Linux Audio

Check our new training course

Yocto / OpenEmbedded training

Feb 10-13, 2025
Register
Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2012 Fusion-io  All rights reserved.
   4 * Copyright (C) 2012 Intel Corp. All rights reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   5 */
   6
   7#include <linux/sched.h>
 
   8#include <linux/bio.h>
   9#include <linux/slab.h>
 
  10#include <linux/blkdev.h>
 
 
 
 
 
  11#include <linux/raid/pq.h>
  12#include <linux/hash.h>
  13#include <linux/list_sort.h>
  14#include <linux/raid/xor.h>
  15#include <linux/mm.h>
 
  16#include "ctree.h"
 
  17#include "disk-io.h"
 
 
  18#include "volumes.h"
  19#include "raid56.h"
  20#include "async-thread.h"
 
 
  21
  22/* set when additional merges to this rbio are not allowed */
  23#define RBIO_RMW_LOCKED_BIT	1
  24
  25/*
  26 * set when this rbio is sitting in the hash, but it is just a cache
  27 * of past RMW
  28 */
  29#define RBIO_CACHE_BIT		2
  30
  31/*
  32 * set when it is safe to trust the stripe_pages for caching
  33 */
  34#define RBIO_CACHE_READY_BIT	3
  35
  36#define RBIO_CACHE_SIZE 1024
  37
  38#define BTRFS_STRIPE_HASH_TABLE_BITS				11
  39
  40/* Used by the raid56 code to lock stripes for read/modify/write */
  41struct btrfs_stripe_hash {
  42	struct list_head hash_list;
  43	spinlock_t lock;
  44};
  45
  46/* Used by the raid56 code to lock stripes for read/modify/write */
  47struct btrfs_stripe_hash_table {
  48	struct list_head stripe_cache;
  49	spinlock_t cache_lock;
  50	int cache_size;
  51	struct btrfs_stripe_hash table[];
  52};
  53
  54enum btrfs_rbio_ops {
  55	BTRFS_RBIO_WRITE,
  56	BTRFS_RBIO_READ_REBUILD,
  57	BTRFS_RBIO_PARITY_SCRUB,
  58	BTRFS_RBIO_REBUILD_MISSING,
  59};
  60
  61struct btrfs_raid_bio {
  62	struct btrfs_fs_info *fs_info;
  63	struct btrfs_bio *bbio;
  64
 
 
 
 
 
 
 
  65	/* while we're doing rmw on a stripe
  66	 * we put it into a hash table so we can
  67	 * lock the stripe and merge more rbios
  68	 * into it.
  69	 */
  70	struct list_head hash_list;
  71
  72	/*
  73	 * LRU list for the stripe cache
  74	 */
  75	struct list_head stripe_cache;
  76
  77	/*
  78	 * for scheduling work in the helper threads
  79	 */
  80	struct btrfs_work work;
  81
  82	/*
  83	 * bio list and bio_list_lock are used
  84	 * to add more bios into the stripe
  85	 * in hopes of avoiding the full rmw
  86	 */
  87	struct bio_list bio_list;
  88	spinlock_t bio_list_lock;
  89
  90	/* also protected by the bio_list_lock, the
  91	 * plug list is used by the plugging code
  92	 * to collect partial bios while plugged.  The
  93	 * stripe locking code also uses it to hand off
  94	 * the stripe lock to the next pending IO
  95	 */
  96	struct list_head plug_list;
  97
  98	/*
  99	 * flags that tell us if it is safe to
 100	 * merge with this bio
 101	 */
 102	unsigned long flags;
 103
 104	/* size of each individual stripe on disk */
 105	int stripe_len;
 106
 107	/* number of data stripes (no p/q) */
 108	int nr_data;
 109
 110	int real_stripes;
 111
 112	int stripe_npages;
 113	/*
 114	 * set if we're doing a parity rebuild
 115	 * for a read from higher up, which is handled
 116	 * differently from a parity rebuild as part of
 117	 * rmw
 118	 */
 119	enum btrfs_rbio_ops operation;
 120
 121	/* first bad stripe */
 122	int faila;
 123
 124	/* second bad stripe (for raid6 use) */
 125	int failb;
 126
 127	int scrubp;
 128	/*
 129	 * number of pages needed to represent the full
 130	 * stripe
 131	 */
 132	int nr_pages;
 133
 134	/*
 135	 * size of all the bios in the bio_list.  This
 136	 * helps us decide if the rbio maps to a full
 137	 * stripe or not
 138	 */
 139	int bio_list_bytes;
 140
 141	int generic_bio_cnt;
 142
 143	refcount_t refs;
 144
 145	atomic_t stripes_pending;
 146
 147	atomic_t error;
 148	/*
 149	 * these are two arrays of pointers.  We allocate the
 150	 * rbio big enough to hold them both and setup their
 151	 * locations when the rbio is allocated
 152	 */
 153
 154	/* pointers to pages that we allocated for
 155	 * reading/writing stripes directly from the disk (including P/Q)
 156	 */
 157	struct page **stripe_pages;
 158
 159	/*
 160	 * pointers to the pages in the bio_list.  Stored
 161	 * here for faster lookup
 162	 */
 163	struct page **bio_pages;
 164
 165	/*
 166	 * bitmap to record which horizontal stripe has data
 167	 */
 168	unsigned long *dbitmap;
 169
 170	/* allocated with real_stripes-many pointers for finish_*() calls */
 171	void **finish_pointers;
 172
 173	/* allocated with stripe_npages-many bits for finish_*() calls */
 174	unsigned long *finish_pbitmap;
 175};
 176
 177static int __raid56_parity_recover(struct btrfs_raid_bio *rbio);
 178static noinline void finish_rmw(struct btrfs_raid_bio *rbio);
 179static void rmw_work(struct btrfs_work *work);
 180static void read_rebuild_work(struct btrfs_work *work);
 
 
 181static int fail_bio_stripe(struct btrfs_raid_bio *rbio, struct bio *bio);
 182static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed);
 183static void __free_raid_bio(struct btrfs_raid_bio *rbio);
 184static void index_rbio_pages(struct btrfs_raid_bio *rbio);
 185static int alloc_rbio_pages(struct btrfs_raid_bio *rbio);
 186
 187static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
 188					 int need_check);
 189static void scrub_parity_work(struct btrfs_work *work);
 190
 191static void start_async_work(struct btrfs_raid_bio *rbio, btrfs_func_t work_func)
 192{
 193	btrfs_init_work(&rbio->work, work_func, NULL, NULL);
 194	btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work);
 195}
 196
 197/*
 198 * the stripe hash table is used for locking, and to collect
 199 * bios in hopes of making a full stripe
 200 */
 201int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info)
 202{
 203	struct btrfs_stripe_hash_table *table;
 204	struct btrfs_stripe_hash_table *x;
 205	struct btrfs_stripe_hash *cur;
 206	struct btrfs_stripe_hash *h;
 207	int num_entries = 1 << BTRFS_STRIPE_HASH_TABLE_BITS;
 208	int i;
 
 209
 210	if (info->stripe_hash_table)
 211		return 0;
 212
 213	/*
 214	 * The table is large, starting with order 4 and can go as high as
 215	 * order 7 in case lock debugging is turned on.
 216	 *
 217	 * Try harder to allocate and fallback to vmalloc to lower the chance
 218	 * of a failing mount.
 219	 */
 220	table = kvzalloc(struct_size(table, table, num_entries), GFP_KERNEL);
 221	if (!table)
 222		return -ENOMEM;
 
 
 
 
 223
 224	spin_lock_init(&table->cache_lock);
 225	INIT_LIST_HEAD(&table->stripe_cache);
 226
 227	h = table->table;
 228
 229	for (i = 0; i < num_entries; i++) {
 230		cur = h + i;
 231		INIT_LIST_HEAD(&cur->hash_list);
 232		spin_lock_init(&cur->lock);
 
 233	}
 234
 235	x = cmpxchg(&info->stripe_hash_table, NULL, table);
 236	if (x)
 237		kvfree(x);
 
 
 
 
 238	return 0;
 239}
 240
 241/*
 242 * caching an rbio means to copy anything from the
 243 * bio_pages array into the stripe_pages array.  We
 244 * use the page uptodate bit in the stripe cache array
 245 * to indicate if it has valid data
 246 *
 247 * once the caching is done, we set the cache ready
 248 * bit.
 249 */
 250static void cache_rbio_pages(struct btrfs_raid_bio *rbio)
 251{
 252	int i;
 253	char *s;
 254	char *d;
 255	int ret;
 256
 257	ret = alloc_rbio_pages(rbio);
 258	if (ret)
 259		return;
 260
 261	for (i = 0; i < rbio->nr_pages; i++) {
 262		if (!rbio->bio_pages[i])
 263			continue;
 264
 265		s = kmap(rbio->bio_pages[i]);
 266		d = kmap(rbio->stripe_pages[i]);
 267
 268		copy_page(d, s);
 269
 270		kunmap(rbio->bio_pages[i]);
 271		kunmap(rbio->stripe_pages[i]);
 272		SetPageUptodate(rbio->stripe_pages[i]);
 273	}
 274	set_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
 275}
 276
 277/*
 278 * we hash on the first logical address of the stripe
 279 */
 280static int rbio_bucket(struct btrfs_raid_bio *rbio)
 281{
 282	u64 num = rbio->bbio->raid_map[0];
 283
 284	/*
 285	 * we shift down quite a bit.  We're using byte
 286	 * addressing, and most of the lower bits are zeros.
 287	 * This tends to upset hash_64, and it consistently
 288	 * returns just one or two different values.
 289	 *
 290	 * shifting off the lower bits fixes things.
 291	 */
 292	return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS);
 293}
 294
 295/*
 296 * stealing an rbio means taking all the uptodate pages from the stripe
 297 * array in the source rbio and putting them into the destination rbio
 298 */
 299static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest)
 300{
 301	int i;
 302	struct page *s;
 303	struct page *d;
 304
 305	if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags))
 306		return;
 307
 308	for (i = 0; i < dest->nr_pages; i++) {
 309		s = src->stripe_pages[i];
 310		if (!s || !PageUptodate(s)) {
 311			continue;
 312		}
 313
 314		d = dest->stripe_pages[i];
 315		if (d)
 316			__free_page(d);
 317
 318		dest->stripe_pages[i] = s;
 319		src->stripe_pages[i] = NULL;
 320	}
 321}
 322
 323/*
 324 * merging means we take the bio_list from the victim and
 325 * splice it into the destination.  The victim should
 326 * be discarded afterwards.
 327 *
 328 * must be called with dest->rbio_list_lock held
 329 */
 330static void merge_rbio(struct btrfs_raid_bio *dest,
 331		       struct btrfs_raid_bio *victim)
 332{
 333	bio_list_merge(&dest->bio_list, &victim->bio_list);
 334	dest->bio_list_bytes += victim->bio_list_bytes;
 335	dest->generic_bio_cnt += victim->generic_bio_cnt;
 336	bio_list_init(&victim->bio_list);
 337}
 338
 339/*
 340 * used to prune items that are in the cache.  The caller
 341 * must hold the hash table lock.
 342 */
 343static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
 344{
 345	int bucket = rbio_bucket(rbio);
 346	struct btrfs_stripe_hash_table *table;
 347	struct btrfs_stripe_hash *h;
 348	int freeit = 0;
 349
 350	/*
 351	 * check the bit again under the hash table lock.
 352	 */
 353	if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
 354		return;
 355
 356	table = rbio->fs_info->stripe_hash_table;
 357	h = table->table + bucket;
 358
 359	/* hold the lock for the bucket because we may be
 360	 * removing it from the hash table
 361	 */
 362	spin_lock(&h->lock);
 363
 364	/*
 365	 * hold the lock for the bio list because we need
 366	 * to make sure the bio list is empty
 367	 */
 368	spin_lock(&rbio->bio_list_lock);
 369
 370	if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) {
 371		list_del_init(&rbio->stripe_cache);
 372		table->cache_size -= 1;
 373		freeit = 1;
 374
 375		/* if the bio list isn't empty, this rbio is
 376		 * still involved in an IO.  We take it out
 377		 * of the cache list, and drop the ref that
 378		 * was held for the list.
 379		 *
 380		 * If the bio_list was empty, we also remove
 381		 * the rbio from the hash_table, and drop
 382		 * the corresponding ref
 383		 */
 384		if (bio_list_empty(&rbio->bio_list)) {
 385			if (!list_empty(&rbio->hash_list)) {
 386				list_del_init(&rbio->hash_list);
 387				refcount_dec(&rbio->refs);
 388				BUG_ON(!list_empty(&rbio->plug_list));
 389			}
 390		}
 391	}
 392
 393	spin_unlock(&rbio->bio_list_lock);
 394	spin_unlock(&h->lock);
 395
 396	if (freeit)
 397		__free_raid_bio(rbio);
 398}
 399
 400/*
 401 * prune a given rbio from the cache
 402 */
 403static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
 404{
 405	struct btrfs_stripe_hash_table *table;
 406	unsigned long flags;
 407
 408	if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
 409		return;
 410
 411	table = rbio->fs_info->stripe_hash_table;
 412
 413	spin_lock_irqsave(&table->cache_lock, flags);
 414	__remove_rbio_from_cache(rbio);
 415	spin_unlock_irqrestore(&table->cache_lock, flags);
 416}
 417
 418/*
 419 * remove everything in the cache
 420 */
 421static void btrfs_clear_rbio_cache(struct btrfs_fs_info *info)
 422{
 423	struct btrfs_stripe_hash_table *table;
 424	unsigned long flags;
 425	struct btrfs_raid_bio *rbio;
 426
 427	table = info->stripe_hash_table;
 428
 429	spin_lock_irqsave(&table->cache_lock, flags);
 430	while (!list_empty(&table->stripe_cache)) {
 431		rbio = list_entry(table->stripe_cache.next,
 432				  struct btrfs_raid_bio,
 433				  stripe_cache);
 434		__remove_rbio_from_cache(rbio);
 435	}
 436	spin_unlock_irqrestore(&table->cache_lock, flags);
 437}
 438
 439/*
 440 * remove all cached entries and free the hash table
 441 * used by unmount
 442 */
 443void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info)
 444{
 445	if (!info->stripe_hash_table)
 446		return;
 447	btrfs_clear_rbio_cache(info);
 448	kvfree(info->stripe_hash_table);
 
 
 
 449	info->stripe_hash_table = NULL;
 450}
 451
 452/*
 453 * insert an rbio into the stripe cache.  It
 454 * must have already been prepared by calling
 455 * cache_rbio_pages
 456 *
 457 * If this rbio was already cached, it gets
 458 * moved to the front of the lru.
 459 *
 460 * If the size of the rbio cache is too big, we
 461 * prune an item.
 462 */
 463static void cache_rbio(struct btrfs_raid_bio *rbio)
 464{
 465	struct btrfs_stripe_hash_table *table;
 466	unsigned long flags;
 467
 468	if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags))
 469		return;
 470
 471	table = rbio->fs_info->stripe_hash_table;
 472
 473	spin_lock_irqsave(&table->cache_lock, flags);
 474	spin_lock(&rbio->bio_list_lock);
 475
 476	/* bump our ref if we were not in the list before */
 477	if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags))
 478		refcount_inc(&rbio->refs);
 479
 480	if (!list_empty(&rbio->stripe_cache)){
 481		list_move(&rbio->stripe_cache, &table->stripe_cache);
 482	} else {
 483		list_add(&rbio->stripe_cache, &table->stripe_cache);
 484		table->cache_size += 1;
 485	}
 486
 487	spin_unlock(&rbio->bio_list_lock);
 488
 489	if (table->cache_size > RBIO_CACHE_SIZE) {
 490		struct btrfs_raid_bio *found;
 491
 492		found = list_entry(table->stripe_cache.prev,
 493				  struct btrfs_raid_bio,
 494				  stripe_cache);
 495
 496		if (found != rbio)
 497			__remove_rbio_from_cache(found);
 498	}
 499
 500	spin_unlock_irqrestore(&table->cache_lock, flags);
 
 501}
 502
 503/*
 504 * helper function to run the xor_blocks api.  It is only
 505 * able to do MAX_XOR_BLOCKS at a time, so we need to
 506 * loop through.
 507 */
 508static void run_xor(void **pages, int src_cnt, ssize_t len)
 509{
 510	int src_off = 0;
 511	int xor_src_cnt = 0;
 512	void *dest = pages[src_cnt];
 513
 514	while(src_cnt > 0) {
 515		xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS);
 516		xor_blocks(xor_src_cnt, len, dest, pages + src_off);
 517
 518		src_cnt -= xor_src_cnt;
 519		src_off += xor_src_cnt;
 520	}
 521}
 522
 523/*
 524 * Returns true if the bio list inside this rbio covers an entire stripe (no
 525 * rmw required).
 
 
 
 526 */
 527static int rbio_is_full(struct btrfs_raid_bio *rbio)
 528{
 529	unsigned long flags;
 530	unsigned long size = rbio->bio_list_bytes;
 531	int ret = 1;
 532
 533	spin_lock_irqsave(&rbio->bio_list_lock, flags);
 534	if (size != rbio->nr_data * rbio->stripe_len)
 535		ret = 0;
 
 536	BUG_ON(size > rbio->nr_data * rbio->stripe_len);
 537	spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
 
 538
 
 
 
 
 
 
 
 
 539	return ret;
 540}
 541
 542/*
 543 * returns 1 if it is safe to merge two rbios together.
 544 * The merging is safe if the two rbios correspond to
 545 * the same stripe and if they are both going in the same
 546 * direction (read vs write), and if neither one is
 547 * locked for final IO
 548 *
 549 * The caller is responsible for locking such that
 550 * rmw_locked is safe to test
 551 */
 552static int rbio_can_merge(struct btrfs_raid_bio *last,
 553			  struct btrfs_raid_bio *cur)
 554{
 555	if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) ||
 556	    test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags))
 557		return 0;
 558
 559	/*
 560	 * we can't merge with cached rbios, since the
 561	 * idea is that when we merge the destination
 562	 * rbio is going to run our IO for us.  We can
 563	 * steal from cached rbios though, other functions
 564	 * handle that.
 565	 */
 566	if (test_bit(RBIO_CACHE_BIT, &last->flags) ||
 567	    test_bit(RBIO_CACHE_BIT, &cur->flags))
 568		return 0;
 569
 570	if (last->bbio->raid_map[0] !=
 571	    cur->bbio->raid_map[0])
 572		return 0;
 573
 574	/* we can't merge with different operations */
 575	if (last->operation != cur->operation)
 576		return 0;
 577	/*
 578	 * We've need read the full stripe from the drive.
 579	 * check and repair the parity and write the new results.
 580	 *
 581	 * We're not allowed to add any new bios to the
 582	 * bio list here, anyone else that wants to
 583	 * change this stripe needs to do their own rmw.
 584	 */
 585	if (last->operation == BTRFS_RBIO_PARITY_SCRUB)
 586		return 0;
 587
 588	if (last->operation == BTRFS_RBIO_REBUILD_MISSING)
 
 
 589		return 0;
 590
 591	if (last->operation == BTRFS_RBIO_READ_REBUILD) {
 592		int fa = last->faila;
 593		int fb = last->failb;
 594		int cur_fa = cur->faila;
 595		int cur_fb = cur->failb;
 596
 597		if (last->faila >= last->failb) {
 598			fa = last->failb;
 599			fb = last->faila;
 600		}
 601
 602		if (cur->faila >= cur->failb) {
 603			cur_fa = cur->failb;
 604			cur_fb = cur->faila;
 605		}
 606
 607		if (fa != cur_fa || fb != cur_fb)
 608			return 0;
 609	}
 610	return 1;
 611}
 612
 613static int rbio_stripe_page_index(struct btrfs_raid_bio *rbio, int stripe,
 614				  int index)
 615{
 616	return stripe * rbio->stripe_npages + index;
 617}
 618
 619/*
 620 * these are just the pages from the rbio array, not from anything
 621 * the FS sent down to us
 622 */
 623static struct page *rbio_stripe_page(struct btrfs_raid_bio *rbio, int stripe,
 624				     int index)
 625{
 626	return rbio->stripe_pages[rbio_stripe_page_index(rbio, stripe, index)];
 627}
 628
 629/*
 630 * helper to index into the pstripe
 631 */
 632static struct page *rbio_pstripe_page(struct btrfs_raid_bio *rbio, int index)
 633{
 634	return rbio_stripe_page(rbio, rbio->nr_data, index);
 
