Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007 Oracle.  All rights reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   4 */
   5
   6#include <linux/kernel.h>
   7#include <linux/bio.h>
 
   8#include <linux/file.h>
   9#include <linux/fs.h>
  10#include <linux/fsnotify.h>
  11#include <linux/pagemap.h>
  12#include <linux/highmem.h>
  13#include <linux/time.h>
 
  14#include <linux/string.h>
  15#include <linux/backing-dev.h>
  16#include <linux/mount.h>
 
  17#include <linux/namei.h>
 
  18#include <linux/writeback.h>
 
  19#include <linux/compat.h>
 
  20#include <linux/security.h>
  21#include <linux/xattr.h>
  22#include <linux/mm.h>
  23#include <linux/slab.h>
  24#include <linux/blkdev.h>
  25#include <linux/uuid.h>
  26#include <linux/btrfs.h>
  27#include <linux/uaccess.h>
  28#include <linux/iversion.h>
  29#include "ctree.h"
  30#include "disk-io.h"
  31#include "export.h"
  32#include "transaction.h"
  33#include "btrfs_inode.h"
  34#include "print-tree.h"
  35#include "volumes.h"
  36#include "locking.h"
  37#include "inode-map.h"
  38#include "backref.h"
  39#include "rcu-string.h"
  40#include "send.h"
  41#include "dev-replace.h"
  42#include "props.h"
  43#include "sysfs.h"
  44#include "qgroup.h"
  45#include "tree-log.h"
  46#include "compression.h"
  47#include "space-info.h"
  48#include "delalloc-space.h"
  49#include "block-group.h"
  50
  51#ifdef CONFIG_64BIT
  52/* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
  53 * structures are incorrect, as the timespec structure from userspace
  54 * is 4 bytes too small. We define these alternatives here to teach
  55 * the kernel about the 32-bit struct packing.
  56 */
  57struct btrfs_ioctl_timespec_32 {
  58	__u64 sec;
  59	__u32 nsec;
  60} __attribute__ ((__packed__));
  61
  62struct btrfs_ioctl_received_subvol_args_32 {
  63	char	uuid[BTRFS_UUID_SIZE];	/* in */
  64	__u64	stransid;		/* in */
  65	__u64	rtransid;		/* out */
  66	struct btrfs_ioctl_timespec_32 stime; /* in */
  67	struct btrfs_ioctl_timespec_32 rtime; /* out */
  68	__u64	flags;			/* in */
  69	__u64	reserved[16];		/* in */
  70} __attribute__ ((__packed__));
  71
  72#define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
  73				struct btrfs_ioctl_received_subvol_args_32)
  74#endif
  75
  76#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
  77struct btrfs_ioctl_send_args_32 {
  78	__s64 send_fd;			/* in */
  79	__u64 clone_sources_count;	/* in */
  80	compat_uptr_t clone_sources;	/* in */
  81	__u64 parent_root;		/* in */
  82	__u64 flags;			/* in */
  83	__u64 reserved[4];		/* in */
  84} __attribute__ ((__packed__));
  85
  86#define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \
  87			       struct btrfs_ioctl_send_args_32)
  88#endif
  89
  90/* Mask out flags that are inappropriate for the given type of inode. */
  91static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode,
  92		unsigned int flags)
  93{
  94	if (S_ISDIR(inode->i_mode))
  95		return flags;
  96	else if (S_ISREG(inode->i_mode))
  97		return flags & ~FS_DIRSYNC_FL;
  98	else
  99		return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
 100}
 101
 102/*
 103 * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS
 104 * ioctl.
 105 */
 106static unsigned int btrfs_inode_flags_to_fsflags(unsigned int flags)
 107{
 108	unsigned int iflags = 0;
 109
 110	if (flags & BTRFS_INODE_SYNC)
 111		iflags |= FS_SYNC_FL;
 112	if (flags & BTRFS_INODE_IMMUTABLE)
 113		iflags |= FS_IMMUTABLE_FL;
 114	if (flags & BTRFS_INODE_APPEND)
 115		iflags |= FS_APPEND_FL;
 116	if (flags & BTRFS_INODE_NODUMP)
 117		iflags |= FS_NODUMP_FL;
 118	if (flags & BTRFS_INODE_NOATIME)
 119		iflags |= FS_NOATIME_FL;
 120	if (flags & BTRFS_INODE_DIRSYNC)
 121		iflags |= FS_DIRSYNC_FL;
 122	if (flags & BTRFS_INODE_NODATACOW)
 123		iflags |= FS_NOCOW_FL;
 124
 125	if (flags & BTRFS_INODE_NOCOMPRESS)
 126		iflags |= FS_NOCOMP_FL;
 127	else if (flags & BTRFS_INODE_COMPRESS)
 128		iflags |= FS_COMPR_FL;
 
 
 129
 130	return iflags;
 131}
 132
 133/*
 134 * Update inode->i_flags based on the btrfs internal flags.
 135 */
 136void btrfs_sync_inode_flags_to_i_flags(struct inode *inode)
 137{
 138	struct btrfs_inode *binode = BTRFS_I(inode);
 139	unsigned int new_fl = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 140
 141	if (binode->flags & BTRFS_INODE_SYNC)
 142		new_fl |= S_SYNC;
 143	if (binode->flags & BTRFS_INODE_IMMUTABLE)
 144		new_fl |= S_IMMUTABLE;
 145	if (binode->flags & BTRFS_INODE_APPEND)
 146		new_fl |= S_APPEND;
 147	if (binode->flags & BTRFS_INODE_NOATIME)
 148		new_fl |= S_NOATIME;
 149	if (binode->flags & BTRFS_INODE_DIRSYNC)
 150		new_fl |= S_DIRSYNC;
 151
 152	set_mask_bits(&inode->i_flags,
 153		      S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC,
 154		      new_fl);
 155}
 156
 157static int btrfs_ioctl_getflags(struct file *file, void __user *arg)
 158{
 159	struct btrfs_inode *binode = BTRFS_I(file_inode(file));
 160	unsigned int flags = btrfs_inode_flags_to_fsflags(binode->flags);
 161
 162	if (copy_to_user(arg, &flags, sizeof(flags)))
 163		return -EFAULT;
 164	return 0;
 165}
 166
 167/*
 168 * Check if @flags are a supported and valid set of FS_*_FL flags and that
 169 * the old and new flags are not conflicting
 170 */
 171static int check_fsflags(unsigned int old_flags, unsigned int flags)
 172{
 173	if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
 174		      FS_NOATIME_FL | FS_NODUMP_FL | \
 175		      FS_SYNC_FL | FS_DIRSYNC_FL | \
 176		      FS_NOCOMP_FL | FS_COMPR_FL |
 177		      FS_NOCOW_FL))
 178		return -EOPNOTSUPP;
 179
 180	/* COMPR and NOCOMP on new/old are valid */
 181	if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
 182		return -EINVAL;
 183
 184	if ((flags & FS_COMPR_FL) && (flags & FS_NOCOW_FL))
 185		return -EINVAL;
 186
 187	/* NOCOW and compression options are mutually exclusive */
 188	if ((old_flags & FS_NOCOW_FL) && (flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
 189		return -EINVAL;
 190	if ((flags & FS_NOCOW_FL) && (old_flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
 191		return -EINVAL;
 192
 193	return 0;
 194}
 195
 196static int btrfs_ioctl_setflags(struct file *file, void __user *arg)
 197{
 198	struct inode *inode = file_inode(file);
 199	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 200	struct btrfs_inode *binode = BTRFS_I(inode);
 201	struct btrfs_root *root = binode->root;
 202	struct btrfs_trans_handle *trans;
 203	unsigned int fsflags, old_fsflags;
 204	int ret;
 205	const char *comp = NULL;
 206	u32 binode_flags;
 
 207
 208	if (!inode_owner_or_capable(inode))
 209		return -EPERM;
 210
 211	if (btrfs_root_readonly(root))
 212		return -EROFS;
 213
 214	if (copy_from_user(&fsflags, arg, sizeof(fsflags)))
 215		return -EFAULT;
 216
 217	ret = mnt_want_write_file(file);
 218	if (ret)
 219		return ret;
 220
 221	inode_lock(inode);
 222	fsflags = btrfs_mask_fsflags_for_type(inode, fsflags);
 223	old_fsflags = btrfs_inode_flags_to_fsflags(binode->flags);
 224
 225	ret = vfs_ioc_setflags_prepare(inode, old_fsflags, fsflags);
 226	if (ret)
 227		goto out_unlock;
 228
 229	ret = check_fsflags(old_fsflags, fsflags);
 230	if (ret)
 231		goto out_unlock;
 
 
 
 
 
 
 
 
 
 
 
 232
 233	binode_flags = binode->flags;
 234	if (fsflags & FS_SYNC_FL)
 235		binode_flags |= BTRFS_INODE_SYNC;
 236	else
 237		binode_flags &= ~BTRFS_INODE_SYNC;
 238	if (fsflags & FS_IMMUTABLE_FL)
 239		binode_flags |= BTRFS_INODE_IMMUTABLE;
 240	else
 241		binode_flags &= ~BTRFS_INODE_IMMUTABLE;
 242	if (fsflags & FS_APPEND_FL)
 243		binode_flags |= BTRFS_INODE_APPEND;
 244	else
 245		binode_flags &= ~BTRFS_INODE_APPEND;
 246	if (fsflags & FS_NODUMP_FL)
 247		binode_flags |= BTRFS_INODE_NODUMP;
 248	else
 249		binode_flags &= ~BTRFS_INODE_NODUMP;
 250	if (fsflags & FS_NOATIME_FL)
 251		binode_flags |= BTRFS_INODE_NOATIME;
 252	else
 253		binode_flags &= ~BTRFS_INODE_NOATIME;
 254	if (fsflags & FS_DIRSYNC_FL)
 255		binode_flags |= BTRFS_INODE_DIRSYNC;
 256	else
 257		binode_flags &= ~BTRFS_INODE_DIRSYNC;
 258	if (fsflags & FS_NOCOW_FL) {
 259		if (S_ISREG(inode->i_mode)) {
 260			/*
 261			 * It's safe to turn csums off here, no extents exist.
 262			 * Otherwise we want the flag to reflect the real COW
 263			 * status of the file and will not set it.
 264			 */
 265			if (inode->i_size == 0)
 266				binode_flags |= BTRFS_INODE_NODATACOW |
 267						BTRFS_INODE_NODATASUM;
 268		} else {
 269			binode_flags |= BTRFS_INODE_NODATACOW;
 270		}
 271	} else {
 272		/*
 273		 * Revert back under same assumptions as above
 274		 */
 275		if (S_ISREG(inode->i_mode)) {
 276			if (inode->i_size == 0)
 277				binode_flags &= ~(BTRFS_INODE_NODATACOW |
 278						  BTRFS_INODE_NODATASUM);
 279		} else {
 280			binode_flags &= ~BTRFS_INODE_NODATACOW;
 281		}
 282	}
 283
 284	/*
 285	 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
 286	 * flag may be changed automatically if compression code won't make
 287	 * things smaller.
 288	 */
 289	if (fsflags & FS_NOCOMP_FL) {
 290		binode_flags &= ~BTRFS_INODE_COMPRESS;
 291		binode_flags |= BTRFS_INODE_NOCOMPRESS;
 292	} else if (fsflags & FS_COMPR_FL) {
 293
 294		if (IS_SWAPFILE(inode)) {
 295			ret = -ETXTBSY;
 296			goto out_unlock;
 297		}
 298
 299		binode_flags |= BTRFS_INODE_COMPRESS;
 300		binode_flags &= ~BTRFS_INODE_NOCOMPRESS;
 301
 302		comp = btrfs_compress_type2str(fs_info->compress_type);
 303		if (!comp || comp[0] == 0)
 304			comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB);
 305	} else {
 306		binode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
 307	}
 308
 309	/*
 310	 * 1 for inode item
 311	 * 2 for properties
 312	 */
 313	trans = btrfs_start_transaction(root, 3);
 314	if (IS_ERR(trans)) {
 315		ret = PTR_ERR(trans);
 316		goto out_unlock;
 317	}
 318
 319	if (comp) {
 320		ret = btrfs_set_prop(trans, inode, "btrfs.compression", comp,
 321				     strlen(comp), 0);
 322		if (ret) {
 323			btrfs_abort_transaction(trans, ret);
 324			goto out_end_trans;
 325		}
 326	} else {
 327		ret = btrfs_set_prop(trans, inode, "btrfs.compression", NULL,
 328				     0, 0);
 329		if (ret && ret != -ENODATA) {
 330			btrfs_abort_transaction(trans, ret);
 331			goto out_end_trans;
 332		}
 333	}
 334
 335	binode->flags = binode_flags;
 336	btrfs_sync_inode_flags_to_i_flags(inode);
 337	inode_inc_iversion(inode);
 338	inode->i_ctime = current_time(inode);
 339	ret = btrfs_update_inode(trans, root, inode);
 340
 341 out_end_trans:
 342	btrfs_end_transaction(trans);
 343 out_unlock:
 344	inode_unlock(inode);
 345	mnt_drop_write_file(file);
 346	return ret;
 347}
 348
 349/*
 350 * Translate btrfs internal inode flags to xflags as expected by the
 351 * FS_IOC_FSGETXATT ioctl. Filter only the supported ones, unknown flags are
 352 * silently dropped.
 353 */
 354static unsigned int btrfs_inode_flags_to_xflags(unsigned int flags)
 355{
 356	unsigned int xflags = 0;
 357
 358	if (flags & BTRFS_INODE_APPEND)
 359		xflags |= FS_XFLAG_APPEND;
 360	if (flags & BTRFS_INODE_IMMUTABLE)
 361		xflags |= FS_XFLAG_IMMUTABLE;
 362	if (flags & BTRFS_INODE_NOATIME)
 363		xflags |= FS_XFLAG_NOATIME;
 364	if (flags & BTRFS_INODE_NODUMP)
 365		xflags |= FS_XFLAG_NODUMP;
 366	if (flags & BTRFS_INODE_SYNC)
 367		xflags |= FS_XFLAG_SYNC;
 368
 369	return xflags;
 370}
 371
 372/* Check if @flags are a supported and valid set of FS_XFLAGS_* flags */
 373static int check_xflags(unsigned int flags)
 374{
 375	if (flags & ~(FS_XFLAG_APPEND | FS_XFLAG_IMMUTABLE | FS_XFLAG_NOATIME |
 376		      FS_XFLAG_NODUMP | FS_XFLAG_SYNC))
 377		return -EOPNOTSUPP;
 378	return 0;
 379}
 380
 381/*
 382 * Set the xflags from the internal inode flags. The remaining items of fsxattr
 383 * are zeroed.
 384 */
 385static int btrfs_ioctl_fsgetxattr(struct file *file, void __user *arg)
 386{
 387	struct btrfs_inode *binode = BTRFS_I(file_inode(file));
 388	struct fsxattr fa;
 389
 390	simple_fill_fsxattr(&fa, btrfs_inode_flags_to_xflags(binode->flags));
 391	if (copy_to_user(arg, &fa, sizeof(fa)))
 392		return -EFAULT;
 393
 394	return 0;
 395}
 396
 397static int btrfs_ioctl_fssetxattr(struct file *file, void __user *arg)
 398{
 399	struct inode *inode = file_inode(file);
 400	struct btrfs_inode *binode = BTRFS_I(inode);
 401	struct btrfs_root *root = binode->root;
 402	struct btrfs_trans_handle *trans;
 403	struct fsxattr fa, old_fa;
 404	unsigned old_flags;
 405	unsigned old_i_flags;
 406	int ret = 0;
 407
 408	if (!inode_owner_or_capable(inode))
 409		return -EPERM;
 410
 411	if (btrfs_root_readonly(root))
 412		return -EROFS;
 413
 414	if (copy_from_user(&fa, arg, sizeof(fa)))
 415		return -EFAULT;
 416
 417	ret = check_xflags(fa.fsx_xflags);
 418	if (ret)
 419		return ret;
 420
 421	if (fa.fsx_extsize != 0 || fa.fsx_projid != 0 || fa.fsx_cowextsize != 0)
 422		return -EOPNOTSUPP;
 423
 424	ret = mnt_want_write_file(file);
 425	if (ret)
 426		return ret;
 427
 428	inode_lock(inode);
 429
 430	old_flags = binode->flags;
 431	old_i_flags = inode->i_flags;
 432
 433	simple_fill_fsxattr(&old_fa,
 434			    btrfs_inode_flags_to_xflags(binode->flags));
 435	ret = vfs_ioc_fssetxattr_check(inode, &old_fa, &fa);
 436	if (ret)
 437		goto out_unlock;
 438
 439	if (fa.fsx_xflags & FS_XFLAG_SYNC)
 440		binode->flags |= BTRFS_INODE_SYNC;
 441	else
 442		binode->flags &= ~BTRFS_INODE_SYNC;
 443	if (fa.fsx_xflags & FS_XFLAG_IMMUTABLE)
 444		binode->flags |= BTRFS_INODE_IMMUTABLE;
 445	else
 446		binode->flags &= ~BTRFS_INODE_IMMUTABLE;
 447	if (fa.fsx_xflags & FS_XFLAG_APPEND)
 448		binode->flags |= BTRFS_INODE_APPEND;
 449	else
 450		binode->flags &= ~BTRFS_INODE_APPEND;
 451	if (fa.fsx_xflags & FS_XFLAG_NODUMP)
 452		binode->flags |= BTRFS_INODE_NODUMP;
 453	else
 454		binode->flags &= ~BTRFS_INODE_NODUMP;
 455	if (fa.fsx_xflags & FS_XFLAG_NOATIME)
 456		binode->flags |= BTRFS_INODE_NOATIME;
 457	else
 458		binode->flags &= ~BTRFS_INODE_NOATIME;
 459
 460	/* 1 item for the inode */
 461	trans = btrfs_start_transaction(root, 1);
 462	if (IS_ERR(trans)) {
 463		ret = PTR_ERR(trans);
 464		goto out_unlock;
 465	}
 466
 467	btrfs_sync_inode_flags_to_i_flags(inode);
 468	inode_inc_iversion(inode);
 469	inode->i_ctime = current_time(inode);
 470	ret = btrfs_update_inode(trans, root, inode);
 471
 472	btrfs_end_transaction(trans);
 473
 474out_unlock:
 475	if (ret) {
 476		binode->flags = old_flags;
 477		inode->i_flags = old_i_flags;
 478	}
 479
 480	inode_unlock(inode);
 
 481	mnt_drop_write_file(file);
 482
 483	return ret;
 484}
 485
 486static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
 487{
 488	struct inode *inode = file_inode(file);
 489
 490	return put_user(inode->i_generation, arg);
 491}
 492
 493static noinline int btrfs_ioctl_fitrim(struct btrfs_fs_info *fs_info,
 494					void __user *arg)
 495{
 
 496	struct btrfs_device *device;
 497	struct request_queue *q;
 498	struct fstrim_range range;
 499	u64 minlen = ULLONG_MAX;
 500	u64 num_devices = 0;
 
 501	int ret;
 502
 503	if (!capable(CAP_SYS_ADMIN))
 504		return -EPERM;
 505
 506	/*
 507	 * If the fs is mounted with nologreplay, which requires it to be
 508	 * mounted in RO mode as well, we can not allow discard on free space
 509	 * inside block groups, because log trees refer to extents that are not
 510	 * pinned in a block group's free space cache (pinning the extents is
 511	 * precisely the first phase of replaying a log tree).
 512	 */
 513	if (btrfs_test_opt(fs_info, NOLOGREPLAY))
 514		return -EROFS;
 515
 516	rcu_read_lock();
 517	list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
 518				dev_list) {
 519		if (!device->bdev)
 520			continue;
 521		q = bdev_get_queue(device->bdev);
 522		if (blk_queue_discard(q)) {
 523			num_devices++;
 524			minlen = min_t(u64, q->limits.discard_granularity,
 525				     minlen);
 526		}
 527	}
 528	rcu_read_unlock();
 529
 530	if (!num_devices)
 531		return -EOPNOTSUPP;
 532	if (copy_from_user(&range, arg, sizeof(range)))
 533		return -EFAULT;
 534
 535	/*
 536	 * NOTE: Don't truncate the range using super->total_bytes.  Bytenr of
 537	 * block group is in the logical address space, which can be any
 538	 * sectorsize aligned bytenr in  the range [0, U64_MAX].
 539	 */
 540	if (range.len < fs_info->sb->s_blocksize)
 541		return -EINVAL;
 542
 
 543	range.minlen = max(range.minlen, minlen);
 544	ret = btrfs_trim_fs(fs_info, &range);
 545	if (ret < 0)
 546		return ret;
 547
 548	if (copy_to_user(arg, &range, sizeof(range)))
 549		return -EFAULT;
 550
 551	return 0;
 552}
 553
 554int __pure btrfs_is_empty_uuid(u8 *uuid)
 555{
 556	int i;
 557
 558	for (i = 0; i < BTRFS_UUID_SIZE; i++) {
 559		if (uuid[i])
 560			return 0;
 561	}
 562	return 1;
 563}
 564
 565static noinline int create_subvol(struct inode *dir,
 566				  struct dentry *dentry,
 567				  const char *name, int namelen,
 
 568				  struct btrfs_qgroup_inherit *inherit)
 569{
 570	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
 571	struct btrfs_trans_handle *trans;
 572	struct btrfs_key key;
 573	struct btrfs_root_item *root_item;
 574	struct btrfs_inode_item *inode_item;
 575	struct extent_buffer *leaf;
 576	struct btrfs_root *root = BTRFS_I(dir)->root;
 577	struct btrfs_root *new_root;
 578	struct btrfs_block_rsv block_rsv;
 579	struct timespec64 cur_time = current_time(dir);
 580	struct inode *inode;
 581	int ret;
 582	int err;
 583	dev_t anon_dev = 0;
 584	u64 objectid;
 585	u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID;
 586	u64 index = 0;
 
 
 587
 588	root_item = kzalloc(sizeof(*root_item), GFP_KERNEL);
 589	if (!root_item)
 590		return -ENOMEM;
 591
 592	ret = btrfs_find_free_objectid(fs_info->tree_root, &objectid);
 593	if (ret)
 594		goto fail_free;
 595
 596	ret = get_anon_bdev(&anon_dev);
 597	if (ret < 0)
 598		goto fail_free;
 599
 600	/*
 601	 * Don't create subvolume whose level is not zero. Or qgroup will be
 602	 * screwed up since it assumes subvolume qgroup's level to be 0.
 603	 */
 604	if (btrfs_qgroup_level(objectid)) {
 605		ret = -ENOSPC;
 606		goto fail_free;
 607	}
 608
 609	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
 610	/*
 611	 * The same as the snapshot creation, please see the comment
 612	 * of create_snapshot().
 613	 */
 614	ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 8, false);
 
 615	if (ret)
 616		goto fail_free;
 617
 618	trans = btrfs_start_transaction(root, 0);
 619	if (IS_ERR(trans)) {
 620		ret = PTR_ERR(trans);
 621		btrfs_subvolume_release_metadata(fs_info, &block_rsv);
 622		goto fail_free;
 
 623	}
 624	trans->block_rsv = &block_rsv;
 625	trans->bytes_reserved = block_rsv.size;
 626
 627	ret = btrfs_qgroup_inherit(trans, 0, objectid, inherit);
 628	if (ret)
 629		goto fail;
 630
 631	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
 
 632	if (IS_ERR(leaf)) {
 633		ret = PTR_ERR(leaf);
 634		goto fail;
 635	}
 636
 
 
 
 
 
 
 
 
 
 
 
 637	btrfs_mark_buffer_dirty(leaf);
 638
 639	inode_item = &root_item->inode;
 
 
 640	btrfs_set_stack_inode_generation(inode_item, 1);
 641	btrfs_set_stack_inode_size(inode_item, 3);
 642	btrfs_set_stack_inode_nlink(inode_item, 1);
 643	btrfs_set_stack_inode_nbytes(inode_item,
 644				     fs_info->nodesize);
 645	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
 646
 647	btrfs_set_root_flags(root_item, 0);
 648	btrfs_set_root_limit(root_item, 0);
 649	btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
 650
 651	btrfs_set_root_bytenr(root_item, leaf->start);
 652	btrfs_set_root_generation(root_item, trans->transid);
 653	btrfs_set_root_level(root_item, 0);
 654	btrfs_set_root_refs(root_item, 1);
 655	btrfs_set_root_used(root_item, leaf->len);
 656	btrfs_set_root_last_snapshot(root_item, 0);
 657
 658	btrfs_set_root_generation_v2(root_item,
 659			btrfs_root_generation(root_item));
 660	generate_random_guid(root_item->uuid);
 661	btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec);
 662	btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec);
 663	root_item->ctime = root_item->otime;
 664	btrfs_set_root_ctransid(root_item, trans->transid);
 665	btrfs_set_root_otransid(root_item, trans->transid);
 
 666
 667	btrfs_tree_unlock(leaf);
 668	free_extent_buffer(leaf);
 669	leaf = NULL;
 670
 671	btrfs_set_root_dirid(root_item, new_dirid);
 672
 673	key.objectid = objectid;
 674	key.offset = 0;
 675	key.type = BTRFS_ROOT_ITEM_KEY;
 676	ret = btrfs_insert_root(trans, fs_info->tree_root, &key,
 677				root_item);
 678	if (ret)
 679		goto fail;
 680
 681	key.offset = (u64)-1;
 682	new_root = btrfs_get_new_fs_root(fs_info, objectid, anon_dev);
 683	if (IS_ERR(new_root)) {
 684		free_anon_bdev(anon_dev);
 685		ret = PTR_ERR(new_root);
 686		btrfs_abort_transaction(trans, ret);
 687		goto fail;
 688	}
 689	/* Freeing will be done in btrfs_put_root() of new_root */
 690	anon_dev = 0;
 691
 692	btrfs_record_root_in_trans(trans, new_root);
 693
 694	ret = btrfs_create_subvol_root(trans, new_root, root, new_dirid);
 695	btrfs_put_root(new_root);
 696	if (ret) {
 697		/* We potentially lose an unused inode item here */
 698		btrfs_abort_transaction(trans, ret);
 699		goto fail;
 700	}
 701
 702	mutex_lock(&new_root->objectid_mutex);
 703	new_root->highest_objectid = new_dirid;
 704	mutex_unlock(&new_root->objectid_mutex);
 705
 706	/*
 707	 * insert the directory item
 708	 */
 709	ret = btrfs_set_inode_index(BTRFS_I(dir), &index);
 710	if (ret) {
 711		btrfs_abort_transaction(trans, ret);
 712		goto fail;
 713	}
 714
 715	ret = btrfs_insert_dir_item(trans, name, namelen, BTRFS_I(dir), &key,
 
 716				    BTRFS_FT_DIR, index);
 717	if (ret) {
 718		btrfs_abort_transaction(trans, ret);
 719		goto fail;
 720	}
 721
 722	btrfs_i_size_write(BTRFS_I(dir), dir->i_size + namelen * 2);
 723	ret = btrfs_update_inode(trans, root, dir);
 724	if (ret) {
 725		btrfs_abort_transaction(trans, ret);
 726		goto fail;
 727	}
 728
 729	ret = btrfs_add_root_ref(trans, objectid, root->root_key.objectid,
 730				 btrfs_ino(BTRFS_I(dir)), index, name, namelen);
 731	if (ret) {
 732		btrfs_abort_transaction(trans, ret);
 733		goto fail;
 734	}
 735
 736	ret = btrfs_uuid_tree_add(trans, root_item->uuid,
 737				  BTRFS_UUID_KEY_SUBVOL, objectid);
 
 
 
 
 
 
 738	if (ret)
 739		btrfs_abort_transaction(trans, ret);
 740
 741fail:
 742	kfree(root_item);
 743	trans->block_rsv = NULL;
 744	trans->bytes_reserved = 0;
 745	btrfs_subvolume_release_metadata(fs_info, &block_rsv);
 746
 747	err = btrfs_commit_transaction(trans);
 
 
 
 
 
 
 
 748	if (err && !ret)
 749		ret = err;
 750
 751	if (!ret) {
 752		inode = btrfs_lookup_dentry(dir, dentry);
 753		if (IS_ERR(inode))
 754			return PTR_ERR(inode);
 755		d_instantiate(dentry, inode);
 756	}
 757	return ret;
 
 758
 759fail_free:
 760	if (anon_dev)
 761		free_anon_bdev(anon_dev);
 762	kfree(root_item);
 763	return ret;
 
 
 
 
 
 
 
 
 
 
 764}
 765
 766static int create_snapshot(struct btrfs_root *root, struct inode *dir,
 767			   struct dentry *dentry, bool readonly,
 
 768			   struct btrfs_qgroup_inherit *inherit)
 769{
 770	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
 771	struct inode *inode;
 772	struct btrfs_pending_snapshot *pending_snapshot;
 773	struct btrfs_trans_handle *trans;
 774	int ret;
 775
 776	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
 777		return -EINVAL;
 778
 779	if (atomic_read(&root->nr_swapfiles)) {
 780		btrfs_warn(fs_info,
 781			   "cannot snapshot subvolume with active swapfile");
 782		return -ETXTBSY;
 783	}
 784
 785	pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL);
 786	if (!pending_snapshot)
 787		return -ENOMEM;
 788
 789	ret = get_anon_bdev(&pending_snapshot->anon_dev);
 790	if (ret < 0)
 791		goto free_pending;
 792	pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item),
 793			GFP_KERNEL);
 794	pending_snapshot->path = btrfs_alloc_path();
 795	if (!pending_snapshot->root_item || !pending_snapshot->path) {
 796		ret = -ENOMEM;
 797		goto free_pending;
 798	}
 799
 800	btrfs_init_block_rsv(&pending_snapshot->block_rsv,
 801			     BTRFS_BLOCK_RSV_TEMP);
 802	/*
 803	 * 1 - parent dir inode
 804	 * 2 - dir entries
 805	 * 1 - root item
 806	 * 2 - root ref/backref
 807	 * 1 - root of snapshot
 808	 * 1 - UUID item
 809	 */
 810	ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
 811					&pending_snapshot->block_rsv, 8,
 
 812					false);
 813	if (ret)
 814		goto free_pending;
 815
 816	pending_snapshot->dentry = dentry;
 817	pending_snapshot->root = root;
 818	pending_snapshot->readonly = readonly;
 819	pending_snapshot->dir = dir;
 820	pending_snapshot->inherit = inherit;
 821
 822	trans = btrfs_start_transaction(root, 0);
 823	if (IS_ERR(trans)) {
 824		ret = PTR_ERR(trans);
 825		goto fail;
 826	}
 827
 828	spin_lock(&fs_info->trans_lock);
 829	list_add(&pending_snapshot->list,
 830		 &trans->transaction->pending_snapshots);
 831	spin_unlock(&fs_info->trans_lock);
 832
 833	ret = btrfs_commit_transaction(trans);
 
 
 
 
 
 
 
 
 834	if (ret)
 835		goto fail;
 836
 837	ret = pending_snapshot->error;
 838	if (ret)
 839		goto fail;
 840
 841	ret = btrfs_orphan_cleanup(pending_snapshot->snap);
 842	if (ret)
 843		goto fail;
 844
 845	inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
 846	if (IS_ERR(inode)) {
 847		ret = PTR_ERR(inode);
 848		goto fail;
 849	}
 850
 851	d_instantiate(dentry, inode);
 852	ret = 0;
 853	pending_snapshot->anon_dev = 0;
 854fail:
 855	/* Prevent double freeing of anon_dev */
 856	if (ret && pending_snapshot->snap)
 857		pending_snapshot->snap->anon_dev = 0;
 858	btrfs_put_root(pending_snapshot->snap);
 859	btrfs_subvolume_release_metadata(fs_info, &pending_snapshot->block_rsv);
 860free_pending:
 861	if (pending_snapshot->anon_dev)
 862		free_anon_bdev(pending_snapshot->anon_dev);
 863	kfree(pending_snapshot->root_item);
 864	btrfs_free_path(pending_snapshot->path);
 865	kfree(pending_snapshot);
 866
 
 867	return ret;
 868}
 869
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 870/*  copy of may_delete in fs/namei.c()
 871 *	Check whether we can remove a link victim from directory dir, check
 872 *  whether the type of victim is right.
 873 *  1. We can't do it if dir is read-only (done in permission())
 874 *  2. We should have write and exec permissions on dir
 875 *  3. We can't remove anything from append-only dir
 876 *  4. We can't do anything with immutable dir (done in permission())
 877 *  5. If the sticky bit on dir is set we should either
 878 *	a. be owner of dir, or
 879 *	b. be owner of victim, or
 880 *	c. have CAP_FOWNER capability
 881 *  6. If the victim is append-only or immutable we can't do anything with
 882 *     links pointing to it.
 883 *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
 884 *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
 885 *  9. We can't remove a root or mountpoint.
 886 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
 887 *     nfs_async_unlink().
 888 */
 889
 890static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir)
 891{
 892	int error;
 893
 894	if (d_really_is_negative(victim))
 895		return -ENOENT;
 896
 897	BUG_ON(d_inode(victim->d_parent) != dir);
 898	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
 899
 900	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
 901	if (error)
 902		return error;
 903	if (IS_APPEND(dir))
 904		return -EPERM;
 905	if (check_sticky(dir, d_inode(victim)) || IS_APPEND(d_inode(victim)) ||
 906	    IS_IMMUTABLE(d_inode(victim)) || IS_SWAPFILE(d_inode(victim)))
 
 907		return -EPERM;
 908	if (isdir) {
 909		if (!d_is_dir(victim))
 910			return -ENOTDIR;
 911		if (IS_ROOT(victim))
 912			return -EBUSY;
 913	} else if (d_is_dir(victim))
 914		return -EISDIR;
 915	if (IS_DEADDIR(dir))
 916		return -ENOENT;
 917	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
 918		return -EBUSY;
 919	return 0;
 920}
 921
 922/* copy of may_create in fs/namei.c() */
 923static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
 924{
 925	if (d_really_is_positive(child))
 926		return -EEXIST;
 927	if (IS_DEADDIR(dir))
 928		return -ENOENT;
 929	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
 930}
 931
 932/*
 933 * Create a new subvolume below @parent.  This is largely modeled after
 934 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
 935 * inside this filesystem so it's quite a bit simpler.
 936 */
 937static noinline int btrfs_mksubvol(const struct path *parent,
 938				   const char *name, int namelen,
 939				   struct btrfs_root *snap_src,
 940				   bool readonly,
 941				   struct btrfs_qgroup_inherit *inherit)
 942{
 943	struct inode *dir = d_inode(parent->dentry);
 944	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
 945	struct dentry *dentry;
 946	int error;
 947
 948	error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
 949	if (error == -EINTR)
 950		return error;
 951
 952	dentry = lookup_one_len(name, parent->dentry, namelen);
 953	error = PTR_ERR(dentry);
 954	if (IS_ERR(dentry))
 955		goto out_unlock;
 956
 
 
 
 
 957	error = btrfs_may_create(dir, dentry);
 958	if (error)
 959		goto out_dput;
 960
 961	/*
 962	 * even if this name doesn't exist, we may get hash collisions.
 963	 * check for them now when we can safely fail
 964	 */
 965	error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
 966					       dir->i_ino, name,
 967					       namelen);
 968	if (error)
 969		goto out_dput;
 970
 971	down_read(&fs_info->subvol_sem);
 972
 973	if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
 974		goto out_up_read;
 975
 976	if (snap_src)
 977		error = create_snapshot(snap_src, dir, dentry, readonly, inherit);
 978	else
 979		error = create_subvol(dir, dentry, name, namelen, inherit);
 980
 
