Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *	fs/libfs.c
   4 *	Library for filesystems writers.
   5 */
   6
   7#include <linux/blkdev.h>
   8#include <linux/export.h>
   9#include <linux/pagemap.h>
  10#include <linux/slab.h>
  11#include <linux/cred.h>
  12#include <linux/mount.h>
  13#include <linux/vfs.h>
  14#include <linux/quotaops.h>
  15#include <linux/mutex.h>
  16#include <linux/namei.h>
  17#include <linux/exportfs.h>
  18#include <linux/writeback.h>
  19#include <linux/buffer_head.h> /* sync_mapping_buffers */
  20#include <linux/fs_context.h>
  21#include <linux/pseudo_fs.h>
  22#include <linux/fsnotify.h>
  23
  24#include <linux/uaccess.h>
  25
  26#include "internal.h"
  27
  28int simple_getattr(const struct path *path, struct kstat *stat,
  29		   u32 request_mask, unsigned int query_flags)
  30{
  31	struct inode *inode = d_inode(path->dentry);
 
 
 
 
 
 
  32	generic_fillattr(inode, stat);
  33	stat->blocks = inode->i_mapping->nrpages << (PAGE_SHIFT - 9);
  34	return 0;
  35}
  36EXPORT_SYMBOL(simple_getattr);
  37
  38int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
  39{
  40	buf->f_type = dentry->d_sb->s_magic;
  41	buf->f_bsize = PAGE_SIZE;
  42	buf->f_namelen = NAME_MAX;
  43	return 0;
  44}
  45EXPORT_SYMBOL(simple_statfs);
  46
  47/*
  48 * Retaining negative dentries for an in-memory filesystem just wastes
  49 * memory and lookup time: arrange for them to be deleted immediately.
  50 */
  51int always_delete_dentry(const struct dentry *dentry)
  52{
  53	return 1;
  54}
  55EXPORT_SYMBOL(always_delete_dentry);
  56
  57const struct dentry_operations simple_dentry_operations = {
  58	.d_delete = always_delete_dentry,
  59};
  60EXPORT_SYMBOL(simple_dentry_operations);
  61
  62/*
  63 * Lookup the data. This is trivial - if the dentry didn't already
  64 * exist, we know it is negative.  Set d_op to delete negative dentries.
  65 */
  66struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
  67{
  68	if (dentry->d_name.len > NAME_MAX)
  69		return ERR_PTR(-ENAMETOOLONG);
  70	if (!dentry->d_sb->s_d_op)
  71		d_set_d_op(dentry, &simple_dentry_operations);
  72	d_add(dentry, NULL);
  73	return NULL;
  74}
  75EXPORT_SYMBOL(simple_lookup);
  76
  77int dcache_dir_open(struct inode *inode, struct file *file)
  78{
  79	file->private_data = d_alloc_cursor(file->f_path.dentry);
 
 
  80
  81	return file->private_data ? 0 : -ENOMEM;
  82}
  83EXPORT_SYMBOL(dcache_dir_open);
  84
  85int dcache_dir_close(struct inode *inode, struct file *file)
  86{
  87	dput(file->private_data);
  88	return 0;
  89}
  90EXPORT_SYMBOL(dcache_dir_close);
  91
  92/* parent is locked at least shared */
  93/*
  94 * Returns an element of siblings' list.
  95 * We are looking for <count>th positive after <p>; if
  96 * found, dentry is grabbed and returned to caller.
  97 * If no such element exists, NULL is returned.
  98 */
  99static struct dentry *scan_positives(struct dentry *cursor,
 100					struct list_head *p,
 101					loff_t count,
 102					struct dentry *last)
 103{
 104	struct dentry *dentry = cursor->d_parent, *found = NULL;
 105
 106	spin_lock(&dentry->d_lock);
 107	while ((p = p->next) != &dentry->d_subdirs) {
 108		struct dentry *d = list_entry(p, struct dentry, d_child);
 109		// we must at least skip cursors, to avoid livelocks
 110		if (d->d_flags & DCACHE_DENTRY_CURSOR)
 111			continue;
 112		if (simple_positive(d) && !--count) {
 113			spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
 114			if (simple_positive(d))
 115				found = dget_dlock(d);
 116			spin_unlock(&d->d_lock);
 117			if (likely(found))
 118				break;
 119			count = 1;
 120		}
 121		if (need_resched()) {
 122			list_move(&cursor->d_child, p);
 123			p = &cursor->d_child;
 124			spin_unlock(&dentry->d_lock);
 125			cond_resched();
 126			spin_lock(&dentry->d_lock);
 127		}
 128	}
 129	spin_unlock(&dentry->d_lock);
 130	dput(last);
 131	return found;
 132}
 133
 134loff_t dcache_dir_lseek(struct file *file, loff_t offset, int whence)
 135{
 136	struct dentry *dentry = file->f_path.dentry;
 
 137	switch (whence) {
 138		case 1:
 139			offset += file->f_pos;
 140			fallthrough;
 141		case 0:
 142			if (offset >= 0)
 143				break;
 144			fallthrough;
 145		default:
 
 146			return -EINVAL;
 147	}
 148	if (offset != file->f_pos) {
 149		struct dentry *cursor = file->private_data;
 150		struct dentry *to = NULL;
 151
 152		inode_lock_shared(dentry->d_inode);
 153
 154		if (offset > 2)
 155			to = scan_positives(cursor, &dentry->d_subdirs,
 156					    offset - 2, NULL);
 157		spin_lock(&dentry->d_lock);
 158		if (to)
 159			list_move(&cursor->d_child, &to->d_child);
 160		else
 161			list_del_init(&cursor->d_child);
 162		spin_unlock(&dentry->d_lock);
 163		dput(to);
 164
 165		file->f_pos = offset;
 
 
 
 
 166
 167		inode_unlock_shared(dentry->d_inode);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 168	}
 
 169	return offset;
 170}
 171EXPORT_SYMBOL(dcache_dir_lseek);
 172
 173/* Relationship between i_mode and the DT_xxx types */
 174static inline unsigned char dt_type(struct inode *inode)
 175{
 176	return (inode->i_mode >> 12) & 15;
 177}
 178
 179/*
 180 * Directory is locked and all positive dentries in it are safe, since
 181 * for ramfs-type trees they can't go away without unlink() or rmdir(),
 182 * both impossible due to the lock on directory.
 183 */
 184
 185int dcache_readdir(struct file *file, struct dir_context *ctx)
 186{
 187	struct dentry *dentry = file->f_path.dentry;
 188	struct dentry *cursor = file->private_data;
 189	struct list_head *anchor = &dentry->d_subdirs;
 190	struct dentry *next = NULL;
 191	struct list_head *p;
 192
 193	if (!dir_emit_dots(file, ctx))
 194		return 0;
 195
 196	if (ctx->pos == 2)
 197		p = anchor;
 198	else if (!list_empty(&cursor->d_child))
 199		p = &cursor->d_child;
 200	else
 201		return 0;
 
 
 
 
 202
 203	while ((next = scan_positives(cursor, p, 1, next)) != NULL) {
 
 204		if (!dir_emit(ctx, next->d_name.name, next->d_name.len,
 205			      d_inode(next)->i_ino, dt_type(d_inode(next))))
 206			break;
 
 
 
 
 
 
 207		ctx->pos++;
 208		p = &next->d_child;
 209	}
 210	spin_lock(&dentry->d_lock);
 211	if (next)
 212		list_move_tail(&cursor->d_child, &next->d_child);
 213	else
 214		list_del_init(&cursor->d_child);
 215	spin_unlock(&dentry->d_lock);
 216	dput(next);
 217
 218	return 0;
 219}
 220EXPORT_SYMBOL(dcache_readdir);
 221
 222ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
 223{
 224	return -EISDIR;
 225}
 226EXPORT_SYMBOL(generic_read_dir);
 227
 228const struct file_operations simple_dir_operations = {
 229	.open		= dcache_dir_open,
 230	.release	= dcache_dir_close,
 231	.llseek		= dcache_dir_lseek,
 232	.read		= generic_read_dir,
 233	.iterate_shared	= dcache_readdir,
 234	.fsync		= noop_fsync,
 235};
 236EXPORT_SYMBOL(simple_dir_operations);
 237
 238const struct inode_operations simple_dir_inode_operations = {
 239	.lookup		= simple_lookup,
 240};
 241EXPORT_SYMBOL(simple_dir_inode_operations);
 242
 243static struct dentry *find_next_child(struct dentry *parent, struct dentry *prev)
 244{
 245	struct dentry *child = NULL;
 246	struct list_head *p = prev ? &prev->d_child : &parent->d_subdirs;
 247
 248	spin_lock(&parent->d_lock);
 249	while ((p = p->next) != &parent->d_subdirs) {
 250		struct dentry *d = container_of(p, struct dentry, d_child);
 251		if (simple_positive(d)) {
 252			spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
 253			if (simple_positive(d))
 254				child = dget_dlock(d);
 255			spin_unlock(&d->d_lock);
 256			if (likely(child))
 257				break;
 258		}
 259	}
 260	spin_unlock(&parent->d_lock);
 261	dput(prev);
 262	return child;
 263}
 264
 265void simple_recursive_removal(struct dentry *dentry,
 266                              void (*callback)(struct dentry *))
 267{
 268	struct dentry *this = dget(dentry);
 269	while (true) {
 270		struct dentry *victim = NULL, *child;
 271		struct inode *inode = this->d_inode;
 272
 273		inode_lock(inode);
 274		if (d_is_dir(this))
 275			inode->i_flags |= S_DEAD;
 276		while ((child = find_next_child(this, victim)) == NULL) {
 277			// kill and ascend
 278			// update metadata while it's still locked
 279			inode->i_ctime = current_time(inode);
 280			clear_nlink(inode);
 281			inode_unlock(inode);
 282			victim = this;
 283			this = this->d_parent;
 284			inode = this->d_inode;
 285			inode_lock(inode);
 286			if (simple_positive(victim)) {
 287				d_invalidate(victim);	// avoid lost mounts
 288				if (d_is_dir(victim))
 289					fsnotify_rmdir(inode, victim);
 290				else
 291					fsnotify_unlink(inode, victim);
 292				if (callback)
 293					callback(victim);
 294				dput(victim);		// unpin it
 295			}
 296			if (victim == dentry) {
 297				inode->i_ctime = inode->i_mtime =
 298					current_time(inode);
 299				if (d_is_dir(dentry))
 300					drop_nlink(inode);
 301				inode_unlock(inode);
 302				dput(dentry);
 303				return;
 304			}
 305		}
 306		inode_unlock(inode);
 307		this = child;
 308	}
 309}
 310EXPORT_SYMBOL(simple_recursive_removal);
 311
 312static const struct super_operations simple_super_operations = {
 313	.statfs		= simple_statfs,
 314};
 315
 316static int pseudo_fs_fill_super(struct super_block *s, struct fs_context *fc)
 