 635}
 636
 637/*
 638 * helper to index into the qstripe, returns null
 639 * if there is no qstripe
 640 */
 641static struct page *rbio_qstripe_page(struct btrfs_raid_bio *rbio, int index)
 642{
 643	if (rbio->nr_data + 1 == rbio->real_stripes)
 644		return NULL;
 645	return rbio_stripe_page(rbio, rbio->nr_data + 1, index);
 
 
 
 646}
 647
 648/*
 649 * The first stripe in the table for a logical address
 650 * has the lock.  rbios are added in one of three ways:
 651 *
 652 * 1) Nobody has the stripe locked yet.  The rbio is given
 653 * the lock and 0 is returned.  The caller must start the IO
 654 * themselves.
 655 *
 656 * 2) Someone has the stripe locked, but we're able to merge
 657 * with the lock owner.  The rbio is freed and the IO will
 658 * start automatically along with the existing rbio.  1 is returned.
 659 *
 660 * 3) Someone has the stripe locked, but we're not able to merge.
 661 * The rbio is added to the lock owner's plug list, or merged into
 662 * an rbio already on the plug list.  When the lock owner unlocks,
 663 * the next rbio on the list is run and the IO is started automatically.
 664 * 1 is returned
 665 *
 666 * If we return 0, the caller still owns the rbio and must continue with
 667 * IO submission.  If we return 1, the caller must assume the rbio has
 668 * already been freed.
 669 */
 670static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio)
 671{
 672	struct btrfs_stripe_hash *h;
 
 673	struct btrfs_raid_bio *cur;
 674	struct btrfs_raid_bio *pending;
 675	unsigned long flags;
 
 676	struct btrfs_raid_bio *freeit = NULL;
 677	struct btrfs_raid_bio *cache_drop = NULL;
 678	int ret = 0;
 679
 680	h = rbio->fs_info->stripe_hash_table->table + rbio_bucket(rbio);
 681
 682	spin_lock_irqsave(&h->lock, flags);
 683	list_for_each_entry(cur, &h->hash_list, hash_list) {
 684		if (cur->bbio->raid_map[0] != rbio->bbio->raid_map[0])
 685			continue;
 686
 687		spin_lock(&cur->bio_list_lock);
 688
 689		/* Can we steal this cached rbio's pages? */
 690		if (bio_list_empty(&cur->bio_list) &&
 691		    list_empty(&cur->plug_list) &&
 692		    test_bit(RBIO_CACHE_BIT, &cur->flags) &&
 693		    !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) {
 694			list_del_init(&cur->hash_list);
 695			refcount_dec(&cur->refs);
 696
 697			steal_rbio(cur, rbio);
 698			cache_drop = cur;
 699			spin_unlock(&cur->bio_list_lock);
 700
 701			goto lockit;
 702		}
 703
 704		/* Can we merge into the lock owner? */
 705		if (rbio_can_merge(cur, rbio)) {
 706			merge_rbio(cur, rbio);
 707			spin_unlock(&cur->bio_list_lock);
 708			freeit = rbio;
 709			ret = 1;
 710			goto out;
 711		}
 712
 
 
 713
 714		/*
 715		 * We couldn't merge with the running rbio, see if we can merge
 716		 * with the pending ones.  We don't have to check for rmw_locked
 717		 * because there is no way they are inside finish_rmw right now
 718		 */
 719		list_for_each_entry(pending, &cur->plug_list, plug_list) {
 720			if (rbio_can_merge(pending, rbio)) {
 721				merge_rbio(pending, rbio);
 722				spin_unlock(&cur->bio_list_lock);
 723				freeit = rbio;
 724				ret = 1;
 725				goto out;
 726			}
 727		}
 728
 729		/*
 730		 * No merging, put us on the tail of the plug list, our rbio
 731		 * will be started with the currently running rbio unlocks
 732		 */
 733		list_add_tail(&rbio->plug_list, &cur->plug_list);
 734		spin_unlock(&cur->bio_list_lock);
 735		ret = 1;
 736		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 737	}
 738lockit:
 739	refcount_inc(&rbio->refs);
 740	list_add(&rbio->hash_list, &h->hash_list);
 741out:
 742	spin_unlock_irqrestore(&h->lock, flags);
 743	if (cache_drop)
 744		remove_rbio_from_cache(cache_drop);
 745	if (freeit)
 746		__free_raid_bio(freeit);
 747	return ret;
 748}
 749
 750/*
 751 * called as rmw or parity rebuild is completed.  If the plug list has more
 752 * rbios waiting for this stripe, the next one on the list will be started
 753 */
 754static noinline void unlock_stripe(struct btrfs_raid_bio *rbio)
 755{
 756	int bucket;
 757	struct btrfs_stripe_hash *h;
 758	unsigned long flags;
 759	int keep_cache = 0;
 760
 761	bucket = rbio_bucket(rbio);
 762	h = rbio->fs_info->stripe_hash_table->table + bucket;
 763
 764	if (list_empty(&rbio->plug_list))
 765		cache_rbio(rbio);
 766
 767	spin_lock_irqsave(&h->lock, flags);
 768	spin_lock(&rbio->bio_list_lock);
 769
 770	if (!list_empty(&rbio->hash_list)) {
 771		/*
 772		 * if we're still cached and there is no other IO
 773		 * to perform, just leave this rbio here for others
 774		 * to steal from later
 775		 */
 776		if (list_empty(&rbio->plug_list) &&
 777		    test_bit(RBIO_CACHE_BIT, &rbio->flags)) {
 778			keep_cache = 1;
 779			clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
 780			BUG_ON(!bio_list_empty(&rbio->bio_list));
 781			goto done;
 782		}
 783
 784		list_del_init(&rbio->hash_list);
 785		refcount_dec(&rbio->refs);
 786
 787		/*
 788		 * we use the plug list to hold all the rbios
 789		 * waiting for the chance to lock this stripe.
 790		 * hand the lock over to one of them.
 791		 */
 792		if (!list_empty(&rbio->plug_list)) {
 793			struct btrfs_raid_bio *next;
 794			struct list_head *head = rbio->plug_list.next;
 795
 796			next = list_entry(head, struct btrfs_raid_bio,
 797					  plug_list);
 798
 799			list_del_init(&rbio->plug_list);
 800
 801			list_add(&next->hash_list, &h->hash_list);
 802			refcount_inc(&next->refs);
 803			spin_unlock(&rbio->bio_list_lock);
 804			spin_unlock_irqrestore(&h->lock, flags);
 805
 806			if (next->operation == BTRFS_RBIO_READ_REBUILD)
 807				start_async_work(next, read_rebuild_work);
 808			else if (next->operation == BTRFS_RBIO_REBUILD_MISSING) {
 809				steal_rbio(rbio, next);
 810				start_async_work(next, read_rebuild_work);
 811			} else if (next->operation == BTRFS_RBIO_WRITE) {
 812				steal_rbio(rbio, next);
 813				start_async_work(next, rmw_work);
 814			} else if (next->operation == BTRFS_RBIO_PARITY_SCRUB) {
 815				steal_rbio(rbio, next);
 816				start_async_work(next, scrub_parity_work);
 817			}
 818
 819			goto done_nolock;
 
 
 
 
 
 820		}
 821	}
 822done:
 823	spin_unlock(&rbio->bio_list_lock);
 824	spin_unlock_irqrestore(&h->lock, flags);
 825
 826done_nolock:
 827	if (!keep_cache)
 828		remove_rbio_from_cache(rbio);
 829}
 830
 831static void __free_raid_bio(struct btrfs_raid_bio *rbio)
 832{
 833	int i;
 834
 835	if (!refcount_dec_and_test(&rbio->refs))
 
 836		return;
 837
 838	WARN_ON(!list_empty(&rbio->stripe_cache));
 839	WARN_ON(!list_empty(&rbio->hash_list));
 840	WARN_ON(!bio_list_empty(&rbio->bio_list));
 841
 842	for (i = 0; i < rbio->nr_pages; i++) {
 843		if (rbio->stripe_pages[i]) {
 844			__free_page(rbio->stripe_pages[i]);
 845			rbio->stripe_pages[i] = NULL;
 846		}
 847	}
 848
 849	btrfs_put_bbio(rbio->bbio);
 850	kfree(rbio);
 851}
 852
 853static void rbio_endio_bio_list(struct bio *cur, blk_status_t err)
 854{
 855	struct bio *next;
 856
 857	while (cur) {
 858		next = cur->bi_next;
 859		cur->bi_next = NULL;
 860		cur->bi_status = err;
 861		bio_endio(cur);
 862		cur = next;
 863	}
 864}
 865
 866/*
 867 * this frees the rbio and runs through all the bios in the
 868 * bio_list and calls end_io on them
 869 */
 870static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, blk_status_t err)
 871{
 872	struct bio *cur = bio_list_get(&rbio->bio_list);
 873	struct bio *extra;
 874
 875	if (rbio->generic_bio_cnt)
 876		btrfs_bio_counter_sub(rbio->fs_info, rbio->generic_bio_cnt);
 877
 878	/*
 879	 * At this moment, rbio->bio_list is empty, however since rbio does not
 880	 * always have RBIO_RMW_LOCKED_BIT set and rbio is still linked on the
 881	 * hash list, rbio may be merged with others so that rbio->bio_list
 882	 * becomes non-empty.
 883	 * Once unlock_stripe() is done, rbio->bio_list will not be updated any
 884	 * more and we can call bio_endio() on all queued bios.
 885	 */
 886	unlock_stripe(rbio);
 887	extra = bio_list_get(&rbio->bio_list);
 888	__free_raid_bio(rbio);
 889
 890	rbio_endio_bio_list(cur, err);
 891	if (extra)
 892		rbio_endio_bio_list(extra, err);
 
 
 
 
 
 893}
 894
 895/*
 896 * end io function used by finish_rmw.  When we finally
 897 * get here, we've written a full stripe
 898 */
 899static void raid_write_end_io(struct bio *bio)
 900{
 901	struct btrfs_raid_bio *rbio = bio->bi_private;
 902	blk_status_t err = bio->bi_status;
 903	int max_errors;
 904
 905	if (err)
 906		fail_bio_stripe(rbio, bio);
 907
 908	bio_put(bio);
 909
 910	if (!atomic_dec_and_test(&rbio->stripes_pending))
 911		return;
 912
 913	err = BLK_STS_OK;
 914
 915	/* OK, we have read all the stripes we need to. */
 916	max_errors = (rbio->operation == BTRFS_RBIO_PARITY_SCRUB) ?
 917		     0 : rbio->bbio->max_errors;
 918	if (atomic_read(&rbio->error) > max_errors)
 919		err = BLK_STS_IOERR;
 920
 921	rbio_orig_end_io(rbio, err);
 
 922}
 923
 924/*
 925 * the read/modify/write code wants to use the original bio for
 926 * any pages it included, and then use the rbio for everything
 927 * else.  This function decides if a given index (stripe number)
 928 * and page number in that stripe fall inside the original bio
 929 * or the rbio.
 930 *
 931 * if you set bio_list_only, you'll get a NULL back for any ranges
 932 * that are outside the bio_list
 933 *
 934 * This doesn't take any refs on anything, you get a bare page pointer
 935 * and the caller must bump refs as required.
 936 *
 937 * You must call index_rbio_pages once before you can trust
 938 * the answers from this function.
 939 */
 940static struct page *page_in_rbio(struct btrfs_raid_bio *rbio,
 941				 int index, int pagenr, int bio_list_only)
 942{
 943	int chunk_page;
 944	struct page *p = NULL;
 945
 946	chunk_page = index * (rbio->stripe_len >> PAGE_SHIFT) + pagenr;
 947
 948	spin_lock_irq(&rbio->bio_list_lock);
 949	p = rbio->bio_pages[chunk_page];
 950	spin_unlock_irq(&rbio->bio_list_lock);
 951
 952	if (p || bio_list_only)
 953		return p;
 954
 955	return rbio->stripe_pages[chunk_page];
 956}
 957
 958/*
 959 * number of pages we need for the entire stripe across all the
 960 * drives
 961 */
 962static unsigned long rbio_nr_pages(unsigned long stripe_len, int nr_stripes)
 963{
 964	return DIV_ROUND_UP(stripe_len, PAGE_SIZE) * nr_stripes;
 
 965}
 966
 967/*
 968 * allocation and initial setup for the btrfs_raid_bio.  Not
 969 * this does not allocate any pages for rbio->pages.
 970 */
 971static struct btrfs_raid_bio *alloc_rbio(struct btrfs_fs_info *fs_info,
 972					 struct btrfs_bio *bbio,
 973					 u64 stripe_len)
 974{
 975	struct btrfs_raid_bio *rbio;
 976	int nr_data = 0;
 977	int real_stripes = bbio->num_stripes - bbio->num_tgtdevs;
 978	int num_pages = rbio_nr_pages(stripe_len, real_stripes);
 979	int stripe_npages = DIV_ROUND_UP(stripe_len, PAGE_SIZE);
 980	void *p;
 981
 982	rbio = kzalloc(sizeof(*rbio) +
 983		       sizeof(*rbio->stripe_pages) * num_pages +
 984		       sizeof(*rbio->bio_pages) * num_pages +
 985		       sizeof(*rbio->finish_pointers) * real_stripes +
 986		       sizeof(*rbio->dbitmap) * BITS_TO_LONGS(stripe_npages) +
 987		       sizeof(*rbio->finish_pbitmap) *
 988				BITS_TO_LONGS(stripe_npages),
 989		       GFP_NOFS);
 990	if (!rbio)
 991		return ERR_PTR(-ENOMEM);
 
 992
 993	bio_list_init(&rbio->bio_list);
 994	INIT_LIST_HEAD(&rbio->plug_list);
 995	spin_lock_init(&rbio->bio_list_lock);
 996	INIT_LIST_HEAD(&rbio->stripe_cache);
 997	INIT_LIST_HEAD(&rbio->hash_list);
 998	rbio->bbio = bbio;
 999	rbio->fs_info = fs_info;
 
1000	rbio->stripe_len = stripe_len;
1001	rbio->nr_pages = num_pages;
1002	rbio->real_stripes = real_stripes;
1003	rbio->stripe_npages = stripe_npages;
1004	rbio->faila = -1;
1005	rbio->failb = -1;
1006	refcount_set(&rbio->refs, 1);
1007	atomic_set(&rbio->error, 0);
1008	atomic_set(&rbio->stripes_pending, 0);
1009
1010	/*
1011	 * the stripe_pages, bio_pages, etc arrays point to the extra
1012	 * memory we allocated past the end of the rbio
1013	 */
1014	p = rbio + 1;
1015#define CONSUME_ALLOC(ptr, count)	do {				\
1016		ptr = p;						\
1017		p = (unsigned char *)p + sizeof(*(ptr)) * (count);	\
1018	} while (0)
1019	CONSUME_ALLOC(rbio->stripe_pages, num_pages);
1020	CONSUME_ALLOC(rbio->bio_pages, num_pages);
1021	CONSUME_ALLOC(rbio->finish_pointers, real_stripes);
1022	CONSUME_ALLOC(rbio->dbitmap, BITS_TO_LONGS(stripe_npages));
1023	CONSUME_ALLOC(rbio->finish_pbitmap, BITS_TO_LONGS(stripe_npages));
1024#undef  CONSUME_ALLOC
1025
1026	if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
1027		nr_data = real_stripes - 1;
1028	else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
1029		nr_data = real_stripes - 2;
1030	else
1031		BUG();
1032
1033	rbio->nr_data = nr_data;
1034	return rbio;
1035}
1036
1037/* allocate pages for all the stripes in the bio, including parity */
1038static int alloc_rbio_pages(struct btrfs_raid_bio *rbio)
1039{
1040	int i;
1041	struct page *page;
1042
1043	for (i = 0; i < rbio->nr_pages; i++) {
1044		if (rbio->stripe_pages[i])
1045			continue;
1046		page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1047		if (!page)
1048			return -ENOMEM;
1049		rbio->stripe_pages[i] = page;
 
1050	}
1051	return 0;
1052}
1053
1054/* only allocate pages for p/q stripes */
1055static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio)
1056{
1057	int i;
1058	struct page *page;
1059
1060	i = rbio_stripe_page_index(rbio, rbio->nr_data, 0);
1061
1062	for (; i < rbio->nr_pages; i++) {
1063		if (rbio->stripe_pages[i])
1064			continue;
1065		page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1066		if (!page)
1067			return -ENOMEM;
1068		rbio->stripe_pages[i] = page;
1069	}
1070	return 0;
1071}
1072
1073/*
1074 * add a single page from a specific stripe into our list of bios for IO
1075 * this will try to merge into existing bios if possible, and returns
1076 * zero if all went well.
1077 */
1078static int rbio_add_io_page(struct btrfs_raid_bio *rbio,
1079			    struct bio_list *bio_list,
1080			    struct page *page,
1081			    int stripe_nr,
1082			    unsigned long page_index,
1083			    unsigned long bio_max_len)
1084{
1085	struct bio *last = bio_list->tail;
 
1086	int ret;
1087	struct bio *bio;
1088	struct btrfs_bio_stripe *stripe;
1089	u64 disk_start;
1090
1091	stripe = &rbio->bbio->stripes[stripe_nr];
1092	disk_start = stripe->physical + (page_index << PAGE_SHIFT);
1093
1094	/* if the device is missing, just fail this stripe */
1095	if (!stripe->dev->bdev)
1096		return fail_rbio_index(rbio, stripe_nr);
1097
1098	/* see if we can add this page onto our existing bio */
1099	if (last) {
1100		u64 last_end = (u64)last->bi_iter.bi_sector << 9;
1101		last_end += last->bi_iter.bi_size;
1102
1103		/*
1104		 * we can't merge these if they are from different
1105		 * devices or if they are not contiguous
1106		 */
1107		if (last_end == disk_start && !last->bi_status &&
1108		    last->bi_disk == stripe->dev->bdev->bd_disk &&
1109		    last->bi_partno == stripe->dev->bdev->bd_partno) {
1110			ret = bio_add_page(last, page, PAGE_SIZE, 0);
1111			if (ret == PAGE_SIZE)
1112				return 0;
1113		}
1114	}
1115
1116	/* put a new bio on the list */
1117	bio = btrfs_io_bio_alloc(bio_max_len >> PAGE_SHIFT ?: 1);
1118	btrfs_io_bio(bio)->device = stripe->dev;
 
 
1119	bio->bi_iter.bi_size = 0;
1120	bio_set_dev(bio, stripe->dev->bdev);
1121	bio->bi_iter.bi_sector = disk_start >> 9;
 
1122
1123	bio_add_page(bio, page, PAGE_SIZE, 0);
1124	bio_list_add(bio_list, bio);
1125	return 0;
1126}
1127
1128/*
1129 * while we're doing the read/modify/write cycle, we could
1130 * have errors in reading pages off the disk.  This checks
1131 * for errors and if we're not able to read the page it'll
1132 * trigger parity reconstruction.  The rmw will be finished
1133 * after we've reconstructed the failed stripes
1134 */
1135static void validate_rbio_for_rmw(struct btrfs_raid_bio *rbio)
1136{
1137	if (rbio->faila >= 0 || rbio->failb >= 0) {
1138		BUG_ON(rbio->faila == rbio->real_stripes - 1);
1139		__raid56_parity_recover(rbio);
1140	} else {
1141		finish_rmw(rbio);
1142	}
1143}
1144
1145/*
 
 
 
 
 
 
 
 
 
 
 
 
1146 * helper function to walk our bio list and populate the bio_pages array with
1147 * the result.  This seems expensive, but it is faster than constantly
1148 * searching through the bio list as we setup the IO in finish_rmw or stripe
1149 * reconstruction.
1150 *
1151 * This must be called before you trust the answers from page_in_rbio
1152 */
1153static void index_rbio_pages(struct btrfs_raid_bio *rbio)
1154{
1155	struct bio *bio;
1156	u64 start;
1157	unsigned long stripe_offset;
1158	unsigned long page_index;
 
