Linux Audio

Check our new training course

Loading...
v5.9
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 *  linux/fs/ext4/file.c
  4 *
  5 * Copyright (C) 1992, 1993, 1994, 1995
  6 * Remy Card (card@masi.ibp.fr)
  7 * Laboratoire MASI - Institut Blaise Pascal
  8 * Universite Pierre et Marie Curie (Paris VI)
  9 *
 10 *  from
 11 *
 12 *  linux/fs/minix/file.c
 13 *
 14 *  Copyright (C) 1991, 1992  Linus Torvalds
 15 *
 16 *  ext4 fs regular file handling primitives
 17 *
 18 *  64-bit file support on 64-bit platforms by Jakub Jelinek
 19 *	(jj@sunsite.ms.mff.cuni.cz)
 20 */
 21
 22#include <linux/time.h>
 23#include <linux/fs.h>
 24#include <linux/iomap.h>
 25#include <linux/mount.h>
 26#include <linux/path.h>
 27#include <linux/dax.h>
 28#include <linux/quotaops.h>
 29#include <linux/pagevec.h>
 30#include <linux/uio.h>
 31#include <linux/mman.h>
 32#include <linux/backing-dev.h>
 33#include "ext4.h"
 34#include "ext4_jbd2.h"
 35#include "xattr.h"
 36#include "acl.h"
 37#include "truncate.h"
 38
 39static bool ext4_dio_supported(struct inode *inode)
 40{
 41	if (IS_ENABLED(CONFIG_FS_ENCRYPTION) && IS_ENCRYPTED(inode))
 42		return false;
 43	if (fsverity_active(inode))
 44		return false;
 45	if (ext4_should_journal_data(inode))
 46		return false;
 47	if (ext4_has_inline_data(inode))
 48		return false;
 49	return true;
 50}
 51
 52static ssize_t ext4_dio_read_iter(struct kiocb *iocb, struct iov_iter *to)
 53{
 54	ssize_t ret;
 55	struct inode *inode = file_inode(iocb->ki_filp);
 56
 57	if (iocb->ki_flags & IOCB_NOWAIT) {
 58		if (!inode_trylock_shared(inode))
 59			return -EAGAIN;
 60	} else {
 61		inode_lock_shared(inode);
 62	}
 63
 64	if (!ext4_dio_supported(inode)) {
 65		inode_unlock_shared(inode);
 66		/*
 67		 * Fallback to buffered I/O if the operation being performed on
 68		 * the inode is not supported by direct I/O. The IOCB_DIRECT
 69		 * flag needs to be cleared here in order to ensure that the
 70		 * direct I/O path within generic_file_read_iter() is not
 71		 * taken.
 72		 */
 73		iocb->ki_flags &= ~IOCB_DIRECT;
 74		return generic_file_read_iter(iocb, to);
 75	}
 76
 77	ret = iomap_dio_rw(iocb, to, &ext4_iomap_ops, NULL,
 78			   is_sync_kiocb(iocb));
 79	inode_unlock_shared(inode);
 80
 81	file_accessed(iocb->ki_filp);
 82	return ret;
 83}
 84
 85#ifdef CONFIG_FS_DAX
 86static ssize_t ext4_dax_read_iter(struct kiocb *iocb, struct iov_iter *to)
 87{
 88	struct inode *inode = file_inode(iocb->ki_filp);
 89	ssize_t ret;
 90
 91	if (iocb->ki_flags & IOCB_NOWAIT) {
 92		if (!inode_trylock_shared(inode))
 93			return -EAGAIN;
 94	} else {
 95		inode_lock_shared(inode);
 96	}
 97	/*
 98	 * Recheck under inode lock - at this point we are sure it cannot
 99	 * change anymore
100	 */
101	if (!IS_DAX(inode)) {
102		inode_unlock_shared(inode);
103		/* Fallback to buffered IO in case we cannot support DAX */
104		return generic_file_read_iter(iocb, to);
105	}
106	ret = dax_iomap_rw(iocb, to, &ext4_iomap_ops);
107	inode_unlock_shared(inode);
108
109	file_accessed(iocb->ki_filp);
110	return ret;
111}
112#endif
113
114static ssize_t ext4_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
115{
116	struct inode *inode = file_inode(iocb->ki_filp);
117
118	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
119		return -EIO;
120
121	if (!iov_iter_count(to))
122		return 0; /* skip atime */
123
124#ifdef CONFIG_FS_DAX
125	if (IS_DAX(inode))
126		return ext4_dax_read_iter(iocb, to);
127#endif
128	if (iocb->ki_flags & IOCB_DIRECT)
129		return ext4_dio_read_iter(iocb, to);
130
131	return generic_file_read_iter(iocb, to);
132}
133
134/*
135 * Called when an inode is released. Note that this is different
136 * from ext4_file_open: open gets called at every open, but release
137 * gets called only when /all/ the files are closed.
138 */
139static int ext4_release_file(struct inode *inode, struct file *filp)
140{
141	if (ext4_test_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE)) {
142		ext4_alloc_da_blocks(inode);
143		ext4_clear_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
144	}
145	/* if we are the last writer on the inode, drop the block reservation */
146	if ((filp->f_mode & FMODE_WRITE) &&
147			(atomic_read(&inode->i_writecount) == 1) &&
148			!EXT4_I(inode)->i_reserved_data_blocks) {
 
149		down_write(&EXT4_I(inode)->i_data_sem);
150		ext4_discard_preallocations(inode, 0);
151		up_write(&EXT4_I(inode)->i_data_sem);
152	}
153	if (is_dx(inode) && filp->private_data)
154		ext4_htree_free_dir_info(filp->private_data);
155
156	return 0;
157}
158
 
 
 
 
 
 
 
159/*
160 * This tests whether the IO in question is block-aligned or not.
161 * Ext4 utilizes unwritten extents when hole-filling during direct IO, and they
162 * are converted to written only after the IO is complete.  Until they are
163 * mapped, these blocks appear as holes, so dio_zero_block() will assume that
164 * it needs to zero out portions of the start and/or end block.  If 2 AIO
165 * threads are at work on the same unwritten block, they must be synchronized
166 * or one thread will zero the other's data, causing corruption.
167 */
168static bool
169ext4_unaligned_io(struct inode *inode, struct iov_iter *from, loff_t pos)
 
