_t bytes)
 439{
 440	int ret;
 441
 442	if (!data)
 443		return;
 444
 445	ret = munmap(data, bytes);
 446	BUG_ON(ret);
 447}
 448
 449/*
 450 * Create a shared memory buffer that can be shared between processes, zeroed:
 451 */
 452static void * zalloc_shared_data(ssize_t bytes)
 453{
 454	return alloc_data(bytes, MAP_SHARED, 1, g->p.init_cpu0,  g->p.thp, g->p.init_random);
 455}
 456
 457/*
 458 * Create a shared memory buffer that can be shared between processes:
 459 */
 460static void * setup_shared_data(ssize_t bytes)
 461{
 462	return alloc_data(bytes, MAP_SHARED, 0, g->p.init_cpu0,  g->p.thp, g->p.init_random);
 463}
 464
 465/*
 466 * Allocate process-local memory - this will either be shared between
 467 * threads of this process, or only be accessed by this thread:
 468 */
 469static void * setup_private_data(ssize_t bytes)
 470{
 471	return alloc_data(bytes, MAP_PRIVATE, 0, g->p.init_cpu0,  g->p.thp, g->p.init_random);
 472}
 473
 474/*
 475 * Return a process-shared (global) mutex:
 476 */
 477static void init_global_mutex(pthread_mutex_t *mutex)
 478{
 479	pthread_mutexattr_t attr;
 480
 481	pthread_mutexattr_init(&attr);
 482	pthread_mutexattr_setpshared(&attr, PTHREAD_PROCESS_SHARED);
 483	pthread_mutex_init(mutex, &attr);
 484}
 485
 486static int parse_cpu_list(const char *arg)
 487{
 488	p0.cpu_list_str = strdup(arg);
 489
 490	dprintf("got CPU list: {%s}\n", p0.cpu_list_str);
 491
 492	return 0;
 493}
 494
 495static int parse_setup_cpu_list(void)
 496{
 497	struct thread_data *td;
 498	char *str0, *str;
 499	int t;
 500
 501	if (!g->p.cpu_list_str)
 502		return 0;
 503
 504	dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
 505
 506	str0 = str = strdup(g->p.cpu_list_str);
 507	t = 0;
 508
 509	BUG_ON(!str);
 510
 511	tprintf("# binding tasks to CPUs:\n");
 512	tprintf("#  ");
 513
 514	while (true) {
 515		int bind_cpu, bind_cpu_0, bind_cpu_1;
 516		char *tok, *tok_end, *tok_step, *tok_len, *tok_mul;
 517		int bind_len;
 518		int step;
 519		int mul;
 520
 521		tok = strsep(&str, ",");
 522		if (!tok)
 523			break;
 524
 525		tok_end = strstr(tok, "-");
 526
 527		dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
 528		if (!tok_end) {
 529			/* Single CPU specified: */
 530			bind_cpu_0 = bind_cpu_1 = atol(tok);
 531		} else {
 532			/* CPU range specified (for example: "5-11"): */
 533			bind_cpu_0 = atol(tok);
 534			bind_cpu_1 = atol(tok_end + 1);
 535		}
 536
 537		step = 1;
 538		tok_step = strstr(tok, "#");
 539		if (tok_step) {
 540			step = atol(tok_step + 1);
 541			BUG_ON(step <= 0 || step >= g->p.nr_cpus);
 542		}
 543
 544		/*
 545		 * Mask length.
 546		 * Eg: "--cpus 8_4-16#4" means: '--cpus 8_4,12_4,16_4',
 547		 * where the _4 means the next 4 CPUs are allowed.
 548		 */
 549		bind_len = 1;
 550		tok_len = strstr(tok, "_");
 551		if (tok_len) {
 552			bind_len = atol(tok_len + 1);
 553			BUG_ON(bind_len <= 0 || bind_len > g->p.nr_cpus);
 554		}
 555
 556		/* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
 557		mul = 1;
 558		tok_mul = strstr(tok, "x");
 559		if (tok_mul) {
 560			mul = atol(tok_mul + 1);
 561			BUG_ON(mul <= 0);
 562		}
 563
 564		dprintf("CPUs: %d_%d-%d#%dx%d\n", bind_cpu_0, bind_len, bind_cpu_1, step, mul);
 565
 566		if (bind_cpu_0 >= g->p.nr_cpus || bind_cpu_1 >= g->p.nr_cpus) {
 567			printf("\nTest not applicable, system has only %d CPUs.\n", g->p.nr_cpus);
 568			return -1;
 569		}
 570
 571		BUG_ON(bind_cpu_0 < 0 || bind_cpu_1 < 0);
 572		BUG_ON(bind_cpu_0 > bind_cpu_1);
 573
 574		for (bind_cpu = bind_cpu_0; bind_cpu <= bind_cpu_1; bind_cpu += step) {
 575			int i;
 576
 577			for (i = 0; i < mul; i++) {
 578				int cpu;
 579
 580				if (t >= g->p.nr_tasks) {
 581					printf("\n# NOTE: ignoring bind CPUs starting at CPU#%d\n #", bind_cpu);
 582					goto out;
 583				}
 584				td = g->threads + t;
 585
 586				if (t)
 587					tprintf(",");
 588				if (bind_len > 1) {
 589					tprintf("%2d/%d", bind_cpu, bind_len);
 590				} else {
 591					tprintf("%2d", bind_cpu);
 592				}
 593
 594				CPU_ZERO(&td->bind_cpumask);
 595				for (cpu = bind_cpu; cpu < bind_cpu+bind_len; cpu++) {
 596					BUG_ON(cpu < 0 || cpu >= g->p.nr_cpus);
 597					CPU_SET(cpu, &td->bind_cpumask);
 598				}
 599				t++;
 600			}
 601		}
 602	}
 603out:
 604
 605	tprintf("\n");
 606
 607	if (t < g->p.nr_tasks)
 608		printf("# NOTE: %d tasks bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
 609
 610	free(str0);
 611	return 0;
 612}
 613
 614static int parse_cpus_opt(const struct option *opt __maybe_unused,
 615			  const char *arg, int unset __maybe_unused)
 616{
 617	if (!arg)
 618		return -1;
 619
 620	return parse_cpu_list(arg);
 621}
 622
 623static int parse_node_list(const char *arg)
 624{
 625	p0.node_list_str = strdup(arg);
 626
 627	dprintf("got NODE list: {%s}\n", p0.node_list_str);
 628
 629	return 0;
 630}
 631
 632static int parse_setup_node_list(void)
 633{
 634	struct thread_data *td;
 635	char *str0, *str;
 636	int t;
 637
 638	if (!g->p.node_list_str)
 639		return 0;
 640
 641	dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
 642
 643	str0 = str = strdup(g->p.node_list_str);
 644	t = 0;
 645
 646	BUG_ON(!str);
 647
 648	tprintf("# binding tasks to NODEs:\n");
 649	tprintf("# ");
 650
 651	while (true) {
 652		int bind_node, bind_node_0, bind_node_1;
 653		char *tok, *tok_end, *tok_step, *tok_mul;
 654		int step;
 655		int mul;
 656
 657		tok = strsep(&str, ",");
 658		if (!tok)
 659			break;
 660
 661		tok_end = strstr(tok, "-");
 662
 663		dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
 664		if (!tok_end) {
 665			/* Single NODE specified: */
 666			bind_node_0 = bind_node_1 = atol(tok);
 667		} else {
 668			/* NODE range specified (for example: "5-11"): */
 669			bind_node_0 = atol(tok);
 670			bind_node_1 = atol(tok_end + 1);
 671		}
 672
 673		step = 1;
 674		tok_step = strstr(tok, "#");
 675		if (tok_step) {
 676			step = atol(tok_step + 1);
 677			BUG_ON(step <= 0 || step >= g->p.nr_nodes);
 678		}
 679
 680		/* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
 681		mul = 1;
 682		tok_mul = strstr(tok, "x");
 683		if (tok_mul) {
 684			mul = atol(tok_mul + 1);
 685			BUG_ON(mul <= 0);
 686		}
 687
 688		dprintf("NODEs: %d-%d #%d\n", bind_node_0, bind_node_1, step);
 689
 690		if (bind_node_0 >= g->p.nr_nodes || bind_node_1 >= g->p.nr_nodes) {
 691			printf("\nTest not applicable, system has only %d nodes.\n", g->p.nr_nodes);
 692			return -1;
 693		}
 694
 695		BUG_ON(bind_node_0 < 0 || bind_node_1 < 0);
 696		BUG_ON(bind_node_0 > bind_node_1);
 697
 698		for (bind_node = bind_node_0; bind_node <= bind_node_1; bind_node += step) {
 699			int i;
 700
 701			for (i = 0; i < mul; i++) {
 702				if (t >= g->p.nr_tasks || !node_has_cpus(bind_node)) {
 703					printf("\n# NOTE: ignoring bind NODEs starting at NODE#%d\n", bind_node);
 704					goto out;
 705				}
 706				td = g->threads + t;
 707
 708				if (!t)
 709					tprintf(" %2d", bind_node);
 710				else
 711					tprintf(",%2d", bind_node);
 712
 713				td->bind_node = bind_node;
 714				t++;
 715			}
 716		}
 717	}
 718out:
 719
 720	tprintf("\n");
 721
 722	if (t < g->p.nr_tasks)
 723		printf("# NOTE: %d tasks mem-bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
 724
 725	free(str0);
 726	return 0;
 727}
 728
 729static int parse_nodes_opt(const struct option *opt __maybe_unused,
 730			  const char *arg, int unset __maybe_unused)
 731{
 732	if (!arg)
 733		return -1;
 734
 735	return parse_node_list(arg);
 
 
 736}
 737
 738#define BIT(x) (1ul << x)
 739
 740static inline uint32_t lfsr_32(uint32_t lfsr)
 741{
 742	const uint32_t taps = BIT(1) | BIT(5) | BIT(6) | BIT(31);
 743	return (lfsr>>1) ^ ((0x0u - (lfsr & 0x1u)) & taps);
 744}
 745
 746/*
 747 * Make sure there's real data dependency to RAM (when read
 748 * accesses are enabled), so the compiler, the CPU and the
 749 * kernel (KSM, zero page, etc.) cannot optimize away RAM
 750 * accesses:
 751 */
 752static inline u64 access_data(u64 *data, u64 val)
 753{
 754	if (g->p.data_reads)
 755		val += *data;
 756	if (g->p.data_writes)
 757		*data = val + 1;
 758	return val;
 759}
 760
 761/*
 762 * The worker process does two types of work, a forwards going
 763 * loop and a backwards going loop.
 764 *
 765 * We do this so that on multiprocessor systems we do not create
 766 * a 'train' of processing, with highly synchronized processes,
 767 * skewing the whole benchmark.
 768 */
 769static u64 do_work(u8 *__data, long bytes, int nr, int nr_max, int loop, u64 val)
 770{
 771	long words = bytes/sizeof(u64);
 772	u64 *data = (void *)__data;
 773	long chunk_0, chunk_1;
 774	u64 *d0, *d, *d1;
 775	long off;
 776	long i;
 777
 778	BUG_ON(!data && words);
 779	BUG_ON(data && !words);
 780
 781	if (!data)
 782		return val;
 783
 784	/* Very simple memset() work variant: */
 785	if (g->p.data_zero_memset && !g->p.data_rand_walk) {
 786		bzero(data, bytes);
 787		return val;
 788	}
 789
 790	/* Spread out by PID/TID nr and by loop nr: */
 791	chunk_0 = words/nr_max;
 792	chunk_1 = words/g->p.nr_loops;
 793	off = nr*chunk_0 + loop*chunk_1;
 794
 795	while (off >= words)
 796		off -= words;
 797
 798	if (g->p.data_rand_walk) {
 799		u32 lfsr = nr + loop + val;
 800		int j;
 801
 802		for (i = 0; i < words/1024; i++) {
 803			long start, end;
 804
 805			lfsr = lfsr_32(lfsr);
 806
 807			start = lfsr % words;
 808			end = min(start + 1024, words-1);
 809
 810			if (g->p.data_zero_memset) {
 811				bzero(data + start, (end-start) * sizeof(u64));
 812			} else {
 813				for (j = start; j < end; j++)
 814					val = access_data(data + j, val);
 815			}
 816		}
 817	} else if (!g->p.data_backwards || (nr + loop) & 1) {
 818		/* Process data forwards: */
 819
 820		d0 = data + off;
 821		d  = data + off + 1;
 822		d1 = data + words;
 823
 
 824		for (;;) {
 825			if (unlikely(d >= d1))
 826				d = data;
 827			if (unlikely(d == d0))
 828				break;
 829
 830			val = access_data(d, val);
 831
 832			d++;
 833		}
 834	} else {
 835		/* Process data backwards: */
 836
 837		d0 = data + off;
 838		d  = data + off - 1;
 839		d1 = data + words;
 840
 