 
 981	if (!error)
 982		fsnotify_mkdir(dir, dentry);
 983out_up_read:
 984	up_read(&fs_info->subvol_sem);
 985out_dput:
 986	dput(dentry);
 987out_unlock:
 988	inode_unlock(dir);
 989	return error;
 990}
 991
 992static noinline int btrfs_mksnapshot(const struct path *parent,
 993				   const char *name, int namelen,
 994				   struct btrfs_root *root,
 995				   bool readonly,
 996				   struct btrfs_qgroup_inherit *inherit)
 997{
 998	int ret;
 999	bool snapshot_force_cow = false;
1000
1001	/*
1002	 * Force new buffered writes to reserve space even when NOCOW is
1003	 * possible. This is to avoid later writeback (running dealloc) to
1004	 * fallback to COW mode and unexpectedly fail with ENOSPC.
1005	 */
1006	btrfs_drew_read_lock(&root->snapshot_lock);
1007
1008	ret = btrfs_start_delalloc_snapshot(root);
1009	if (ret)
1010		goto out;
1011
1012	/*
1013	 * All previous writes have started writeback in NOCOW mode, so now
1014	 * we force future writes to fallback to COW mode during snapshot
1015	 * creation.
1016	 */
1017	atomic_inc(&root->snapshot_force_cow);
1018	snapshot_force_cow = true;
1019
1020	btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1);
1021
1022	ret = btrfs_mksubvol(parent, name, namelen,
1023			     root, readonly, inherit);
1024out:
1025	if (snapshot_force_cow)
1026		atomic_dec(&root->snapshot_force_cow);
1027	btrfs_drew_read_unlock(&root->snapshot_lock);
1028	return ret;
1029}
1030
1031/*
1032 * When we're defragging a range, we don't want to kick it off again
1033 * if it is really just waiting for delalloc to send it down.
1034 * If we find a nice big extent or delalloc range for the bytes in the
1035 * file you want to defrag, we return 0 to let you know to skip this
1036 * part of the file
1037 */
1038static int check_defrag_in_cache(struct inode *inode, u64 offset, u32 thresh)
1039{
1040	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1041	struct extent_map *em = NULL;
1042	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1043	u64 end;
1044
1045	read_lock(&em_tree->lock);
1046	em = lookup_extent_mapping(em_tree, offset, PAGE_SIZE);
1047	read_unlock(&em_tree->lock);
1048
1049	if (em) {
1050		end = extent_map_end(em);
1051		free_extent_map(em);
1052		if (end - offset > thresh)
1053			return 0;
1054	}
1055	/* if we already have a nice delalloc here, just stop */
1056	thresh /= 2;
1057	end = count_range_bits(io_tree, &offset, offset + thresh,
1058			       thresh, EXTENT_DELALLOC, 1);
1059	if (end >= thresh)
1060		return 0;
1061	return 1;
1062}
1063
1064/*
1065 * helper function to walk through a file and find extents
1066 * newer than a specific transid, and smaller than thresh.
1067 *
1068 * This is used by the defragging code to find new and small
1069 * extents
1070 */
1071static int find_new_extents(struct btrfs_root *root,
1072			    struct inode *inode, u64 newer_than,
1073			    u64 *off, u32 thresh)
1074{
1075	struct btrfs_path *path;
1076	struct btrfs_key min_key;
1077	struct extent_buffer *leaf;
1078	struct btrfs_file_extent_item *extent;
1079	int type;
1080	int ret;
1081	u64 ino = btrfs_ino(BTRFS_I(inode));
1082
1083	path = btrfs_alloc_path();
1084	if (!path)
1085		return -ENOMEM;
1086
1087	min_key.objectid = ino;
1088	min_key.type = BTRFS_EXTENT_DATA_KEY;
1089	min_key.offset = *off;
1090
1091	while (1) {
 
1092		ret = btrfs_search_forward(root, &min_key, path, newer_than);
1093		if (ret != 0)
1094			goto none;
 
 
1095process_slot:
1096		if (min_key.objectid != ino)
1097			goto none;
1098		if (min_key.type != BTRFS_EXTENT_DATA_KEY)
1099			goto none;
1100
1101		leaf = path->nodes[0];
1102		extent = btrfs_item_ptr(leaf, path->slots[0],
1103					struct btrfs_file_extent_item);
1104
1105		type = btrfs_file_extent_type(leaf, extent);
1106		if (type == BTRFS_FILE_EXTENT_REG &&
1107		    btrfs_file_extent_num_bytes(leaf, extent) < thresh &&
1108		    check_defrag_in_cache(inode, min_key.offset, thresh)) {
1109			*off = min_key.offset;
1110			btrfs_free_path(path);
1111			return 0;
1112		}
1113
1114		path->slots[0]++;
1115		if (path->slots[0] < btrfs_header_nritems(leaf)) {
1116			btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]);
1117			goto process_slot;
1118		}
1119
1120		if (min_key.offset == (u64)-1)
1121			goto none;
1122
1123		min_key.offset++;
1124		btrfs_release_path(path);
1125	}
1126none:
1127	btrfs_free_path(path);
1128	return -ENOENT;
1129}
1130
1131static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start)
1132{
1133	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1134	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1135	struct extent_map *em;
1136	u64 len = PAGE_SIZE;
1137
1138	/*
1139	 * hopefully we have this extent in the tree already, try without
1140	 * the full extent lock
1141	 */
1142	read_lock(&em_tree->lock);
1143	em = lookup_extent_mapping(em_tree, start, len);
1144	read_unlock(&em_tree->lock);
1145
1146	if (!em) {
1147		struct extent_state *cached = NULL;
1148		u64 end = start + len - 1;
1149
1150		/* get the big lock and read metadata off disk */
1151		lock_extent_bits(io_tree, start, end, &cached);
1152		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
1153		unlock_extent_cached(io_tree, start, end, &cached);
1154
1155		if (IS_ERR(em))
1156			return NULL;
1157	}
1158
1159	return em;
1160}
1161
1162static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em)
1163{
1164	struct extent_map *next;
1165	bool ret = true;
1166
1167	/* this is the last extent */
1168	if (em->start + em->len >= i_size_read(inode))
1169		return false;
1170
1171	next = defrag_lookup_extent(inode, em->start + em->len);
1172	if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
1173		ret = false;
1174	else if ((em->block_start + em->block_len == next->block_start) &&
1175		 (em->block_len > SZ_128K && next->block_len > SZ_128K))
1176		ret = false;
1177
1178	free_extent_map(next);
1179	return ret;
1180}
1181
1182static int should_defrag_range(struct inode *inode, u64 start, u32 thresh,
1183			       u64 *last_len, u64 *skip, u64 *defrag_end,
1184			       int compress)
1185{
1186	struct extent_map *em;
1187	int ret = 1;
1188	bool next_mergeable = true;
1189	bool prev_mergeable = true;
1190
1191	/*
1192	 * make sure that once we start defragging an extent, we keep on
1193	 * defragging it
1194	 */
1195	if (start < *defrag_end)
1196		return 1;
1197
1198	*skip = 0;
1199
1200	em = defrag_lookup_extent(inode, start);
1201	if (!em)
1202		return 0;
1203
1204	/* this will cover holes, and inline extents */
1205	if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1206		ret = 0;
1207		goto out;
1208	}
1209
1210	if (!*defrag_end)
1211		prev_mergeable = false;
1212
1213	next_mergeable = defrag_check_next_extent(inode, em);
 
1214	/*
1215	 * we hit a real extent, if it is big or the next extent is not a
1216	 * real extent, don't bother defragging it
1217	 */
1218	if (!compress && (*last_len == 0 || *last_len >= thresh) &&
1219	    (em->len >= thresh || (!next_mergeable && !prev_mergeable)))
1220		ret = 0;
1221out:
1222	/*
1223	 * last_len ends up being a counter of how many bytes we've defragged.
1224	 * every time we choose not to defrag an extent, we reset *last_len
1225	 * so that the next tiny extent will force a defrag.
1226	 *
1227	 * The end result of this is that tiny extents before a single big
1228	 * extent will force at least part of that big extent to be defragged.
1229	 */
1230	if (ret) {
1231		*defrag_end = extent_map_end(em);
1232	} else {
1233		*last_len = 0;
1234		*skip = extent_map_end(em);
1235		*defrag_end = 0;
1236	}
1237
1238	free_extent_map(em);
1239	return ret;
1240}
1241
1242/*
1243 * it doesn't do much good to defrag one or two pages
1244 * at a time.  This pulls in a nice chunk of pages
1245 * to COW and defrag.
1246 *
1247 * It also makes sure the delalloc code has enough
1248 * dirty data to avoid making new small extents as part
1249 * of the defrag
1250 *
1251 * It's a good idea to start RA on this range
1252 * before calling this.
1253 */
1254static int cluster_pages_for_defrag(struct inode *inode,
1255				    struct page **pages,
1256				    unsigned long start_index,
1257				    unsigned long num_pages)
1258{
1259	unsigned long file_end;
1260	u64 isize = i_size_read(inode);
1261	u64 page_start;
1262	u64 page_end;
1263	u64 page_cnt;
1264	int ret;
1265	int i;
1266	int i_done;
1267	struct btrfs_ordered_extent *ordered;
1268	struct extent_state *cached_state = NULL;
1269	struct extent_io_tree *tree;
1270	struct extent_changeset *data_reserved = NULL;
1271	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1272
1273	file_end = (isize - 1) >> PAGE_SHIFT;
1274	if (!isize || start_index > file_end)
1275		return 0;
1276
1277	page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1);
1278
1279	ret = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved,
1280			start_index << PAGE_SHIFT,
1281			page_cnt << PAGE_SHIFT);
1282	if (ret)
1283		return ret;
1284	i_done = 0;
1285	tree = &BTRFS_I(inode)->io_tree;
1286
1287	/* step one, lock all the pages */
1288	for (i = 0; i < page_cnt; i++) {
1289		struct page *page;
1290again:
1291		page = find_or_create_page(inode->i_mapping,
1292					   start_index + i, mask);
1293		if (!page)
1294			break;
1295
1296		page_start = page_offset(page);
1297		page_end = page_start + PAGE_SIZE - 1;
1298		while (1) {
1299			lock_extent_bits(tree, page_start, page_end,
1300					 &cached_state);
1301			ordered = btrfs_lookup_ordered_extent(BTRFS_I(inode),
1302							      page_start);
1303			unlock_extent_cached(tree, page_start, page_end,
1304					     &cached_state);
1305			if (!ordered)
1306				break;
1307
1308			unlock_page(page);
1309			btrfs_start_ordered_extent(inode, ordered, 1);
1310			btrfs_put_ordered_extent(ordered);
1311			lock_page(page);
1312			/*
1313			 * we unlocked the page above, so we need check if
1314			 * it was released or not.
1315			 */
1316			if (page->mapping != inode->i_mapping) {
1317				unlock_page(page);
1318				put_page(page);
1319				goto again;
1320			}
1321		}
1322
1323		if (!PageUptodate(page)) {
1324			btrfs_readpage(NULL, page);
1325			lock_page(page);
1326			if (!PageUptodate(page)) {
1327				unlock_page(page);
1328				put_page(page);
1329				ret = -EIO;
1330				break;
1331			}
1332		}
1333
1334		if (page->mapping != inode->i_mapping) {
1335			unlock_page(page);
1336			put_page(page);
1337			goto again;
1338		}
1339
1340		pages[i] = page;
1341		i_done++;
1342	}
1343	if (!i_done || ret)
1344		goto out;
1345
1346	if (!(inode->i_sb->s_flags & SB_ACTIVE))
1347		goto out;
1348
1349	/*
1350	 * so now we have a nice long stream of locked
1351	 * and up to date pages, lets wait on them
1352	 */
1353	for (i = 0; i < i_done; i++)
1354		wait_on_page_writeback(pages[i]);
1355
1356	page_start = page_offset(pages[0]);
1357	page_end = page_offset(pages[i_done - 1]) + PAGE_SIZE;
1358
1359	lock_extent_bits(&BTRFS_I(inode)->io_tree,
1360			 page_start, page_end - 1, &cached_state);
1361	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start,
1362			  page_end - 1, EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
1363			  EXTENT_DEFRAG, 0, 0, &cached_state);
 
1364
1365	if (i_done != page_cnt) {
1366		spin_lock(&BTRFS_I(inode)->lock);
1367		btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
1368		spin_unlock(&BTRFS_I(inode)->lock);
1369		btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved,
1370				start_index << PAGE_SHIFT,
1371				(page_cnt - i_done) << PAGE_SHIFT, true);
1372	}
1373
1374
1375	set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1,
1376			  &cached_state);
1377
1378	unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1379			     page_start, page_end - 1, &cached_state);
 
1380
1381	for (i = 0; i < i_done; i++) {
1382		clear_page_dirty_for_io(pages[i]);
1383		ClearPageChecked(pages[i]);
1384		set_page_extent_mapped(pages[i]);
1385		set_page_dirty(pages[i]);
1386		unlock_page(pages[i]);
1387		put_page(pages[i]);
1388	}
1389	btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT);
1390	extent_changeset_free(data_reserved);
1391	return i_done;
1392out:
1393	for (i = 0; i < i_done; i++) {
1394		unlock_page(pages[i]);
1395		put_page(pages[i]);
1396	}
1397	btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved,
1398			start_index << PAGE_SHIFT,
1399			page_cnt << PAGE_SHIFT, true);
1400	btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT);
1401	extent_changeset_free(data_reserved);
1402	return ret;
1403
1404}
1405
1406int btrfs_defrag_file(struct inode *inode, struct file *file,
1407		      struct btrfs_ioctl_defrag_range_args *range,
1408		      u64 newer_than, unsigned long max_to_defrag)
1409{
1410	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1411	struct btrfs_root *root = BTRFS_I(inode)->root;
1412	struct file_ra_state *ra = NULL;
1413	unsigned long last_index;
1414	u64 isize = i_size_read(inode);
1415	u64 last_len = 0;
1416	u64 skip = 0;
1417	u64 defrag_end = 0;
1418	u64 newer_off = range->start;
1419	unsigned long i;
1420	unsigned long ra_index = 0;
1421	int ret;
1422	int defrag_count = 0;
1423	int compress_type = BTRFS_COMPRESS_ZLIB;
1424	u32 extent_thresh = range->extent_thresh;
1425	unsigned long max_cluster = SZ_256K >> PAGE_SHIFT;
1426	unsigned long cluster = max_cluster;
1427	u64 new_align = ~((u64)SZ_128K - 1);
1428	struct page **pages = NULL;
1429	bool do_compress = range->flags & BTRFS_DEFRAG_RANGE_COMPRESS;
1430
1431	if (isize == 0)
1432		return 0;
1433
1434	if (range->start >= isize)
1435		return -EINVAL;
1436
1437	if (do_compress) {
1438		if (range->compress_type >= BTRFS_NR_COMPRESS_TYPES)
1439			return -EINVAL;
1440		if (range->compress_type)
1441			compress_type = range->compress_type;
1442	}
1443
1444	if (extent_thresh == 0)
1445		extent_thresh = SZ_256K;
1446
1447	/*
1448	 * If we were not given a file, allocate a readahead context. As
1449	 * readahead is just an optimization, defrag will work without it so
1450	 * we don't error out.
1451	 */
1452	if (!file) {
1453		ra = kzalloc(sizeof(*ra), GFP_KERNEL);
1454		if (ra)
1455			file_ra_state_init(ra, inode->i_mapping);
 
1456	} else {
1457		ra = &file->f_ra;
1458	}
1459
1460	pages = kmalloc_array(max_cluster, sizeof(struct page *), GFP_KERNEL);
 
1461	if (!pages) {
1462		ret = -ENOMEM;
1463		goto out_ra;
1464	}
1465
1466	/* find the last page to defrag */
1467	if (range->start + range->len > range->start) {
1468		last_index = min_t(u64, isize - 1,
1469			 range->start + range->len - 1) >> PAGE_SHIFT;
1470	} else {
1471		last_index = (isize - 1) >> PAGE_SHIFT;
1472	}
1473
1474	if (newer_than) {
1475		ret = find_new_extents(root, inode, newer_than,
1476				       &newer_off, SZ_64K);
1477		if (!ret) {
1478			range->start = newer_off;
1479			/*
1480			 * we always align our defrag to help keep
1481			 * the extents in the file evenly spaced
1482			 */
1483			i = (newer_off & new_align) >> PAGE_SHIFT;
1484		} else
1485			goto out_ra;
1486	} else {
1487		i = range->start >> PAGE_SHIFT;
1488	}
1489	if (!max_to_defrag)
1490		max_to_defrag = last_index - i + 1;
1491
1492	/*
1493	 * make writeback starts from i, so the defrag range can be
1494	 * written sequentially.
1495	 */
1496	if (i < inode->i_mapping->writeback_index)
1497		inode->i_mapping->writeback_index = i;
1498
1499	while (i <= last_index && defrag_count < max_to_defrag &&
1500	       (i < DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE))) {
 
1501		/*
1502		 * make sure we stop running if someone unmounts
1503		 * the FS
1504		 */
1505		if (!(inode->i_sb->s_flags & SB_ACTIVE))
1506			break;
1507
1508		if (btrfs_defrag_cancelled(fs_info)) {
1509			btrfs_debug(fs_info, "defrag_file cancelled");
1510			ret = -EAGAIN;
1511			break;
1512		}
1513
1514		if (!should_defrag_range(inode, (u64)i << PAGE_SHIFT,
1515					 extent_thresh, &last_len, &skip,
1516					 &defrag_end, do_compress)){
 
1517			unsigned long next;
1518			/*
1519			 * the should_defrag function tells us how much to skip
1520			 * bump our counter by the suggested amount
1521			 */
1522			next = DIV_ROUND_UP(skip, PAGE_SIZE);
1523			i = max(i + 1, next);
1524			continue;
1525		}
1526
1527		if (!newer_than) {
1528			cluster = (PAGE_ALIGN(defrag_end) >>
1529				   PAGE_SHIFT) - i;
1530			cluster = min(cluster, max_cluster);
1531		} else {
1532			cluster = max_cluster;
1533		}
1534
1535		if (i + cluster > ra_index) {
1536			ra_index = max(i, ra_index);
1537			if (ra)
1538				page_cache_sync_readahead(inode->i_mapping, ra,
1539						file, ra_index, cluster);
1540			ra_index += cluster;
1541		}
1542
1543		inode_lock(inode);
1544		if (IS_SWAPFILE(inode)) {
1545			ret = -ETXTBSY;
1546		} else {
1547			if (do_compress)
1548				BTRFS_I(inode)->defrag_compress = compress_type;
1549			ret = cluster_pages_for_defrag(inode, pages, i, cluster);
1550		}
1551		if (ret < 0) {
1552			inode_unlock(inode);
1553			goto out_ra;
1554		}
1555
1556		defrag_count += ret;
1557		balance_dirty_pages_ratelimited(inode->i_mapping);
1558		inode_unlock(inode);
1559
1560		if (newer_than) {
1561			if (newer_off == (u64)-1)
1562				break;
1563
1564			if (ret > 0)
1565				i += ret;
1566
1567			newer_off = max(newer_off + 1,
1568					(u64)i << PAGE_SHIFT);
1569
1570			ret = find_new_extents(root, inode, newer_than,
1571					       &newer_off, SZ_64K);
 
1572			if (!ret) {
1573				range->start = newer_off;
1574				i = (newer_off & new_align) >> PAGE_SHIFT;
1575			} else {
1576				break;
1577			}
1578		} else {
1579			if (ret > 0) {
1580				i += ret;
1581				last_len += ret << PAGE_SHIFT;
1582			} else {
1583				i++;
1584				last_len = 0;
1585			}
1586		}
1587	}
1588
1589	if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) {
1590		filemap_flush(inode->i_mapping);
1591		if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1592			     &BTRFS_I(inode)->runtime_flags))
1593			filemap_flush(inode->i_mapping);
1594	}
1595
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1596	if (range->compress_type == BTRFS_COMPRESS_LZO) {
1597		btrfs_set_fs_incompat(fs_info, COMPRESS_LZO);
1598	} else if (range->compress_type == BTRFS_COMPRESS_ZSTD) {
1599		btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD);
1600	}
1601
1602	ret = defrag_count;
1603
1604out_ra:
1605	if (do_compress) {
1606		inode_lock(inode);
1607		BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE;
1608		inode_unlock(inode);
1609	}
1610	if (!file)
1611		kfree(ra);
1612	kfree(pages);
1613	return ret;
1614}
1615
1616static noinline int btrfs_ioctl_resize(struct file *file,
1617					void __user *arg)
1618{
1619	struct inode *inode = file_inode(file);
1620	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1621	u64 new_size;
1622	u64 old_size;
1623	u64 devid = 1;
1624	struct btrfs_root *root = BTRFS_I(inode)->root;
1625	struct btrfs_ioctl_vol_args *vol_args;
1626	struct btrfs_trans_handle *trans;
1627	struct btrfs_device *device = NULL;
1628	char *sizestr;
1629	char *retptr;
1630	char *devstr = NULL;
1631	int ret = 0;
1632	int mod = 0;
1633
1634	if (!capable(CAP_SYS_ADMIN))
1635		return -EPERM;
1636
1637	ret = mnt_want_write_file(file);
1638	if (ret)
1639		return ret;
1640
1641	if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
 
1642		mnt_drop_write_file(file);
1643		return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1644	}
1645
 
1646	vol_args = memdup_user(arg, sizeof(*vol_args));
1647	if (IS_ERR(vol_args)) {
1648		ret = PTR_ERR(vol_args);
1649		goto out;
1650	}
1651
1652	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1653
1654	sizestr = vol_args->name;
1655	devstr = strchr(sizestr, ':');
1656	if (devstr) {
 
1657		sizestr = devstr + 1;
1658		*devstr = '\0';
1659		devstr = vol_args->name;
1660		ret = kstrtoull(devstr, 10, &devid);
1661		if (ret)
1662			goto out_free;
1663		if (!devid) {
1664			ret = -EINVAL;
1665			goto out_free;
1666		}
1667		btrfs_info(fs_info, "resizing devid %llu", devid);
1668	}
1669
1670	device = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true);
1671	if (!device) {
1672		btrfs_info(fs_info, "resizer unable to find device %llu",
1673			   devid);
1674		ret = -ENODEV;
1675		goto out_free;
1676	}
1677
1678	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1679		btrfs_info(fs_info,
1680			   "resizer unable to apply on readonly device %llu",
1681		       devid);
1682		ret = -EPERM;
1683		goto out_free;
1684	}
1685
1686	if (!strcmp(sizestr, "max"))
1687		new_size = device->bdev->bd_inode->i_size;
1688	else {
1689		if (sizestr[0] == '-') {
1690			mod = -1;
1691			sizestr++;
1692		} else if (sizestr[0] == '+') {
1693			mod = 1;
1694			sizestr++;
1695		}
1696		new_size = memparse(sizestr, &retptr);
1697		if (*retptr != '\0' || new_size == 0) {
1698			ret = -EINVAL;
1699			goto out_free;
1700		}
1701	}
1702
1703	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1704		ret = -EPERM;
1705		goto out_free;
1706	}
1707
1708	old_size = btrfs_device_get_total_bytes(device);
1709
1710	if (mod < 0) {
1711		if (new_size > old_size) {
1712			ret = -EINVAL;
1713			goto out_free;
1714		}
1715		new_size = old_size - new_size;
1716	} else if (mod > 0) {
1717		if (new_size > ULLONG_MAX - old_size) {
1718			ret = -ERANGE;
1719			goto out_free;
1720		}
1721		new_size = old_size + new_size;
1722	}
1723
1724	if (new_size < SZ_256M) {
1725		ret = -EINVAL;
1726		goto out_free;
1727	}
1728	if (new_size > device->bdev->bd_inode->i_size) {
1729		ret = -EFBIG;
1730		goto out_free;
1731	}
1732
1733	new_size = round_down(new_size, fs_info->sectorsize);
 
 
 
 
1734
1735	if (new_size > old_size) {
1736		trans = btrfs_start_transaction(root, 0);
1737		if (IS_ERR(trans)) {
1738			ret = PTR_ERR(trans);
1739			goto out_free;
1740		}
1741		ret = btrfs_grow_device(trans, device, new_size);
1742		btrfs_commit_transaction(trans);
1743	} else if (new_size < old_size) {
1744		ret = btrfs_shrink_device(device, new_size);
1745	} /* equal, nothing need to do */
1746
1747	if (ret == 0 && new_size != old_size)
1748		btrfs_info_in_rcu(fs_info,
1749			"resize device %s (devid %llu) from %llu to %llu",
1750			rcu_str_deref(device->name), device->devid,
1751			old_size, new_size);
1752out_free:
1753	kfree(vol_args);
1754out:
1755	clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
 
1756	mnt_drop_write_file(file);
1757	return ret;
1758}
1759
1760static noinline int __btrfs_ioctl_snap_create(struct file *file,
1761				const char *name, unsigned long fd, int subvol,
1762				bool readonly,
1763				struct btrfs_qgroup_inherit *inherit)
1764{
1765	int namelen;
1766	int ret = 0;
1767
1768	if (!S_ISDIR(file_inode(file)->i_mode))
1769		return -ENOTDIR;
1770
1771	ret = mnt_want_write_file(file);
1772	if (ret)
1773		goto out;
1774
1775	namelen = strlen(name);
1776	if (strchr(name, '/')) {
1777		ret = -EINVAL;
1778		goto out_drop_write;
1779	}
1780
1781	if (name[0] == '.' &&
1782	   (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1783		ret = -EEXIST;
1784		goto out_drop_write;
1785	}
1786
1787	if (subvol) {
1788		ret = btrfs_mksubvol(&file->f_path, name, namelen,
1789				     NULL, readonly, inherit);
1790	} else {
1791		struct fd src = fdget(fd);
1792		struct inode *src_inode;
1793		if (!src.file) {
1794			ret = -EINVAL;
1795			goto out_drop_write;
1796		}
1797
1798		src_inode = file_inode(src.file);
1799		if (src_inode->i_sb != file_inode(file)->i_sb) {
1800			btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
1801				   "Snapshot src from another FS");
1802			ret = -EXDEV;
1803		} else if (!inode_owner_or_capable(src_inode)) {
1804			/*
1805			 * Subvolume creation is not restricted, but snapshots
1806			 * are limited to own subvolumes only
1807			 */
1808			ret = -EPERM;
1809		} else {
1810			ret = btrfs_mksnapshot(&file->f_path, name, namelen,
1811					     BTRFS_I(src_inode)->root,
1812					     readonly, inherit);
1813		}
1814		fdput(src);
1815	}
1816out_drop_write:
1817	mnt_drop_write_file(file);
1818out:
1819	return ret;
1820}
1821
1822static noinline int btrfs_ioctl_snap_create(struct file *file,
1823					    void __user *arg, int subvol)
1824{
1825	struct btrfs_ioctl_vol_args *vol_args;
1826	int ret;
1827
1828	if (!S_ISDIR(file_inode(file)->i_mode))
1829		return -ENOTDIR;
1830
1831	vol_args = memdup_user(arg, sizeof(*vol_args));
1832	if (IS_ERR(vol_args))
1833		return PTR_ERR(vol_args);
1834	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1835
1836	ret = __btrfs_ioctl_snap_create(file, vol_args->name, vol_args->fd,
1837					subvol, false, NULL);
 
1838
1839	kfree(vol_args);
1840	return ret;
1841}
1842
1843static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1844					       void __user *arg, int subvol)
1845{
1846	struct btrfs_ioctl_vol_args_v2 *vol_args;
1847	int ret;
 
 
1848	bool readonly = false;
1849	struct btrfs_qgroup_inherit *inherit = NULL;
1850
1851	if (!S_ISDIR(file_inode(file)->i_mode))
1852		return -ENOTDIR;
1853
1854	vol_args = memdup_user(arg, sizeof(*vol_args));
1855	if (IS_ERR(vol_args))
1856		return PTR_ERR(vol_args);
1857	vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1858
1859	if (vol_args->flags & ~BTRFS_SUBVOL_CREATE_ARGS_MASK) {
 
 
1860		ret = -EOPNOTSUPP;
1861		goto free_args;
1862	}
1863
 
 
1864	if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1865		readonly = true;
1866	if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1867		if (vol_args->size > PAGE_SIZE) {
1868			ret = -EINVAL;
1869			goto free_args;
1870		}
1871		inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1872		if (IS_ERR(inherit)) {
1873			ret = PTR_ERR(inherit);
1874			goto free_args;
1875		}
1876	}
1877
1878	ret = __btrfs_ioctl_snap_create(file, vol_args->name, vol_args->fd,
1879					subvol, readonly, inherit);
1880	if (ret)
1881		goto free_inherit;
1882free_inherit:
1883	kfree(inherit);
1884free_args:
 
 
 
1885	kfree(vol_args);
 
1886	return ret;
1887}
1888
1889static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
1890						void __user *arg)
1891{
1892	struct inode *inode = file_inode(file);
1893	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1894	struct btrfs_root *root = BTRFS_I(inode)->root;
1895	int ret = 0;
1896	u64 flags = 0;
1897
1898	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID)
1899		return -EINVAL;
1900
1901	down_read(&fs_info->subvol_sem);
1902	if (btrfs_root_readonly(root))
1903		flags |= BTRFS_SUBVOL_RDONLY;
1904	up_read(&fs_info->subvol_sem);
1905
1906	if (copy_to_user(arg, &flags, sizeof(flags)))
1907		ret = -EFAULT;
1908
1909	return ret;
1910}
1911
1912static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1913					      void __user *arg)
1914{
1915	struct inode *inode = file_inode(file);
1916	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1917	struct btrfs_root *root = BTRFS_I(inode)->root;
1918	struct btrfs_trans_handle *trans;
1919	u64 root_flags;
1920	u64 flags;
1921	int ret = 0;
1922
1923	if (!inode_owner_or_capable(inode))
1924		return -EPERM;
1925
1926	ret = mnt_want_write_file(file);
1927	if (ret)
1928		goto out;
1929
1930	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
1931		ret = -EINVAL;
1932		goto out_drop_write;
1933	}
1934
1935	if (copy_from_user(&flags, arg, sizeof(flags))) {
1936		ret = -EFAULT;
1937		goto out_drop_write;
1938	}
1939
 
 
 
 
 
1940	if (flags & ~BTRFS_SUBVOL_RDONLY) {
1941		ret = -EOPNOTSUPP;
1942		goto out_drop_write;
1943	}
1944
1945	down_write(&fs_info->subvol_sem);
1946
1947	/* nothing to do */
1948	if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1949		goto out_drop_sem;
1950
1951	root_flags = btrfs_root_flags(&root->root_item);
1952	if (flags & BTRFS_SUBVOL_RDONLY) {
1953		btrfs_set_root_flags(&root->root_item,
1954				     root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1955	} else {
1956		/*
1957		 * Block RO -> RW transition if this subvolume is involved in
1958		 * send
1959		 */
1960		spin_lock(&root->root_item_lock);
1961		if (root->send_in_progress == 0) {
1962			btrfs_set_root_flags(&root->root_item,
1963				     root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1964			spin_unlock(&root->root_item_lock);
1965		} else {
1966			spin_unlock(&root->root_item_lock);
1967			btrfs_warn(fs_info,
1968				   "Attempt to set subvolume %llu read-write during send",
1969				   root->root_key.objectid);
1970			ret = -EPERM;
1971			goto out_drop_sem;
1972		}
1973	}
1974
1975	trans = btrfs_start_transaction(root, 1);
1976	if (IS_ERR(trans)) {
1977		ret = PTR_ERR(trans);
1978		goto out_reset;
1979	}
1980
1981	ret = btrfs_update_root(trans, fs_info->tree_root,
1982				&root->root_key, &root->root_item);
1983	if (ret < 0) {
1984		btrfs_end_transaction(trans);
1985		goto out_reset;
1986	}
1987
1988	ret = btrfs_commit_transaction(trans);
1989
 
1990out_reset:
1991	if (ret)
1992		btrfs_set_root_flags(&root->root_item, root_flags);
1993out_drop_sem:
1994	up_write(&fs_info->subvol_sem);
1995out_drop_write:
1996	mnt_drop_write_file(file);
1997out:
1998	return ret;
1999}
2000
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2001static noinline int key_in_sk(struct btrfs_key *key,
2002			      struct btrfs_ioctl_search_key *sk)
2003{
2004	struct btrfs_key test;
2005	int ret;
2006
2007	test.objectid = sk->min_objectid;
2008	test.type = sk->min_type;
2009	test.offset = sk->min_offset;
2010
2011	ret = btrfs_comp_cpu_keys(key, &test);
2012	if (ret < 0)
2013		return 0;
2014
2015	test.objectid = sk->max_objectid;
2016	test.type = sk->max_type;
2017	test.offset = sk->max_offset;
2018
2019	ret = btrfs_comp_cpu_keys(key, &test);
2020	if (ret > 0)
2021		return 0;
2022	return 1;
2023}
2024
2025static noinline int copy_to_sk(struct btrfs_path *path,
 
2026			       struct btrfs_key *key,
2027			       struct btrfs_ioctl_search_key *sk,
2028			       size_t *buf_size,
2029			       char __user *ubuf,
2030			       unsigned long *sk_offset,
2031			       int *num_found)
2032{
2033	u64 found_transid;
2034	struct extent_buffer *leaf;
2035	struct btrfs_ioctl_search_header sh;
2036	struct btrfs_key test;
2037	unsigned long item_off;
2038	unsigned long item_len;
2039	int nritems;
2040	int i;
2041	int slot;
2042	int ret = 0;
2043
2044	leaf = path->nodes[0];
2045	slot = path->slots[0];
2046	nritems = btrfs_header_nritems(leaf);
2047
2048	if (btrfs_header_generation(leaf) > sk->max_transid) {
2049		i = nritems;
2050		goto advance_key;
2051	}
2052	found_transid = btrfs_header_generation(leaf);
2053
2054	for (i = slot; i < nritems; i++) {
2055		item_off = btrfs_item_ptr_offset(leaf, i);
2056		item_len = btrfs_item_size_nr(leaf, i);
2057
2058		btrfs_item_key_to_cpu(leaf, key, i);
2059		if (!key_in_sk(key, sk))
2060			continue;
2061
2062		if (sizeof(sh) + item_len > *buf_size) {
2063			if (*num_found) {
2064				ret = 1;
2065				goto out;
2066			}
2067
2068			/*
2069			 * return one empty item back for v1, which does not
2070			 * handle -EOVERFLOW
2071			 */
2072
2073			*buf_size = sizeof(sh) + item_len;
2074			item_len = 0;
2075			ret = -EOVERFLOW;
2076		}
2077
2078		if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
 
2079			ret = 1;
2080			goto out;
2081		}
2082
2083		sh.objectid = key->objectid;
2084		sh.offset = key->offset;
2085		sh.type = key->type;
2086		sh.len = item_len;
2087		sh.transid = found_transid;
2088
2089		/*
2090		 * Copy search result header. If we fault then loop again so we
2091		 * can fault in the pages and -EFAULT there if there's a
2092		 * problem. Otherwise we'll fault and then copy the buffer in
2093		 * properly this next time through
2094		 */
2095		if (copy_to_user_nofault(ubuf + *sk_offset, &sh, sizeof(sh))) {
2096			ret = 0;
2097			goto out;
2098		}
2099
2100		*sk_offset += sizeof(sh);
2101
2102		if (item_len) {
2103			char __user *up = ubuf + *sk_offset;
2104			/*
2105			 * Copy the item, same behavior as above, but reset the
2106			 * * sk_offset so we copy the full thing again.
2107			 */
2108			if (read_extent_buffer_to_user_nofault(leaf, up,
2109						item_off, item_len)) {
2110				ret = 0;
2111				*sk_offset -= sizeof(sh);
2112				goto out;
2113			}
2114
2115			*sk_offset += item_len;
2116		}
2117		(*num_found)++;
2118
2119		if (ret) /* -EOVERFLOW from above */
2120			goto out;
2121
2122		if (*num_found >= sk->nr_items) {
2123			ret = 1;
2124			goto out;
2125		}
2126	}
2127advance_key:
2128	ret = 0;
2129	test.objectid = sk->max_objectid;
2130	test.type = sk->max_type;
2131	test.offset = sk->max_offset;
2132	if (btrfs_comp_cpu_keys(key, &test) >= 0)
2133		ret = 1;
2134	else if (key->offset < (u64)-1)
2135		key->offset++;
2136	else if (key->type < (u8)-1) {
2137		key->offset = 0;
2138		key->type++;
2139	} else if (key->objectid < (u64)-1) {
2140		key->offset = 0;
2141		key->type = 0;
2142		key->objectid++;
2143	} else
2144		ret = 1;
2145out:
2146	/*
2147	 *  0: all items from this leaf copied, continue with next
2148	 *  1: * more items can be copied, but unused buffer is too small
2149	 *     * all items were found
2150	 *     Either way, it will stops the loop which iterates to the next
2151	 *     leaf
2152	 *  -EOVERFLOW: item was to large for buffer
2153	 *  -EFAULT: could not copy extent buffer back to userspace
2154	 */
2155	return ret;
2156}
2157
2158static noinline int search_ioctl(struct inode *inode,
2159				 struct btrfs_ioctl_search_key *sk,
2160				 size_t *buf_size,
2161				 char __user *ubuf)
2162{
2163	struct btrfs_fs_info *info = btrfs_sb(inode->i_sb);
2164	struct btrfs_root *root;
2165	struct btrfs_key key;
2166	struct btrfs_path *path;
 
 
2167	int ret;
2168	int num_found = 0;
2169	unsigned long sk_offset = 0;
2170
2171	if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
2172		*buf_size = sizeof(struct btrfs_ioctl_search_header);
2173		return -EOVERFLOW;
2174	}
2175
2176	path = btrfs_alloc_path();
2177	if (!path)
2178		return -ENOMEM;
2179
2180	if (sk->tree_id == 0) {
2181		/* search the root of the inode that was passed */
2182		root = btrfs_grab_root(BTRFS_I(inode)->root);
2183	} else {
2184		root = btrfs_get_fs_root(info, sk->tree_id, true);
 
 
 
2185		if (IS_ERR(root)) {
 
 
2186			btrfs_free_path(path);
2187			return PTR_ERR(root);
2188		}
2189	}
2190
2191	key.objectid = sk->min_objectid;
2192	key.type = sk->min_type;
2193	key.offset = sk->min_offset;
2194
2195	while (1) {
2196		ret = fault_in_pages_writeable(ubuf + sk_offset,
2197					       *buf_size - sk_offset);
2198		if (ret)
2199			break;
2200
 