170{
171	struct super_block *sb = inode->i_sb;
172	unsigned long blockmask = sb->s_blocksize - 1;
173
174	if ((pos | iov_iter_alignment(from)) & blockmask)
175		return true;
176
177	return false;
178}
179
180static bool
181ext4_extending_io(struct inode *inode, loff_t offset, size_t len)
182{
183	if (offset + len > i_size_read(inode) ||
184	    offset + len > EXT4_I(inode)->i_disksize)
185		return true;
186	return false;
187}
188
189/* Is IO overwriting allocated and initialized blocks? */
190static bool ext4_overwrite_io(struct inode *inode, loff_t pos, loff_t len)
191{
192	struct ext4_map_blocks map;
193	unsigned int blkbits = inode->i_blkbits;
194	int err, blklen;
195
196	if (pos + len > i_size_read(inode))
197		return false;
198
199	map.m_lblk = pos >> blkbits;
200	map.m_len = EXT4_MAX_BLOCKS(len, pos, blkbits);
201	blklen = map.m_len;
202
203	err = ext4_map_blocks(NULL, inode, &map, 0);
204	/*
205	 * 'err==len' means that all of the blocks have been preallocated,
206	 * regardless of whether they have been initialized or not. To exclude
207	 * unwritten extents, we need to check m_flags.
208	 */
209	return err == blklen && (map.m_flags & EXT4_MAP_MAPPED);
210}
211
212static ssize_t ext4_generic_write_checks(struct kiocb *iocb,
213					 struct iov_iter *from)
 
214{
215	struct inode *inode = file_inode(iocb->ki_filp);
 
 
 
216	ssize_t ret;
 
 
217
218	if (unlikely(IS_IMMUTABLE(inode)))
219		return -EPERM;
 
220
221	ret = generic_write_checks(iocb, from);
222	if (ret <= 0)
223		return ret;
224
225	/*
226	 * If we have encountered a bitmap-format file, the size limit
227	 * is smaller than s_maxbytes, which is for extent-mapped files.
228	 */
229	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
230		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
231
232		if (iocb->ki_pos >= sbi->s_bitmap_maxbytes)
233			return -EFBIG;
234		iov_iter_truncate(from, sbi->s_bitmap_maxbytes - iocb->ki_pos);
235	}
236
237	return iov_iter_count(from);
238}
239
240static ssize_t ext4_write_checks(struct kiocb *iocb, struct iov_iter *from)
241{
242	ssize_t ret, count;
243
244	count = ext4_generic_write_checks(iocb, from);
245	if (count <= 0)
246		return count;
247
248	ret = file_modified(iocb->ki_filp);
249	if (ret)
250		return ret;
251	return count;
252}
 
253
254static ssize_t ext4_buffered_write_iter(struct kiocb *iocb,
255					struct iov_iter *from)
256{
257	ssize_t ret;
258	struct inode *inode = file_inode(iocb->ki_filp);
259
260	if (iocb->ki_flags & IOCB_NOWAIT)
261		return -EOPNOTSUPP;
 
 
 
 
 
 
 
 
 
 
 
262
263	inode_lock(inode);
264	ret = ext4_write_checks(iocb, from);
265	if (ret <= 0)
266		goto out;
267
268	current->backing_dev_info = inode_to_bdi(inode);
269	ret = generic_perform_write(iocb->ki_filp, from, iocb->ki_pos);
270	current->backing_dev_info = NULL;
271
272out:
273	inode_unlock(inode);
274	if (likely(ret > 0)) {
275		iocb->ki_pos += ret;
276		ret = generic_write_sync(iocb, ret);
 
277	}
 
 
 
 
278
279	return ret;
280}
281
282static ssize_t ext4_handle_inode_extension(struct inode *inode, loff_t offset,
283					   ssize_t written, size_t count)
 
284{
285	handle_t *handle;
286	bool truncate = false;
287	u8 blkbits = inode->i_blkbits;
288	ext4_lblk_t written_blk, end_blk;
289	int ret;
290
291	/*
292	 * Note that EXT4_I(inode)->i_disksize can get extended up to
293	 * inode->i_size while the I/O was running due to writeback of delalloc
294	 * blocks. But, the code in ext4_iomap_alloc() is careful to use
295	 * zeroed/unwritten extents if this is possible; thus we won't leave
296	 * uninitialized blocks in a file even if we didn't succeed in writing
297	 * as much as we intended.
298	 */
299	WARN_ON_ONCE(i_size_read(inode) < EXT4_I(inode)->i_disksize);
300	if (offset + count <= EXT4_I(inode)->i_disksize) {
301		/*
302		 * We need to ensure that the inode is removed from the orphan
303		 * list if it has been added prematurely, due to writeback of
304		 * delalloc blocks.
305		 */
306		if (!list_empty(&EXT4_I(inode)->i_orphan) && inode->i_nlink) {
307			handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
308
309			if (IS_ERR(handle)) {
310				ext4_orphan_del(NULL, inode);
311				return PTR_ERR(handle);
312			}
313
314			ext4_orphan_del(handle, inode);
315			ext4_journal_stop(handle);
316		}
317
318		return written;
319	}
320
321	if (written < 0)
322		goto truncate;
323
324	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
325	if (IS_ERR(handle)) {
326		written = PTR_ERR(handle);
327		goto truncate;
328	}
329
330	if (ext4_update_inode_size(inode, offset + written)) {
331		ret = ext4_mark_inode_dirty(handle, inode);
332		if (unlikely(ret)) {
333			written = ret;
334			ext4_journal_stop(handle);
335			goto truncate;
336		}
337	}
338
339	/*
340	 * We may need to truncate allocated but not written blocks beyond EOF.
341	 */
342	written_blk = ALIGN(offset + written, 1 << blkbits);
343	end_blk = ALIGN(offset + count, 1 << blkbits);
344	if (written_blk < end_blk && ext4_can_truncate(inode))
345		truncate = true;
346
347	/*
348	 * Remove the inode from the orphan list if it has been extended and
349	 * everything went OK.
350	 */
351	if (!truncate && inode->i_nlink)
352		ext4_orphan_del(handle, inode);
353	ext4_journal_stop(handle);
354
355	if (truncate) {
356truncate:
357		ext4_truncate_failed_write(inode);
358		/*
359		 * If the truncate operation failed early, then the inode may
360		 * still be on the orphan list. In that case, we need to try
361		 * remove the inode from the in-memory linked list.
362		 */
363		if (inode->i_nlink)
364			ext4_orphan_del(NULL, inode);
365	}
366
367	return written;
368}
369
370static int ext4_dio_write_end_io(struct kiocb *iocb, ssize_t size,
371				 int error, unsigned int flags)
372{
373	loff_t offset = iocb->ki_pos;
374	struct inode *inode = file_inode(iocb->ki_filp);
375
376	if (error)
377		return error;
378
379	if (size && flags & IOMAP_DIO_UNWRITTEN)
380		return ext4_convert_unwritten_extents(NULL, inode,
381						      offset, size);
382
383	return 0;
384}
385
386static const struct iomap_dio_ops ext4_dio_write_ops = {
387	.end_io = ext4_dio_write_end_io,
 
 
 