 841		for (;;) {
 842			if (unlikely(d < data))
 843				d = data + words-1;
 844			if (unlikely(d == d0))
 845				break;
 846
 847			val = access_data(d, val);
 848
 849			d--;
 850		}
 851	}
 852
 853	return val;
 854}
 855
 856static void update_curr_cpu(int task_nr, unsigned long bytes_worked)
 857{
 858	unsigned int cpu;
 859
 860	cpu = sched_getcpu();
 861
 862	g->threads[task_nr].curr_cpu = cpu;
 863	prctl(0, bytes_worked);
 864}
 865
 866#define MAX_NR_NODES	64
 867
 868/*
 869 * Count the number of nodes a process's threads
 870 * are spread out on.
 871 *
 872 * A count of 1 means that the process is compressed
 873 * to a single node. A count of g->p.nr_nodes means it's
 874 * spread out on the whole system.
 875 */
 876static int count_process_nodes(int process_nr)
 877{
 878	char node_present[MAX_NR_NODES] = { 0, };
 879	int nodes;
 880	int n, t;
 881
 882	for (t = 0; t < g->p.nr_threads; t++) {
 883		struct thread_data *td;
 884		int task_nr;
 885		int node;
 886
 887		task_nr = process_nr*g->p.nr_threads + t;
 888		td = g->threads + task_nr;
 889
 890		node = numa_node_of_cpu(td->curr_cpu);
 891		if (node < 0) /* curr_cpu was likely still -1 */
 892			return 0;
 893
 894		node_present[node] = 1;
 895	}
 896
 897	nodes = 0;
 898
 899	for (n = 0; n < MAX_NR_NODES; n++)
 900		nodes += node_present[n];
 901
 902	return nodes;
 903}
 904
 905/*
 906 * Count the number of distinct process-threads a node contains.
 907 *
 908 * A count of 1 means that the node contains only a single
 909 * process. If all nodes on the system contain at most one
 910 * process then we are well-converged.
 911 */
 912static int count_node_processes(int node)
 913{
 914	int processes = 0;
 915	int t, p;
 916
 917	for (p = 0; p < g->p.nr_proc; p++) {
 918		for (t = 0; t < g->p.nr_threads; t++) {
 919			struct thread_data *td;
 920			int task_nr;
 921			int n;
 922
 923			task_nr = p*g->p.nr_threads + t;
 924			td = g->threads + task_nr;
 925
 926			n = numa_node_of_cpu(td->curr_cpu);
 927			if (n == node) {
 928				processes++;
 929				break;
 930			}
 931		}
 932	}
 933
 934	return processes;
 935}
 936
 937static void calc_convergence_compression(int *strong)
 938{
 939	unsigned int nodes_min, nodes_max;
 940	int p;
 941
 942	nodes_min = -1;
 943	nodes_max =  0;
 944
 945	for (p = 0; p < g->p.nr_proc; p++) {
 946		unsigned int nodes = count_process_nodes(p);
 947
 948		if (!nodes) {
 949			*strong = 0;
 950			return;
 951		}
 952
 953		nodes_min = min(nodes, nodes_min);
 954		nodes_max = max(nodes, nodes_max);
 955	}
 956
 957	/* Strong convergence: all threads compress on a single node: */
 958	if (nodes_min == 1 && nodes_max == 1) {
 959		*strong = 1;
 960	} else {
 961		*strong = 0;
 962		tprintf(" {%d-%d}", nodes_min, nodes_max);
 963	}
 964}
 965
 966static void calc_convergence(double runtime_ns_max, double *convergence)
 967{
 968	unsigned int loops_done_min, loops_done_max;
 969	int process_groups;
 970	int nodes[MAX_NR_NODES];
 971	int distance;
 972	int nr_min;
 973	int nr_max;
 974	int strong;
 975	int sum;
 976	int nr;
 977	int node;
 978	int cpu;
 979	int t;
 980
 981	if (!g->p.show_convergence && !g->p.measure_convergence)
 982		return;
 983
 984	for (node = 0; node < g->p.nr_nodes; node++)
 985		nodes[node] = 0;
 986
 987	loops_done_min = -1;
 988	loops_done_max = 0;
 989
 990	for (t = 0; t < g->p.nr_tasks; t++) {
 991		struct thread_data *td = g->threads + t;
 992		unsigned int loops_done;
 993
 994		cpu = td->curr_cpu;
 995
 996		/* Not all threads have written it yet: */
 997		if (cpu < 0)
 998			continue;
 999
1000		node = numa_node_of_cpu(cpu);
1001
1002		nodes[node]++;
1003
1004		loops_done = td->loops_done;
1005		loops_done_min = min(loops_done, loops_done_min);
1006		loops_done_max = max(loops_done, loops_done_max);
1007	}
1008
1009	nr_max = 0;
1010	nr_min = g->p.nr_tasks;
1011	sum = 0;
1012
1013	for (node = 0; node < g->p.nr_nodes; node++) {
1014		if (!is_node_present(node))
1015			continue;
1016		nr = nodes[node];
1017		nr_min = min(nr, nr_min);
1018		nr_max = max(nr, nr_max);
1019		sum += nr;
1020	}
1021	BUG_ON(nr_min > nr_max);
1022
1023	BUG_ON(sum > g->p.nr_tasks);
1024
1025	if (0 && (sum < g->p.nr_tasks))
1026		return;
1027
1028	/*
1029	 * Count the number of distinct process groups present
1030	 * on nodes - when we are converged this will decrease
1031	 * to g->p.nr_proc:
1032	 */
1033	process_groups = 0;
1034
1035	for (node = 0; node < g->p.nr_nodes; node++) {
1036		int processes;
1037
1038		if (!is_node_present(node))
1039			continue;
1040		processes = count_node_processes(node);
1041		nr = nodes[node];
1042		tprintf(" %2d/%-2d", nr, processes);
1043
1044		process_groups += processes;
1045	}
1046
1047	distance = nr_max - nr_min;
1048
1049	tprintf(" [%2d/%-2d]", distance, process_groups);
1050
1051	tprintf(" l:%3d-%-3d (%3d)",
1052		loops_done_min, loops_done_max, loops_done_max-loops_done_min);
1053
1054	if (loops_done_min && loops_done_max) {
1055		double skew = 1.0 - (double)loops_done_min/loops_done_max;
1056
1057		tprintf(" [%4.1f%%]", skew * 100.0);
1058	}
1059
1060	calc_convergence_compression(&strong);
1061
1062	if (strong && process_groups == g->p.nr_proc) {
1063		if (!*convergence) {
1064			*convergence = runtime_ns_max;
1065			tprintf(" (%6.1fs converged)\n", *convergence / NSEC_PER_SEC);
1066			if (g->p.measure_convergence) {
1067				g->all_converged = true;
1068				g->stop_work = true;
1069			}
1070		}
1071	} else {
1072		if (*convergence) {
1073			tprintf(" (%6.1fs de-converged)", runtime_ns_max / NSEC_PER_SEC);
1074			*convergence = 0;
1075		}
1076		tprintf("\n");
1077	}
1078}
1079
1080static void show_summary(double runtime_ns_max, int l, double *convergence)
1081{
1082	tprintf("\r #  %5.1f%%  [%.1f mins]",
1083		(double)(l+1)/g->p.nr_loops*100.0, runtime_ns_max / NSEC_PER_SEC / 60.0);
1084
1085	calc_convergence(runtime_ns_max, convergence);
1086
1087	if (g->p.show_details >= 0)
1088		fflush(stdout);
1089}
1090
1091static void *worker_thread(void *__tdata)
1092{
1093	struct thread_data *td = __tdata;
1094	struct timeval start0, start, stop, diff;
1095	int process_nr = td->process_nr;
1096	int thread_nr = td->thread_nr;
1097	unsigned long last_perturbance;
1098	int task_nr = td->task_nr;
1099	int details = g->p.show_details;
1100	int first_task, last_task;
1101	double convergence = 0;
1102	u64 val = td->val;
1103	double runtime_ns_max;
1104	u8 *global_data;
1105	u8 *process_data;
1106	u8 *thread_data;
1107	u64 bytes_done, secs;
1108	long work_done;
1109	u32 l;
1110	struct rusage rusage;
1111
1112	bind_to_cpumask(td->bind_cpumask);
1113	bind_to_memnode(td->bind_node);
1114
1115	set_taskname("thread %d/%d", process_nr, thread_nr);
1116
1117	global_data = g->data;
1118	process_data = td->process_data;
1119	thread_data = setup_private_data(g->p.bytes_thread);
1120
1121	bytes_done = 0;
1122
1123	last_task = 0;
1124	if (process_nr == g->p.nr_proc-1 && thread_nr == g->p.nr_threads-1)
1125		last_task = 1;
1126
1127	first_task = 0;
1128	if (process_nr == 0 && thread_nr == 0)
1129		first_task = 1;
1130
1131	if (details >= 2) {
1132		printf("#  thread %2d / %2d global mem: %p, process mem: %p, thread mem: %p\n",
1133			process_nr, thread_nr, global_data, process_data, thread_data);
1134	}
1135
1136	if (g->p.serialize_startup) {
1137		pthread_mutex_lock(&g->startup_mutex);
1138		g->nr_tasks_started++;
1139		pthread_mutex_unlock(&g->startup_mutex);
1140
1141		/* Here we will wait for the main process to start us all at once: */
1142		pthread_mutex_lock(&g->start_work_mutex);
1143		g->nr_tasks_working++;
1144
1145		/* Last one wake the main process: */
1146		if (g->nr_tasks_working == g->p.nr_tasks)
1147			pthread_mutex_unlock(&g->startup_done_mutex);
1148
1149		pthread_mutex_unlock(&g->start_work_mutex);
1150	}
1151
1152	gettimeofday(&start0, NULL);
1153
1154	start = stop = start0;
1155	last_perturbance = start.tv_sec;
1156
1157	for (l = 0; l < g->p.nr_loops; l++) {
1158		start = stop;
1159
1160		if (g->stop_work)
1161			break;
1162
1163		val += do_work(global_data,  g->p.bytes_global,  process_nr, g->p.nr_proc,	l, val);
1164		val += do_work(process_data, g->p.bytes_process, thread_nr,  g->p.nr_threads,	l, val);
1165		val += do_work(thread_data,  g->p.bytes_thread,  0,          1,		l, val);
1166
1167		if (g->p.sleep_usecs) {
1168			pthread_mutex_lock(td->process_lock);
1169			usleep(g->p.sleep_usecs);
1170			pthread_mutex_unlock(td->process_lock);
1171		}
1172		/*
1173		 * Amount of work to be done under a process-global lock:
1174		 */
1175		if (g->p.bytes_process_locked) {
1176			pthread_mutex_lock(td->process_lock);
1177			val += do_work(process_data, g->p.bytes_process_locked, thread_nr,  g->p.nr_threads,	l, val);
1178			pthread_mutex_unlock(td->process_lock);
1179		}
1180
1181		work_done = g->p.bytes_global + g->p.bytes_process +
1182			    g->p.bytes_process_locked + g->p.bytes_thread;
1183
1184		update_curr_cpu(task_nr, work_done);
1185		bytes_done += work_done;
1186
1187		if (details < 0 && !g->p.perturb_secs && !g->p.measure_convergence && !g->p.nr_secs)
1188			continue;
1189
1190		td->loops_done = l;
1191
1192		gettimeofday(&stop, NULL);
1193
1194		/* Check whether our max runtime timed out: */
1195		if (g->p.nr_secs) {
1196			timersub(&stop, &start0, &diff);
1197			if ((u32)diff.tv_sec >= g->p.nr_secs) {
1198				g->stop_work = true;
1199				break;
1200			}
1201		}
1202
1203		/* Update the summary at most once per second: */
1204		if (start.tv_sec == stop.tv_sec)
1205			continue;
1206
1207		/*
1208		 * Perturb the first task's equilibrium every g->p.perturb_secs seconds,
1209		 * by migrating to CPU#0:
1210		 */
1211		if (first_task && g->p.perturb_secs && (int)(stop.tv_sec - last_perturbance) >= g->p.perturb_secs) {
1212			cpu_set_t orig_mask;
1213			int target_cpu;
1214			int this_cpu;
1215
1216			last_perturbance = stop.tv_sec;
1217
1218			/*
1219			 * Depending on where we are running, move into
1220			 * the other half of the system, to create some
1221			 * real disturbance:
1222			 */
1223			this_cpu = g->threads[task_nr].curr_cpu;
1224			if (this_cpu < g->p.nr_cpus/2)
1225				target_cpu = g->p.nr_cpus-1;
1226			else
1227				target_cpu = 0;
1228
1229			orig_mask = bind_to_cpu(target_cpu);
1230
1231			/* Here we are running on the target CPU already */
1232			if (details >= 1)
1233				printf(" (injecting perturbalance, moved to CPU#%d)\n", target_cpu);
1234
1235			bind_to_cpumask(orig_mask);
1236		}
1237
1238		if (details >= 3) {
1239			timersub(&stop, &start, &diff);
1240			runtime_ns_max = diff.tv_sec * NSEC_PER_SEC;
1241			runtime_ns_max += diff.tv_usec * NSEC_PER_USEC;
1242
1243			if (details >= 0) {
1244				printf(" #%2d / %2d: %14.2lf nsecs/op [val: %016"PRIx64"]\n",
1245					process_nr, thread_nr, runtime_ns_max / bytes_done, val);
1246			}
1247			fflush(stdout);
1248		}
1249		if (!last_task)
1250			continue;
1251
1252		timersub(&stop, &start0, &diff);
1253		runtime_ns_max = diff.tv_sec * NSEC_PER_SEC;
1254		runtime_ns_max += diff.tv_usec * NSEC_PER_USEC;
1255
1256		show_summary(runtime_ns_max, l, &convergence);
1257	}
1258
1259	gettimeofday(&stop, NULL);
1260	timersub(&stop, &start0, &diff);
1261	td->runtime_ns = diff.tv_sec * NSEC_PER_SEC;
1262	td->runtime_ns += diff.tv_usec * NSEC_PER_USEC;
1263	secs = td->runtime_ns / NSEC_PER_SEC;
1264	td->speed_gbs = secs ? bytes_done / secs / 1e9 : 0;
1265
1266	getrusage(RUSAGE_THREAD, &rusage);
1267	td->system_time_ns = rusage.ru_stime.tv_sec * NSEC_PER_SEC;
1268	td->system_time_ns += rusage.ru_stime.tv_usec * NSEC_PER_USEC;
1269	td->user_time_ns = rusage.ru_utime.tv_sec * NSEC_PER_SEC;
1270	td->user_time_ns += rusage.ru_utime.tv_usec * NSEC_PER_USEC;
1271
1272	free_data(thread_data, g->p.bytes_thread);
1273
1274	pthread_mutex_lock(&g->stop_work_mutex);
1275	g->bytes_done += bytes_done;
1276	pthread_mutex_unlock(&g->stop_work_mutex);
1277
1278	return NULL;
1279}
1280
1281/*
1282 * A worker process starts a couple of threads:
1283 */
1284static void worker_process(int process_nr)
1285{
1286	pthread_mutex_t process_lock;
1287	struct thread_data *td;
1288	pthread_t *pthreads;
1289	u8 *process_data;
1290	int task_nr;
1291	int ret;
1292	int t;
1293
1294	pthread_mutex_init(&process_lock, NULL);
1295	set_taskname("process %d", process_nr);
1296
1297	/*
1298	 * Pick up the memory policy and the CPU binding of our first thread,
1299	 * so that we initialize memory accordingly:
1300	 */
1301	task_nr = process_nr*g->p.nr_threads;
1302	td = g->threads + task_nr;
1303
1304	bind_to_memnode(td->bind_node);
1305	bind_to_cpumask(td->bind_cpumask);
1306
1307	pthreads = zalloc(g->p.nr_threads * sizeof(pthread_t));
1308	process_data = setup_private_data(g->p.bytes_process);
1309
1310	if (g->p.show_details >= 3) {
1311		printf(" # process %2d global mem: %p, process mem: %p\n",
1312			process_nr, g->data, process_data);
1313	}
1314
1315	for (t = 0; t < g->p.nr_threads; t++) {
1316		task_nr = process_nr*g->p.nr_threads + t;
1317		td = g->threads + task_nr;
1318
1319		td->process_data = process_data;
1320		td->process_nr   = process_nr;
1321		td->thread_nr    = t;
1322		td->task_nr	 = task_nr;
1323		td->val          = rand();
1324		td->curr_cpu	 = -1;
1325		td->process_lock = &process_lock;
1326
1327		ret = pthread_create(pthreads + t, NULL, worker_thread, td);
1328		BUG_ON(ret);
1329	}
1330
1331	for (t = 0; t < g->p.nr_threads; t++) {
1332                ret = pthread_join(pthreads[t], NULL);
1333		BUG_ON(ret);
1334	}
1335
1336	free_data(process_data, g->p.bytes_process);
1337	free(pthreads);
1338}
1339
1340static void print_summary(void)
1341{
1342	if (g->p.show_details < 0)
1343		return;
1344
1345	printf("\n ###\n");
1346	printf(" # %d %s will execute (on %d nodes, %d CPUs):\n",
1347		g->p.nr_tasks, g->p.nr_tasks == 1 ? "task" : "tasks", nr_numa_nodes(), g->p.nr_cpus);
1348	printf(" #      %5dx %5ldMB global  shared mem operations\n",
1349			g->p.nr_loops, g->p.bytes_global/1024/1024);
1350	printf(" #      %5dx %5ldMB process shared mem operations\n",
1351			g->p.nr_loops, g->p.bytes_process/1024/1024);
1352	printf(" #      %5dx %5ldMB thread  local  mem operations\n",
1353			g->p.nr_loops, g->p.bytes_thread/1024/1024);
1354
1355	printf(" ###\n");
1356
1357	printf("\n ###\n"); fflush(stdout);
1358}
1359
1360static void init_thread_data(void)
1361{
1362	ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
1363	int t;
1364
1365	g->threads = zalloc_shared_data(size);
1366
1367	for (t = 0; t < g->p.nr_tasks; t++) {
1368		struct thread_data *td = g->threads + t;
1369		int cpu;
1370
1371		/* Allow all nodes by default: */
1372		td->bind_node = NUMA_NO_NODE;
1373
1374		/* Allow all CPUs by default: */
1375		CPU_ZERO(&td->bind_cpumask);
1376		for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
1377			CPU_SET(cpu, &td->bind_cpumask);
1378	}
1379}
1380
1381static void deinit_thread_data(void)
1382{
1383	ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
1384
1385	free_data(g->threads, size);
1386}
1387
1388static int init(void)
1389{