 
1159
1160	spin_lock_irq(&rbio->bio_list_lock);
1161	bio_list_for_each(bio, &rbio->bio_list) {
1162		struct bio_vec bvec;
1163		struct bvec_iter iter;
1164		int i = 0;
1165
1166		start = (u64)bio->bi_iter.bi_sector << 9;
1167		stripe_offset = start - rbio->bbio->raid_map[0];
1168		page_index = stripe_offset >> PAGE_SHIFT;
1169
1170		if (bio_flagged(bio, BIO_CLONED))
1171			bio->bi_iter = btrfs_io_bio(bio)->iter;
1172
1173		bio_for_each_segment(bvec, bio, iter) {
1174			rbio->bio_pages[page_index + i] = bvec.bv_page;
1175			i++;
1176		}
1177	}
1178	spin_unlock_irq(&rbio->bio_list_lock);
1179}
1180
1181/*
1182 * this is called from one of two situations.  We either
1183 * have a full stripe from the higher layers, or we've read all
1184 * the missing bits off disk.
1185 *
1186 * This will calculate the parity and then send down any
1187 * changed blocks.
1188 */
1189static noinline void finish_rmw(struct btrfs_raid_bio *rbio)
1190{
1191	struct btrfs_bio *bbio = rbio->bbio;
1192	void **pointers = rbio->finish_pointers;
 
1193	int nr_data = rbio->nr_data;
1194	int stripe;
1195	int pagenr;
1196	bool has_qstripe;
 
1197	struct bio_list bio_list;
1198	struct bio *bio;
 
1199	int ret;
1200
1201	bio_list_init(&bio_list);
1202
1203	if (rbio->real_stripes - rbio->nr_data == 1)
1204		has_qstripe = false;
1205	else if (rbio->real_stripes - rbio->nr_data == 2)
1206		has_qstripe = true;
1207	else
 
1208		BUG();
 
1209
1210	/* at this point we either have a full stripe,
1211	 * or we've read the full stripe from the drive.
1212	 * recalculate the parity and write the new results.
1213	 *
1214	 * We're not allowed to add any new bios to the
1215	 * bio list here, anyone else that wants to
1216	 * change this stripe needs to do their own rmw.
1217	 */
1218	spin_lock_irq(&rbio->bio_list_lock);
1219	set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1220	spin_unlock_irq(&rbio->bio_list_lock);
1221
1222	atomic_set(&rbio->error, 0);
1223
1224	/*
1225	 * now that we've set rmw_locked, run through the
1226	 * bio list one last time and map the page pointers
1227	 *
1228	 * We don't cache full rbios because we're assuming
1229	 * the higher layers are unlikely to use this area of
1230	 * the disk again soon.  If they do use it again,
1231	 * hopefully they will send another full bio.
1232	 */
1233	index_rbio_pages(rbio);
1234	if (!rbio_is_full(rbio))
1235		cache_rbio_pages(rbio);
1236	else
1237		clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
1238
1239	for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1240		struct page *p;
1241		/* first collect one page from each data stripe */
1242		for (stripe = 0; stripe < nr_data; stripe++) {
1243			p = page_in_rbio(rbio, stripe, pagenr, 0);
1244			pointers[stripe] = kmap(p);
1245		}
1246
1247		/* then add the parity stripe */
1248		p = rbio_pstripe_page(rbio, pagenr);
1249		SetPageUptodate(p);
1250		pointers[stripe++] = kmap(p);
1251
1252		if (has_qstripe) {
1253
1254			/*
1255			 * raid6, add the qstripe and call the
1256			 * library function to fill in our p/q
1257			 */
1258			p = rbio_qstripe_page(rbio, pagenr);
1259			SetPageUptodate(p);
1260			pointers[stripe++] = kmap(p);
1261
1262			raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE,
1263						pointers);
1264		} else {
1265			/* raid5 */
1266			copy_page(pointers[nr_data], pointers[0]);
1267			run_xor(pointers + 1, nr_data - 1, PAGE_SIZE);
1268		}
1269
1270
1271		for (stripe = 0; stripe < rbio->real_stripes; stripe++)
1272			kunmap(page_in_rbio(rbio, stripe, pagenr, 0));
1273	}
1274
1275	/*
1276	 * time to start writing.  Make bios for everything from the
1277	 * higher layers (the bio_list in our rbio) and our p/q.  Ignore
1278	 * everything else.
1279	 */
1280	for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1281		for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1282			struct page *page;
1283			if (stripe < rbio->nr_data) {
1284				page = page_in_rbio(rbio, stripe, pagenr, 1);
1285				if (!page)
1286					continue;
1287			} else {
1288			       page = rbio_stripe_page(rbio, stripe, pagenr);
1289			}
1290
1291			ret = rbio_add_io_page(rbio, &bio_list,
1292				       page, stripe, pagenr, rbio->stripe_len);
1293			if (ret)
1294				goto cleanup;
1295		}
1296	}
1297
1298	if (likely(!bbio->num_tgtdevs))
1299		goto write_data;
1300
1301	for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1302		if (!bbio->tgtdev_map[stripe])
1303			continue;
1304
1305		for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1306			struct page *page;
1307			if (stripe < rbio->nr_data) {
1308				page = page_in_rbio(rbio, stripe, pagenr, 1);
1309				if (!page)
1310					continue;
1311			} else {
1312			       page = rbio_stripe_page(rbio, stripe, pagenr);
1313			}
1314
1315			ret = rbio_add_io_page(rbio, &bio_list, page,
1316					       rbio->bbio->tgtdev_map[stripe],
1317					       pagenr, rbio->stripe_len);
1318			if (ret)
1319				goto cleanup;
1320		}
1321	}
1322
1323write_data:
1324	atomic_set(&rbio->stripes_pending, bio_list_size(&bio_list));
1325	BUG_ON(atomic_read(&rbio->stripes_pending) == 0);
 
1326
1327	while ((bio = bio_list_pop(&bio_list))) {
1328		bio->bi_private = rbio;
1329		bio->bi_end_io = raid_write_end_io;
1330		bio->bi_opf = REQ_OP_WRITE;
1331
1332		submit_bio(bio);
1333	}
1334	return;
1335
1336cleanup:
1337	rbio_orig_end_io(rbio, BLK_STS_IOERR);
1338
1339	while ((bio = bio_list_pop(&bio_list)))
1340		bio_put(bio);
1341}
1342
1343/*
1344 * helper to find the stripe number for a given bio.  Used to figure out which
1345 * stripe has failed.  This expects the bio to correspond to a physical disk,
1346 * so it looks up based on physical sector numbers.
1347 */
1348static int find_bio_stripe(struct btrfs_raid_bio *rbio,
1349			   struct bio *bio)
1350{
1351	u64 physical = bio->bi_iter.bi_sector;
 
1352	int i;
1353	struct btrfs_bio_stripe *stripe;
1354
1355	physical <<= 9;
1356
1357	for (i = 0; i < rbio->bbio->num_stripes; i++) {
1358		stripe = &rbio->bbio->stripes[i];
1359		if (in_range(physical, stripe->physical, rbio->stripe_len) &&
1360		    stripe->dev->bdev &&
1361		    bio->bi_disk == stripe->dev->bdev->bd_disk &&
1362		    bio->bi_partno == stripe->dev->bdev->bd_partno) {
1363			return i;
1364		}
1365	}
1366	return -1;
1367}
1368
1369/*
1370 * helper to find the stripe number for a given
1371 * bio (before mapping).  Used to figure out which stripe has
1372 * failed.  This looks up based on logical block numbers.
1373 */
1374static int find_logical_bio_stripe(struct btrfs_raid_bio *rbio,
1375				   struct bio *bio)
1376{
1377	u64 logical = (u64)bio->bi_iter.bi_sector << 9;
 
1378	int i;
1379
1380	for (i = 0; i < rbio->nr_data; i++) {
1381		u64 stripe_start = rbio->bbio->raid_map[i];
1382
1383		if (in_range(logical, stripe_start, rbio->stripe_len))
 
 
 
1384			return i;
 
1385	}
1386	return -1;
1387}
1388
1389/*
1390 * returns -EIO if we had too many failures
1391 */
1392static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed)
1393{
1394	unsigned long flags;
1395	int ret = 0;
1396
1397	spin_lock_irqsave(&rbio->bio_list_lock, flags);
1398
1399	/* we already know this stripe is bad, move on */
1400	if (rbio->faila == failed || rbio->failb == failed)
1401		goto out;
1402
1403	if (rbio->faila == -1) {
1404		/* first failure on this rbio */
1405		rbio->faila = failed;
1406		atomic_inc(&rbio->error);
1407	} else if (rbio->failb == -1) {
1408		/* second failure on this rbio */
1409		rbio->failb = failed;
1410		atomic_inc(&rbio->error);
1411	} else {
1412		ret = -EIO;
1413	}
1414out:
1415	spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
1416
1417	return ret;
1418}
1419
1420/*
1421 * helper to fail a stripe based on a physical disk
1422 * bio.
1423 */
1424static int fail_bio_stripe(struct btrfs_raid_bio *rbio,
1425			   struct bio *bio)
1426{
1427	int failed = find_bio_stripe(rbio, bio);
1428
1429	if (failed < 0)
1430		return -EIO;
1431
1432	return fail_rbio_index(rbio, failed);
1433}
1434
1435/*
1436 * this sets each page in the bio uptodate.  It should only be used on private
1437 * rbio pages, nothing that comes in from the higher layers
1438 */
1439static void set_bio_pages_uptodate(struct bio *bio)
1440{
1441	struct bio_vec *bvec;
1442	struct bvec_iter_all iter_all;
1443
1444	ASSERT(!bio_flagged(bio, BIO_CLONED));
1445
1446	bio_for_each_segment_all(bvec, bio, iter_all)
1447		SetPageUptodate(bvec->bv_page);
 
 
1448}
1449
1450/*
1451 * end io for the read phase of the rmw cycle.  All the bios here are physical
1452 * stripe bios we've read from the disk so we can recalculate the parity of the
1453 * stripe.
1454 *
1455 * This will usually kick off finish_rmw once all the bios are read in, but it
1456 * may trigger parity reconstruction if we had any errors along the way
1457 */
1458static void raid_rmw_end_io(struct bio *bio)
1459{
1460	struct btrfs_raid_bio *rbio = bio->bi_private;
1461
1462	if (bio->bi_status)
1463		fail_bio_stripe(rbio, bio);
1464	else
1465		set_bio_pages_uptodate(bio);
1466
1467	bio_put(bio);
1468
1469	if (!atomic_dec_and_test(&rbio->stripes_pending))
1470		return;
1471
1472	if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
 
1473		goto cleanup;
1474
1475	/*
1476	 * this will normally call finish_rmw to start our write
1477	 * but if there are any failed stripes we'll reconstruct
1478	 * from parity first
1479	 */
1480	validate_rbio_for_rmw(rbio);
1481	return;
1482
1483cleanup:
1484
1485	rbio_orig_end_io(rbio, BLK_STS_IOERR);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1486}
1487
1488/*
1489 * the stripe must be locked by the caller.  It will
1490 * unlock after all the writes are done
1491 */
1492static int raid56_rmw_stripe(struct btrfs_raid_bio *rbio)
1493{
1494	int bios_to_read = 0;
 
1495	struct bio_list bio_list;
1496	int ret;
 
1497	int pagenr;
1498	int stripe;
1499	struct bio *bio;
1500
1501	bio_list_init(&bio_list);
1502
1503	ret = alloc_rbio_pages(rbio);
1504	if (ret)
1505		goto cleanup;
1506
1507	index_rbio_pages(rbio);
1508
1509	atomic_set(&rbio->error, 0);
1510	/*
1511	 * build a list of bios to read all the missing parts of this
1512	 * stripe
1513	 */
1514	for (stripe = 0; stripe < rbio->nr_data; stripe++) {
1515		for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1516			struct page *page;
1517			/*
1518			 * we want to find all the pages missing from
1519			 * the rbio and read them from the disk.  If
1520			 * page_in_rbio finds a page in the bio list
1521			 * we don't need to read it off the stripe.
1522			 */
1523			page = page_in_rbio(rbio, stripe, pagenr, 1);
1524			if (page)
1525				continue;
1526
1527			page = rbio_stripe_page(rbio, stripe, pagenr);
1528			/*
1529			 * the bio cache may have handed us an uptodate
1530			 * page.  If so, be happy and use it
1531			 */
1532			if (PageUptodate(page))
1533				continue;
1534
1535			ret = rbio_add_io_page(rbio, &bio_list, page,
1536				       stripe, pagenr, rbio->stripe_len);
1537			if (ret)
1538				goto cleanup;
1539		}
1540	}
1541
1542	bios_to_read = bio_list_size(&bio_list);
1543	if (!bios_to_read) {
1544		/*
1545		 * this can happen if others have merged with
1546		 * us, it means there is nothing left to read.
1547		 * But if there are missing devices it may not be
1548		 * safe to do the full stripe write yet.
1549		 */
1550		goto finish;
1551	}
1552
1553	/*
1554	 * the bbio may be freed once we submit the last bio.  Make sure
1555	 * not to touch it after that
1556	 */
1557	atomic_set(&rbio->stripes_pending, bios_to_read);
1558	while ((bio = bio_list_pop(&bio_list))) {
 
 
 
 
1559		bio->bi_private = rbio;
1560		bio->bi_end_io = raid_rmw_end_io;
1561		bio->bi_opf = REQ_OP_READ;
1562
1563		btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56);
 
1564
1565		submit_bio(bio);
 
1566	}
1567	/* the actual write will happen once the reads are done */
1568	return 0;
1569
1570cleanup:
1571	rbio_orig_end_io(rbio, BLK_STS_IOERR);
1572
1573	while ((bio = bio_list_pop(&bio_list)))
1574		bio_put(bio);
1575
1576	return -EIO;
1577
1578finish:
1579	validate_rbio_for_rmw(rbio);
1580	return 0;
1581}
1582
1583/*
1584 * if the upper layers pass in a full stripe, we thank them by only allocating
1585 * enough pages to hold the parity, and sending it all down quickly.
1586 */
1587static int full_stripe_write(struct btrfs_raid_bio *rbio)
1588{
1589	int ret;
1590
1591	ret = alloc_rbio_parity_pages(rbio);
1592	if (ret) {
1593		__free_raid_bio(rbio);
1594		return ret;
1595	}
1596
1597	ret = lock_stripe_add(rbio);
1598	if (ret == 0)
1599		finish_rmw(rbio);
1600	return 0;
1601}
1602
1603/*
1604 * partial stripe writes get handed over to async helpers.
1605 * We're really hoping to merge a few more writes into this
1606 * rbio before calculating new parity
1607 */
1608static int partial_stripe_write(struct btrfs_raid_bio *rbio)
1609{
1610	int ret;
1611
1612	ret = lock_stripe_add(rbio);
1613	if (ret == 0)
1614		start_async_work(rbio, rmw_work);
1615	return 0;
1616}
1617
1618/*
1619 * sometimes while we were reading from the drive to
1620 * recalculate parity, enough new bios come into create
1621 * a full stripe.  So we do a check here to see if we can
1622 * go directly to finish_rmw
1623 */
1624static int __raid56_parity_write(struct btrfs_raid_bio *rbio)
1625{
1626	/* head off into rmw land if we don't have a full stripe */
1627	if (!rbio_is_full(rbio))
1628		return partial_stripe_write(rbio);
1629	return full_stripe_write(rbio);
1630}
1631
1632/*
1633 * We use plugging call backs to collect full stripes.
1634 * Any time we get a partial stripe write while plugged
1635 * we collect it into a list.  When the unplug comes down,
1636 * we sort the list by logical block number and merge
1637 * everything we can into the same rbios
1638 */
1639struct btrfs_plug_cb {
1640	struct blk_plug_cb cb;
1641	struct btrfs_fs_info *info;
1642	struct list_head rbio_list;
1643	struct btrfs_work work;
1644};
1645
1646/*
1647 * rbios on the plug list are sorted for easier merging.
1648 */
1649static int plug_cmp(void *priv, struct list_head *a, struct list_head *b)
1650{
1651	struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio,
1652						 plug_list);
1653	struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio,
1654						 plug_list);
1655	u64 a_sector = ra->bio_list.head->bi_iter.bi_sector;
1656	u64 b_sector = rb->bio_list.head->bi_iter.bi_sector;
1657
1658	if (a_sector < b_sector)
1659		return -1;
1660	if (a_sector > b_sector)
1661		return 1;
1662	return 0;
1663}
1664
1665static void run_plug(struct btrfs_plug_cb *plug)
1666{
1667	struct btrfs_raid_bio *cur;
1668	struct btrfs_raid_bio *last = NULL;
1669
1670	/*
1671	 * sort our plug list then try to merge
1672	 * everything we can in hopes of creating full
1673	 * stripes.
1674	 */
1675	list_sort(NULL, &plug->rbio_list, plug_cmp);
1676	while (!list_empty(&plug->rbio_list)) {
1677		cur = list_entry(plug->rbio_list.next,
1678				 struct btrfs_raid_bio, plug_list);
1679		list_del_init(&cur->plug_list);
1680
1681		if (rbio_is_full(cur)) {
1682			int ret;
1683
1684			/* we have a full stripe, send it down */
1685			ret = full_stripe_write(cur);
1686			BUG_ON(ret);
1687			continue;
1688		}
1689		if (last) {
1690			if (rbio_can_merge(last, cur)) {
1691				merge_rbio(last, cur);
1692				__free_raid_bio(cur);
1693				continue;
1694
1695			}
1696			__raid56_parity_write(last);
1697		}
1698		last = cur;
1699	}
1700	if (last) {
1701		__raid56_parity_write(last);
1702	}
1703	kfree(plug);
1704}
1705
1706/*
1707 * if the unplug comes from schedule, we have to push the
1708 * work off to a helper thread
1709 */
1710static void unplug_work(struct btrfs_work *work)
1711{
1712	struct btrfs_plug_cb *plug;
1713	plug = container_of(work, struct btrfs_plug_cb, work);
1714	run_plug(plug);
1715}
1716
1717static void btrfs_raid_unplug(struct blk_plug_cb *cb, bool from_schedule)
1718{
1719	struct btrfs_plug_cb *plug;
1720	plug = container_of(cb, struct btrfs_plug_cb, cb);
1721
1722	if (from_schedule) {
1723		btrfs_init_work(&plug->work, unplug_work, NULL, NULL);
1724		btrfs_queue_work(plug->info->rmw_workers,
1725				 &plug->work);
1726		return;
1727	}
1728	run_plug(plug);
1729}
1730
1731/*
1732 * our main entry point for writes from the rest of the FS.
1733 */
1734int raid56_parity_write(struct btrfs_fs_info *fs_info, struct bio *bio,
1735			struct btrfs_bio *bbio, u64 stripe_len)
 
1736{
1737	struct btrfs_raid_bio *rbio;
1738	struct btrfs_plug_cb *plug = NULL;
1739	struct blk_plug_cb *cb;
1740	int ret;
1741
1742	rbio = alloc_rbio(fs_info, bbio, stripe_len);
1743	if (IS_ERR(rbio)) {
1744		btrfs_put_bbio(bbio);
1745		return PTR_ERR(rbio);
1746	}
1747	bio_list_add(&rbio->bio_list, bio);
1748	rbio->bio_list_bytes = bio->bi_iter.bi_size;
1749	rbio->operation = BTRFS_RBIO_WRITE;
1750
1751	btrfs_bio_counter_inc_noblocked(fs_info);
1752	rbio->generic_bio_cnt = 1;
1753
1754	/*
1755	 * don't plug on full rbios, just get them out the door
1756	 * as quickly as we can
1757	 */
1758	if (rbio_is_full(rbio)) {
1759		ret = full_stripe_write(rbio);
1760		if (ret)
1761			btrfs_bio_counter_dec(fs_info);
1762		return ret;
1763	}
1764
1765	cb = blk_check_plugged(btrfs_raid_unplug, fs_info, sizeof(*plug));
 
1766	if (cb) {
1767		plug = container_of(cb, struct btrfs_plug_cb, cb);
1768		if (!plug->info) {
1769			plug->info = fs_info;
1770			INIT_LIST_HEAD(&plug->rbio_list);
1771		}
1772		list_add_tail(&rbio->plug_list, &plug->rbio_list);
1773		ret = 0;
1774	} else {
1775		ret = __raid56_parity_write(rbio);
1776		if (ret)
1777			btrfs_bio_counter_dec(fs_info);
1778	}
1779	return ret;
1780}
1781
1782/*
1783 * all parity reconstruction happens here.  We've read in everything
1784 * we can find from the drives and this does the heavy lifting of
1785 * sorting the good from the bad.
1786 */
1787static void __raid_recover_end_io(struct btrfs_raid_bio *rbio)
1788{
1789	int pagenr, stripe;
1790	void **pointers;
1791	int faila = -1, failb = -1;
 
1792	struct page *page;
1793	blk_status_t err;
1794	int i;
1795
1796	pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
 