388};
389
390/*
391 * The intention here is to start with shared lock acquired then see if any
392 * condition requires an exclusive inode lock. If yes, then we restart the
393 * whole operation by releasing the shared lock and acquiring exclusive lock.
394 *
395 * - For unaligned_io we never take shared lock as it may cause data corruption
396 *   when two unaligned IO tries to modify the same block e.g. while zeroing.
397 *
398 * - For extending writes case we don't take the shared lock, since it requires
399 *   updating inode i_disksize and/or orphan handling with exclusive lock.
400 *
401 * - shared locking will only be true mostly with overwrites. Otherwise we will
402 *   switch to exclusive i_rwsem lock.
403 */
404static ssize_t ext4_dio_write_checks(struct kiocb *iocb, struct iov_iter *from,
405				     bool *ilock_shared, bool *extend)
406{
407	struct file *file = iocb->ki_filp;
408	struct inode *inode = file_inode(file);
409	loff_t offset;
410	size_t count;
411	ssize_t ret;
412
413restart:
414	ret = ext4_generic_write_checks(iocb, from);
415	if (ret <= 0)
416		goto out;
417
418	offset = iocb->ki_pos;
419	count = ret;
420	if (ext4_extending_io(inode, offset, count))
421		*extend = true;
422	/*
423	 * Determine whether the IO operation will overwrite allocated
424	 * and initialized blocks.
425	 * We need exclusive i_rwsem for changing security info
426	 * in file_modified().
427	 */
428	if (*ilock_shared && (!IS_NOSEC(inode) || *extend ||
429	     !ext4_overwrite_io(inode, offset, count))) {
430		if (iocb->ki_flags & IOCB_NOWAIT) {
431			ret = -EAGAIN;
432			goto out;
433		}
434		inode_unlock_shared(inode);
435		*ilock_shared = false;
436		inode_lock(inode);
437		goto restart;
438	}
439
440	ret = file_modified(file);
441	if (ret < 0)
442		goto out;
443
444	return count;
445out:
446	if (*ilock_shared)
447		inode_unlock_shared(inode);
448	else
449		inode_unlock(inode);
450	return ret;
451}
452
453static ssize_t ext4_dio_write_iter(struct kiocb *iocb, struct iov_iter *from)
454{
455	ssize_t ret;
456	handle_t *handle;
457	struct inode *inode = file_inode(iocb->ki_filp);
458	loff_t offset = iocb->ki_pos;
459	size_t count = iov_iter_count(from);
460	const struct iomap_ops *iomap_ops = &ext4_iomap_ops;
461	bool extend = false, unaligned_io = false;
462	bool ilock_shared = true;
463
464	/*
465	 * We initially start with shared inode lock unless it is
466	 * unaligned IO which needs exclusive lock anyways.
467	 */
468	if (ext4_unaligned_io(inode, from, offset)) {
469		unaligned_io = true;
470		ilock_shared = false;
471	}
472	/*
473	 * Quick check here without any i_rwsem lock to see if it is extending
474	 * IO. A more reliable check is done in ext4_dio_write_checks() with
475	 * proper locking in place.
476	 */
477	if (offset + count > i_size_read(inode))
478		ilock_shared = false;
 
479
480	if (iocb->ki_flags & IOCB_NOWAIT) {
481		if (ilock_shared) {
482			if (!inode_trylock_shared(inode))
483				return -EAGAIN;
484		} else {
485			if (!inode_trylock(inode))
486				return -EAGAIN;
487		}
488	} else {
489		if (ilock_shared)
490			inode_lock_shared(inode);
491		else
492			inode_lock(inode);
493	}
494
495	/* Fallback to buffered I/O if the inode does not support direct I/O. */
496	if (!ext4_dio_supported(inode)) {
497		if (ilock_shared)
498			inode_unlock_shared(inode);
499		else
500			inode_unlock(inode);
501		return ext4_buffered_write_iter(iocb, from);
502	}
503
504	ret = ext4_dio_write_checks(iocb, from, &ilock_shared, &extend);
505	if (ret <= 0)
506		return ret;
507
508	/* if we're going to block and IOCB_NOWAIT is set, return -EAGAIN */
509	if ((iocb->ki_flags & IOCB_NOWAIT) && (unaligned_io || extend)) {
510		ret = -EAGAIN;
511		goto out;
512	}
513
514	offset = iocb->ki_pos;
515	count = ret;
516
517	/*
518	 * Unaligned direct IO must be serialized among each other as zeroing
519	 * of partial blocks of two competing unaligned IOs can result in data
520	 * corruption.
521	 *
522	 * So we make sure we don't allow any unaligned IO in flight.
523	 * For IOs where we need not wait (like unaligned non-AIO DIO),
524	 * below inode_dio_wait() may anyway become a no-op, since we start
525	 * with exclusive lock.
526	 */
527	if (unaligned_io)
528		inode_dio_wait(inode);
529
530	if (extend) {
531		handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
532		if (IS_ERR(handle)) {
533			ret = PTR_ERR(handle);
534			goto out;
535		}
536
537		ret = ext4_orphan_add(handle, inode);
538		if (ret) {
539			ext4_journal_stop(handle);
540			goto out;
541		}
542
543		ext4_journal_stop(handle);
544	}
 
 
545
546	if (ilock_shared)
547		iomap_ops = &ext4_iomap_overwrite_ops;
548	ret = iomap_dio_rw(iocb, from, iomap_ops, &ext4_dio_write_ops,
549			   is_sync_kiocb(iocb) || unaligned_io || extend);
550	if (ret == -ENOTBLK)
551		ret = 0;
552
553	if (extend)
554		ret = ext4_handle_inode_extension(inode, offset, ret, count);
555
556out:
557	if (ilock_shared)
558		inode_unlock_shared(inode);
559	else
560		inode_unlock(inode);
561
562	if (ret >= 0 && iov_iter_count(from)) {
563		ssize_t err;
564		loff_t endbyte;
565
566		offset = iocb->ki_pos;
567		err = ext4_buffered_write_iter(iocb, from);
568		if (err < 0)
569			return err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
570
571		/*
572		 * We need to ensure that the pages within the page cache for
573		 * the range covered by this I/O are written to disk and
574		 * invalidated. This is in attempt to preserve the expected
575		 * direct I/O semantics in the case we fallback to buffered I/O
576		 * to complete off the I/O request.
577		 */
578		ret += err;
579		endbyte = offset + err - 1;
580		err = filemap_write_and_wait_range(iocb->ki_filp->f_mapping,
581						   offset, endbyte);
582		if (!err)
583			invalidate_mapping_pages(iocb->ki_filp->f_mapping,
584						 offset >> PAGE_SHIFT,
585						 endbyte >> PAGE_SHIFT);
586	}
587
588	return ret;
589}
 