1390	g = (void *)alloc_data(sizeof(*g), MAP_SHARED, 1, 0, 0 /* THP */, 0);
1391
1392	/* Copy over options: */
1393	g->p = p0;
1394
1395	g->p.nr_cpus = numa_num_configured_cpus();
1396
1397	g->p.nr_nodes = numa_max_node() + 1;
1398
1399	/* char array in count_process_nodes(): */
1400	BUG_ON(g->p.nr_nodes > MAX_NR_NODES || g->p.nr_nodes < 0);
1401
1402	if (g->p.show_quiet && !g->p.show_details)
1403		g->p.show_details = -1;
1404
1405	/* Some memory should be specified: */
1406	if (!g->p.mb_global_str && !g->p.mb_proc_str && !g->p.mb_thread_str)
1407		return -1;
1408
1409	if (g->p.mb_global_str) {
1410		g->p.mb_global = atof(g->p.mb_global_str);
1411		BUG_ON(g->p.mb_global < 0);
1412	}
1413
1414	if (g->p.mb_proc_str) {
1415		g->p.mb_proc = atof(g->p.mb_proc_str);
1416		BUG_ON(g->p.mb_proc < 0);
1417	}
1418
1419	if (g->p.mb_proc_locked_str) {
1420		g->p.mb_proc_locked = atof(g->p.mb_proc_locked_str);
1421		BUG_ON(g->p.mb_proc_locked < 0);
1422		BUG_ON(g->p.mb_proc_locked > g->p.mb_proc);
1423	}
1424
1425	if (g->p.mb_thread_str) {
1426		g->p.mb_thread = atof(g->p.mb_thread_str);
1427		BUG_ON(g->p.mb_thread < 0);
1428	}
1429
1430	BUG_ON(g->p.nr_threads <= 0);
1431	BUG_ON(g->p.nr_proc <= 0);
1432
1433	g->p.nr_tasks = g->p.nr_proc*g->p.nr_threads;
1434
1435	g->p.bytes_global		= g->p.mb_global	*1024L*1024L;
1436	g->p.bytes_process		= g->p.mb_proc		*1024L*1024L;
1437	g->p.bytes_process_locked	= g->p.mb_proc_locked	*1024L*1024L;
1438	g->p.bytes_thread		= g->p.mb_thread	*1024L*1024L;
1439
1440	g->data = setup_shared_data(g->p.bytes_global);
1441
1442	/* Startup serialization: */
1443	init_global_mutex(&g->start_work_mutex);
1444	init_global_mutex(&g->startup_mutex);
1445	init_global_mutex(&g->startup_done_mutex);
1446	init_global_mutex(&g->stop_work_mutex);
1447
1448	init_thread_data();
1449
1450	tprintf("#\n");
1451	if (parse_setup_cpu_list() || parse_setup_node_list())
1452		return -1;
1453	tprintf("#\n");
1454
1455	print_summary();
1456
1457	return 0;
1458}
1459
1460static void deinit(void)
1461{
1462	free_data(g->data, g->p.bytes_global);
1463	g->data = NULL;
1464
1465	deinit_thread_data();
1466
1467	free_data(g, sizeof(*g));
1468	g = NULL;
1469}
1470
1471/*
1472 * Print a short or long result, depending on the verbosity setting:
1473 */
1474static void print_res(const char *name, double val,
1475		      const char *txt_unit, const char *txt_short, const char *txt_long)
1476{
1477	if (!name)
1478		name = "main,";
1479
1480	if (!g->p.show_quiet)
1481		printf(" %-30s %15.3f, %-15s %s\n", name, val, txt_unit, txt_short);
1482	else
1483		printf(" %14.3f %s\n", val, txt_long);
1484}
1485
1486static int __bench_numa(const char *name)
1487{
1488	struct timeval start, stop, diff;
1489	u64 runtime_ns_min, runtime_ns_sum;
1490	pid_t *pids, pid, wpid;
1491	double delta_runtime;
1492	double runtime_avg;
1493	double runtime_sec_max;
1494	double runtime_sec_min;
1495	int wait_stat;
1496	double bytes;
1497	int i, t, p;
1498
1499	if (init())
1500		return -1;
1501
1502	pids = zalloc(g->p.nr_proc * sizeof(*pids));
1503	pid = -1;
1504
1505	/* All threads try to acquire it, this way we can wait for them to start up: */
1506	pthread_mutex_lock(&g->start_work_mutex);
1507
1508	if (g->p.serialize_startup) {
1509		tprintf(" #\n");
1510		tprintf(" # Startup synchronization: ..."); fflush(stdout);
1511	}
1512
1513	gettimeofday(&start, NULL);
1514
1515	for (i = 0; i < g->p.nr_proc; i++) {
1516		pid = fork();
1517		dprintf(" # process %2d: PID %d\n", i, pid);
1518
1519		BUG_ON(pid < 0);
1520		if (!pid) {
1521			/* Child process: */
1522			worker_process(i);
1523
1524			exit(0);
1525		}
1526		pids[i] = pid;
1527
1528	}
1529	/* Wait for all the threads to start up: */
1530	while (g->nr_tasks_started != g->p.nr_tasks)
1531		usleep(USEC_PER_MSEC);
1532
1533	BUG_ON(g->nr_tasks_started != g->p.nr_tasks);
1534
1535	if (g->p.serialize_startup) {
1536		double startup_sec;
1537
1538		pthread_mutex_lock(&g->startup_done_mutex);
1539
1540		/* This will start all threads: */
1541		pthread_mutex_unlock(&g->start_work_mutex);
1542
1543		/* This mutex is locked - the last started thread will wake us: */
1544		pthread_mutex_lock(&g->startup_done_mutex);
1545
1546		gettimeofday(&stop, NULL);
1547
1548		timersub(&stop, &start, &diff);
1549
1550		startup_sec = diff.tv_sec * NSEC_PER_SEC;
1551		startup_sec += diff.tv_usec * NSEC_PER_USEC;
1552		startup_sec /= NSEC_PER_SEC;
1553
1554		tprintf(" threads initialized in %.6f seconds.\n", startup_sec);
1555		tprintf(" #\n");
1556
1557		start = stop;
1558		pthread_mutex_unlock(&g->startup_done_mutex);
1559	} else {
1560		gettimeofday(&start, NULL);
1561	}
1562
1563	/* Parent process: */
1564
1565
1566	for (i = 0; i < g->p.nr_proc; i++) {
1567		wpid = waitpid(pids[i], &wait_stat, 0);
1568		BUG_ON(wpid < 0);
1569		BUG_ON(!WIFEXITED(wait_stat));
1570
1571	}
1572
1573	runtime_ns_sum = 0;
1574	runtime_ns_min = -1LL;
1575
1576	for (t = 0; t < g->p.nr_tasks; t++) {
1577		u64 thread_runtime_ns = g->threads[t].runtime_ns;
1578
1579		runtime_ns_sum += thread_runtime_ns;
1580		runtime_ns_min = min(thread_runtime_ns, runtime_ns_min);
1581	}
1582
1583	gettimeofday(&stop, NULL);
1584	timersub(&stop, &start, &diff);
1585
1586	BUG_ON(bench_format != BENCH_FORMAT_DEFAULT);
1587
1588	tprintf("\n ###\n");
1589	tprintf("\n");
1590
1591	runtime_sec_max = diff.tv_sec * NSEC_PER_SEC;
1592	runtime_sec_max += diff.tv_usec * NSEC_PER_USEC;
1593	runtime_sec_max /= NSEC_PER_SEC;
1594
1595	runtime_sec_min = runtime_ns_min / NSEC_PER_SEC;
1596
1597	bytes = g->bytes_done;
1598	runtime_avg = (double)runtime_ns_sum / g->p.nr_tasks / NSEC_PER_SEC;
1599
1600	if (g->p.measure_convergence) {
1601		print_res(name, runtime_sec_max,
1602			"secs,", "NUMA-convergence-latency", "secs latency to NUMA-converge");
1603	}
1604
1605	print_res(name, runtime_sec_max,
1606		"secs,", "runtime-max/thread",	"secs slowest (max) thread-runtime");
1607
1608	print_res(name, runtime_sec_min,
1609		"secs,", "runtime-min/thread",	"secs fastest (min) thread-runtime");
1610
1611	print_res(name, runtime_avg,
1612		"secs,", "runtime-avg/thread",	"secs average thread-runtime");
1613
1614	delta_runtime = (runtime_sec_max - runtime_sec_min)/2.0;
1615	print_res(name, delta_runtime / runtime_sec_max * 100.0,
1616		"%,", "spread-runtime/thread",	"% difference between max/avg runtime");
1617
1618	print_res(name, bytes / g->p.nr_tasks / 1e9,
1619		"GB,", "data/thread",		"GB data processed, per thread");
1620
1621	print_res(name, bytes / 1e9,
1622		"GB,", "data-total",		"GB data processed, total");
1623
1624	print_res(name, runtime_sec_max * NSEC_PER_SEC / (bytes / g->p.nr_tasks),
1625		"nsecs,", "runtime/byte/thread","nsecs/byte/thread runtime");
1626
1627	print_res(name, bytes / g->p.nr_tasks / 1e9 / runtime_sec_max,
1628		"GB/sec,", "thread-speed",	"GB/sec/thread speed");
1629
1630	print_res(name, bytes / runtime_sec_max / 1e9,
1631		"GB/sec,", "total-speed",	"GB/sec total speed");
1632
1633	if (g->p.show_details >= 2) {
1634		char tname[14 + 2 * 10 + 1];
1635		struct thread_data *td;
1636		for (p = 0; p < g->p.nr_proc; p++) {
1637			for (t = 0; t < g->p.nr_threads; t++) {
1638				memset(tname, 0, sizeof(tname));
1639				td = g->threads + p*g->p.nr_threads + t;
1640				snprintf(tname, sizeof(tname), "process%d:thread%d", p, t);
1641				print_res(tname, td->speed_gbs,
1642					"GB/sec",	"thread-speed", "GB/sec/thread speed");
1643				print_res(tname, td->system_time_ns / NSEC_PER_SEC,
1644					"secs",	"thread-system-time", "system CPU time/thread");
1645				print_res(tname, td->user_time_ns / NSEC_PER_SEC,
1646					"secs",	"thread-user-time", "user CPU time/thread");
1647			}
1648		}
1649	}
1650
1651	free(pids);
1652
1653	deinit();
1654
1655	return 0;
1656}
1657
1658#define MAX_ARGS 50
1659
1660static int command_size(const char **argv)
1661{
1662	int size = 0;
1663
1664	while (*argv) {
1665		size++;
1666		argv++;
1667	}
1668
1669	BUG_ON(size >= MAX_ARGS);
1670
1671	return size;
1672}
1673
1674static void init_params(struct params *p, const char *name, int argc, const char **argv)
1675{
1676	int i;
1677
1678	printf("\n # Running %s \"perf bench numa", name);
1679
1680	for (i = 0; i < argc; i++)
1681		printf(" %s", argv[i]);
1682
1683	printf("\"\n");
1684
1685	memset(p, 0, sizeof(*p));
1686
1687	/* Initialize nonzero defaults: */
1688
1689	p->serialize_startup		= 1;
1690	p->data_reads			= true;
1691	p->data_writes			= true;
1692	p->data_backwards		= true;
1693	p->data_rand_walk		= true;
1694	p->nr_loops			= -1;
1695	p->init_random			= true;
1696	p->mb_global_str		= "1";
1697	p->nr_proc			= 1;
1698	p->nr_threads			= 1;
1699	p->nr_secs			= 5;
1700	p->run_all			= argc == 1;
1701}
1702
1703static int run_bench_numa(const char *name, const char **argv)
1704{
1705	int argc = command_size(argv);
1706
1707	init_params(&p0, name, argc, argv);
1708	argc = parse_options(argc, argv, options, bench_numa_usage, 0);
1709	if (argc)
1710		goto err;
1711
1712	if (__bench_numa(name))
1713		goto err;
1714
1715	return 0;
1716
1717err:
1718	return -1;
1719}
1720
1721#define OPT_BW_RAM		"-s",  "20", "-zZq",    "--thp", " 1", "--no-data_rand_walk"
1722#define OPT_BW_RAM_NOTHP	OPT_BW_RAM,		"--thp", "-1"
1723
1724#define OPT_CONV		"-s", "100", "-zZ0qcm", "--thp", " 1"
1725#define OPT_CONV_NOTHP		OPT_CONV,		"--thp", "-1"
1726
1727#define OPT_BW			"-s",  "20", "-zZ0q",   "--thp", " 1"
1728#define OPT_BW_NOTHP		OPT_BW,			"--thp", "-1"
1729
1730/*
1731 * The built-in test-suite executed by "perf bench numa -a".
1732 *
1733 * (A minimum of 4 nodes and 16 GB of RAM is recommended.)
1734 */
1735static const char *tests[][MAX_ARGS] = {
1736   /* Basic single-stream NUMA bandwidth measurements: */
1737   { "RAM-bw-local,",     "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
1738			  "-C" ,   "0", "-M",   "0", OPT_BW_RAM },
1739   { "RAM-bw-local-NOTHP,",
1740			  "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
1741			  "-C" ,   "0", "-M",   "0", OPT_BW_RAM_NOTHP },
1742   { "RAM-bw-remote,",    "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
1743			  "-C" ,   "0", "-M",   "1", OPT_BW_RAM },
1744
1745   /* 2-stream NUMA bandwidth measurements: */
1746   { "RAM-bw-local-2x,",  "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
1747			   "-C", "0,2", "-M", "0x2", OPT_BW_RAM },
1748   { "RAM-bw-remote-2x,", "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
1749		 	   "-C", "0,2", "-M", "1x2", OPT_BW_RAM },
1750
1751   /* Cross-stream NUMA bandwidth measurement: */
1752   { "RAM-bw-cross,",     "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
1753		 	   "-C", "0,8", "-M", "1,0", OPT_BW_RAM },
1754
1755   /* Convergence latency measurements: */
1756   { " 1x3-convergence,", "mem",  "-p",  "1", "-t",  "3", "-P",  "512", OPT_CONV },
1757   { " 1x4-convergence,", "mem",  "-p",  "1", "-t",  "4", "-P",  "512", OPT_CONV },
1758   { " 1x6-convergence,", "mem",  "-p",  "1", "-t",  "6", "-P", "1020", OPT_CONV },
1759   { " 2x3-convergence,", "mem",  "-p",  "2", "-t",  "3", "-P", "1020", OPT_CONV },
1760   { " 3x3-convergence,", "mem",  "-p",  "3", "-t",  "3", "-P", "1020", OPT_CONV },
1761   { " 4x4-convergence,", "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_CONV },
1762   { " 4x4-convergence-NOTHP,",
1763			  "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_CONV_NOTHP },
1764   { " 4x6-convergence,", "mem",  "-p",  "4", "-t",  "6", "-P", "1020", OPT_CONV },
1765   { " 4x8-convergence,", "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_CONV },
1766   { " 8x4-convergence,", "mem",  "-p",  "8", "-t",  "4", "-P",  "512", OPT_CONV },
1767   { " 8x4-convergence-NOTHP,",
1768			  "mem",  "-p",  "8", "-t",  "4", "-P",  "512", OPT_CONV_NOTHP },
1769   { " 3x1-convergence,", "mem",  "-p",  "3", "-t",  "1", "-P",  "512", OPT_CONV },
1770   { " 4x1-convergence,", "mem",  "-p",  "4", "-t",  "1", "-P",  "512", OPT_CONV },
1771   { " 8x1-convergence,", "mem",  "-p",  "8", "-t",  "1", "-P",  "512", OPT_CONV },
1772   { "16x1-convergence,", "mem",  "-p", "16", "-t",  "1", "-P",  "256", OPT_CONV },
1773   { "32x1-convergence,", "mem",  "-p", "32", "-t",  "1", "-P",  "128", OPT_CONV },
1774
1775   /* Various NUMA process/thread layout bandwidth measurements: */
1776   { " 2x1-bw-process,",  "mem",  "-p",  "2", "-t",  "1", "-P", "1024", OPT_BW },
1777   { " 3x1-bw-process,",  "mem",  "-p",  "3", "-t",  "1", "-P", "1024", OPT_BW },
1778   { " 4x1-bw-process,",  "mem",  "-p",  "4", "-t",  "1", "-P", "1024", OPT_BW },
1779   { " 8x1-bw-process,",  "mem",  "-p",  "8", "-t",  "1", "-P", " 512", OPT_BW },
1780   { " 8x1-bw-process-NOTHP,",
1781			  "mem",  "-p",  "8", "-t",  "1", "-P", " 512", OPT_BW_NOTHP },
1782   { "16x1-bw-process,",  "mem",  "-p", "16", "-t",  "1", "-P",  "256", OPT_BW },
1783
1784   { " 1x4-bw-thread,",   "mem",  "-p",  "1", "-t",  "4", "-T",  "256", OPT_BW },
1785   { " 1x8-bw-thread,",   "mem",  "-p",  "1", "-t",  "8", "-T",  "256", OPT_BW },
1786   { "1x16-bw-thread,",   "mem",  "-p",  "1", "-t", "16", "-T",  "128", OPT_BW },
1787   { "1x32-bw-thread,",   "mem",  "-p",  "1", "-t", "32", "-T",   "64", OPT_BW },
1788
1789   { " 2x3-bw-process,",  "mem",  "-p",  "2", "-t",  "3", "-P",  "512", OPT_BW },
1790   { " 4x4-bw-process,",  "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_BW },
1791   { " 4x6-bw-process,",  "mem",  "-p",  "4", "-t",  "6", "-P",  "512", OPT_BW },
1792   { " 4x8-bw-process,",  "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_BW },
1793   { " 4x8-bw-process-NOTHP,",
1794			  "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_BW_NOTHP },
1795   { " 3x3-bw-process,",  "mem",  "-p",  "3", "-t",  "3", "-P",  "512", OPT_BW },
1796   { " 5x5-bw-process,",  "mem",  "-p",  "5", "-t",  "5", "-P",  "512", OPT_BW },
1797
1798   { "2x16-bw-process,",  "mem",  "-p",  "2", "-t", "16", "-P",  "512", OPT_BW },
1799   { "1x32-bw-process,",  "mem",  "-p",  "1", "-t", "32", "-P", "2048", OPT_BW },
1800
1801   { "numa02-bw,",        "mem",  "-p",  "1", "-t", "32", "-T",   "32", OPT_BW },
1802   { "numa02-bw-NOTHP,",  "mem",  "-p",  "1", "-t", "32", "-T",   "32", OPT_BW_NOTHP },
1803   { "numa01-bw-thread,", "mem",  "-p",  "2", "-t", "16", "-T",  "192", OPT_BW },
1804   { "numa01-bw-thread-NOTHP,",
1805			  "mem",  "-p",  "2", "-t", "16", "-T",  "192", OPT_BW_NOTHP },
1806};
1807
1808static int bench_all(void)
1809{
1810	int nr = ARRAY_SIZE(tests);
1811	int ret;
1812	int i;
1813
1814	ret = system("echo ' #'; echo ' # Running test on: '$(uname -a); echo ' #'");
1815	BUG_ON(ret < 0);
1816
1817	for (i = 0; i < nr; i++) {
1818		run_bench_numa(tests[i][0], tests[i] + 1);
1819	}
1820
1821	printf("\n");
1822
1823	return 0;
1824}
1825
1826int bench_numa(int argc, const char **argv)
1827{
1828	init_params(&p0, "main,", argc, argv);
1829	argc = parse_options(argc, argv, options, bench_numa_usage, 0);
1830	if (argc)
1831		goto err;
1832
1833	if (p0.run_all)
1834		return bench_all();
1835
1836	if (__bench_numa(NULL))
1837		goto err;
1838
1839	return 0;
1840
1841err:
1842	usage_with_options(numa_usage, options);
1843	return -1;
1844}
v3.15
 