2201		ret = btrfs_search_forward(root, &key, path, sk->min_transid);
2202		if (ret != 0) {
2203			if (ret > 0)
2204				ret = 0;
2205			goto err;
2206		}
2207		ret = copy_to_sk(path, &key, sk, buf_size, ubuf,
2208				 &sk_offset, &num_found);
2209		btrfs_release_path(path);
2210		if (ret)
2211			break;
2212
2213	}
2214	if (ret > 0)
2215		ret = 0;
2216err:
2217	sk->nr_items = num_found;
2218	btrfs_put_root(root);
2219	btrfs_free_path(path);
2220	return ret;
2221}
2222
2223static noinline int btrfs_ioctl_tree_search(struct file *file,
2224					   void __user *argp)
2225{
2226	struct btrfs_ioctl_search_args __user *uargs;
2227	struct btrfs_ioctl_search_key sk;
2228	struct inode *inode;
2229	int ret;
2230	size_t buf_size;
2231
2232	if (!capable(CAP_SYS_ADMIN))
2233		return -EPERM;
2234
2235	uargs = (struct btrfs_ioctl_search_args __user *)argp;
2236
2237	if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
2238		return -EFAULT;
2239
2240	buf_size = sizeof(uargs->buf);
2241
2242	inode = file_inode(file);
2243	ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
2244
2245	/*
2246	 * In the origin implementation an overflow is handled by returning a
2247	 * search header with a len of zero, so reset ret.
2248	 */
2249	if (ret == -EOVERFLOW)
2250		ret = 0;
2251
2252	if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
2253		ret = -EFAULT;
2254	return ret;
2255}
2256
2257static noinline int btrfs_ioctl_tree_search_v2(struct file *file,
2258					       void __user *argp)
2259{
2260	struct btrfs_ioctl_search_args_v2 __user *uarg;
2261	struct btrfs_ioctl_search_args_v2 args;
2262	struct inode *inode;
2263	int ret;
2264	size_t buf_size;
2265	const size_t buf_limit = SZ_16M;
2266
2267	if (!capable(CAP_SYS_ADMIN))
2268		return -EPERM;
2269
2270	/* copy search header and buffer size */
2271	uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp;
2272	if (copy_from_user(&args, uarg, sizeof(args)))
2273		return -EFAULT;
2274
2275	buf_size = args.buf_size;
2276
2277	/* limit result size to 16MB */
2278	if (buf_size > buf_limit)
2279		buf_size = buf_limit;
2280
2281	inode = file_inode(file);
2282	ret = search_ioctl(inode, &args.key, &buf_size,
2283			   (char __user *)(&uarg->buf[0]));
2284	if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
2285		ret = -EFAULT;
2286	else if (ret == -EOVERFLOW &&
2287		copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
2288		ret = -EFAULT;
2289
2290	return ret;
2291}
2292
2293/*
2294 * Search INODE_REFs to identify path name of 'dirid' directory
2295 * in a 'tree_id' tree. and sets path name to 'name'.
2296 */
2297static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
2298				u64 tree_id, u64 dirid, char *name)
2299{
2300	struct btrfs_root *root;
2301	struct btrfs_key key;
2302	char *ptr;
2303	int ret = -1;
2304	int slot;
2305	int len;
2306	int total_len = 0;
2307	struct btrfs_inode_ref *iref;
2308	struct extent_buffer *l;
2309	struct btrfs_path *path;
2310
2311	if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
2312		name[0]='\0';
2313		return 0;
2314	}
2315
2316	path = btrfs_alloc_path();
2317	if (!path)
2318		return -ENOMEM;
2319
2320	ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1];
2321
2322	root = btrfs_get_fs_root(info, tree_id, true);
 
 
 
2323	if (IS_ERR(root)) {
2324		ret = PTR_ERR(root);
2325		root = NULL;
2326		goto out;
2327	}
2328
2329	key.objectid = dirid;
2330	key.type = BTRFS_INODE_REF_KEY;
2331	key.offset = (u64)-1;
2332
2333	while (1) {
2334		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2335		if (ret < 0)
2336			goto out;
2337		else if (ret > 0) {
2338			ret = btrfs_previous_item(root, path, dirid,
2339						  BTRFS_INODE_REF_KEY);
2340			if (ret < 0)
2341				goto out;
2342			else if (ret > 0) {
2343				ret = -ENOENT;
2344				goto out;
2345			}
2346		}
2347
2348		l = path->nodes[0];
2349		slot = path->slots[0];
2350		btrfs_item_key_to_cpu(l, &key, slot);
2351
2352		iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
2353		len = btrfs_inode_ref_name_len(l, iref);
2354		ptr -= len + 1;
2355		total_len += len + 1;
2356		if (ptr < name) {
2357			ret = -ENAMETOOLONG;
2358			goto out;
2359		}
2360
2361		*(ptr + len) = '/';
2362		read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
2363
2364		if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
2365			break;
2366
2367		btrfs_release_path(path);
2368		key.objectid = key.offset;
2369		key.offset = (u64)-1;
2370		dirid = key.objectid;
2371	}
2372	memmove(name, ptr, total_len);
2373	name[total_len] = '\0';
2374	ret = 0;
2375out:
2376	btrfs_put_root(root);
2377	btrfs_free_path(path);
2378	return ret;
2379}
2380
2381static int btrfs_search_path_in_tree_user(struct inode *inode,
2382				struct btrfs_ioctl_ino_lookup_user_args *args)
2383{
2384	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2385	struct super_block *sb = inode->i_sb;
2386	struct btrfs_key upper_limit = BTRFS_I(inode)->location;
2387	u64 treeid = BTRFS_I(inode)->root->root_key.objectid;
2388	u64 dirid = args->dirid;
2389	unsigned long item_off;
2390	unsigned long item_len;
2391	struct btrfs_inode_ref *iref;
2392	struct btrfs_root_ref *rref;
2393	struct btrfs_root *root = NULL;
2394	struct btrfs_path *path;
2395	struct btrfs_key key, key2;
2396	struct extent_buffer *leaf;
2397	struct inode *temp_inode;
2398	char *ptr;
2399	int slot;
2400	int len;
2401	int total_len = 0;
2402	int ret;
2403
2404	path = btrfs_alloc_path();
2405	if (!path)
2406		return -ENOMEM;
2407
2408	/*
2409	 * If the bottom subvolume does not exist directly under upper_limit,
2410	 * construct the path in from the bottom up.
2411	 */
2412	if (dirid != upper_limit.objectid) {
2413		ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1];
2414
2415		root = btrfs_get_fs_root(fs_info, treeid, true);
2416		if (IS_ERR(root)) {
2417			ret = PTR_ERR(root);
2418			goto out;
2419		}
2420
2421		key.objectid = dirid;
2422		key.type = BTRFS_INODE_REF_KEY;
2423		key.offset = (u64)-1;
2424		while (1) {
2425			ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2426			if (ret < 0) {
2427				goto out_put;
2428			} else if (ret > 0) {
2429				ret = btrfs_previous_item(root, path, dirid,
2430							  BTRFS_INODE_REF_KEY);
2431				if (ret < 0) {
2432					goto out_put;
2433				} else if (ret > 0) {
2434					ret = -ENOENT;
2435					goto out_put;
2436				}
2437			}
2438
2439			leaf = path->nodes[0];
2440			slot = path->slots[0];
2441			btrfs_item_key_to_cpu(leaf, &key, slot);
2442
2443			iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref);
2444			len = btrfs_inode_ref_name_len(leaf, iref);
2445			ptr -= len + 1;
2446			total_len += len + 1;
2447			if (ptr < args->path) {
2448				ret = -ENAMETOOLONG;
2449				goto out_put;
2450			}
2451
2452			*(ptr + len) = '/';
2453			read_extent_buffer(leaf, ptr,
2454					(unsigned long)(iref + 1), len);
2455
2456			/* Check the read+exec permission of this directory */
2457			ret = btrfs_previous_item(root, path, dirid,
2458						  BTRFS_INODE_ITEM_KEY);
2459			if (ret < 0) {
2460				goto out_put;
2461			} else if (ret > 0) {
2462				ret = -ENOENT;
2463				goto out_put;
2464			}
2465
2466			leaf = path->nodes[0];
2467			slot = path->slots[0];
2468			btrfs_item_key_to_cpu(leaf, &key2, slot);
2469			if (key2.objectid != dirid) {
2470				ret = -ENOENT;
2471				goto out_put;
2472			}
2473
2474			temp_inode = btrfs_iget(sb, key2.objectid, root);
2475			if (IS_ERR(temp_inode)) {
2476				ret = PTR_ERR(temp_inode);
2477				goto out_put;
2478			}
2479			ret = inode_permission(temp_inode, MAY_READ | MAY_EXEC);
2480			iput(temp_inode);
2481			if (ret) {
2482				ret = -EACCES;
2483				goto out_put;
2484			}
2485
2486			if (key.offset == upper_limit.objectid)
2487				break;
2488			if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) {
2489				ret = -EACCES;
2490				goto out_put;
2491			}
2492
2493			btrfs_release_path(path);
2494			key.objectid = key.offset;
2495			key.offset = (u64)-1;
2496			dirid = key.objectid;
2497		}
2498
2499		memmove(args->path, ptr, total_len);
2500		args->path[total_len] = '\0';
2501		btrfs_put_root(root);
2502		root = NULL;
2503		btrfs_release_path(path);
2504	}
2505
2506	/* Get the bottom subvolume's name from ROOT_REF */
2507	key.objectid = treeid;
2508	key.type = BTRFS_ROOT_REF_KEY;
2509	key.offset = args->treeid;
2510	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2511	if (ret < 0) {
2512		goto out;
2513	} else if (ret > 0) {
2514		ret = -ENOENT;
2515		goto out;
2516	}
2517
2518	leaf = path->nodes[0];
2519	slot = path->slots[0];
2520	btrfs_item_key_to_cpu(leaf, &key, slot);
2521
2522	item_off = btrfs_item_ptr_offset(leaf, slot);
2523	item_len = btrfs_item_size_nr(leaf, slot);
2524	/* Check if dirid in ROOT_REF corresponds to passed dirid */
2525	rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2526	if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) {
2527		ret = -EINVAL;
2528		goto out;
2529	}
2530
2531	/* Copy subvolume's name */
2532	item_off += sizeof(struct btrfs_root_ref);
2533	item_len -= sizeof(struct btrfs_root_ref);
2534	read_extent_buffer(leaf, args->name, item_off, item_len);
2535	args->name[item_len] = 0;
2536
2537out_put:
2538	btrfs_put_root(root);
2539out:
2540	btrfs_free_path(path);
2541	return ret;
2542}
2543
2544static noinline int btrfs_ioctl_ino_lookup(struct file *file,
2545					   void __user *argp)
2546{
2547	struct btrfs_ioctl_ino_lookup_args *args;
2548	struct inode *inode;
2549	int ret = 0;
 
 
 
2550
2551	args = memdup_user(argp, sizeof(*args));
2552	if (IS_ERR(args))
2553		return PTR_ERR(args);
2554
2555	inode = file_inode(file);
2556
2557	/*
2558	 * Unprivileged query to obtain the containing subvolume root id. The
2559	 * path is reset so it's consistent with btrfs_search_path_in_tree.
2560	 */
2561	if (args->treeid == 0)
2562		args->treeid = BTRFS_I(inode)->root->root_key.objectid;
2563
2564	if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
2565		args->name[0] = 0;
2566		goto out;
2567	}
2568
2569	if (!capable(CAP_SYS_ADMIN)) {
2570		ret = -EPERM;
2571		goto out;
2572	}
2573
2574	ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
2575					args->treeid, args->objectid,
2576					args->name);
2577
2578out:
2579	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2580		ret = -EFAULT;
2581
2582	kfree(args);
2583	return ret;
2584}
2585
2586/*
2587 * Version of ino_lookup ioctl (unprivileged)
2588 *
2589 * The main differences from ino_lookup ioctl are:
2590 *
2591 *   1. Read + Exec permission will be checked using inode_permission() during
2592 *      path construction. -EACCES will be returned in case of failure.
2593 *   2. Path construction will be stopped at the inode number which corresponds
2594 *      to the fd with which this ioctl is called. If constructed path does not
2595 *      exist under fd's inode, -EACCES will be returned.
2596 *   3. The name of bottom subvolume is also searched and filled.
2597 */
2598static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp)
2599{
2600	struct btrfs_ioctl_ino_lookup_user_args *args;
2601	struct inode *inode;
2602	int ret;
2603
2604	args = memdup_user(argp, sizeof(*args));
2605	if (IS_ERR(args))
2606		return PTR_ERR(args);
2607
2608	inode = file_inode(file);
2609
2610	if (args->dirid == BTRFS_FIRST_FREE_OBJECTID &&
2611	    BTRFS_I(inode)->location.objectid != BTRFS_FIRST_FREE_OBJECTID) {
2612		/*
2613		 * The subvolume does not exist under fd with which this is
2614		 * called
2615		 */
2616		kfree(args);
2617		return -EACCES;
2618	}
2619
2620	ret = btrfs_search_path_in_tree_user(inode, args);
2621
2622	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2623		ret = -EFAULT;
2624
2625	kfree(args);
2626	return ret;
2627}
2628
2629/* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */
2630static int btrfs_ioctl_get_subvol_info(struct file *file, void __user *argp)
2631{
2632	struct btrfs_ioctl_get_subvol_info_args *subvol_info;
2633	struct btrfs_fs_info *fs_info;
2634	struct btrfs_root *root;
2635	struct btrfs_path *path;
2636	struct btrfs_key key;
2637	struct btrfs_root_item *root_item;
2638	struct btrfs_root_ref *rref;
2639	struct extent_buffer *leaf;
2640	unsigned long item_off;
2641	unsigned long item_len;
2642	struct inode *inode;
2643	int slot;
2644	int ret = 0;
2645
2646	path = btrfs_alloc_path();
2647	if (!path)
2648		return -ENOMEM;
2649
2650	subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL);
2651	if (!subvol_info) {
2652		btrfs_free_path(path);
2653		return -ENOMEM;
2654	}
2655
2656	inode = file_inode(file);
2657	fs_info = BTRFS_I(inode)->root->fs_info;
2658
2659	/* Get root_item of inode's subvolume */
2660	key.objectid = BTRFS_I(inode)->root->root_key.objectid;
2661	root = btrfs_get_fs_root(fs_info, key.objectid, true);
2662	if (IS_ERR(root)) {
2663		ret = PTR_ERR(root);
2664		goto out_free;
2665	}
2666	root_item = &root->root_item;
2667
2668	subvol_info->treeid = key.objectid;
2669
2670	subvol_info->generation = btrfs_root_generation(root_item);
2671	subvol_info->flags = btrfs_root_flags(root_item);
2672
2673	memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE);
2674	memcpy(subvol_info->parent_uuid, root_item->parent_uuid,
2675						    BTRFS_UUID_SIZE);
2676	memcpy(subvol_info->received_uuid, root_item->received_uuid,
2677						    BTRFS_UUID_SIZE);
2678
2679	subvol_info->ctransid = btrfs_root_ctransid(root_item);
2680	subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime);
2681	subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime);
2682
2683	subvol_info->otransid = btrfs_root_otransid(root_item);
2684	subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime);
2685	subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime);
2686
2687	subvol_info->stransid = btrfs_root_stransid(root_item);
2688	subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime);
2689	subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime);
2690
2691	subvol_info->rtransid = btrfs_root_rtransid(root_item);
2692	subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime);
2693	subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime);
2694
2695	if (key.objectid != BTRFS_FS_TREE_OBJECTID) {
2696		/* Search root tree for ROOT_BACKREF of this subvolume */
2697		key.type = BTRFS_ROOT_BACKREF_KEY;
2698		key.offset = 0;
2699		ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2700		if (ret < 0) {
2701			goto out;
2702		} else if (path->slots[0] >=
2703			   btrfs_header_nritems(path->nodes[0])) {
2704			ret = btrfs_next_leaf(fs_info->tree_root, path);
2705			if (ret < 0) {
2706				goto out;
2707			} else if (ret > 0) {
2708				ret = -EUCLEAN;
2709				goto out;
2710			}
2711		}
2712
2713		leaf = path->nodes[0];
2714		slot = path->slots[0];
2715		btrfs_item_key_to_cpu(leaf, &key, slot);
2716		if (key.objectid == subvol_info->treeid &&
2717		    key.type == BTRFS_ROOT_BACKREF_KEY) {
2718			subvol_info->parent_id = key.offset;
2719
2720			rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2721			subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref);
2722
2723			item_off = btrfs_item_ptr_offset(leaf, slot)
2724					+ sizeof(struct btrfs_root_ref);
2725			item_len = btrfs_item_size_nr(leaf, slot)
2726					- sizeof(struct btrfs_root_ref);
2727			read_extent_buffer(leaf, subvol_info->name,
2728					   item_off, item_len);
2729		} else {
2730			ret = -ENOENT;
2731			goto out;
2732		}
2733	}
2734
2735	if (copy_to_user(argp, subvol_info, sizeof(*subvol_info)))
2736		ret = -EFAULT;
2737
2738out:
2739	btrfs_put_root(root);
2740out_free:
2741	btrfs_free_path(path);
2742	kfree(subvol_info);
2743	return ret;
2744}
2745
2746/*
2747 * Return ROOT_REF information of the subvolume containing this inode
2748 * except the subvolume name.
2749 */
2750static int btrfs_ioctl_get_subvol_rootref(struct file *file, void __user *argp)
2751{
2752	struct btrfs_ioctl_get_subvol_rootref_args *rootrefs;
2753	struct btrfs_root_ref *rref;
2754	struct btrfs_root *root;
2755	struct btrfs_path *path;
2756	struct btrfs_key key;
2757	struct extent_buffer *leaf;
2758	struct inode *inode;
2759	u64 objectid;
2760	int slot;
2761	int ret;
2762	u8 found;
2763
2764	path = btrfs_alloc_path();
2765	if (!path)
2766		return -ENOMEM;
2767
2768	rootrefs = memdup_user(argp, sizeof(*rootrefs));
2769	if (IS_ERR(rootrefs)) {
2770		btrfs_free_path(path);
2771		return PTR_ERR(rootrefs);
2772	}
2773
2774	inode = file_inode(file);
2775	root = BTRFS_I(inode)->root->fs_info->tree_root;
2776	objectid = BTRFS_I(inode)->root->root_key.objectid;
2777
2778	key.objectid = objectid;
2779	key.type = BTRFS_ROOT_REF_KEY;
2780	key.offset = rootrefs->min_treeid;
2781	found = 0;
2782
2783	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2784	if (ret < 0) {
2785		goto out;
2786	} else if (path->slots[0] >=
2787		   btrfs_header_nritems(path->nodes[0])) {
2788		ret = btrfs_next_leaf(root, path);
2789		if (ret < 0) {
2790			goto out;
2791		} else if (ret > 0) {
2792			ret = -EUCLEAN;
2793			goto out;
2794		}
2795	}
2796	while (1) {
2797		leaf = path->nodes[0];
2798		slot = path->slots[0];
2799
2800		btrfs_item_key_to_cpu(leaf, &key, slot);
2801		if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) {
2802			ret = 0;
2803			goto out;
2804		}
2805
2806		if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) {
2807			ret = -EOVERFLOW;
2808			goto out;
2809		}
2810
2811		rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2812		rootrefs->rootref[found].treeid = key.offset;
2813		rootrefs->rootref[found].dirid =
2814				  btrfs_root_ref_dirid(leaf, rref);
2815		found++;
2816
2817		ret = btrfs_next_item(root, path);
2818		if (ret < 0) {
2819			goto out;
2820		} else if (ret > 0) {
2821			ret = -EUCLEAN;
2822			goto out;
2823		}
2824	}
2825
2826out:
2827	if (!ret || ret == -EOVERFLOW) {
2828		rootrefs->num_items = found;
2829		/* update min_treeid for next search */
2830		if (found)
2831			rootrefs->min_treeid =
2832				rootrefs->rootref[found - 1].treeid + 1;
2833		if (copy_to_user(argp, rootrefs, sizeof(*rootrefs)))
2834			ret = -EFAULT;
2835	}
2836
2837	kfree(rootrefs);
2838	btrfs_free_path(path);
2839
2840	return ret;
2841}
2842
2843static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2844					     void __user *arg,
2845					     bool destroy_v2)
2846{
2847	struct dentry *parent = file->f_path.dentry;
2848	struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb);
2849	struct dentry *dentry;
2850	struct inode *dir = d_inode(parent);
2851	struct inode *inode;
2852	struct btrfs_root *root = BTRFS_I(dir)->root;
2853	struct btrfs_root *dest = NULL;
2854	struct btrfs_ioctl_vol_args *vol_args = NULL;
2855	struct btrfs_ioctl_vol_args_v2 *vol_args2 = NULL;
2856	char *subvol_name, *subvol_name_ptr = NULL;
2857	int subvol_namelen;
 
 
2858	int err = 0;
2859	bool destroy_parent = false;
2860
2861	if (destroy_v2) {
2862		vol_args2 = memdup_user(arg, sizeof(*vol_args2));
2863		if (IS_ERR(vol_args2))
2864			return PTR_ERR(vol_args2);
2865
2866		if (vol_args2->flags & ~BTRFS_SUBVOL_DELETE_ARGS_MASK) {
2867			err = -EOPNOTSUPP;
2868			goto out;
2869		}
2870
2871		/*
2872		 * If SPEC_BY_ID is not set, we are looking for the subvolume by
2873		 * name, same as v1 currently does.
2874		 */
2875		if (!(vol_args2->flags & BTRFS_SUBVOL_SPEC_BY_ID)) {
2876			vol_args2->name[BTRFS_SUBVOL_NAME_MAX] = 0;
2877			subvol_name = vol_args2->name;
2878
2879			err = mnt_want_write_file(file);
2880			if (err)
2881				goto out;
2882		} else {
2883			if (vol_args2->subvolid < BTRFS_FIRST_FREE_OBJECTID) {
2884				err = -EINVAL;
2885				goto out;
2886			}
2887
2888			err = mnt_want_write_file(file);
2889			if (err)
2890				goto out;
2891
2892			dentry = btrfs_get_dentry(fs_info->sb,
2893					BTRFS_FIRST_FREE_OBJECTID,
2894					vol_args2->subvolid, 0, 0);
2895			if (IS_ERR(dentry)) {
2896				err = PTR_ERR(dentry);
2897				goto out_drop_write;
2898			}
2899
2900			/*
2901			 * Change the default parent since the subvolume being
2902			 * deleted can be outside of the current mount point.
2903			 */
2904			parent = btrfs_get_parent(dentry);
2905
2906			/*
2907			 * At this point dentry->d_name can point to '/' if the
2908			 * subvolume we want to destroy is outsite of the
2909			 * current mount point, so we need to release the
2910			 * current dentry and execute the lookup to return a new
2911			 * one with ->d_name pointing to the
2912			 * <mount point>/subvol_name.
2913			 */
2914			dput(dentry);
2915			if (IS_ERR(parent)) {
2916				err = PTR_ERR(parent);
2917				goto out_drop_write;
2918			}
2919			dir = d_inode(parent);
2920
2921			/*
2922			 * If v2 was used with SPEC_BY_ID, a new parent was
2923			 * allocated since the subvolume can be outside of the
2924			 * current mount point. Later on we need to release this
2925			 * new parent dentry.
2926			 */
2927			destroy_parent = true;
2928
2929			subvol_name_ptr = btrfs_get_subvol_name_from_objectid(
2930						fs_info, vol_args2->subvolid);
2931			if (IS_ERR(subvol_name_ptr)) {
2932				err = PTR_ERR(subvol_name_ptr);
2933				goto free_parent;
2934			}
2935			/* subvol_name_ptr is already NULL termined */
2936			subvol_name = (char *)kbasename(subvol_name_ptr);
2937		}
2938	} else {
2939		vol_args = memdup_user(arg, sizeof(*vol_args));
2940		if (IS_ERR(vol_args))
2941			return PTR_ERR(vol_args);
2942
2943		vol_args->name[BTRFS_PATH_NAME_MAX] = 0;
2944		subvol_name = vol_args->name;
2945
2946		err = mnt_want_write_file(file);
2947		if (err)
2948			goto out;
2949	}
2950
2951	subvol_namelen = strlen(subvol_name);
2952
2953	if (strchr(subvol_name, '/') ||
2954	    strncmp(subvol_name, "..", subvol_namelen) == 0) {
 
 
2955		err = -EINVAL;
2956		goto free_subvol_name;
2957	}
2958
2959	if (!S_ISDIR(dir->i_mode)) {
2960		err = -ENOTDIR;
2961		goto free_subvol_name;
2962	}
2963
2964	err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
2965	if (err == -EINTR)
2966		goto free_subvol_name;
2967	dentry = lookup_one_len(subvol_name, parent, subvol_namelen);
2968	if (IS_ERR(dentry)) {
2969		err = PTR_ERR(dentry);
2970		goto out_unlock_dir;
2971	}
2972
2973	if (d_really_is_negative(dentry)) {
2974		err = -ENOENT;
2975		goto out_dput;
2976	}
2977
2978	inode = d_inode(dentry);
2979	dest = BTRFS_I(inode)->root;
2980	if (!capable(CAP_SYS_ADMIN)) {
2981		/*
2982		 * Regular user.  Only allow this with a special mount
2983		 * option, when the user has write+exec access to the
2984		 * subvol root, and when rmdir(2) would have been
2985		 * allowed.
2986		 *
2987		 * Note that this is _not_ check that the subvol is
2988		 * empty or doesn't contain data that we wouldn't
2989		 * otherwise be able to delete.
2990		 *
2991		 * Users who want to delete empty subvols should try
2992		 * rmdir(2).
2993		 */
2994		err = -EPERM;
2995		if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED))
2996			goto out_dput;
2997
2998		/*
2999		 * Do not allow deletion if the parent dir is the same
3000		 * as the dir to be deleted.  That means the ioctl
3001		 * must be called on the dentry referencing the root
3002		 * of the subvol, not a random directory contained
3003		 * within it.
3004		 */
3005		err = -EINVAL;
3006		if (root == dest)
3007			goto out_dput;
3008
3009		err = inode_permission(inode, MAY_WRITE | MAY_EXEC);
3010		if (err)
3011			goto out_dput;
3012	}
3013
3014	/* check if subvolume may be deleted by a user */
3015	err = btrfs_may_delete(dir, dentry, 1);
3016	if (err)
3017		goto out_dput;
3018
3019	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
3020		err = -EINVAL;
3021		goto out_dput;
3022	}
3023
3024	inode_lock(inode);
3025	err = btrfs_delete_subvolume(dir, dentry);
3026	inode_unlock(inode);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3027	if (!err) {
3028		fsnotify_rmdir(dir, dentry);
 
3029		d_delete(dentry);
3030	}
3031
 
 
 
 
 
 
3032out_dput:
3033	dput(dentry);
3034out_unlock_dir:
3035	inode_unlock(dir);
3036free_subvol_name:
3037	kfree(subvol_name_ptr);
3038free_parent:
3039	if (destroy_parent)
3040		dput(parent);
3041out_drop_write:
3042	mnt_drop_write_file(file);
3043out:
3044	kfree(vol_args2);
3045	kfree(vol_args);
3046	return err;
3047}
3048
3049static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
3050{
3051	struct inode *inode = file_inode(file);
3052	struct btrfs_root *root = BTRFS_I(inode)->root;
3053	struct btrfs_ioctl_defrag_range_args *range;
3054	int ret;
3055
3056	ret = mnt_want_write_file(file);
3057	if (ret)
3058		return ret;
3059
3060	if (btrfs_root_readonly(root)) {
3061		ret = -EROFS;
3062		goto out;
3063	}
3064
3065	switch (inode->i_mode & S_IFMT) {
3066	case S_IFDIR:
3067		if (!capable(CAP_SYS_ADMIN)) {
3068			ret = -EPERM;
3069			goto out;
3070		}
3071		ret = btrfs_defrag_root(root);
 
 
 
3072		break;
3073	case S_IFREG:
3074		/*
3075		 * Note that this does not check the file descriptor for write
3076		 * access. This prevents defragmenting executables that are
3077		 * running and allows defrag on files open in read-only mode.
3078		 */
3079		if (!capable(CAP_SYS_ADMIN) &&
3080		    inode_permission(inode, MAY_WRITE)) {
3081			ret = -EPERM;
3082			goto out;
3083		}
3084
3085		range = kzalloc(sizeof(*range), GFP_KERNEL);
3086		if (!range) {
3087			ret = -ENOMEM;
3088			goto out;
3089		}
3090
3091		if (argp) {
3092			if (copy_from_user(range, argp,
3093					   sizeof(*range))) {
3094				ret = -EFAULT;
3095				kfree(range);
3096				goto out;
3097			}
3098			/* compression requires us to start the IO */
3099			if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
3100				range->flags |= BTRFS_DEFRAG_RANGE_START_IO;
3101				range->extent_thresh = (u32)-1;
3102			}
3103		} else {
3104			/* the rest are all set to zero by kzalloc */
3105			range->len = (u64)-1;
3106		}
3107		ret = btrfs_defrag_file(file_inode(file), file,
3108					range, BTRFS_OLDEST_GENERATION, 0);
3109		if (ret > 0)
3110			ret = 0;
3111		kfree(range);
3112		break;
3113	default:
3114		ret = -EINVAL;
3115	}
3116out:
3117	mnt_drop_write_file(file);
3118	return ret;
3119}
3120
3121static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg)
3122{
3123	struct btrfs_ioctl_vol_args *vol_args;
3124	int ret;
3125
3126	if (!capable(CAP_SYS_ADMIN))
3127		return -EPERM;
3128
3129	if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags))
 
3130		return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
 
3131
 
3132	vol_args = memdup_user(arg, sizeof(*vol_args));
3133	if (IS_ERR(vol_args)) {
3134		ret = PTR_ERR(vol_args);
3135		goto out;
3136	}
3137
3138	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
3139	ret = btrfs_init_new_device(fs_info, vol_args->name);
3140
3141	if (!ret)
3142		btrfs_info(fs_info, "disk added %s", vol_args->name);
3143
3144	kfree(vol_args);
3145out:
3146	clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
 
3147	return ret;
3148}
3149
3150static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg)
3151{
3152	struct inode *inode = file_inode(file);
3153	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3154	struct btrfs_ioctl_vol_args_v2 *vol_args;
3155	int ret;
3156
3157	if (!capable(CAP_SYS_ADMIN))
3158		return -EPERM;
3159
3160	ret = mnt_want_write_file(file);
3161	if (ret)
3162		return ret;
3163
3164	vol_args = memdup_user(arg, sizeof(*vol_args));
3165	if (IS_ERR(vol_args)) {
3166		ret = PTR_ERR(vol_args);
3167		goto err_drop;
3168	}
3169
3170	if (vol_args->flags & ~BTRFS_DEVICE_REMOVE_ARGS_MASK) {
3171		ret = -EOPNOTSUPP;
3172		goto out;
3173	}
3174
3175	if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
3176		ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3177		goto out;
3178	}
3179
3180	if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) {
3181		ret = btrfs_rm_device(fs_info, NULL, vol_args->devid);
3182	} else {
3183		vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
3184		ret = btrfs_rm_device(fs_info, vol_args->name, 0);
3185	}
3186	clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
3187
3188	if (!ret) {
3189		if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
3190			btrfs_info(fs_info, "device deleted: id %llu",
3191					vol_args->devid);
3192		else
3193			btrfs_info(fs_info, "device deleted: %s",
3194					vol_args->name);
3195	}
3196out:
3197	kfree(vol_args);
3198err_drop:
3199	mnt_drop_write_file(file);
3200	return ret;
3201}
3202
3203static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
3204{
3205	struct inode *inode = file_inode(file);
3206	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3207	struct btrfs_ioctl_vol_args *vol_args;
3208	int ret;
3209
3210	if (!capable(CAP_SYS_ADMIN))
3211		return -EPERM;
3212
3213	ret = mnt_want_write_file(file);
3214	if (ret)
3215		return ret;
3216
3217	if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
 
3218		ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3219		goto out_drop_write;
3220	}
3221
3222	vol_args = memdup_user(arg, sizeof(*vol_args));
3223	if (IS_ERR(vol_args)) {
3224		ret = PTR_ERR(vol_args);
3225		goto out;
3226	}
3227
3228	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
3229	ret = btrfs_rm_device(fs_info, vol_args->name, 0);
 
 
3230
3231	if (!ret)
3232		btrfs_info(fs_info, "disk deleted %s", vol_args->name);
3233	kfree(vol_args);
3234out:
3235	clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
3236out_drop_write:
3237	mnt_drop_write_file(file);
3238
3239	return ret;
3240}
3241
3242static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info,
3243				void __user *arg)
3244{
3245	struct btrfs_ioctl_fs_info_args *fi_args;
3246	struct btrfs_device *device;
3247	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3248	u64 flags_in;
3249	int ret = 0;
3250
3251	fi_args = memdup_user(arg, sizeof(*fi_args));
3252	if (IS_ERR(fi_args))
3253		return PTR_ERR(fi_args);
3254
3255	flags_in = fi_args->flags;
3256	memset(fi_args, 0, sizeof(*fi_args));
 
3257
3258	rcu_read_lock();
3259	fi_args->num_devices = fs_devices->num_devices;
 
3260
3261	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
3262		if (device->devid > fi_args->max_id)
3263			fi_args->max_id = device->devid;
3264	}
3265	rcu_read_unlock();
3266
3267	memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid));
3268	fi_args->nodesize = fs_info->nodesize;
3269	fi_args->sectorsize = fs_info->sectorsize;
3270	fi_args->clone_alignment = fs_info->sectorsize;
3271
3272	if (flags_in & BTRFS_FS_INFO_FLAG_CSUM_INFO) {
3273		fi_args->csum_type = btrfs_super_csum_type(fs_info->super_copy);
3274		fi_args->csum_size = btrfs_super_csum_size(fs_info->super_copy);
3275		fi_args->flags |= BTRFS_FS_INFO_FLAG_CSUM_INFO;
3276	}
3277
3278	if (flags_in & BTRFS_FS_INFO_FLAG_GENERATION) {
3279		fi_args->generation = fs_info->generation;
3280		fi_args->flags |= BTRFS_FS_INFO_FLAG_GENERATION;
3281	}
3282
3283	if (flags_in & BTRFS_FS_INFO_FLAG_METADATA_UUID) {
3284		memcpy(&fi_args->metadata_uuid, fs_devices->metadata_uuid,
3285		       sizeof(fi_args->metadata_uuid));
3286		fi_args->flags |= BTRFS_FS_INFO_FLAG_METADATA_UUID;
3287	}
3288
3289	if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
3290		ret = -EFAULT;
3291
3292	kfree(fi_args);
3293	return ret;
3294}
3295
3296static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info,
3297				 void __user *arg)
3298{
3299	struct btrfs_ioctl_dev_info_args *di_args;
3300	struct btrfs_device *dev;
 
3301	int ret = 0;
3302	char *s_uuid = NULL;
3303
 
 
 
3304	di_args = memdup_user(arg, sizeof(*di_args));
3305	if (IS_ERR(di_args))
3306		return PTR_ERR(di_args);
3307
3308	if (!btrfs_is_empty_uuid(di_args->uuid))
3309		s_uuid = di_args->uuid;
3310
3311	rcu_read_lock();
3312	dev = btrfs_find_device(fs_info->fs_devices, di_args->devid, s_uuid,
3313				NULL, true);
3314
3315	if (!dev) {
3316		ret = -ENODEV;
3317		goto out;
3318	}
3319
3320	di_args->devid = dev->devid;
3321	di_args->bytes_used = btrfs_device_get_bytes_used(dev);
3322	di_args->total_bytes = btrfs_device_get_total_bytes(dev);
3323	memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
3324	if (dev->name) {
3325		strncpy(di_args->path, rcu_str_deref(dev->name),
3326				sizeof(di_args->path) - 1);
 
 
 
 
3327		di_args->path[sizeof(di_args->path) - 1] = 0;
3328	} else {
3329		di_args->path[0] = '\0';
3330	}
3331
3332out:
3333	rcu_read_unlock();
3334	if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
3335		ret = -EFAULT;
3336
3337	kfree(di_args);
3338	return ret;
3339}
3340
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3341static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
3342{
3343	struct inode *inode = file_inode(file);
3344	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3345	struct btrfs_root *root = BTRFS_I(inode)->root;
3346	struct btrfs_root *new_root;
3347	struct btrfs_dir_item *di;
3348	struct btrfs_trans_handle *trans;
3349	struct btrfs_path *path = NULL;
 
3350	struct btrfs_disk_key disk_key;
3351	u64 objectid = 0;
3352	u64 dir_id;
3353	int ret;
3354
3355	if (!capable(CAP_SYS_ADMIN))
3356		return -EPERM;
3357
3358	ret = mnt_want_write_file(file);
3359	if (ret)
3360		return ret;
3361
3362	if (copy_from_user(&objectid, argp, sizeof(objectid))) {
3363		ret = -EFAULT;
3364		goto out;
3365	}
3366
3367	if (!objectid)
3368		objectid = BTRFS_FS_TREE_OBJECTID;
3369
3370	new_root = btrfs_get_fs_root(fs_info, objectid, true);
 