 
 
 
 
 
 
 
 
 
 
 
590
591#ifdef CONFIG_FS_DAX
592static ssize_t
593ext4_dax_write_iter(struct kiocb *iocb, struct iov_iter *from)
594{
595	ssize_t ret;
596	size_t count;
597	loff_t offset;
598	handle_t *handle;
599	bool extend = false;
600	struct inode *inode = file_inode(iocb->ki_filp);
601
602	if (iocb->ki_flags & IOCB_NOWAIT) {
603		if (!inode_trylock(inode))
604			return -EAGAIN;
605	} else {
606		inode_lock(inode);
607	}
608
609	ret = ext4_write_checks(iocb, from);
610	if (ret <= 0)
611		goto out;
 
612
613	offset = iocb->ki_pos;
614	count = iov_iter_count(from);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
615
616	if (offset + count > EXT4_I(inode)->i_disksize) {
617		handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
618		if (IS_ERR(handle)) {
619			ret = PTR_ERR(handle);
620			goto out;
621		}
622
623		ret = ext4_orphan_add(handle, inode);
624		if (ret) {
625			ext4_journal_stop(handle);
626			goto out;
 
 
 
 
627		}
628
629		extend = true;
630		ext4_journal_stop(handle);
631	}
632
633	ret = dax_iomap_rw(iocb, from, &ext4_iomap_ops);
634
635	if (extend)
636		ret = ext4_handle_inode_extension(inode, offset, ret, count);
637out:
638	inode_unlock(inode);
639	if (ret > 0)
640		ret = generic_write_sync(iocb, ret);
641	return ret;
642}
643#endif
644
645static ssize_t
646ext4_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
647{
648	struct inode *inode = file_inode(iocb->ki_filp);
649
650	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
651		return -EIO;
652
653#ifdef CONFIG_FS_DAX
654	if (IS_DAX(inode))
655		return ext4_dax_write_iter(iocb, from);
656#endif
657	if (iocb->ki_flags & IOCB_DIRECT)
658		return ext4_dio_write_iter(iocb, from);
659
660	return ext4_buffered_write_iter(iocb, from);
661}
662
663#ifdef CONFIG_FS_DAX
664static vm_fault_t ext4_dax_huge_fault(struct vm_fault *vmf,
665		enum page_entry_size pe_size)
666{
667	int error = 0;
668	vm_fault_t result;
669	int retries = 0;
670	handle_t *handle = NULL;
671	struct inode *inode = file_inode(vmf->vma->vm_file);
672	struct super_block *sb = inode->i_sb;
673
674	/*
675	 * We have to distinguish real writes from writes which will result in a
676	 * COW page; COW writes should *not* poke the journal (the file will not
677	 * be changed). Doing so would cause unintended failures when mounted
678	 * read-only.
679	 *
680	 * We check for VM_SHARED rather than vmf->cow_page since the latter is
681	 * unset for pe_size != PE_SIZE_PTE (i.e. only in do_cow_fault); for
682	 * other sizes, dax_iomap_fault will handle splitting / fallback so that
683	 * we eventually come back with a COW page.
684	 */
685	bool write = (vmf->flags & FAULT_FLAG_WRITE) &&
686		(vmf->vma->vm_flags & VM_SHARED);
687	pfn_t pfn;
688
689	if (write) {
690		sb_start_pagefault(sb);
691		file_update_time(vmf->vma->vm_file);
692		down_read(&EXT4_I(inode)->i_mmap_sem);
693retry:
694		handle = ext4_journal_start_sb(sb, EXT4_HT_WRITE_PAGE,
695					       EXT4_DATA_TRANS_BLOCKS(sb));
696		if (IS_ERR(handle)) {
697			up_read(&EXT4_I(inode)->i_mmap_sem);
698			sb_end_pagefault(sb);
699			return VM_FAULT_SIGBUS;
700		}
701	} else {
702		down_read(&EXT4_I(inode)->i_mmap_sem);
703	}
704	result = dax_iomap_fault(vmf, pe_size, &pfn, &error, &ext4_iomap_ops);
705	if (write) {
706		ext4_journal_stop(handle);
707
708		if ((result & VM_FAULT_ERROR) && error == -ENOSPC &&
709		    ext4_should_retry_alloc(sb, &retries))
710			goto retry;
711		/* Handling synchronous page fault? */
712		if (result & VM_FAULT_NEEDDSYNC)
713			result = dax_finish_sync_fault(vmf, pe_size, pfn);
714		up_read(&EXT4_I(inode)->i_mmap_sem);
715		sb_end_pagefault(sb);
716	} else {
717		up_read(&EXT4_I(inode)->i_mmap_sem);
718	}
719
720	return result;
721}
722
723static vm_fault_t ext4_dax_fault(struct vm_fault *vmf)
724{
725	return ext4_dax_huge_fault(vmf, PE_SIZE_PTE);
726}
727
728static const struct vm_operations_struct ext4_dax_vm_ops = {
729	.fault		= ext4_dax_fault,
730	.huge_fault	= ext4_dax_huge_fault,
731	.page_mkwrite	= ext4_dax_fault,
732	.pfn_mkwrite	= ext4_dax_fault,
733};
734#else
735#define ext4_dax_vm_ops	ext4_file_vm_ops
736#endif
737
738static const struct vm_operations_struct ext4_file_vm_ops = {
739	.fault		= ext4_filemap_fault,
740	.map_pages	= filemap_map_pages,
741	.page_mkwrite   = ext4_page_mkwrite,
742};
743
744static int ext4_file_mmap(struct file *file, struct vm_area_struct *vma)
745{
746	struct inode *inode = file->f_mapping->host;
747	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
748	struct dax_device *dax_dev = sbi->s_daxdev;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
749
750	if (unlikely(ext4_forced_shutdown(sbi)))
751		return -EIO;
 
 
 
 
 
 
 
 
752
753	/*
754	 * We don't support synchronous mappings for non-DAX files and
755	 * for DAX files if underneath dax_device is not synchronous.
756	 */
757	if (!daxdev_mapping_supported(vma, dax_dev))
758		return -EOPNOTSUPP;
 
 
 
 
 