   1/*
   2 * numa.c
   3 *
   4 * numa: Simulate NUMA-sensitive workload and measure their NUMA performance
   5 */
   6
   7#include "../perf.h"
   8#include "../builtin.h"
   9#include "../util/util.h"
  10#include "../util/parse-options.h"
 
 
  11
  12#include "bench.h"
  13
  14#include <errno.h>
  15#include <sched.h>
  16#include <stdio.h>
  17#include <assert.h>
  18#include <malloc.h>
  19#include <signal.h>
  20#include <stdlib.h>
  21#include <string.h>
  22#include <unistd.h>
  23#include <pthread.h>
  24#include <sys/mman.h>
  25#include <sys/time.h>
 
  26#include <sys/wait.h>
  27#include <sys/prctl.h>
  28#include <sys/types.h>
 
 
 
 
  29
  30#include <numa.h>
  31#include <numaif.h>
  32
 
 
 
 
  33/*
  34 * Regular printout to the terminal, supressed if -q is specified:
  35 */
  36#define tprintf(x...) do { if (g && g->p.show_details >= 0) printf(x); } while (0)
  37
  38/*
  39 * Debug printf:
  40 */
 
  41#define dprintf(x...) do { if (g && g->p.show_details >= 1) printf(x); } while (0)
  42
  43struct thread_data {
  44	int			curr_cpu;
  45	cpu_set_t		bind_cpumask;
  46	int			bind_node;
  47	u8			*process_data;
  48	int			process_nr;
  49	int			thread_nr;
  50	int			task_nr;
  51	unsigned int		loops_done;
  52	u64			val;
  53	u64			runtime_ns;
 
 
 
  54	pthread_mutex_t		*process_lock;
  55};
  56
  57/* Parameters set by options: */
  58
  59struct params {
  60	/* Startup synchronization: */
  61	bool			serialize_startup;
  62
  63	/* Task hierarchy: */
  64	int			nr_proc;
  65	int			nr_threads;
  66
  67	/* Working set sizes: */
  68	const char		*mb_global_str;
  69	const char		*mb_proc_str;
  70	const char		*mb_proc_locked_str;
  71	const char		*mb_thread_str;
  72
  73	double			mb_global;
  74	double			mb_proc;
  75	double			mb_proc_locked;
  76	double			mb_thread;
  77
  78	/* Access patterns to the working set: */
  79	bool			data_reads;
  80	bool			data_writes;
  81	bool			data_backwards;
  82	bool			data_zero_memset;
  83	bool			data_rand_walk;
  84	u32			nr_loops;
  85	u32			nr_secs;
  86	u32			sleep_usecs;
  87
  88	/* Working set initialization: */
  89	bool			init_zero;
  90	bool			init_random;
  91	bool			init_cpu0;
  92
  93	/* Misc options: */
  94	int			show_details;
  95	int			run_all;
  96	int			thp;
  97
  98	long			bytes_global;
  99	long			bytes_process;
 100	long			bytes_process_locked;
 101	long			bytes_thread;
 102
 103	int			nr_tasks;
 104	bool			show_quiet;
 105
 106	bool			show_convergence;
 107	bool			measure_convergence;
 108
 109	int			perturb_secs;
 110	int			nr_cpus;
 111	int			nr_nodes;
 112
 113	/* Affinity options -C and -N: */
 114	char			*cpu_list_str;
 115	char			*node_list_str;
 116};
 117
 118
 119/* Global, read-writable area, accessible to all processes and threads: */
 120
 121struct global_info {
 122	u8			*data;
 123
 124	pthread_mutex_t		startup_mutex;
 125	int			nr_tasks_started;
 126
 127	pthread_mutex_t		startup_done_mutex;
 128
 129	pthread_mutex_t		start_work_mutex;
 130	int			nr_tasks_working;
 131
 132	pthread_mutex_t		stop_work_mutex;
 133	u64			bytes_done;
 134
 135	struct thread_data	*threads;
 136
 137	/* Convergence latency measurement: */
 138	bool			all_converged;
 139	bool			stop_work;
 140
 141	int			print_once;
 142
 143	struct params		p;
 144};
 145
 146static struct global_info	*g = NULL;
 147
 148static int parse_cpus_opt(const struct option *opt, const char *arg, int unset);
 149static int parse_nodes_opt(const struct option *opt, const char *arg, int unset);
 150
 151struct params p0;
 152
 153static const struct option options[] = {
 154	OPT_INTEGER('p', "nr_proc"	, &p0.nr_proc,		"number of processes"),
 155	OPT_INTEGER('t', "nr_threads"	, &p0.nr_threads,	"number of threads per process"),
 156
 157	OPT_STRING('G', "mb_global"	, &p0.mb_global_str,	"MB", "global  memory (MBs)"),
 158	OPT_STRING('P', "mb_proc"	, &p0.mb_proc_str,	"MB", "process memory (MBs)"),
 159	OPT_STRING('L', "mb_proc_locked", &p0.mb_proc_locked_str,"MB", "process serialized/locked memory access (MBs), <= process_memory"),
 160	OPT_STRING('T', "mb_thread"	, &p0.mb_thread_str,	"MB", "thread  memory (MBs)"),
 161
 162	OPT_UINTEGER('l', "nr_loops"	, &p0.nr_loops,		"max number of loops to run"),
 163	OPT_UINTEGER('s', "nr_secs"	, &p0.nr_secs,		"max number of seconds to run"),
 164	OPT_UINTEGER('u', "usleep"	, &p0.sleep_usecs,	"usecs to sleep per loop iteration"),
 165
 166	OPT_BOOLEAN('R', "data_reads"	, &p0.data_reads,	"access the data via writes (can be mixed with -W)"),
 167	OPT_BOOLEAN('W', "data_writes"	, &p0.data_writes,	"access the data via writes (can be mixed with -R)"),
 168	OPT_BOOLEAN('B', "data_backwards", &p0.data_backwards,	"access the data backwards as well"),
 169	OPT_BOOLEAN('Z', "data_zero_memset", &p0.data_zero_memset,"access the data via glibc bzero only"),
 170	OPT_BOOLEAN('r', "data_rand_walk", &p0.data_rand_walk,	"access the data with random (32bit LFSR) walk"),
 171
 172
 173	OPT_BOOLEAN('z', "init_zero"	, &p0.init_zero,	"bzero the initial allocations"),
 174	OPT_BOOLEAN('I', "init_random"	, &p0.init_random,	"randomize the contents of the initial allocations"),
 175	OPT_BOOLEAN('0', "init_cpu0"	, &p0.init_cpu0,	"do the initial allocations on CPU#0"),
 176	OPT_INTEGER('x', "perturb_secs", &p0.perturb_secs,	"perturb thread 0/0 every X secs, to test convergence stability"),
 177
 178	OPT_INCR   ('d', "show_details"	, &p0.show_details,	"Show details"),
 179	OPT_INCR   ('a', "all"		, &p0.run_all,		"Run all tests in the suite"),
 180	OPT_INTEGER('H', "thp"		, &p0.thp,		"MADV_NOHUGEPAGE < 0 < MADV_HUGEPAGE"),
 181	OPT_BOOLEAN('c', "show_convergence", &p0.show_convergence, "show convergence details"),
 