 
 
 
 
 
 317{
 318	struct pseudo_fs_context *ctx = fc->fs_private;
 
 319	struct inode *root;
 
 
 
 
 
 320
 321	s->s_maxbytes = MAX_LFS_FILESIZE;
 322	s->s_blocksize = PAGE_SIZE;
 323	s->s_blocksize_bits = PAGE_SHIFT;
 324	s->s_magic = ctx->magic;
 325	s->s_op = ctx->ops ?: &simple_super_operations;
 326	s->s_xattr = ctx->xattr;
 327	s->s_time_gran = 1;
 328	root = new_inode(s);
 329	if (!root)
 330		return -ENOMEM;
 331
 332	/*
 333	 * since this is the first inode, make it number 1. New inodes created
 334	 * after this must take care not to collide with it (by passing
 335	 * max_reserved of 1 to iunique).
 336	 */
 337	root->i_ino = 1;
 338	root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
 339	root->i_atime = root->i_mtime = root->i_ctime = current_time(root);
 340	s->s_root = d_make_root(root);
 341	if (!s->s_root)
 342		return -ENOMEM;
 343	s->s_d_op = ctx->dops;
 344	return 0;
 345}
 346
 347static int pseudo_fs_get_tree(struct fs_context *fc)
 348{
 349	return get_tree_nodev(fc, pseudo_fs_fill_super);
 350}
 351
 352static void pseudo_fs_free(struct fs_context *fc)
 353{
 354	kfree(fc->fs_private);
 355}
 356
 357static const struct fs_context_operations pseudo_fs_context_ops = {
 358	.free		= pseudo_fs_free,
 359	.get_tree	= pseudo_fs_get_tree,
 360};
 361
 362/*
 363 * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
 364 * will never be mountable)
 365 */
 366struct pseudo_fs_context *init_pseudo(struct fs_context *fc,
 367					unsigned long magic)
 368{
 369	struct pseudo_fs_context *ctx;
 370
 371	ctx = kzalloc(sizeof(struct pseudo_fs_context), GFP_KERNEL);
 372	if (likely(ctx)) {
 373		ctx->magic = magic;
 374		fc->fs_private = ctx;
 375		fc->ops = &pseudo_fs_context_ops;
 376		fc->sb_flags |= SB_NOUSER;
 377		fc->global = true;
 378	}
 379	return ctx;
 
 
 
 
 
 
 
 
 380}
 381EXPORT_SYMBOL(init_pseudo);
 382
 383int simple_open(struct inode *inode, struct file *file)
 384{
 385	if (inode->i_private)
 386		file->private_data = inode->i_private;
 387	return 0;
 388}
 389EXPORT_SYMBOL(simple_open);
 390
 391int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
 392{
 393	struct inode *inode = d_inode(old_dentry);
 394
 395	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
 396	inc_nlink(inode);
 397	ihold(inode);
 398	dget(dentry);
 399	d_instantiate(dentry, inode);
 400	return 0;
 401}
 402EXPORT_SYMBOL(simple_link);
 403
 404int simple_empty(struct dentry *dentry)
 405{
 406	struct dentry *child;
 407	int ret = 0;
 408
 409	spin_lock(&dentry->d_lock);
 410	list_for_each_entry(child, &dentry->d_subdirs, d_child) {
 411		spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED);
 412		if (simple_positive(child)) {
 413			spin_unlock(&child->d_lock);
 414			goto out;
 415		}
 416		spin_unlock(&child->d_lock);
 417	}
 418	ret = 1;
 419out:
 420	spin_unlock(&dentry->d_lock);
 421	return ret;
 422}
 423EXPORT_SYMBOL(simple_empty);
 424
 425int simple_unlink(struct inode *dir, struct dentry *dentry)
 426{
 427	struct inode *inode = d_inode(dentry);
 428
 429	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
 430	drop_nlink(inode);
 431	dput(dentry);
 432	return 0;
 433}
 434EXPORT_SYMBOL(simple_unlink);
 435
 436int simple_rmdir(struct inode *dir, struct dentry *dentry)
 437{
 438	if (!simple_empty(dentry))
 439		return -ENOTEMPTY;
 440
 441	drop_nlink(d_inode(dentry));
 442	simple_unlink(dir, dentry);
 443	drop_nlink(dir);
 444	return 0;
 445}
 446EXPORT_SYMBOL(simple_rmdir);
 447
 448int simple_rename(struct inode *old_dir, struct dentry *old_dentry,
 449		  struct inode *new_dir, struct dentry *new_dentry,
 450		  unsigned int flags)
 451{
 452	struct inode *inode = d_inode(old_dentry);
 453	int they_are_dirs = d_is_dir(old_dentry);
 454
 455	if (flags & ~RENAME_NOREPLACE)
 456		return -EINVAL;
 457
 458	if (!simple_empty(new_dentry))
 459		return -ENOTEMPTY;
 460
 461	if (d_really_is_positive(new_dentry)) {
 462		simple_unlink(new_dir, new_dentry);
 463		if (they_are_dirs) {
 464			drop_nlink(d_inode(new_dentry));
 465			drop_nlink(old_dir);
 466		}
 467	} else if (they_are_dirs) {
 468		drop_nlink(old_dir);
 469		inc_nlink(new_dir);
 470	}
 471
 472	old_dir->i_ctime = old_dir->i_mtime = new_dir->i_ctime =
 473		new_dir->i_mtime = inode->i_ctime = current_time(old_dir);
 474
 475	return 0;
 476}
 477EXPORT_SYMBOL(simple_rename);
 478
 479/**
 480 * simple_setattr - setattr for simple filesystem
 481 * @dentry: dentry
 482 * @iattr: iattr structure
 483 *
 484 * Returns 0 on success, -error on failure.
 485 *
 486 * simple_setattr is a simple ->setattr implementation without a proper
 487 * implementation of size changes.
 488 *
 489 * It can either be used for in-memory filesystems or special files
 490 * on simple regular filesystems.  Anything that needs to change on-disk
 491 * or wire state on size changes needs its own setattr method.
 492 */
 493int simple_setattr(struct dentry *dentry, struct iattr *iattr)
 494{
 495	struct inode *inode = d_inode(dentry);
 496	int error;
 497
 498	error = setattr_prepare(dentry, iattr);
 499	if (error)
 500		return error;
 501
 502	if (iattr->ia_valid & ATTR_SIZE)
 503		truncate_setsize(inode, iattr->ia_size);
 504	setattr_copy(inode, iattr);
 505	mark_inode_dirty(inode);
 506	return 0;
 507}
 508EXPORT_SYMBOL(simple_setattr);
 509
 510int simple_readpage(struct file *file, struct page *page)
 511{
 512	clear_highpage(page);
 513	flush_dcache_page(page);
 514	SetPageUptodate(page);
 515	unlock_page(page);
 516	return 0;
 517}
 518EXPORT_SYMBOL(simple_readpage);
 519
 520int simple_write_begin(struct file *file, struct address_space *mapping,
 521			loff_t pos, unsigned len, unsigned flags,
 522			struct page **pagep, void **fsdata)
 523{
 524	struct page *page;
 525	pgoff_t index;
 526
 527	index = pos >> PAGE_SHIFT;
 528
 529	page = grab_cache_page_write_begin(mapping, index, flags);
 530	if (!page)
 531		return -ENOMEM;
 532
 533	*pagep = page;
 534
 535	if (!PageUptodate(page) && (len != PAGE_SIZE)) {
 536		unsigned from = pos & (PAGE_SIZE - 1);
 537
 538		zero_user_segments(page, 0, from, from + len, PAGE_SIZE);
 539	}
 540	return 0;
 541}
 542EXPORT_SYMBOL(simple_write_begin);
 543
 544/**
 545 * simple_write_end - .write_end helper for non-block-device FSes
 546 * @file: See .write_end of address_space_operations
 
 547 * @mapping: 		"
 548 * @pos: 		"
 549 * @len: 		"
 550 * @copied: 		"
 551 * @page: 		"
 552 * @fsdata: 		"
 553 *
 554 * simple_write_end does the minimum needed for updating a page after writing is
 555 * done. It has the same API signature as the .write_end of
 556 * address_space_operations vector. So it can just be set onto .write_end for
 557 * FSes that don't need any other processing. i_mutex is assumed to be held.
 558 * Block based filesystems should use generic_write_end().
 559 * NOTE: Even though i_size might get updated by this function, mark_inode_dirty
 560 * is not called, so a filesystem that actually does store data in .write_inode
 561 * should extend on what's done here with a call to mark_inode_dirty() in the
 562 * case that i_size has changed.
 563 *
 564 * Use *ONLY* with simple_readpage()
 565 */
 566int simple_write_end(struct file *file, struct address_space *mapping,
 567			loff_t pos, unsigned len, unsigned copied,
 568			struct page *page, void *fsdata)
 569{
 570	struct inode *inode = page->mapping->host;
 571	loff_t last_pos = pos + copied;
 572
 573	/* zero the stale part of the page if we did a short copy */
 574	if (!PageUptodate(page)) {
 575		if (copied < len) {
 576			unsigned from = pos & (PAGE_SIZE - 1);
 577
 578			zero_user(page, from + copied, len - copied);
 579		}
 580		SetPageUptodate(page);
 581	}
 
 
 