 
759
760	file_accessed(file);
761	if (IS_DAX(file_inode(file))) {
762		vma->vm_ops = &ext4_dax_vm_ops;
763		vma->vm_flags |= VM_HUGEPAGE;
764	} else {
765		vma->vm_ops = &ext4_file_vm_ops;
766	}
767	return 0;
768}
769
770static int ext4_sample_last_mounted(struct super_block *sb,
771				    struct vfsmount *mnt)
772{
773	struct ext4_sb_info *sbi = EXT4_SB(sb);
774	struct path path;
775	char buf[64], *cp;
776	handle_t *handle;
777	int err;
778
779	if (likely(sbi->s_mount_flags & EXT4_MF_MNTDIR_SAMPLED))
780		return 0;
781
782	if (sb_rdonly(sb) || !sb_start_intwrite_trylock(sb))
783		return 0;
784
785	sbi->s_mount_flags |= EXT4_MF_MNTDIR_SAMPLED;
786	/*
787	 * Sample where the filesystem has been mounted and
788	 * store it in the superblock for sysadmin convenience
789	 * when trying to sort through large numbers of block
790	 * devices or filesystem images.
791	 */
792	memset(buf, 0, sizeof(buf));
793	path.mnt = mnt;
794	path.dentry = mnt->mnt_root;
795	cp = d_path(&path, buf, sizeof(buf));
796	err = 0;
797	if (IS_ERR(cp))
798		goto out;
799
800	handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1);
801	err = PTR_ERR(handle);
802	if (IS_ERR(handle))
803		goto out;
804	BUFFER_TRACE(sbi->s_sbh, "get_write_access");
805	err = ext4_journal_get_write_access(handle, sbi->s_sbh);
806	if (err)
807		goto out_journal;
808	strlcpy(sbi->s_es->s_last_mounted, cp,
809		sizeof(sbi->s_es->s_last_mounted));
810	ext4_handle_dirty_super(handle, sb);
811out_journal:
812	ext4_journal_stop(handle);
813out:
814	sb_end_intwrite(sb);
815	return err;
816}
817
818static int ext4_file_open(struct inode *inode, struct file *filp)
 
 
 
819{
820	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
821
822	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
823		return -EIO;
 
 
 
 
 
 
 
 
824
825	ret = ext4_sample_last_mounted(inode->i_sb, filp->f_path.mnt);
826	if (ret)
827		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
828
829	ret = fscrypt_file_open(inode, filp);
830	if (ret)
831		return ret;
832
833	ret = fsverity_file_open(inode, filp);
834	if (ret)
835		return ret;
836
837	/*
838	 * Set up the jbd2_inode if we are opening the inode for
839	 * writing and the journal is present
840	 */
841	if (filp->f_mode & FMODE_WRITE) {
842		ret = ext4_inode_attach_jinode(inode);
843		if (ret < 0)
844			return ret;
845	}
846
847	filp->f_mode |= FMODE_NOWAIT;
848	return dquot_file_open(inode, filp);
849}
850
851/*
852 * ext4_llseek() handles both block-mapped and extent-mapped maxbytes values
853 * by calling generic_file_llseek_size() with the appropriate maxbytes
854 * value for each.
855 */
856loff_t ext4_llseek(struct file *file, loff_t offset, int whence)
857{
858	struct inode *inode = file->f_mapping->host;
859	loff_t maxbytes;
860
861	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
862		maxbytes = EXT4_SB(inode->i_sb)->s_bitmap_maxbytes;
863	else
864		maxbytes = inode->i_sb->s_maxbytes;
865
866	switch (whence) {
867	default:
 
 
868		return generic_file_llseek_size(file, offset, whence,
869						maxbytes, i_size_read(inode));
870	case SEEK_HOLE:
871		inode_lock_shared(inode);
872		offset = iomap_seek_hole(inode, offset,
873					 &ext4_iomap_report_ops);
874		inode_unlock_shared(inode);
875		break;
876	case SEEK_DATA:
877		inode_lock_shared(inode);
878		offset = iomap_seek_data(inode, offset,
879					 &ext4_iomap_report_ops);
880		inode_unlock_shared(inode);
881		break;
882	}
883
884	if (offset < 0)
885		return offset;
886	return vfs_setpos(file, offset, maxbytes);
887}
888
889const struct file_operations ext4_file_operations = {
890	.llseek		= ext4_llseek,
891	.read_iter	= ext4_file_read_iter,
892	.write_iter	= ext4_file_write_iter,
893	.iopoll		= iomap_dio_iopoll,
 
894	.unlocked_ioctl = ext4_ioctl,
895#ifdef CONFIG_COMPAT
896	.compat_ioctl	= ext4_compat_ioctl,
897#endif
898	.mmap		= ext4_file_mmap,
899	.mmap_supported_flags = MAP_SYNC,
900	.open		= ext4_file_open,
901	.release	= ext4_release_file,
902	.fsync		= ext4_sync_file,
903	.get_unmapped_area = thp_get_unmapped_area,
904	.splice_read	= generic_file_splice_read,
905	.splice_write	= iter_file_splice_write,
906	.fallocate	= ext4_fallocate,
907};
908
909const struct inode_operations ext4_file_inode_operations = {
910	.setattr	= ext4_setattr,
911	.getattr	= ext4_file_getattr,
 
 
912	.listxattr	= ext4_listxattr,
 
913	.get_acl	= ext4_get_acl,
914	.set_acl	= ext4_set_acl,
915	.fiemap		= ext4_fiemap,
916};
917
v3.15
 
  1/*
  2 *  linux/fs/ext4/file.c
  3 *
  4 * Copyright (C) 1992, 1993, 1994, 1995
  5 * Remy Card (card@masi.ibp.fr)
  6 * Laboratoire MASI - Institut Blaise Pascal
  7 * Universite Pierre et Marie Curie (Paris VI)
  8 *
  9 *  from
 10 *
 11 *  linux/fs/minix/file.c
 12 *
 13 *  Copyright (C) 1991, 1992  Linus Torvalds
 14 *
 15 *  ext4 fs regular file handling primitives
 16 *
 17 *  64-bit file support on 64-bit platforms by Jakub Jelinek
 18 *	(jj@sunsite.ms.mff.cuni.cz)
 19 */
 20
 21#include <linux/time.h>
 22#include <linux/fs.h>
 23#include <linux/jbd2.h>
 24#include <linux/mount.h>
 25#include <linux/path.h>
 26#include <linux/aio.h>
 27#include <linux/quotaops.h>
 28#include <linux/pagevec.h>
 
 
 