 182	OPT_BOOLEAN('m', "measure_convergence",	&p0.measure_convergence, "measure convergence latency"),
 183	OPT_BOOLEAN('q', "quiet"	, &p0.show_quiet,	"bzero the initial allocations"),
 184	OPT_BOOLEAN('S', "serialize-startup", &p0.serialize_startup,"serialize thread startup"),
 185
 186	/* Special option string parsing callbacks: */
 187        OPT_CALLBACK('C', "cpus", NULL, "cpu[,cpu2,...cpuN]",
 188			"bind the first N tasks to these specific cpus (the rest is unbound)",
 189			parse_cpus_opt),
 190        OPT_CALLBACK('M', "memnodes", NULL, "node[,node2,...nodeN]",
 191			"bind the first N tasks to these specific memory nodes (the rest is unbound)",
 192			parse_nodes_opt),
 193	OPT_END()
 194};
 195
 196static const char * const bench_numa_usage[] = {
 197	"perf bench numa <options>",
 198	NULL
 199};
 200
 201static const char * const numa_usage[] = {
 202	"perf bench numa mem [<options>]",
 203	NULL
 204};
 205
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 206static cpu_set_t bind_to_cpu(int target_cpu)
 207{
 208	cpu_set_t orig_mask, mask;
 209	int ret;
 210
 211	ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask);
 212	BUG_ON(ret);
 213
 214	CPU_ZERO(&mask);
 215
 216	if (target_cpu == -1) {
 217		int cpu;
 218
 219		for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
 220			CPU_SET(cpu, &mask);
 221	} else {
 222		BUG_ON(target_cpu < 0 || target_cpu >= g->p.nr_cpus);
 223		CPU_SET(target_cpu, &mask);
 224	}
 225
 226	ret = sched_setaffinity(0, sizeof(mask), &mask);
 227	BUG_ON(ret);
 228
 229	return orig_mask;
 230}
 231
 232static cpu_set_t bind_to_node(int target_node)
 233{
 234	int cpus_per_node = g->p.nr_cpus/g->p.nr_nodes;
 235	cpu_set_t orig_mask, mask;
 236	int cpu;
 237	int ret;
 238
 239	BUG_ON(cpus_per_node*g->p.nr_nodes != g->p.nr_cpus);
 240	BUG_ON(!cpus_per_node);
 241
 242	ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask);
 243	BUG_ON(ret);
 244
 245	CPU_ZERO(&mask);
 246
 247	if (target_node == -1) {
 248		for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
 249			CPU_SET(cpu, &mask);
 250	} else {
 251		int cpu_start = (target_node + 0) * cpus_per_node;
 252		int cpu_stop  = (target_node + 1) * cpus_per_node;
 253
 254		BUG_ON(cpu_stop > g->p.nr_cpus);
 255
 256		for (cpu = cpu_start; cpu < cpu_stop; cpu++)
 257			CPU_SET(cpu, &mask);
 
 
 
 
 258	}
 259
 260	ret = sched_setaffinity(0, sizeof(mask), &mask);
 261	BUG_ON(ret);
 262
 263	return orig_mask;
 264}
 265
 266static void bind_to_cpumask(cpu_set_t mask)
 267{
 268	int ret;
 269
 270	ret = sched_setaffinity(0, sizeof(mask), &mask);
 271	BUG_ON(ret);
 272}
 273
 274static void mempol_restore(void)
 275{
 276	int ret;
 277
 278	ret = set_mempolicy(MPOL_DEFAULT, NULL, g->p.nr_nodes-1);
 279
 280	BUG_ON(ret);
 281}
 282
 283static void bind_to_memnode(int node)
 284{
 285	unsigned long nodemask;
 286	int ret;
 287
 288	if (node == -1)
 289		return;
 290
 291	BUG_ON(g->p.nr_nodes > (int)sizeof(nodemask));
 292	nodemask = 1L << node;
 293
 294	ret = set_mempolicy(MPOL_BIND, &nodemask, sizeof(nodemask)*8);
 295	dprintf("binding to node %d, mask: %016lx => %d\n", node, nodemask, ret);
 296
 297	BUG_ON(ret);
 298}
 299
 300#define HPSIZE (2*1024*1024)
 301
 302#define set_taskname(fmt...)				\
 303do {							\
 304	char name[20];					\
 305							\
 306	snprintf(name, 20, fmt);			\
 307	prctl(PR_SET_NAME, name);			\
 308} while (0)
 309
 310static u8 *alloc_data(ssize_t bytes0, int map_flags,
 311		      int init_zero, int init_cpu0, int thp, int init_random)
 312{
 313	cpu_set_t orig_mask;
 314	ssize_t bytes;
 315	u8 *buf;
 316	int ret;
 317
 318	if (!bytes0)
 319		return NULL;
 320
 321	/* Allocate and initialize all memory on CPU#0: */
 322	if (init_cpu0) {
 323		orig_mask = bind_to_node(0);
 324		bind_to_memnode(0);
 
 
 325	}
 326
 327	bytes = bytes0 + HPSIZE;
 328
 329	buf = (void *)mmap(0, bytes, PROT_READ|PROT_WRITE, MAP_ANON|map_flags, -1, 0);
 330	BUG_ON(buf == (void *)-1);
 331
 332	if (map_flags == MAP_PRIVATE) {
 333		if (thp > 0) {
 334			ret = madvise(buf, bytes, MADV_HUGEPAGE);
 335			if (ret && !g->print_once) {
 336				g->print_once = 1;
 337				printf("WARNING: Could not enable THP - do: 'echo madvise > /sys/kernel/mm/transparent_hugepage/enabled'\n");
 338			}
 339		}
 340		if (thp < 0) {
 341			ret = madvise(buf, bytes, MADV_NOHUGEPAGE);
 342			if (ret && !g->print_once) {
 343				g->print_once = 1;
 344				printf("WARNING: Could not disable THP: run a CONFIG_TRANSPARENT_HUGEPAGE kernel?\n");
 345			}
 346		}
 347	}
 348
 349	if (init_zero) {
 350		bzero(buf, bytes);
 351	} else {
 352		/* Initialize random contents, different in each word: */
 353		if (init_random) {
 354			u64 *wbuf = (void *)buf;
 355			long off = rand();
 356			long i;
 357
 358			for (i = 0; i < bytes/8; i++)
 359				wbuf[i] = i + off;
 360		}
 361	}
 362
 363	/* Align to 2MB boundary: */
 364	buf = (void *)(((unsigned long)buf + HPSIZE-1) & ~(HPSIZE-1));
 365
 366	/* Restore affinity: */
 367	if (init_cpu0) {
 368		bind_to_cpumask(orig_mask);
 369		mempol_restore();
 370	}
 371
 372	return buf;
 373}
 374
 375static void free_data(void *data, ssize_t bytes)
 376{
 377	int ret;
 378
 379	if (!data)
 380		return;
 381
 382	ret = munmap(data, bytes);
 383	BUG_ON(ret);
 384}
 385
 386/*
 387 * Create a shared memory buffer that can be shared between processes, zeroed:
 388 */
 389static void * zalloc_shared_data(ssize_t bytes)
 390{
 391	return alloc_data(bytes, MAP_SHARED, 1, g->p.init_cpu0,  g->p.thp, g->p.init_random);
 392}
 393
 394/*
 395 * Create a shared memory buffer that can be shared between processes:
 396 */
 397static void * setup_shared_data(ssize_t bytes)
 398{
 399	return alloc_data(bytes, MAP_SHARED, 0, g->p.init_cpu0,  g->p.thp, g->p.init_random);
 400}
 401
 402/*
 403 * Allocate process-local memory - this will either be shared between
 404 * threads of this process, or only be accessed by this thread:
 405 */
 406static void * setup_private_data(ssize_t bytes)
 407{
 408	return alloc_data(bytes, MAP_PRIVATE, 0, g->p.init_cpu0,  g->p.thp, g->p.init_random);
 409}
 410
 411/*
 412 * Return a process-shared (global) mutex:
 413 */
 414static void init_global_mutex(pthread_mutex_t *mutex)
 415{
 416	pthread_mutexattr_t attr;
 417
 418	pthread_mutexattr_init(&attr);
 419	pthread_mutexattr_setpshared(&attr, PTHREAD_PROCESS_SHARED);
 420	pthread_mutex_init(mutex, &attr);
 421}
 422
 423static int parse_cpu_list(const char *arg)
 424{
 425	p0.cpu_list_str = strdup(arg);
 426
 427	dprintf("got CPU list: {%s}\n", p0.cpu_list_str);
 428
 429	return 0;
 430}
 431
 432static int parse_setup_cpu_list(void)
 433{
 434	struct thread_data *td;
 435	char *str0, *str;
 436	int t;
 437
 438	if (!g->p.cpu_list_str)
 439		return 0;
 440
 441	dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
 442
 443	str0 = str = strdup(g->p.cpu_list_str);
 444	t = 0;
 445
 446	BUG_ON(!str);
 447
 448	tprintf("# binding tasks to CPUs:\n");
 449	tprintf("#  ");
 450
 451	while (true) {
 452		int bind_cpu, bind_cpu_0, bind_cpu_1;
 453		char *tok, *tok_end, *tok_step, *tok_len, *tok_mul;
 454		int bind_len;
 455		int step;
 456		int mul;
 457
 458		tok = strsep(&str, ",");
 459		if (!tok)
 460			break;
 461
 462		tok_end = strstr(tok, "-");
 463
 464		dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
 465		if (!tok_end) {
 466			/* Single CPU specified: */
 467			bind_cpu_0 = bind_cpu_1 = atol(tok);
 468		} else {
 469			/* CPU range specified (for example: "5-11"): */
 470			bind_cpu_0 = atol(tok);
 471			bind_cpu_1 = atol(tok_end + 1);
 472		}
 473
 474		step = 1;
 475		tok_step = strstr(tok, "#");
 476		if (tok_step) {
 477			step = atol(tok_step + 1);
 478			BUG_ON(step <= 0 || step >= g->p.nr_cpus);
 479		}
 480
 481		/*
 482		 * Mask length.
 483		 * Eg: "--cpus 8_4-16#4" means: '--cpus 8_4,12_4,16_4',
 484		 * where the _4 means the next 4 CPUs are allowed.
 485		 */
 486		bind_len = 1;
 487		tok_len = strstr(tok, "_");
 488		if (tok_len) {
 489			bind_len = atol(tok_len + 1);
 490			BUG_ON(bind_len <= 0 || bind_len > g->p.nr_cpus);
 491		}
 492
 493		/* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
 494		mul = 1;
 495		tok_mul = strstr(tok, "x");
 496		if (tok_mul) {
 497			mul = atol(tok_mul + 1);
 498			BUG_ON(mul <= 0);
 499		}
 500
 501		dprintf("CPUs: %d_%d-%d#%dx%d\n", bind_cpu_0, bind_len, bind_cpu_1, step, mul);
 502
 503		if (bind_cpu_0 >= g->p.nr_cpus || bind_cpu_1 >= g->p.nr_cpus) {
 504			printf("\nTest not applicable, system has only %d CPUs.\n", g->p.nr_cpus);
 505			return -1;
 506		}
 507
 508		BUG_ON(bind_cpu_0 < 0 || bind_cpu_1 < 0);
 509		BUG_ON(bind_cpu_0 > bind_cpu_1);
 510
 511		for (bind_cpu = bind_cpu_0; bind_cpu <= bind_cpu_1; bind_cpu += step) {
 512			int i;
 513
 514			for (i = 0; i < mul; i++) {
 515				int cpu;
 516
 517				if (t >= g->p.nr_tasks) {
 518					printf("\n# NOTE: ignoring bind CPUs starting at CPU#%d\n #", bind_cpu);
 519					goto out;
 520				}
 521				td = g->threads + t;
 522
 523				if (t)
 524					tprintf(",");
 525				if (bind_len > 1) {
 526					tprintf("%2d/%d", bind_cpu, bind_len);
 527				} else {
 528					tprintf("%2d", bind_cpu);
 529				}
 530
 531				CPU_ZERO(&td->bind_cpumask);
 532				for (cpu = bind_cpu; cpu < bind_cpu+bind_len; cpu++) {
 533					BUG_ON(cpu < 0 || cpu >= g->p.nr_cpus);
 534					CPU_SET(cpu, &td->bind_cpumask);
 535				}
 536				t++;
 537			}
 538		}
 539	}
 540out:
 541
 542	tprintf("\n");
 543
 544	if (t < g->p.nr_tasks)
 545		printf("# NOTE: %d tasks bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
 546
 547	free(str0);
 548	return 0;
 549}
 550
 551static int parse_cpus_opt(const struct option *opt __maybe_unused,
 552			  const char *arg, int unset __maybe_unused)
 553{
 554	if (!arg)
 555		return -1;
 556
 557	return parse_cpu_list(arg);
 558}
 559
 560static int parse_node_list(const char *arg)
 561{
 562	p0.node_list_str = strdup(arg);
 563
 564	dprintf("got NODE list: {%s}\n", p0.node_list_str);
 565
 566	return 0;
 567}
 568
 569static int parse_setup_node_list(void)
 570{
 571	struct thread_data *td;
 572	char *str0, *str;
 573	int t;
 574
 575	if (!g->p.node_list_str)
 576		return 0;
 577
 578	dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
 579
 580	str0 = str = strdup(g->p.node_list_str);
 581	t = 0;
 582
 583	BUG_ON(!str);
 584
 585	tprintf("# binding tasks to NODEs:\n");
 586	tprintf("# ");
 587
 588	while (true) {
 589		int bind_node, bind_node_0, bind_node_1;
 590		char *tok, *tok_end, *tok_step, *tok_mul;
 591		int step;
 592		int mul;
 593
 594		tok = strsep(&str, ",");
 595		if (!tok)
 596			break;
 597
 598		tok_end = strstr(tok, "-");
 599
 600		dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
 601		if (!tok_end) {
 602			/* Single NODE specified: */
 603			bind_node_0 = bind_node_1 = atol(tok);
 604		} else {
 605			/* NODE range specified (for example: "5-11"): */
 606			bind_node_0 = atol(tok);
 607			bind_node_1 = atol(tok_end + 1);
 608		}
 609
 610		step = 1;
 611		tok_step = strstr(tok, "#");
 612		if (tok_step) {
 613			step = atol(tok_step + 1);
 614			BUG_ON(step <= 0 || step >= g->p.nr_nodes);
 615		}
 616
 617		/* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
 618		mul = 1;
 619		tok_mul = strstr(tok, "x");
 620		if (tok_mul) {
 621			mul = atol(tok_mul + 1);
 622			BUG_ON(mul <= 0);
 623		}
 624
 625		dprintf("NODEs: %d-%d #%d\n", bind_node_0, bind_node_1, step);
 626
 627		if (bind_node_0 >= g->p.nr_nodes || bind_node_1 >= g->p.nr_nodes) {
 628			printf("\nTest not applicable, system has only %d nodes.\n", g->p.nr_nodes);
 629			return -1;
 630		}
 631
 632		BUG_ON(bind_node_0 < 0 || bind_node_1 < 0);
 633		BUG_ON(bind_node_0 > bind_node_1);
 634
 635		for (bind_node = bind_node_0; bind_node <= bind_node_1; bind_node += step) {
 636			int i;
 637
 638			for (i = 0; i < mul; i++) {
 639				if (t >= g->p.nr_tasks) {
 640					printf("\n# NOTE: ignoring bind NODEs starting at NODE#%d\n", bind_node);
 641					goto out;
 642				}
 643				td = g->threads + t;
 644
 645				if (!t)
 646					tprintf(" %2d", bind_node);
 647				else
 648					tprintf(",%2d", bind_node);
 649
 650				td->bind_node = bind_node;
 651				t++;
 652			}
 653		}
 654	}
 655out:
 656
 657	tprintf("\n");
 658
 659	if (t < g->p.nr_tasks)
 660		printf("# NOTE: %d tasks mem-bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
 661
 662	free(str0);
 663	return 0;
 664}
 665
 666static int parse_nodes_opt(const struct option *opt __maybe_unused,
 667			  const char *arg, int unset __maybe_unused)
 668{
 669	if (!arg)
 670		return -1;
 671
 672	return parse_node_list(arg);
 673
 674	return 0;
 675}
 676
 677#define BIT(x) (1ul << x)
 678
 679static inline uint32_t lfsr_32(uint32_t lfsr)
 680{
 681	const uint32_t taps = BIT(1) | BIT(5) | BIT(6) | BIT(31);
 682	return (lfsr>>1) ^ ((0x0u - (lfsr & 0x1u)) & taps);
 683}
 684
 685/*
 686 * Make sure there's real data dependency to RAM (when read
 687 * accesses are enabled), so the compiler, the CPU and the
 688 * kernel (KSM, zero page, etc.) cannot optimize away RAM
 689 * accesses:
 690 */
 691static inline u64 access_data(u64 *data __attribute__((unused)), u64 val)
 692{
 693	if (g->p.data_reads)
 694		val += *data;
 695	if (g->p.data_writes)
 696		*data = val + 1;
 697	return val;
 698}
 699
 700/*
 701 * The worker process does two types of work, a forwards going
 702 * loop and a backwards going loop.
 703 *
 704 * We do this so that on multiprocessor systems we do not create
 705 * a 'train' of processing, with highly synchronized processes,
 706 * skewing the whole benchmark.
 707 */
 708static u64 do_work(u8 *__data, long bytes, int nr, int nr_max, int loop, u64 val)
 709{
 710	long words = bytes/sizeof(u64);
 711	u64 *data = (void *)__data;
 712	long chunk_0, chunk_1;
 713	u64 *d0, *d, *d1;
 714	long off;
 715	long i;
 716
 717	BUG_ON(!data && words);
 718	BUG_ON(data && !words);
 719
 720	if (!data)
 721		return val;
 722
 723	/* Very simple memset() work variant: */
 724	if (g->p.data_zero_memset && !g->p.data_rand_walk) {
 725		bzero(data, bytes);
 726		return val;
 727	}
 728
 729	/* Spread out by PID/TID nr and by loop nr: */
 730	chunk_0 = words/nr_max;
 731	chunk_1 = words/g->p.nr_loops;
 732	off = nr*chunk_0 + loop*chunk_1;
 733
 734	while (off >= words)
 735		off -= words;
 736
 737	if (g->p.data_rand_walk) {
 738		u32 lfsr = nr + loop + val;
 739		int j;
 740
 741		for (i = 0; i < words/1024; i++) {
 742			long start, end;
 743
 744			lfsr = lfsr_32(lfsr);
 745
 746			start = lfsr % words;
 747			end = min(start + 1024, words-1);
 748
 749			if (g->p.data_zero_memset) {
 750				bzero(data + start, (end-start) * sizeof(u64));
 751			} else {
 752				for (j = start; j < end; j++)
 753					val = access_data(data + j, val);
 754			}
 755		}
 756	} else if (!g->p.data_backwards || (nr + loop) & 1) {
 