1797	if (!pointers) {
1798		err = BLK_STS_RESOURCE;
1799		goto cleanup_io;
1800	}
1801
1802	faila = rbio->faila;
1803	failb = rbio->failb;
1804
1805	if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1806	    rbio->operation == BTRFS_RBIO_REBUILD_MISSING) {
1807		spin_lock_irq(&rbio->bio_list_lock);
1808		set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1809		spin_unlock_irq(&rbio->bio_list_lock);
1810	}
1811
1812	index_rbio_pages(rbio);
1813
1814	for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1815		/*
1816		 * Now we just use bitmap to mark the horizontal stripes in
1817		 * which we have data when doing parity scrub.
1818		 */
1819		if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB &&
1820		    !test_bit(pagenr, rbio->dbitmap))
1821			continue;
1822
1823		/* setup our array of pointers with pages
1824		 * from each stripe
1825		 */
1826		for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1827			/*
1828			 * if we're rebuilding a read, we have to use
1829			 * pages from the bio list
1830			 */
1831			if ((rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1832			     rbio->operation == BTRFS_RBIO_REBUILD_MISSING) &&
1833			    (stripe == faila || stripe == failb)) {
1834				page = page_in_rbio(rbio, stripe, pagenr, 0);
1835			} else {
1836				page = rbio_stripe_page(rbio, stripe, pagenr);
1837			}
1838			pointers[stripe] = kmap(page);
1839		}
1840
1841		/* all raid6 handling here */
1842		if (rbio->bbio->map_type & BTRFS_BLOCK_GROUP_RAID6) {
 
 
1843			/*
1844			 * single failure, rebuild from parity raid5
1845			 * style
1846			 */
1847			if (failb < 0) {
1848				if (faila == rbio->nr_data) {
1849					/*
1850					 * Just the P stripe has failed, without
1851					 * a bad data or Q stripe.
1852					 * TODO, we should redo the xor here.
1853					 */
1854					err = BLK_STS_IOERR;
1855					goto cleanup;
1856				}
1857				/*
1858				 * a single failure in raid6 is rebuilt
1859				 * in the pstripe code below
1860				 */
1861				goto pstripe;
1862			}
1863
1864			/* make sure our ps and qs are in order */
1865			if (faila > failb)
1866				swap(faila, failb);
 
 
 
1867
1868			/* if the q stripe is failed, do a pstripe reconstruction
1869			 * from the xors.
1870			 * If both the q stripe and the P stripe are failed, we're
1871			 * here due to a crc mismatch and we can't give them the
1872			 * data they want
1873			 */
1874			if (rbio->bbio->raid_map[failb] == RAID6_Q_STRIPE) {
1875				if (rbio->bbio->raid_map[faila] ==
1876				    RAID5_P_STRIPE) {
1877					err = BLK_STS_IOERR;
1878					goto cleanup;
1879				}
1880				/*
1881				 * otherwise we have one bad data stripe and
1882				 * a good P stripe.  raid5!
1883				 */
1884				goto pstripe;
1885			}
1886
1887			if (rbio->bbio->raid_map[failb] == RAID5_P_STRIPE) {
1888				raid6_datap_recov(rbio->real_stripes,
1889						  PAGE_SIZE, faila, pointers);
1890			} else {
1891				raid6_2data_recov(rbio->real_stripes,
1892						  PAGE_SIZE, faila, failb,
1893						  pointers);
1894			}
1895		} else {
1896			void *p;
1897
1898			/* rebuild from P stripe here (raid5 or raid6) */
1899			BUG_ON(failb != -1);
1900pstripe:
1901			/* Copy parity block into failed block to start with */
1902			copy_page(pointers[faila], pointers[rbio->nr_data]);
 
 
1903
1904			/* rearrange the pointer array */
1905			p = pointers[faila];
1906			for (stripe = faila; stripe < rbio->nr_data - 1; stripe++)
1907				pointers[stripe] = pointers[stripe + 1];
1908			pointers[rbio->nr_data - 1] = p;
1909
1910			/* xor in the rest */
1911			run_xor(pointers, rbio->nr_data - 1, PAGE_SIZE);
1912		}
1913		/* if we're doing this rebuild as part of an rmw, go through
1914		 * and set all of our private rbio pages in the
1915		 * failed stripes as uptodate.  This way finish_rmw will
1916		 * know they can be trusted.  If this was a read reconstruction,
1917		 * other endio functions will fiddle the uptodate bits
1918		 */
1919		if (rbio->operation == BTRFS_RBIO_WRITE) {
1920			for (i = 0;  i < rbio->stripe_npages; i++) {
1921				if (faila != -1) {
1922					page = rbio_stripe_page(rbio, faila, i);
1923					SetPageUptodate(page);
1924				}
1925				if (failb != -1) {
1926					page = rbio_stripe_page(rbio, failb, i);
1927					SetPageUptodate(page);
1928				}
1929			}
1930		}
1931		for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1932			/*
1933			 * if we're rebuilding a read, we have to use
1934			 * pages from the bio list
1935			 */
1936			if ((rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1937			     rbio->operation == BTRFS_RBIO_REBUILD_MISSING) &&
1938			    (stripe == faila || stripe == failb)) {
1939				page = page_in_rbio(rbio, stripe, pagenr, 0);
1940			} else {
1941				page = rbio_stripe_page(rbio, stripe, pagenr);
1942			}
1943			kunmap(page);
1944		}
1945	}
1946
1947	err = BLK_STS_OK;
1948cleanup:
1949	kfree(pointers);
1950
1951cleanup_io:
1952	/*
1953	 * Similar to READ_REBUILD, REBUILD_MISSING at this point also has a
1954	 * valid rbio which is consistent with ondisk content, thus such a
1955	 * valid rbio can be cached to avoid further disk reads.
1956	 */
1957	if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1958	    rbio->operation == BTRFS_RBIO_REBUILD_MISSING) {
1959		/*
1960		 * - In case of two failures, where rbio->failb != -1:
1961		 *
1962		 *   Do not cache this rbio since the above read reconstruction
1963		 *   (raid6_datap_recov() or raid6_2data_recov()) may have
1964		 *   changed some content of stripes which are not identical to
1965		 *   on-disk content any more, otherwise, a later write/recover
1966		 *   may steal stripe_pages from this rbio and end up with
1967		 *   corruptions or rebuild failures.
1968		 *
1969		 * - In case of single failure, where rbio->failb == -1:
1970		 *
1971		 *   Cache this rbio iff the above read reconstruction is
1972		 *   executed without problems.
1973		 */
1974		if (err == BLK_STS_OK && rbio->failb < 0)
1975			cache_rbio_pages(rbio);
1976		else
1977			clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
1978
1979		rbio_orig_end_io(rbio, err);
1980	} else if (err == BLK_STS_OK) {
1981		rbio->faila = -1;
1982		rbio->failb = -1;
1983
1984		if (rbio->operation == BTRFS_RBIO_WRITE)
1985			finish_rmw(rbio);
1986		else if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB)
1987			finish_parity_scrub(rbio, 0);
1988		else
1989			BUG();
1990	} else {
1991		rbio_orig_end_io(rbio, err);
1992	}
1993}
1994
1995/*
1996 * This is called only for stripes we've read from disk to
1997 * reconstruct the parity.
1998 */
1999static void raid_recover_end_io(struct bio *bio)
2000{
2001	struct btrfs_raid_bio *rbio = bio->bi_private;
2002
2003	/*
2004	 * we only read stripe pages off the disk, set them
2005	 * up to date if there were no errors
2006	 */
2007	if (bio->bi_status)
2008		fail_bio_stripe(rbio, bio);
2009	else
2010		set_bio_pages_uptodate(bio);
2011	bio_put(bio);
2012
2013	if (!atomic_dec_and_test(&rbio->stripes_pending))
2014		return;
2015
2016	if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
2017		rbio_orig_end_io(rbio, BLK_STS_IOERR);
2018	else
2019		__raid_recover_end_io(rbio);
2020}
2021
2022/*
2023 * reads everything we need off the disk to reconstruct
2024 * the parity. endio handlers trigger final reconstruction
2025 * when the IO is done.
2026 *
2027 * This is used both for reads from the higher layers and for
2028 * parity construction required to finish a rmw cycle.
2029 */
2030static int __raid56_parity_recover(struct btrfs_raid_bio *rbio)
2031{
2032	int bios_to_read = 0;
 
2033	struct bio_list bio_list;
2034	int ret;
 
2035	int pagenr;
2036	int stripe;
2037	struct bio *bio;
2038
2039	bio_list_init(&bio_list);
2040
2041	ret = alloc_rbio_pages(rbio);
2042	if (ret)
2043		goto cleanup;
2044
2045	atomic_set(&rbio->error, 0);
2046
2047	/*
2048	 * read everything that hasn't failed.  Thanks to the
2049	 * stripe cache, it is possible that some or all of these
2050	 * pages are going to be uptodate.
2051	 */
2052	for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
2053		if (rbio->faila == stripe || rbio->failb == stripe) {
2054			atomic_inc(&rbio->error);
2055			continue;
2056		}
2057
2058		for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
2059			struct page *p;
2060
2061			/*
2062			 * the rmw code may have already read this
2063			 * page in
2064			 */
2065			p = rbio_stripe_page(rbio, stripe, pagenr);
2066			if (PageUptodate(p))
2067				continue;
2068
2069			ret = rbio_add_io_page(rbio, &bio_list,
2070				       rbio_stripe_page(rbio, stripe, pagenr),
2071				       stripe, pagenr, rbio->stripe_len);
2072			if (ret < 0)
2073				goto cleanup;
2074		}
2075	}
2076
2077	bios_to_read = bio_list_size(&bio_list);
2078	if (!bios_to_read) {
2079		/*
2080		 * we might have no bios to read just because the pages
2081		 * were up to date, or we might have no bios to read because
2082		 * the devices were gone.
2083		 */
2084		if (atomic_read(&rbio->error) <= rbio->bbio->max_errors) {
2085			__raid_recover_end_io(rbio);
2086			return 0;
2087		} else {
2088			goto cleanup;
2089		}
2090	}
2091
2092	/*
2093	 * the bbio may be freed once we submit the last bio.  Make sure
2094	 * not to touch it after that
2095	 */
2096	atomic_set(&rbio->stripes_pending, bios_to_read);
2097	while ((bio = bio_list_pop(&bio_list))) {
 
 
 
 
2098		bio->bi_private = rbio;
2099		bio->bi_end_io = raid_recover_end_io;
2100		bio->bi_opf = REQ_OP_READ;
2101
2102		btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56);
 
2103
2104		submit_bio(bio);
 