 582	/*
 583	 * No need to use i_size_read() here, the i_size
 584	 * cannot change under us because we hold the i_mutex.
 585	 */
 586	if (last_pos > inode->i_size)
 587		i_size_write(inode, last_pos);
 588
 589	set_page_dirty(page);
 590	unlock_page(page);
 591	put_page(page);
 592
 593	return copied;
 594}
 595EXPORT_SYMBOL(simple_write_end);
 596
 597/*
 598 * the inodes created here are not hashed. If you use iunique to generate
 599 * unique inode values later for this filesystem, then you must take care
 600 * to pass it an appropriate max_reserved value to avoid collisions.
 601 */
 602int simple_fill_super(struct super_block *s, unsigned long magic,
 603		      const struct tree_descr *files)
 604{
 605	struct inode *inode;
 606	struct dentry *root;
 607	struct dentry *dentry;
 608	int i;
 609
 610	s->s_blocksize = PAGE_SIZE;
 611	s->s_blocksize_bits = PAGE_SHIFT;
 612	s->s_magic = magic;
 613	s->s_op = &simple_super_operations;
 614	s->s_time_gran = 1;
 615
 616	inode = new_inode(s);
 617	if (!inode)
 618		return -ENOMEM;
 619	/*
 620	 * because the root inode is 1, the files array must not contain an
 621	 * entry at index 1
 622	 */
 623	inode->i_ino = 1;
 624	inode->i_mode = S_IFDIR | 0755;
 625	inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
 626	inode->i_op = &simple_dir_inode_operations;
 627	inode->i_fop = &simple_dir_operations;
 628	set_nlink(inode, 2);
 629	root = d_make_root(inode);
 630	if (!root)
 631		return -ENOMEM;
 632	for (i = 0; !files->name || files->name[0]; i++, files++) {
 633		if (!files->name)
 634			continue;
 635
 636		/* warn if it tries to conflict with the root inode */
 637		if (unlikely(i == 1))
 638			printk(KERN_WARNING "%s: %s passed in a files array"
 639				"with an index of 1!\n", __func__,
 640				s->s_type->name);
 641
 642		dentry = d_alloc_name(root, files->name);
 643		if (!dentry)
 644			goto out;
 645		inode = new_inode(s);
 646		if (!inode) {
 647			dput(dentry);
 648			goto out;
 649		}
 650		inode->i_mode = S_IFREG | files->mode;
 651		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
 652		inode->i_fop = files->ops;
 653		inode->i_ino = i;
 654		d_add(dentry, inode);
 655	}
 656	s->s_root = root;
 657	return 0;
 658out:
 659	d_genocide(root);
 660	shrink_dcache_parent(root);
 661	dput(root);
 662	return -ENOMEM;
 663}
 664EXPORT_SYMBOL(simple_fill_super);
 665
 666static DEFINE_SPINLOCK(pin_fs_lock);
 667
 668int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
 669{
 670	struct vfsmount *mnt = NULL;
 671	spin_lock(&pin_fs_lock);
 672	if (unlikely(!*mount)) {
 673		spin_unlock(&pin_fs_lock);
 674		mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
 675		if (IS_ERR(mnt))
 676			return PTR_ERR(mnt);
 677		spin_lock(&pin_fs_lock);
 678		if (!*mount)
 679			*mount = mnt;
 680	}
 681	mntget(*mount);
 682	++*count;
 683	spin_unlock(&pin_fs_lock);
 684	mntput(mnt);
 685	return 0;
 686}
 687EXPORT_SYMBOL(simple_pin_fs);
 688
 689void simple_release_fs(struct vfsmount **mount, int *count)
 690{
 691	struct vfsmount *mnt;
 692	spin_lock(&pin_fs_lock);
 693	mnt = *mount;
 694	if (!--*count)
 695		*mount = NULL;
 696	spin_unlock(&pin_fs_lock);
 697	mntput(mnt);
 698}
 699EXPORT_SYMBOL(simple_release_fs);
 700
 701/**
 702 * simple_read_from_buffer - copy data from the buffer to user space
 703 * @to: the user space buffer to read to
 704 * @count: the maximum number of bytes to read
 705 * @ppos: the current position in the buffer
 706 * @from: the buffer to read from
 707 * @available: the size of the buffer
 708 *
 709 * The simple_read_from_buffer() function reads up to @count bytes from the
 710 * buffer @from at offset @ppos into the user space address starting at @to.
 711 *
 712 * On success, the number of bytes read is returned and the offset @ppos is
 713 * advanced by this number, or negative value is returned on error.
 714 **/
 715ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
 716				const void *from, size_t available)
 717{
 718	loff_t pos = *ppos;
 719	size_t ret;
 720
 721	if (pos < 0)
 722		return -EINVAL;
 723	if (pos >= available || !count)
 724		return 0;
 725	if (count > available - pos)
 726		count = available - pos;
 727	ret = copy_to_user(to, from + pos, count);
 728	if (ret == count)
 729		return -EFAULT;
 730	count -= ret;
 731	*ppos = pos + count;
 732	return count;
 733}
 734EXPORT_SYMBOL(simple_read_from_buffer);
 735
 736/**
 737 * simple_write_to_buffer - copy data from user space to the buffer
 738 * @to: the buffer to write to
 739 * @available: the size of the buffer
 740 * @ppos: the current position in the buffer
 741 * @from: the user space buffer to read from
 742 * @count: the maximum number of bytes to read
 743 *
 744 * The simple_write_to_buffer() function reads up to @count bytes from the user
 745 * space address starting at @from into the buffer @to at offset @ppos.
 746 *
 747 * On success, the number of bytes written is returned and the offset @ppos is
 748 * advanced by this number, or negative value is returned on error.
 749 **/
 750ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
 751		const void __user *from, size_t count)
 752{
 753	loff_t pos = *ppos;
 754	size_t res;
 755
 756	if (pos < 0)
 757		return -EINVAL;
 758	if (pos >= available || !count)
 759		return 0;
 760	if (count > available - pos)
 761		count = available - pos;
 762	res = copy_from_user(to + pos, from, count);
 763	if (res == count)
 764		return -EFAULT;
 765	count -= res;
 766	*ppos = pos + count;
 767	return count;
 768}
 769EXPORT_SYMBOL(simple_write_to_buffer);
 770
 771/**
 772 * memory_read_from_buffer - copy data from the buffer
 773 * @to: the kernel space buffer to read to
 774 * @count: the maximum number of bytes to read
 775 * @ppos: the current position in the buffer
 776 * @from: the buffer to read from
 777 * @available: the size of the buffer
 778 *
 779 * The memory_read_from_buffer() function reads up to @count bytes from the
 780 * buffer @from at offset @ppos into the kernel space address starting at @to.
 781 *
 782 * On success, the number of bytes read is returned and the offset @ppos is
 783 * advanced by this number, or negative value is returned on error.
 784 **/
 785ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos,
 786				const void *from, size_t available)
 787{
 788	loff_t pos = *ppos;
 789
 790	if (pos < 0)
 791		return -EINVAL;
 792	if (pos >= available)
 793		return 0;
 794	if (count > available - pos)
 795		count = available - pos;
 796	memcpy(to, from + pos, count);
 797	*ppos = pos + count;
 798
 799	return count;
 800}
 801EXPORT_SYMBOL(memory_read_from_buffer);
 802
 803/*
 804 * Transaction based IO.
 805 * The file expects a single write which triggers the transaction, and then
 806 * possibly a read which collects the result - which is stored in a
 807 * file-local buffer.
 808 */
 809
 810void simple_transaction_set(struct file *file, size_t n)
 811{
 812	struct simple_transaction_argresp *ar = file->private_data;
 813
 814	BUG_ON(n > SIMPLE_TRANSACTION_LIMIT);
 815
 816	/*
 817	 * The barrier ensures that ar->size will really remain zero until
 818	 * ar->data is ready for reading.
 819	 */
 820	smp_mb();
 821	ar->size = n;
 822}
 823EXPORT_SYMBOL(simple_transaction_set);
 824
 825char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
 826{
 827	struct simple_transaction_argresp *ar;
 828	static DEFINE_SPINLOCK(simple_transaction_lock);
 829
 830	if (size > SIMPLE_TRANSACTION_LIMIT - 1)
 831		return ERR_PTR(-EFBIG);
 832
 833	ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
 834	if (!ar)
 835		return ERR_PTR(-ENOMEM);
 836
 837	spin_lock(&simple_transaction_lock);
 838
 839	/* only one write allowed per open */
 840	if (file->private_data) {
 841		spin_unlock(&simple_transaction_lock);
 842		free_page((unsigned long)ar);
 843		return ERR_PTR(-EBUSY);
 844	}
 845
 846	file->private_data = ar;
 847
 848	spin_unlock(&simple_transaction_lock);
 849
 850	if (copy_from_user(ar->data, buf, size))
 851		return ERR_PTR(-EFAULT);
 852
 853	return ar->data;
 854}
 855EXPORT_SYMBOL(simple_transaction_get);
 856
 857ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
 858{
 859	struct simple_transaction_argresp *ar = file->private_data;
 860
 861	if (!ar)
 862		return 0;
 863	return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
 864}
 865EXPORT_SYMBOL(simple_transaction_read);
 866
 867int simple_transaction_release(struct inode *inode, struct file *file)
 868{
 869	free_page((unsigned long)file->private_data);
 870	return 0;
 871}
 872EXPORT_SYMBOL(simple_transaction_release);
 873
 874/* Simple attribute files */
 875
 876struct simple_attr {
 877	int (*get)(void *, u64 *);
 878	int (*set)(void *, u64);
 879	char get_buf[24];	/* enough to store a u64 and "\n\0" */
 880	char set_buf[24];
 881	void *data;
 882	const char *fmt;	/* format for read operation */
 883	struct mutex mutex;	/* protects access to these buffers */
 884};
 885
 886/* simple_attr_open is called by an actual attribute open file operation
 887 * to set the attribute specific access operations. */
 888int simple_attr_open(struct inode *inode, struct file *file,
 889		     int (*get)(void *, u64 *), int (*set)(void *, u64),
 890		     const char *fmt)
 891{
 892	struct simple_attr *attr;
 893
 894	attr = kzalloc(sizeof(*attr), GFP_KERNEL);
 895	if (!attr)
 896		return -ENOMEM;
 897
 898	attr->get = get;
 899	attr->set = set;
 900	attr->data = inode->i_private;
 901	attr->fmt = fmt;
 902	mutex_init(&attr->mutex);
 903
 904	file->private_data = attr;
 905
 906	return nonseekable_open(inode, file);
 907}
 908EXPORT_SYMBOL_GPL(simple_attr_open);
 909
 910int simple_attr_release(struct inode *inode, struct file *file)
 911{
 912	kfree(file->private_data);
 913	return 0;
 914}
 915EXPORT_SYMBOL_GPL(simple_attr_release);	/* GPL-only?  This?  Really? */
 916
 917/* read from the buffer that is filled with the get function */
 918ssize_t simple_attr_read(struct file *file, char __user *buf,
 919			 size_t len, loff_t *ppos)
 920{
 921	struct simple_attr *attr;
 922	size_t size;
 923	ssize_t ret;
 924
 925	attr = file->private_data;
 926
 927	if (!attr->get)
 928		return -EACCES;
 929
 930	ret = mutex_lock_interruptible(&attr->mutex);
 931	if (ret)
 932		return ret;
 933
 934	if (*ppos && attr->get_buf[0]) {
 935		/* continued read */
 936		size = strlen(attr->get_buf);
 937	} else {
 938		/* first read */
 939		u64 val;
 940		ret = attr->get(attr->data, &val);
 941		if (ret)
 942			goto out;
 943
 944		size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
 945				 attr->fmt, (unsigned long long)val);
 946	}
 947
 948	ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
 949out:
 950	mutex_unlock(&attr->mutex);
 951	return ret;
 952}
 953EXPORT_SYMBOL_GPL(simple_attr_read);
 954
 955/* interpret the buffer as a number to call the set function with */
 956ssize_t simple_attr_write(struct file *file, const char __user *buf,
 957			  size_t len, loff_t *ppos)
 958{
 959	struct simple_attr *attr;
 960	u64 val;
 961	size_t size;
 962	ssize_t ret;
 963
 964	attr = file->private_data;
 965	if (!attr->set)
 966		return -EACCES;
 967
 968	ret = mutex_lock_interruptible(&attr->mutex);
 969	if (ret)
 970		return ret;
 971
 972	ret = -EFAULT;
 973	size = min(sizeof(attr->set_buf) - 1, len);
 974	if (copy_from_user(attr->set_buf, buf, size))
 975		goto out;
 976
 977	attr->set_buf[size] = '\0';
 978	val = simple_strtoll(attr->set_buf, NULL, 0);
 979	ret = attr->set(attr->data, val);
 980	if (ret == 0)
 981		ret = len; /* on success, claim we got the whole input */
 982out:
 983	mutex_unlock(&attr->mutex);
 984	return ret;
 985}
 986EXPORT_SYMBOL_GPL(simple_attr_write);
 987
 988/**
 989 * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
 990 * @sb:		filesystem to do the file handle conversion on
 991 * @fid:	file handle to convert
 992 * @fh_len:	length of the file handle in bytes
 993 * @fh_type:	type of file handle
 994 * @get_inode:	filesystem callback to retrieve inode
 995 *
 996 * This function decodes @fid as long as it has one of the well-known
 997 * Linux filehandle types and calls @get_inode on it to retrieve the
 998 * inode for the object specified in the file handle.
 999 */
1000struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid,
1001		int fh_len, int fh_type, struct inode *(*get_inode)
1002			(struct super_block *sb, u64 ino, u32 gen))
1003{
1004	struct inode *inode = NULL;
1005
1006	if (fh_len < 2)
1007		return NULL;
1008
1009	switch (fh_type) {
1010	case FILEID_INO32_GEN:
1011	case FILEID_INO32_GEN_PARENT:
1012		inode = get_inode(sb, fid->i32.ino, fid->i32.gen);
1013		break;
1014	}
1015
1016	return d_obtain_alias(inode);
1017}
1018EXPORT_SYMBOL_GPL(generic_fh_to_dentry);
1019
1020/**
1021 * generic_fh_to_parent - generic helper for the fh_to_parent export operation
1022 * @sb:		filesystem to do the file handle conversion on
1023 * @fid:	file handle to convert
1024 * @fh_len:	length of the file handle in bytes
1025 * @fh_type:	type of file handle
1026 * @get_inode:	filesystem callback to retrieve inode
1027 *
1028 * This function decodes @fid as long as it has one of the well-known
1029 * Linux filehandle types and calls @get_inode on it to retrieve the
1030 * inode for the _parent_ object specified in the file handle if it
1031 * is specified in the file handle, or NULL otherwise.
1032 */
1033struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid,
1034		int fh_len, int fh_type, struct inode *(*get_inode)
1035			(struct super_block *sb, u64 ino, u32 gen))
1036{
1037	struct inode *inode = NULL;
1038
1039	if (fh_len <= 2)
1040		return NULL;
1041
1042	switch (fh_type) {
1043	case FILEID_INO32_GEN_PARENT:
1044		inode = get_inode(sb, fid->i32.parent_ino,
1045				  (fh_len > 3 ? fid->i32.parent_gen : 0));
1046		break;
1047	}
1048
1049	return d_obtain_alias(inode);
1050}
1051EXPORT_SYMBOL_GPL(generic_fh_to_parent);
1052
1053/**
1054 * __generic_file_fsync - generic fsync implementation for simple filesystems
1055 *
1056 * @file:	file to synchronize
1057 * @start:	start offset in bytes
1058 * @end:	end offset in bytes (inclusive)
1059 * @datasync:	only synchronize essential metadata if true
1060 *
1061 * This is a generic implementation of the fsync method for simple
1062 * filesystems which track all non-inode metadata in the buffers list
1063 * hanging off the address_space structure.
1064 */
1065int __generic_file_fsync(struct file *file, loff_t start, loff_t end,
1066				 int datasync)
1067{
1068	struct inode *inode = file->f_mapping->host;
1069	int err;
1070	int ret;
1071
1072	err = file_write_and_wait_range(file, start, end);
1073	if (err)
1074		return err;
1075
1076	inode_lock(inode);
1077	ret = sync_mapping_buffers(inode->i_mapping);
1078	if (!(inode->i_state & I_DIRTY_ALL))
1079		goto out;
1080	if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
1081		goto out;
1082
1083	err = sync_inode_metadata(inode, 1);
1084	if (ret == 0)
1085		ret = err;
1086
1087out:
1088	inode_unlock(inode);
1089	/* check and advance again to catch errors after syncing out buffers */
1090	err = file_check_and_advance_wb_err(file);
1091	if (ret == 0)
1092		ret = err;
1093	return ret;
1094}
1095EXPORT_SYMBOL(__generic_file_fsync);
1096
1097/**
1098 * generic_file_fsync - generic fsync implementation for simple filesystems
1099 *			with flush
1100 * @file:	file to synchronize
1101 * @start:	start offset in bytes
1102 * @end:	end offset in bytes (inclusive)
1103 * @datasync:	only synchronize essential metadata if true
1104 *
1105 */
1106
1107int generic_file_fsync(struct file *file, loff_t start, loff_t end,
1108		       int datasync)
1109{
1110	struct inode *inode = file->f_mapping->host;
1111	int err;
1112
1113	err = __generic_file_fsync(file, start, end, datasync);
1114	if (err)
1115		return err;
1116	return blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL);
1117}
1118EXPORT_SYMBOL(generic_file_fsync);
1119
1120/**
1121 * generic_check_addressable - Check addressability of file system
1122 * @blocksize_bits:	log of file system block size
1123 * @num_blocks:		number of blocks in file system
1124 *
1125 * Determine whether a file system with @num_blocks blocks (and a
1126 * block size of 2**@blocksize_bits) is addressable by the sector_t
1127 * and page cache of the system.  Return 0 if so and -EFBIG otherwise.
1128 */
1129int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks)
1130{
1131	u64 last_fs_block = num_blocks - 1;
1132	u64 last_fs_page =
1133		last_fs_block >> (PAGE_SHIFT - blocksize_bits);
1134
1135	if (unlikely(num_blocks == 0))
1136		return 0;
1137
1138	if ((blocksize_bits < 9) || (blocksize_bits > PAGE_SHIFT))
1139		return -EINVAL;
1140
1141	if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) ||
1142	    (last_fs_page > (pgoff_t)(~0ULL))) {
1143		return -EFBIG;
1144	}
1145	return 0;
1146}
1147EXPORT_SYMBOL(generic_check_addressable);
1148
1149/*
1150 * No-op implementation of ->fsync for in-memory filesystems.
1151 */
1152int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1153{
1154	return 0;
1155}
1156EXPORT_SYMBOL(noop_fsync);
1157
1158int noop_set_page_dirty(struct page *page)
1159{
1160	/*
1161	 * Unlike __set_page_dirty_no_writeback that handles dirty page
1162	 * tracking in the page object, dax does all dirty tracking in
1163	 * the inode address_space in response to mkwrite faults. In the
1164	 * dax case we only need to worry about potentially dirty CPU
1165	 * caches, not dirty page cache pages to write back.
1166	 *
1167	 * This callback is defined to prevent fallback to
1168	 * __set_page_dirty_buffers() in set_page_dirty().
1169	 */
1170	return 0;
1171}
1172EXPORT_SYMBOL_GPL(noop_set_page_dirty);
1173
1174void noop_invalidatepage(struct page *page, unsigned int offset,
1175		unsigned int length)
1176{
1177	/*
1178	 * There is no page cache to invalidate in the dax case, however
1179	 * we need this callback defined to prevent falling back to
1180	 * block_invalidatepage() in do_invalidatepage().
1181	 */
1182}
1183EXPORT_SYMBOL_GPL(noop_invalidatepage);
1184
1185ssize_t noop_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
1186{
1187	/*
1188	 * iomap based filesystems support direct I/O without need for
1189	 * this callback. However, it still needs to be set in
1190	 * inode->a_ops so that open/fcntl know that direct I/O is
1191	 * generally supported.
1192	 */
1193	return -EINVAL;
1194}
1195EXPORT_SYMBOL_GPL(noop_direct_IO);
1196
1197/* Because kfree isn't assignment-compatible with void(void*) ;-/ */
1198void kfree_link(void *p)
1199{
1200	kfree(p);
 