 
 
 
3371	if (IS_ERR(new_root)) {
3372		ret = PTR_ERR(new_root);
3373		goto out;
3374	}
3375	if (!is_fstree(new_root->root_key.objectid)) {
3376		ret = -ENOENT;
3377		goto out_free;
3378	}
3379
3380	path = btrfs_alloc_path();
3381	if (!path) {
3382		ret = -ENOMEM;
3383		goto out_free;
3384	}
3385	path->leave_spinning = 1;
3386
3387	trans = btrfs_start_transaction(root, 1);
3388	if (IS_ERR(trans)) {
 
3389		ret = PTR_ERR(trans);
3390		goto out_free;
3391	}
3392
3393	dir_id = btrfs_super_root_dir(fs_info->super_copy);
3394	di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path,
3395				   dir_id, "default", 7, 1);
3396	if (IS_ERR_OR_NULL(di)) {
3397		btrfs_release_path(path);
3398		btrfs_end_transaction(trans);
3399		btrfs_err(fs_info,
3400			  "Umm, you don't have the default diritem, this isn't going to work");
3401		ret = -ENOENT;
3402		goto out_free;
3403	}
3404
3405	btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
3406	btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
3407	btrfs_mark_buffer_dirty(path->nodes[0]);
3408	btrfs_release_path(path);
3409
3410	btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL);
3411	btrfs_end_transaction(trans);
3412out_free:
3413	btrfs_put_root(new_root);
3414	btrfs_free_path(path);
 
 
 
3415out:
3416	mnt_drop_write_file(file);
3417	return ret;
3418}
3419
3420static void get_block_group_info(struct list_head *groups_list,
3421				 struct btrfs_ioctl_space_info *space)
3422{
3423	struct btrfs_block_group *block_group;
3424
3425	space->total_bytes = 0;
3426	space->used_bytes = 0;
3427	space->flags = 0;
3428	list_for_each_entry(block_group, groups_list, list) {
3429		space->flags = block_group->flags;
3430		space->total_bytes += block_group->length;
3431		space->used_bytes += block_group->used;
 
3432	}
3433}
3434
3435static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info,
3436				   void __user *arg)
3437{
3438	struct btrfs_ioctl_space_args space_args;
3439	struct btrfs_ioctl_space_info space;
3440	struct btrfs_ioctl_space_info *dest;
3441	struct btrfs_ioctl_space_info *dest_orig;
3442	struct btrfs_ioctl_space_info __user *user_dest;
3443	struct btrfs_space_info *info;
3444	static const u64 types[] = {
3445		BTRFS_BLOCK_GROUP_DATA,
3446		BTRFS_BLOCK_GROUP_SYSTEM,
3447		BTRFS_BLOCK_GROUP_METADATA,
3448		BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA
3449	};
3450	int num_types = 4;
3451	int alloc_size;
3452	int ret = 0;
3453	u64 slot_count = 0;
3454	int i, c;
3455
3456	if (copy_from_user(&space_args,
3457			   (struct btrfs_ioctl_space_args __user *)arg,
3458			   sizeof(space_args)))
3459		return -EFAULT;
3460
3461	for (i = 0; i < num_types; i++) {
3462		struct btrfs_space_info *tmp;
3463
3464		info = NULL;
3465		rcu_read_lock();
3466		list_for_each_entry_rcu(tmp, &fs_info->space_info,
3467					list) {
3468			if (tmp->flags == types[i]) {
3469				info = tmp;
3470				break;
3471			}
3472		}
3473		rcu_read_unlock();
3474
3475		if (!info)
3476			continue;
3477
3478		down_read(&info->groups_sem);
3479		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3480			if (!list_empty(&info->block_groups[c]))
3481				slot_count++;
3482		}
3483		up_read(&info->groups_sem);
3484	}
3485
3486	/*
3487	 * Global block reserve, exported as a space_info
3488	 */
3489	slot_count++;
3490
3491	/* space_slots == 0 means they are asking for a count */
3492	if (space_args.space_slots == 0) {
3493		space_args.total_spaces = slot_count;
3494		goto out;
3495	}
3496
3497	slot_count = min_t(u64, space_args.space_slots, slot_count);
3498
3499	alloc_size = sizeof(*dest) * slot_count;
3500
3501	/* we generally have at most 6 or so space infos, one for each raid
3502	 * level.  So, a whole page should be more than enough for everyone
3503	 */
3504	if (alloc_size > PAGE_SIZE)
3505		return -ENOMEM;
3506
3507	space_args.total_spaces = 0;
3508	dest = kmalloc(alloc_size, GFP_KERNEL);
3509	if (!dest)
3510		return -ENOMEM;
3511	dest_orig = dest;
3512
3513	/* now we have a buffer to copy into */
3514	for (i = 0; i < num_types; i++) {
3515		struct btrfs_space_info *tmp;
3516
3517		if (!slot_count)
3518			break;
3519
3520		info = NULL;
3521		rcu_read_lock();
3522		list_for_each_entry_rcu(tmp, &fs_info->space_info,
3523					list) {
3524			if (tmp->flags == types[i]) {
3525				info = tmp;
3526				break;
3527			}
3528		}
3529		rcu_read_unlock();
3530
3531		if (!info)
3532			continue;
3533		down_read(&info->groups_sem);
3534		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3535			if (!list_empty(&info->block_groups[c])) {
3536				get_block_group_info(&info->block_groups[c],
3537						     &space);
3538				memcpy(dest, &space, sizeof(space));
3539				dest++;
3540				space_args.total_spaces++;
3541				slot_count--;
3542			}
3543			if (!slot_count)
3544				break;
3545		}
3546		up_read(&info->groups_sem);
3547	}
3548
3549	/*
3550	 * Add global block reserve
3551	 */
3552	if (slot_count) {
3553		struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
3554
3555		spin_lock(&block_rsv->lock);
3556		space.total_bytes = block_rsv->size;
3557		space.used_bytes = block_rsv->size - block_rsv->reserved;
3558		spin_unlock(&block_rsv->lock);
3559		space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
3560		memcpy(dest, &space, sizeof(space));
3561		space_args.total_spaces++;
3562	}
3563
3564	user_dest = (struct btrfs_ioctl_space_info __user *)
3565		(arg + sizeof(struct btrfs_ioctl_space_args));
3566
3567	if (copy_to_user(user_dest, dest_orig, alloc_size))
3568		ret = -EFAULT;
3569
3570	kfree(dest_orig);
3571out:
3572	if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
3573		ret = -EFAULT;
3574
3575	return ret;
3576}
3577
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3578static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
3579					    void __user *argp)
3580{
3581	struct btrfs_trans_handle *trans;
3582	u64 transid;
3583	int ret;
3584
3585	trans = btrfs_attach_transaction_barrier(root);
3586	if (IS_ERR(trans)) {
3587		if (PTR_ERR(trans) != -ENOENT)
3588			return PTR_ERR(trans);
3589
3590		/* No running transaction, don't bother */
3591		transid = root->fs_info->last_trans_committed;
3592		goto out;
3593	}
3594	transid = trans->transid;
3595	ret = btrfs_commit_transaction_async(trans, 0);
3596	if (ret) {
3597		btrfs_end_transaction(trans);
3598		return ret;
3599	}
3600out:
3601	if (argp)
3602		if (copy_to_user(argp, &transid, sizeof(transid)))
3603			return -EFAULT;
3604	return 0;
3605}
3606
3607static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info,
3608					   void __user *argp)
3609{
3610	u64 transid;
3611
3612	if (argp) {
3613		if (copy_from_user(&transid, argp, sizeof(transid)))
3614			return -EFAULT;
3615	} else {
3616		transid = 0;  /* current trans */
3617	}
3618	return btrfs_wait_for_commit(fs_info, transid);
3619}
3620
3621static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
3622{
3623	struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb);
3624	struct btrfs_ioctl_scrub_args *sa;
3625	int ret;
3626
3627	if (!capable(CAP_SYS_ADMIN))
3628		return -EPERM;
3629
3630	sa = memdup_user(arg, sizeof(*sa));
3631	if (IS_ERR(sa))
3632		return PTR_ERR(sa);
3633
3634	if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
3635		ret = mnt_want_write_file(file);
3636		if (ret)
3637			goto out;
3638	}
3639
3640	ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end,
3641			      &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
3642			      0);
3643
3644	/*
3645	 * Copy scrub args to user space even if btrfs_scrub_dev() returned an
3646	 * error. This is important as it allows user space to know how much
3647	 * progress scrub has done. For example, if scrub is canceled we get
3648	 * -ECANCELED from btrfs_scrub_dev() and return that error back to user
3649	 * space. Later user space can inspect the progress from the structure
3650	 * btrfs_ioctl_scrub_args and resume scrub from where it left off
3651	 * previously (btrfs-progs does this).
3652	 * If we fail to copy the btrfs_ioctl_scrub_args structure to user space
3653	 * then return -EFAULT to signal the structure was not copied or it may
3654	 * be corrupt and unreliable due to a partial copy.
3655	 */
3656	if (copy_to_user(arg, sa, sizeof(*sa)))
3657		ret = -EFAULT;
3658
3659	if (!(sa->flags & BTRFS_SCRUB_READONLY))
3660		mnt_drop_write_file(file);
3661out:
3662	kfree(sa);
3663	return ret;
3664}
3665
3666static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info)
3667{
3668	if (!capable(CAP_SYS_ADMIN))
3669		return -EPERM;
3670
3671	return btrfs_scrub_cancel(fs_info);
3672}
3673
3674static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info,
3675				       void __user *arg)
3676{
3677	struct btrfs_ioctl_scrub_args *sa;
3678	int ret;
3679
3680	if (!capable(CAP_SYS_ADMIN))
3681		return -EPERM;
3682
3683	sa = memdup_user(arg, sizeof(*sa));
3684	if (IS_ERR(sa))
3685		return PTR_ERR(sa);
3686
3687	ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress);
3688
3689	if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3690		ret = -EFAULT;
3691
3692	kfree(sa);
3693	return ret;
3694}
3695
3696static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info,
3697				      void __user *arg)
3698{
3699	struct btrfs_ioctl_get_dev_stats *sa;
3700	int ret;
3701
3702	sa = memdup_user(arg, sizeof(*sa));
3703	if (IS_ERR(sa))
3704		return PTR_ERR(sa);
3705
3706	if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
3707		kfree(sa);
3708		return -EPERM;
3709	}
3710
3711	ret = btrfs_get_dev_stats(fs_info, sa);
3712
3713	if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3714		ret = -EFAULT;
3715
3716	kfree(sa);
3717	return ret;
3718}
3719
3720static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info,
3721				    void __user *arg)
3722{
3723	struct btrfs_ioctl_dev_replace_args *p;
3724	int ret;
3725
3726	if (!capable(CAP_SYS_ADMIN))
3727		return -EPERM;
3728
3729	p = memdup_user(arg, sizeof(*p));
3730	if (IS_ERR(p))
3731		return PTR_ERR(p);
3732
3733	switch (p->cmd) {
3734	case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
3735		if (sb_rdonly(fs_info->sb)) {
3736			ret = -EROFS;
3737			goto out;
3738		}
3739		if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
 
 
3740			ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3741		} else {
3742			ret = btrfs_dev_replace_by_ioctl(fs_info, p);
3743			clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
 
 
3744		}
3745		break;
3746	case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
3747		btrfs_dev_replace_status(fs_info, p);
3748		ret = 0;
3749		break;
3750	case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
3751		p->result = btrfs_dev_replace_cancel(fs_info);
3752		ret = 0;
3753		break;
3754	default:
3755		ret = -EINVAL;
3756		break;
3757	}
3758
3759	if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p)))
3760		ret = -EFAULT;
3761out:
3762	kfree(p);
3763	return ret;
3764}
3765
3766static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
3767{
3768	int ret = 0;
3769	int i;
3770	u64 rel_ptr;
3771	int size;
3772	struct btrfs_ioctl_ino_path_args *ipa = NULL;
3773	struct inode_fs_paths *ipath = NULL;
3774	struct btrfs_path *path;
3775
3776	if (!capable(CAP_DAC_READ_SEARCH))
3777		return -EPERM;
3778
3779	path = btrfs_alloc_path();
3780	if (!path) {
3781		ret = -ENOMEM;
3782		goto out;
3783	}
3784
3785	ipa = memdup_user(arg, sizeof(*ipa));
3786	if (IS_ERR(ipa)) {
3787		ret = PTR_ERR(ipa);
3788		ipa = NULL;
3789		goto out;
3790	}
3791
3792	size = min_t(u32, ipa->size, 4096);
3793	ipath = init_ipath(size, root, path);
3794	if (IS_ERR(ipath)) {
3795		ret = PTR_ERR(ipath);
3796		ipath = NULL;
3797		goto out;
3798	}
3799
3800	ret = paths_from_inode(ipa->inum, ipath);
3801	if (ret < 0)
3802		goto out;
3803
3804	for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
3805		rel_ptr = ipath->fspath->val[i] -
3806			  (u64)(unsigned long)ipath->fspath->val;
3807		ipath->fspath->val[i] = rel_ptr;
3808	}
3809
3810	ret = copy_to_user((void __user *)(unsigned long)ipa->fspath,
3811			   ipath->fspath, size);
3812	if (ret) {
3813		ret = -EFAULT;
3814		goto out;
3815	}
3816
3817out:
3818	btrfs_free_path(path);
3819	free_ipath(ipath);
3820	kfree(ipa);
3821
3822	return ret;
3823}
3824
3825static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
3826{
3827	struct btrfs_data_container *inodes = ctx;
3828	const size_t c = 3 * sizeof(u64);
3829
3830	if (inodes->bytes_left >= c) {
3831		inodes->bytes_left -= c;
3832		inodes->val[inodes->elem_cnt] = inum;
3833		inodes->val[inodes->elem_cnt + 1] = offset;
3834		inodes->val[inodes->elem_cnt + 2] = root;
3835		inodes->elem_cnt += 3;
3836	} else {
3837		inodes->bytes_missing += c - inodes->bytes_left;
3838		inodes->bytes_left = 0;
3839		inodes->elem_missed += 3;
3840	}
3841
3842	return 0;
3843}
3844
3845static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info,
3846					void __user *arg, int version)
3847{
3848	int ret = 0;
3849	int size;
3850	struct btrfs_ioctl_logical_ino_args *loi;
3851	struct btrfs_data_container *inodes = NULL;
3852	struct btrfs_path *path = NULL;
3853	bool ignore_offset;
3854
3855	if (!capable(CAP_SYS_ADMIN))
3856		return -EPERM;
3857
3858	loi = memdup_user(arg, sizeof(*loi));
3859	if (IS_ERR(loi))
3860		return PTR_ERR(loi);
3861
3862	if (version == 1) {
3863		ignore_offset = false;
3864		size = min_t(u32, loi->size, SZ_64K);
3865	} else {
3866		/* All reserved bits must be 0 for now */
3867		if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) {
3868			ret = -EINVAL;
3869			goto out_loi;
3870		}
3871		/* Only accept flags we have defined so far */
3872		if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) {
3873			ret = -EINVAL;
3874			goto out_loi;
3875		}
3876		ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET;
3877		size = min_t(u32, loi->size, SZ_16M);
3878	}
3879
3880	path = btrfs_alloc_path();
3881	if (!path) {
3882		ret = -ENOMEM;
3883		goto out;
3884	}
3885
 
3886	inodes = init_data_container(size);
3887	if (IS_ERR(inodes)) {
3888		ret = PTR_ERR(inodes);
3889		inodes = NULL;
3890		goto out;
3891	}
3892
3893	ret = iterate_inodes_from_logical(loi->logical, fs_info, path,
3894					  build_ino_list, inodes, ignore_offset);
3895	if (ret == -EINVAL)
3896		ret = -ENOENT;
3897	if (ret < 0)
3898		goto out;
3899
3900	ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes,
3901			   size);
3902	if (ret)
3903		ret = -EFAULT;
3904
3905out:
3906	btrfs_free_path(path);
3907	kvfree(inodes);
3908out_loi:
3909	kfree(loi);
3910
3911	return ret;
3912}
3913
3914void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info,
3915			       struct btrfs_ioctl_balance_args *bargs)
3916{
3917	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3918
3919	bargs->flags = bctl->flags;
3920
3921	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags))
3922		bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
3923	if (atomic_read(&fs_info->balance_pause_req))
3924		bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
3925	if (atomic_read(&fs_info->balance_cancel_req))
3926		bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
3927
3928	memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
3929	memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
3930	memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
3931
3932	spin_lock(&fs_info->balance_lock);
3933	memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
3934	spin_unlock(&fs_info->balance_lock);
 
 
 
 
3935}
3936
3937static long btrfs_ioctl_balance(struct file *file, void __user *arg)
3938{
3939	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
3940	struct btrfs_fs_info *fs_info = root->fs_info;
3941	struct btrfs_ioctl_balance_args *bargs;
3942	struct btrfs_balance_control *bctl;
3943	bool need_unlock; /* for mut. excl. ops lock */
3944	int ret;
3945
3946	if (!capable(CAP_SYS_ADMIN))
3947		return -EPERM;
3948
3949	ret = mnt_want_write_file(file);
3950	if (ret)
3951		return ret;
3952
3953again:
3954	if (!test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
 
3955		mutex_lock(&fs_info->balance_mutex);
3956		need_unlock = true;
3957		goto locked;
3958	}
3959
3960	/*
3961	 * mut. excl. ops lock is locked.  Three possibilities:
3962	 *   (1) some other op is running
3963	 *   (2) balance is running
3964	 *   (3) balance is paused -- special case (think resume)
3965	 */
3966	mutex_lock(&fs_info->balance_mutex);
3967	if (fs_info->balance_ctl) {
3968		/* this is either (2) or (3) */
3969		if (!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
3970			mutex_unlock(&fs_info->balance_mutex);
3971			/*
3972			 * Lock released to allow other waiters to continue,
3973			 * we'll reexamine the status again.
3974			 */
3975			mutex_lock(&fs_info->balance_mutex);
3976
3977			if (fs_info->balance_ctl &&
3978			    !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
3979				/* this is (3) */
3980				need_unlock = false;
3981				goto locked;
3982			}
3983
3984			mutex_unlock(&fs_info->balance_mutex);
 
3985			goto again;
3986		} else {
3987			/* this is (2) */
3988			mutex_unlock(&fs_info->balance_mutex);
3989			ret = -EINPROGRESS;
3990			goto out;
3991		}
3992	} else {
3993		/* this is (1) */
3994		mutex_unlock(&fs_info->balance_mutex);
3995		ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3996		goto out;
3997	}
3998
3999locked:
4000	BUG_ON(!test_bit(BTRFS_FS_EXCL_OP, &fs_info->flags));
4001
4002	if (arg) {
4003		bargs = memdup_user(arg, sizeof(*bargs));
4004		if (IS_ERR(bargs)) {
4005			ret = PTR_ERR(bargs);
4006			goto out_unlock;
4007		}
4008
4009		if (bargs->flags & BTRFS_BALANCE_RESUME) {
4010			if (!fs_info->balance_ctl) {
4011				ret = -ENOTCONN;
4012				goto out_bargs;
4013			}
4014
4015			bctl = fs_info->balance_ctl;
4016			spin_lock(&fs_info->balance_lock);
4017			bctl->flags |= BTRFS_BALANCE_RESUME;
4018			spin_unlock(&fs_info->balance_lock);
4019
4020			goto do_balance;
4021		}
4022	} else {
4023		bargs = NULL;
4024	}
4025
4026	if (fs_info->balance_ctl) {
4027		ret = -EINPROGRESS;
4028		goto out_bargs;
4029	}
4030
4031	bctl = kzalloc(sizeof(*bctl), GFP_KERNEL);
4032	if (!bctl) {
4033		ret = -ENOMEM;
4034		goto out_bargs;
4035	}
4036
 
4037	if (arg) {
4038		memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
4039		memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
4040		memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
4041
4042		bctl->flags = bargs->flags;
4043	} else {
4044		/* balance everything - no filters */
4045		bctl->flags |= BTRFS_BALANCE_TYPE_MASK;
4046	}
4047
4048	if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
4049		ret = -EINVAL;
4050		goto out_bctl;
4051	}
4052
4053do_balance:
4054	/*
4055	 * Ownership of bctl and filesystem flag BTRFS_FS_EXCL_OP goes to
4056	 * btrfs_balance.  bctl is freed in reset_balance_state, or, if
4057	 * restriper was paused all the way until unmount, in free_fs_info.
4058	 * The flag should be cleared after reset_balance_state.
 
4059	 */
4060	need_unlock = false;
4061
4062	ret = btrfs_balance(fs_info, bctl, bargs);
4063	bctl = NULL;
4064
4065	if ((ret == 0 || ret == -ECANCELED) && arg) {
4066		if (copy_to_user(arg, bargs, sizeof(*bargs)))
4067			ret = -EFAULT;
4068	}
4069
4070out_bctl:
4071	kfree(bctl);
4072out_bargs:
4073	kfree(bargs);
4074out_unlock:
4075	mutex_unlock(&fs_info->balance_mutex);
 
4076	if (need_unlock)
4077		clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4078out:
4079	mnt_drop_write_file(file);
4080	return ret;
4081}
4082
4083static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd)
4084{
4085	if (!capable(CAP_SYS_ADMIN))
4086		return -EPERM;
4087
4088	switch (cmd) {
4089	case BTRFS_BALANCE_CTL_PAUSE:
4090		return btrfs_pause_balance(fs_info);
4091	case BTRFS_BALANCE_CTL_CANCEL:
4092		return btrfs_cancel_balance(fs_info);
4093	}
4094
4095	return -EINVAL;
4096}
4097
4098static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info,
4099					 void __user *arg)
4100{
 
4101	struct btrfs_ioctl_balance_args *bargs;
4102	int ret = 0;
4103
4104	if (!capable(CAP_SYS_ADMIN))
4105		return -EPERM;
4106
4107	mutex_lock(&fs_info->balance_mutex);
4108	if (!fs_info->balance_ctl) {
4109		ret = -ENOTCONN;
4110		goto out;
4111	}
4112
4113	bargs = kzalloc(sizeof(*bargs), GFP_KERNEL);
4114	if (!bargs) {
4115		ret = -ENOMEM;
4116		goto out;
4117	}
4118
4119	btrfs_update_ioctl_balance_args(fs_info, bargs);
4120
4121	if (copy_to_user(arg, bargs, sizeof(*bargs)))
4122		ret = -EFAULT;
4123
4124	kfree(bargs);
4125out:
4126	mutex_unlock(&fs_info->balance_mutex);
4127	return ret;
4128}
4129
4130static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
4131{
4132	struct inode *inode = file_inode(file);
4133	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4134	struct btrfs_ioctl_quota_ctl_args *sa;
 
4135	int ret;
 
4136
4137	if (!capable(CAP_SYS_ADMIN))
4138		return -EPERM;
4139
4140	ret = mnt_want_write_file(file);
4141	if (ret)
4142		return ret;
4143
4144	sa = memdup_user(arg, sizeof(*sa));
4145	if (IS_ERR(sa)) {
4146		ret = PTR_ERR(sa);
4147		goto drop_write;
4148	}
4149
4150	down_write(&fs_info->subvol_sem);
 
 
 
 
 
4151
4152	switch (sa->cmd) {
4153	case BTRFS_QUOTA_CTL_ENABLE:
4154		ret = btrfs_quota_enable(fs_info);
4155		break;
4156	case BTRFS_QUOTA_CTL_DISABLE:
4157		ret = btrfs_quota_disable(fs_info);
4158		break;
4159	default:
4160		ret = -EINVAL;
4161		break;
4162	}
4163
 
 
 
 
4164	kfree(sa);
4165	up_write(&fs_info->subvol_sem);
4166drop_write:
4167	mnt_drop_write_file(file);
4168	return ret;
4169}
4170
4171static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
4172{
4173	struct inode *inode = file_inode(file);
4174	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4175	struct btrfs_root *root = BTRFS_I(inode)->root;
4176	struct btrfs_ioctl_qgroup_assign_args *sa;
4177	struct btrfs_trans_handle *trans;
4178	int ret;
4179	int err;
4180
4181	if (!capable(CAP_SYS_ADMIN))
4182		return -EPERM;
4183
4184	ret = mnt_want_write_file(file);
4185	if (ret)
4186		return ret;
4187
4188	sa = memdup_user(arg, sizeof(*sa));
4189	if (IS_ERR(sa)) {
4190		ret = PTR_ERR(sa);
4191		goto drop_write;
4192	}
4193
4194	trans = btrfs_join_transaction(root);
4195	if (IS_ERR(trans)) {
4196		ret = PTR_ERR(trans);
4197		goto out;
4198	}
4199
 
4200	if (sa->assign) {
4201		ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst);
 
4202	} else {
4203		ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst);
 
4204	}
4205
4206	/* update qgroup status and info */
4207	err = btrfs_run_qgroups(trans);
4208	if (err < 0)
4209		btrfs_handle_fs_error(fs_info, err,
4210				      "failed to update qgroup status and info");
4211	err = btrfs_end_transaction(trans);
4212	if (err && !ret)
4213		ret = err;
4214
4215out:
4216	kfree(sa);
4217drop_write:
4218	mnt_drop_write_file(file);
4219	return ret;
4220}
4221
4222static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
4223{
4224	struct inode *inode = file_inode(file);
4225	struct btrfs_root *root = BTRFS_I(inode)->root;
4226	struct btrfs_ioctl_qgroup_create_args *sa;
4227	struct btrfs_trans_handle *trans;
4228	int ret;
4229	int err;
4230
4231	if (!capable(CAP_SYS_ADMIN))
4232		return -EPERM;
4233
4234	ret = mnt_want_write_file(file);
4235	if (ret)
4236		return ret;
4237
4238	sa = memdup_user(arg, sizeof(*sa));
4239	if (IS_ERR(sa)) {
4240		ret = PTR_ERR(sa);
4241		goto drop_write;
4242	}
4243
4244	if (!sa->qgroupid) {
4245		ret = -EINVAL;
4246		goto out;
4247	}
4248
4249	trans = btrfs_join_transaction(root);
4250	if (IS_ERR(trans)) {
4251		ret = PTR_ERR(trans);
4252		goto out;
4253	}
4254
 
4255	if (sa->create) {
4256		ret = btrfs_create_qgroup(trans, sa->qgroupid);
 
4257	} else {
4258		ret = btrfs_remove_qgroup(trans, sa->qgroupid);
4259	}
4260
4261	err = btrfs_end_transaction(trans);
4262	if (err && !ret)
4263		ret = err;
4264
4265out:
4266	kfree(sa);
4267drop_write:
4268	mnt_drop_write_file(file);
4269	return ret;
4270}
4271
4272static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
4273{
4274	struct inode *inode = file_inode(file);
4275	struct btrfs_root *root = BTRFS_I(inode)->root;
4276	struct btrfs_ioctl_qgroup_limit_args *sa;
4277	struct btrfs_trans_handle *trans;
4278	int ret;
4279	int err;
4280	u64 qgroupid;
4281
4282	if (!capable(CAP_SYS_ADMIN))
4283		return -EPERM;
4284
4285	ret = mnt_want_write_file(file);
4286	if (ret)
4287		return ret;
4288
4289	sa = memdup_user(arg, sizeof(*sa));
4290	if (IS_ERR(sa)) {
4291		ret = PTR_ERR(sa);
4292		goto drop_write;
4293	}
4294
4295	trans = btrfs_join_transaction(root);
4296	if (IS_ERR(trans)) {
4297		ret = PTR_ERR(trans);
4298		goto out;
4299	}
4300
4301	qgroupid = sa->qgroupid;
4302	if (!qgroupid) {
4303		/* take the current subvol as qgroup */
4304		qgroupid = root->root_key.objectid;
4305	}
4306
4307	ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim);
 
4308
4309	err = btrfs_end_transaction(trans);
4310	if (err && !ret)
4311		ret = err;
4312
4313out:
4314	kfree(sa);
4315drop_write:
4316	mnt_drop_write_file(file);
4317	return ret;
4318}
4319
4320static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
4321{
4322	struct inode *inode = file_inode(file);
4323	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4324	struct btrfs_ioctl_quota_rescan_args *qsa;
4325	int ret;
4326
4327	if (!capable(CAP_SYS_ADMIN))
4328		return -EPERM;
4329
4330	ret = mnt_want_write_file(file);
4331	if (ret)
4332		return ret;
4333
4334	qsa = memdup_user(arg, sizeof(*qsa));
4335	if (IS_ERR(qsa)) {
4336		ret = PTR_ERR(qsa);
4337		goto drop_write;
4338	}
4339
4340	if (qsa->flags) {
4341		ret = -EINVAL;
4342		goto out;
4343	}
4344
4345	ret = btrfs_qgroup_rescan(fs_info);
4346
4347out:
4348	kfree(qsa);
4349drop_write:
4350	mnt_drop_write_file(file);
4351	return ret;
4352}
4353
4354static long btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info *fs_info,
4355						void __user *arg)
4356{
 
4357	struct btrfs_ioctl_quota_rescan_args *qsa;
4358	int ret = 0;
4359
4360	if (!capable(CAP_SYS_ADMIN))
4361		return -EPERM;
4362
4363	qsa = kzalloc(sizeof(*qsa), GFP_KERNEL);
4364	if (!qsa)
4365		return -ENOMEM;
4366
4367	if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
4368		qsa->flags = 1;
4369		qsa->progress = fs_info->qgroup_rescan_progress.objectid;
4370	}
4371
4372	if (copy_to_user(arg, qsa, sizeof(*qsa)))
4373		ret = -EFAULT;
4374
4375	kfree(qsa);
4376	return ret;
4377}
4378
4379static long btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info *fs_info,
4380						void __user *arg)
4381{
 
 
4382	if (!capable(CAP_SYS_ADMIN))
4383		return -EPERM;
4384
4385	return btrfs_qgroup_wait_for_completion(fs_info, true);
4386}
4387
4388static long _btrfs_ioctl_set_received_subvol(struct file *file,
4389					    struct btrfs_ioctl_received_subvol_args *sa)
4390{
4391	struct inode *inode = file_inode(file);
4392	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4393	struct btrfs_root *root = BTRFS_I(inode)->root;
4394	struct btrfs_root_item *root_item = &root->root_item;
4395	struct btrfs_trans_handle *trans;
4396	struct timespec64 ct = current_time(inode);
4397	int ret = 0;
4398	int received_uuid_changed;
4399
4400	if (!inode_owner_or_capable(inode))
4401		return -EPERM;
4402
4403	ret = mnt_want_write_file(file);
4404	if (ret < 0)
4405		return ret;
4406
4407	down_write(&fs_info->subvol_sem);
4408
4409	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
4410		ret = -EINVAL;
4411		goto out;
4412	}
4413
4414	if (btrfs_root_readonly(root)) {
4415		ret = -EROFS;
4416		goto out;
4417	}
4418
4419	/*
4420	 * 1 - root item
4421	 * 2 - uuid items (received uuid + subvol uuid)
4422	 */
4423	trans = btrfs_start_transaction(root, 3);
4424	if (IS_ERR(trans)) {
4425		ret = PTR_ERR(trans);
4426		trans = NULL;
4427		goto out;
4428	}
4429
4430	sa->rtransid = trans->transid;
4431	sa->rtime.sec = ct.tv_sec;
4432	sa->rtime.nsec = ct.tv_nsec;
4433
4434	received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
4435				       BTRFS_UUID_SIZE);
4436	if (received_uuid_changed &&
4437	    !btrfs_is_empty_uuid(root_item->received_uuid)) {
4438		ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid,
4439					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4440					  root->root_key.objectid);
4441		if (ret && ret != -ENOENT) {
4442		        btrfs_abort_transaction(trans, ret);
4443		        btrfs_end_transaction(trans);
4444		        goto out;
4445		}
4446	}
4447	memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
4448	btrfs_set_root_stransid(root_item, sa->stransid);
4449	btrfs_set_root_rtransid(root_item, sa->rtransid);
4450	btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
4451	btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
4452	btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
4453	btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
4454
4455	ret = btrfs_update_root(trans, fs_info->tree_root,
4456				&root->root_key, &root->root_item);
4457	if (ret < 0) {
4458		btrfs_end_transaction(trans);
4459		goto out;
4460	}
4461	if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
4462		ret = btrfs_uuid_tree_add(trans, sa->uuid,
 
4463					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4464					  root->root_key.objectid);
4465		if (ret < 0 && ret != -EEXIST) {
4466			btrfs_abort_transaction(trans, ret);
4467			btrfs_end_transaction(trans);
4468			goto out;
4469		}
4470	}
4471	ret = btrfs_commit_transaction(trans);
 
 
 
 
 
4472out:
4473	up_write(&fs_info->subvol_sem);
4474	mnt_drop_write_file(file);
4475	return ret;
4476}
4477
4478#ifdef CONFIG_64BIT
4479static long btrfs_ioctl_set_received_subvol_32(struct file *file,
4480						void __user *arg)
4481{
4482	struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
4483	struct btrfs_ioctl_received_subvol_args *args64 = NULL;
4484	int ret = 0;
4485
4486	args32 = memdup_user(arg, sizeof(*args32));
4487	if (IS_ERR(args32))
4488		return PTR_ERR(args32);
 
 
 
4489
4490	args64 = kmalloc(sizeof(*args64), GFP_KERNEL);
4491	if (!args64) {
4492		ret = -ENOMEM;
4493		goto out;
4494	}
4495
4496	memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
4497	args64->stransid = args32->stransid;
4498	args64->rtransid = args32->rtransid;
4499	args64->stime.sec = args32->stime.sec;
4500	args64->stime.nsec = args32->stime.nsec;
4501	args64->rtime.sec = args32->rtime.sec;
4502	args64->rtime.nsec = args32->rtime.nsec;
4503	args64->flags = args32->flags;
4504
4505	ret = _btrfs_ioctl_set_received_subvol(file, args64);
4506	if (ret)
4507		goto out;
4508
4509	memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
4510	args32->stransid = args64->stransid;
4511	args32->rtransid = args64->rtransid;
4512	args32->stime.sec = args64->stime.sec;
4513	args32->stime.nsec = args64->stime.nsec;
4514	args32->rtime.sec = args64->rtime.sec;
4515	args32->rtime.nsec = args64->rtime.nsec;
4516	args32->flags = args64->flags;
4517
4518	ret = copy_to_user(arg, args32, sizeof(*args32));
4519	if (ret)
4520		ret = -EFAULT;
4521
4522out:
4523	kfree(args32);
4524	kfree(args64);
4525	return ret;
4526}
4527#endif
4528
4529static long btrfs_ioctl_set_received_subvol(struct file *file,
4530					    void __user *arg)
4531{
4532	struct btrfs_ioctl_received_subvol_args *sa = NULL;
4533	int ret = 0;
4534
4535	sa = memdup_user(arg, sizeof(*sa));
4536	if (IS_ERR(sa))
4537		return PTR_ERR(sa);
 
 
 
4538
4539	ret = _btrfs_ioctl_set_received_subvol(file, sa);
4540
4541	if (ret)
4542		goto out;
4543
4544	ret = copy_to_user(arg, sa, sizeof(*sa));
4545	if (ret)
4546		ret = -EFAULT;
4547
4548out:
4549	kfree(sa);
4550	return ret;
4551}
4552
4553static int btrfs_ioctl_get_fslabel(struct btrfs_fs_info *fs_info,
4554					void __user *arg)
4555{
 
4556	size_t len;
4557	int ret;
4558	char label[BTRFS_LABEL_SIZE];
4559
4560	spin_lock(&fs_info->super_lock);
4561	memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE);
4562	spin_unlock(&fs_info->super_lock);
4563
4564	len = strnlen(label, BTRFS_LABEL_SIZE);
4565
4566	if (len == BTRFS_LABEL_SIZE) {
4567		btrfs_warn(fs_info,
4568			   "label is too long, return the first %zu bytes",
4569			   --len);
4570	}
4571
4572	ret = copy_to_user(arg, label, len);
4573
4574	return ret ? -EFAULT : 0;
4575}
4576
4577static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
4578{
4579	struct inode *inode = file_inode(file);
4580	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4581	struct btrfs_root *root = BTRFS_I(inode)->root;
4582	struct btrfs_super_block *super_block = fs_info->super_copy;
4583	struct btrfs_trans_handle *trans;
4584	char label[BTRFS_LABEL_SIZE];
4585	int ret;
4586
4587	if (!capable(CAP_SYS_ADMIN))
4588		return -EPERM;
4589
4590	if (copy_from_user(label, arg, sizeof(label)))
4591		return -EFAULT;
4592
4593	if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
4594		btrfs_err(fs_info,
4595			  "unable to set label with more than %d bytes",
4596			  BTRFS_LABEL_SIZE - 1);
4597		return -EINVAL;
4598	}
4599
4600	ret = mnt_want_write_file(file);
4601	if (ret)
4602		return ret;
4603
4604	trans = btrfs_start_transaction(root, 0);
4605	if (IS_ERR(trans)) {
4606		ret = PTR_ERR(trans);
4607		goto out_unlock;
4608	}
4609
4610	spin_lock(&fs_info->super_lock);
4611	strcpy(super_block->label, label);
4612	spin_unlock(&fs_info->super_lock);
4613	ret = btrfs_commit_transaction(trans);
4614
4615out_unlock:
4616	mnt_drop_write_file(file);
4617	return ret;
4618}
4619
4620#define INIT_FEATURE_FLAGS(suffix) \
4621	{ .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
4622	  .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
4623	  .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
4624
4625int btrfs_ioctl_get_supported_features(void __user *arg)
 