 29#include "ext4.h"
 30#include "ext4_jbd2.h"
 31#include "xattr.h"
 32#include "acl.h"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 33
 34/*
 35 * Called when an inode is released. Note that this is different
 36 * from ext4_file_open: open gets called at every open, but release
 37 * gets called only when /all/ the files are closed.
 38 */
 39static int ext4_release_file(struct inode *inode, struct file *filp)
 40{
 41	if (ext4_test_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE)) {
 42		ext4_alloc_da_blocks(inode);
 43		ext4_clear_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
 44	}
 45	/* if we are the last writer on the inode, drop the block reservation */
 46	if ((filp->f_mode & FMODE_WRITE) &&
 47			(atomic_read(&inode->i_writecount) == 1) &&
 48		        !EXT4_I(inode)->i_reserved_data_blocks)
 49	{
 50		down_write(&EXT4_I(inode)->i_data_sem);
 51		ext4_discard_preallocations(inode);
 52		up_write(&EXT4_I(inode)->i_data_sem);
 53	}
 54	if (is_dx(inode) && filp->private_data)
 55		ext4_htree_free_dir_info(filp->private_data);
 56
 57	return 0;
 58}
 59
 60void ext4_unwritten_wait(struct inode *inode)
 61{
 62	wait_queue_head_t *wq = ext4_ioend_wq(inode);
 63
 64	wait_event(*wq, (atomic_read(&EXT4_I(inode)->i_unwritten) == 0));
 65}
 66
 67/*
 68 * This tests whether the IO in question is block-aligned or not.
 69 * Ext4 utilizes unwritten extents when hole-filling during direct IO, and they
 70 * are converted to written only after the IO is complete.  Until they are
 71 * mapped, these blocks appear as holes, so dio_zero_block() will assume that
 72 * it needs to zero out portions of the start and/or end block.  If 2 AIO
 73 * threads are at work on the same unwritten block, they must be synchronized
 74 * or one thread will zero the other's data, causing corruption.
 75 */
 76static int
 77ext4_unaligned_aio(struct inode *inode, const struct iovec *iov,
 78		   unsigned long nr_segs, loff_t pos)
 79{
 80	struct super_block *sb = inode->i_sb;
 81	int blockmask = sb->s_blocksize - 1;
 82	size_t count = iov_length(iov, nr_segs);
 83	loff_t final_size = pos + count;
 
 84
 85	if (pos >= i_size_read(inode))
 86		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 87
 88	if ((pos & blockmask) || (final_size & blockmask))
 89		return 1;
 
 90
 91	return 0;
 
 
 
 
 
 
 92}
 93
 94static ssize_t
 95ext4_file_dio_write(struct kiocb *iocb, const struct iovec *iov,
 96		    unsigned long nr_segs, loff_t pos)
 97{
 98	struct file *file = iocb->ki_filp;
 99	struct inode *inode = file->f_mapping->host;
100	struct blk_plug plug;
101	int unaligned_aio = 0;
102	ssize_t ret;
103	int overwrite = 0;
104	size_t length = iov_length(iov, nr_segs);
105
106	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) &&
107	    !is_sync_kiocb(iocb))
108		unaligned_aio = ext4_unaligned_aio(inode, iov, nr_segs, pos);
109
110	/* Unaligned direct AIO must be serialized; see comment above */
111	if (unaligned_aio) {
112		mutex_lock(ext4_aio_mutex(inode));
113		ext4_unwritten_wait(inode);
 
 
 
 
 
 
 
 
 
 
114	}
115
116	BUG_ON(iocb->ki_pos != pos);
 
117
118	mutex_lock(&inode->i_mutex);
119	blk_start_plug(&plug);
 
120
121	iocb->private = &overwrite;
 
 
122
123	/* check whether we do a DIO overwrite or not */
124	if (ext4_should_dioread_nolock(inode) && !unaligned_aio &&
125	    !file->f_mapping->nrpages && pos + length <= i_size_read(inode)) {
126		struct ext4_map_blocks map;
127		unsigned int blkbits = inode->i_blkbits;
128		int err, len;
129
130		map.m_lblk = pos >> blkbits;
131		map.m_len = (EXT4_BLOCK_ALIGN(pos + length, blkbits) >> blkbits)
132			- map.m_lblk;
133		len = map.m_len;
 
134
135		err = ext4_map_blocks(NULL, inode, &map, 0);
136		/*
137		 * 'err==len' means that all of blocks has been preallocated no
138		 * matter they are initialized or not.  For excluding
139		 * uninitialized extents, we need to check m_flags.  There are
140		 * two conditions that indicate for initialized extents.
141		 * 1) If we hit extent cache, EXT4_MAP_MAPPED flag is returned;
142		 * 2) If we do a real lookup, non-flags are returned.
143		 * So we should check these two conditions.
144		 */
145		if (err == len && (map.m_flags & EXT4_MAP_MAPPED))
146			overwrite = 1;
147	}
148
149	ret = __generic_file_aio_write(iocb, iov, nr_segs);
150	mutex_unlock(&inode->i_mutex);
 
 
 
 
 
 
151
152	if (ret > 0) {
153		ssize_t err;
154
155		err = generic_write_sync(file, iocb->ki_pos - ret, ret);
156		if (err < 0)
157			ret = err;
158	}
159	blk_finish_plug(&plug);
160
161	if (unaligned_aio)
162		mutex_unlock(ext4_aio_mutex(inode));
163
164	return ret;
165}
166
167static ssize_t
168ext4_file_write(struct kiocb *iocb, const struct iovec *iov,
169		unsigned long nr_segs, loff_t pos)
170{
171	struct inode *inode = file_inode(iocb->ki_filp);
172	ssize_t ret;
 
 
 
173
174	/*
175	 * If we have encountered a bitmap-format file, the size limit
176	 * is smaller than s_maxbytes, which is for extent-mapped files.
 
 
 
 
177	 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
178
179	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
180		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
181		size_t length = iov_length(iov, nr_segs);
 
 
 
 
 
 
182
183		if ((pos > sbi->s_bitmap_maxbytes ||
184		    (pos == sbi->s_bitmap_maxbytes && length > 0)))
185			return -EFBIG;
 
 
186
187		if (pos + length > sbi->s_bitmap_maxbytes) {
188			nr_segs = iov_shorten((struct iovec *)iov, nr_segs,
189					      sbi->s_bitmap_maxbytes - pos);
 
 
 
190		}
191	}
192
193	if (unlikely(iocb->ki_filp->f_flags & O_DIRECT))
194		ret = ext4_file_dio_write(iocb, iov, nr_segs, pos);
195	else
196		ret = generic_file_aio_write(iocb, iov, nr_segs, pos);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
197
198	return ret;
199}
200
201static const struct vm_operations_struct ext4_file_vm_ops = {
202	.fault		= filemap_fault,
203	.map_pages	= filemap_map_pages,
204	.page_mkwrite   = ext4_page_mkwrite,
205	.remap_pages	= generic_file_remap_pages,
206};
207
208static int ext4_file_mmap(struct file *file, struct vm_area_struct *vma)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
209{
210	struct address_space *mapping = file->f_mapping;
 
 
 
 
211
212	if (!mapping->a_ops->readpage)
213		return -ENOEXEC;
214	file_accessed(file);
215	vma->vm_ops = &ext4_file_vm_ops;
216	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
217}
218
219static int ext4_file_open(struct inode * inode, struct file * filp)
220{
221	struct super_block *sb = inode->i_sb;
222	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
223	struct vfsmount *mnt = filp->f_path.mnt;
224	struct path path;
225	char buf[64], *cp;
 