 757
 758		d0 = data + off;
 759		d  = data + off + 1;
 760		d1 = data + words;
 761
 762		/* Process data forwards: */
 763		for (;;) {
 764			if (unlikely(d >= d1))
 765				d = data;
 766			if (unlikely(d == d0))
 767				break;
 768
 769			val = access_data(d, val);
 770
 771			d++;
 772		}
 773	} else {
 774		/* Process data backwards: */
 775
 776		d0 = data + off;
 777		d  = data + off - 1;
 778		d1 = data + words;
 779
 780		/* Process data forwards: */
 781		for (;;) {
 782			if (unlikely(d < data))
 783				d = data + words-1;
 784			if (unlikely(d == d0))
 785				break;
 786
 787			val = access_data(d, val);
 788
 789			d--;
 790		}
 791	}
 792
 793	return val;
 794}
 795
 796static void update_curr_cpu(int task_nr, unsigned long bytes_worked)
 797{
 798	unsigned int cpu;
 799
 800	cpu = sched_getcpu();
 801
 802	g->threads[task_nr].curr_cpu = cpu;
 803	prctl(0, bytes_worked);
 804}
 805
 806#define MAX_NR_NODES	64
 807
 808/*
 809 * Count the number of nodes a process's threads
 810 * are spread out on.
 811 *
 812 * A count of 1 means that the process is compressed
 813 * to a single node. A count of g->p.nr_nodes means it's
 814 * spread out on the whole system.
 815 */
 816static int count_process_nodes(int process_nr)
 817{
 818	char node_present[MAX_NR_NODES] = { 0, };
 819	int nodes;
 820	int n, t;
 821
 822	for (t = 0; t < g->p.nr_threads; t++) {
 823		struct thread_data *td;
 824		int task_nr;
 825		int node;
 826
 827		task_nr = process_nr*g->p.nr_threads + t;
 828		td = g->threads + task_nr;
 829
 830		node = numa_node_of_cpu(td->curr_cpu);
 
 
 
 831		node_present[node] = 1;
 832	}
 833
 834	nodes = 0;
 835
 836	for (n = 0; n < MAX_NR_NODES; n++)
 837		nodes += node_present[n];
 838
 839	return nodes;
 840}
 841
 842/*
 843 * Count the number of distinct process-threads a node contains.
 844 *
 845 * A count of 1 means that the node contains only a single
 846 * process. If all nodes on the system contain at most one
 847 * process then we are well-converged.
 848 */
 849static int count_node_processes(int node)
 850{
 851	int processes = 0;
 852	int t, p;
 853
 854	for (p = 0; p < g->p.nr_proc; p++) {
 855		for (t = 0; t < g->p.nr_threads; t++) {
 856			struct thread_data *td;
 857			int task_nr;
 858			int n;
 859
 860			task_nr = p*g->p.nr_threads + t;
 861			td = g->threads + task_nr;
 862
 863			n = numa_node_of_cpu(td->curr_cpu);
 864			if (n == node) {
 865				processes++;
 866				break;
 867			}
 868		}
 869	}
 870
 871	return processes;
 872}
 873
 874static void calc_convergence_compression(int *strong)
 875{
 876	unsigned int nodes_min, nodes_max;
 877	int p;
 878
 879	nodes_min = -1;
 880	nodes_max =  0;
 881
 882	for (p = 0; p < g->p.nr_proc; p++) {
 883		unsigned int nodes = count_process_nodes(p);
 884
 
 
 
 
 
 885		nodes_min = min(nodes, nodes_min);
 886		nodes_max = max(nodes, nodes_max);
 887	}
 888
 889	/* Strong convergence: all threads compress on a single node: */
 890	if (nodes_min == 1 && nodes_max == 1) {
 891		*strong = 1;
 892	} else {
 893		*strong = 0;
 894		tprintf(" {%d-%d}", nodes_min, nodes_max);
 895	}
 896}
 897
 898static void calc_convergence(double runtime_ns_max, double *convergence)
 899{
 900	unsigned int loops_done_min, loops_done_max;
 901	int process_groups;
 902	int nodes[MAX_NR_NODES];
 903	int distance;
 904	int nr_min;
 905	int nr_max;
 906	int strong;
 907	int sum;
 908	int nr;
 909	int node;
 910	int cpu;
 911	int t;
 912
 913	if (!g->p.show_convergence && !g->p.measure_convergence)
 914		return;
 915
 916	for (node = 0; node < g->p.nr_nodes; node++)
 917		nodes[node] = 0;
 918
 919	loops_done_min = -1;
 920	loops_done_max = 0;
 921
 922	for (t = 0; t < g->p.nr_tasks; t++) {
 923		struct thread_data *td = g->threads + t;
 924		unsigned int loops_done;
 925
 926		cpu = td->curr_cpu;
 927
 928		/* Not all threads have written it yet: */
 929		if (cpu < 0)
 930			continue;
 931
 932		node = numa_node_of_cpu(cpu);
 933
 934		nodes[node]++;
 935
 936		loops_done = td->loops_done;
 937		loops_done_min = min(loops_done, loops_done_min);
 938		loops_done_max = max(loops_done, loops_done_max);
 939	}
 940
 941	nr_max = 0;
 942	nr_min = g->p.nr_tasks;
 943	sum = 0;
 944
 945	for (node = 0; node < g->p.nr_nodes; node++) {
 
 
 946		nr = nodes[node];
 947		nr_min = min(nr, nr_min);
 948		nr_max = max(nr, nr_max);
 949		sum += nr;
 950	}
 951	BUG_ON(nr_min > nr_max);
 952
 953	BUG_ON(sum > g->p.nr_tasks);
 954
 955	if (0 && (sum < g->p.nr_tasks))
 956		return;
 957
 958	/*
 959	 * Count the number of distinct process groups present
 960	 * on nodes - when we are converged this will decrease
 961	 * to g->p.nr_proc:
 962	 */
 963	process_groups = 0;
 964
 965	for (node = 0; node < g->p.nr_nodes; node++) {
 966		int processes = count_node_processes(node);
 967
 
 
 
 968		nr = nodes[node];
 969		tprintf(" %2d/%-2d", nr, processes);
 970
 971		process_groups += processes;
 972	}
 973
 974	distance = nr_max - nr_min;
 975
 976	tprintf(" [%2d/%-2d]", distance, process_groups);
 977
 978	tprintf(" l:%3d-%-3d (%3d)",
 979		loops_done_min, loops_done_max, loops_done_max-loops_done_min);
 980
 981	if (loops_done_min && loops_done_max) {
 982		double skew = 1.0 - (double)loops_done_min/loops_done_max;
 983
 984		tprintf(" [%4.1f%%]", skew * 100.0);
 985	}
 986
 987	calc_convergence_compression(&strong);
 988
 989	if (strong && process_groups == g->p.nr_proc) {
 990		if (!*convergence) {
 991			*convergence = runtime_ns_max;
 992			tprintf(" (%6.1fs converged)\n", *convergence/1e9);
 993			if (g->p.measure_convergence) {
 994				g->all_converged = true;
 995				g->stop_work = true;
 996			}
 997		}
 998	} else {
 999		if (*convergence) {
1000			tprintf(" (%6.1fs de-converged)", runtime_ns_max/1e9);
1001			*convergence = 0;
1002		}
1003		tprintf("\n");
1004	}
1005}
1006
1007static void show_summary(double runtime_ns_max, int l, double *convergence)
1008{
1009	tprintf("\r #  %5.1f%%  [%.1f mins]",
1010		(double)(l+1)/g->p.nr_loops*100.0, runtime_ns_max/1e9 / 60.0);
1011
1012	calc_convergence(runtime_ns_max, convergence);
1013
1014	if (g->p.show_details >= 0)
1015		fflush(stdout);
1016}
1017
1018static void *worker_thread(void *__tdata)
1019{
1020	struct thread_data *td = __tdata;
1021	struct timeval start0, start, stop, diff;
1022	int process_nr = td->process_nr;
1023	int thread_nr = td->thread_nr;
1024	unsigned long last_perturbance;
1025	int task_nr = td->task_nr;
1026	int details = g->p.show_details;
1027	int first_task, last_task;
1028	double convergence = 0;
1029	u64 val = td->val;
1030	double runtime_ns_max;
1031	u8 *global_data;
1032	u8 *process_data;
1033	u8 *thread_data;
1034	u64 bytes_done;
1035	long work_done;
1036	u32 l;
 