4626{
4627	static const struct btrfs_ioctl_feature_flags features[3] = {
4628		INIT_FEATURE_FLAGS(SUPP),
4629		INIT_FEATURE_FLAGS(SAFE_SET),
4630		INIT_FEATURE_FLAGS(SAFE_CLEAR)
4631	};
4632
4633	if (copy_to_user(arg, &features, sizeof(features)))
4634		return -EFAULT;
4635
4636	return 0;
4637}
4638
4639static int btrfs_ioctl_get_features(struct btrfs_fs_info *fs_info,
4640					void __user *arg)
4641{
4642	struct btrfs_super_block *super_block = fs_info->super_copy;
 
4643	struct btrfs_ioctl_feature_flags features;
4644
4645	features.compat_flags = btrfs_super_compat_flags(super_block);
4646	features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
4647	features.incompat_flags = btrfs_super_incompat_flags(super_block);
4648
4649	if (copy_to_user(arg, &features, sizeof(features)))
4650		return -EFAULT;
4651
4652	return 0;
4653}
4654
4655static int check_feature_bits(struct btrfs_fs_info *fs_info,
4656			      enum btrfs_feature_set set,
4657			      u64 change_mask, u64 flags, u64 supported_flags,
4658			      u64 safe_set, u64 safe_clear)
4659{
4660	const char *type = btrfs_feature_set_name(set);
4661	char *names;
4662	u64 disallowed, unsupported;
4663	u64 set_mask = flags & change_mask;
4664	u64 clear_mask = ~flags & change_mask;
4665
4666	unsupported = set_mask & ~supported_flags;
4667	if (unsupported) {
4668		names = btrfs_printable_features(set, unsupported);
4669		if (names) {
4670			btrfs_warn(fs_info,
4671				   "this kernel does not support the %s feature bit%s",
4672				   names, strchr(names, ',') ? "s" : "");
4673			kfree(names);
4674		} else
4675			btrfs_warn(fs_info,
4676				   "this kernel does not support %s bits 0x%llx",
4677				   type, unsupported);
4678		return -EOPNOTSUPP;
4679	}
4680
4681	disallowed = set_mask & ~safe_set;
4682	if (disallowed) {
4683		names = btrfs_printable_features(set, disallowed);
4684		if (names) {
4685			btrfs_warn(fs_info,
4686				   "can't set the %s feature bit%s while mounted",
4687				   names, strchr(names, ',') ? "s" : "");
4688			kfree(names);
4689		} else
4690			btrfs_warn(fs_info,
4691				   "can't set %s bits 0x%llx while mounted",
4692				   type, disallowed);
4693		return -EPERM;
4694	}
4695
4696	disallowed = clear_mask & ~safe_clear;
4697	if (disallowed) {
4698		names = btrfs_printable_features(set, disallowed);
4699		if (names) {
4700			btrfs_warn(fs_info,
4701				   "can't clear the %s feature bit%s while mounted",
4702				   names, strchr(names, ',') ? "s" : "");
4703			kfree(names);
4704		} else
4705			btrfs_warn(fs_info,
4706				   "can't clear %s bits 0x%llx while mounted",
4707				   type, disallowed);
4708		return -EPERM;
4709	}
4710
4711	return 0;
4712}
4713
4714#define check_feature(fs_info, change_mask, flags, mask_base)	\
4715check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags,	\
4716		   BTRFS_FEATURE_ ## mask_base ## _SUPP,	\
4717		   BTRFS_FEATURE_ ## mask_base ## _SAFE_SET,	\
4718		   BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
4719
4720static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
4721{
4722	struct inode *inode = file_inode(file);
4723	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4724	struct btrfs_root *root = BTRFS_I(inode)->root;
4725	struct btrfs_super_block *super_block = fs_info->super_copy;
4726	struct btrfs_ioctl_feature_flags flags[2];
4727	struct btrfs_trans_handle *trans;
4728	u64 newflags;
4729	int ret;
4730
4731	if (!capable(CAP_SYS_ADMIN))
4732		return -EPERM;
4733
4734	if (copy_from_user(flags, arg, sizeof(flags)))
4735		return -EFAULT;
4736
4737	/* Nothing to do */
4738	if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
4739	    !flags[0].incompat_flags)
4740		return 0;
4741
4742	ret = check_feature(fs_info, flags[0].compat_flags,
4743			    flags[1].compat_flags, COMPAT);
4744	if (ret)
4745		return ret;
4746
4747	ret = check_feature(fs_info, flags[0].compat_ro_flags,
4748			    flags[1].compat_ro_flags, COMPAT_RO);
4749	if (ret)
4750		return ret;
4751
4752	ret = check_feature(fs_info, flags[0].incompat_flags,
4753			    flags[1].incompat_flags, INCOMPAT);
4754	if (ret)
4755		return ret;
4756
4757	ret = mnt_want_write_file(file);
4758	if (ret)
4759		return ret;
4760
4761	trans = btrfs_start_transaction(root, 0);
4762	if (IS_ERR(trans)) {
4763		ret = PTR_ERR(trans);
4764		goto out_drop_write;
4765	}
4766
4767	spin_lock(&fs_info->super_lock);
4768	newflags = btrfs_super_compat_flags(super_block);
4769	newflags |= flags[0].compat_flags & flags[1].compat_flags;
4770	newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
4771	btrfs_set_super_compat_flags(super_block, newflags);
4772
4773	newflags = btrfs_super_compat_ro_flags(super_block);
4774	newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
4775	newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
4776	btrfs_set_super_compat_ro_flags(super_block, newflags);
4777
4778	newflags = btrfs_super_incompat_flags(super_block);
4779	newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
4780	newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
4781	btrfs_set_super_incompat_flags(super_block, newflags);
4782	spin_unlock(&fs_info->super_lock);
4783
4784	ret = btrfs_commit_transaction(trans);
4785out_drop_write:
4786	mnt_drop_write_file(file);
4787
4788	return ret;
4789}
4790
4791static int _btrfs_ioctl_send(struct file *file, void __user *argp, bool compat)
4792{
4793	struct btrfs_ioctl_send_args *arg;
4794	int ret;
4795
4796	if (compat) {
4797#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4798		struct btrfs_ioctl_send_args_32 args32;
4799
4800		ret = copy_from_user(&args32, argp, sizeof(args32));
4801		if (ret)
4802			return -EFAULT;
4803		arg = kzalloc(sizeof(*arg), GFP_KERNEL);
4804		if (!arg)
4805			return -ENOMEM;
4806		arg->send_fd = args32.send_fd;
4807		arg->clone_sources_count = args32.clone_sources_count;
4808		arg->clone_sources = compat_ptr(args32.clone_sources);
4809		arg->parent_root = args32.parent_root;
4810		arg->flags = args32.flags;
4811		memcpy(arg->reserved, args32.reserved,
4812		       sizeof(args32.reserved));
4813#else
4814		return -ENOTTY;
4815#endif
4816	} else {
4817		arg = memdup_user(argp, sizeof(*arg));
4818		if (IS_ERR(arg))
4819			return PTR_ERR(arg);
4820	}
4821	ret = btrfs_ioctl_send(file, arg);
4822	kfree(arg);
4823	return ret;
4824}
4825
4826long btrfs_ioctl(struct file *file, unsigned int
4827		cmd, unsigned long arg)
4828{
4829	struct inode *inode = file_inode(file);
4830	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4831	struct btrfs_root *root = BTRFS_I(inode)->root;
4832	void __user *argp = (void __user *)arg;
4833
4834	switch (cmd) {
4835	case FS_IOC_GETFLAGS:
4836		return btrfs_ioctl_getflags(file, argp);
4837	case FS_IOC_SETFLAGS:
4838		return btrfs_ioctl_setflags(file, argp);
4839	case FS_IOC_GETVERSION:
4840		return btrfs_ioctl_getversion(file, argp);
4841	case FS_IOC_GETFSLABEL:
4842		return btrfs_ioctl_get_fslabel(fs_info, argp);
4843	case FS_IOC_SETFSLABEL:
4844		return btrfs_ioctl_set_fslabel(file, argp);
4845	case FITRIM:
4846		return btrfs_ioctl_fitrim(fs_info, argp);
4847	case BTRFS_IOC_SNAP_CREATE:
4848		return btrfs_ioctl_snap_create(file, argp, 0);
4849	case BTRFS_IOC_SNAP_CREATE_V2:
4850		return btrfs_ioctl_snap_create_v2(file, argp, 0);
4851	case BTRFS_IOC_SUBVOL_CREATE:
4852		return btrfs_ioctl_snap_create(file, argp, 1);
4853	case BTRFS_IOC_SUBVOL_CREATE_V2:
4854		return btrfs_ioctl_snap_create_v2(file, argp, 1);
4855	case BTRFS_IOC_SNAP_DESTROY:
4856		return btrfs_ioctl_snap_destroy(file, argp, false);
4857	case BTRFS_IOC_SNAP_DESTROY_V2:
4858		return btrfs_ioctl_snap_destroy(file, argp, true);
4859	case BTRFS_IOC_SUBVOL_GETFLAGS:
4860		return btrfs_ioctl_subvol_getflags(file, argp);
4861	case BTRFS_IOC_SUBVOL_SETFLAGS:
4862		return btrfs_ioctl_subvol_setflags(file, argp);
4863	case BTRFS_IOC_DEFAULT_SUBVOL:
4864		return btrfs_ioctl_default_subvol(file, argp);
4865	case BTRFS_IOC_DEFRAG:
4866		return btrfs_ioctl_defrag(file, NULL);
4867	case BTRFS_IOC_DEFRAG_RANGE:
4868		return btrfs_ioctl_defrag(file, argp);
4869	case BTRFS_IOC_RESIZE:
4870		return btrfs_ioctl_resize(file, argp);
4871	case BTRFS_IOC_ADD_DEV:
4872		return btrfs_ioctl_add_dev(fs_info, argp);
4873	case BTRFS_IOC_RM_DEV:
4874		return btrfs_ioctl_rm_dev(file, argp);
4875	case BTRFS_IOC_RM_DEV_V2:
4876		return btrfs_ioctl_rm_dev_v2(file, argp);
4877	case BTRFS_IOC_FS_INFO:
4878		return btrfs_ioctl_fs_info(fs_info, argp);
4879	case BTRFS_IOC_DEV_INFO:
4880		return btrfs_ioctl_dev_info(fs_info, argp);
4881	case BTRFS_IOC_BALANCE:
4882		return btrfs_ioctl_balance(file, NULL);
 
 
 
 
 
 
 
 
4883	case BTRFS_IOC_TREE_SEARCH:
4884		return btrfs_ioctl_tree_search(file, argp);
4885	case BTRFS_IOC_TREE_SEARCH_V2:
4886		return btrfs_ioctl_tree_search_v2(file, argp);
4887	case BTRFS_IOC_INO_LOOKUP:
4888		return btrfs_ioctl_ino_lookup(file, argp);
4889	case BTRFS_IOC_INO_PATHS:
4890		return btrfs_ioctl_ino_to_path(root, argp);
4891	case BTRFS_IOC_LOGICAL_INO:
4892		return btrfs_ioctl_logical_to_ino(fs_info, argp, 1);
4893	case BTRFS_IOC_LOGICAL_INO_V2:
4894		return btrfs_ioctl_logical_to_ino(fs_info, argp, 2);
4895	case BTRFS_IOC_SPACE_INFO:
4896		return btrfs_ioctl_space_info(fs_info, argp);
4897	case BTRFS_IOC_SYNC: {
4898		int ret;
4899
4900		ret = btrfs_start_delalloc_roots(fs_info, -1);
4901		if (ret)
4902			return ret;
4903		ret = btrfs_sync_fs(inode->i_sb, 1);
4904		/*
4905		 * The transaction thread may want to do more work,
4906		 * namely it pokes the cleaner kthread that will start
4907		 * processing uncleaned subvols.
4908		 */
4909		wake_up_process(fs_info->transaction_kthread);
4910		return ret;
4911	}
4912	case BTRFS_IOC_START_SYNC:
4913		return btrfs_ioctl_start_sync(root, argp);
4914	case BTRFS_IOC_WAIT_SYNC:
4915		return btrfs_ioctl_wait_sync(fs_info, argp);
4916	case BTRFS_IOC_SCRUB:
4917		return btrfs_ioctl_scrub(file, argp);
4918	case BTRFS_IOC_SCRUB_CANCEL:
4919		return btrfs_ioctl_scrub_cancel(fs_info);
4920	case BTRFS_IOC_SCRUB_PROGRESS:
4921		return btrfs_ioctl_scrub_progress(fs_info, argp);
4922	case BTRFS_IOC_BALANCE_V2:
4923		return btrfs_ioctl_balance(file, argp);
4924	case BTRFS_IOC_BALANCE_CTL:
4925		return btrfs_ioctl_balance_ctl(fs_info, arg);
4926	case BTRFS_IOC_BALANCE_PROGRESS:
4927		return btrfs_ioctl_balance_progress(fs_info, argp);
4928	case BTRFS_IOC_SET_RECEIVED_SUBVOL:
4929		return btrfs_ioctl_set_received_subvol(file, argp);
4930#ifdef CONFIG_64BIT
4931	case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
4932		return btrfs_ioctl_set_received_subvol_32(file, argp);
4933#endif
4934	case BTRFS_IOC_SEND:
4935		return _btrfs_ioctl_send(file, argp, false);
4936#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4937	case BTRFS_IOC_SEND_32:
4938		return _btrfs_ioctl_send(file, argp, true);
4939#endif
4940	case BTRFS_IOC_GET_DEV_STATS:
4941		return btrfs_ioctl_get_dev_stats(fs_info, argp);
4942	case BTRFS_IOC_QUOTA_CTL:
4943		return btrfs_ioctl_quota_ctl(file, argp);
4944	case BTRFS_IOC_QGROUP_ASSIGN:
4945		return btrfs_ioctl_qgroup_assign(file, argp);
4946	case BTRFS_IOC_QGROUP_CREATE:
4947		return btrfs_ioctl_qgroup_create(file, argp);
4948	case BTRFS_IOC_QGROUP_LIMIT:
4949		return btrfs_ioctl_qgroup_limit(file, argp);
4950	case BTRFS_IOC_QUOTA_RESCAN:
4951		return btrfs_ioctl_quota_rescan(file, argp);
4952	case BTRFS_IOC_QUOTA_RESCAN_STATUS:
4953		return btrfs_ioctl_quota_rescan_status(fs_info, argp);
4954	case BTRFS_IOC_QUOTA_RESCAN_WAIT:
4955		return btrfs_ioctl_quota_rescan_wait(fs_info, argp);
4956	case BTRFS_IOC_DEV_REPLACE:
4957		return btrfs_ioctl_dev_replace(fs_info, argp);
 
 
 
 
 
 
4958	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
4959		return btrfs_ioctl_get_supported_features(argp);
4960	case BTRFS_IOC_GET_FEATURES:
4961		return btrfs_ioctl_get_features(fs_info, argp);
4962	case BTRFS_IOC_SET_FEATURES:
4963		return btrfs_ioctl_set_features(file, argp);
4964	case FS_IOC_FSGETXATTR:
4965		return btrfs_ioctl_fsgetxattr(file, argp);
4966	case FS_IOC_FSSETXATTR:
4967		return btrfs_ioctl_fssetxattr(file, argp);
4968	case BTRFS_IOC_GET_SUBVOL_INFO:
4969		return btrfs_ioctl_get_subvol_info(file, argp);
4970	case BTRFS_IOC_GET_SUBVOL_ROOTREF:
4971		return btrfs_ioctl_get_subvol_rootref(file, argp);
4972	case BTRFS_IOC_INO_LOOKUP_USER:
4973		return btrfs_ioctl_ino_lookup_user(file, argp);
4974	}
4975
4976	return -ENOTTY;
4977}
4978
4979#ifdef CONFIG_COMPAT
4980long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4981{
4982	/*
4983	 * These all access 32-bit values anyway so no further
4984	 * handling is necessary.
4985	 */
4986	switch (cmd) {
4987	case FS_IOC32_GETFLAGS:
4988		cmd = FS_IOC_GETFLAGS;
4989		break;
4990	case FS_IOC32_SETFLAGS:
4991		cmd = FS_IOC_SETFLAGS;
4992		break;
4993	case FS_IOC32_GETVERSION:
4994		cmd = FS_IOC_GETVERSION;
4995		break;
4996	}
4997
4998	return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
4999}
5000#endif
v3.15
 
   1/*
   2 * Copyright (C) 2007 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/kernel.h>
  20#include <linux/bio.h>
  21#include <linux/buffer_head.h>
  22#include <linux/file.h>
  23#include <linux/fs.h>
  24#include <linux/fsnotify.h>
  25#include <linux/pagemap.h>
  26#include <linux/highmem.h>
  27#include <linux/time.h>
  28#include <linux/init.h>
  29#include <linux/string.h>
  30#include <linux/backing-dev.h>
  31#include <linux/mount.h>
  32#include <linux/mpage.h>
  33#include <linux/namei.h>
  34#include <linux/swap.h>
  35#include <linux/writeback.h>
  36#include <linux/statfs.h>
  37#include <linux/compat.h>
  38#include <linux/bit_spinlock.h>
  39#include <linux/security.h>
  40#include <linux/xattr.h>
  41#include <linux/vmalloc.h>
  42#include <linux/slab.h>
  43#include <linux/blkdev.h>
  44#include <linux/uuid.h>
  45#include <linux/btrfs.h>
  46#include <linux/uaccess.h>
 
  47#include "ctree.h"
  48#include "disk-io.h"
 
  49#include "transaction.h"
  50#include "btrfs_inode.h"
  51#include "print-tree.h"
  52#include "volumes.h"
  53#include "locking.h"
  54#include "inode-map.h"
  55#include "backref.h"
  56#include "rcu-string.h"
  57#include "send.h"
  58#include "dev-replace.h"
  59#include "props.h"
  60#include "sysfs.h"
 
 
 
 
 
 
  61
  62#ifdef CONFIG_64BIT
  63/* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
  64 * structures are incorrect, as the timespec structure from userspace
  65 * is 4 bytes too small. We define these alternatives here to teach
  66 * the kernel about the 32-bit struct packing.
  67 */
  68struct btrfs_ioctl_timespec_32 {
  69	__u64 sec;
  70	__u32 nsec;
  71} __attribute__ ((__packed__));
  72
  73struct btrfs_ioctl_received_subvol_args_32 {
  74	char	uuid[BTRFS_UUID_SIZE];	/* in */
  75	__u64	stransid;		/* in */
  76	__u64	rtransid;		/* out */
  77	struct btrfs_ioctl_timespec_32 stime; /* in */
  78	struct btrfs_ioctl_timespec_32 rtime; /* out */
  79	__u64	flags;			/* in */
  80	__u64	reserved[16];		/* in */
  81} __attribute__ ((__packed__));
  82
  83#define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
  84				struct btrfs_ioctl_received_subvol_args_32)
  85#endif
  86
 
 
 
 
 
 
 
 
 
  87
  88static int btrfs_clone(struct inode *src, struct inode *inode,
  89		       u64 off, u64 olen, u64 olen_aligned, u64 destoff);
 
  90
  91/* Mask out flags that are inappropriate for the given type of inode. */
  92static inline __u32 btrfs_mask_flags(umode_t mode, __u32 flags)
 
  93{
  94	if (S_ISDIR(mode))
  95		return flags;
  96	else if (S_ISREG(mode))
  97		return flags & ~FS_DIRSYNC_FL;
  98	else
  99		return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
 100}
 101
 102/*
 103 * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl.
 
 104 */
 105static unsigned int btrfs_flags_to_ioctl(unsigned int flags)
 106{
 107	unsigned int iflags = 0;
 108
 109	if (flags & BTRFS_INODE_SYNC)
 110		iflags |= FS_SYNC_FL;
 111	if (flags & BTRFS_INODE_IMMUTABLE)
 112		iflags |= FS_IMMUTABLE_FL;
 113	if (flags & BTRFS_INODE_APPEND)
 114		iflags |= FS_APPEND_FL;
 115	if (flags & BTRFS_INODE_NODUMP)
 116		iflags |= FS_NODUMP_FL;
 117	if (flags & BTRFS_INODE_NOATIME)
 118		iflags |= FS_NOATIME_FL;
 119	if (flags & BTRFS_INODE_DIRSYNC)
 120		iflags |= FS_DIRSYNC_FL;
 121	if (flags & BTRFS_INODE_NODATACOW)
 122		iflags |= FS_NOCOW_FL;
 123
 124	if ((flags & BTRFS_INODE_COMPRESS) && !(flags & BTRFS_INODE_NOCOMPRESS))
 
 
 125		iflags |= FS_COMPR_FL;
 126	else if (flags & BTRFS_INODE_NOCOMPRESS)
 127		iflags |= FS_NOCOMP_FL;
 128
 129	return iflags;
 130}
 131
 132/*
 133 * Update inode->i_flags based on the btrfs internal flags.
 134 */
 135void btrfs_update_iflags(struct inode *inode)
 136{
 137	struct btrfs_inode *ip = BTRFS_I(inode);
 138
 139	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
 140
 141	if (ip->flags & BTRFS_INODE_SYNC)
 142		inode->i_flags |= S_SYNC;
 143	if (ip->flags & BTRFS_INODE_IMMUTABLE)
 144		inode->i_flags |= S_IMMUTABLE;
 145	if (ip->flags & BTRFS_INODE_APPEND)
 146		inode->i_flags |= S_APPEND;
 147	if (ip->flags & BTRFS_INODE_NOATIME)
 148		inode->i_flags |= S_NOATIME;
 149	if (ip->flags & BTRFS_INODE_DIRSYNC)
 150		inode->i_flags |= S_DIRSYNC;
 151}
 152
 153/*
 154 * Inherit flags from the parent inode.
 155 *
 156 * Currently only the compression flags and the cow flags are inherited.
 157 */
 158void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
 159{
 160	unsigned int flags;
 161
 162	if (!dir)
 163		return;
 164
 165	flags = BTRFS_I(dir)->flags;
 166
 167	if (flags & BTRFS_INODE_NOCOMPRESS) {
 168		BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
 169		BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
 170	} else if (flags & BTRFS_INODE_COMPRESS) {
 171		BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
 172		BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
 173	}
 174
 175	if (flags & BTRFS_INODE_NODATACOW) {
 176		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
 177		if (S_ISREG(inode->i_mode))
 178			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
 179	}
 180
 181	btrfs_update_iflags(inode);
 
 
 
 
 
 
 
 182}
 183
 184static int btrfs_ioctl_getflags(struct file *file, void __user *arg)
 185{
 186	struct btrfs_inode *ip = BTRFS_I(file_inode(file));
 187	unsigned int flags = btrfs_flags_to_ioctl(ip->flags);
 188
 189	if (copy_to_user(arg, &flags, sizeof(flags)))
 190		return -EFAULT;
 191	return 0;
 192}
 193
 194static int check_flags(unsigned int flags)
 
 
 
 
 195{
 196	if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
 197		      FS_NOATIME_FL | FS_NODUMP_FL | \
 198		      FS_SYNC_FL | FS_DIRSYNC_FL | \
 199		      FS_NOCOMP_FL | FS_COMPR_FL |
 200		      FS_NOCOW_FL))
 201		return -EOPNOTSUPP;
 202
 
 203	if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
 204		return -EINVAL;
 205
 
 
 
 
 
 
 
 
 
 206	return 0;
 207}
 208
 209static int btrfs_ioctl_setflags(struct file *file, void __user *arg)
 210{
 211	struct inode *inode = file_inode(file);
 212	struct btrfs_inode *ip = BTRFS_I(inode);
 213	struct btrfs_root *root = ip->root;
 
 214	struct btrfs_trans_handle *trans;
 215	unsigned int flags, oldflags;
 216	int ret;
 217	u64 ip_oldflags;
 218	unsigned int i_oldflags;
 219	umode_t mode;
 220
 221	if (!inode_owner_or_capable(inode))
 222		return -EPERM;
 223
 224	if (btrfs_root_readonly(root))
 225		return -EROFS;
 226
 227	if (copy_from_user(&flags, arg, sizeof(flags)))
 228		return -EFAULT;
 229
 230	ret = check_flags(flags);
 231	if (ret)
 232		return ret;
 233
 234	ret = mnt_want_write_file(file);
 
 
 
 
 235	if (ret)
 236		return ret;
 237
 238	mutex_lock(&inode->i_mutex);
 239
 240	ip_oldflags = ip->flags;
 241	i_oldflags = inode->i_flags;
 242	mode = inode->i_mode;
 243
 244	flags = btrfs_mask_flags(inode->i_mode, flags);
 245	oldflags = btrfs_flags_to_ioctl(ip->flags);
 246	if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
 247		if (!capable(CAP_LINUX_IMMUTABLE)) {
 248			ret = -EPERM;
 249			goto out_unlock;
 250		}
 251	}
 252
 253	if (flags & FS_SYNC_FL)
 254		ip->flags |= BTRFS_INODE_SYNC;
 
 255	else
 256		ip->flags &= ~BTRFS_INODE_SYNC;
 257	if (flags & FS_IMMUTABLE_FL)
 258		ip->flags |= BTRFS_INODE_IMMUTABLE;
 259	else
 260		ip->flags &= ~BTRFS_INODE_IMMUTABLE;
 261	if (flags & FS_APPEND_FL)
 262		ip->flags |= BTRFS_INODE_APPEND;
 263	else
 264		ip->flags &= ~BTRFS_INODE_APPEND;
 265	if (flags & FS_NODUMP_FL)
 266		ip->flags |= BTRFS_INODE_NODUMP;
 267	else
 268		ip->flags &= ~BTRFS_INODE_NODUMP;
 269	if (flags & FS_NOATIME_FL)
 270		ip->flags |= BTRFS_INODE_NOATIME;
 271	else
 272		ip->flags &= ~BTRFS_INODE_NOATIME;
 273	if (flags & FS_DIRSYNC_FL)
 274		ip->flags |= BTRFS_INODE_DIRSYNC;
 275	else
 276		ip->flags &= ~BTRFS_INODE_DIRSYNC;
 277	if (flags & FS_NOCOW_FL) {
 278		if (S_ISREG(mode)) {
 279			/*
 280			 * It's safe to turn csums off here, no extents exist.
 281			 * Otherwise we want the flag to reflect the real COW
 282			 * status of the file and will not set it.
 283			 */
 284			if (inode->i_size == 0)
 285				ip->flags |= BTRFS_INODE_NODATACOW
 286					   | BTRFS_INODE_NODATASUM;
 287		} else {
 288			ip->flags |= BTRFS_INODE_NODATACOW;
 289		}
 290	} else {
 291		/*
 292		 * Revert back under same assuptions as above
 293		 */
 294		if (S_ISREG(mode)) {
 295			if (inode->i_size == 0)
 296				ip->flags &= ~(BTRFS_INODE_NODATACOW
 297				             | BTRFS_INODE_NODATASUM);
 298		} else {
 299			ip->flags &= ~BTRFS_INODE_NODATACOW;
 300		}
 301	}
 302
 303	/*
 304	 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
 305	 * flag may be changed automatically if compression code won't make
 306	 * things smaller.
 307	 */
 308	if (flags & FS_NOCOMP_FL) {
 309		ip->flags &= ~BTRFS_INODE_COMPRESS;
 310		ip->flags |= BTRFS_INODE_NOCOMPRESS;
 311
 312		ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0);
 313		if (ret && ret != -ENODATA)
 314			goto out_drop;
 315	} else if (flags & FS_COMPR_FL) {
 316		const char *comp;
 317
 318		ip->flags |= BTRFS_INODE_COMPRESS;
 319		ip->flags &= ~BTRFS_INODE_NOCOMPRESS;
 320
 321		if (root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
 322			comp = "lzo";
 323		else
 324			comp = "zlib";
 325		ret = btrfs_set_prop(inode, "btrfs.compression",
 326				     comp, strlen(comp), 0);
 327		if (ret)
 328			goto out_drop;
 
 
 
 
 
 
 
 
 329
 
 
 
 
 
 
 
 330	} else {
 331		ip->flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
 
 
 
 
 
 332	}
 333
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 334	trans = btrfs_start_transaction(root, 1);
 335	if (IS_ERR(trans)) {
 336		ret = PTR_ERR(trans);
 337		goto out_drop;
 338	}
 339
 340	btrfs_update_iflags(inode);
 341	inode_inc_iversion(inode);
 342	inode->i_ctime = CURRENT_TIME;
 343	ret = btrfs_update_inode(trans, root, inode);
 344
 345	btrfs_end_transaction(trans, root);
 346 out_drop:
 
 347	if (ret) {
 348		ip->flags = ip_oldflags;
 349		inode->i_flags = i_oldflags;
 350	}
 351
 352 out_unlock:
 353	mutex_unlock(&inode->i_mutex);
 354	mnt_drop_write_file(file);
 
 355	return ret;
 356}
 357
 358static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
 359{
 360	struct inode *inode = file_inode(file);
 361
 362	return put_user(inode->i_generation, arg);
 363}
 364
 365static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg)
 
 366{
 367	struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb);
 368	struct btrfs_device *device;
 369	struct request_queue *q;
 370	struct fstrim_range range;
 371	u64 minlen = ULLONG_MAX;
 372	u64 num_devices = 0;
 373	u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
 374	int ret;
 375
 376	if (!capable(CAP_SYS_ADMIN))
 377		return -EPERM;
 378
 
 
 
 
 
 
 
 
 
 
 379	rcu_read_lock();
 380	list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
 381				dev_list) {
 382		if (!device->bdev)
 383			continue;
 384		q = bdev_get_queue(device->bdev);
 385		if (blk_queue_discard(q)) {
 386			num_devices++;
 387			minlen = min((u64)q->limits.discard_granularity,
 388				     minlen);
 389		}
 390	}
 391	rcu_read_unlock();
 392
 393	if (!num_devices)
 394		return -EOPNOTSUPP;
 395	if (copy_from_user(&range, arg, sizeof(range)))
 396		return -EFAULT;
 397	if (range.start > total_bytes ||
 398	    range.len < fs_info->sb->s_blocksize)
 
 
 
 
 
 399		return -EINVAL;
 400
 401	range.len = min(range.len, total_bytes - range.start);
 402	range.minlen = max(range.minlen, minlen);
 403	ret = btrfs_trim_fs(fs_info->tree_root, &range);
 404	if (ret < 0)
 405		return ret;
 406
 407	if (copy_to_user(arg, &range, sizeof(range)))
 408		return -EFAULT;
 409
 410	return 0;
 411}
 412
 413int btrfs_is_empty_uuid(u8 *uuid)
 414{
 415	int i;
 416
 417	for (i = 0; i < BTRFS_UUID_SIZE; i++) {
 418		if (uuid[i])
 419			return 0;
 420	}
 421	return 1;
 422}
 423
 424static noinline int create_subvol(struct inode *dir,
 425				  struct dentry *dentry,
 426				  char *name, int namelen,
 427				  u64 *async_transid,
 428				  struct btrfs_qgroup_inherit *inherit)
 429{
 
 430	struct btrfs_trans_handle *trans;
 431	struct btrfs_key key;
 432	struct btrfs_root_item root_item;
 433	struct btrfs_inode_item *inode_item;
 434	struct extent_buffer *leaf;
 435	struct btrfs_root *root = BTRFS_I(dir)->root;
 436	struct btrfs_root *new_root;
 437	struct btrfs_block_rsv block_rsv;
 438	struct timespec cur_time = CURRENT_TIME;
 439	struct inode *inode;
 440	int ret;
 441	int err;
 
 442	u64 objectid;
 443	u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID;
 444	u64 index = 0;
 445	u64 qgroup_reserved;
 446	uuid_le new_uuid;
 447
 448	ret = btrfs_find_free_objectid(root->fs_info->tree_root, &objectid);
 
 
 
 
 449	if (ret)
 450		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 451
 452	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
 453	/*
 454	 * The same as the snapshot creation, please see the comment
 455	 * of create_snapshot().
 456	 */
 457	ret = btrfs_subvolume_reserve_metadata(root, &block_rsv,
 458					       8, &qgroup_reserved, false);
 459	if (ret)
 460		return ret;
 461
 462	trans = btrfs_start_transaction(root, 0);
 463	if (IS_ERR(trans)) {
 464		ret = PTR_ERR(trans);
 465		btrfs_subvolume_release_metadata(root, &block_rsv,
 466						 qgroup_reserved);
 467		return ret;
 468	}
 469	trans->block_rsv = &block_rsv;
 470	trans->bytes_reserved = block_rsv.size;
 471
 472	ret = btrfs_qgroup_inherit(trans, root->fs_info, 0, objectid, inherit);
 473	if (ret)
 474		goto fail;
 475
 476	leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
 477				      0, objectid, NULL, 0, 0, 0);
 478	if (IS_ERR(leaf)) {
 479		ret = PTR_ERR(leaf);
 480		goto fail;
 481	}
 482
 483	memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
 484	btrfs_set_header_bytenr(leaf, leaf->start);
 485	btrfs_set_header_generation(leaf, trans->transid);
 486	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
 487	btrfs_set_header_owner(leaf, objectid);
 488
 489	write_extent_buffer(leaf, root->fs_info->fsid, btrfs_header_fsid(),
 490			    BTRFS_FSID_SIZE);
 491	write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
 492			    btrfs_header_chunk_tree_uuid(leaf),
 493			    BTRFS_UUID_SIZE);
 494	btrfs_mark_buffer_dirty(leaf);
 495
 496	memset(&root_item, 0, sizeof(root_item));
 497
 498	inode_item = &root_item.inode;
 499	btrfs_set_stack_inode_generation(inode_item, 1);
 500	btrfs_set_stack_inode_size(inode_item, 3);
 501	btrfs_set_stack_inode_nlink(inode_item, 1);
 502	btrfs_set_stack_inode_nbytes(inode_item, root->leafsize);
 
 503	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
 504
 505	btrfs_set_root_flags(&root_item, 0);
 506	btrfs_set_root_limit(&root_item, 0);
 507	btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
 508
 509	btrfs_set_root_bytenr(&root_item, leaf->start);
 510	btrfs_set_root_generation(&root_item, trans->transid);
 511	btrfs_set_root_level(&root_item, 0);
 512	btrfs_set_root_refs(&root_item, 1);
 513	btrfs_set_root_used(&root_item, leaf->len);
 514	btrfs_set_root_last_snapshot(&root_item, 0);
 515
 516	btrfs_set_root_generation_v2(&root_item,
 517			btrfs_root_generation(&root_item));
 518	uuid_le_gen(&new_uuid);
 519	memcpy(root_item.uuid, new_uuid.b, BTRFS_UUID_SIZE);
 520	btrfs_set_stack_timespec_sec(&root_item.otime, cur_time.tv_sec);
 521	btrfs_set_stack_timespec_nsec(&root_item.otime, cur_time.tv_nsec);
 522	root_item.ctime = root_item.otime;
 523	btrfs_set_root_ctransid(&root_item, trans->transid);
 524	btrfs_set_root_otransid(&root_item, trans->transid);
 525
 526	btrfs_tree_unlock(leaf);
 527	free_extent_buffer(leaf);
 528	leaf = NULL;
 529
 530	btrfs_set_root_dirid(&root_item, new_dirid);
 531
 532	key.objectid = objectid;
 533	key.offset = 0;
 534	btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
 535	ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key,
 536				&root_item);
 537	if (ret)
 538		goto fail;
 539
 540	key.offset = (u64)-1;
 541	new_root = btrfs_read_fs_root_no_name(root->fs_info, &key);
 542	if (IS_ERR(new_root)) {
 543		btrfs_abort_transaction(trans, root, PTR_ERR(new_root));
 544		ret = PTR_ERR(new_root);
 
 545		goto fail;
 546	}
 
 
 547
 548	btrfs_record_root_in_trans(trans, new_root);
 549
 550	ret = btrfs_create_subvol_root(trans, new_root, root, new_dirid);
 
 551	if (ret) {
 552		/* We potentially lose an unused inode item here */
 553		btrfs_abort_transaction(trans, root, ret);
 554		goto fail;
 555	}
 556
 
 
 