 
 
226
227	if (unlikely(!(sbi->s_mount_flags & EXT4_MF_MNTDIR_SAMPLED) &&
228		     !(sb->s_flags & MS_RDONLY))) {
229		sbi->s_mount_flags |= EXT4_MF_MNTDIR_SAMPLED;
230		/*
231		 * Sample where the filesystem has been mounted and
232		 * store it in the superblock for sysadmin convenience
233		 * when trying to sort through large numbers of block
234		 * devices or filesystem images.
235		 */
236		memset(buf, 0, sizeof(buf));
237		path.mnt = mnt;
238		path.dentry = mnt->mnt_root;
239		cp = d_path(&path, buf, sizeof(buf));
240		if (!IS_ERR(cp)) {
241			handle_t *handle;
242			int err;
243
244			handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1);
245			if (IS_ERR(handle))
246				return PTR_ERR(handle);
247			err = ext4_journal_get_write_access(handle, sbi->s_sbh);
248			if (err) {
249				ext4_journal_stop(handle);
250				return err;
251			}
252			strlcpy(sbi->s_es->s_last_mounted, cp,
253				sizeof(sbi->s_es->s_last_mounted));
254			ext4_handle_dirty_super(handle, sb);
255			ext4_journal_stop(handle);
256		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
257	}
 
 
 
 
258	/*
259	 * Set up the jbd2_inode if we are opening the inode for
260	 * writing and the journal is present
 
 
 
 
 
 
261	 */
262	if (filp->f_mode & FMODE_WRITE) {
263		int ret = ext4_inode_attach_jinode(inode);
264		if (ret < 0)
265			return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
266	}
267	return dquot_file_open(inode, filp);
268}
269
270/*
271 * Here we use ext4_map_blocks() to get a block mapping for a extent-based
272 * file rather than ext4_ext_walk_space() because we can introduce
273 * SEEK_DATA/SEEK_HOLE for block-mapped and extent-mapped file at the same
274 * function.  When extent status tree has been fully implemented, it will
275 * track all extent status for a file and we can directly use it to
276 * retrieve the offset for SEEK_DATA/SEEK_HOLE.
277 */
 
 
 
 
 
 
 
 
 
 
 
278
279/*
280 * When we retrieve the offset for SEEK_DATA/SEEK_HOLE, we would need to
281 * lookup page cache to check whether or not there has some data between
282 * [startoff, endoff] because, if this range contains an unwritten extent,
283 * we determine this extent as a data or a hole according to whether the
284 * page cache has data or not.
285 */
286static int ext4_find_unwritten_pgoff(struct inode *inode,
287				     int whence,
288				     struct ext4_map_blocks *map,
289				     loff_t *offset)
290{
291	struct pagevec pvec;
292	unsigned int blkbits;
293	pgoff_t index;
294	pgoff_t end;
295	loff_t endoff;
296	loff_t startoff;
297	loff_t lastoff;
298	int found = 0;
299
300	blkbits = inode->i_sb->s_blocksize_bits;
301	startoff = *offset;
302	lastoff = startoff;
303	endoff = (loff_t)(map->m_lblk + map->m_len) << blkbits;
304
305	index = startoff >> PAGE_CACHE_SHIFT;
306	end = endoff >> PAGE_CACHE_SHIFT;
307
308	pagevec_init(&pvec, 0);
309	do {
310		int i, num;
311		unsigned long nr_pages;
312
313		num = min_t(pgoff_t, end - index, PAGEVEC_SIZE);
314		nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index,
315					  (pgoff_t)num);
316		if (nr_pages == 0) {
317			if (whence == SEEK_DATA)
318				break;
319
320			BUG_ON(whence != SEEK_HOLE);
321			/*
322			 * If this is the first time to go into the loop and
323			 * offset is not beyond the end offset, it will be a
324			 * hole at this offset
325			 */
326			if (lastoff == startoff || lastoff < endoff)
327				found = 1;
328			break;
329		}
330
331		/*
332		 * If this is the first time to go into the loop and
333		 * offset is smaller than the first page offset, it will be a
334		 * hole at this offset.
 
 
335		 */
336		if (lastoff == startoff && whence == SEEK_HOLE &&
337		    lastoff < page_offset(pvec.pages[0])) {
338			found = 1;
339			break;
340		}
 
 
 
 
341
342		for (i = 0; i < nr_pages; i++) {
343			struct page *page = pvec.pages[i];
344			struct buffer_head *bh, *head;
345
346			/*
347			 * If the current offset is not beyond the end of given
348			 * range, it will be a hole.
349			 */
350			if (lastoff < endoff && whence == SEEK_HOLE &&
351			    page->index > end) {
352				found = 1;
353				*offset = lastoff;
354				goto out;
355			}
356
357			lock_page(page);
 
 
 
 
 
 
 
 
 
358
359			if (unlikely(page->mapping != inode->i_mapping)) {
360				unlock_page(page);
361				continue;
362			}
 
 
363
364			if (!page_has_buffers(page)) {
365				unlock_page(page);
366				continue;
367			}
368
369			if (page_has_buffers(page)) {
370				lastoff = page_offset(page);
371				bh = head = page_buffers(page);
372				do {
373					if (buffer_uptodate(bh) ||
374					    buffer_unwritten(bh)) {
375						if (whence == SEEK_DATA)
376							found = 1;
377					} else {
378						if (whence == SEEK_HOLE)
379							found = 1;
380					}
381					if (found) {
382						*offset = max_t(loff_t,
383							startoff, lastoff);
384						unlock_page(page);
385						goto out;
386					}
387					lastoff += bh->b_size;
388					bh = bh->b_this_page;
389				} while (bh != head);
390			}
391
392			lastoff = page_offset(page) + PAGE_SIZE;
393			unlock_page(page);
 
 
 
394		}
395
396		/*
397		 * The no. of pages is less than our desired, that would be a
398		 * hole in there.
399		 */
400		if (nr_pages < num && whence == SEEK_HOLE) {
401			found = 1;
402			*offset = lastoff;
403			break;
404		}
405
406		index = pvec.pages[i - 1]->index + 1;
407		pagevec_release(&pvec);
408	} while (index <= end);
 
 
409
 
 
410out:
411	pagevec_release(&pvec);
412	return found;
 
 
413}
 
 
 
 
 