1037
1038	bind_to_cpumask(td->bind_cpumask);
1039	bind_to_memnode(td->bind_node);
1040
1041	set_taskname("thread %d/%d", process_nr, thread_nr);
1042
1043	global_data = g->data;
1044	process_data = td->process_data;
1045	thread_data = setup_private_data(g->p.bytes_thread);
1046
1047	bytes_done = 0;
1048
1049	last_task = 0;
1050	if (process_nr == g->p.nr_proc-1 && thread_nr == g->p.nr_threads-1)
1051		last_task = 1;
1052
1053	first_task = 0;
1054	if (process_nr == 0 && thread_nr == 0)
1055		first_task = 1;
1056
1057	if (details >= 2) {
1058		printf("#  thread %2d / %2d global mem: %p, process mem: %p, thread mem: %p\n",
1059			process_nr, thread_nr, global_data, process_data, thread_data);
1060	}
1061
1062	if (g->p.serialize_startup) {
1063		pthread_mutex_lock(&g->startup_mutex);
1064		g->nr_tasks_started++;
1065		pthread_mutex_unlock(&g->startup_mutex);
1066
1067		/* Here we will wait for the main process to start us all at once: */
1068		pthread_mutex_lock(&g->start_work_mutex);
1069		g->nr_tasks_working++;
1070
1071		/* Last one wake the main process: */
1072		if (g->nr_tasks_working == g->p.nr_tasks)
1073			pthread_mutex_unlock(&g->startup_done_mutex);
1074
1075		pthread_mutex_unlock(&g->start_work_mutex);
1076	}
1077
1078	gettimeofday(&start0, NULL);
1079
1080	start = stop = start0;
1081	last_perturbance = start.tv_sec;
1082
1083	for (l = 0; l < g->p.nr_loops; l++) {
1084		start = stop;
1085
1086		if (g->stop_work)
1087			break;
1088
1089		val += do_work(global_data,  g->p.bytes_global,  process_nr, g->p.nr_proc,	l, val);
1090		val += do_work(process_data, g->p.bytes_process, thread_nr,  g->p.nr_threads,	l, val);
1091		val += do_work(thread_data,  g->p.bytes_thread,  0,          1,		l, val);
1092
1093		if (g->p.sleep_usecs) {
1094			pthread_mutex_lock(td->process_lock);
1095			usleep(g->p.sleep_usecs);
1096			pthread_mutex_unlock(td->process_lock);
1097		}
1098		/*
1099		 * Amount of work to be done under a process-global lock:
1100		 */
1101		if (g->p.bytes_process_locked) {
1102			pthread_mutex_lock(td->process_lock);
1103			val += do_work(process_data, g->p.bytes_process_locked, thread_nr,  g->p.nr_threads,	l, val);
1104			pthread_mutex_unlock(td->process_lock);
1105		}
1106
1107		work_done = g->p.bytes_global + g->p.bytes_process +
1108			    g->p.bytes_process_locked + g->p.bytes_thread;
1109
1110		update_curr_cpu(task_nr, work_done);
1111		bytes_done += work_done;
1112
1113		if (details < 0 && !g->p.perturb_secs && !g->p.measure_convergence && !g->p.nr_secs)
1114			continue;
1115
1116		td->loops_done = l;
1117
1118		gettimeofday(&stop, NULL);
1119
1120		/* Check whether our max runtime timed out: */
1121		if (g->p.nr_secs) {
1122			timersub(&stop, &start0, &diff);
1123			if ((u32)diff.tv_sec >= g->p.nr_secs) {
1124				g->stop_work = true;
1125				break;
1126			}
1127		}
1128
1129		/* Update the summary at most once per second: */
1130		if (start.tv_sec == stop.tv_sec)
1131			continue;
1132
1133		/*
1134		 * Perturb the first task's equilibrium every g->p.perturb_secs seconds,
1135		 * by migrating to CPU#0:
1136		 */
1137		if (first_task && g->p.perturb_secs && (int)(stop.tv_sec - last_perturbance) >= g->p.perturb_secs) {
1138			cpu_set_t orig_mask;
1139			int target_cpu;
1140			int this_cpu;
1141
1142			last_perturbance = stop.tv_sec;
1143
1144			/*
1145			 * Depending on where we are running, move into
1146			 * the other half of the system, to create some
1147			 * real disturbance:
1148			 */
1149			this_cpu = g->threads[task_nr].curr_cpu;
1150			if (this_cpu < g->p.nr_cpus/2)
1151				target_cpu = g->p.nr_cpus-1;
1152			else
1153				target_cpu = 0;
1154
1155			orig_mask = bind_to_cpu(target_cpu);
1156
1157			/* Here we are running on the target CPU already */
1158			if (details >= 1)
1159				printf(" (injecting perturbalance, moved to CPU#%d)\n", target_cpu);
1160
1161			bind_to_cpumask(orig_mask);
1162		}
1163
1164		if (details >= 3) {
1165			timersub(&stop, &start, &diff);
1166			runtime_ns_max = diff.tv_sec * 1000000000;
1167			runtime_ns_max += diff.tv_usec * 1000;
1168
1169			if (details >= 0) {
1170				printf(" #%2d / %2d: %14.2lf nsecs/op [val: %016"PRIx64"]\n",
1171					process_nr, thread_nr, runtime_ns_max / bytes_done, val);
1172			}
1173			fflush(stdout);
1174		}
1175		if (!last_task)
1176			continue;
1177
1178		timersub(&stop, &start0, &diff);
1179		runtime_ns_max = diff.tv_sec * 1000000000ULL;
1180		runtime_ns_max += diff.tv_usec * 1000ULL;
1181
1182		show_summary(runtime_ns_max, l, &convergence);
1183	}
1184
1185	gettimeofday(&stop, NULL);
1186	timersub(&stop, &start0, &diff);
1187	td->runtime_ns = diff.tv_sec * 1000000000ULL;
1188	td->runtime_ns += diff.tv_usec * 1000ULL;
 
 
 
 
 
 
 