 
1201}
1202EXPORT_SYMBOL(kfree_link);
1203
1204/*
1205 * nop .set_page_dirty method so that people can use .page_mkwrite on
1206 * anon inodes.
1207 */
1208static int anon_set_page_dirty(struct page *page)
1209{
1210	return 0;
1211};
1212
1213/*
1214 * A single inode exists for all anon_inode files. Contrary to pipes,
1215 * anon_inode inodes have no associated per-instance data, so we need
1216 * only allocate one of them.
1217 */
1218struct inode *alloc_anon_inode(struct super_block *s)
1219{
1220	static const struct address_space_operations anon_aops = {
1221		.set_page_dirty = anon_set_page_dirty,
1222	};
1223	struct inode *inode = new_inode_pseudo(s);
1224
1225	if (!inode)
1226		return ERR_PTR(-ENOMEM);
1227
1228	inode->i_ino = get_next_ino();
1229	inode->i_mapping->a_ops = &anon_aops;
1230
1231	/*
1232	 * Mark the inode dirty from the very beginning,
1233	 * that way it will never be moved to the dirty
1234	 * list because mark_inode_dirty() will think
1235	 * that it already _is_ on the dirty list.
1236	 */
1237	inode->i_state = I_DIRTY;
1238	inode->i_mode = S_IRUSR | S_IWUSR;
1239	inode->i_uid = current_fsuid();
1240	inode->i_gid = current_fsgid();
1241	inode->i_flags |= S_PRIVATE;
1242	inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
1243	return inode;
1244}
1245EXPORT_SYMBOL(alloc_anon_inode);
1246
1247/**
1248 * simple_nosetlease - generic helper for prohibiting leases
1249 * @filp: file pointer
1250 * @arg: type of lease to obtain
1251 * @flp: new lease supplied for insertion
1252 * @priv: private data for lm_setup operation
1253 *
1254 * Generic helper for filesystems that do not wish to allow leases to be set.
1255 * All arguments are ignored and it just returns -EINVAL.
1256 */
1257int
1258simple_nosetlease(struct file *filp, long arg, struct file_lock **flp,
1259		  void **priv)
1260{
1261	return -EINVAL;
1262}
1263EXPORT_SYMBOL(simple_nosetlease);
1264
1265/**
1266 * simple_get_link - generic helper to get the target of "fast" symlinks
1267 * @dentry: not used here
1268 * @inode: the symlink inode
1269 * @done: not used here
1270 *
1271 * Generic helper for filesystems to use for symlink inodes where a pointer to
1272 * the symlink target is stored in ->i_link.  NOTE: this isn't normally called,
1273 * since as an optimization the path lookup code uses any non-NULL ->i_link
1274 * directly, without calling ->get_link().  But ->get_link() still must be set,
1275 * to mark the inode_operations as being for a symlink.
1276 *
1277 * Return: the symlink target
1278 */
1279const char *simple_get_link(struct dentry *dentry, struct inode *inode,
1280			    struct delayed_call *done)
1281{
1282	return inode->i_link;
1283}
1284EXPORT_SYMBOL(simple_get_link);
1285
1286const struct inode_operations simple_symlink_inode_operations = {
1287	.get_link = simple_get_link,
1288};
1289EXPORT_SYMBOL(simple_symlink_inode_operations);
1290
1291/*
1292 * Operations for a permanently empty directory.
1293 */
1294static struct dentry *empty_dir_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
1295{
1296	return ERR_PTR(-ENOENT);
1297}
1298
1299static int empty_dir_getattr(const struct path *path, struct kstat *stat,
1300			     u32 request_mask, unsigned int query_flags)
1301{
1302	struct inode *inode = d_inode(path->dentry);
1303	generic_fillattr(inode, stat);
1304	return 0;
1305}
1306
1307static int empty_dir_setattr(struct dentry *dentry, struct iattr *attr)
1308{
1309	return -EPERM;
1310}
1311
1312static ssize_t empty_dir_listxattr(struct dentry *dentry, char *list, size_t size)
1313{
1314	return -EOPNOTSUPP;
1315}
1316
1317static const struct inode_operations empty_dir_inode_operations = {
1318	.lookup		= empty_dir_lookup,
1319	.permission	= generic_permission,
1320	.setattr	= empty_dir_setattr,
1321	.getattr	= empty_dir_getattr,
1322	.listxattr	= empty_dir_listxattr,
1323};
1324
1325static loff_t empty_dir_llseek(struct file *file, loff_t offset, int whence)
1326{
1327	/* An empty directory has two entries . and .. at offsets 0 and 1 */
1328	return generic_file_llseek_size(file, offset, whence, 2, 2);
1329}
1330
1331static int empty_dir_readdir(struct file *file, struct dir_context *ctx)
1332{
1333	dir_emit_dots(file, ctx);
1334	return 0;
1335}
1336
1337static const struct file_operations empty_dir_operations = {
1338	.llseek		= empty_dir_llseek,
1339	.read		= generic_read_dir,
1340	.iterate_shared	= empty_dir_readdir,
1341	.fsync		= noop_fsync,
1342};
1343
1344
1345void make_empty_dir_inode(struct inode *inode)
1346{
1347	set_nlink(inode, 2);
1348	inode->i_mode = S_IFDIR | S_IRUGO | S_IXUGO;
1349	inode->i_uid = GLOBAL_ROOT_UID;
1350	inode->i_gid = GLOBAL_ROOT_GID;
1351	inode->i_rdev = 0;
1352	inode->i_size = 0;
1353	inode->i_blkbits = PAGE_SHIFT;
1354	inode->i_blocks = 0;
1355
1356	inode->i_op = &empty_dir_inode_operations;
1357	inode->i_opflags &= ~IOP_XATTR;
1358	inode->i_fop = &empty_dir_operations;
1359}
1360
1361bool is_empty_dir_inode(struct inode *inode)
1362{
1363	return (inode->i_fop == &empty_dir_operations) &&
1364		(inode->i_op == &empty_dir_inode_operations);
1365}
v3.15
 