2105	}
2106
2107	return 0;
2108
2109cleanup:
2110	if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
2111	    rbio->operation == BTRFS_RBIO_REBUILD_MISSING)
2112		rbio_orig_end_io(rbio, BLK_STS_IOERR);
2113
2114	while ((bio = bio_list_pop(&bio_list)))
2115		bio_put(bio);
2116
2117	return -EIO;
2118}
2119
2120/*
2121 * the main entry point for reads from the higher layers.  This
2122 * is really only called when the normal read path had a failure,
2123 * so we assume the bio they send down corresponds to a failed part
2124 * of the drive.
2125 */
2126int raid56_parity_recover(struct btrfs_fs_info *fs_info, struct bio *bio,
2127			  struct btrfs_bio *bbio, u64 stripe_len,
2128			  int mirror_num, int generic_io)
2129{
2130	struct btrfs_raid_bio *rbio;
2131	int ret;
2132
2133	if (generic_io) {
2134		ASSERT(bbio->mirror_num == mirror_num);
2135		btrfs_io_bio(bio)->mirror_num = mirror_num;
2136	}
2137
2138	rbio = alloc_rbio(fs_info, bbio, stripe_len);
2139	if (IS_ERR(rbio)) {
2140		if (generic_io)
2141			btrfs_put_bbio(bbio);
2142		return PTR_ERR(rbio);
2143	}
2144
2145	rbio->operation = BTRFS_RBIO_READ_REBUILD;
2146	bio_list_add(&rbio->bio_list, bio);
2147	rbio->bio_list_bytes = bio->bi_iter.bi_size;
2148
2149	rbio->faila = find_logical_bio_stripe(rbio, bio);
2150	if (rbio->faila == -1) {
2151		btrfs_warn(fs_info,
2152	"%s could not find the bad stripe in raid56 so that we cannot recover any more (bio has logical %llu len %llu, bbio has map_type %llu)",
2153			   __func__, (u64)bio->bi_iter.bi_sector << 9,
2154			   (u64)bio->bi_iter.bi_size, bbio->map_type);
2155		if (generic_io)
2156			btrfs_put_bbio(bbio);
2157		kfree(rbio);
2158		return -EIO;
2159	}
2160
2161	if (generic_io) {
2162		btrfs_bio_counter_inc_noblocked(fs_info);
2163		rbio->generic_bio_cnt = 1;
2164	} else {
2165		btrfs_get_bbio(bbio);
2166	}
2167
2168	/*
2169	 * Loop retry:
2170	 * for 'mirror == 2', reconstruct from all other stripes.
2171	 * for 'mirror_num > 2', select a stripe to fail on every retry.
2172	 */
2173	if (mirror_num > 2) {
2174		/*
2175		 * 'mirror == 3' is to fail the p stripe and
2176		 * reconstruct from the q stripe.  'mirror > 3' is to
2177		 * fail a data stripe and reconstruct from p+q stripe.
2178		 */
2179		rbio->failb = rbio->real_stripes - (mirror_num - 1);
2180		ASSERT(rbio->failb > 0);
2181		if (rbio->failb <= rbio->faila)
2182			rbio->failb--;
2183	}
2184
2185	ret = lock_stripe_add(rbio);
2186
2187	/*
2188	 * __raid56_parity_recover will end the bio with
2189	 * any errors it hits.  We don't want to return
2190	 * its error value up the stack because our caller
2191	 * will end up calling bio_endio with any nonzero
2192	 * return
2193	 */
2194	if (ret == 0)
2195		__raid56_parity_recover(rbio);
2196	/*
2197	 * our rbio has been added to the list of
2198	 * rbios that will be handled after the
2199	 * currently lock owner is done
2200	 */
2201	return 0;
2202
2203}
2204
2205static void rmw_work(struct btrfs_work *work)
2206{
2207	struct btrfs_raid_bio *rbio;
2208
2209	rbio = container_of(work, struct btrfs_raid_bio, work);
2210	raid56_rmw_stripe(rbio);
2211}
2212
2213static void read_rebuild_work(struct btrfs_work *work)
2214{
2215	struct btrfs_raid_bio *rbio;
2216
2217	rbio = container_of(work, struct btrfs_raid_bio, work);
2218	__raid56_parity_recover(rbio);
2219}
2220
2221/*
2222 * The following code is used to scrub/replace the parity stripe
2223 *
2224 * Caller must have already increased bio_counter for getting @bbio.
2225 *
2226 * Note: We need make sure all the pages that add into the scrub/replace
2227 * raid bio are correct and not be changed during the scrub/replace. That
2228 * is those pages just hold metadata or file data with checksum.
2229 */
2230
2231struct btrfs_raid_bio *
2232raid56_parity_alloc_scrub_rbio(struct btrfs_fs_info *fs_info, struct bio *bio,
2233			       struct btrfs_bio *bbio, u64 stripe_len,
2234			       struct btrfs_device *scrub_dev,
2235			       unsigned long *dbitmap, int stripe_nsectors)
2236{
2237	struct btrfs_raid_bio *rbio;
2238	int i;
2239
2240	rbio = alloc_rbio(fs_info, bbio, stripe_len);
2241	if (IS_ERR(rbio))
2242		return NULL;
2243	bio_list_add(&rbio->bio_list, bio);
2244	/*
2245	 * This is a special bio which is used to hold the completion handler
2246	 * and make the scrub rbio is similar to the other types
2247	 */
2248	ASSERT(!bio->bi_iter.bi_size);
2249	rbio->operation = BTRFS_RBIO_PARITY_SCRUB;
2250
2251	/*
2252	 * After mapping bbio with BTRFS_MAP_WRITE, parities have been sorted
2253	 * to the end position, so this search can start from the first parity
2254	 * stripe.
2255	 */
2256	for (i = rbio->nr_data; i < rbio->real_stripes; i++) {
2257		if (bbio->stripes[i].dev == scrub_dev) {
2258			rbio->scrubp = i;
2259			break;
2260		}
2261	}
2262	ASSERT(i < rbio->real_stripes);
2263
2264	/* Now we just support the sectorsize equals to page size */
2265	ASSERT(fs_info->sectorsize == PAGE_SIZE);
2266	ASSERT(rbio->stripe_npages == stripe_nsectors);
2267	bitmap_copy(rbio->dbitmap, dbitmap, stripe_nsectors);
2268
2269	/*
2270	 * We have already increased bio_counter when getting bbio, record it
2271	 * so we can free it at rbio_orig_end_io().
2272	 */
2273	rbio->generic_bio_cnt = 1;
2274
2275	return rbio;
2276}
2277
2278/* Used for both parity scrub and missing. */
2279void raid56_add_scrub_pages(struct btrfs_raid_bio *rbio, struct page *page,
2280			    u64 logical)
2281{
2282	int stripe_offset;
2283	int index;
2284
2285	ASSERT(logical >= rbio->bbio->raid_map[0]);
2286	ASSERT(logical + PAGE_SIZE <= rbio->bbio->raid_map[0] +
2287				rbio->stripe_len * rbio->nr_data);
2288	stripe_offset = (int)(logical - rbio->bbio->raid_map[0]);
2289	index = stripe_offset >> PAGE_SHIFT;
2290	rbio->bio_pages[index] = page;
2291}
2292
2293/*
2294 * We just scrub the parity that we have correct data on the same horizontal,
2295 * so we needn't allocate all pages for all the stripes.
2296 */
2297static int alloc_rbio_essential_pages(struct btrfs_raid_bio *rbio)
2298{
2299	int i;
2300	int bit;
2301	int index;
2302	struct page *page;
2303
2304	for_each_set_bit(bit, rbio->dbitmap, rbio->stripe_npages) {
2305		for (i = 0; i < rbio->real_stripes; i++) {
2306			index = i * rbio->stripe_npages + bit;
2307			if (rbio->stripe_pages[index])
2308				continue;
2309
2310			page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2311			if (!page)
2312				return -ENOMEM;
2313			rbio->stripe_pages[index] = page;
2314		}
2315	}
2316	return 0;
2317}
2318
2319static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
2320					 int need_check)
2321{
2322	struct btrfs_bio *bbio = rbio->bbio;
2323	void **pointers = rbio->finish_pointers;
2324	unsigned long *pbitmap = rbio->finish_pbitmap;
2325	int nr_data = rbio->nr_data;
2326	int stripe;
2327	int pagenr;
2328	bool has_qstripe;
2329	struct page *p_page = NULL;
2330	struct page *q_page = NULL;
2331	struct bio_list bio_list;
2332	struct bio *bio;
2333	int is_replace = 0;
2334	int ret;
2335
2336	bio_list_init(&bio_list);
2337
2338	if (rbio->real_stripes - rbio->nr_data == 1)
2339		has_qstripe = false;
2340	else if (rbio->real_stripes - rbio->nr_data == 2)
2341		has_qstripe = true;
2342	else
2343		BUG();
2344
2345	if (bbio->num_tgtdevs && bbio->tgtdev_map[rbio->scrubp]) {
2346		is_replace = 1;
2347		bitmap_copy(pbitmap, rbio->dbitmap, rbio->stripe_npages);
2348	}
2349
2350	/*
2351	 * Because the higher layers(scrubber) are unlikely to
2352	 * use this area of the disk again soon, so don't cache
2353	 * it.
2354	 */
2355	clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
2356
2357	if (!need_check)
2358		goto writeback;
2359
2360	p_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2361	if (!p_page)
2362		goto cleanup;
2363	SetPageUptodate(p_page);
2364
2365	if (has_qstripe) {
2366		q_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2367		if (!q_page) {
2368			__free_page(p_page);
2369			goto cleanup;
2370		}
2371		SetPageUptodate(q_page);
2372	}
2373
2374	atomic_set(&rbio->error, 0);
2375
2376	for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2377		struct page *p;
2378		void *parity;
2379		/* first collect one page from each data stripe */
2380		for (stripe = 0; stripe < nr_data; stripe++) {
2381			p = page_in_rbio(rbio, stripe, pagenr, 0);
2382			pointers[stripe] = kmap(p);
2383		}
2384
2385		/* then add the parity stripe */
2386		pointers[stripe++] = kmap(p_page);
2387
2388		if (has_qstripe) {
2389			/*
2390			 * raid6, add the qstripe and call the
2391			 * library function to fill in our p/q
2392			 */
2393			pointers[stripe++] = kmap(q_page);
2394
2395			raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE,
2396						pointers);
2397		} else {
2398			/* raid5 */
2399			copy_page(pointers[nr_data], pointers[0]);
2400			run_xor(pointers + 1, nr_data - 1, PAGE_SIZE);
2401		}
2402
2403		/* Check scrubbing parity and repair it */
2404		p = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2405		parity = kmap(p);
2406		if (memcmp(parity, pointers[rbio->scrubp], PAGE_SIZE))
2407			copy_page(parity, pointers[rbio->scrubp]);
2408		else
2409			/* Parity is right, needn't writeback */
2410			bitmap_clear(rbio->dbitmap, pagenr, 1);
2411		kunmap(p);
2412
2413		for (stripe = 0; stripe < nr_data; stripe++)
2414			kunmap(page_in_rbio(rbio, stripe, pagenr, 0));
2415		kunmap(p_page);
2416	}
2417
2418	__free_page(p_page);
2419	if (q_page)
2420		__free_page(q_page);
2421
2422writeback:
2423	/*
2424	 * time to start writing.  Make bios for everything from the
2425	 * higher layers (the bio_list in our rbio) and our p/q.  Ignore
2426	 * everything else.
2427	 */
2428	for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2429		struct page *page;
2430
2431		page = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2432		ret = rbio_add_io_page(rbio, &bio_list,
2433			       page, rbio->scrubp, pagenr, rbio->stripe_len);
2434		if (ret)
2435			goto cleanup;
2436	}
2437
2438	if (!is_replace)
2439		goto submit_write;
2440
2441	for_each_set_bit(pagenr, pbitmap, rbio->stripe_npages) {
2442		struct page *page;
2443
2444		page = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2445		ret = rbio_add_io_page(rbio, &bio_list, page,
2446				       bbio->tgtdev_map[rbio->scrubp],
2447				       pagenr, rbio->stripe_len);
2448		if (ret)
2449			goto cleanup;
2450	}
2451
2452submit_write:
2453	nr_data = bio_list_size(&bio_list);
2454	if (!nr_data) {
2455		/* Every parity is right */
2456		rbio_orig_end_io(rbio, BLK_STS_OK);
2457		return;
2458	}
2459
2460	atomic_set(&rbio->stripes_pending, nr_data);
2461
2462	while ((bio = bio_list_pop(&bio_list))) {
2463		bio->bi_private = rbio;
2464		bio->bi_end_io = raid_write_end_io;
2465		bio->bi_opf = REQ_OP_WRITE;
2466
2467		submit_bio(bio);
2468	}
2469	return;
2470
2471cleanup:
2472	rbio_orig_end_io(rbio, BLK_STS_IOERR);
2473
2474	while ((bio = bio_list_pop(&bio_list)))
2475		bio_put(bio);
2476}
2477
2478static inline int is_data_stripe(struct btrfs_raid_bio *rbio, int stripe)
2479{
2480	if (stripe >= 0 && stripe < rbio->nr_data)
2481		return 1;
2482	return 0;
2483}
2484
2485/*
2486 * While we're doing the parity check and repair, we could have errors
2487 * in reading pages off the disk.  This checks for errors and if we're
2488 * not able to read the page it'll trigger parity reconstruction.  The
2489 * parity scrub will be finished after we've reconstructed the failed
2490 * stripes
2491 */
2492static void validate_rbio_for_parity_scrub(struct btrfs_raid_bio *rbio)
2493{
2494	if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
2495		goto cleanup;
2496
2497	if (rbio->faila >= 0 || rbio->failb >= 0) {
2498		int dfail = 0, failp = -1;
2499
2500		if (is_data_stripe(rbio, rbio->faila))
2501			dfail++;
2502		else if (is_parity_stripe(rbio->faila))
2503			failp = rbio->faila;
2504
2505		if (is_data_stripe(rbio, rbio->failb))
2506			dfail++;
2507		else if (is_parity_stripe(rbio->failb))
2508			failp = rbio->failb;
2509
2510		/*
2511		 * Because we can not use a scrubbing parity to repair
2512		 * the data, so the capability of the repair is declined.
2513		 * (In the case of RAID5, we can not repair anything)
2514		 */
2515		if (dfail > rbio->bbio->max_errors - 1)
2516			goto cleanup;
2517
2518		/*
2519		 * If all data is good, only parity is correctly, just
2520		 * repair the parity.
2521		 */
2522		if (dfail == 0) {
2523			finish_parity_scrub(rbio, 0);
2524			return;
2525		}
2526
2527		/*
2528		 * Here means we got one corrupted data stripe and one
2529		 * corrupted parity on RAID6, if the corrupted parity
2530		 * is scrubbing parity, luckily, use the other one to repair
2531		 * the data, or we can not repair the data stripe.
2532		 */
2533		if (failp != rbio->scrubp)
2534			goto cleanup;
2535
2536		__raid_recover_end_io(rbio);
2537	} else {
2538		finish_parity_scrub(rbio, 1);
2539	}
2540	return;
2541
2542cleanup:
2543	rbio_orig_end_io(rbio, BLK_STS_IOERR);
2544}
2545
2546/*
2547 * end io for the read phase of the rmw cycle.  All the bios here are physical
2548 * stripe bios we've read from the disk so we can recalculate the parity of the
2549 * stripe.
2550 *
2551 * This will usually kick off finish_rmw once all the bios are read in, but it
2552 * may trigger parity reconstruction if we had any errors along the way
2553 */
2554static void raid56_parity_scrub_end_io(struct bio *bio)
2555{
2556	struct btrfs_raid_bio *rbio = bio->bi_private;
2557
2558	if (bio->bi_status)
2559		fail_bio_stripe(rbio, bio);
2560	else
2561		set_bio_pages_uptodate(bio);
2562
2563	bio_put(bio);
2564
2565	if (!atomic_dec_and_test(&rbio->stripes_pending))
2566		return;
2567
2568	/*
2569	 * this will normally call finish_rmw to start our write
2570	 * but if there are any failed stripes we'll reconstruct
2571	 * from parity first
2572	 */
2573	validate_rbio_for_parity_scrub(rbio);
2574}
2575
2576static void raid56_parity_scrub_stripe(struct btrfs_raid_bio *rbio)
2577{
2578	int bios_to_read = 0;
2579	struct bio_list bio_list;
2580	int ret;
2581	int pagenr;
2582	int stripe;
2583	struct bio *bio;
2584
2585	bio_list_init(&bio_list);
2586
2587	ret = alloc_rbio_essential_pages(rbio);
2588	if (ret)
2589		goto cleanup;
2590
2591	atomic_set(&rbio->error, 0);
2592	/*
2593	 * build a list of bios to read all the missing parts of this
2594	 * stripe
2595	 */
2596	for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
2597		for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2598			struct page *page;
2599			/*
2600			 * we want to find all the pages missing from
2601			 * the rbio and read them from the disk.  If
2602			 * page_in_rbio finds a page in the bio list
2603			 * we don't need to read it off the stripe.
2604			 */
2605			page = page_in_rbio(rbio, stripe, pagenr, 1);
2606			if (page)
2607				continue;
2608
2609			page = rbio_stripe_page(rbio, stripe, pagenr);
2610			/*
2611			 * the bio cache may have handed us an uptodate
2612			 * page.  If so, be happy and use it
2613			 */
2614			if (PageUptodate(page))
2615				continue;
2616
2617			ret = rbio_add_io_page(rbio, &bio_list, page,
2618				       stripe, pagenr, rbio->stripe_len);
2619			if (ret)
2620				goto cleanup;
2621		}
2622	}
2623
2624	bios_to_read = bio_list_size(&bio_list);
2625	if (!bios_to_read) {
2626		/*
2627		 * this can happen if others have merged with
2628		 * us, it means there is nothing left to read.
2629		 * But if there are missing devices it may not be
2630		 * safe to do the full stripe write yet.
2631		 */
2632		goto finish;
2633	}
2634
2635	/*
2636	 * the bbio may be freed once we submit the last bio.  Make sure
2637	 * not to touch it after that
2638	 */
2639	atomic_set(&rbio->stripes_pending, bios_to_read);
2640	while ((bio = bio_list_pop(&bio_list))) {
2641		bio->bi_private = rbio;
2642		bio->bi_end_io = raid56_parity_scrub_end_io;
2643		bio->bi_opf = REQ_OP_READ;
2644
2645		btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56);
2646
2647		submit_bio(bio);
2648	}
2649	/* the actual write will happen once the reads are done */
2650	return;
2651
2652cleanup:
2653	rbio_orig_end_io(rbio, BLK_STS_IOERR);
2654
2655	while ((bio = bio_list_pop(&bio_list)))
2656		bio_put(bio);
2657
2658	return;
2659
2660finish:
2661	validate_rbio_for_parity_scrub(rbio);
2662}
2663
2664static void scrub_parity_work(struct btrfs_work *work)
2665{
2666	struct btrfs_raid_bio *rbio;
2667
2668	rbio = container_of(work, struct btrfs_raid_bio, work);
2669	raid56_parity_scrub_stripe(rbio);
2670}
2671
2672void raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio *rbio)
2673{
2674	if (!lock_stripe_add(rbio))
2675		start_async_work(rbio, scrub_parity_work);
2676}
2677
2678/* The following code is used for dev replace of a missing RAID 5/6 device. */
2679
2680struct btrfs_raid_bio *
2681raid56_alloc_missing_rbio(struct btrfs_fs_info *fs_info, struct bio *bio,
2682			  struct btrfs_bio *bbio, u64 length)
2683{
2684	struct btrfs_raid_bio *rbio;
2685
2686	rbio = alloc_rbio(fs_info, bbio, length);
2687	if (IS_ERR(rbio))
2688		return NULL;
2689
2690	rbio->operation = BTRFS_RBIO_REBUILD_MISSING;
2691	bio_list_add(&rbio->bio_list, bio);
2692	/*
2693	 * This is a special bio which is used to hold the completion handler
2694	 * and make the scrub rbio is similar to the other types
2695	 */
2696	ASSERT(!bio->bi_iter.bi_size);
2697
2698	rbio->faila = find_logical_bio_stripe(rbio, bio);
2699	if (rbio->faila == -1) {
2700		BUG();
2701		kfree(rbio);
2702		return NULL;
2703	}
2704
2705	/*
2706	 * When we get bbio, we have already increased bio_counter, record it
2707	 * so we can free it at rbio_orig_end_io()
2708	 */
2709	rbio->generic_bio_cnt = 1;
2710
2711	return rbio;
2712}
2713
2714void raid56_submit_missing_rbio(struct btrfs_raid_bio *rbio)
2715{
2716	if (!lock_stripe_add(rbio))
2717		start_async_work(rbio, read_rebuild_work);
2718}
v3.15
 
   1/*
   2 * Copyright (C) 2012 Fusion-io  All rights reserved.
   3 * Copyright (C) 2012 Intel Corp. All rights reserved.
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public
   7 * License v2 as published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  12 * General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public
  15 * License along with this program; if not, write to the
  16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  17 * Boston, MA 021110-1307, USA.
  18 */
 
  19#include <linux/sched.h>
  20#include <linux/wait.h>
  21#include <linux/bio.h>
  22#include <linux/slab.h>
  23#include <linux/buffer_head.h>
  24#include <linux/blkdev.h>
  25#include <linux/random.h>
  26#include <linux/iocontext.h>
  27#include <linux/capability.h>
  28#include <linux/ratelimit.h>
  29#include <linux/kthread.h>
  30#include <linux/raid/pq.h>
  31#include <linux/hash.h>
  32#include <linux/list_sort.h>
  33#include <linux/raid/xor.h>
  34#include <linux/vmalloc.h>
  35#include <asm/div64.h>
  36#include "ctree.h"
  37#include "extent_map.h"
  38#include "disk-io.h"
  39#include "transaction.h"
  40#include "print-tree.h"
  41#include "volumes.h"
  42#include "raid56.h"
  43#include "async-thread.h"
  44#include "check-integrity.h"
  45#include "rcu-string.h"
  46
  47/* set when additional merges to this rbio are not allowed */
  48#define RBIO_RMW_LOCKED_BIT	1
  49
  50/*
  51 * set when this rbio is sitting in the hash, but it is just a cache
  52 * of past RMW
  53 */
  54#define RBIO_CACHE_BIT		2
  55
  56/*
  57 * set when it is safe to trust the stripe_pages for caching
  58 */
  59#define RBIO_CACHE_READY_BIT	3
  60
 
 
 
 
 
 
 
 
 
  61
  62#define RBIO_CACHE_SIZE 1024
 
 
 
 
 
 
 
 
 
 
 
 
 
  63
  64struct btrfs_raid_bio {
  65	struct btrfs_fs_info *fs_info;
  66	struct btrfs_bio *bbio;
  67
  68	/*
  69	 * logical block numbers for the start of each stripe
  70	 * The last one or two are p/q.  These are sorted,
  71	 * so raid_map[0] is the start of our full stripe
  72	 */
  73	u64 *raid_map;
  74
  75	/* while we're doing rmw on a stripe
  76	 * we put it into a hash table so we can
  77	 * lock the stripe and merge more rbios
  78	 * into it.
  79	 */
  80	struct list_head hash_list;
  81
  82	/*
  83	 * LRU list for the stripe cache
  84	 */
  85	struct list_head stripe_cache;
  86
  87	/*
  88	 * for scheduling work in the helper threads
  89	 */
  90	struct btrfs_work work;
  91
  92	/*
  93	 * bio list and bio_list_lock are used
  94	 * to add more bios into the stripe
  95	 * in hopes of avoiding the full rmw
  96	 */
  97	struct bio_list bio_list;
  98	spinlock_t bio_list_lock;
  99
 100	/* also protected by the bio_list_lock, the
 101	 * plug list is used by the plugging code
 102	 * to collect partial bios while plugged.  The
 103	 * stripe locking code also uses it to hand off
 104	 * the stripe lock to the next pending IO
 105	 */
 106	struct list_head plug_list;
 107
 108	/*
 109	 * flags that tell us if it is safe to
 110	 * merge with this bio
 111	 */
 112	unsigned long flags;
 113
 114	/* size of each individual stripe on disk */
 115	int stripe_len;
 116
 117	/* number of data stripes (no p/q) */
 118	int nr_data;
 119
 
 
 
 120	/*
 121	 * set if we're doing a parity rebuild
 122	 * for a read from higher up, which is handled
 123	 * differently from a parity rebuild as part of
 124	 * rmw
 125	 */
 126	int read_rebuild;
 127
 128	/* first bad stripe */
 129	int faila;
 130
 131	/* second bad stripe (for raid6 use) */
 132	int failb;
 133
 
 134	/*
 135	 * number of pages needed to represent the full
 136	 * stripe
 137	 */
 138	int nr_pages;
 139
 140	/*
 141	 * size of all the bios in the bio_list.  This
 142	 * helps us decide if the rbio maps to a full
 143	 * stripe or not
 144	 */
 145	int bio_list_bytes;
 146
 147	atomic_t refs;
 
 
 
 
 148
 
 149	/*
 150	 * these are two arrays of pointers.  We allocate the
 151	 * rbio big enough to hold them both and setup their
 152	 * locations when the rbio is allocated
 153	 */
 154
 155	/* pointers to pages that we allocated for
 156	 * reading/writing stripes directly from the disk (including P/Q)
 157	 */
 158	struct page **stripe_pages;
 159
 160	/*
 161	 * pointers to the pages in the bio_list.  Stored
 162	 * here for faster lookup
 163	 */
 164	struct page **bio_pages;
 
 
 
 
 
 
 
 
 
 
 
 165};
 166
 167static int __raid56_parity_recover(struct btrfs_raid_bio *rbio);
 168static noinline void finish_rmw(struct btrfs_raid_bio *rbio);
 169static void rmw_work(struct btrfs_work *work);
 170static void read_rebuild_work(struct btrfs_work *work);
 171static void async_rmw_stripe(struct btrfs_raid_bio *rbio);
 172static void async_read_rebuild(struct btrfs_raid_bio *rbio);
 173static int fail_bio_stripe(struct btrfs_raid_bio *rbio, struct bio *bio);
 174static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed);
 175static void __free_raid_bio(struct btrfs_raid_bio *rbio);
 176static void index_rbio_pages(struct btrfs_raid_bio *rbio);
 177static int alloc_rbio_pages(struct btrfs_raid_bio *rbio);
 178
 
 
 
 
 
 
 
 
 
 
 179/*
 180 * the stripe hash table is used for locking, and to collect
 181 * bios in hopes of making a full stripe
 182 */
 183int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info)
 184{
 185	struct btrfs_stripe_hash_table *table;
 186	struct btrfs_stripe_hash_table *x;
 187	struct btrfs_stripe_hash *cur;
 188	struct btrfs_stripe_hash *h;
 189	int num_entries = 1 << BTRFS_STRIPE_HASH_TABLE_BITS;
 190	int i;
 191	int table_size;
 192
 193	if (info->stripe_hash_table)
 194		return 0;
 195
 196	/*
 197	 * The table is large, starting with order 4 and can go as high as
 198	 * order 7 in case lock debugging is turned on.
 199	 *
 200	 * Try harder to allocate and fallback to vmalloc to lower the chance
 201	 * of a failing mount.
 202	 */
 203	table_size = sizeof(*table) + sizeof(*h) * num_entries;
 204	table = kzalloc(table_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
 205	if (!table) {
 206		table = vzalloc(table_size);
 207		if (!table)
 208			return -ENOMEM;
 209	}
 210
 211	spin_lock_init(&table->cache_lock);
 212	INIT_LIST_HEAD(&table->stripe_cache);
 213
 214	h = table->table;
 215
 216	for (i = 0; i < num_entries; i++) {
 217		cur = h + i;
 218		INIT_LIST_HEAD(&cur->hash_list);
 219		spin_lock_init(&cur->lock);
 220		init_waitqueue_head(&cur->wait);
 221	}
 222
 223	x = cmpxchg(&info->stripe_hash_table, NULL, table);
 224	if (x) {
 225		if (is_vmalloc_addr(x))
 226			vfree(x);
 227		else
 228			kfree(x);
 229	}
 230	return 0;
 231}
 232
 233/*
 234 * caching an rbio means to copy anything from the
 235 * bio_pages array into the stripe_pages array.  We
 236 * use the page uptodate bit in the stripe cache array
 237 * to indicate if it has valid data
 238 *
 239 * once the caching is done, we set the cache ready
 240 * bit.
 241 */
 242static void cache_rbio_pages(struct btrfs_raid_bio *rbio)
 243{
 244	int i;
 245	char *s;
 246	char *d;
 247	int ret;
 248
 249	ret = alloc_rbio_pages(rbio);
 250	if (ret)
 251		return;
 252
 253	for (i = 0; i < rbio->nr_pages; i++) {
 254		if (!rbio->bio_pages[i])
 255			continue;
 256
 257		s = kmap(rbio->bio_pages[i]);
 258		d = kmap(rbio->stripe_pages[i]);
 259
 260		memcpy(d, s, PAGE_CACHE_SIZE);
 261
 262		kunmap(rbio->bio_pages[i]);
 263		kunmap(rbio->stripe_pages[i]);
 264		SetPageUptodate(rbio->stripe_pages[i]);
 265	}
 266	set_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
 267}
 268
 269/*
 270 * we hash on the first logical address of the stripe
 271 */
 272static int rbio_bucket(struct btrfs_raid_bio *rbio)
 273{
 274	u64 num = rbio->raid_map[0];
 275
 276	/*
 277	 * we shift down quite a bit.  We're using byte
 278	 * addressing, and most of the lower bits are zeros.
 279	 * This tends to upset hash_64, and it consistently
 280	 * returns just one or two different values.
 281	 *
 282	 * shifting off the lower bits fixes things.
 283	 */
 284	return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS);
 285}
 286
 287/*
 288 * stealing an rbio means taking all the uptodate pages from the stripe
 289 * array in the source rbio and putting them into the destination rbio
 290 */
 291static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest)
 292{
 293	int i;
 294	struct page *s;
 295	struct page *d;
 296
 297	if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags))
 298		return;
 299
 300	for (i = 0; i < dest->nr_pages; i++) {
 301		s = src->stripe_pages[i];
 302		if (!s || !PageUptodate(s)) {
 303			continue;
 304		}
 305
 306		d = dest->stripe_pages[i];
 307		if (d)
 308			__free_page(d);
 309
 310		dest->stripe_pages[i] = s;
 311		src->stripe_pages[i] = NULL;
 312	}
 313}
 314
 315/*
 316 * merging means we take the bio_list from the victim and
 317 * splice it into the destination.  The victim should
 318 * be discarded afterwards.
 319 *
 320 * must be called with dest->rbio_list_lock held
 321 */
 322static void merge_rbio(struct btrfs_raid_bio *dest,
 323		       struct btrfs_raid_bio *victim)
 324{
 325	bio_list_merge(&dest->bio_list, &victim->bio_list);
 326	dest->bio_list_bytes += victim->bio_list_bytes;
 