 
 557	/*
 558	 * insert the directory item
 559	 */
 560	ret = btrfs_set_inode_index(dir, &index);
 561	if (ret) {
 562		btrfs_abort_transaction(trans, root, ret);
 563		goto fail;
 564	}
 565
 566	ret = btrfs_insert_dir_item(trans, root,
 567				    name, namelen, dir, &key,
 568				    BTRFS_FT_DIR, index);
 569	if (ret) {
 570		btrfs_abort_transaction(trans, root, ret);
 571		goto fail;
 572	}
 573
 574	btrfs_i_size_write(dir, dir->i_size + namelen * 2);
 575	ret = btrfs_update_inode(trans, root, dir);
 576	BUG_ON(ret);
 
 
 
 
 
 
 
 
 
 
 577
 578	ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
 579				 objectid, root->root_key.objectid,
 580				 btrfs_ino(dir), index, name, namelen);
 581	BUG_ON(ret);
 582
 583	ret = btrfs_uuid_tree_add(trans, root->fs_info->uuid_root,
 584				  root_item.uuid, BTRFS_UUID_KEY_SUBVOL,
 585				  objectid);
 586	if (ret)
 587		btrfs_abort_transaction(trans, root, ret);
 588
 589fail:
 
 590	trans->block_rsv = NULL;
 591	trans->bytes_reserved = 0;
 592	btrfs_subvolume_release_metadata(root, &block_rsv, qgroup_reserved);
 593
 594	if (async_transid) {
 595		*async_transid = trans->transid;
 596		err = btrfs_commit_transaction_async(trans, root, 1);
 597		if (err)
 598			err = btrfs_commit_transaction(trans, root);
 599	} else {
 600		err = btrfs_commit_transaction(trans, root);
 601	}
 602	if (err && !ret)
 603		ret = err;
 604
 605	if (!ret) {
 606		inode = btrfs_lookup_dentry(dir, dentry);
 607		if (IS_ERR(inode))
 608			return PTR_ERR(inode);
 609		d_instantiate(dentry, inode);
 610	}
 611	return ret;
 612}
 613
 614static void btrfs_wait_nocow_write(struct btrfs_root *root)
 615{
 616	s64 writers;
 617	DEFINE_WAIT(wait);
 618
 619	do {
 620		prepare_to_wait(&root->subv_writers->wait, &wait,
 621				TASK_UNINTERRUPTIBLE);
 622
 623		writers = percpu_counter_sum(&root->subv_writers->counter);
 624		if (writers)
 625			schedule();
 626
 627		finish_wait(&root->subv_writers->wait, &wait);
 628	} while (writers);
 629}
 630
 631static int create_snapshot(struct btrfs_root *root, struct inode *dir,
 632			   struct dentry *dentry, char *name, int namelen,
 633			   u64 *async_transid, bool readonly,
 634			   struct btrfs_qgroup_inherit *inherit)
 635{
 
 636	struct inode *inode;
 637	struct btrfs_pending_snapshot *pending_snapshot;
 638	struct btrfs_trans_handle *trans;
 639	int ret;
 640
 641	if (!root->ref_cows)
 642		return -EINVAL;
 643
 644	atomic_inc(&root->will_be_snapshoted);
 645	smp_mb__after_atomic_inc();
 646	btrfs_wait_nocow_write(root);
 
 
 647
 648	ret = btrfs_start_delalloc_inodes(root, 0);
 649	if (ret)
 650		goto out;
 651
 652	btrfs_wait_ordered_extents(root, -1);
 653
 654	pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_NOFS);
 655	if (!pending_snapshot) {
 
 
 
 656		ret = -ENOMEM;
 657		goto out;
 658	}
 659
 660	btrfs_init_block_rsv(&pending_snapshot->block_rsv,
 661			     BTRFS_BLOCK_RSV_TEMP);
 662	/*
 663	 * 1 - parent dir inode
 664	 * 2 - dir entries
 665	 * 1 - root item
 666	 * 2 - root ref/backref
 667	 * 1 - root of snapshot
 668	 * 1 - UUID item
 669	 */
 670	ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
 671					&pending_snapshot->block_rsv, 8,
 672					&pending_snapshot->qgroup_reserved,
 673					false);
 674	if (ret)
 675		goto free;
 676
 677	pending_snapshot->dentry = dentry;
 678	pending_snapshot->root = root;
 679	pending_snapshot->readonly = readonly;
 680	pending_snapshot->dir = dir;
 681	pending_snapshot->inherit = inherit;
 682
 683	trans = btrfs_start_transaction(root, 0);
 684	if (IS_ERR(trans)) {
 685		ret = PTR_ERR(trans);
 686		goto fail;
 687	}
 688
 689	spin_lock(&root->fs_info->trans_lock);
 690	list_add(&pending_snapshot->list,
 691		 &trans->transaction->pending_snapshots);
 692	spin_unlock(&root->fs_info->trans_lock);
 693	if (async_transid) {
 694		*async_transid = trans->transid;
 695		ret = btrfs_commit_transaction_async(trans,
 696				     root->fs_info->extent_root, 1);
 697		if (ret)
 698			ret = btrfs_commit_transaction(trans, root);
 699	} else {
 700		ret = btrfs_commit_transaction(trans,
 701					       root->fs_info->extent_root);
 702	}
 703	if (ret)
 704		goto fail;
 705
 706	ret = pending_snapshot->error;
 707	if (ret)
 708		goto fail;
 709
 710	ret = btrfs_orphan_cleanup(pending_snapshot->snap);
 711	if (ret)
 712		goto fail;
 713
 714	inode = btrfs_lookup_dentry(dentry->d_parent->d_inode, dentry);
 715	if (IS_ERR(inode)) {
 716		ret = PTR_ERR(inode);
 717		goto fail;
 718	}
 719
 720	d_instantiate(dentry, inode);
 721	ret = 0;
 
 722fail:
 723	btrfs_subvolume_release_metadata(BTRFS_I(dir)->root,
 724					 &pending_snapshot->block_rsv,
 725					 pending_snapshot->qgroup_reserved);
 726free:
 
 
 
 
 
 
 727	kfree(pending_snapshot);
 728out:
 729	atomic_dec(&root->will_be_snapshoted);
 730	return ret;
 731}
 732
 733/*  copy of check_sticky in fs/namei.c()
 734* It's inline, so penalty for filesystems that don't use sticky bit is
 735* minimal.
 736*/
 737static inline int btrfs_check_sticky(struct inode *dir, struct inode *inode)
 738{
 739	kuid_t fsuid = current_fsuid();
 740
 741	if (!(dir->i_mode & S_ISVTX))
 742		return 0;
 743	if (uid_eq(inode->i_uid, fsuid))
 744		return 0;
 745	if (uid_eq(dir->i_uid, fsuid))
 746		return 0;
 747	return !capable(CAP_FOWNER);
 748}
 749
 750/*  copy of may_delete in fs/namei.c()
 751 *	Check whether we can remove a link victim from directory dir, check
 752 *  whether the type of victim is right.
 753 *  1. We can't do it if dir is read-only (done in permission())
 754 *  2. We should have write and exec permissions on dir
 755 *  3. We can't remove anything from append-only dir
 756 *  4. We can't do anything with immutable dir (done in permission())
 757 *  5. If the sticky bit on dir is set we should either
 758 *	a. be owner of dir, or
 759 *	b. be owner of victim, or
 760 *	c. have CAP_FOWNER capability
 761 *  6. If the victim is append-only or immutable we can't do antyhing with
 762 *     links pointing to it.
 763 *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
 764 *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
 765 *  9. We can't remove a root or mountpoint.
 766 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
 767 *     nfs_async_unlink().
 768 */
 769
 770static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir)
 771{
 772	int error;
 773
 774	if (!victim->d_inode)
 775		return -ENOENT;
 776
 777	BUG_ON(victim->d_parent->d_inode != dir);
 778	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
 779
 780	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
 781	if (error)
 782		return error;
 783	if (IS_APPEND(dir))
 784		return -EPERM;
 785	if (btrfs_check_sticky(dir, victim->d_inode)||
 786		IS_APPEND(victim->d_inode)||
 787	    IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
 788		return -EPERM;
 789	if (isdir) {
 790		if (!S_ISDIR(victim->d_inode->i_mode))
 791			return -ENOTDIR;
 792		if (IS_ROOT(victim))
 793			return -EBUSY;
 794	} else if (S_ISDIR(victim->d_inode->i_mode))
 795		return -EISDIR;
 796	if (IS_DEADDIR(dir))
 797		return -ENOENT;
 798	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
 799		return -EBUSY;
 800	return 0;
 801}
 802
 803/* copy of may_create in fs/namei.c() */
 804static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
 805{
 806	if (child->d_inode)
 807		return -EEXIST;
 808	if (IS_DEADDIR(dir))
 809		return -ENOENT;
 810	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
 811}
 812
 813/*
 814 * Create a new subvolume below @parent.  This is largely modeled after
 815 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
 816 * inside this filesystem so it's quite a bit simpler.
 817 */
 818static noinline int btrfs_mksubvol(struct path *parent,
 819				   char *name, int namelen,
 820				   struct btrfs_root *snap_src,
 821				   u64 *async_transid, bool readonly,
 822				   struct btrfs_qgroup_inherit *inherit)
 823{
 824	struct inode *dir  = parent->dentry->d_inode;
 
 825	struct dentry *dentry;
 826	int error;
 827
 828	error = mutex_lock_killable_nested(&dir->i_mutex, I_MUTEX_PARENT);
 829	if (error == -EINTR)
 830		return error;
 831
 832	dentry = lookup_one_len(name, parent->dentry, namelen);
 833	error = PTR_ERR(dentry);
 834	if (IS_ERR(dentry))
 835		goto out_unlock;
 836
 837	error = -EEXIST;
 838	if (dentry->d_inode)
 839		goto out_dput;
 840
 841	error = btrfs_may_create(dir, dentry);
 842	if (error)
 843		goto out_dput;
 844
 845	/*
 846	 * even if this name doesn't exist, we may get hash collisions.
 847	 * check for them now when we can safely fail
 848	 */
 849	error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
 850					       dir->i_ino, name,
 851					       namelen);
 852	if (error)
 853		goto out_dput;
 854
 855	down_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
 856
 857	if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
 858		goto out_up_read;
 859
 860	if (snap_src) {
 861		error = create_snapshot(snap_src, dir, dentry, name, namelen,
 862					async_transid, readonly, inherit);
 863	} else {
 864		error = create_subvol(dir, dentry, name, namelen,
 865				      async_transid, inherit);
 866	}
 867	if (!error)
 868		fsnotify_mkdir(dir, dentry);
 869out_up_read:
 870	up_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
 871out_dput:
 872	dput(dentry);
 873out_unlock:
 874	mutex_unlock(&dir->i_mutex);
 875	return error;
 876}
 877
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 878/*
 879 * When we're defragging a range, we don't want to kick it off again
 880 * if it is really just waiting for delalloc to send it down.
 881 * If we find a nice big extent or delalloc range for the bytes in the
 882 * file you want to defrag, we return 0 to let you know to skip this
 883 * part of the file
 884 */
 885static int check_defrag_in_cache(struct inode *inode, u64 offset, int thresh)
 886{
 887	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
 888	struct extent_map *em = NULL;
 889	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
 890	u64 end;
 891
 892	read_lock(&em_tree->lock);
 893	em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE);
 894	read_unlock(&em_tree->lock);
 895
 896	if (em) {
 897		end = extent_map_end(em);
 898		free_extent_map(em);
 899		if (end - offset > thresh)
 900			return 0;
 901	}
 902	/* if we already have a nice delalloc here, just stop */
 903	thresh /= 2;
 904	end = count_range_bits(io_tree, &offset, offset + thresh,
 905			       thresh, EXTENT_DELALLOC, 1);
 906	if (end >= thresh)
 907		return 0;
 908	return 1;
 909}
 910
 911/*
 912 * helper function to walk through a file and find extents
 913 * newer than a specific transid, and smaller than thresh.
 914 *
 915 * This is used by the defragging code to find new and small
 916 * extents
 917 */
 918static int find_new_extents(struct btrfs_root *root,
 919			    struct inode *inode, u64 newer_than,
 920			    u64 *off, int thresh)
 921{
 922	struct btrfs_path *path;
 923	struct btrfs_key min_key;
 924	struct extent_buffer *leaf;
 925	struct btrfs_file_extent_item *extent;
 926	int type;
 927	int ret;
 928	u64 ino = btrfs_ino(inode);
 929
 930	path = btrfs_alloc_path();
 931	if (!path)
 932		return -ENOMEM;
 933
 934	min_key.objectid = ino;
 935	min_key.type = BTRFS_EXTENT_DATA_KEY;
 936	min_key.offset = *off;
 937
 938	while (1) {
 939		path->keep_locks = 1;
 940		ret = btrfs_search_forward(root, &min_key, path, newer_than);
 941		if (ret != 0)
 942			goto none;
 943		path->keep_locks = 0;
 944		btrfs_unlock_up_safe(path, 1);
 945process_slot:
 946		if (min_key.objectid != ino)
 947			goto none;
 948		if (min_key.type != BTRFS_EXTENT_DATA_KEY)
 949			goto none;
 950
 951		leaf = path->nodes[0];
 952		extent = btrfs_item_ptr(leaf, path->slots[0],
 953					struct btrfs_file_extent_item);
 954
 955		type = btrfs_file_extent_type(leaf, extent);
 956		if (type == BTRFS_FILE_EXTENT_REG &&
 957		    btrfs_file_extent_num_bytes(leaf, extent) < thresh &&
 958		    check_defrag_in_cache(inode, min_key.offset, thresh)) {
 959			*off = min_key.offset;
 960			btrfs_free_path(path);
 961			return 0;
 962		}
 963
 964		path->slots[0]++;
 965		if (path->slots[0] < btrfs_header_nritems(leaf)) {
 966			btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]);
 967			goto process_slot;
 968		}
 969
 970		if (min_key.offset == (u64)-1)
 971			goto none;
 972
 973		min_key.offset++;
 974		btrfs_release_path(path);
 975	}
 976none:
 977	btrfs_free_path(path);
 978	return -ENOENT;
 979}
 980
 981static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start)
 982{
 983	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
 984	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
 985	struct extent_map *em;
 986	u64 len = PAGE_CACHE_SIZE;
 987
 988	/*
 989	 * hopefully we have this extent in the tree already, try without
 990	 * the full extent lock
 991	 */
 992	read_lock(&em_tree->lock);
 993	em = lookup_extent_mapping(em_tree, start, len);
 994	read_unlock(&em_tree->lock);
 995
 996	if (!em) {
 997		struct extent_state *cached = NULL;
 998		u64 end = start + len - 1;
 999
1000		/* get the big lock and read metadata off disk */
1001		lock_extent_bits(io_tree, start, end, 0, &cached);
1002		em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
1003		unlock_extent_cached(io_tree, start, end, &cached, GFP_NOFS);
1004
1005		if (IS_ERR(em))
1006			return NULL;
1007	}
1008
1009	return em;
1010}
1011
1012static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em)
1013{
1014	struct extent_map *next;
1015	bool ret = true;
1016
1017	/* this is the last extent */
1018	if (em->start + em->len >= i_size_read(inode))
1019		return false;
1020
1021	next = defrag_lookup_extent(inode, em->start + em->len);
1022	if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE ||
1023	    (em->block_start + em->block_len == next->block_start))
 
 
1024		ret = false;
1025
1026	free_extent_map(next);
1027	return ret;
1028}
1029
1030static int should_defrag_range(struct inode *inode, u64 start, int thresh,
1031			       u64 *last_len, u64 *skip, u64 *defrag_end,
1032			       int compress)
1033{
1034	struct extent_map *em;
1035	int ret = 1;
1036	bool next_mergeable = true;
 
1037
1038	/*
1039	 * make sure that once we start defragging an extent, we keep on
1040	 * defragging it
1041	 */
1042	if (start < *defrag_end)
1043		return 1;
1044
1045	*skip = 0;
1046
1047	em = defrag_lookup_extent(inode, start);
1048	if (!em)
1049		return 0;
1050
1051	/* this will cover holes, and inline extents */
1052	if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1053		ret = 0;
1054		goto out;
1055	}
1056
 
 
 
1057	next_mergeable = defrag_check_next_extent(inode, em);
1058
1059	/*
1060	 * we hit a real extent, if it is big or the next extent is not a
1061	 * real extent, don't bother defragging it
1062	 */
1063	if (!compress && (*last_len == 0 || *last_len >= thresh) &&
1064	    (em->len >= thresh || !next_mergeable))
1065		ret = 0;
1066out:
1067	/*
1068	 * last_len ends up being a counter of how many bytes we've defragged.
1069	 * every time we choose not to defrag an extent, we reset *last_len
1070	 * so that the next tiny extent will force a defrag.
1071	 *
1072	 * The end result of this is that tiny extents before a single big
1073	 * extent will force at least part of that big extent to be defragged.
1074	 */
1075	if (ret) {
1076		*defrag_end = extent_map_end(em);
1077	} else {
1078		*last_len = 0;
1079		*skip = extent_map_end(em);
1080		*defrag_end = 0;
1081	}
1082
1083	free_extent_map(em);
1084	return ret;
1085}
1086
1087/*
1088 * it doesn't do much good to defrag one or two pages
1089 * at a time.  This pulls in a nice chunk of pages
1090 * to COW and defrag.
1091 *
1092 * It also makes sure the delalloc code has enough
1093 * dirty data to avoid making new small extents as part
1094 * of the defrag
1095 *
1096 * It's a good idea to start RA on this range
1097 * before calling this.
1098 */
1099static int cluster_pages_for_defrag(struct inode *inode,
1100				    struct page **pages,
1101				    unsigned long start_index,
1102				    unsigned long num_pages)
1103{
1104	unsigned long file_end;
1105	u64 isize = i_size_read(inode);
1106	u64 page_start;
1107	u64 page_end;
1108	u64 page_cnt;
1109	int ret;
1110	int i;
1111	int i_done;
1112	struct btrfs_ordered_extent *ordered;
1113	struct extent_state *cached_state = NULL;
1114	struct extent_io_tree *tree;
 
1115	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1116
1117	file_end = (isize - 1) >> PAGE_CACHE_SHIFT;
1118	if (!isize || start_index > file_end)
1119		return 0;
1120
1121	page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1);
1122
1123	ret = btrfs_delalloc_reserve_space(inode,
1124					   page_cnt << PAGE_CACHE_SHIFT);
 
1125	if (ret)
1126		return ret;
1127	i_done = 0;
1128	tree = &BTRFS_I(inode)->io_tree;
1129
1130	/* step one, lock all the pages */
1131	for (i = 0; i < page_cnt; i++) {
1132		struct page *page;
1133again:
1134		page = find_or_create_page(inode->i_mapping,
1135					   start_index + i, mask);
1136		if (!page)
1137			break;
1138
1139		page_start = page_offset(page);
1140		page_end = page_start + PAGE_CACHE_SIZE - 1;
1141		while (1) {
1142			lock_extent_bits(tree, page_start, page_end,
1143					 0, &cached_state);
1144			ordered = btrfs_lookup_ordered_extent(inode,
1145							      page_start);
1146			unlock_extent_cached(tree, page_start, page_end,
1147					     &cached_state, GFP_NOFS);
1148			if (!ordered)
1149				break;
1150
1151			unlock_page(page);
1152			btrfs_start_ordered_extent(inode, ordered, 1);
1153			btrfs_put_ordered_extent(ordered);
1154			lock_page(page);
1155			/*
1156			 * we unlocked the page above, so we need check if
1157			 * it was released or not.
1158			 */
1159			if (page->mapping != inode->i_mapping) {
1160				unlock_page(page);
1161				page_cache_release(page);
1162				goto again;
1163			}
1164		}
1165
1166		if (!PageUptodate(page)) {
1167			btrfs_readpage(NULL, page);
1168			lock_page(page);
1169			if (!PageUptodate(page)) {
1170				unlock_page(page);
1171				page_cache_release(page);
1172				ret = -EIO;
1173				break;
1174			}
1175		}
1176
1177		if (page->mapping != inode->i_mapping) {
1178			unlock_page(page);
1179			page_cache_release(page);
1180			goto again;
1181		}
1182
1183		pages[i] = page;
1184		i_done++;
1185	}
1186	if (!i_done || ret)
1187		goto out;
1188
1189	if (!(inode->i_sb->s_flags & MS_ACTIVE))
1190		goto out;
1191
1192	/*
1193	 * so now we have a nice long stream of locked
1194	 * and up to date pages, lets wait on them
1195	 */
1196	for (i = 0; i < i_done; i++)
1197		wait_on_page_writeback(pages[i]);
1198
1199	page_start = page_offset(pages[0]);
1200	page_end = page_offset(pages[i_done - 1]) + PAGE_CACHE_SIZE;
1201
1202	lock_extent_bits(&BTRFS_I(inode)->io_tree,
1203			 page_start, page_end - 1, 0, &cached_state);
1204	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start,
1205			  page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
1206			  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0,
1207			  &cached_state, GFP_NOFS);
1208
1209	if (i_done != page_cnt) {
1210		spin_lock(&BTRFS_I(inode)->lock);
1211		BTRFS_I(inode)->outstanding_extents++;
1212		spin_unlock(&BTRFS_I(inode)->lock);
1213		btrfs_delalloc_release_space(inode,
1214				     (page_cnt - i_done) << PAGE_CACHE_SHIFT);
 
1215	}
1216
1217
1218	set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1,
1219			  &cached_state, GFP_NOFS);
1220
1221	unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1222			     page_start, page_end - 1, &cached_state,
1223			     GFP_NOFS);
1224
1225	for (i = 0; i < i_done; i++) {
1226		clear_page_dirty_for_io(pages[i]);
1227		ClearPageChecked(pages[i]);
1228		set_page_extent_mapped(pages[i]);
1229		set_page_dirty(pages[i]);
1230		unlock_page(pages[i]);
1231		page_cache_release(pages[i]);
1232	}
 
 
1233	return i_done;
1234out:
1235	for (i = 0; i < i_done; i++) {
1236		unlock_page(pages[i]);
1237		page_cache_release(pages[i]);
1238	}
1239	btrfs_delalloc_release_space(inode, page_cnt << PAGE_CACHE_SHIFT);
 
 
 
 
1240	return ret;
1241
1242}
1243
1244int btrfs_defrag_file(struct inode *inode, struct file *file,
1245		      struct btrfs_ioctl_defrag_range_args *range,
1246		      u64 newer_than, unsigned long max_to_defrag)
1247{
 
1248	struct btrfs_root *root = BTRFS_I(inode)->root;
1249	struct file_ra_state *ra = NULL;
1250	unsigned long last_index;
1251	u64 isize = i_size_read(inode);
1252	u64 last_len = 0;
1253	u64 skip = 0;
1254	u64 defrag_end = 0;
1255	u64 newer_off = range->start;
1256	unsigned long i;
1257	unsigned long ra_index = 0;
1258	int ret;
1259	int defrag_count = 0;
1260	int compress_type = BTRFS_COMPRESS_ZLIB;
1261	int extent_thresh = range->extent_thresh;
1262	unsigned long max_cluster = (256 * 1024) >> PAGE_CACHE_SHIFT;
1263	unsigned long cluster = max_cluster;
1264	u64 new_align = ~((u64)128 * 1024 - 1);
1265	struct page **pages = NULL;
 
1266
1267	if (isize == 0)
1268		return 0;
1269
1270	if (range->start >= isize)
1271		return -EINVAL;
1272
1273	if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) {
1274		if (range->compress_type > BTRFS_COMPRESS_TYPES)
1275			return -EINVAL;
1276		if (range->compress_type)
1277			compress_type = range->compress_type;
1278	}
1279
1280	if (extent_thresh == 0)
1281		extent_thresh = 256 * 1024;
1282
1283	/*
1284	 * if we were not given a file, allocate a readahead
1285	 * context
 
1286	 */
1287	if (!file) {
1288		ra = kzalloc(sizeof(*ra), GFP_NOFS);
1289		if (!ra)
1290			return -ENOMEM;
1291		file_ra_state_init(ra, inode->i_mapping);
1292	} else {
1293		ra = &file->f_ra;
1294	}
1295
1296	pages = kmalloc_array(max_cluster, sizeof(struct page *),
1297			GFP_NOFS);
1298	if (!pages) {
1299		ret = -ENOMEM;
1300		goto out_ra;
1301	}
1302
1303	/* find the last page to defrag */
1304	if (range->start + range->len > range->start) {
1305		last_index = min_t(u64, isize - 1,
1306			 range->start + range->len - 1) >> PAGE_CACHE_SHIFT;
1307	} else {
1308		last_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1309	}
1310
1311	if (newer_than) {
1312		ret = find_new_extents(root, inode, newer_than,
1313				       &newer_off, 64 * 1024);
1314		if (!ret) {
1315			range->start = newer_off;
1316			/*
1317			 * we always align our defrag to help keep
1318			 * the extents in the file evenly spaced
1319			 */
1320			i = (newer_off & new_align) >> PAGE_CACHE_SHIFT;
1321		} else
1322			goto out_ra;
1323	} else {
1324		i = range->start >> PAGE_CACHE_SHIFT;
1325	}
1326	if (!max_to_defrag)
1327		max_to_defrag = last_index + 1;
1328
1329	/*
1330	 * make writeback starts from i, so the defrag range can be
1331	 * written sequentially.
1332	 */
1333	if (i < inode->i_mapping->writeback_index)
1334		inode->i_mapping->writeback_index = i;
1335
1336	while (i <= last_index && defrag_count < max_to_defrag &&
1337	       (i < (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >>
1338		PAGE_CACHE_SHIFT)) {
1339		/*
1340		 * make sure we stop running if someone unmounts
1341		 * the FS
1342		 */
1343		if (!(inode->i_sb->s_flags & MS_ACTIVE))
1344			break;
1345
1346		if (btrfs_defrag_cancelled(root->fs_info)) {
1347			printk(KERN_DEBUG "BTRFS: defrag_file cancelled\n");
1348			ret = -EAGAIN;
1349			break;
1350		}
1351
1352		if (!should_defrag_range(inode, (u64)i << PAGE_CACHE_SHIFT,
1353					 extent_thresh, &last_len, &skip,
1354					 &defrag_end, range->flags &
1355					 BTRFS_DEFRAG_RANGE_COMPRESS)) {
1356			unsigned long next;
1357			/*
1358			 * the should_defrag function tells us how much to skip
1359			 * bump our counter by the suggested amount
1360			 */
1361			next = (skip + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1362			i = max(i + 1, next);
1363			continue;
1364		}
1365
1366		if (!newer_than) {
1367			cluster = (PAGE_CACHE_ALIGN(defrag_end) >>
1368				   PAGE_CACHE_SHIFT) - i;
1369			cluster = min(cluster, max_cluster);
1370		} else {
1371			cluster = max_cluster;
1372		}
1373
1374		if (i + cluster > ra_index) {
1375			ra_index = max(i, ra_index);
1376			btrfs_force_ra(inode->i_mapping, ra, file, ra_index,
1377				       cluster);
1378			ra_index += max_cluster;
 
1379		}
1380
1381		mutex_lock(&inode->i_mutex);
1382		if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)
1383			BTRFS_I(inode)->force_compress = compress_type;
1384		ret = cluster_pages_for_defrag(inode, pages, i, cluster);
 
 
 
 
1385		if (ret < 0) {
1386			mutex_unlock(&inode->i_mutex);
1387			goto out_ra;
1388		}
1389
1390		defrag_count += ret;
1391		balance_dirty_pages_ratelimited(inode->i_mapping);
1392		mutex_unlock(&inode->i_mutex);
1393
1394		if (newer_than) {
1395			if (newer_off == (u64)-1)
1396				break;
1397
1398			if (ret > 0)
1399				i += ret;
1400
1401			newer_off = max(newer_off + 1,
1402					(u64)i << PAGE_CACHE_SHIFT);
1403
1404			ret = find_new_extents(root, inode,
1405					       newer_than, &newer_off,
1406					       64 * 1024);
1407			if (!ret) {
1408				range->start = newer_off;
1409				i = (newer_off & new_align) >> PAGE_CACHE_SHIFT;
1410			} else {
1411				break;
1412			}
1413		} else {
1414			if (ret > 0) {
1415				i += ret;
1416				last_len += ret << PAGE_CACHE_SHIFT;
1417			} else {
1418				i++;
1419				last_len = 0;
1420			}
1421		}
1422	}
1423
1424	if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) {
1425		filemap_flush(inode->i_mapping);
1426		if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1427			     &BTRFS_I(inode)->runtime_flags))
1428			filemap_flush(inode->i_mapping);
1429	}
1430
1431	if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
1432		/* the filemap_flush will queue IO into the worker threads, but
1433		 * we have to make sure the IO is actually started and that
1434		 * ordered extents get created before we return
1435		 */
1436		atomic_inc(&root->fs_info->async_submit_draining);
1437		while (atomic_read(&root->fs_info->nr_async_submits) ||
1438		      atomic_read(&root->fs_info->async_delalloc_pages)) {
1439			wait_event(root->fs_info->async_submit_wait,
1440			   (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
1441			    atomic_read(&root->fs_info->async_delalloc_pages) == 0));
1442		}
1443		atomic_dec(&root->fs_info->async_submit_draining);
1444	}
1445
1446	if (range->compress_type == BTRFS_COMPRESS_LZO) {
1447		btrfs_set_fs_incompat(root->fs_info, COMPRESS_LZO);
 
 
1448	}
1449
1450	ret = defrag_count;
1451
1452out_ra:
1453	if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) {
1454		mutex_lock(&inode->i_mutex);
1455		BTRFS_I(inode)->force_compress = BTRFS_COMPRESS_NONE;
1456		mutex_unlock(&inode->i_mutex);
1457	}
1458	if (!file)
1459		kfree(ra);
1460	kfree(pages);
1461	return ret;
1462}
1463
1464static noinline int btrfs_ioctl_resize(struct file *file,
1465					void __user *arg)
1466{
 
 
1467	u64 new_size;
1468	u64 old_size;
1469	u64 devid = 1;
1470	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
1471	struct btrfs_ioctl_vol_args *vol_args;
1472	struct btrfs_trans_handle *trans;
1473	struct btrfs_device *device = NULL;
1474	char *sizestr;
1475	char *retptr;
1476	char *devstr = NULL;
1477	int ret = 0;
1478	int mod = 0;
1479
1480	if (!capable(CAP_SYS_ADMIN))
1481		return -EPERM;
1482
1483	ret = mnt_want_write_file(file);
1484	if (ret)
1485		return ret;
1486
1487	if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
1488			1)) {
1489		mnt_drop_write_file(file);
1490		return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1491	}
1492
1493	mutex_lock(&root->fs_info->volume_mutex);
1494	vol_args = memdup_user(arg, sizeof(*vol_args));
1495	if (IS_ERR(vol_args)) {
1496		ret = PTR_ERR(vol_args);
1497		goto out;
1498	}
1499
1500	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1501
1502	sizestr = vol_args->name;
1503	devstr = strchr(sizestr, ':');
1504	if (devstr) {
1505		char *end;
1506		sizestr = devstr + 1;
1507		*devstr = '\0';
1508		devstr = vol_args->name;
1509		devid = simple_strtoull(devstr, &end, 10);
 
 
1510		if (!devid) {
1511			ret = -EINVAL;
1512			goto out_free;
1513		}
1514		btrfs_info(root->fs_info, "resizing devid %llu", devid);
1515	}
1516
1517	device = btrfs_find_device(root->fs_info, devid, NULL, NULL);
1518	if (!device) {
1519		btrfs_info(root->fs_info, "resizer unable to find device %llu",
1520		       devid);
1521		ret = -ENODEV;
1522		goto out_free;
1523	}
1524
1525	if (!device->writeable) {
1526		btrfs_info(root->fs_info,
1527			   "resizer unable to apply on readonly device %llu",
1528		       devid);
1529		ret = -EPERM;
1530		goto out_free;
1531	}
1532
1533	if (!strcmp(sizestr, "max"))
1534		new_size = device->bdev->bd_inode->i_size;
1535	else {
1536		if (sizestr[0] == '-') {
1537			mod = -1;
1538			sizestr++;
1539		} else if (sizestr[0] == '+') {
1540			mod = 1;
1541			sizestr++;
1542		}
1543		new_size = memparse(sizestr, &retptr);
1544		if (*retptr != '\0' || new_size == 0) {
1545			ret = -EINVAL;
1546			goto out_free;
1547		}
1548	}
1549
1550	if (device->is_tgtdev_for_dev_replace) {
1551		ret = -EPERM;
1552		goto out_free;
1553	}
1554
1555	old_size = device->total_bytes;
1556
1557	if (mod < 0) {
1558		if (new_size > old_size) {
1559			ret = -EINVAL;
1560			goto out_free;
1561		}
1562		new_size = old_size - new_size;
1563	} else if (mod > 0) {
1564		if (new_size > ULLONG_MAX - old_size) {
1565			ret = -EINVAL;
1566			goto out_free;
1567		}
1568		new_size = old_size + new_size;
1569	}
1570
1571	if (new_size < 256 * 1024 * 1024) {
1572		ret = -EINVAL;
1573		goto out_free;
1574	}
1575	if (new_size > device->bdev->bd_inode->i_size) {
1576		ret = -EFBIG;
1577		goto out_free;
1578	}
1579
1580	do_div(new_size, root->sectorsize);
1581	new_size *= root->sectorsize;
1582
1583	printk_in_rcu(KERN_INFO "BTRFS: new size for %s is %llu\n",
1584		      rcu_str_deref(device->name), new_size);
1585
1586	if (new_size > old_size) {
1587		trans = btrfs_start_transaction(root, 0);
1588		if (IS_ERR(trans)) {
1589			ret = PTR_ERR(trans);
1590			goto out_free;
1591		}
1592		ret = btrfs_grow_device(trans, device, new_size);
1593		btrfs_commit_transaction(trans, root);
1594	} else if (new_size < old_size) {
1595		ret = btrfs_shrink_device(device, new_size);
1596	} /* equal, nothing need to do */
1597
 
 
 
 
 
1598out_free:
1599	kfree(vol_args);
1600out:
1601	mutex_unlock(&root->fs_info->volume_mutex);
1602	atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
1603	mnt_drop_write_file(file);
1604	return ret;
1605}
1606
1607static noinline int btrfs_ioctl_snap_create_transid(struct file *file,
1608				char *name, unsigned long fd, int subvol,
1609				u64 *transid, bool readonly,
1610				struct btrfs_qgroup_inherit *inherit)
1611{
1612	int namelen;
1613	int ret = 0;
1614
 
 
 
1615	ret = mnt_want_write_file(file);
1616	if (ret)
1617		goto out;
1618
1619	namelen = strlen(name);
1620	if (strchr(name, '/')) {
1621		ret = -EINVAL;
1622		goto out_drop_write;
1623	}
1624
1625	if (name[0] == '.' &&
1626	   (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1627		ret = -EEXIST;
1628		goto out_drop_write;
1629	}
1630
1631	if (subvol) {
1632		ret = btrfs_mksubvol(&file->f_path, name, namelen,
1633				     NULL, transid, readonly, inherit);
1634	} else {
1635		struct fd src = fdget(fd);
1636		struct inode *src_inode;
1637		if (!src.file) {
1638			ret = -EINVAL;
1639			goto out_drop_write;
1640		}
1641
1642		src_inode = file_inode(src.file);
1643		if (src_inode->i_sb != file_inode(file)->i_sb) {
1644			btrfs_info(BTRFS_I(src_inode)->root->fs_info,
1645				   "Snapshot src from another FS");
1646			ret = -EXDEV;
1647		} else if (!inode_owner_or_capable(src_inode)) {
1648			/*
1649			 * Subvolume creation is not restricted, but snapshots
1650			 * are limited to own subvolumes only
1651			 */
1652			ret = -EPERM;
1653		} else {
1654			ret = btrfs_mksubvol(&file->f_path, name, namelen,
1655					     BTRFS_I(src_inode)->root,
1656					     transid, readonly, inherit);
1657		}
1658		fdput(src);
1659	}
1660out_drop_write:
1661	mnt_drop_write_file(file);
1662out:
1663	return ret;
1664}
1665
1666static noinline int btrfs_ioctl_snap_create(struct file *file,
1667					    void __user *arg, int subvol)
1668{
1669	struct btrfs_ioctl_vol_args *vol_args;
1670	int ret;
1671
 
 
 
1672	vol_args = memdup_user(arg, sizeof(*vol_args));
1673	if (IS_ERR(vol_args))
1674		return PTR_ERR(vol_args);
1675	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1676
1677	ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1678					      vol_args->fd, subvol,
1679					      NULL, false, NULL);
1680
1681	kfree(vol_args);
1682	return ret;
1683}
1684
1685static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1686					       void __user *arg, int subvol)
1687{
1688	struct btrfs_ioctl_vol_args_v2 *vol_args;
1689	int ret;
1690	u64 transid = 0;
1691	u64 *ptr = NULL;
1692	bool readonly = false;
1693	struct btrfs_qgroup_inherit *inherit = NULL;
1694
 
 
 