   1/*
   2 *	fs/libfs.c
   3 *	Library for filesystems writers.
   4 */
   5
 
   6#include <linux/export.h>
   7#include <linux/pagemap.h>
   8#include <linux/slab.h>
 
   9#include <linux/mount.h>
  10#include <linux/vfs.h>
  11#include <linux/quotaops.h>
  12#include <linux/mutex.h>
  13#include <linux/namei.h>
  14#include <linux/exportfs.h>
  15#include <linux/writeback.h>
  16#include <linux/buffer_head.h> /* sync_mapping_buffers */
 
 
 
  17
  18#include <asm/uaccess.h>
  19
  20#include "internal.h"
  21
  22static inline int simple_positive(struct dentry *dentry)
 
  23{
  24	return dentry->d_inode && !d_unhashed(dentry);
  25}
  26
  27int simple_getattr(struct vfsmount *mnt, struct dentry *dentry,
  28		   struct kstat *stat)
  29{
  30	struct inode *inode = dentry->d_inode;
  31	generic_fillattr(inode, stat);
  32	stat->blocks = inode->i_mapping->nrpages << (PAGE_CACHE_SHIFT - 9);
  33	return 0;
  34}
  35EXPORT_SYMBOL(simple_getattr);
  36
  37int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
  38{
  39	buf->f_type = dentry->d_sb->s_magic;
  40	buf->f_bsize = PAGE_CACHE_SIZE;
  41	buf->f_namelen = NAME_MAX;
  42	return 0;
  43}
  44EXPORT_SYMBOL(simple_statfs);
  45
  46/*
  47 * Retaining negative dentries for an in-memory filesystem just wastes
  48 * memory and lookup time: arrange for them to be deleted immediately.
  49 */
  50int always_delete_dentry(const struct dentry *dentry)
  51{
  52	return 1;
  53}
  54EXPORT_SYMBOL(always_delete_dentry);
  55
  56const struct dentry_operations simple_dentry_operations = {
  57	.d_delete = always_delete_dentry,
  58};
  59EXPORT_SYMBOL(simple_dentry_operations);
  60
  61/*
  62 * Lookup the data. This is trivial - if the dentry didn't already
  63 * exist, we know it is negative.  Set d_op to delete negative dentries.
  64 */
  65struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
  66{
  67	if (dentry->d_name.len > NAME_MAX)
  68		return ERR_PTR(-ENAMETOOLONG);
  69	if (!dentry->d_sb->s_d_op)
  70		d_set_d_op(dentry, &simple_dentry_operations);
  71	d_add(dentry, NULL);
  72	return NULL;
  73}
  74EXPORT_SYMBOL(simple_lookup);
  75
  76int dcache_dir_open(struct inode *inode, struct file *file)
  77{
  78	static struct qstr cursor_name = QSTR_INIT(".", 1);
  79
  80	file->private_data = d_alloc(file->f_path.dentry, &cursor_name);
  81
  82	return file->private_data ? 0 : -ENOMEM;
  83}
  84EXPORT_SYMBOL(dcache_dir_open);
  85
  86int dcache_dir_close(struct inode *inode, struct file *file)
  87{
  88	dput(file->private_data);
  89	return 0;
  90}
  91EXPORT_SYMBOL(dcache_dir_close);
  92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  93loff_t dcache_dir_lseek(struct file *file, loff_t offset, int whence)
  94{
  95	struct dentry *dentry = file->f_path.dentry;
  96	mutex_lock(&dentry->d_inode->i_mutex);
  97	switch (whence) {
  98		case 1:
  99			offset += file->f_pos;
 
 100		case 0:
 101			if (offset >= 0)
 102				break;
 
 103		default:
 104			mutex_unlock(&dentry->d_inode->i_mutex);
 105			return -EINVAL;
 106	}
 107	if (offset != file->f_pos) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 108		file->f_pos = offset;
 109		if (file->f_pos >= 2) {
 110			struct list_head *p;
 111			struct dentry *cursor = file->private_data;
 112			loff_t n = file->f_pos - 2;
 113
 114			spin_lock(&dentry->d_lock);
 115			/* d_lock not required for cursor */
 116			list_del(&cursor->d_u.d_child);
 117			p = dentry->d_subdirs.next;
 118			while (n && p != &dentry->d_subdirs) {
 119				struct dentry *next;
 120				next = list_entry(p, struct dentry, d_u.d_child);
 121				spin_lock_nested(&next->d_lock, DENTRY_D_LOCK_NESTED);
 122				if (simple_positive(next))
 123					n--;
 124				spin_unlock(&next->d_lock);
 125				p = p->next;
 126			}
 127			list_add_tail(&cursor->d_u.d_child, p);
 128			spin_unlock(&dentry->d_lock);
 129		}
 130	}
 131	mutex_unlock(&dentry->d_inode->i_mutex);
 132	return offset;
 133}
 134EXPORT_SYMBOL(dcache_dir_lseek);
 135
 136/* Relationship between i_mode and the DT_xxx types */
 137static inline unsigned char dt_type(struct inode *inode)
 138{
 139	return (inode->i_mode >> 12) & 15;
 140}
 141
 142/*
 143 * Directory is locked and all positive dentries in it are safe, since
 144 * for ramfs-type trees they can't go away without unlink() or rmdir(),
 145 * both impossible due to the lock on directory.
 146 */
 147
 148int dcache_readdir(struct file *file, struct dir_context *ctx)
 149{
 150	struct dentry *dentry = file->f_path.dentry;
 151	struct dentry *cursor = file->private_data;
 152	struct list_head *p, *q = &cursor->d_u.d_child;
 