 
414
415/*
416 * ext4_seek_data() retrieves the offset for SEEK_DATA.
417 */
418static loff_t ext4_seek_data(struct file *file, loff_t offset, loff_t maxsize)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
419{
420	struct inode *inode = file->f_mapping->host;
421	struct ext4_map_blocks map;
422	struct extent_status es;
423	ext4_lblk_t start, last, end;
424	loff_t dataoff, isize;
425	int blkbits;
426	int ret = 0;
427
428	mutex_lock(&inode->i_mutex);
429
430	isize = i_size_read(inode);
431	if (offset >= isize) {
432		mutex_unlock(&inode->i_mutex);
433		return -ENXIO;
434	}
435
436	blkbits = inode->i_sb->s_blocksize_bits;
437	start = offset >> blkbits;
438	last = start;
439	end = isize >> blkbits;
440	dataoff = offset;
441
442	do {
443		map.m_lblk = last;
444		map.m_len = end - last + 1;
445		ret = ext4_map_blocks(NULL, inode, &map, 0);
446		if (ret > 0 && !(map.m_flags & EXT4_MAP_UNWRITTEN)) {
447			if (last != start)
448				dataoff = (loff_t)last << blkbits;
449			break;
450		}
451
452		/*
453		 * If there is a delay extent at this offset,
454		 * it will be as a data.
455		 */
456		ext4_es_find_delayed_extent_range(inode, last, last, &es);
457		if (es.es_len != 0 && in_range(last, es.es_lblk, es.es_len)) {
458			if (last != start)
459				dataoff = (loff_t)last << blkbits;
460			break;
461		}
462
463		/*
464		 * If there is a unwritten extent at this offset,
465		 * it will be as a data or a hole according to page
466		 * cache that has data or not.
467		 */
468		if (map.m_flags & EXT4_MAP_UNWRITTEN) {
469			int unwritten;
470			unwritten = ext4_find_unwritten_pgoff(inode, SEEK_DATA,
471							      &map, &dataoff);
472			if (unwritten)
473				break;
474		}
475
476		last++;
477		dataoff = (loff_t)last << blkbits;
478	} while (last <= end);
 
 
 
 
 
 
479
480	mutex_unlock(&inode->i_mutex);
 
 
 
 
 
 
 
481
482	if (dataoff > isize)
483		return -ENXIO;
 
 
 
484
485	return vfs_setpos(file, dataoff, maxsize);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
486}
487
488/*
489 * ext4_seek_hole() retrieves the offset for SEEK_HOLE.
490 */
491static loff_t ext4_seek_hole(struct file *file, loff_t offset, loff_t maxsize)
492{
493	struct inode *inode = file->f_mapping->host;
494	struct ext4_map_blocks map;
495	struct extent_status es;
496	ext4_lblk_t start, last, end;
497	loff_t holeoff, isize;
498	int blkbits;
499	int ret = 0;
500
501	mutex_lock(&inode->i_mutex);
502
503	isize = i_size_read(inode);
504	if (offset >= isize) {
505		mutex_unlock(&inode->i_mutex);
506		return -ENXIO;
507	}
508
509	blkbits = inode->i_sb->s_blocksize_bits;
510	start = offset >> blkbits;
511	last = start;
512	end = isize >> blkbits;
513	holeoff = offset;
514
515	do {
516		map.m_lblk = last;
517		map.m_len = end - last + 1;
518		ret = ext4_map_blocks(NULL, inode, &map, 0);
519		if (ret > 0 && !(map.m_flags & EXT4_MAP_UNWRITTEN)) {
520			last += ret;
521			holeoff = (loff_t)last << blkbits;
522			continue;
523		}
524
525		/*
526		 * If there is a delay extent at this offset,
527		 * we will skip this extent.
528		 */
529		ext4_es_find_delayed_extent_range(inode, last, last, &es);
530		if (es.es_len != 0 && in_range(last, es.es_lblk, es.es_len)) {
531			last = es.es_lblk + es.es_len;
532			holeoff = (loff_t)last << blkbits;
533			continue;
534		}
535
536		/*
537		 * If there is a unwritten extent at this offset,
538		 * it will be as a data or a hole according to page
539		 * cache that has data or not.
540		 */
541		if (map.m_flags & EXT4_MAP_UNWRITTEN) {
542			int unwritten;
543			unwritten = ext4_find_unwritten_pgoff(inode, SEEK_HOLE,
544							      &map, &holeoff);
545			if (!unwritten) {
546				last += ret;
547				holeoff = (loff_t)last << blkbits;
548				continue;
549			}
550		}
551
552		/* find a hole */
553		break;
554	} while (last <= end);
555
556	mutex_unlock(&inode->i_mutex);
 
 
557
558	if (holeoff > isize)
559		holeoff = isize;
 
 
 
 
 
 
 
560
561	return vfs_setpos(file, holeoff, maxsize);
 
562}
563
564/*
565 * ext4_llseek() handles both block-mapped and extent-mapped maxbytes values
566 * by calling generic_file_llseek_size() with the appropriate maxbytes
567 * value for each.
568 */
569loff_t ext4_llseek(struct file *file, loff_t offset, int whence)
570{
571	struct inode *inode = file->f_mapping->host;
572	loff_t maxbytes;
573
574	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
575		maxbytes = EXT4_SB(inode->i_sb)->s_bitmap_maxbytes;
576	else
577		maxbytes = inode->i_sb->s_maxbytes;
578
579	switch (whence) {
580	case SEEK_SET:
581	case SEEK_CUR:
582	case SEEK_END:
583		return generic_file_llseek_size(file, offset, whence,
584						maxbytes, i_size_read(inode));
 
 
 
 
 
 
585	case SEEK_DATA:
586		return ext4_seek_data(file, offset, maxbytes);
587	case SEEK_HOLE:
588		return ext4_seek_hole(file, offset, maxbytes);
 
 
589	}
590
591	return -EINVAL;
 
 
592}
593
594const struct file_operations ext4_file_operations = {
595	.llseek		= ext4_llseek,
596	.read		= do_sync_read,
597	.write		= do_sync_write,
598	.aio_read	= generic_file_aio_read,
599	.aio_write	= ext4_file_write,
600	.unlocked_ioctl = ext4_ioctl,
601#ifdef CONFIG_COMPAT
602	.compat_ioctl	= ext4_compat_ioctl,
603#endif
604	.mmap		= ext4_file_mmap,
 
605	.open		= ext4_file_open,
606	.release	= ext4_release_file,
607	.fsync		= ext4_sync_file,
 
608	.splice_read	= generic_file_splice_read,
609	.splice_write	= generic_file_splice_write,
610	.fallocate	= ext4_fallocate,
611};
612
613const struct inode_operations ext4_file_inode_operations = {
614	.setattr	= ext4_setattr,
615	.getattr	= ext4_getattr,
616	.setxattr	= generic_setxattr,
617	.getxattr	= generic_getxattr,
618	.listxattr	= ext4_listxattr,
619	.removexattr	= generic_removexattr,
620	.get_acl	= ext4_get_acl,
621	.set_acl	= ext4_set_acl,
622	.fiemap		= ext4_fiemap,
623};
624