1695	vol_args = memdup_user(arg, sizeof(*vol_args));
1696	if (IS_ERR(vol_args))
1697		return PTR_ERR(vol_args);
1698	vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1699
1700	if (vol_args->flags &
1701	    ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY |
1702	      BTRFS_SUBVOL_QGROUP_INHERIT)) {
1703		ret = -EOPNOTSUPP;
1704		goto out;
1705	}
1706
1707	if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC)
1708		ptr = &transid;
1709	if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1710		readonly = true;
1711	if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1712		if (vol_args->size > PAGE_CACHE_SIZE) {
1713			ret = -EINVAL;
1714			goto out;
1715		}
1716		inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1717		if (IS_ERR(inherit)) {
1718			ret = PTR_ERR(inherit);
1719			goto out;
1720		}
1721	}
1722
1723	ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1724					      vol_args->fd, subvol, ptr,
1725					      readonly, inherit);
1726
1727	if (ret == 0 && ptr &&
1728	    copy_to_user(arg +
1729			 offsetof(struct btrfs_ioctl_vol_args_v2,
1730				  transid), ptr, sizeof(*ptr)))
1731		ret = -EFAULT;
1732out:
1733	kfree(vol_args);
1734	kfree(inherit);
1735	return ret;
1736}
1737
1738static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
1739						void __user *arg)
1740{
1741	struct inode *inode = file_inode(file);
 
1742	struct btrfs_root *root = BTRFS_I(inode)->root;
1743	int ret = 0;
1744	u64 flags = 0;
1745
1746	if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID)
1747		return -EINVAL;
1748
1749	down_read(&root->fs_info->subvol_sem);
1750	if (btrfs_root_readonly(root))
1751		flags |= BTRFS_SUBVOL_RDONLY;
1752	up_read(&root->fs_info->subvol_sem);
1753
1754	if (copy_to_user(arg, &flags, sizeof(flags)))
1755		ret = -EFAULT;
1756
1757	return ret;
1758}
1759
1760static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1761					      void __user *arg)
1762{
1763	struct inode *inode = file_inode(file);
 
1764	struct btrfs_root *root = BTRFS_I(inode)->root;
1765	struct btrfs_trans_handle *trans;
1766	u64 root_flags;
1767	u64 flags;
1768	int ret = 0;
1769
1770	if (!inode_owner_or_capable(inode))
1771		return -EPERM;
1772
1773	ret = mnt_want_write_file(file);
1774	if (ret)
1775		goto out;
1776
1777	if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
1778		ret = -EINVAL;
1779		goto out_drop_write;
1780	}
1781
1782	if (copy_from_user(&flags, arg, sizeof(flags))) {
1783		ret = -EFAULT;
1784		goto out_drop_write;
1785	}
1786
1787	if (flags & BTRFS_SUBVOL_CREATE_ASYNC) {
1788		ret = -EINVAL;
1789		goto out_drop_write;
1790	}
1791
1792	if (flags & ~BTRFS_SUBVOL_RDONLY) {
1793		ret = -EOPNOTSUPP;
1794		goto out_drop_write;
1795	}
1796
1797	down_write(&root->fs_info->subvol_sem);
1798
1799	/* nothing to do */
1800	if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1801		goto out_drop_sem;
1802
1803	root_flags = btrfs_root_flags(&root->root_item);
1804	if (flags & BTRFS_SUBVOL_RDONLY) {
1805		btrfs_set_root_flags(&root->root_item,
1806				     root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1807	} else {
1808		/*
1809		 * Block RO -> RW transition if this subvolume is involved in
1810		 * send
1811		 */
1812		spin_lock(&root->root_item_lock);
1813		if (root->send_in_progress == 0) {
1814			btrfs_set_root_flags(&root->root_item,
1815				     root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1816			spin_unlock(&root->root_item_lock);
1817		} else {
1818			spin_unlock(&root->root_item_lock);
1819			btrfs_warn(root->fs_info,
1820			"Attempt to set subvolume %llu read-write during send",
1821					root->root_key.objectid);
1822			ret = -EPERM;
1823			goto out_drop_sem;
1824		}
1825	}
1826
1827	trans = btrfs_start_transaction(root, 1);
1828	if (IS_ERR(trans)) {
1829		ret = PTR_ERR(trans);
1830		goto out_reset;
1831	}
1832
1833	ret = btrfs_update_root(trans, root->fs_info->tree_root,
1834				&root->root_key, &root->root_item);
 
 
 
 
 
 
1835
1836	btrfs_commit_transaction(trans, root);
1837out_reset:
1838	if (ret)
1839		btrfs_set_root_flags(&root->root_item, root_flags);
1840out_drop_sem:
1841	up_write(&root->fs_info->subvol_sem);
1842out_drop_write:
1843	mnt_drop_write_file(file);
1844out:
1845	return ret;
1846}
1847
1848/*
1849 * helper to check if the subvolume references other subvolumes
1850 */
1851static noinline int may_destroy_subvol(struct btrfs_root *root)
1852{
1853	struct btrfs_path *path;
1854	struct btrfs_dir_item *di;
1855	struct btrfs_key key;
1856	u64 dir_id;
1857	int ret;
1858
1859	path = btrfs_alloc_path();
1860	if (!path)
1861		return -ENOMEM;
1862
1863	/* Make sure this root isn't set as the default subvol */
1864	dir_id = btrfs_super_root_dir(root->fs_info->super_copy);
1865	di = btrfs_lookup_dir_item(NULL, root->fs_info->tree_root, path,
1866				   dir_id, "default", 7, 0);
1867	if (di && !IS_ERR(di)) {
1868		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1869		if (key.objectid == root->root_key.objectid) {
1870			ret = -EPERM;
1871			btrfs_err(root->fs_info, "deleting default subvolume "
1872				  "%llu is not allowed", key.objectid);
1873			goto out;
1874		}
1875		btrfs_release_path(path);
1876	}
1877
1878	key.objectid = root->root_key.objectid;
1879	key.type = BTRFS_ROOT_REF_KEY;
1880	key.offset = (u64)-1;
1881
1882	ret = btrfs_search_slot(NULL, root->fs_info->tree_root,
1883				&key, path, 0, 0);
1884	if (ret < 0)
1885		goto out;
1886	BUG_ON(ret == 0);
1887
1888	ret = 0;
1889	if (path->slots[0] > 0) {
1890		path->slots[0]--;
1891		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1892		if (key.objectid == root->root_key.objectid &&
1893		    key.type == BTRFS_ROOT_REF_KEY)
1894			ret = -ENOTEMPTY;
1895	}
1896out:
1897	btrfs_free_path(path);
1898	return ret;
1899}
1900
1901static noinline int key_in_sk(struct btrfs_key *key,
1902			      struct btrfs_ioctl_search_key *sk)
1903{
1904	struct btrfs_key test;
1905	int ret;
1906
1907	test.objectid = sk->min_objectid;
1908	test.type = sk->min_type;
1909	test.offset = sk->min_offset;
1910
1911	ret = btrfs_comp_cpu_keys(key, &test);
1912	if (ret < 0)
1913		return 0;
1914
1915	test.objectid = sk->max_objectid;
1916	test.type = sk->max_type;
1917	test.offset = sk->max_offset;
1918
1919	ret = btrfs_comp_cpu_keys(key, &test);
1920	if (ret > 0)
1921		return 0;
1922	return 1;
1923}
1924
1925static noinline int copy_to_sk(struct btrfs_root *root,
1926			       struct btrfs_path *path,
1927			       struct btrfs_key *key,
1928			       struct btrfs_ioctl_search_key *sk,
1929			       char *buf,
 
1930			       unsigned long *sk_offset,
1931			       int *num_found)
1932{
1933	u64 found_transid;
1934	struct extent_buffer *leaf;
1935	struct btrfs_ioctl_search_header sh;
 
1936	unsigned long item_off;
1937	unsigned long item_len;
1938	int nritems;
1939	int i;
1940	int slot;
1941	int ret = 0;
1942
1943	leaf = path->nodes[0];
1944	slot = path->slots[0];
1945	nritems = btrfs_header_nritems(leaf);
1946
1947	if (btrfs_header_generation(leaf) > sk->max_transid) {
1948		i = nritems;
1949		goto advance_key;
1950	}
1951	found_transid = btrfs_header_generation(leaf);
1952
1953	for (i = slot; i < nritems; i++) {
1954		item_off = btrfs_item_ptr_offset(leaf, i);
1955		item_len = btrfs_item_size_nr(leaf, i);
1956
1957		btrfs_item_key_to_cpu(leaf, key, i);
1958		if (!key_in_sk(key, sk))
1959			continue;
1960
1961		if (sizeof(sh) + item_len > BTRFS_SEARCH_ARGS_BUFSIZE)
 
 
 
 
 
 
 
 
 
 
 
1962			item_len = 0;
 
 
1963
1964		if (sizeof(sh) + item_len + *sk_offset >
1965		    BTRFS_SEARCH_ARGS_BUFSIZE) {
1966			ret = 1;
1967			goto overflow;
1968		}
1969
1970		sh.objectid = key->objectid;
1971		sh.offset = key->offset;
1972		sh.type = key->type;
1973		sh.len = item_len;
1974		sh.transid = found_transid;
1975
1976		/* copy search result header */
1977		memcpy(buf + *sk_offset, &sh, sizeof(sh));
 
 
 
 
 
 
 
 
 
1978		*sk_offset += sizeof(sh);
1979
1980		if (item_len) {
1981			char *p = buf + *sk_offset;
1982			/* copy the item */
1983			read_extent_buffer(leaf, p,
1984					   item_off, item_len);
 
 
 
 
 
 
 
 
1985			*sk_offset += item_len;
1986		}
1987		(*num_found)++;
1988
1989		if (*num_found >= sk->nr_items)
1990			break;
 
 
 
 
 
1991	}
1992advance_key:
1993	ret = 0;
1994	if (key->offset < (u64)-1 && key->offset < sk->max_offset)
 
 
 
 
 
1995		key->offset++;
1996	else if (key->type < (u8)-1 && key->type < sk->max_type) {
1997		key->offset = 0;
1998		key->type++;
1999	} else if (key->objectid < (u64)-1 && key->objectid < sk->max_objectid) {
2000		key->offset = 0;
2001		key->type = 0;
2002		key->objectid++;
2003	} else
2004		ret = 1;
2005overflow:
 
 
 
 
 
 
 
 
 
2006	return ret;
2007}
2008
2009static noinline int search_ioctl(struct inode *inode,
2010				 struct btrfs_ioctl_search_args *args)
 
 
2011{
 
2012	struct btrfs_root *root;
2013	struct btrfs_key key;
2014	struct btrfs_path *path;
2015	struct btrfs_ioctl_search_key *sk = &args->key;
2016	struct btrfs_fs_info *info = BTRFS_I(inode)->root->fs_info;
2017	int ret;
2018	int num_found = 0;
2019	unsigned long sk_offset = 0;
2020
 
 
 
 
 
2021	path = btrfs_alloc_path();
2022	if (!path)
2023		return -ENOMEM;
2024
2025	if (sk->tree_id == 0) {
2026		/* search the root of the inode that was passed */
2027		root = BTRFS_I(inode)->root;
2028	} else {
2029		key.objectid = sk->tree_id;
2030		key.type = BTRFS_ROOT_ITEM_KEY;
2031		key.offset = (u64)-1;
2032		root = btrfs_read_fs_root_no_name(info, &key);
2033		if (IS_ERR(root)) {
2034			printk(KERN_ERR "BTRFS: could not find root %llu\n",
2035			       sk->tree_id);
2036			btrfs_free_path(path);
2037			return -ENOENT;
2038		}
2039	}
2040
2041	key.objectid = sk->min_objectid;
2042	key.type = sk->min_type;
2043	key.offset = sk->min_offset;
2044
2045	path->keep_locks = 1;
 
 
 
 
2046
2047	while (1) {
2048		ret = btrfs_search_forward(root, &key, path, sk->min_transid);
2049		if (ret != 0) {
2050			if (ret > 0)
2051				ret = 0;
2052			goto err;
2053		}
2054		ret = copy_to_sk(root, path, &key, sk, args->buf,
2055				 &sk_offset, &num_found);
2056		btrfs_release_path(path);
2057		if (ret || num_found >= sk->nr_items)
2058			break;
2059
2060	}
2061	ret = 0;
 
2062err:
2063	sk->nr_items = num_found;
 
2064	btrfs_free_path(path);
2065	return ret;
2066}
2067
2068static noinline int btrfs_ioctl_tree_search(struct file *file,
2069					   void __user *argp)
2070{
2071	 struct btrfs_ioctl_search_args *args;
2072	 struct inode *inode;
2073	 int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2074
2075	if (!capable(CAP_SYS_ADMIN))
2076		return -EPERM;
2077
2078	args = memdup_user(argp, sizeof(*args));
2079	if (IS_ERR(args))
2080		return PTR_ERR(args);
 
 
 
 
 
 
 
2081
2082	inode = file_inode(file);
2083	ret = search_ioctl(inode, args);
2084	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
 
 
 
 
2085		ret = -EFAULT;
2086	kfree(args);
2087	return ret;
2088}
2089
2090/*
2091 * Search INODE_REFs to identify path name of 'dirid' directory
2092 * in a 'tree_id' tree. and sets path name to 'name'.
2093 */
2094static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
2095				u64 tree_id, u64 dirid, char *name)
2096{
2097	struct btrfs_root *root;
2098	struct btrfs_key key;
2099	char *ptr;
2100	int ret = -1;
2101	int slot;
2102	int len;
2103	int total_len = 0;
2104	struct btrfs_inode_ref *iref;
2105	struct extent_buffer *l;
2106	struct btrfs_path *path;
2107
2108	if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
2109		name[0]='\0';
2110		return 0;
2111	}
2112
2113	path = btrfs_alloc_path();
2114	if (!path)
2115		return -ENOMEM;
2116
2117	ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX];
2118
2119	key.objectid = tree_id;
2120	key.type = BTRFS_ROOT_ITEM_KEY;
2121	key.offset = (u64)-1;
2122	root = btrfs_read_fs_root_no_name(info, &key);
2123	if (IS_ERR(root)) {
2124		printk(KERN_ERR "BTRFS: could not find root %llu\n", tree_id);
2125		ret = -ENOENT;
2126		goto out;
2127	}
2128
2129	key.objectid = dirid;
2130	key.type = BTRFS_INODE_REF_KEY;
2131	key.offset = (u64)-1;
2132
2133	while (1) {
2134		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2135		if (ret < 0)
2136			goto out;
2137		else if (ret > 0) {
2138			ret = btrfs_previous_item(root, path, dirid,
2139						  BTRFS_INODE_REF_KEY);
2140			if (ret < 0)
2141				goto out;
2142			else if (ret > 0) {
2143				ret = -ENOENT;
2144				goto out;
2145			}
2146		}
2147
2148		l = path->nodes[0];
2149		slot = path->slots[0];
2150		btrfs_item_key_to_cpu(l, &key, slot);
2151
2152		iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
2153		len = btrfs_inode_ref_name_len(l, iref);
2154		ptr -= len + 1;
2155		total_len += len + 1;
2156		if (ptr < name) {
2157			ret = -ENAMETOOLONG;
2158			goto out;
2159		}
2160
2161		*(ptr + len) = '/';
2162		read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
2163
2164		if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
2165			break;
2166
2167		btrfs_release_path(path);
2168		key.objectid = key.offset;
2169		key.offset = (u64)-1;
2170		dirid = key.objectid;
2171	}
2172	memmove(name, ptr, total_len);
2173	name[total_len] = '\0';
2174	ret = 0;
2175out:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2176	btrfs_free_path(path);
2177	return ret;
2178}
2179
2180static noinline int btrfs_ioctl_ino_lookup(struct file *file,
2181					   void __user *argp)
2182{
2183	 struct btrfs_ioctl_ino_lookup_args *args;
2184	 struct inode *inode;
2185	 int ret;
2186
2187	if (!capable(CAP_SYS_ADMIN))
2188		return -EPERM;
2189
2190	args = memdup_user(argp, sizeof(*args));
2191	if (IS_ERR(args))
2192		return PTR_ERR(args);
2193
2194	inode = file_inode(file);
2195
 
 
 
 
2196	if (args->treeid == 0)
2197		args->treeid = BTRFS_I(inode)->root->root_key.objectid;
2198
 
 
 
 
 
 
 
 
 
 
2199	ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
2200					args->treeid, args->objectid,
2201					args->name);
2202
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2203	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2204		ret = -EFAULT;
2205
2206	kfree(args);
2207	return ret;
2208}
2209
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2210static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2211					     void __user *arg)
 
2212{
2213	struct dentry *parent = file->f_path.dentry;
 
2214	struct dentry *dentry;
2215	struct inode *dir = parent->d_inode;
2216	struct inode *inode;
2217	struct btrfs_root *root = BTRFS_I(dir)->root;
2218	struct btrfs_root *dest = NULL;
2219	struct btrfs_ioctl_vol_args *vol_args;
2220	struct btrfs_trans_handle *trans;
2221	struct btrfs_block_rsv block_rsv;
2222	u64 qgroup_reserved;
2223	int namelen;
2224	int ret;
2225	int err = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2226
2227	vol_args = memdup_user(arg, sizeof(*vol_args));
2228	if (IS_ERR(vol_args))
2229		return PTR_ERR(vol_args);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2230
2231	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2232	namelen = strlen(vol_args->name);
2233	if (strchr(vol_args->name, '/') ||
2234	    strncmp(vol_args->name, "..", namelen) == 0) {
2235		err = -EINVAL;
2236		goto out;
2237	}
2238
2239	err = mnt_want_write_file(file);
2240	if (err)
2241		goto out;
 
2242
2243	err = mutex_lock_killable_nested(&dir->i_mutex, I_MUTEX_PARENT);
2244	if (err == -EINTR)
2245		goto out_drop_write;
2246	dentry = lookup_one_len(vol_args->name, parent, namelen);
2247	if (IS_ERR(dentry)) {
2248		err = PTR_ERR(dentry);
2249		goto out_unlock_dir;
2250	}
2251
2252	if (!dentry->d_inode) {
2253		err = -ENOENT;
2254		goto out_dput;
2255	}
2256
2257	inode = dentry->d_inode;
2258	dest = BTRFS_I(inode)->root;
2259	if (!capable(CAP_SYS_ADMIN)) {
2260		/*
2261		 * Regular user.  Only allow this with a special mount
2262		 * option, when the user has write+exec access to the
2263		 * subvol root, and when rmdir(2) would have been
2264		 * allowed.
2265		 *
2266		 * Note that this is _not_ check that the subvol is
2267		 * empty or doesn't contain data that we wouldn't
2268		 * otherwise be able to delete.
2269		 *
2270		 * Users who want to delete empty subvols should try
2271		 * rmdir(2).
2272		 */
2273		err = -EPERM;
2274		if (!btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
2275			goto out_dput;
2276
2277		/*
2278		 * Do not allow deletion if the parent dir is the same
2279		 * as the dir to be deleted.  That means the ioctl
2280		 * must be called on the dentry referencing the root
2281		 * of the subvol, not a random directory contained
2282		 * within it.
2283		 */
2284		err = -EINVAL;
2285		if (root == dest)
2286			goto out_dput;
2287
2288		err = inode_permission(inode, MAY_WRITE | MAY_EXEC);
2289		if (err)
2290			goto out_dput;
2291	}
2292
2293	/* check if subvolume may be deleted by a user */
2294	err = btrfs_may_delete(dir, dentry, 1);
2295	if (err)
2296		goto out_dput;
2297
2298	if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
2299		err = -EINVAL;
2300		goto out_dput;
2301	}
2302
2303	mutex_lock(&inode->i_mutex);
2304	err = d_invalidate(dentry);
2305	if (err)
2306		goto out_unlock;
2307
2308	down_write(&root->fs_info->subvol_sem);
2309
2310	err = may_destroy_subvol(dest);
2311	if (err)
2312		goto out_up_write;
2313
2314	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
2315	/*
2316	 * One for dir inode, two for dir entries, two for root
2317	 * ref/backref.
2318	 */
2319	err = btrfs_subvolume_reserve_metadata(root, &block_rsv,
2320					       5, &qgroup_reserved, true);
2321	if (err)
2322		goto out_up_write;
2323
2324	trans = btrfs_start_transaction(root, 0);
2325	if (IS_ERR(trans)) {
2326		err = PTR_ERR(trans);
2327		goto out_release;
2328	}
2329	trans->block_rsv = &block_rsv;
2330	trans->bytes_reserved = block_rsv.size;
2331
2332	ret = btrfs_unlink_subvol(trans, root, dir,
2333				dest->root_key.objectid,
2334				dentry->d_name.name,
2335				dentry->d_name.len);
2336	if (ret) {
2337		err = ret;
2338		btrfs_abort_transaction(trans, root, ret);
2339		goto out_end_trans;
2340	}
2341
2342	btrfs_record_root_in_trans(trans, dest);
2343
2344	memset(&dest->root_item.drop_progress, 0,
2345		sizeof(dest->root_item.drop_progress));
2346	dest->root_item.drop_level = 0;
2347	btrfs_set_root_refs(&dest->root_item, 0);
2348
2349	if (!xchg(&dest->orphan_item_inserted, 1)) {
2350		ret = btrfs_insert_orphan_item(trans,
2351					root->fs_info->tree_root,
2352					dest->root_key.objectid);
2353		if (ret) {
2354			btrfs_abort_transaction(trans, root, ret);
2355			err = ret;
2356			goto out_end_trans;
2357		}
2358	}
2359
2360	ret = btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root,
2361				  dest->root_item.uuid, BTRFS_UUID_KEY_SUBVOL,
2362				  dest->root_key.objectid);
2363	if (ret && ret != -ENOENT) {
2364		btrfs_abort_transaction(trans, root, ret);
2365		err = ret;
2366		goto out_end_trans;
2367	}
2368	if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
2369		ret = btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root,
2370					  dest->root_item.received_uuid,
2371					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
2372					  dest->root_key.objectid);
2373		if (ret && ret != -ENOENT) {
2374			btrfs_abort_transaction(trans, root, ret);
2375			err = ret;
2376			goto out_end_trans;
2377		}
2378	}
2379
2380out_end_trans:
2381	trans->block_rsv = NULL;
2382	trans->bytes_reserved = 0;
2383	ret = btrfs_end_transaction(trans, root);
2384	if (ret && !err)
2385		err = ret;
2386	inode->i_flags |= S_DEAD;
2387out_release:
2388	btrfs_subvolume_release_metadata(root, &block_rsv, qgroup_reserved);
2389out_up_write:
2390	up_write(&root->fs_info->subvol_sem);
2391out_unlock:
2392	mutex_unlock(&inode->i_mutex);
2393	if (!err) {
2394		shrink_dcache_sb(root->fs_info->sb);
2395		btrfs_invalidate_inodes(dest);
2396		d_delete(dentry);
 
2397
2398		/* the last ref */
2399		if (dest->cache_inode) {
2400			iput(dest->cache_inode);
2401			dest->cache_inode = NULL;
2402		}
2403	}
2404out_dput:
2405	dput(dentry);
2406out_unlock_dir:
2407	mutex_unlock(&dir->i_mutex);
 
 
 
 
 
2408out_drop_write:
2409	mnt_drop_write_file(file);
2410out:
 
2411	kfree(vol_args);
2412	return err;
2413}
2414
2415static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
2416{
2417	struct inode *inode = file_inode(file);
2418	struct btrfs_root *root = BTRFS_I(inode)->root;
2419	struct btrfs_ioctl_defrag_range_args *range;
2420	int ret;
2421
2422	ret = mnt_want_write_file(file);
2423	if (ret)
2424		return ret;
2425
2426	if (btrfs_root_readonly(root)) {
2427		ret = -EROFS;
2428		goto out;
2429	}
2430
2431	switch (inode->i_mode & S_IFMT) {
2432	case S_IFDIR:
2433		if (!capable(CAP_SYS_ADMIN)) {
2434			ret = -EPERM;
2435			goto out;
2436		}
2437		ret = btrfs_defrag_root(root);
2438		if (ret)
2439			goto out;
2440		ret = btrfs_defrag_root(root->fs_info->extent_root);
2441		break;
2442	case S_IFREG:
2443		if (!(file->f_mode & FMODE_WRITE)) {
2444			ret = -EINVAL;
 
 
 
 
 
 
2445			goto out;
2446		}
2447
2448		range = kzalloc(sizeof(*range), GFP_KERNEL);
2449		if (!range) {
2450			ret = -ENOMEM;
2451			goto out;
2452		}
2453
2454		if (argp) {
2455			if (copy_from_user(range, argp,
2456					   sizeof(*range))) {
2457				ret = -EFAULT;
2458				kfree(range);
2459				goto out;
2460			}
2461			/* compression requires us to start the IO */
2462			if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
2463				range->flags |= BTRFS_DEFRAG_RANGE_START_IO;
2464				range->extent_thresh = (u32)-1;
2465			}
2466		} else {
2467			/* the rest are all set to zero by kzalloc */
2468			range->len = (u64)-1;
2469		}
2470		ret = btrfs_defrag_file(file_inode(file), file,
2471					range, 0, 0);
2472		if (ret > 0)
2473			ret = 0;
2474		kfree(range);
2475		break;
2476	default:
2477		ret = -EINVAL;
2478	}
2479out:
2480	mnt_drop_write_file(file);
2481	return ret;
2482}
2483
2484static long btrfs_ioctl_add_dev(struct btrfs_root *root, void __user *arg)
2485{
2486	struct btrfs_ioctl_vol_args *vol_args;
2487	int ret;
2488
2489	if (!capable(CAP_SYS_ADMIN))
2490		return -EPERM;
2491
2492	if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
2493			1)) {
2494		return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2495	}
2496
2497	mutex_lock(&root->fs_info->volume_mutex);
2498	vol_args = memdup_user(arg, sizeof(*vol_args));
2499	if (IS_ERR(vol_args)) {
2500		ret = PTR_ERR(vol_args);
2501		goto out;
2502	}
2503
2504	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2505	ret = btrfs_init_new_device(root, vol_args->name);
 
 
 
2506
2507	kfree(vol_args);
2508out:
2509	mutex_unlock(&root->fs_info->volume_mutex);
2510	atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
2511	return ret;
2512}
2513
2514static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
2515{
2516	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
2517	struct btrfs_ioctl_vol_args *vol_args;
 
2518	int ret;
2519
2520	if (!capable(CAP_SYS_ADMIN))
2521		return -EPERM;
2522
2523	ret = mnt_want_write_file(file);
2524	if (ret)
2525		return ret;
2526
2527	vol_args = memdup_user(arg, sizeof(*vol_args));
2528	if (IS_ERR(vol_args)) {
2529		ret = PTR_ERR(vol_args);
 
 
 
 
 
2530		goto out;
2531	}
2532
2533	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2534
2535	if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
2536			1)) {
2537		ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
 
 
 
 
 
 
2538		goto out;
2539	}
2540
2541	mutex_lock(&root->fs_info->volume_mutex);
2542	ret = btrfs_rm_device(root, vol_args->name);
2543	mutex_unlock(&root->fs_info->volume_mutex);
2544	atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
2545
 
 
 
2546out:
2547	kfree(vol_args);
 
2548	mnt_drop_write_file(file);
 
2549	return ret;
2550}
2551
2552static long btrfs_ioctl_fs_info(struct btrfs_root *root, void __user *arg)
 
2553{
2554	struct btrfs_ioctl_fs_info_args *fi_args;
2555	struct btrfs_device *device;
2556	struct btrfs_device *next;
2557	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2558	int ret = 0;
2559
2560	if (!capable(CAP_SYS_ADMIN))
2561		return -EPERM;
 
2562
2563	fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL);
2564	if (!fi_args)
2565		return -ENOMEM;
2566
2567	mutex_lock(&fs_devices->device_list_mutex);
2568	fi_args->num_devices = fs_devices->num_devices;
2569	memcpy(&fi_args->fsid, root->fs_info->fsid, sizeof(fi_args->fsid));
2570
2571	list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
2572		if (device->devid > fi_args->max_id)
2573			fi_args->max_id = device->devid;
2574	}
2575	mutex_unlock(&fs_devices->device_list_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2576
2577	if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
2578		ret = -EFAULT;
2579
2580	kfree(fi_args);
2581	return ret;
2582}
2583
2584static long btrfs_ioctl_dev_info(struct btrfs_root *root, void __user *arg)
 
2585{
2586	struct btrfs_ioctl_dev_info_args *di_args;
2587	struct btrfs_device *dev;
2588	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2589	int ret = 0;
2590	char *s_uuid = NULL;
2591
2592	if (!capable(CAP_SYS_ADMIN))
2593		return -EPERM;
2594
2595	di_args = memdup_user(arg, sizeof(*di_args));
2596	if (IS_ERR(di_args))
2597		return PTR_ERR(di_args);
2598
2599	if (!btrfs_is_empty_uuid(di_args->uuid))
2600		s_uuid = di_args->uuid;
2601
2602	mutex_lock(&fs_devices->device_list_mutex);
2603	dev = btrfs_find_device(root->fs_info, di_args->devid, s_uuid, NULL);
 