 
 153
 154	if (!dir_emit_dots(file, ctx))
 155		return 0;
 156	spin_lock(&dentry->d_lock);
 157	if (ctx->pos == 2)
 158		list_move(q, &dentry->d_subdirs);
 159
 160	for (p = q->next; p != &dentry->d_subdirs; p = p->next) {
 161		struct dentry *next = list_entry(p, struct dentry, d_u.d_child);
 162		spin_lock_nested(&next->d_lock, DENTRY_D_LOCK_NESTED);
 163		if (!simple_positive(next)) {
 164			spin_unlock(&next->d_lock);
 165			continue;
 166		}
 167
 168		spin_unlock(&next->d_lock);
 169		spin_unlock(&dentry->d_lock);
 170		if (!dir_emit(ctx, next->d_name.name, next->d_name.len,
 171			      next->d_inode->i_ino, dt_type(next->d_inode)))
 172			return 0;
 173		spin_lock(&dentry->d_lock);
 174		spin_lock_nested(&next->d_lock, DENTRY_D_LOCK_NESTED);
 175		/* next is still alive */
 176		list_move(q, p);
 177		spin_unlock(&next->d_lock);
 178		p = q;
 179		ctx->pos++;
 
 180	}
 
 
 
 
 
 181	spin_unlock(&dentry->d_lock);
 
 
 182	return 0;
 183}
 184EXPORT_SYMBOL(dcache_readdir);
 185
 186ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
 187{
 188	return -EISDIR;
 189}
 190EXPORT_SYMBOL(generic_read_dir);
 191
 192const struct file_operations simple_dir_operations = {
 193	.open		= dcache_dir_open,
 194	.release	= dcache_dir_close,
 195	.llseek		= dcache_dir_lseek,
 196	.read		= generic_read_dir,
 197	.iterate	= dcache_readdir,
 198	.fsync		= noop_fsync,
 199};
 200EXPORT_SYMBOL(simple_dir_operations);
 201
 202const struct inode_operations simple_dir_inode_operations = {
 203	.lookup		= simple_lookup,
 204};
 205EXPORT_SYMBOL(simple_dir_inode_operations);
 206
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 207static const struct super_operations simple_super_operations = {
 208	.statfs		= simple_statfs,
 209};
 210
 211/*
 212 * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
 213 * will never be mountable)
 214 */
 215struct dentry *mount_pseudo(struct file_system_type *fs_type, char *name,
 216	const struct super_operations *ops,
 217	const struct dentry_operations *dops, unsigned long magic)
 218{
 219	struct super_block *s;
 220	struct dentry *dentry;
 221	struct inode *root;
 222	struct qstr d_name = QSTR_INIT(name, strlen(name));
 223
 224	s = sget(fs_type, NULL, set_anon_super, MS_NOUSER, NULL);
 225	if (IS_ERR(s))
 226		return ERR_CAST(s);
 227
 228	s->s_maxbytes = MAX_LFS_FILESIZE;
 229	s->s_blocksize = PAGE_SIZE;
 230	s->s_blocksize_bits = PAGE_SHIFT;
 231	s->s_magic = magic;
 232	s->s_op = ops ? ops : &simple_super_operations;
 
 233	s->s_time_gran = 1;
 234	root = new_inode(s);
 235	if (!root)
 236		goto Enomem;
 
 237	/*
 238	 * since this is the first inode, make it number 1. New inodes created
 239	 * after this must take care not to collide with it (by passing
 240	 * max_reserved of 1 to iunique).
 241	 */
 242	root->i_ino = 1;
 243	root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
 244	root->i_atime = root->i_mtime = root->i_ctime = CURRENT_TIME;
 245	dentry = __d_alloc(s, &d_name);
 246	if (!dentry) {
 247		iput(root);
 248		goto Enomem;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 249	}
 250	d_instantiate(dentry, root);
 251	s->s_root = dentry;
 252	s->s_d_op = dops;
 253	s->s_flags |= MS_ACTIVE;
 254	return dget(s->s_root);
 255
 256Enomem:
 257	deactivate_locked_super(s);
 258	return ERR_PTR(-ENOMEM);
 259}
 260EXPORT_SYMBOL(mount_pseudo);
 261
 262int simple_open(struct inode *inode, struct file *file)
 263{
 264	if (inode->i_private)
 265		file->private_data = inode->i_private;
 266	return 0;
 267}
 268EXPORT_SYMBOL(simple_open);
 269
 270int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
 271{
 272	struct inode *inode = old_dentry->d_inode;
 273
 274	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
 275	inc_nlink(inode);
 276	ihold(inode);
 277	dget(dentry);
 278	d_instantiate(dentry, inode);
 279	return 0;
 280}
 281EXPORT_SYMBOL(simple_link);
 282
 283int simple_empty(struct dentry *dentry)
 284{
 285	struct dentry *child;
 286	int ret = 0;
 287
 288	spin_lock(&dentry->d_lock);
 289	list_for_each_entry(child, &dentry->d_subdirs, d_u.d_child) {
 290		spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED);
 291		if (simple_positive(child)) {
 292			spin_unlock(&child->d_lock);
 293			goto out;
 294		}
 295		spin_unlock(&child->d_lock);
 296	}
 297	ret = 1;
 298out:
 299	spin_unlock(&dentry->d_lock);
 300	return ret;
 301}
 302EXPORT_SYMBOL(simple_empty);
 303
 304int simple_unlink(struct inode *dir, struct dentry *dentry)
 305{
 306	struct inode *inode = dentry->d_inode;
 307
 308	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
 309	drop_nlink(inode);
 310	dput(dentry);
 311	return 0;
 312}
 313EXPORT_SYMBOL(simple_unlink);
 314
 315int simple_rmdir(struct inode *dir, struct dentry *dentry)
 316{
 317	if (!simple_empty(dentry))
 318		return -ENOTEMPTY;
 319
 320	drop_nlink(dentry->d_inode);
 321	simple_unlink(dir, dentry);
 322	drop_nlink(dir);
 323	return 0;
 324}
 325EXPORT_SYMBOL(simple_rmdir);
 326
 327int simple_rename(struct inode *old_dir, struct dentry *old_dentry,
 328		struct inode *new_dir, struct dentry *new_dentry)
 
 329{
 330	struct inode *inode = old_dentry->d_inode;
 331	int they_are_dirs = S_ISDIR(old_dentry->d_inode->i_mode);
 
 
 
 332
 333	if (!simple_empty(new_dentry))
 334		return -ENOTEMPTY;
 335
 336	if (new_dentry->d_inode) {
 337		simple_unlink(new_dir, new_dentry);
 338		if (they_are_dirs) {
 339			drop_nlink(new_dentry->d_inode);
 340			drop_nlink(old_dir);
 341		}
 342	} else if (they_are_dirs) {
 343		drop_nlink(old_dir);
 344		inc_nlink(new_dir);
 345	}
 346
 347	old_dir->i_ctime = old_dir->i_mtime = new_dir->i_ctime =
 348		new_dir->i_mtime = inode->i_ctime = CURRENT_TIME;
 349
 350	return 0;
 351}
 352EXPORT_SYMBOL(simple_rename);
 353
 354/**
 355 * simple_setattr - setattr for simple filesystem
 356 * @dentry: dentry
 357 * @iattr: iattr structure
 358 *
 359 * Returns 0 on success, -error on failure.
 360 *
 361 * simple_setattr is a simple ->setattr implementation without a proper
 362 * implementation of size changes.
 363 *
 364 * It can either be used for in-memory filesystems or special files
 365 * on simple regular filesystems.  Anything that needs to change on-disk
 366 * or wire state on size changes needs its own setattr method.
 367 */
 368int simple_setattr(struct dentry *dentry, struct iattr *iattr)
 369{
 370	struct inode *inode = dentry->d_inode;
 371	int error;
 372
 373	error = inode_change_ok(inode, iattr);
 374	if (error)
 375		return error;
 376
 377	if (iattr->ia_valid & ATTR_SIZE)
 378		truncate_setsize(inode, iattr->ia_size);
 379	setattr_copy(inode, iattr);
 380	mark_inode_dirty(inode);
 381	return 0;
 382}
 383EXPORT_SYMBOL(simple_setattr);
 384
 385int simple_readpage(struct file *file, struct page *page)
 386{
 387	clear_highpage(page);
 388	flush_dcache_page(page);
 389	SetPageUptodate(page);
 390	unlock_page(page);
 391	return 0;
 392}
 393EXPORT_SYMBOL(simple_readpage);
 394
 395int simple_write_begin(struct file *file, struct address_space *mapping,
 396			loff_t pos, unsigned len, unsigned flags,
 397			struct page **pagep, void **fsdata)
 398{
 399	struct page *page;
 400	pgoff_t index;
 401
 402	index = pos >> PAGE_CACHE_SHIFT;
 403
 404	page = grab_cache_page_write_begin(mapping, index, flags);
 405	if (!page)
 406		return -ENOMEM;
 407
 408	*pagep = page;
 409
 410	if (!PageUptodate(page) && (len != PAGE_CACHE_SIZE)) {
 411		unsigned from = pos & (PAGE_CACHE_SIZE - 1);
 412
 413		zero_user_segments(page, 0, from, from + len, PAGE_CACHE_SIZE);
 414	}
 415	return 0;
 416}
 417EXPORT_SYMBOL(simple_write_begin);
 418
 419/**
 420 * simple_write_end - .write_end helper for non-block-device FSes
 421 * @available: See .write_end of address_space_operations
 422 * @file: 		"
 423 * @mapping: 		"
 424 * @pos: 		"
 425 * @len: 		"
 426 * @copied: 		"
 427 * @page: 		"
 428 * @fsdata: 		"
 429 *
 430 * simple_write_end does the minimum needed for updating a page after writing is
 431 * done. It has the same API signature as the .write_end of
 432 * address_space_operations vector. So it can just be set onto .write_end for
 433 * FSes that don't need any other processing. i_mutex is assumed to be held.
 434 * Block based filesystems should use generic_write_end().
 435 * NOTE: Even though i_size might get updated by this function, mark_inode_dirty
 436 * is not called, so a filesystem that actually does store data in .write_inode
 437 * should extend on what's done here with a call to mark_inode_dirty() in the
 438 * case that i_size has changed.
 