 327	bio_list_init(&victim->bio_list);
 328}
 329
 330/*
 331 * used to prune items that are in the cache.  The caller
 332 * must hold the hash table lock.
 333 */
 334static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
 335{
 336	int bucket = rbio_bucket(rbio);
 337	struct btrfs_stripe_hash_table *table;
 338	struct btrfs_stripe_hash *h;
 339	int freeit = 0;
 340
 341	/*
 342	 * check the bit again under the hash table lock.
 343	 */
 344	if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
 345		return;
 346
 347	table = rbio->fs_info->stripe_hash_table;
 348	h = table->table + bucket;
 349
 350	/* hold the lock for the bucket because we may be
 351	 * removing it from the hash table
 352	 */
 353	spin_lock(&h->lock);
 354
 355	/*
 356	 * hold the lock for the bio list because we need
 357	 * to make sure the bio list is empty
 358	 */
 359	spin_lock(&rbio->bio_list_lock);
 360
 361	if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) {
 362		list_del_init(&rbio->stripe_cache);
 363		table->cache_size -= 1;
 364		freeit = 1;
 365
 366		/* if the bio list isn't empty, this rbio is
 367		 * still involved in an IO.  We take it out
 368		 * of the cache list, and drop the ref that
 369		 * was held for the list.
 370		 *
 371		 * If the bio_list was empty, we also remove
 372		 * the rbio from the hash_table, and drop
 373		 * the corresponding ref
 374		 */
 375		if (bio_list_empty(&rbio->bio_list)) {
 376			if (!list_empty(&rbio->hash_list)) {
 377				list_del_init(&rbio->hash_list);
 378				atomic_dec(&rbio->refs);
 379				BUG_ON(!list_empty(&rbio->plug_list));
 380			}
 381		}
 382	}
 383
 384	spin_unlock(&rbio->bio_list_lock);
 385	spin_unlock(&h->lock);
 386
 387	if (freeit)
 388		__free_raid_bio(rbio);
 389}
 390
 391/*
 392 * prune a given rbio from the cache
 393 */
 394static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
 395{
 396	struct btrfs_stripe_hash_table *table;
 397	unsigned long flags;
 398
 399	if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
 400		return;
 401
 402	table = rbio->fs_info->stripe_hash_table;
 403
 404	spin_lock_irqsave(&table->cache_lock, flags);
 405	__remove_rbio_from_cache(rbio);
 406	spin_unlock_irqrestore(&table->cache_lock, flags);
 407}
 408
 409/*
 410 * remove everything in the cache
 411 */
 412static void btrfs_clear_rbio_cache(struct btrfs_fs_info *info)
 413{
 414	struct btrfs_stripe_hash_table *table;
 415	unsigned long flags;
 416	struct btrfs_raid_bio *rbio;
 417
 418	table = info->stripe_hash_table;
 419
 420	spin_lock_irqsave(&table->cache_lock, flags);
 421	while (!list_empty(&table->stripe_cache)) {
 422		rbio = list_entry(table->stripe_cache.next,
 423				  struct btrfs_raid_bio,
 424				  stripe_cache);
 425		__remove_rbio_from_cache(rbio);
 426	}
 427	spin_unlock_irqrestore(&table->cache_lock, flags);
 428}
 429
 430/*
 431 * remove all cached entries and free the hash table
 432 * used by unmount
 433 */
 434void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info)
 435{
 436	if (!info->stripe_hash_table)
 437		return;
 438	btrfs_clear_rbio_cache(info);
 439	if (is_vmalloc_addr(info->stripe_hash_table))
 440		vfree(info->stripe_hash_table);
 441	else
 442		kfree(info->stripe_hash_table);
 443	info->stripe_hash_table = NULL;
 444}
 445
 446/*
 447 * insert an rbio into the stripe cache.  It
 448 * must have already been prepared by calling
 449 * cache_rbio_pages
 450 *
 451 * If this rbio was already cached, it gets
 452 * moved to the front of the lru.
 453 *
 454 * If the size of the rbio cache is too big, we
 455 * prune an item.
 456 */
 457static void cache_rbio(struct btrfs_raid_bio *rbio)
 458{
 459	struct btrfs_stripe_hash_table *table;
 460	unsigned long flags;
 461
 462	if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags))
 463		return;
 464
 465	table = rbio->fs_info->stripe_hash_table;
 466
 467	spin_lock_irqsave(&table->cache_lock, flags);
 468	spin_lock(&rbio->bio_list_lock);
 469
 470	/* bump our ref if we were not in the list before */
 471	if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags))
 472		atomic_inc(&rbio->refs);
 473
 474	if (!list_empty(&rbio->stripe_cache)){
 475		list_move(&rbio->stripe_cache, &table->stripe_cache);
 476	} else {
 477		list_add(&rbio->stripe_cache, &table->stripe_cache);
 478		table->cache_size += 1;
 479	}
 480
 481	spin_unlock(&rbio->bio_list_lock);
 482
 483	if (table->cache_size > RBIO_CACHE_SIZE) {
 484		struct btrfs_raid_bio *found;
 485
 486		found = list_entry(table->stripe_cache.prev,
 487				  struct btrfs_raid_bio,
 488				  stripe_cache);
 489
 490		if (found != rbio)
 491			__remove_rbio_from_cache(found);
 492	}
 493
 494	spin_unlock_irqrestore(&table->cache_lock, flags);
 495	return;
 496}
 497
 498/*
 499 * helper function to run the xor_blocks api.  It is only
 500 * able to do MAX_XOR_BLOCKS at a time, so we need to
 501 * loop through.
 502 */
 503static void run_xor(void **pages, int src_cnt, ssize_t len)
 504{
 505	int src_off = 0;
 506	int xor_src_cnt = 0;
 507	void *dest = pages[src_cnt];
 508
 509	while(src_cnt > 0) {
 510		xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS);
 511		xor_blocks(xor_src_cnt, len, dest, pages + src_off);
 512
 513		src_cnt -= xor_src_cnt;
 514		src_off += xor_src_cnt;
 515	}
 516}
 517
 518/*
 519 * returns true if the bio list inside this rbio
 520 * covers an entire stripe (no rmw required).
 521 * Must be called with the bio list lock held, or
 522 * at a time when you know it is impossible to add
 523 * new bios into the list
 524 */
 525static int __rbio_is_full(struct btrfs_raid_bio *rbio)
 526{
 
 527	unsigned long size = rbio->bio_list_bytes;
 528	int ret = 1;
 529
 
 530	if (size != rbio->nr_data * rbio->stripe_len)
 531		ret = 0;
 532
 533	BUG_ON(size > rbio->nr_data * rbio->stripe_len);
 534	return ret;
 535}
 536
 537static int rbio_is_full(struct btrfs_raid_bio *rbio)
 538{
 539	unsigned long flags;
 540	int ret;
 541
 542	spin_lock_irqsave(&rbio->bio_list_lock, flags);
 543	ret = __rbio_is_full(rbio);
 544	spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
 545	return ret;
 546}
 547
 548/*
 549 * returns 1 if it is safe to merge two rbios together.
 550 * The merging is safe if the two rbios correspond to
 551 * the same stripe and if they are both going in the same
 552 * direction (read vs write), and if neither one is
 553 * locked for final IO
 554 *
 555 * The caller is responsible for locking such that
 556 * rmw_locked is safe to test
 557 */
 558static int rbio_can_merge(struct btrfs_raid_bio *last,
 559			  struct btrfs_raid_bio *cur)
 560{
 561	if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) ||
 562	    test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags))
 563		return 0;
 564
 565	/*
 566	 * we can't merge with cached rbios, since the
 567	 * idea is that when we merge the destination
 568	 * rbio is going to run our IO for us.  We can
 569	 * steal from cached rbio's though, other functions
 570	 * handle that.
 571	 */
 572	if (test_bit(RBIO_CACHE_BIT, &last->flags) ||
 573	    test_bit(RBIO_CACHE_BIT, &cur->flags))
 574		return 0;
 575
 576	if (last->raid_map[0] !=
 577	    cur->raid_map[0])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 578		return 0;
 579
 580	/* reads can't merge with writes */
 581	if (last->read_rebuild !=
 582	    cur->read_rebuild) {
 583		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 584	}
 
 
 
 
 
 
 
 
 585
 586	return 1;
 
 
 
 
 
 
 
 587}
 588
 589/*
 590 * helper to index into the pstripe
 591 */
 592static struct page *rbio_pstripe_page(struct btrfs_raid_bio *rbio, int index)
 593{
 594	index += (rbio->nr_data * rbio->stripe_len) >> PAGE_CACHE_SHIFT;
 595	return rbio->stripe_pages[index];
 596}
 597
 598/*
 599 * helper to index into the qstripe, returns null
 600 * if there is no qstripe
 601 */
 602static struct page *rbio_qstripe_page(struct btrfs_raid_bio *rbio, int index)
 603{
 604	if (rbio->nr_data + 1 == rbio->bbio->num_stripes)
 605		return NULL;
 606
 607	index += ((rbio->nr_data + 1) * rbio->stripe_len) >>
 608		PAGE_CACHE_SHIFT;
 609	return rbio->stripe_pages[index];
 610}
 611
 612/*
 613 * The first stripe in the table for a logical address
 614 * has the lock.  rbios are added in one of three ways:
 615 *
 616 * 1) Nobody has the stripe locked yet.  The rbio is given
 617 * the lock and 0 is returned.  The caller must start the IO
 618 * themselves.
 619 *
 620 * 2) Someone has the stripe locked, but we're able to merge
 621 * with the lock owner.  The rbio is freed and the IO will
 622 * start automatically along with the existing rbio.  1 is returned.
 623 *
 624 * 3) Someone has the stripe locked, but we're not able to merge.
 625 * The rbio is added to the lock owner's plug list, or merged into
 626 * an rbio already on the plug list.  When the lock owner unlocks,
 627 * the next rbio on the list is run and the IO is started automatically.
 628 * 1 is returned
 629 *
 630 * If we return 0, the caller still owns the rbio and must continue with
 631 * IO submission.  If we return 1, the caller must assume the rbio has
 632 * already been freed.
 633 */
 634static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio)
 635{
 636	int bucket = rbio_bucket(rbio);
 637	struct btrfs_stripe_hash *h = rbio->fs_info->stripe_hash_table->table + bucket;
 638	struct btrfs_raid_bio *cur;
 639	struct btrfs_raid_bio *pending;
 640	unsigned long flags;
 641	DEFINE_WAIT(wait);
 642	struct btrfs_raid_bio *freeit = NULL;
 643	struct btrfs_raid_bio *cache_drop = NULL;
 644	int ret = 0;
 645	int walk = 0;
 
 646
 647	spin_lock_irqsave(&h->lock, flags);
 648	list_for_each_entry(cur, &h->hash_list, hash_list) {
 649		walk++;
 650		if (cur->raid_map[0] == rbio->raid_map[0]) {
 651			spin_lock(&cur->bio_list_lock);
 652
 653			/* can we steal this cached rbio's pages? */
 654			if (bio_list_empty(&cur->bio_list) &&
 655			    list_empty(&cur->plug_list) &&
 656			    test_bit(RBIO_CACHE_BIT, &cur->flags) &&
 657			    !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) {
 658				list_del_init(&cur->hash_list);
 659				atomic_dec(&cur->refs);
 
 
 
 
 
 660
 661				steal_rbio(cur, rbio);
 662				cache_drop = cur;
 663				spin_unlock(&cur->bio_list_lock);
 
 
 
 
 
 
 
 
 664
 665				goto lockit;
 666			}
 667
 668			/* can we merge into the lock owner? */
 669			if (rbio_can_merge(cur, rbio)) {
 670				merge_rbio(cur, rbio);
 
 
 
 
 
 671				spin_unlock(&cur->bio_list_lock);
 672				freeit = rbio;
 673				ret = 1;
 674				goto out;
 675			}
 
 676
 677
 678			/*
 679			 * we couldn't merge with the running
 680			 * rbio, see if we can merge with the
 681			 * pending ones.  We don't have to
 682			 * check for rmw_locked because there
 683			 * is no way they are inside finish_rmw
 684			 * right now
 685			 */
 686			list_for_each_entry(pending, &cur->plug_list,
 687					    plug_list) {
 688				if (rbio_can_merge(pending, rbio)) {
 689					merge_rbio(pending, rbio);
 690					spin_unlock(&cur->bio_list_lock);
 691					freeit = rbio;
 692					ret = 1;
 693					goto out;
 694				}
 695			}
 696
 697			/* no merging, put us on the tail of the plug list,
 698			 * our rbio will be started with the currently
 699			 * running rbio unlocks
 700			 */
 701			list_add_tail(&rbio->plug_list, &cur->plug_list);
 702			spin_unlock(&cur->bio_list_lock);
 703			ret = 1;
 704			goto out;
 705		}
 706	}
 707lockit:
 708	atomic_inc(&rbio->refs);
 709	list_add(&rbio->hash_list, &h->hash_list);
 710out:
 711	spin_unlock_irqrestore(&h->lock, flags);
 712	if (cache_drop)
 713		remove_rbio_from_cache(cache_drop);
 714	if (freeit)
 715		__free_raid_bio(freeit);
 716	return ret;
 717}
 718
 719/*
 720 * called as rmw or parity rebuild is completed.  If the plug list has more
 721 * rbios waiting for this stripe, the next one on the list will be started
 722 */
 723static noinline void unlock_stripe(struct btrfs_raid_bio *rbio)
 724{
 725	int bucket;
 726	struct btrfs_stripe_hash *h;
 727	unsigned long flags;
 728	int keep_cache = 0;
 729
 730	bucket = rbio_bucket(rbio);
 731	h = rbio->fs_info->stripe_hash_table->table + bucket;
 732
 733	if (list_empty(&rbio->plug_list))
 734		cache_rbio(rbio);
 735
 736	spin_lock_irqsave(&h->lock, flags);
 737	spin_lock(&rbio->bio_list_lock);
 738
 739	if (!list_empty(&rbio->hash_list)) {
 740		/*
 741		 * if we're still cached and there is no other IO
 742		 * to perform, just leave this rbio here for others
 743		 * to steal from later
 744		 */
 745		if (list_empty(&rbio->plug_list) &&
 746		    test_bit(RBIO_CACHE_BIT, &rbio->flags)) {
 747			keep_cache = 1;
 748			clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
 749			BUG_ON(!bio_list_empty(&rbio->bio_list));
 750			goto done;
 751		}
 752
 753		list_del_init(&rbio->hash_list);
 754		atomic_dec(&rbio->refs);
 755
 756		/*
 757		 * we use the plug list to hold all the rbios
 758		 * waiting for the chance to lock this stripe.
 759		 * hand the lock over to one of them.
 760		 */
 761		if (!list_empty(&rbio->plug_list)) {
 762			struct btrfs_raid_bio *next;
 763			struct list_head *head = rbio->plug_list.next;
 764
 765			next = list_entry(head, struct btrfs_raid_bio,
 766					  plug_list);
 767
 768			list_del_init(&rbio->plug_list);
 769
 770			list_add(&next->hash_list, &h->hash_list);
 771			atomic_inc(&next->refs);
 772			spin_unlock(&rbio->bio_list_lock);
 773			spin_unlock_irqrestore(&h->lock, flags);
 774
 775			if (next->read_rebuild)
 776				async_read_rebuild(next);
 777			else {
 
 
 
 778				steal_rbio(rbio, next);
 779				async_rmw_stripe(next);
 
 
 
 780			}
 781
 782			goto done_nolock;
 783		} else  if (waitqueue_active(&h->wait)) {
 784			spin_unlock(&rbio->bio_list_lock);
 785			spin_unlock_irqrestore(&h->lock, flags);
 786			wake_up(&h->wait);
 787			goto done_nolock;
 788		}
 789	}
 790done:
 791	spin_unlock(&rbio->bio_list_lock);
 792	spin_unlock_irqrestore(&h->lock, flags);
 793
 794done_nolock:
 795	if (!keep_cache)
 796		remove_rbio_from_cache(rbio);
 797}
 798
 799static void __free_raid_bio(struct btrfs_raid_bio *rbio)
 800{
 801	int i;
 802
 803	WARN_ON(atomic_read(&rbio->refs) < 0);
 804	if (!atomic_dec_and_test(&rbio->refs))
 805		return;
 806
 807	WARN_ON(!list_empty(&rbio->stripe_cache));
 808	WARN_ON(!list_empty(&rbio->hash_list));
 809	WARN_ON(!bio_list_empty(&rbio->bio_list));
 810
 811	for (i = 0; i < rbio->nr_pages; i++) {
 812		if (rbio->stripe_pages[i]) {
 813			__free_page(rbio->stripe_pages[i]);
 814			rbio->stripe_pages[i] = NULL;
 815		}
 816	}
 817	kfree(rbio->raid_map);
 818	kfree(rbio->bbio);
 819	kfree(rbio);
 820}
 821
 822static void free_raid_bio(struct btrfs_raid_bio *rbio)
 823{
 824	unlock_stripe(rbio);
 825	__free_raid_bio(rbio);
 
 
 
 
 
 
 
 826}
 827
 828/*
 829 * this frees the rbio and runs through all the bios in the
 830 * bio_list and calls end_io on them
 831 */
 832static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, int err, int uptodate)
 833{
 834	struct bio *cur = bio_list_get(&rbio->bio_list);
 835	struct bio *next;
 836	free_raid_bio(rbio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 837
 838	while (cur) {
 839		next = cur->bi_next;
 840		cur->bi_next = NULL;
 841		if (uptodate)
 842			set_bit(BIO_UPTODATE, &cur->bi_flags);
 843		bio_endio(cur, err);
 844		cur = next;
 845	}
 846}
 847
 848/*
 849 * end io function used by finish_rmw.  When we finally
 850 * get here, we've written a full stripe
 851 */
 852static void raid_write_end_io(struct bio *bio, int err)
 853{
 854	struct btrfs_raid_bio *rbio = bio->bi_private;
 
 
 855
 856	if (err)
 857		fail_bio_stripe(rbio, bio);
 858
 859	bio_put(bio);
 860
 861	if (!atomic_dec_and_test(&rbio->bbio->stripes_pending))
 862		return;
 863
 864	err = 0;
 865
 866	/* OK, we have read all the stripes we need to. */
 867	if (atomic_read(&rbio->bbio->error) > rbio->bbio->max_errors)
 868		err = -EIO;
 
 
 869
 870	rbio_orig_end_io(rbio, err, 0);
 871	return;
 872}
 873
 874/*
 875 * the read/modify/write code wants to use the original bio for
 876 * any pages it included, and then use the rbio for everything
 877 * else.  This function decides if a given index (stripe number)
 878 * and page number in that stripe fall inside the original bio
 879 * or the rbio.
 880 *
 881 * if you set bio_list_only, you'll get a NULL back for any ranges
 882 * that are outside the bio_list
 883 *
 884 * This doesn't take any refs on anything, you get a bare page pointer
 885 * and the caller must bump refs as required.
 886 *
 887 * You must call index_rbio_pages once before you can trust
 888 * the answers from this function.
 889 */
 890static struct page *page_in_rbio(struct btrfs_raid_bio *rbio,
 891				 int index, int pagenr, int bio_list_only)
 892{
 893	int chunk_page;
 894	struct page *p = NULL;
 895
 896	chunk_page = index * (rbio->stripe_len >> PAGE_SHIFT) + pagenr;
 897
 898	spin_lock_irq(&rbio->bio_list_lock);
 899	p = rbio->bio_pages[chunk_page];
 900	spin_unlock_irq(&rbio->bio_list_lock);
 901
 902	if (p || bio_list_only)
 903		return p;
 904
 905	return rbio->stripe_pages[chunk_page];
 906}
 907
 908/*
 909 * number of pages we need for the entire stripe across all the
 910 * drives
 911 */
 912static unsigned long rbio_nr_pages(unsigned long stripe_len, int nr_stripes)
 913{
 914	unsigned long nr = stripe_len * nr_stripes;
 915	return (nr + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
 916}
 917
 918/*
 919 * allocation and initial setup for the btrfs_raid_bio.  Not
 920 * this does not allocate any pages for rbio->pages.
 921 */
 922static struct btrfs_raid_bio *alloc_rbio(struct btrfs_root *root,
 923			  struct btrfs_bio *bbio, u64 *raid_map,
 924			  u64 stripe_len)
 925{
 926	struct btrfs_raid_bio *rbio;
 927	int nr_data = 0;
 928	int num_pages = rbio_nr_pages(stripe_len, bbio->num_stripes);
 