 
1189
1190	free_data(thread_data, g->p.bytes_thread);
1191
1192	pthread_mutex_lock(&g->stop_work_mutex);
1193	g->bytes_done += bytes_done;
1194	pthread_mutex_unlock(&g->stop_work_mutex);
1195
1196	return NULL;
1197}
1198
1199/*
1200 * A worker process starts a couple of threads:
1201 */
1202static void worker_process(int process_nr)
1203{
1204	pthread_mutex_t process_lock;
1205	struct thread_data *td;
1206	pthread_t *pthreads;
1207	u8 *process_data;
1208	int task_nr;
1209	int ret;
1210	int t;
1211
1212	pthread_mutex_init(&process_lock, NULL);
1213	set_taskname("process %d", process_nr);
1214
1215	/*
1216	 * Pick up the memory policy and the CPU binding of our first thread,
1217	 * so that we initialize memory accordingly:
1218	 */
1219	task_nr = process_nr*g->p.nr_threads;
1220	td = g->threads + task_nr;
1221
1222	bind_to_memnode(td->bind_node);
1223	bind_to_cpumask(td->bind_cpumask);
1224
1225	pthreads = zalloc(g->p.nr_threads * sizeof(pthread_t));
1226	process_data = setup_private_data(g->p.bytes_process);
1227
1228	if (g->p.show_details >= 3) {
1229		printf(" # process %2d global mem: %p, process mem: %p\n",
1230			process_nr, g->data, process_data);
1231	}
1232
1233	for (t = 0; t < g->p.nr_threads; t++) {
1234		task_nr = process_nr*g->p.nr_threads + t;
1235		td = g->threads + task_nr;
1236
1237		td->process_data = process_data;
1238		td->process_nr   = process_nr;
1239		td->thread_nr    = t;
1240		td->task_nr	 = task_nr;
1241		td->val          = rand();
1242		td->curr_cpu	 = -1;
1243		td->process_lock = &process_lock;
1244
1245		ret = pthread_create(pthreads + t, NULL, worker_thread, td);
1246		BUG_ON(ret);
1247	}
1248
1249	for (t = 0; t < g->p.nr_threads; t++) {
1250                ret = pthread_join(pthreads[t], NULL);
1251		BUG_ON(ret);
1252	}
1253
1254	free_data(process_data, g->p.bytes_process);
1255	free(pthreads);
1256}
1257
1258static void print_summary(void)
1259{
1260	if (g->p.show_details < 0)
1261		return;
1262
1263	printf("\n ###\n");
1264	printf(" # %d %s will execute (on %d nodes, %d CPUs):\n",
1265		g->p.nr_tasks, g->p.nr_tasks == 1 ? "task" : "tasks", g->p.nr_nodes, g->p.nr_cpus);
1266	printf(" #      %5dx %5ldMB global  shared mem operations\n",
1267			g->p.nr_loops, g->p.bytes_global/1024/1024);
1268	printf(" #      %5dx %5ldMB process shared mem operations\n",
1269			g->p.nr_loops, g->p.bytes_process/1024/1024);
1270	printf(" #      %5dx %5ldMB thread  local  mem operations\n",
1271			g->p.nr_loops, g->p.bytes_thread/1024/1024);
1272
1273	printf(" ###\n");
1274
1275	printf("\n ###\n"); fflush(stdout);
1276}
1277
1278static void init_thread_data(void)
1279{
1280	ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
1281	int t;
1282
1283	g->threads = zalloc_shared_data(size);
1284
1285	for (t = 0; t < g->p.nr_tasks; t++) {
1286		struct thread_data *td = g->threads + t;
1287		int cpu;
1288
1289		/* Allow all nodes by default: */
1290		td->bind_node = -1;
1291
1292		/* Allow all CPUs by default: */
1293		CPU_ZERO(&td->bind_cpumask);
1294		for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
1295			CPU_SET(cpu, &td->bind_cpumask);
1296	}
1297}
1298
1299static void deinit_thread_data(void)
1300{
1301	ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
1302
1303	free_data(g->threads, size);
1304}
1305
1306static int init(void)
1307{
1308	g = (void *)alloc_data(sizeof(*g), MAP_SHARED, 1, 0, 0 /* THP */, 0);
1309
1310	/* Copy over options: */
1311	g->p = p0;
1312
1313	g->p.nr_cpus = numa_num_configured_cpus();
1314
1315	g->p.nr_nodes = numa_max_node() + 1;
1316
1317	/* char array in count_process_nodes(): */
1318	BUG_ON(g->p.nr_nodes > MAX_NR_NODES || g->p.nr_nodes < 0);
1319
1320	if (g->p.show_quiet && !g->p.show_details)
1321		g->p.show_details = -1;
1322
1323	/* Some memory should be specified: */
1324	if (!g->p.mb_global_str && !g->p.mb_proc_str && !g->p.mb_thread_str)
1325		return -1;
1326
1327	if (g->p.mb_global_str) {
1328		g->p.mb_global = atof(g->p.mb_global_str);
1329		BUG_ON(g->p.mb_global < 0);
1330	}
1331
1332	if (g->p.mb_proc_str) {
1333		g->p.mb_proc = atof(g->p.mb_proc_str);
1334		BUG_ON(g->p.mb_proc < 0);
1335	}
1336
1337	if (g->p.mb_proc_locked_str) {
1338		g->p.mb_proc_locked = atof(g->p.mb_proc_locked_str);
1339		BUG_ON(g->p.mb_proc_locked < 0);
1340		BUG_ON(g->p.mb_proc_locked > g->p.mb_proc);
1341	}
1342
1343	if (g->p.mb_thread_str) {
1344		g->p.mb_thread = atof(g->p.mb_thread_str);
1345		BUG_ON(g->p.mb_thread < 0);
1346	}
1347
1348	BUG_ON(g->p.nr_threads <= 0);
1349	BUG_ON(g->p.nr_proc <= 0);
1350
1351	g->p.nr_tasks = g->p.nr_proc*g->p.nr_threads;
1352
1353	g->p.bytes_global		= g->p.mb_global	*1024L*1024L;
1354	g->p.bytes_process		= g->p.mb_proc		*1024L*1024L;
1355	g->p.bytes_process_locked	= g->p.mb_proc_locked	*1024L*1024L;
1356	g->p.bytes_thread		= g->p.mb_thread	*1024L*1024L;
1357
1358	g->data = setup_shared_data(g->p.bytes_global);
1359
1360	/* Startup serialization: */
1361	init_global_mutex(&g->start_work_mutex);
1362	init_global_mutex(&g->startup_mutex);
1363	init_global_mutex(&g->startup_done_mutex);
1364	init_global_mutex(&g->stop_work_mutex);
1365
1366	init_thread_data();
1367
1368	tprintf("#\n");
1369	if (parse_setup_cpu_list() || parse_setup_node_list())
1370		return -1;
1371	tprintf("#\n");
1372
1373	print_summary();
1374
1375	return 0;
1376}
1377
1378static void deinit(void)
1379{
1380	free_data(g->data, g->p.bytes_global);
1381	g->data = NULL;
1382
1383	deinit_thread_data();
1384
1385	free_data(g, sizeof(*g));
1386	g = NULL;
1387}
1388
1389/*
1390 * Print a short or long result, depending on the verbosity setting:
1391 */
1392static void print_res(const char *name, double val,
1393		      const char *txt_unit, const char *txt_short, const char *txt_long)
1394{
1395	if (!name)
1396		name = "main,";
1397
1398	if (g->p.show_quiet)
1399		printf(" %-30s %15.3f, %-15s %s\n", name, val, txt_unit, txt_short);
1400	else
1401		printf(" %14.3f %s\n", val, txt_long);
1402}
1403
1404static int __bench_numa(const char *name)
1405{
1406	struct timeval start, stop, diff;
1407	u64 runtime_ns_min, runtime_ns_sum;
1408	pid_t *pids, pid, wpid;
1409	double delta_runtime;
1410	double runtime_avg;
1411	double runtime_sec_max;
1412	double runtime_sec_min;
1413	int wait_stat;
1414	double bytes;
1415	int i, t;
1416
1417	if (init())
1418		return -1;
1419
1420	pids = zalloc(g->p.nr_proc * sizeof(*pids));
1421	pid = -1;
1422
1423	/* All threads try to acquire it, this way we can wait for them to start up: */
1424	pthread_mutex_lock(&g->start_work_mutex);
1425
1426	if (g->p.serialize_startup) {
1427		tprintf(" #\n");
1428		tprintf(" # Startup synchronization: ..."); fflush(stdout);
1429	}
1430
1431	gettimeofday(&start, NULL);
1432
1433	for (i = 0; i < g->p.nr_proc; i++) {
1434		pid = fork();
1435		dprintf(" # process %2d: PID %d\n", i, pid);
1436
1437		BUG_ON(pid < 0);
1438		if (!pid) {
1439			/* Child process: */
1440			worker_process(i);
1441
1442			exit(0);
1443		}
1444		pids[i] = pid;
1445
1446	}
1447	/* Wait for all the threads to start up: */
1448	while (g->nr_tasks_started != g->p.nr_tasks)
1449		usleep(1000);
1450
1451	BUG_ON(g->nr_tasks_started != g->p.nr_tasks);
1452
1453	if (g->p.serialize_startup) {
1454		double startup_sec;
1455
1456		pthread_mutex_lock(&g->startup_done_mutex);
1457
1458		/* This will start all threads: */
1459		pthread_mutex_unlock(&g->start_work_mutex);
1460
1461		/* This mutex is locked - the last started thread will wake us: */
1462		pthread_mutex_lock(&g->startup_done_mutex);
1463
1464		gettimeofday(&stop, NULL);
1465
1466		timersub(&stop, &start, &diff);
1467
1468		startup_sec = diff.tv_sec * 1000000000.0;
1469		startup_sec += diff.tv_usec * 1000.0;
1470		startup_sec /= 1e9;
1471
1472		tprintf(" threads initialized in %.6f seconds.\n", startup_sec);
1473		tprintf(" #\n");
1474
1475		start = stop;
1476		pthread_mutex_unlock(&g->startup_done_mutex);
1477	} else {
1478		gettimeofday(&start, NULL);
1479	}
1480
1481	/* Parent process: */
1482
1483
1484	for (i = 0; i < g->p.nr_proc; i++) {
1485		wpid = waitpid(pids[i], &wait_stat, 0);
1486		BUG_ON(wpid < 0);
1487		BUG_ON(!WIFEXITED(wait_stat));
1488
1489	}
1490
1491	runtime_ns_sum = 0;
1492	runtime_ns_min = -1LL;
1493
1494	for (t = 0; t < g->p.nr_tasks; t++) {
1495		u64 thread_runtime_ns = g->threads[t].runtime_ns;
1496
1497		runtime_ns_sum += thread_runtime_ns;
1498		runtime_ns_min = min(thread_runtime_ns, runtime_ns_min);
1499	}
1500
1501	gettimeofday(&stop, NULL);
1502	timersub(&stop, &start, &diff);
1503
1504	BUG_ON(bench_format != BENCH_FORMAT_DEFAULT);
1505
1506	tprintf("\n ###\n");
1507	tprintf("\n");
1508
1509	runtime_sec_max = diff.tv_sec * 1000000000.0;
1510	runtime_sec_max += diff.tv_usec * 1000.0;
1511	runtime_sec_max /= 1e9;
1512
1513	runtime_sec_min = runtime_ns_min/1e9;
1514
1515	bytes = g->bytes_done;
1516	runtime_avg = (double)runtime_ns_sum / g->p.nr_tasks / 1e9;
1517
1518	if (g->p.measure_convergence) {
1519		print_res(name, runtime_sec_max,
1520			"secs,", "NUMA-convergence-latency", "secs latency to NUMA-converge");
1521	}
1522
1523	print_res(name, runtime_sec_max,
1524		"secs,", "runtime-max/thread",	"secs slowest (max) thread-runtime");
1525
1526	print_res(name, runtime_sec_min,
1527		"secs,", "runtime-min/thread",	"secs fastest (min) thread-runtime");
1528
1529	print_res(name, runtime_avg,
1530		"secs,", "runtime-avg/thread",	"secs average thread-runtime");
1531
1532	delta_runtime = (runtime_sec_max - runtime_sec_min)/2.0;
1533	print_res(name, delta_runtime / runtime_sec_max * 100.0,
1534		"%,", "spread-runtime/thread",	"% difference between max/avg runtime");
1535
1536	print_res(name, bytes / g->p.nr_tasks / 1e9,
1537		"GB,", "data/thread",		"GB data processed, per thread");
1538
1539	print_res(name, bytes / 1e9,
1540		"GB,", "data-total",		"GB data processed, total");
1541
1542	print_res(name, runtime_sec_max * 1e9 / (bytes / g->p.nr_tasks),
1543		"nsecs,", "runtime/byte/thread","nsecs/byte/thread runtime");
1544
1545	print_res(name, bytes / g->p.nr_tasks / 1e9 / runtime_sec_max,
1546		"GB/sec,", "thread-speed",	"GB/sec/thread speed");
1547
1548	print_res(name, bytes / runtime_sec_max / 1e9,
1549		"GB/sec,", "total-speed",	"GB/sec total speed");
1550
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1551	free(pids);
1552
1553	deinit();
1554
1555	return 0;
1556}
1557
1558#define MAX_ARGS 50
1559
1560static int command_size(const char **argv)
1561{
1562	int size = 0;
1563
1564	while (*argv) {
1565		size++;
1566		argv++;
1567	}
1568
1569	BUG_ON(size >= MAX_ARGS);
1570
1571	return size;
1572}
1573
1574static void init_params(struct params *p, const char *name, int argc, const char **argv)
1575{
1576	int i;
1577
1578	printf("\n # Running %s \"perf bench numa", name);
1579
1580	for (i = 0; i < argc; i++)
1581		printf(" %s", argv[i]);
1582
1583	printf("\"\n");
1584
1585	memset(p, 0, sizeof(*p));
1586
1587	/* Initialize nonzero defaults: */
1588
1589	p->serialize_startup		= 1;
1590	p->data_reads			= true;
1591	p->data_writes			= true;
1592	p->data_backwards		= true;
1593	p->data_rand_walk		= true;
1594	p->nr_loops			= -1;
1595	p->init_random			= true;
1596	p->mb_global_str		= "1";
1597	p->nr_proc			= 1;
1598	p->nr_threads			= 1;
1599	p->nr_secs			= 5;
1600	p->run_all			= argc == 1;
1601}
1602
1603static int run_bench_numa(const char *name, const char **argv)
1604{
1605	int argc = command_size(argv);
1606
1607	init_params(&p0, name, argc, argv);
1608	argc = parse_options(argc, argv, options, bench_numa_usage, 0);
1609	if (argc)
1610		goto err;
1611
1612	if (__bench_numa(name))
1613		goto err;
1614
1615	return 0;
1616
1617err:
1618	return -1;
1619}
1620
1621#define OPT_BW_RAM		"-s",  "20", "-zZq",    "--thp", " 1", "--no-data_rand_walk"
1622#define OPT_BW_RAM_NOTHP	OPT_BW_RAM,		"--thp", "-1"
1623
1624#define OPT_CONV		"-s", "100", "-zZ0qcm", "--thp", " 1"
1625#define OPT_CONV_NOTHP		OPT_CONV,		"--thp", "-1"
1626
1627#define OPT_BW			"-s",  "20", "-zZ0q",   "--thp", " 1"
1628#define OPT_BW_NOTHP		OPT_BW,			"--thp", "-1"
1629
1630/*
1631 * The built-in test-suite executed by "perf bench numa -a".
1632 *
1633 * (A minimum of 4 nodes and 16 GB of RAM is recommended.)
1634 */
1635static const char *tests[][MAX_ARGS] = {
1636   /* Basic single-stream NUMA bandwidth measurements: */
1637   { "RAM-bw-local,",	  "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
1638			  "-C" ,   "0", "-M",   "0", OPT_BW_RAM },
1639   { "RAM-bw-local-NOTHP,",
1640			  "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
1641			  "-C" ,   "0", "-M",   "0", OPT_BW_RAM_NOTHP },
1642   { "RAM-bw-remote,",	  "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
1643			  "-C" ,   "0", "-M",   "1", OPT_BW_RAM },
1644
1645   /* 2-stream NUMA bandwidth measurements: */
1646   { "RAM-bw-local-2x,",  "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
1647			   "-C", "0,2", "-M", "0x2", OPT_BW_RAM },
1648   { "RAM-bw-remote-2x,", "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
1649		 	   "-C", "0,2", "-M", "1x2", OPT_BW_RAM },
1650
1651   /* Cross-stream NUMA bandwidth measurement: */
1652   { "RAM-bw-cross,",     "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
1653		 	   "-C", "0,8", "-M", "1,0", OPT_BW_RAM },
1654
1655   /* Convergence latency measurements: */
1656   { " 1x3-convergence,", "mem",  "-p",  "1", "-t",  "3", "-P",  "512", OPT_CONV },
1657   { " 1x4-convergence,", "mem",  "-p",  "1", "-t",  "4", "-P",  "512", OPT_CONV },
1658   { " 1x6-convergence,", "mem",  "-p",  "1", "-t",  "6", "-P", "1020", OPT_CONV },
1659   { " 2x3-convergence,", "mem",  "-p",  "3", "-t",  "3", "-P", "1020", OPT_CONV },
1660   { " 3x3-convergence,", "mem",  "-p",  "3", "-t",  "3", "-P", "1020", OPT_CONV },
1661   { " 4x4-convergence,", "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_CONV },
1662   { " 4x4-convergence-NOTHP,",
1663			  "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_CONV_NOTHP },
1664   { " 4x6-convergence,", "mem",  "-p",  "4", "-t",  "6", "-P", "1020", OPT_CONV },
1665   { " 4x8-convergence,", "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_CONV },
1666   { " 8x4-convergence,", "mem",  "-p",  "8", "-t",  "4", "-P",  "512", OPT_CONV },
1667   { " 8x4-convergence-NOTHP,",
1668			  "mem",  "-p",  "8", "-t",  "4", "-P",  "512", OPT_CONV_NOTHP },
1669   { " 3x1-convergence,", "mem",  "-p",  "3", "-t",  "1", "-P",  "512", OPT_CONV },
1670   { " 4x1-convergence,", "mem",  "-p",  "4", "-t",  "1", "-P",  "512", OPT_CONV },
1671   { " 8x1-convergence,", "mem",  "-p",  "8", "-t",  "1", "-P",  "512", OPT_CONV },
1672   { "16x1-convergence,", "mem",  "-p", "16", "-t",  "1", "-P",  "256", OPT_CONV },
1673   { "32x1-convergence,", "mem",  "-p", "32", "-t",  "1", "-P",  "128", OPT_CONV },
1674
1675   /* Various NUMA process/thread layout bandwidth measurements: */
1676   { " 2x1-bw-process,",  "mem",  "-p",  "2", "-t",  "1", "-P", "1024", OPT_BW },
1677   { " 3x1-bw-process,",  "mem",  "-p",  "3", "-t",  "1", "-P", "1024", OPT_BW },
1678   { " 4x1-bw-process,",  "mem",  "-p",  "4", "-t",  "1", "-P", "1024", OPT_BW },
1679   { " 8x1-bw-process,",  "mem",  "-p",  "8", "-t",  "1", "-P", " 512", OPT_BW },
1680   { " 8x1-bw-process-NOTHP,",
1681			  "mem",  "-p",  "8", "-t",  "1", "-P", " 512", OPT_BW_NOTHP },
1682   { "16x1-bw-process,",  "mem",  "-p", "16", "-t",  "1", "-P",  "256", OPT_BW },
1683
1684   { " 4x1-bw-thread,",	  "mem",  "-p",  "1", "-t",  "4", "-T",  "256", OPT_BW },
1685   { " 8x1-bw-thread,",	  "mem",  "-p",  "1", "-t",  "8", "-T",  "256", OPT_BW },
1686   { "16x1-bw-thread,",   "mem",  "-p",  "1", "-t", "16", "-T",  "128", OPT_BW },
1687   { "32x1-bw-thread,",   "mem",  "-p",  "1", "-t", "32", "-T",   "64", OPT_BW },
1688
1689   { " 2x3-bw-thread,",	  "mem",  "-p",  "2", "-t",  "3", "-P",  "512", OPT_BW },
1690   { " 4x4-bw-thread,",	  "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_BW },
1691   { " 4x6-bw-thread,",	  "mem",  "-p",  "4", "-t",  "6", "-P",  "512", OPT_BW },
1692   { " 4x8-bw-thread,",	  "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_BW },
1693   { " 4x8-bw-thread-NOTHP,",
1694			  "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_BW_NOTHP },
1695   { " 3x3-bw-thread,",	  "mem",  "-p",  "3", "-t",  "3", "-P",  "512", OPT_BW },
1696   { " 5x5-bw-thread,",	  "mem",  "-p",  "5", "-t",  "5", "-P",  "512", OPT_BW },
1697
1698   { "2x16-bw-thread,",   "mem",  "-p",  "2", "-t", "16", "-P",  "512", OPT_BW },
1699   { "1x32-bw-thread,",   "mem",  "-p",  "1", "-t", "32", "-P", "2048", OPT_BW },
1700
1701   { "numa02-bw,",	  "mem",  "-p",  "1", "-t", "32", "-T",   "32", OPT_BW },
1702   { "numa02-bw-NOTHP,",  "mem",  "-p",  "1", "-t", "32", "-T",   "32", OPT_BW_NOTHP },
1703   { "numa01-bw-thread,", "mem",  "-p",  "2", "-t", "16", "-T",  "192", OPT_BW },
1704   { "numa01-bw-thread-NOTHP,",
1705			  "mem",  "-p",  "2", "-t", "16", "-T",  "192", OPT_BW_NOTHP },
1706};
1707
1708static int bench_all(void)
1709{
1710	int nr = ARRAY_SIZE(tests);
1711	int ret;
1712	int i;
1713
1714	ret = system("echo ' #'; echo ' # Running test on: '$(uname -a); echo ' #'");
1715	BUG_ON(ret < 0);
1716
1717	for (i = 0; i < nr; i++) {
1718		run_bench_numa(tests[i][0], tests[i] + 1);
1719	}
1720
1721	printf("\n");
1722
1723	return 0;
1724}
1725
1726int bench_numa(int argc, const char **argv, const char *prefix __maybe_unused)
1727{
1728	init_params(&p0, "main,", argc, argv);
1729	argc = parse_options(argc, argv, options, bench_numa_usage, 0);
1730	if (argc)
1731		goto err;
1732
1733	if (p0.run_all)
1734		return bench_all();
1735
1736	if (__bench_numa(NULL))
1737		goto err;
1738
1739	return 0;
1740
1741err:
1742	usage_with_options(numa_usage, options);
1743	return -1;
1744}