 
 439 */
 440int simple_write_end(struct file *file, struct address_space *mapping,
 441			loff_t pos, unsigned len, unsigned copied,
 442			struct page *page, void *fsdata)
 443{
 444	struct inode *inode = page->mapping->host;
 445	loff_t last_pos = pos + copied;
 446
 447	/* zero the stale part of the page if we did a short copy */
 448	if (copied < len) {
 449		unsigned from = pos & (PAGE_CACHE_SIZE - 1);
 
 450
 451		zero_user(page, from + copied, len - copied);
 
 
 452	}
 453
 454	if (!PageUptodate(page))
 455		SetPageUptodate(page);
 456	/*
 457	 * No need to use i_size_read() here, the i_size
 458	 * cannot change under us because we hold the i_mutex.
 459	 */
 460	if (last_pos > inode->i_size)
 461		i_size_write(inode, last_pos);
 462
 463	set_page_dirty(page);
 464	unlock_page(page);
 465	page_cache_release(page);
 466
 467	return copied;
 468}
 469EXPORT_SYMBOL(simple_write_end);
 470
 471/*
 472 * the inodes created here are not hashed. If you use iunique to generate
 473 * unique inode values later for this filesystem, then you must take care
 474 * to pass it an appropriate max_reserved value to avoid collisions.
 475 */
 476int simple_fill_super(struct super_block *s, unsigned long magic,
 477		      struct tree_descr *files)
 478{
 479	struct inode *inode;
 480	struct dentry *root;
 481	struct dentry *dentry;
 482	int i;
 483
 484	s->s_blocksize = PAGE_CACHE_SIZE;
 485	s->s_blocksize_bits = PAGE_CACHE_SHIFT;
 486	s->s_magic = magic;
 487	s->s_op = &simple_super_operations;
 488	s->s_time_gran = 1;
 489
 490	inode = new_inode(s);
 491	if (!inode)
 492		return -ENOMEM;
 493	/*
 494	 * because the root inode is 1, the files array must not contain an
 495	 * entry at index 1
 496	 */
 497	inode->i_ino = 1;
 498	inode->i_mode = S_IFDIR | 0755;
 499	inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
 500	inode->i_op = &simple_dir_inode_operations;
 501	inode->i_fop = &simple_dir_operations;
 502	set_nlink(inode, 2);
 503	root = d_make_root(inode);
 504	if (!root)
 505		return -ENOMEM;
 506	for (i = 0; !files->name || files->name[0]; i++, files++) {
 507		if (!files->name)
 508			continue;
 509
 510		/* warn if it tries to conflict with the root inode */
 511		if (unlikely(i == 1))
 512			printk(KERN_WARNING "%s: %s passed in a files array"
 513				"with an index of 1!\n", __func__,
 514				s->s_type->name);
 515
 516		dentry = d_alloc_name(root, files->name);
 517		if (!dentry)
 518			goto out;
 519		inode = new_inode(s);
 520		if (!inode) {
 521			dput(dentry);
 522			goto out;
 523		}
 524		inode->i_mode = S_IFREG | files->mode;
 525		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
 526		inode->i_fop = files->ops;
 527		inode->i_ino = i;
 528		d_add(dentry, inode);
 529	}
 530	s->s_root = root;
 531	return 0;
 532out:
 533	d_genocide(root);
 534	shrink_dcache_parent(root);
 535	dput(root);
 536	return -ENOMEM;
 537}
 538EXPORT_SYMBOL(simple_fill_super);
 539
 540static DEFINE_SPINLOCK(pin_fs_lock);
 541
 542int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
 543{
 544	struct vfsmount *mnt = NULL;
 545	spin_lock(&pin_fs_lock);
 546	if (unlikely(!*mount)) {
 547		spin_unlock(&pin_fs_lock);
 548		mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, NULL);
 549		if (IS_ERR(mnt))
 550			return PTR_ERR(mnt);
 551		spin_lock(&pin_fs_lock);
 552		if (!*mount)
 553			*mount = mnt;
 554	}
 555	mntget(*mount);
 556	++*count;
 557	spin_unlock(&pin_fs_lock);
 558	mntput(mnt);
 559	return 0;
 560}
 561EXPORT_SYMBOL(simple_pin_fs);
 562
 563void simple_release_fs(struct vfsmount **mount, int *count)
 564{
 565	struct vfsmount *mnt;
 566	spin_lock(&pin_fs_lock);
 567	mnt = *mount;
 568	if (!--*count)
 569		*mount = NULL;
 570	spin_unlock(&pin_fs_lock);
 571	mntput(mnt);
 572}
 573EXPORT_SYMBOL(simple_release_fs);
 574
 575/**
 576 * simple_read_from_buffer - copy data from the buffer to user space
 577 * @to: the user space buffer to read to
 578 * @count: the maximum number of bytes to read
 579 * @ppos: the current position in the buffer
 580 * @from: the buffer to read from
 581 * @available: the size of the buffer
 582 *
 583 * The simple_read_from_buffer() function reads up to @count bytes from the
 584 * buffer @from at offset @ppos into the user space address starting at @to.
 585 *
 586 * On success, the number of bytes read is returned and the offset @ppos is
 587 * advanced by this number, or negative value is returned on error.
 588 **/
 589ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
 590				const void *from, size_t available)
 591{
 592	loff_t pos = *ppos;
 593	size_t ret;
 594
 595	if (pos < 0)
 596		return -EINVAL;
 597	if (pos >= available || !count)
 598		return 0;
 599	if (count > available - pos)
 600		count = available - pos;
 601	ret = copy_to_user(to, from + pos, count);
 602	if (ret == count)
 603		return -EFAULT;
 604	count -= ret;
 605	*ppos = pos + count;
 606	return count;
 607}
 608EXPORT_SYMBOL(simple_read_from_buffer);
 609
 610/**
 611 * simple_write_to_buffer - copy data from user space to the buffer
 612 * @to: the buffer to write to
 613 * @available: the size of the buffer
 614 * @ppos: the current position in the buffer
 615 * @from: the user space buffer to read from
 616 * @count: the maximum number of bytes to read
 617 *
 618 * The simple_write_to_buffer() function reads up to @count bytes from the user
 619 * space address starting at @from into the buffer @to at offset @ppos.
 620 *
 621 * On success, the number of bytes written is returned and the offset @ppos is
 622 * advanced by this number, or negative value is returned on error.
 623 **/
 624ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
 625		const void __user *from, size_t count)
 626{
 627	loff_t pos = *ppos;
 628	size_t res;
 629
 630	if (pos < 0)
 631		return -EINVAL;
 632	if (pos >= available || !count)
 633		return 0;
 634	if (count > available - pos)
 635		count = available - pos;
 636	res = copy_from_user(to + pos, from, count);
 637	if (res == count)
 638		return -EFAULT;
 639	count -= res;
 640	*ppos = pos + count;
 641	return count;
 642}
 643EXPORT_SYMBOL(simple_write_to_buffer);
 644
 645/**
 646 * memory_read_from_buffer - copy data from the buffer
 647 * @to: the kernel space buffer to read to
 648 * @count: the maximum number of bytes to read
 649 * @ppos: the current position in the buffer
 650 * @from: the buffer to read from
 651 * @available: the size of the buffer
 652 *
 653 * The memory_read_from_buffer() function reads up to @count bytes from the
 654 * buffer @from at offset @ppos into the kernel space address starting at @to.
 655 *
 656 * On success, the number of bytes read is returned and the offset @ppos is
 657 * advanced by this number, or negative value is returned on error.
 658 **/
 659ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos,
 660				const void *from, size_t available)
 661{
 662	loff_t pos = *ppos;
 663
 664	if (pos < 0)
 665		return -EINVAL;
 666	if (pos >= available)
 667		return 0;
 668	if (count > available - pos)
 669		count = available - pos;
 670	memcpy(to, from + pos, count);
 671	*ppos = pos + count;
 672
 673	return count;
 674}
 675EXPORT_SYMBOL(memory_read_from_buffer);
 676
 677/*
 678 * Transaction based IO.
 679 * The file expects a single write which triggers the transaction, and then
 680 * possibly a read which collects the result - which is stored in a
 681 * file-local buffer.
 682 */
 683
 684void simple_transaction_set(struct file *file, size_t n)
 685{
 686	struct simple_transaction_argresp *ar = file->private_data;
 687
 688	BUG_ON(n > SIMPLE_TRANSACTION_LIMIT);
 689
 690	/*
 691	 * The barrier ensures that ar->size will really remain zero until
 692	 * ar->data is ready for reading.
 693	 */
 694	smp_mb();
 695	ar->size = n;
 696}
 697EXPORT_SYMBOL(simple_transaction_set);
 698
 699char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
 700{
 701	struct simple_transaction_argresp *ar;
 702	static DEFINE_SPINLOCK(simple_transaction_lock);
 703
 704	if (size > SIMPLE_TRANSACTION_LIMIT - 1)
 705		return ERR_PTR(-EFBIG);
 706
 707	ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
 708	if (!ar)
 709		return ERR_PTR(-ENOMEM);
 710
 711	spin_lock(&simple_transaction_lock);
 712
 713	/* only one write allowed per open */
 714	if (file->private_data) {
 715		spin_unlock(&simple_transaction_lock);
 716		free_page((unsigned long)ar);
 717		return ERR_PTR(-EBUSY);
 718	}
 719
 720	file->private_data = ar;
 721
 722	spin_unlock(&simple_transaction_lock);
 723
 724	if (copy_from_user(ar->data, buf, size))
 725		return ERR_PTR(-EFAULT);
 726
 727	return ar->data;
 728}
 729EXPORT_SYMBOL(simple_transaction_get);
 730
 731ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
 732{
 733	struct simple_transaction_argresp *ar = file->private_data;
 734
 735	if (!ar)
 736		return 0;
 737	return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
 738}
 739EXPORT_SYMBOL(simple_transaction_read);
 740
 741int simple_transaction_release(struct inode *inode, struct file *file)
 742{
 743	free_page((unsigned long)file->private_data);
 744	return 0;
 745}
 746EXPORT_SYMBOL(simple_transaction_release);
 747
 748/* Simple attribute files */
 749
 750struct simple_attr {
 751	int (*get)(void *, u64 *);
 752	int (*set)(void *, u64);
 753	char get_buf[24];	/* enough to store a u64 and "\n\0" */
 754	char set_buf[24];
 755	void *data;
 756	const char *fmt;	/* format for read operation */
 757	struct mutex mutex;	/* protects access to these buffers */
 758};
 759
 760/* simple_attr_open is called by an actual attribute open file operation
 761 * to set the attribute specific access operations. */
 762int simple_attr_open(struct inode *inode, struct file *file,
 763		     int (*get)(void *, u64 *), int (*set)(void *, u64),
 764		     const char *fmt)
 765{
 766	struct simple_attr *attr;
 767
 768	attr = kmalloc(sizeof(*attr), GFP_KERNEL);
 769	if (!attr)
 770		return -ENOMEM;
 771
 772	attr->get = get;
 773	attr->set = set;
 774	attr->data = inode->i_private;
 775	attr->fmt = fmt;
 776	mutex_init(&attr->mutex);
 777
 778	file->private_data = attr;
 779
 780	return nonseekable_open(inode, file);
 781}
 782EXPORT_SYMBOL_GPL(simple_attr_open);
 783
 784int simple_attr_release(struct inode *inode, struct file *file)
 785{
 786	kfree(file->private_data);
 787	return 0;
 788}
 789EXPORT_SYMBOL_GPL(simple_attr_release);	/* GPL-only?  This?  Really? */
 790
 791/* read from the buffer that is filled with the get function */
 792ssize_t simple_attr_read(struct file *file, char __user *buf,
 793			 size_t len, loff_t *ppos)
 794{
 795	struct simple_attr *attr;
 796	size_t size;
 797	ssize_t ret;
 798
 799	attr = file->private_data;
 800
 801	if (!attr->get)
 802		return -EACCES;
 803
 804	ret = mutex_lock_interruptible(&attr->mutex);
 805	if (ret)
 806		return ret;
 807
 808	if (*ppos) {		/* continued read */
 