 
 929	void *p;
 930
 931	rbio = kzalloc(sizeof(*rbio) + num_pages * sizeof(struct page *) * 2,
 932			GFP_NOFS);
 933	if (!rbio) {
 934		kfree(raid_map);
 935		kfree(bbio);
 
 
 
 
 936		return ERR_PTR(-ENOMEM);
 937	}
 938
 939	bio_list_init(&rbio->bio_list);
 940	INIT_LIST_HEAD(&rbio->plug_list);
 941	spin_lock_init(&rbio->bio_list_lock);
 942	INIT_LIST_HEAD(&rbio->stripe_cache);
 943	INIT_LIST_HEAD(&rbio->hash_list);
 944	rbio->bbio = bbio;
 945	rbio->raid_map = raid_map;
 946	rbio->fs_info = root->fs_info;
 947	rbio->stripe_len = stripe_len;
 948	rbio->nr_pages = num_pages;
 
 
 949	rbio->faila = -1;
 950	rbio->failb = -1;
 951	atomic_set(&rbio->refs, 1);
 
 
 952
 953	/*
 954	 * the stripe_pages and bio_pages array point to the extra
 955	 * memory we allocated past the end of the rbio
 956	 */
 957	p = rbio + 1;
 958	rbio->stripe_pages = p;
 959	rbio->bio_pages = p + sizeof(struct page *) * num_pages;
 960
 961	if (raid_map[bbio->num_stripes - 1] == RAID6_Q_STRIPE)
 962		nr_data = bbio->num_stripes - 2;
 
 
 
 
 
 
 
 
 
 
 963	else
 964		nr_data = bbio->num_stripes - 1;
 965
 966	rbio->nr_data = nr_data;
 967	return rbio;
 968}
 969
 970/* allocate pages for all the stripes in the bio, including parity */
 971static int alloc_rbio_pages(struct btrfs_raid_bio *rbio)
 972{
 973	int i;
 974	struct page *page;
 975
 976	for (i = 0; i < rbio->nr_pages; i++) {
 977		if (rbio->stripe_pages[i])
 978			continue;
 979		page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
 980		if (!page)
 981			return -ENOMEM;
 982		rbio->stripe_pages[i] = page;
 983		ClearPageUptodate(page);
 984	}
 985	return 0;
 986}
 987
 988/* allocate pages for just the p/q stripes */
 989static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio)
 990{
 991	int i;
 992	struct page *page;
 993
 994	i = (rbio->nr_data * rbio->stripe_len) >> PAGE_CACHE_SHIFT;
 995
 996	for (; i < rbio->nr_pages; i++) {
 997		if (rbio->stripe_pages[i])
 998			continue;
 999		page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1000		if (!page)
1001			return -ENOMEM;
1002		rbio->stripe_pages[i] = page;
1003	}
1004	return 0;
1005}
1006
1007/*
1008 * add a single page from a specific stripe into our list of bios for IO
1009 * this will try to merge into existing bios if possible, and returns
1010 * zero if all went well.
1011 */
1012static int rbio_add_io_page(struct btrfs_raid_bio *rbio,
1013			    struct bio_list *bio_list,
1014			    struct page *page,
1015			    int stripe_nr,
1016			    unsigned long page_index,
1017			    unsigned long bio_max_len)
1018{
1019	struct bio *last = bio_list->tail;
1020	u64 last_end = 0;
1021	int ret;
1022	struct bio *bio;
1023	struct btrfs_bio_stripe *stripe;
1024	u64 disk_start;
1025
1026	stripe = &rbio->bbio->stripes[stripe_nr];
1027	disk_start = stripe->physical + (page_index << PAGE_CACHE_SHIFT);
1028
1029	/* if the device is missing, just fail this stripe */
1030	if (!stripe->dev->bdev)
1031		return fail_rbio_index(rbio, stripe_nr);
1032
1033	/* see if we can add this page onto our existing bio */
1034	if (last) {
1035		last_end = (u64)last->bi_iter.bi_sector << 9;
1036		last_end += last->bi_iter.bi_size;
1037
1038		/*
1039		 * we can't merge these if they are from different
1040		 * devices or if they are not contiguous
1041		 */
1042		if (last_end == disk_start && stripe->dev->bdev &&
1043		    test_bit(BIO_UPTODATE, &last->bi_flags) &&
1044		    last->bi_bdev == stripe->dev->bdev) {
1045			ret = bio_add_page(last, page, PAGE_CACHE_SIZE, 0);
1046			if (ret == PAGE_CACHE_SIZE)
1047				return 0;
1048		}
1049	}
1050
1051	/* put a new bio on the list */
1052	bio = btrfs_io_bio_alloc(GFP_NOFS, bio_max_len >> PAGE_SHIFT?:1);
1053	if (!bio)
1054		return -ENOMEM;
1055
1056	bio->bi_iter.bi_size = 0;
1057	bio->bi_bdev = stripe->dev->bdev;
1058	bio->bi_iter.bi_sector = disk_start >> 9;
1059	set_bit(BIO_UPTODATE, &bio->bi_flags);
1060
1061	bio_add_page(bio, page, PAGE_CACHE_SIZE, 0);
1062	bio_list_add(bio_list, bio);
1063	return 0;
1064}
1065
1066/*
1067 * while we're doing the read/modify/write cycle, we could
1068 * have errors in reading pages off the disk.  This checks
1069 * for errors and if we're not able to read the page it'll
1070 * trigger parity reconstruction.  The rmw will be finished
1071 * after we've reconstructed the failed stripes
1072 */
1073static void validate_rbio_for_rmw(struct btrfs_raid_bio *rbio)
1074{
1075	if (rbio->faila >= 0 || rbio->failb >= 0) {
1076		BUG_ON(rbio->faila == rbio->bbio->num_stripes - 1);
1077		__raid56_parity_recover(rbio);
1078	} else {
1079		finish_rmw(rbio);
1080	}
1081}
1082
1083/*
1084 * these are just the pages from the rbio array, not from anything
1085 * the FS sent down to us
1086 */
1087static struct page *rbio_stripe_page(struct btrfs_raid_bio *rbio, int stripe, int page)
1088{
1089	int index;
1090	index = stripe * (rbio->stripe_len >> PAGE_CACHE_SHIFT);
1091	index += page;
1092	return rbio->stripe_pages[index];
1093}
1094
1095/*
1096 * helper function to walk our bio list and populate the bio_pages array with
1097 * the result.  This seems expensive, but it is faster than constantly
1098 * searching through the bio list as we setup the IO in finish_rmw or stripe
1099 * reconstruction.
1100 *
1101 * This must be called before you trust the answers from page_in_rbio
1102 */
1103static void index_rbio_pages(struct btrfs_raid_bio *rbio)
1104{
1105	struct bio *bio;
1106	u64 start;
1107	unsigned long stripe_offset;
1108	unsigned long page_index;
1109	struct page *p;
1110	int i;
1111
1112	spin_lock_irq(&rbio->bio_list_lock);
1113	bio_list_for_each(bio, &rbio->bio_list) {
 
 
 
 
1114		start = (u64)bio->bi_iter.bi_sector << 9;
1115		stripe_offset = start - rbio->raid_map[0];
1116		page_index = stripe_offset >> PAGE_CACHE_SHIFT;
1117
1118		for (i = 0; i < bio->bi_vcnt; i++) {
1119			p = bio->bi_io_vec[i].bv_page;
1120			rbio->bio_pages[page_index + i] = p;
 
 
 
1121		}
1122	}
1123	spin_unlock_irq(&rbio->bio_list_lock);
1124}
1125
1126/*
1127 * this is called from one of two situations.  We either
1128 * have a full stripe from the higher layers, or we've read all
1129 * the missing bits off disk.
1130 *
1131 * This will calculate the parity and then send down any
1132 * changed blocks.
1133 */
1134static noinline void finish_rmw(struct btrfs_raid_bio *rbio)
1135{
1136	struct btrfs_bio *bbio = rbio->bbio;
1137	void *pointers[bbio->num_stripes];
1138	int stripe_len = rbio->stripe_len;
1139	int nr_data = rbio->nr_data;
1140	int stripe;
1141	int pagenr;
1142	int p_stripe = -1;
1143	int q_stripe = -1;
1144	struct bio_list bio_list;
1145	struct bio *bio;
1146	int pages_per_stripe = stripe_len >> PAGE_CACHE_SHIFT;
1147	int ret;
1148
1149	bio_list_init(&bio_list);
1150
1151	if (bbio->num_stripes - rbio->nr_data == 1) {
1152		p_stripe = bbio->num_stripes - 1;
1153	} else if (bbio->num_stripes - rbio->nr_data == 2) {
1154		p_stripe = bbio->num_stripes - 2;
1155		q_stripe = bbio->num_stripes - 1;
1156	} else {
1157		BUG();
1158	}
1159
1160	/* at this point we either have a full stripe,
1161	 * or we've read the full stripe from the drive.
1162	 * recalculate the parity and write the new results.
1163	 *
1164	 * We're not allowed to add any new bios to the
1165	 * bio list here, anyone else that wants to
1166	 * change this stripe needs to do their own rmw.
1167	 */
1168	spin_lock_irq(&rbio->bio_list_lock);
1169	set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1170	spin_unlock_irq(&rbio->bio_list_lock);
1171
1172	atomic_set(&rbio->bbio->error, 0);
1173
1174	/*
1175	 * now that we've set rmw_locked, run through the
1176	 * bio list one last time and map the page pointers
1177	 *
1178	 * We don't cache full rbios because we're assuming
1179	 * the higher layers are unlikely to use this area of
1180	 * the disk again soon.  If they do use it again,
1181	 * hopefully they will send another full bio.
1182	 */
1183	index_rbio_pages(rbio);
1184	if (!rbio_is_full(rbio))
1185		cache_rbio_pages(rbio);
1186	else
1187		clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
1188
1189	for (pagenr = 0; pagenr < pages_per_stripe; pagenr++) {
1190		struct page *p;
1191		/* first collect one page from each data stripe */
1192		for (stripe = 0; stripe < nr_data; stripe++) {
1193			p = page_in_rbio(rbio, stripe, pagenr, 0);
1194			pointers[stripe] = kmap(p);
1195		}
1196
1197		/* then add the parity stripe */
1198		p = rbio_pstripe_page(rbio, pagenr);
1199		SetPageUptodate(p);
1200		pointers[stripe++] = kmap(p);
1201
1202		if (q_stripe != -1) {
1203
1204			/*
1205			 * raid6, add the qstripe and call the
1206			 * library function to fill in our p/q
1207			 */
1208			p = rbio_qstripe_page(rbio, pagenr);
1209			SetPageUptodate(p);
1210			pointers[stripe++] = kmap(p);
1211
1212			raid6_call.gen_syndrome(bbio->num_stripes, PAGE_SIZE,
1213						pointers);
1214		} else {
1215			/* raid5 */
1216			memcpy(pointers[nr_data], pointers[0], PAGE_SIZE);
1217			run_xor(pointers + 1, nr_data - 1, PAGE_CACHE_SIZE);
1218		}
1219
1220
1221		for (stripe = 0; stripe < bbio->num_stripes; stripe++)
1222			kunmap(page_in_rbio(rbio, stripe, pagenr, 0));
1223	}
1224
1225	/*
1226	 * time to start writing.  Make bios for everything from the
1227	 * higher layers (the bio_list in our rbio) and our p/q.  Ignore
1228	 * everything else.
1229	 */
1230	for (stripe = 0; stripe < bbio->num_stripes; stripe++) {
1231		for (pagenr = 0; pagenr < pages_per_stripe; pagenr++) {
1232			struct page *page;
1233			if (stripe < rbio->nr_data) {
1234				page = page_in_rbio(rbio, stripe, pagenr, 1);
1235				if (!page)
1236					continue;
1237			} else {
1238			       page = rbio_stripe_page(rbio, stripe, pagenr);
1239			}
1240
1241			ret = rbio_add_io_page(rbio, &bio_list,
1242				       page, stripe, pagenr, rbio->stripe_len);
1243			if (ret)
1244				goto cleanup;
1245		}
1246	}
1247
1248	atomic_set(&bbio->stripes_pending, bio_list_size(&bio_list));
1249	BUG_ON(atomic_read(&bbio->stripes_pending) == 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1250
1251	while (1) {
1252		bio = bio_list_pop(&bio_list);
1253		if (!bio)
1254			break;
1255
 
1256		bio->bi_private = rbio;
1257		bio->bi_end_io = raid_write_end_io;
1258		BUG_ON(!test_bit(BIO_UPTODATE, &bio->bi_flags));
1259		submit_bio(WRITE, bio);
 
1260	}
1261	return;
1262
1263cleanup:
1264	rbio_orig_end_io(rbio, -EIO, 0);
 
 
 
1265}
1266
1267/*
1268 * helper to find the stripe number for a given bio.  Used to figure out which
1269 * stripe has failed.  This expects the bio to correspond to a physical disk,
1270 * so it looks up based on physical sector numbers.
1271 */
1272static int find_bio_stripe(struct btrfs_raid_bio *rbio,
1273			   struct bio *bio)
1274{
1275	u64 physical = bio->bi_iter.bi_sector;
1276	u64 stripe_start;
1277	int i;
1278	struct btrfs_bio_stripe *stripe;
1279
1280	physical <<= 9;
1281
1282	for (i = 0; i < rbio->bbio->num_stripes; i++) {
1283		stripe = &rbio->bbio->stripes[i];
1284		stripe_start = stripe->physical;
1285		if (physical >= stripe_start &&
1286		    physical < stripe_start + rbio->stripe_len) {
 
1287			return i;
1288		}
1289	}
1290	return -1;
1291}
1292
1293/*
1294 * helper to find the stripe number for a given
1295 * bio (before mapping).  Used to figure out which stripe has
1296 * failed.  This looks up based on logical block numbers.
1297 */
1298static int find_logical_bio_stripe(struct btrfs_raid_bio *rbio,
1299				   struct bio *bio)
1300{
1301	u64 logical = bio->bi_iter.bi_sector;
1302	u64 stripe_start;
1303	int i;
1304
1305	logical <<= 9;
 
1306
1307	for (i = 0; i < rbio->nr_data; i++) {
1308		stripe_start = rbio->raid_map[i];
1309		if (logical >= stripe_start &&
1310		    logical < stripe_start + rbio->stripe_len) {
1311			return i;
1312		}
1313	}
1314	return -1;
1315}
1316
1317/*
1318 * returns -EIO if we had too many failures
1319 */
1320static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed)
1321{
1322	unsigned long flags;
1323	int ret = 0;
1324
1325	spin_lock_irqsave(&rbio->bio_list_lock, flags);
1326
1327	/* we already know this stripe is bad, move on */
1328	if (rbio->faila == failed || rbio->failb == failed)
1329		goto out;
1330
1331	if (rbio->faila == -1) {
1332		/* first failure on this rbio */
1333		rbio->faila = failed;
1334		atomic_inc(&rbio->bbio->error);
1335	} else if (rbio->failb == -1) {
1336		/* second failure on this rbio */
1337		rbio->failb = failed;
1338		atomic_inc(&rbio->bbio->error);
1339	} else {
1340		ret = -EIO;
1341	}
1342out:
1343	spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
1344
1345	return ret;
1346}
1347
1348/*
1349 * helper to fail a stripe based on a physical disk
1350 * bio.
1351 */
1352static int fail_bio_stripe(struct btrfs_raid_bio *rbio,
1353			   struct bio *bio)
1354{
1355	int failed = find_bio_stripe(rbio, bio);
1356
1357	if (failed < 0)
1358		return -EIO;
1359
1360	return fail_rbio_index(rbio, failed);
1361}
1362
1363/*
1364 * this sets each page in the bio uptodate.  It should only be used on private
1365 * rbio pages, nothing that comes in from the higher layers
1366 */
1367static void set_bio_pages_uptodate(struct bio *bio)
1368{
1369	int i;
1370	struct page *p;
 
 
1371
1372	for (i = 0; i < bio->bi_vcnt; i++) {
1373		p = bio->bi_io_vec[i].bv_page;
1374		SetPageUptodate(p);
1375	}
1376}
1377
1378/*
1379 * end io for the read phase of the rmw cycle.  All the bios here are physical
1380 * stripe bios we've read from the disk so we can recalculate the parity of the
1381 * stripe.
1382 *
1383 * This will usually kick off finish_rmw once all the bios are read in, but it
1384 * may trigger parity reconstruction if we had any errors along the way
1385 */
1386static void raid_rmw_end_io(struct bio *bio, int err)
1387{
1388	struct btrfs_raid_bio *rbio = bio->bi_private;
1389
1390	if (err)
1391		fail_bio_stripe(rbio, bio);
1392	else
1393		set_bio_pages_uptodate(bio);
1394
1395	bio_put(bio);
1396
1397	if (!atomic_dec_and_test(&rbio->bbio->stripes_pending))
1398		return;
1399
1400	err = 0;
1401	if (atomic_read(&rbio->bbio->error) > rbio->bbio->max_errors)
1402		goto cleanup;
1403
1404	/*
1405	 * this will normally call finish_rmw to start our write
1406	 * but if there are any failed stripes we'll reconstruct
1407	 * from parity first
1408	 */
1409	validate_rbio_for_rmw(rbio);
1410	return;
1411
1412cleanup:
1413
1414	rbio_orig_end_io(rbio, -EIO, 0);
1415}
1416
1417static void async_rmw_stripe(struct btrfs_raid_bio *rbio)
1418{
1419	btrfs_init_work(&rbio->work, rmw_work, NULL, NULL);
1420
1421	btrfs_queue_work(rbio->fs_info->rmw_workers,
1422			 &rbio->work);
1423}
1424
1425static void async_read_rebuild(struct btrfs_raid_bio *rbio)
1426{
1427	btrfs_init_work(&rbio->work, read_rebuild_work, NULL, NULL);
1428
1429	btrfs_queue_work(rbio->fs_info->rmw_workers,
1430			 &rbio->work);
1431}
1432
1433/*
1434 * the stripe must be locked by the caller.  It will
1435 * unlock after all the writes are done
1436 */
1437static int raid56_rmw_stripe(struct btrfs_raid_bio *rbio)
1438{
1439	int bios_to_read = 0;
1440	struct btrfs_bio *bbio = rbio->bbio;
1441	struct bio_list bio_list;
1442	int ret;
1443	int nr_pages = (rbio->stripe_len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1444	int pagenr;
1445	int stripe;
1446	struct bio *bio;
1447
1448	bio_list_init(&bio_list);
1449
1450	ret = alloc_rbio_pages(rbio);
1451	if (ret)
1452		goto cleanup;
1453
1454	index_rbio_pages(rbio);
1455
1456	atomic_set(&rbio->bbio->error, 0);
1457	/*
1458	 * build a list of bios to read all the missing parts of this
1459	 * stripe
1460	 */
1461	for (stripe = 0; stripe < rbio->nr_data; stripe++) {
1462		for (pagenr = 0; pagenr < nr_pages; pagenr++) {
1463			struct page *page;
1464			/*
1465			 * we want to find all the pages missing from
1466			 * the rbio and read them from the disk.  If
1467			 * page_in_rbio finds a page in the bio list
1468			 * we don't need to read it off the stripe.
1469			 */
1470			page = page_in_rbio(rbio, stripe, pagenr, 1);
1471			if (page)
1472				continue;
1473
1474			page = rbio_stripe_page(rbio, stripe, pagenr);
1475			/*
1476			 * the bio cache may have handed us an uptodate
1477			 * page.  If so, be happy and use it
1478			 */
1479			if (PageUptodate(page))
1480				continue;
1481
1482			ret = rbio_add_io_page(rbio, &bio_list, page,
1483				       stripe, pagenr, rbio->stripe_len);
1484			if (ret)
1485				goto cleanup;
1486		}
1487	}
1488
1489	bios_to_read = bio_list_size(&bio_list);
1490	if (!bios_to_read) {
1491		/*
1492		 * this can happen if others have merged with
1493		 * us, it means there is nothing left to read.
1494		 * But if there are missing devices it may not be
1495		 * safe to do the full stripe write yet.
1496		 */
1497		goto finish;
1498	}
1499
1500	/*
1501	 * the bbio may be freed once we submit the last bio.  Make sure
1502	 * not to touch it after that
1503	 */
1504	atomic_set(&bbio->stripes_pending, bios_to_read);
1505	while (1) {
1506		bio = bio_list_pop(&bio_list);
1507		if (!bio)
1508			break;
1509
1510		bio->bi_private = rbio;
1511		bio->bi_end_io = raid_rmw_end_io;
 