 809		size = strlen(attr->get_buf);
 810	} else {		/* first read */
 
 811		u64 val;
 812		ret = attr->get(attr->data, &val);
 813		if (ret)
 814			goto out;
 815
 816		size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
 817				 attr->fmt, (unsigned long long)val);
 818	}
 819
 820	ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
 821out:
 822	mutex_unlock(&attr->mutex);
 823	return ret;
 824}
 825EXPORT_SYMBOL_GPL(simple_attr_read);
 826
 827/* interpret the buffer as a number to call the set function with */
 828ssize_t simple_attr_write(struct file *file, const char __user *buf,
 829			  size_t len, loff_t *ppos)
 830{
 831	struct simple_attr *attr;
 832	u64 val;
 833	size_t size;
 834	ssize_t ret;
 835
 836	attr = file->private_data;
 837	if (!attr->set)
 838		return -EACCES;
 839
 840	ret = mutex_lock_interruptible(&attr->mutex);
 841	if (ret)
 842		return ret;
 843
 844	ret = -EFAULT;
 845	size = min(sizeof(attr->set_buf) - 1, len);
 846	if (copy_from_user(attr->set_buf, buf, size))
 847		goto out;
 848
 849	attr->set_buf[size] = '\0';
 850	val = simple_strtoll(attr->set_buf, NULL, 0);
 851	ret = attr->set(attr->data, val);
 852	if (ret == 0)
 853		ret = len; /* on success, claim we got the whole input */
 854out:
 855	mutex_unlock(&attr->mutex);
 856	return ret;
 857}
 858EXPORT_SYMBOL_GPL(simple_attr_write);
 859
 860/**
 861 * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
 862 * @sb:		filesystem to do the file handle conversion on
 863 * @fid:	file handle to convert
 864 * @fh_len:	length of the file handle in bytes
 865 * @fh_type:	type of file handle
 866 * @get_inode:	filesystem callback to retrieve inode
 867 *
 868 * This function decodes @fid as long as it has one of the well-known
 869 * Linux filehandle types and calls @get_inode on it to retrieve the
 870 * inode for the object specified in the file handle.
 871 */
 872struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid,
 873		int fh_len, int fh_type, struct inode *(*get_inode)
 874			(struct super_block *sb, u64 ino, u32 gen))
 875{
 876	struct inode *inode = NULL;
 877
 878	if (fh_len < 2)
 879		return NULL;
 880
 881	switch (fh_type) {
 882	case FILEID_INO32_GEN:
 883	case FILEID_INO32_GEN_PARENT:
 884		inode = get_inode(sb, fid->i32.ino, fid->i32.gen);
 885		break;
 886	}
 887
 888	return d_obtain_alias(inode);
 889}
 890EXPORT_SYMBOL_GPL(generic_fh_to_dentry);
 891
 892/**
 893 * generic_fh_to_parent - generic helper for the fh_to_parent export operation
 894 * @sb:		filesystem to do the file handle conversion on
 895 * @fid:	file handle to convert
 896 * @fh_len:	length of the file handle in bytes
 897 * @fh_type:	type of file handle
 898 * @get_inode:	filesystem callback to retrieve inode
 899 *
 900 * This function decodes @fid as long as it has one of the well-known
 901 * Linux filehandle types and calls @get_inode on it to retrieve the
 902 * inode for the _parent_ object specified in the file handle if it
 903 * is specified in the file handle, or NULL otherwise.
 904 */
 905struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid,
 906		int fh_len, int fh_type, struct inode *(*get_inode)
 907			(struct super_block *sb, u64 ino, u32 gen))
 908{
 909	struct inode *inode = NULL;
 910
 911	if (fh_len <= 2)
 912		return NULL;
 913
 914	switch (fh_type) {
 915	case FILEID_INO32_GEN_PARENT:
 916		inode = get_inode(sb, fid->i32.parent_ino,
 917				  (fh_len > 3 ? fid->i32.parent_gen : 0));
 918		break;
 919	}
 920
 921	return d_obtain_alias(inode);
 922}
 923EXPORT_SYMBOL_GPL(generic_fh_to_parent);
 924
 925/**
 926 * generic_file_fsync - generic fsync implementation for simple filesystems
 
 927 * @file:	file to synchronize
 
 
 928 * @datasync:	only synchronize essential metadata if true
 929 *
 930 * This is a generic implementation of the fsync method for simple
 931 * filesystems which track all non-inode metadata in the buffers list
 932 * hanging off the address_space structure.
 933 */
 934int generic_file_fsync(struct file *file, loff_t start, loff_t end,
 935		       int datasync)
 936{
 937	struct inode *inode = file->f_mapping->host;
 938	int err;
 939	int ret;
 940
 941	err = filemap_write_and_wait_range(inode->i_mapping, start, end);
 942	if (err)
 943		return err;
 944
 945	mutex_lock(&inode->i_mutex);
 946	ret = sync_mapping_buffers(inode->i_mapping);
 947	if (!(inode->i_state & I_DIRTY))
 948		goto out;
 949	if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
 950		goto out;
 951
 952	err = sync_inode_metadata(inode, 1);
 953	if (ret == 0)
 954		ret = err;
 
 955out:
 956	mutex_unlock(&inode->i_mutex);
 
 
 
 
 957	return ret;
 958}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 959EXPORT_SYMBOL(generic_file_fsync);
 960
 961/**
 962 * generic_check_addressable - Check addressability of file system
 963 * @blocksize_bits:	log of file system block size
 964 * @num_blocks:		number of blocks in file system
 965 *
 966 * Determine whether a file system with @num_blocks blocks (and a
 967 * block size of 2**@blocksize_bits) is addressable by the sector_t
 968 * and page cache of the system.  Return 0 if so and -EFBIG otherwise.
 969 */
 970int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks)
 971{
 972	u64 last_fs_block = num_blocks - 1;
 973	u64 last_fs_page =
 974		last_fs_block >> (PAGE_CACHE_SHIFT - blocksize_bits);
 975
 976	if (unlikely(num_blocks == 0))
 977		return 0;
 978
 979	if ((blocksize_bits < 9) || (blocksize_bits > PAGE_CACHE_SHIFT))
 980		return -EINVAL;
 981
 982	if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) ||
 983	    (last_fs_page > (pgoff_t)(~0ULL))) {
 984		return -EFBIG;
 985	}
 986	return 0;
 987}
 988EXPORT_SYMBOL(generic_check_addressable);
 989
 990/*
 991 * No-op implementation of ->fsync for in-memory filesystems.
 992 */
 993int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync)
 994{
 995	return 0;
 996}
 997EXPORT_SYMBOL(noop_fsync);
 998
 999void kfree_put_link(struct dentry *dentry, struct nameidata *nd,
1000				void *cookie)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1001{
1002	char *s = nd_get_link(nd);
1003	if (!IS_ERR(s))
1004		kfree(s);
1005}
1006EXPORT_SYMBOL(kfree_put_link);
1007
1008/*
1009 * nop .set_page_dirty method so that people can use .page_mkwrite on
1010 * anon inodes.
1011 */
1012static int anon_set_page_dirty(struct page *page)
1013{
1014	return 0;
1015};
1016
1017/*
1018 * A single inode exists for all anon_inode files. Contrary to pipes,
1019 * anon_inode inodes have no associated per-instance data, so we need
1020 * only allocate one of them.
1021 */
1022struct inode *alloc_anon_inode(struct super_block *s)
1023{
1024	static const struct address_space_operations anon_aops = {
1025		.set_page_dirty = anon_set_page_dirty,
1026	};
1027	struct inode *inode = new_inode_pseudo(s);
1028
1029	if (!inode)
1030		return ERR_PTR(-ENOMEM);
1031
1032	inode->i_ino = get_next_ino();
1033	inode->i_mapping->a_ops = &anon_aops;
1034
1035	/*
1036	 * Mark the inode dirty from the very beginning,
1037	 * that way it will never be moved to the dirty
1038	 * list because mark_inode_dirty() will think
1039	 * that it already _is_ on the dirty list.
1040	 */
1041	inode->i_state = I_DIRTY;
1042	inode->i_mode = S_IRUSR | S_IWUSR;
1043	inode->i_uid = current_fsuid();
1044	inode->i_gid = current_fsgid();
1045	inode->i_flags |= S_PRIVATE;
1046	inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1047	return inode;
1048}
1049EXPORT_SYMBOL(alloc_anon_inode);