1512
1513		btrfs_bio_wq_end_io(rbio->fs_info, bio,
1514				    BTRFS_WQ_ENDIO_RAID56);
1515
1516		BUG_ON(!test_bit(BIO_UPTODATE, &bio->bi_flags));
1517		submit_bio(READ, bio);
1518	}
1519	/* the actual write will happen once the reads are done */
1520	return 0;
1521
1522cleanup:
1523	rbio_orig_end_io(rbio, -EIO, 0);
 
 
 
 
1524	return -EIO;
1525
1526finish:
1527	validate_rbio_for_rmw(rbio);
1528	return 0;
1529}
1530
1531/*
1532 * if the upper layers pass in a full stripe, we thank them by only allocating
1533 * enough pages to hold the parity, and sending it all down quickly.
1534 */
1535static int full_stripe_write(struct btrfs_raid_bio *rbio)
1536{
1537	int ret;
1538
1539	ret = alloc_rbio_parity_pages(rbio);
1540	if (ret) {
1541		__free_raid_bio(rbio);
1542		return ret;
1543	}
1544
1545	ret = lock_stripe_add(rbio);
1546	if (ret == 0)
1547		finish_rmw(rbio);
1548	return 0;
1549}
1550
1551/*
1552 * partial stripe writes get handed over to async helpers.
1553 * We're really hoping to merge a few more writes into this
1554 * rbio before calculating new parity
1555 */
1556static int partial_stripe_write(struct btrfs_raid_bio *rbio)
1557{
1558	int ret;
1559
1560	ret = lock_stripe_add(rbio);
1561	if (ret == 0)
1562		async_rmw_stripe(rbio);
1563	return 0;
1564}
1565
1566/*
1567 * sometimes while we were reading from the drive to
1568 * recalculate parity, enough new bios come into create
1569 * a full stripe.  So we do a check here to see if we can
1570 * go directly to finish_rmw
1571 */
1572static int __raid56_parity_write(struct btrfs_raid_bio *rbio)
1573{
1574	/* head off into rmw land if we don't have a full stripe */
1575	if (!rbio_is_full(rbio))
1576		return partial_stripe_write(rbio);
1577	return full_stripe_write(rbio);
1578}
1579
1580/*
1581 * We use plugging call backs to collect full stripes.
1582 * Any time we get a partial stripe write while plugged
1583 * we collect it into a list.  When the unplug comes down,
1584 * we sort the list by logical block number and merge
1585 * everything we can into the same rbios
1586 */
1587struct btrfs_plug_cb {
1588	struct blk_plug_cb cb;
1589	struct btrfs_fs_info *info;
1590	struct list_head rbio_list;
1591	struct btrfs_work work;
1592};
1593
1594/*
1595 * rbios on the plug list are sorted for easier merging.
1596 */
1597static int plug_cmp(void *priv, struct list_head *a, struct list_head *b)
1598{
1599	struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio,
1600						 plug_list);
1601	struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio,
1602						 plug_list);
1603	u64 a_sector = ra->bio_list.head->bi_iter.bi_sector;
1604	u64 b_sector = rb->bio_list.head->bi_iter.bi_sector;
1605
1606	if (a_sector < b_sector)
1607		return -1;
1608	if (a_sector > b_sector)
1609		return 1;
1610	return 0;
1611}
1612
1613static void run_plug(struct btrfs_plug_cb *plug)
1614{
1615	struct btrfs_raid_bio *cur;
1616	struct btrfs_raid_bio *last = NULL;
1617
1618	/*
1619	 * sort our plug list then try to merge
1620	 * everything we can in hopes of creating full
1621	 * stripes.
1622	 */
1623	list_sort(NULL, &plug->rbio_list, plug_cmp);
1624	while (!list_empty(&plug->rbio_list)) {
1625		cur = list_entry(plug->rbio_list.next,
1626				 struct btrfs_raid_bio, plug_list);
1627		list_del_init(&cur->plug_list);
1628
1629		if (rbio_is_full(cur)) {
 
 
1630			/* we have a full stripe, send it down */
1631			full_stripe_write(cur);
 
1632			continue;
1633		}
1634		if (last) {
1635			if (rbio_can_merge(last, cur)) {
1636				merge_rbio(last, cur);
1637				__free_raid_bio(cur);
1638				continue;
1639
1640			}
1641			__raid56_parity_write(last);
1642		}
1643		last = cur;
1644	}
1645	if (last) {
1646		__raid56_parity_write(last);
1647	}
1648	kfree(plug);
1649}
1650
1651/*
1652 * if the unplug comes from schedule, we have to push the
1653 * work off to a helper thread
1654 */
1655static void unplug_work(struct btrfs_work *work)
1656{
1657	struct btrfs_plug_cb *plug;
1658	plug = container_of(work, struct btrfs_plug_cb, work);
1659	run_plug(plug);
1660}
1661
1662static void btrfs_raid_unplug(struct blk_plug_cb *cb, bool from_schedule)
1663{
1664	struct btrfs_plug_cb *plug;
1665	plug = container_of(cb, struct btrfs_plug_cb, cb);
1666
1667	if (from_schedule) {
1668		btrfs_init_work(&plug->work, unplug_work, NULL, NULL);
1669		btrfs_queue_work(plug->info->rmw_workers,
1670				 &plug->work);
1671		return;
1672	}
1673	run_plug(plug);
1674}
1675
1676/*
1677 * our main entry point for writes from the rest of the FS.
1678 */
1679int raid56_parity_write(struct btrfs_root *root, struct bio *bio,
1680			struct btrfs_bio *bbio, u64 *raid_map,
1681			u64 stripe_len)
1682{
1683	struct btrfs_raid_bio *rbio;
1684	struct btrfs_plug_cb *plug = NULL;
1685	struct blk_plug_cb *cb;
 
1686
1687	rbio = alloc_rbio(root, bbio, raid_map, stripe_len);
1688	if (IS_ERR(rbio))
 
1689		return PTR_ERR(rbio);
 
1690	bio_list_add(&rbio->bio_list, bio);
1691	rbio->bio_list_bytes = bio->bi_iter.bi_size;
 
 
 
 
1692
1693	/*
1694	 * don't plug on full rbios, just get them out the door
1695	 * as quickly as we can
1696	 */
1697	if (rbio_is_full(rbio))
1698		return full_stripe_write(rbio);
 
 
 
 
1699
1700	cb = blk_check_plugged(btrfs_raid_unplug, root->fs_info,
1701			       sizeof(*plug));
1702	if (cb) {
1703		plug = container_of(cb, struct btrfs_plug_cb, cb);
1704		if (!plug->info) {
1705			plug->info = root->fs_info;
1706			INIT_LIST_HEAD(&plug->rbio_list);
1707		}
1708		list_add_tail(&rbio->plug_list, &plug->rbio_list);
 
1709	} else {
1710		return __raid56_parity_write(rbio);
 
 
1711	}
1712	return 0;
1713}
1714
1715/*
1716 * all parity reconstruction happens here.  We've read in everything
1717 * we can find from the drives and this does the heavy lifting of
1718 * sorting the good from the bad.
1719 */
1720static void __raid_recover_end_io(struct btrfs_raid_bio *rbio)
1721{
1722	int pagenr, stripe;
1723	void **pointers;
1724	int faila = -1, failb = -1;
1725	int nr_pages = (rbio->stripe_len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1726	struct page *page;
1727	int err;
1728	int i;
1729
1730	pointers = kzalloc(rbio->bbio->num_stripes * sizeof(void *),
1731			   GFP_NOFS);
1732	if (!pointers) {
1733		err = -ENOMEM;
1734		goto cleanup_io;
1735	}
1736
1737	faila = rbio->faila;
1738	failb = rbio->failb;
1739
1740	if (rbio->read_rebuild) {
 
1741		spin_lock_irq(&rbio->bio_list_lock);
1742		set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1743		spin_unlock_irq(&rbio->bio_list_lock);
1744	}
1745
1746	index_rbio_pages(rbio);
1747
1748	for (pagenr = 0; pagenr < nr_pages; pagenr++) {
 
 
 
 
 
 
 
 
1749		/* setup our array of pointers with pages
1750		 * from each stripe
1751		 */
1752		for (stripe = 0; stripe < rbio->bbio->num_stripes; stripe++) {
1753			/*
1754			 * if we're rebuilding a read, we have to use
1755			 * pages from the bio list
1756			 */
1757			if (rbio->read_rebuild &&
 
1758			    (stripe == faila || stripe == failb)) {
1759				page = page_in_rbio(rbio, stripe, pagenr, 0);
1760			} else {
1761				page = rbio_stripe_page(rbio, stripe, pagenr);
1762			}
1763			pointers[stripe] = kmap(page);
1764		}
1765
1766		/* all raid6 handling here */
1767		if (rbio->raid_map[rbio->bbio->num_stripes - 1] ==
1768		    RAID6_Q_STRIPE) {
1769
1770			/*
1771			 * single failure, rebuild from parity raid5
1772			 * style
1773			 */
1774			if (failb < 0) {
1775				if (faila == rbio->nr_data) {
1776					/*
1777					 * Just the P stripe has failed, without
1778					 * a bad data or Q stripe.
1779					 * TODO, we should redo the xor here.
1780					 */
1781					err = -EIO;
1782					goto cleanup;
1783				}
1784				/*
1785				 * a single failure in raid6 is rebuilt
1786				 * in the pstripe code below
1787				 */
1788				goto pstripe;
1789			}
1790
1791			/* make sure our ps and qs are in order */
1792			if (faila > failb) {
1793				int tmp = failb;
1794				failb = faila;
1795				faila = tmp;
1796			}
1797
1798			/* if the q stripe is failed, do a pstripe reconstruction
1799			 * from the xors.
1800			 * If both the q stripe and the P stripe are failed, we're
1801			 * here due to a crc mismatch and we can't give them the
1802			 * data they want
1803			 */
1804			if (rbio->raid_map[failb] == RAID6_Q_STRIPE) {
1805				if (rbio->raid_map[faila] == RAID5_P_STRIPE) {
1806					err = -EIO;
 
1807					goto cleanup;
1808				}
1809				/*
1810				 * otherwise we have one bad data stripe and
1811				 * a good P stripe.  raid5!
1812				 */
1813				goto pstripe;
1814			}
1815
1816			if (rbio->raid_map[failb] == RAID5_P_STRIPE) {
1817				raid6_datap_recov(rbio->bbio->num_stripes,
1818						  PAGE_SIZE, faila, pointers);
1819			} else {
1820				raid6_2data_recov(rbio->bbio->num_stripes,
1821						  PAGE_SIZE, faila, failb,
1822						  pointers);
1823			}
1824		} else {
1825			void *p;
1826
1827			/* rebuild from P stripe here (raid5 or raid6) */
1828			BUG_ON(failb != -1);
1829pstripe:
1830			/* Copy parity block into failed block to start with */
1831			memcpy(pointers[faila],
1832			       pointers[rbio->nr_data],
1833			       PAGE_CACHE_SIZE);
1834
1835			/* rearrange the pointer array */
1836			p = pointers[faila];
1837			for (stripe = faila; stripe < rbio->nr_data - 1; stripe++)
1838				pointers[stripe] = pointers[stripe + 1];
1839			pointers[rbio->nr_data - 1] = p;
1840
1841			/* xor in the rest */
1842			run_xor(pointers, rbio->nr_data - 1, PAGE_CACHE_SIZE);
1843		}
1844		/* if we're doing this rebuild as part of an rmw, go through
1845		 * and set all of our private rbio pages in the
1846		 * failed stripes as uptodate.  This way finish_rmw will
1847		 * know they can be trusted.  If this was a read reconstruction,
1848		 * other endio functions will fiddle the uptodate bits
1849		 */
1850		if (!rbio->read_rebuild) {
1851			for (i = 0;  i < nr_pages; i++) {
1852				if (faila != -1) {
1853					page = rbio_stripe_page(rbio, faila, i);
1854					SetPageUptodate(page);
1855				}
1856				if (failb != -1) {
1857					page = rbio_stripe_page(rbio, failb, i);
1858					SetPageUptodate(page);
1859				}
1860			}
1861		}
1862		for (stripe = 0; stripe < rbio->bbio->num_stripes; stripe++) {
1863			/*
1864			 * if we're rebuilding a read, we have to use
1865			 * pages from the bio list
1866			 */
1867			if (rbio->read_rebuild &&
 
1868			    (stripe == faila || stripe == failb)) {
1869				page = page_in_rbio(rbio, stripe, pagenr, 0);
1870			} else {
1871				page = rbio_stripe_page(rbio, stripe, pagenr);
1872			}
1873			kunmap(page);
1874		}
1875	}
1876
1877	err = 0;
1878cleanup:
1879	kfree(pointers);
1880
1881cleanup_io:
1882
1883	if (rbio->read_rebuild) {
1884		if (err == 0)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1885			cache_rbio_pages(rbio);
1886		else
1887			clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
1888
1889		rbio_orig_end_io(rbio, err, err == 0);
1890	} else if (err == 0) {
1891		rbio->faila = -1;
1892		rbio->failb = -1;
1893		finish_rmw(rbio);
 
 
 
 
 
 
1894	} else {
1895		rbio_orig_end_io(rbio, err, 0);
1896	}
1897}
1898
1899/*
1900 * This is called only for stripes we've read from disk to
1901 * reconstruct the parity.
1902 */
1903static void raid_recover_end_io(struct bio *bio, int err)
1904{
1905	struct btrfs_raid_bio *rbio = bio->bi_private;
1906
1907	/*
1908	 * we only read stripe pages off the disk, set them
1909	 * up to date if there were no errors
1910	 */
1911	if (err)
1912		fail_bio_stripe(rbio, bio);
1913	else
1914		set_bio_pages_uptodate(bio);
1915	bio_put(bio);
1916
1917	if (!atomic_dec_and_test(&rbio->bbio->stripes_pending))
1918		return;
1919
1920	if (atomic_read(&rbio->bbio->error) > rbio->bbio->max_errors)
1921		rbio_orig_end_io(rbio, -EIO, 0);
1922	else
1923		__raid_recover_end_io(rbio);
1924}
1925
1926/*
1927 * reads everything we need off the disk to reconstruct
1928 * the parity. endio handlers trigger final reconstruction
1929 * when the IO is done.
1930 *
1931 * This is used both for reads from the higher layers and for
1932 * parity construction required to finish a rmw cycle.
1933 */
1934static int __raid56_parity_recover(struct btrfs_raid_bio *rbio)
1935{
1936	int bios_to_read = 0;
1937	struct btrfs_bio *bbio = rbio->bbio;
1938	struct bio_list bio_list;
1939	int ret;
1940	int nr_pages = (rbio->stripe_len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1941	int pagenr;
1942	int stripe;
1943	struct bio *bio;
1944
1945	bio_list_init(&bio_list);
1946
1947	ret = alloc_rbio_pages(rbio);
1948	if (ret)
1949		goto cleanup;
1950
1951	atomic_set(&rbio->bbio->error, 0);
1952
1953	/*
1954	 * read everything that hasn't failed.  Thanks to the
1955	 * stripe cache, it is possible that some or all of these
1956	 * pages are going to be uptodate.
1957	 */
1958	for (stripe = 0; stripe < bbio->num_stripes; stripe++) {
1959		if (rbio->faila == stripe ||
1960		    rbio->failb == stripe)
1961			continue;
 
1962
1963		for (pagenr = 0; pagenr < nr_pages; pagenr++) {
1964			struct page *p;
1965
1966			/*
1967			 * the rmw code may have already read this
1968			 * page in
1969			 */
1970			p = rbio_stripe_page(rbio, stripe, pagenr);
1971			if (PageUptodate(p))
1972				continue;
1973
1974			ret = rbio_add_io_page(rbio, &bio_list,
1975				       rbio_stripe_page(rbio, stripe, pagenr),
1976				       stripe, pagenr, rbio->stripe_len);
1977			if (ret < 0)
1978				goto cleanup;
1979		}
1980	}
1981
1982	bios_to_read = bio_list_size(&bio_list);
1983	if (!bios_to_read) {
1984		/*
1985		 * we might have no bios to read just because the pages
1986		 * were up to date, or we might have no bios to read because
1987		 * the devices were gone.
1988		 */
1989		if (atomic_read(&rbio->bbio->error) <= rbio->bbio->max_errors) {
1990			__raid_recover_end_io(rbio);
1991			goto out;
1992		} else {
1993			goto cleanup;
1994		}
1995	}
1996
1997	/*
1998	 * the bbio may be freed once we submit the last bio.  Make sure
1999	 * not to touch it after that
2000	 */
2001	atomic_set(&bbio->stripes_pending, bios_to_read);
2002	while (1) {
2003		bio = bio_list_pop(&bio_list);
2004		if (!bio)
2005			break;
2006
2007		bio->bi_private = rbio;
2008		bio->bi_end_io = raid_recover_end_io;
 
2009
2010		btrfs_bio_wq_end_io(rbio->fs_info, bio,
2011				    BTRFS_WQ_ENDIO_RAID56);
2012
2013		BUG_ON(!test_bit(BIO_UPTODATE, &bio->bi_flags));
2014		submit_bio(READ, bio);
2015	}
2016out:
2017	return 0;
2018
2019cleanup:
2020	if (rbio->read_rebuild)
2021		rbio_orig_end_io(rbio, -EIO, 0);
 
 
 
 
 
2022	return -EIO;
2023}
2024
2025/*
2026 * the main entry point for reads from the higher layers.  This
2027 * is really only called when the normal read path had a failure,
2028 * so we assume the bio they send down corresponds to a failed part
2029 * of the drive.
2030 */
2031int raid56_parity_recover(struct btrfs_root *root, struct bio *bio,
2032			  struct btrfs_bio *bbio, u64 *raid_map,
2033			  u64 stripe_len, int mirror_num)
2034{
2035	struct btrfs_raid_bio *rbio;
2036	int ret;
2037
2038	rbio = alloc_rbio(root, bbio, raid_map, stripe_len);
2039	if (IS_ERR(rbio))
 
 
 
 
 
 
 
2040		return PTR_ERR(rbio);
 
2041
2042	rbio->read_rebuild = 1;
2043	bio_list_add(&rbio->bio_list, bio);
2044	rbio->bio_list_bytes = bio->bi_iter.bi_size;
2045
2046	rbio->faila = find_logical_bio_stripe(rbio, bio);
2047	if (rbio->faila == -1) {
2048		BUG();
2049		kfree(raid_map);
2050		kfree(bbio);
 
 
 
2051		kfree(rbio);
2052		return -EIO;
2053	}
2054
 
 
 
 
 
 
 
2055	/*
2056	 * reconstruct from the q stripe if they are
2057	 * asking for mirror 3
 
2058	 */
2059	if (mirror_num == 3)
2060		rbio->failb = bbio->num_stripes - 2;
 
 
 
 
 
 
 
 
 
2061
2062	ret = lock_stripe_add(rbio);
2063
2064	/*
2065	 * __raid56_parity_recover will end the bio with
2066	 * any errors it hits.  We don't want to return
2067	 * its error value up the stack because our caller
2068	 * will end up calling bio_endio with any nonzero
2069	 * return
2070	 */
2071	if (ret == 0)
2072		__raid56_parity_recover(rbio);
2073	/*
2074	 * our rbio has been added to the list of
2075	 * rbios that will be handled after the
2076	 * currently lock owner is done
2077	 */
2078	return 0;
2079
2080}
2081
2082static void rmw_work(struct btrfs_work *work)
2083{
2084	struct btrfs_raid_bio *rbio;
2085
2086	rbio = container_of(work, struct btrfs_raid_bio, work);
2087	raid56_rmw_stripe(rbio);
2088}
2089
2090static void read_rebuild_work(struct btrfs_work *work)
2091{
2092	struct btrfs_raid_bio *rbio;
2093
2094	rbio = container_of(work, struct btrfs_raid_bio, work);
2095	__raid56_parity_recover(rbio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2096}