2604
2605	if (!dev) {
2606		ret = -ENODEV;
2607		goto out;
2608	}
2609
2610	di_args->devid = dev->devid;
2611	di_args->bytes_used = dev->bytes_used;
2612	di_args->total_bytes = dev->total_bytes;
2613	memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
2614	if (dev->name) {
2615		struct rcu_string *name;
2616
2617		rcu_read_lock();
2618		name = rcu_dereference(dev->name);
2619		strncpy(di_args->path, name->str, sizeof(di_args->path));
2620		rcu_read_unlock();
2621		di_args->path[sizeof(di_args->path) - 1] = 0;
2622	} else {
2623		di_args->path[0] = '\0';
2624	}
2625
2626out:
2627	mutex_unlock(&fs_devices->device_list_mutex);
2628	if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
2629		ret = -EFAULT;
2630
2631	kfree(di_args);
2632	return ret;
2633}
2634
2635static struct page *extent_same_get_page(struct inode *inode, u64 off)
2636{
2637	struct page *page;
2638	pgoff_t index;
2639	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2640
2641	index = off >> PAGE_CACHE_SHIFT;
2642
2643	page = grab_cache_page(inode->i_mapping, index);
2644	if (!page)
2645		return NULL;
2646
2647	if (!PageUptodate(page)) {
2648		if (extent_read_full_page_nolock(tree, page, btrfs_get_extent,
2649						 0))
2650			return NULL;
2651		lock_page(page);
2652		if (!PageUptodate(page)) {
2653			unlock_page(page);
2654			page_cache_release(page);
2655			return NULL;
2656		}
2657	}
2658	unlock_page(page);
2659
2660	return page;
2661}
2662
2663static inline void lock_extent_range(struct inode *inode, u64 off, u64 len)
2664{
2665	/* do any pending delalloc/csum calc on src, one way or
2666	   another, and lock file content */
2667	while (1) {
2668		struct btrfs_ordered_extent *ordered;
2669		lock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
2670		ordered = btrfs_lookup_first_ordered_extent(inode,
2671							    off + len - 1);
2672		if (!ordered &&
2673		    !test_range_bit(&BTRFS_I(inode)->io_tree, off,
2674				    off + len - 1, EXTENT_DELALLOC, 0, NULL))
2675			break;
2676		unlock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
2677		if (ordered)
2678			btrfs_put_ordered_extent(ordered);
2679		btrfs_wait_ordered_range(inode, off, len);
2680	}
2681}
2682
2683static void btrfs_double_unlock(struct inode *inode1, u64 loff1,
2684				struct inode *inode2, u64 loff2, u64 len)
2685{
2686	unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1);
2687	unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1);
2688
2689	mutex_unlock(&inode1->i_mutex);
2690	mutex_unlock(&inode2->i_mutex);
2691}
2692
2693static void btrfs_double_lock(struct inode *inode1, u64 loff1,
2694			      struct inode *inode2, u64 loff2, u64 len)
2695{
2696	if (inode1 < inode2) {
2697		swap(inode1, inode2);
2698		swap(loff1, loff2);
2699	}
2700
2701	mutex_lock_nested(&inode1->i_mutex, I_MUTEX_PARENT);
2702	lock_extent_range(inode1, loff1, len);
2703	if (inode1 != inode2) {
2704		mutex_lock_nested(&inode2->i_mutex, I_MUTEX_CHILD);
2705		lock_extent_range(inode2, loff2, len);
2706	}
2707}
2708
2709static int btrfs_cmp_data(struct inode *src, u64 loff, struct inode *dst,
2710			  u64 dst_loff, u64 len)
2711{
2712	int ret = 0;
2713	struct page *src_page, *dst_page;
2714	unsigned int cmp_len = PAGE_CACHE_SIZE;
2715	void *addr, *dst_addr;
2716
2717	while (len) {
2718		if (len < PAGE_CACHE_SIZE)
2719			cmp_len = len;
2720
2721		src_page = extent_same_get_page(src, loff);
2722		if (!src_page)
2723			return -EINVAL;
2724		dst_page = extent_same_get_page(dst, dst_loff);
2725		if (!dst_page) {
2726			page_cache_release(src_page);
2727			return -EINVAL;
2728		}
2729		addr = kmap_atomic(src_page);
2730		dst_addr = kmap_atomic(dst_page);
2731
2732		flush_dcache_page(src_page);
2733		flush_dcache_page(dst_page);
2734
2735		if (memcmp(addr, dst_addr, cmp_len))
2736			ret = BTRFS_SAME_DATA_DIFFERS;
2737
2738		kunmap_atomic(addr);
2739		kunmap_atomic(dst_addr);
2740		page_cache_release(src_page);
2741		page_cache_release(dst_page);
2742
2743		if (ret)
2744			break;
2745
2746		loff += cmp_len;
2747		dst_loff += cmp_len;
2748		len -= cmp_len;
2749	}
2750
2751	return ret;
2752}
2753
2754static int extent_same_check_offsets(struct inode *inode, u64 off, u64 len)
2755{
2756	u64 bs = BTRFS_I(inode)->root->fs_info->sb->s_blocksize;
2757
2758	if (off + len > inode->i_size || off + len < off)
2759		return -EINVAL;
2760	/* Check that we are block aligned - btrfs_clone() requires this */
2761	if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs))
2762		return -EINVAL;
2763
2764	return 0;
2765}
2766
2767static int btrfs_extent_same(struct inode *src, u64 loff, u64 len,
2768			     struct inode *dst, u64 dst_loff)
2769{
2770	int ret;
2771
2772	/*
2773	 * btrfs_clone() can't handle extents in the same file
2774	 * yet. Once that works, we can drop this check and replace it
2775	 * with a check for the same inode, but overlapping extents.
2776	 */
2777	if (src == dst)
2778		return -EINVAL;
2779
2780	btrfs_double_lock(src, loff, dst, dst_loff, len);
2781
2782	ret = extent_same_check_offsets(src, loff, len);
2783	if (ret)
2784		goto out_unlock;
2785
2786	ret = extent_same_check_offsets(dst, dst_loff, len);
2787	if (ret)
2788		goto out_unlock;
2789
2790	/* don't make the dst file partly checksummed */
2791	if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
2792	    (BTRFS_I(dst)->flags & BTRFS_INODE_NODATASUM)) {
2793		ret = -EINVAL;
2794		goto out_unlock;
2795	}
2796
2797	ret = btrfs_cmp_data(src, loff, dst, dst_loff, len);
2798	if (ret == 0)
2799		ret = btrfs_clone(src, dst, loff, len, len, dst_loff);
2800
2801out_unlock:
2802	btrfs_double_unlock(src, loff, dst, dst_loff, len);
2803
2804	return ret;
2805}
2806
2807#define BTRFS_MAX_DEDUPE_LEN	(16 * 1024 * 1024)
2808
2809static long btrfs_ioctl_file_extent_same(struct file *file,
2810			struct btrfs_ioctl_same_args __user *argp)
2811{
2812	struct btrfs_ioctl_same_args *same;
2813	struct btrfs_ioctl_same_extent_info *info;
2814	struct inode *src = file_inode(file);
2815	u64 off;
2816	u64 len;
2817	int i;
2818	int ret;
2819	unsigned long size;
2820	u64 bs = BTRFS_I(src)->root->fs_info->sb->s_blocksize;
2821	bool is_admin = capable(CAP_SYS_ADMIN);
2822	u16 count;
2823
2824	if (!(file->f_mode & FMODE_READ))
2825		return -EINVAL;
2826
2827	ret = mnt_want_write_file(file);
2828	if (ret)
2829		return ret;
2830
2831	if (get_user(count, &argp->dest_count)) {
2832		ret = -EFAULT;
2833		goto out;
2834	}
2835
2836	size = offsetof(struct btrfs_ioctl_same_args __user, info[count]);
2837
2838	same = memdup_user(argp, size);
2839
2840	if (IS_ERR(same)) {
2841		ret = PTR_ERR(same);
2842		goto out;
2843	}
2844
2845	off = same->logical_offset;
2846	len = same->length;
2847
2848	/*
2849	 * Limit the total length we will dedupe for each operation.
2850	 * This is intended to bound the total time spent in this
2851	 * ioctl to something sane.
2852	 */
2853	if (len > BTRFS_MAX_DEDUPE_LEN)
2854		len = BTRFS_MAX_DEDUPE_LEN;
2855
2856	if (WARN_ON_ONCE(bs < PAGE_CACHE_SIZE)) {
2857		/*
2858		 * Btrfs does not support blocksize < page_size. As a
2859		 * result, btrfs_cmp_data() won't correctly handle
2860		 * this situation without an update.
2861		 */
2862		ret = -EINVAL;
2863		goto out;
2864	}
2865
2866	ret = -EISDIR;
2867	if (S_ISDIR(src->i_mode))
2868		goto out;
2869
2870	ret = -EACCES;
2871	if (!S_ISREG(src->i_mode))
2872		goto out;
2873
2874	/* pre-format output fields to sane values */
2875	for (i = 0; i < count; i++) {
2876		same->info[i].bytes_deduped = 0ULL;
2877		same->info[i].status = 0;
2878	}
2879
2880	for (i = 0, info = same->info; i < count; i++, info++) {
2881		struct inode *dst;
2882		struct fd dst_file = fdget(info->fd);
2883		if (!dst_file.file) {
2884			info->status = -EBADF;
2885			continue;
2886		}
2887		dst = file_inode(dst_file.file);
2888
2889		if (!(is_admin || (dst_file.file->f_mode & FMODE_WRITE))) {
2890			info->status = -EINVAL;
2891		} else if (file->f_path.mnt != dst_file.file->f_path.mnt) {
2892			info->status = -EXDEV;
2893		} else if (S_ISDIR(dst->i_mode)) {
2894			info->status = -EISDIR;
2895		} else if (!S_ISREG(dst->i_mode)) {
2896			info->status = -EACCES;
2897		} else {
2898			info->status = btrfs_extent_same(src, off, len, dst,
2899							info->logical_offset);
2900			if (info->status == 0)
2901				info->bytes_deduped += len;
2902		}
2903		fdput(dst_file);
2904	}
2905
2906	ret = copy_to_user(argp, same, size);
2907	if (ret)
2908		ret = -EFAULT;
2909
2910out:
2911	mnt_drop_write_file(file);
2912	return ret;
2913}
2914
2915/**
2916 * btrfs_clone() - clone a range from inode file to another
2917 *
2918 * @src: Inode to clone from
2919 * @inode: Inode to clone to
2920 * @off: Offset within source to start clone from
2921 * @olen: Original length, passed by user, of range to clone
2922 * @olen_aligned: Block-aligned value of olen, extent_same uses
2923 *               identical values here
2924 * @destoff: Offset within @inode to start clone
2925 */
2926static int btrfs_clone(struct inode *src, struct inode *inode,
2927		       u64 off, u64 olen, u64 olen_aligned, u64 destoff)
2928{
2929	struct btrfs_root *root = BTRFS_I(inode)->root;
2930	struct btrfs_path *path = NULL;
2931	struct extent_buffer *leaf;
2932	struct btrfs_trans_handle *trans;
2933	char *buf = NULL;
2934	struct btrfs_key key;
2935	u32 nritems;
2936	int slot;
2937	int ret;
2938	u64 len = olen_aligned;
2939
2940	ret = -ENOMEM;
2941	buf = vmalloc(btrfs_level_size(root, 0));
2942	if (!buf)
2943		return ret;
2944
2945	path = btrfs_alloc_path();
2946	if (!path) {
2947		vfree(buf);
2948		return ret;
2949	}
2950
2951	path->reada = 2;
2952	/* clone data */
2953	key.objectid = btrfs_ino(src);
2954	key.type = BTRFS_EXTENT_DATA_KEY;
2955	key.offset = 0;
2956
2957	while (1) {
2958		/*
2959		 * note the key will change type as we walk through the
2960		 * tree.
2961		 */
2962		path->leave_spinning = 1;
2963		ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path,
2964				0, 0);
2965		if (ret < 0)
2966			goto out;
2967
2968		nritems = btrfs_header_nritems(path->nodes[0]);
2969process_slot:
2970		if (path->slots[0] >= nritems) {
2971			ret = btrfs_next_leaf(BTRFS_I(src)->root, path);
2972			if (ret < 0)
2973				goto out;
2974			if (ret > 0)
2975				break;
2976			nritems = btrfs_header_nritems(path->nodes[0]);
2977		}
2978		leaf = path->nodes[0];
2979		slot = path->slots[0];
2980
2981		btrfs_item_key_to_cpu(leaf, &key, slot);
2982		if (btrfs_key_type(&key) > BTRFS_EXTENT_DATA_KEY ||
2983		    key.objectid != btrfs_ino(src))
2984			break;
2985
2986		if (btrfs_key_type(&key) == BTRFS_EXTENT_DATA_KEY) {
2987			struct btrfs_file_extent_item *extent;
2988			int type;
2989			u32 size;
2990			struct btrfs_key new_key;
2991			u64 disko = 0, diskl = 0;
2992			u64 datao = 0, datal = 0;
2993			u8 comp;
2994			u64 endoff;
2995
2996			extent = btrfs_item_ptr(leaf, slot,
2997						struct btrfs_file_extent_item);
2998			comp = btrfs_file_extent_compression(leaf, extent);
2999			type = btrfs_file_extent_type(leaf, extent);
3000			if (type == BTRFS_FILE_EXTENT_REG ||
3001			    type == BTRFS_FILE_EXTENT_PREALLOC) {
3002				disko = btrfs_file_extent_disk_bytenr(leaf,
3003								      extent);
3004				diskl = btrfs_file_extent_disk_num_bytes(leaf,
3005								 extent);
3006				datao = btrfs_file_extent_offset(leaf, extent);
3007				datal = btrfs_file_extent_num_bytes(leaf,
3008								    extent);
3009			} else if (type == BTRFS_FILE_EXTENT_INLINE) {
3010				/* take upper bound, may be compressed */
3011				datal = btrfs_file_extent_ram_bytes(leaf,
3012								    extent);
3013			}
3014
3015			if (key.offset + datal <= off ||
3016			    key.offset >= off + len - 1) {
3017				path->slots[0]++;
3018				goto process_slot;
3019			}
3020
3021			size = btrfs_item_size_nr(leaf, slot);
3022			read_extent_buffer(leaf, buf,
3023					   btrfs_item_ptr_offset(leaf, slot),
3024					   size);
3025
3026			btrfs_release_path(path);
3027			path->leave_spinning = 0;
3028
3029			memcpy(&new_key, &key, sizeof(new_key));
3030			new_key.objectid = btrfs_ino(inode);
3031			if (off <= key.offset)
3032				new_key.offset = key.offset + destoff - off;
3033			else
3034				new_key.offset = destoff;
3035
3036			/*
3037			 * 1 - adjusting old extent (we may have to split it)
3038			 * 1 - add new extent
3039			 * 1 - inode update
3040			 */
3041			trans = btrfs_start_transaction(root, 3);
3042			if (IS_ERR(trans)) {
3043				ret = PTR_ERR(trans);
3044				goto out;
3045			}
3046
3047			if (type == BTRFS_FILE_EXTENT_REG ||
3048			    type == BTRFS_FILE_EXTENT_PREALLOC) {
3049				/*
3050				 *    a  | --- range to clone ---|  b
3051				 * | ------------- extent ------------- |
3052				 */
3053
3054				/* substract range b */
3055				if (key.offset + datal > off + len)
3056					datal = off + len - key.offset;
3057
3058				/* substract range a */
3059				if (off > key.offset) {
3060					datao += off - key.offset;
3061					datal -= off - key.offset;
3062				}
3063
3064				ret = btrfs_drop_extents(trans, root, inode,
3065							 new_key.offset,
3066							 new_key.offset + datal,
3067							 1);
3068				if (ret) {
3069					if (ret != -EOPNOTSUPP)
3070						btrfs_abort_transaction(trans,
3071								root, ret);
3072					btrfs_end_transaction(trans, root);
3073					goto out;
3074				}
3075
3076				ret = btrfs_insert_empty_item(trans, root, path,
3077							      &new_key, size);
3078				if (ret) {
3079					btrfs_abort_transaction(trans, root,
3080								ret);
3081					btrfs_end_transaction(trans, root);
3082					goto out;
3083				}
3084
3085				leaf = path->nodes[0];
3086				slot = path->slots[0];
3087				write_extent_buffer(leaf, buf,
3088					    btrfs_item_ptr_offset(leaf, slot),
3089					    size);
3090
3091				extent = btrfs_item_ptr(leaf, slot,
3092						struct btrfs_file_extent_item);
3093
3094				/* disko == 0 means it's a hole */
3095				if (!disko)
3096					datao = 0;
3097
3098				btrfs_set_file_extent_offset(leaf, extent,
3099							     datao);
3100				btrfs_set_file_extent_num_bytes(leaf, extent,
3101								datal);
3102				if (disko) {
3103					inode_add_bytes(inode, datal);
3104					ret = btrfs_inc_extent_ref(trans, root,
3105							disko, diskl, 0,
3106							root->root_key.objectid,
3107							btrfs_ino(inode),
3108							new_key.offset - datao,
3109							0);
3110					if (ret) {
3111						btrfs_abort_transaction(trans,
3112									root,
3113									ret);
3114						btrfs_end_transaction(trans,
3115								      root);
3116						goto out;
3117
3118					}
3119				}
3120			} else if (type == BTRFS_FILE_EXTENT_INLINE) {
3121				u64 skip = 0;
3122				u64 trim = 0;
3123				u64 aligned_end = 0;
3124
3125				if (off > key.offset) {
3126					skip = off - key.offset;
3127					new_key.offset += skip;
3128				}
3129
3130				if (key.offset + datal > off + len)
3131					trim = key.offset + datal - (off + len);
3132
3133				if (comp && (skip || trim)) {
3134					ret = -EINVAL;
3135					btrfs_end_transaction(trans, root);
3136					goto out;
3137				}
3138				size -= skip + trim;
3139				datal -= skip + trim;
3140
3141				aligned_end = ALIGN(new_key.offset + datal,
3142						    root->sectorsize);
3143				ret = btrfs_drop_extents(trans, root, inode,
3144							 new_key.offset,
3145							 aligned_end,
3146							 1);
3147				if (ret) {
3148					if (ret != -EOPNOTSUPP)
3149						btrfs_abort_transaction(trans,
3150							root, ret);
3151					btrfs_end_transaction(trans, root);
3152					goto out;
3153				}
3154
3155				ret = btrfs_insert_empty_item(trans, root, path,
3156							      &new_key, size);
3157				if (ret) {
3158					btrfs_abort_transaction(trans, root,
3159								ret);
3160					btrfs_end_transaction(trans, root);
3161					goto out;
3162				}
3163
3164				if (skip) {
3165					u32 start =
3166					  btrfs_file_extent_calc_inline_size(0);
3167					memmove(buf+start, buf+start+skip,
3168						datal);
3169				}
3170
3171				leaf = path->nodes[0];
3172				slot = path->slots[0];
3173				write_extent_buffer(leaf, buf,
3174					    btrfs_item_ptr_offset(leaf, slot),
3175					    size);
3176				inode_add_bytes(inode, datal);
3177			}
3178
3179			btrfs_mark_buffer_dirty(leaf);
3180			btrfs_release_path(path);
3181
3182			inode_inc_iversion(inode);
3183			inode->i_mtime = inode->i_ctime = CURRENT_TIME;
3184
3185			/*
3186			 * we round up to the block size at eof when
3187			 * determining which extents to clone above,
3188			 * but shouldn't round up the file size
3189			 */
3190			endoff = new_key.offset + datal;
3191			if (endoff > destoff+olen)
3192				endoff = destoff+olen;
3193			if (endoff > inode->i_size)
3194				btrfs_i_size_write(inode, endoff);
3195
3196			ret = btrfs_update_inode(trans, root, inode);
3197			if (ret) {
3198				btrfs_abort_transaction(trans, root, ret);
3199				btrfs_end_transaction(trans, root);
3200				goto out;
3201			}
3202			ret = btrfs_end_transaction(trans, root);
3203		}
3204		btrfs_release_path(path);
3205		key.offset++;
3206	}
3207	ret = 0;
3208
3209out:
3210	btrfs_release_path(path);
3211	btrfs_free_path(path);
3212	vfree(buf);
3213	return ret;
3214}
3215
3216static noinline long btrfs_ioctl_clone(struct file *file, unsigned long srcfd,
3217				       u64 off, u64 olen, u64 destoff)
3218{
3219	struct inode *inode = file_inode(file);
3220	struct btrfs_root *root = BTRFS_I(inode)->root;
3221	struct fd src_file;
3222	struct inode *src;
3223	int ret;
3224	u64 len = olen;
3225	u64 bs = root->fs_info->sb->s_blocksize;
3226	int same_inode = 0;
3227
3228	/*
3229	 * TODO:
3230	 * - split compressed inline extents.  annoying: we need to
3231	 *   decompress into destination's address_space (the file offset
3232	 *   may change, so source mapping won't do), then recompress (or
3233	 *   otherwise reinsert) a subrange.
3234	 *
3235	 * - split destination inode's inline extents.  The inline extents can
3236	 *   be either compressed or non-compressed.
3237	 */
3238
3239	/* the destination must be opened for writing */
3240	if (!(file->f_mode & FMODE_WRITE) || (file->f_flags & O_APPEND))
3241		return -EINVAL;
3242
3243	if (btrfs_root_readonly(root))
3244		return -EROFS;
3245
3246	ret = mnt_want_write_file(file);
3247	if (ret)
3248		return ret;
3249
3250	src_file = fdget(srcfd);
3251	if (!src_file.file) {
3252		ret = -EBADF;
3253		goto out_drop_write;
3254	}
3255
3256	ret = -EXDEV;
3257	if (src_file.file->f_path.mnt != file->f_path.mnt)
3258		goto out_fput;
3259
3260	src = file_inode(src_file.file);
3261
3262	ret = -EINVAL;
3263	if (src == inode)
3264		same_inode = 1;
3265
3266	/* the src must be open for reading */
3267	if (!(src_file.file->f_mode & FMODE_READ))
3268		goto out_fput;
3269
3270	/* don't make the dst file partly checksummed */
3271	if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
3272	    (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM))
3273		goto out_fput;
3274
3275	ret = -EISDIR;
3276	if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode))
3277		goto out_fput;
3278
3279	ret = -EXDEV;
3280	if (src->i_sb != inode->i_sb)
3281		goto out_fput;
3282
3283	if (!same_inode) {
3284		if (inode < src) {
3285			mutex_lock_nested(&inode->i_mutex, I_MUTEX_PARENT);
3286			mutex_lock_nested(&src->i_mutex, I_MUTEX_CHILD);
3287		} else {
3288			mutex_lock_nested(&src->i_mutex, I_MUTEX_PARENT);
3289			mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
3290		}
3291	} else {
3292		mutex_lock(&src->i_mutex);
3293	}
3294
3295	/* determine range to clone */
3296	ret = -EINVAL;
3297	if (off + len > src->i_size || off + len < off)
3298		goto out_unlock;
3299	if (len == 0)
3300		olen = len = src->i_size - off;
3301	/* if we extend to eof, continue to block boundary */
3302	if (off + len == src->i_size)
3303		len = ALIGN(src->i_size, bs) - off;
3304
3305	/* verify the end result is block aligned */
3306	if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs) ||
3307	    !IS_ALIGNED(destoff, bs))
3308		goto out_unlock;
3309
3310	/* verify if ranges are overlapped within the same file */
3311	if (same_inode) {
3312		if (destoff + len > off && destoff < off + len)
3313			goto out_unlock;
3314	}
3315
3316	if (destoff > inode->i_size) {
3317		ret = btrfs_cont_expand(inode, inode->i_size, destoff);
3318		if (ret)
3319			goto out_unlock;
3320	}
3321
3322	/* truncate page cache pages from target inode range */
3323	truncate_inode_pages_range(&inode->i_data, destoff,
3324				   PAGE_CACHE_ALIGN(destoff + len) - 1);
3325
3326	lock_extent_range(src, off, len);
3327
3328	ret = btrfs_clone(src, inode, off, olen, len, destoff);
3329
3330	unlock_extent(&BTRFS_I(src)->io_tree, off, off + len - 1);
3331out_unlock:
3332	if (!same_inode) {
3333		if (inode < src) {
3334			mutex_unlock(&src->i_mutex);
3335			mutex_unlock(&inode->i_mutex);
3336		} else {
3337			mutex_unlock(&inode->i_mutex);
3338			mutex_unlock(&src->i_mutex);
3339		}
3340	} else {
3341		mutex_unlock(&src->i_mutex);
3342	}
3343out_fput:
3344	fdput(src_file);
3345out_drop_write:
3346	mnt_drop_write_file(file);
3347	return ret;
3348}
3349
3350static long btrfs_ioctl_clone_range(struct file *file, void __user *argp)
3351{
3352	struct btrfs_ioctl_clone_range_args args;
3353
3354	if (copy_from_user(&args, argp, sizeof(args)))
3355		return -EFAULT;
3356	return btrfs_ioctl_clone(file, args.src_fd, args.src_offset,
3357				 args.src_length, args.dest_offset);
3358}
3359
3360/*
3361 * there are many ways the trans_start and trans_end ioctls can lead
3362 * to deadlocks.  They should only be used by applications that
3363 * basically own the machine, and have a very in depth understanding
3364 * of all the possible deadlocks and enospc problems.
3365 */
3366static long btrfs_ioctl_trans_start(struct file *file)
3367{
3368	struct inode *inode = file_inode(file);
3369	struct btrfs_root *root = BTRFS_I(inode)->root;
3370	struct btrfs_trans_handle *trans;
3371	int ret;
3372
3373	ret = -EPERM;
3374	if (!capable(CAP_SYS_ADMIN))
3375		goto out;
3376
3377	ret = -EINPROGRESS;
3378	if (file->private_data)
3379		goto out;
3380
3381	ret = -EROFS;
3382	if (btrfs_root_readonly(root))
3383		goto out;
3384
3385	ret = mnt_want_write_file(file);
3386	if (ret)
3387		goto out;
3388
3389	atomic_inc(&root->fs_info->open_ioctl_trans);
3390
3391	ret = -ENOMEM;
3392	trans = btrfs_start_ioctl_transaction(root);
3393	if (IS_ERR(trans))
3394		goto out_drop;
3395
3396	file->private_data = trans;
3397	return 0;
3398
3399out_drop:
3400	atomic_dec(&root->fs_info->open_ioctl_trans);
3401	mnt_drop_write_file(file);
3402out:
3403	return ret;
3404}
3405
3406static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
3407{
3408	struct inode *inode = file_inode(file);
 
3409	struct btrfs_root *root = BTRFS_I(inode)->root;
3410	struct btrfs_root *new_root;
3411	struct btrfs_dir_item *di;
3412	struct btrfs_trans_handle *trans;
3413	struct btrfs_path *path;
3414	struct btrfs_key location;
3415	struct btrfs_disk_key disk_key;
3416	u64 objectid = 0;
3417	u64 dir_id;
3418	int ret;
3419
3420	if (!capable(CAP_SYS_ADMIN))
3421		return -EPERM;
3422
3423	ret = mnt_want_write_file(file);
3424	if (ret)
3425		return ret;
3426
3427	if (copy_from_user(&objectid, argp, sizeof(objectid))) {
3428		ret = -EFAULT;
3429		goto out;
3430	}
3431
3432	if (!objectid)
3433		objectid = BTRFS_FS_TREE_OBJECTID;
3434
3435	location.objectid = objectid;
3436	location.type = BTRFS_ROOT_ITEM_KEY;
3437	location.offset = (u64)-1;
3438
3439	new_root = btrfs_read_fs_root_no_name(root->fs_info, &location);
3440	if (IS_ERR(new_root)) {
3441		ret = PTR_ERR(new_root);
3442		goto out;
3443	}
 
 
 
 
3444
3445	path = btrfs_alloc_path();
3446	if (!path) {
3447		ret = -ENOMEM;
3448		goto out;
3449	}
3450	path->leave_spinning = 1;
3451
3452	trans = btrfs_start_transaction(root, 1);
3453	if (IS_ERR(trans)) {
3454		btrfs_free_path(path);
3455		ret = PTR_ERR(trans);
3456		goto out;
3457	}
3458
3459	dir_id = btrfs_super_root_dir(root->fs_info->super_copy);
3460	di = btrfs_lookup_dir_item(trans, root->fs_info->tree_root, path,
3461				   dir_id, "default", 7, 1);
3462	if (IS_ERR_OR_NULL(di)) {
3463		btrfs_free_path(path);
3464		btrfs_end_transaction(trans, root);
3465		btrfs_err(new_root->fs_info, "Umm, you don't have the default dir"
3466			   "item, this isn't going to work");
3467		ret = -ENOENT;
3468		goto out;
3469	}
3470
3471	btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
3472	btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
3473	btrfs_mark_buffer_dirty(path->nodes[0]);
 
 
 
 
 
 
3474	btrfs_free_path(path);
3475
3476	btrfs_set_fs_incompat(root->fs_info, DEFAULT_SUBVOL);
3477	btrfs_end_transaction(trans, root);
3478out:
3479	mnt_drop_write_file(file);
3480	return ret;
3481}
3482
3483void btrfs_get_block_group_info(struct list_head *groups_list,
3484				struct btrfs_ioctl_space_info *space)
3485{
3486	struct btrfs_block_group_cache *block_group;
3487
3488	space->total_bytes = 0;
3489	space->used_bytes = 0;
3490	space->flags = 0;
3491	list_for_each_entry(block_group, groups_list, list) {
3492		space->flags = block_group->flags;
3493		space->total_bytes += block_group->key.offset;
3494		space->used_bytes +=
3495			btrfs_block_group_used(&block_group->item);
3496	}
3497}
3498
3499static long btrfs_ioctl_space_info(struct btrfs_root *root, void __user *arg)
 
3500{
3501	struct btrfs_ioctl_space_args space_args;
3502	struct btrfs_ioctl_space_info space;
3503	struct btrfs_ioctl_space_info *dest;
3504	struct btrfs_ioctl_space_info *dest_orig;
3505	struct btrfs_ioctl_space_info __user *user_dest;
3506	struct btrfs_space_info *info;
3507	u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3508		       BTRFS_BLOCK_GROUP_SYSTEM,
3509		       BTRFS_BLOCK_GROUP_METADATA,
3510		       BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
 
 
3511	int num_types = 4;
3512	int alloc_size;
3513	int ret = 0;
3514	u64 slot_count = 0;
3515	int i, c;
3516
3517	if (copy_from_user(&space_args,
3518			   (struct btrfs_ioctl_space_args __user *)arg,
3519			   sizeof(space_args)))
3520		return -EFAULT;
3521
3522	for (i = 0; i < num_types; i++) {
3523		struct btrfs_space_info *tmp;
3524
3525		info = NULL;
3526		rcu_read_lock();
3527		list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
3528					list) {
3529			if (tmp->flags == types[i]) {
3530				info = tmp;
3531				break;
3532			}
3533		}
3534		rcu_read_unlock();
3535
3536		if (!info)
3537			continue;
3538
3539		down_read(&info->groups_sem);
3540		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3541			if (!list_empty(&info->block_groups[c]))
3542				slot_count++;
3543		}
3544		up_read(&info->groups_sem);
3545	}
3546
3547	/*
3548	 * Global block reserve, exported as a space_info
3549	 */
3550	slot_count++;
3551
3552	/* space_slots == 0 means they are asking for a count */
3553	if (space_args.space_slots == 0) {
3554		space_args.total_spaces = slot_count;
3555		goto out;
3556	}
3557
3558	slot_count = min_t(u64, space_args.space_slots, slot_count);
3559
3560	alloc_size = sizeof(*dest) * slot_count;
3561
3562	/* we generally have at most 6 or so space infos, one for each raid
3563	 * level.  So, a whole page should be more than enough for everyone
3564	 */
3565	if (alloc_size > PAGE_CACHE_SIZE)
3566		return -ENOMEM;
3567
3568	space_args.total_spaces = 0;
3569	dest = kmalloc(alloc_size, GFP_NOFS);
3570	if (!dest)
3571		return -ENOMEM;
3572	dest_orig = dest;
3573
3574	/* now we have a buffer to copy into */
3575	for (i = 0; i < num_types; i++) {
3576		struct btrfs_space_info *tmp;
3577
3578		if (!slot_count)
3579			break;
3580
3581		info = NULL;
3582		rcu_read_lock();
3583		list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
3584					list) {
3585			if (tmp->flags == types[i]) {
3586				info = tmp;
3587				break;
3588			}
3589		}
3590		rcu_read_unlock();
3591
3592		if (!info)
3593			continue;
3594		down_read(&info->groups_sem);
3595		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3596			if (!list_empty(&info->block_groups[c])) {
3597				btrfs_get_block_group_info(
3598					&info->block_groups[c], &space);
3599				memcpy(dest, &space, sizeof(space));
3600				dest++;
3601				space_args.total_spaces++;
3602				slot_count--;
3603			}
3604			if (!slot_count)
3605				break;
3606		}
3607		up_read(&info->groups_sem);
3608	}
3609
3610	/*
3611	 * Add global block reserve
3612	 */
3613	if (slot_count) {
3614		struct btrfs_block_rsv *block_rsv = &root->fs_info->global_block_rsv;
3615
3616		spin_lock(&block_rsv->lock);
3617		space.total_bytes = block_rsv->size;
3618		space.used_bytes = block_rsv->size - block_rsv->reserved;
3619		spin_unlock(&block_rsv->lock);
3620		space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
3621		memcpy(dest, &space, sizeof(space));
3622		space_args.total_spaces++;
3623	}
3624
3625	user_dest = (struct btrfs_ioctl_space_info __user *)
3626		(arg + sizeof(struct btrfs_ioctl_space_args));
3627
3628	if (copy_to_user(user_dest, dest_orig, alloc_size))
3629		ret = -EFAULT;
3630
3631	kfree(dest_orig);
3632out:
3633	if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
3634		ret = -EFAULT;
3635
3636	return ret;
3637}
3638
3639/*
3640 * there are many ways the trans_start and trans_end ioctls can lead
3641 * to deadlocks.  They should only be used by applications that
3642 * basically own the machine, and have a very in depth understanding
3643 * of all the possible deadlocks and enospc problems.
3644 */
3645long btrfs_ioctl_trans_end(struct file *file)
3646{
3647	struct inode *inode = file_inode(file);
3648	struct btrfs_root *root = BTRFS_I(inode)->root;
3649	struct btrfs_trans_handle *trans;
3650
3651	trans = file->private_data;
3652	if (!trans)
3653		return -EINVAL;
3654	file->private_data = NULL;
3655
3656	btrfs_end_transaction(trans, root);
3657
3658	atomic_dec(&root->fs_info->open_ioctl_trans);
3659
3660	mnt_drop_write_file(file);
3661	return 0;
3662}
3663
3664static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
3665					    void __user *argp)
3666{
3667	struct btrfs_trans_handle *trans;
3668	u64 transid;
3669	int ret;
3670
3671	trans = btrfs_attach_transaction_barrier(root);
3672	if (IS_ERR(trans)) {
3673		if (PTR_ERR(trans) != -ENOENT)
3674			return PTR_ERR(trans);
3675
3676		/* No running transaction, don't bother */
3677		transid = root->fs_info->last_trans_committed;
3678		goto out;
3679	}
3680	transid = trans->transid;
3681	ret = btrfs_commit_transaction_async(trans, root, 0);
3682	if (ret) {
3683		btrfs_end_transaction(trans, root);
3684		return ret;
3685	}
3686out:
3687	if (argp)
3688		if (copy_to_user(argp, &transid, sizeof(transid)))
3689			return -EFAULT;
3690	return 0;
3691}
3692
3693static noinline long btrfs_ioctl_wait_sync(struct btrfs_root *root,
3694					   void __user *argp)
3695{
3696	u64 transid;
3697
3698	if (argp) {
3699		if (copy_from_user(&transid, argp, sizeof(transid)))
3700			return -EFAULT;
3701	} else {
3702		transid = 0;  /* current trans */
3703	}
3704	return btrfs_wait_for_commit(root, transid);
3705}
3706
3707static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
3708{
3709	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
3710	struct btrfs_ioctl_scrub_args *sa;
3711	int ret;
3712
3713	if (!capable(CAP_SYS_ADMIN))
3714		return -EPERM;
3715
3716	sa = memdup_user(arg, sizeof(*sa));
3717	if (IS_ERR(sa))
3718		return PTR_ERR(sa);
3719
3720	if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
3721		ret = mnt_want_write_file(file);
3722		if (ret)
3723			goto out;
3724	}
3725
3726	ret = btrfs_scrub_dev(root->fs_info, sa->devid, sa->start, sa->end,
3727			      &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
3728			      0);
3729
 
 
 
 
 
 
 
 
 
 
 
 
3730	if (copy_to_user(arg, sa, sizeof(*sa)))
3731		ret = -EFAULT;
3732
3733	if (!(sa->flags & BTRFS_SCRUB_READONLY))
3734		mnt_drop_write_file(file);
3735out:
3736	kfree(sa);
3737	return ret;
3738}
3739
3740static long btrfs_ioctl_scrub_cancel(struct btrfs_root *root, void __user *arg)
3741{
3742	if (!capable(CAP_SYS_ADMIN))
3743		return -EPERM;
3744
3745	return btrfs_scrub_cancel(root->fs_info);
3746}
3747
3748static long btrfs_ioctl_scrub_progress(struct btrfs_root *root,
3749				       void __user *arg)
3750{
3751	struct btrfs_ioctl_scrub_args *sa;
3752	int ret;
3753
3754	if (!capable(CAP_SYS_ADMIN))
3755		return -EPERM;
3756
3757	sa = memdup_user(arg, sizeof(*sa));
3758	if (IS_ERR(sa))
3759		return PTR_ERR(sa);
3760
3761	ret = btrfs_scrub_progress(root, sa->devid, &sa->progress);
3762
3763	if (copy_to_user(arg, sa, sizeof(*sa)))
3764		ret = -EFAULT;
3765
3766	kfree(sa);
3767	return ret;
3768}
3769
3770static long btrfs_ioctl_get_dev_stats(struct btrfs_root *root,
3771				      void __user *arg)
3772{
3773	struct btrfs_ioctl_get_dev_stats *sa;
3774	int ret;
3775
3776	sa = memdup_user(arg, sizeof(*sa));
3777	if (IS_ERR(sa))
3778		return PTR_ERR(sa);
3779
3780	if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
3781		kfree(sa);
3782		return -EPERM;
3783	}
3784
3785	ret = btrfs_get_dev_stats(root, sa);
3786
3787	if (copy_to_user(arg, sa, sizeof(*sa)))
3788		ret = -EFAULT;
3789
3790	kfree(sa);
3791	return ret;
3792}
3793
3794static long btrfs_ioctl_dev_replace(struct btrfs_root *root, void __user *arg)
 
3795{
3796	struct btrfs_ioctl_dev_replace_args *p;
3797	int ret;
3798
3799	if (!capable(CAP_SYS_ADMIN))
3800		return -EPERM;
3801
3802	p = memdup_user(arg, sizeof(*p));
3803	if (IS_ERR(p))
3804		return PTR_ERR(p);
3805
3806	switch (p->cmd) {
3807	case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
3808		if (root->fs_info->sb->s_flags & MS_RDONLY) {
3809			ret = -EROFS;
3810			goto out;
3811		}
3812		if (atomic_xchg(
3813			&root->fs_info->mutually_exclusive_operation_running,
3814			1)) {
3815			ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3816		} else {
3817			ret = btrfs_dev_replace_start(root, p);
3818			atomic_set(
3819			 &root->fs_info->mutually_exclusive_operation_running,
3820			 0);
3821		}
3822		break;
3823	case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
3824		btrfs_dev_replace_status(root->fs_info, p);
3825		ret = 0;
3826		break;
3827	case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
3828		ret = btrfs_dev_replace_cancel(root->fs_info, p);
 
3829		break;
3830	default:
3831		ret = -EINVAL;
3832		break;
3833	}
3834
3835	if (copy_to_user(arg, p, sizeof(*p)))
3836		ret = -EFAULT;
3837out:
3838	kfree(p);
3839	return ret;
3840}
3841
3842static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
3843{
3844	int ret = 0;
3845	int i;
3846	u64 rel_ptr;
3847	int size;
3848	struct btrfs_ioctl_ino_path_args *ipa = NULL;
3849	struct inode_fs_paths *ipath = NULL;
3850	struct btrfs_path *path;
3851
3852	if (!capable(CAP_DAC_READ_SEARCH))
3853		return -EPERM;
3854
3855	path = btrfs_alloc_path();
3856	if (!path) {
3857		ret = -ENOMEM;
3858		goto out;
3859	}
3860
3861	ipa = memdup_user(arg, sizeof(*ipa));
3862	if (IS_ERR(ipa)) {
3863		ret = PTR_ERR(ipa);
3864		ipa = NULL;
3865		goto out;
3866	}
3867
3868	size = min_t(u32, ipa->size, 4096);
3869	ipath = init_ipath(size, root, path);
3870	if (IS_ERR(ipath)) {
3871		ret = PTR_ERR(ipath);
3872		ipath = NULL;
3873		goto out;
3874	}
3875
3876	ret = paths_from_inode(ipa->inum, ipath);
3877	if (ret < 0)
3878		goto out;
3879
3880	for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
3881		rel_ptr = ipath->fspath->val[i] -
3882			  (u64)(unsigned long)ipath->fspath->val;
3883		ipath->fspath->val[i] = rel_ptr;
3884	}
3885
3886	ret = copy_to_user((void *)(unsigned long)ipa->fspath,
3887			   (void *)(unsigned long)ipath->fspath, size);
3888	if (ret) {
3889		ret = -EFAULT;
3890		goto out;
3891	}
3892
3893out:
3894	btrfs_free_path(path);
3895	free_ipath(ipath);
3896	kfree(ipa);
3897
3898	return ret;
3899}
3900
3901static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
3902{
3903	struct btrfs_data_container *inodes = ctx;
3904	const size_t c = 3 * sizeof(u64);
3905
3906	if (inodes->bytes_left >= c) {
3907		inodes->bytes_left -= c;
3908		inodes->val[inodes->elem_cnt] = inum;
3909		inodes->val[inodes->elem_cnt + 1] = offset;
3910		inodes->val[inodes->elem_cnt + 2] = root;
3911		inodes->elem_cnt += 3;
3912	} else {
3913		inodes->bytes_missing += c - inodes->bytes_left;
3914		inodes->bytes_left = 0;
3915		inodes->elem_missed += 3;
3916	}
3917
3918	return 0;
3919}
3920
3921static long btrfs_ioctl_logical_to_ino(struct btrfs_root *root,
3922					void __user *arg)
3923{
3924	int ret = 0;
3925	int size;
3926	struct btrfs_ioctl_logical_ino_args *loi;
3927	struct btrfs_data_container *inodes = NULL;
3928	struct btrfs_path *path = NULL;
 
3929
3930	if (!capable(CAP_SYS_ADMIN))
3931		return -EPERM;
3932
3933	loi = memdup_user(arg, sizeof(*loi));
3934	if (IS_ERR(loi)) {
3935		ret = PTR_ERR(loi);
3936		loi = NULL;
3937		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3938	}
3939
3940	path = btrfs_alloc_path();
3941	if (!path) {
3942		ret = -ENOMEM;
3943		goto out;
3944	}
3945
3946	size = min_t(u32, loi->size, 64 * 1024);
3947	inodes = init_data_container(size);
3948	if (IS_ERR(inodes)) {
3949		ret = PTR_ERR(inodes);
3950		inodes = NULL;
3951		goto out;
3952	}
3953
3954	ret = iterate_inodes_from_logical(loi->logical, root->fs_info, path,
3955					  build_ino_list, inodes);
3956	if (ret == -EINVAL)
3957		ret = -ENOENT;
3958	if (ret < 0)
3959		goto out;
3960
3961	ret = copy_to_user((void *)(unsigned long)loi->inodes,
3962			   (void *)(unsigned long)inodes, size);
3963	if (ret)
3964		ret = -EFAULT;
3965
3966out:
3967	btrfs_free_path(path);
3968	vfree(inodes);
 
3969	kfree(loi);
3970
3971	return ret;
3972}
3973
3974void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock,
3975			       struct btrfs_ioctl_balance_args *bargs)
3976{
3977	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3978
3979	bargs->flags = bctl->flags;
3980
3981	if (atomic_read(&fs_info->balance_running))
3982		bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
3983	if (atomic_read(&fs_info->balance_pause_req))
3984		bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
3985	if (atomic_read(&fs_info->balance_cancel_req))
3986		bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
3987
3988	memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
3989	memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
3990	memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
3991
3992	if (lock) {
3993		spin_lock(&fs_info->balance_lock);
3994		memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
3995		spin_unlock(&fs_info->balance_lock);
3996	} else {
3997		memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
3998	}
3999}
4000
4001static long btrfs_ioctl_balance(struct file *file, void __user *arg)
4002{
4003	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4004	struct btrfs_fs_info *fs_info = root->fs_info;
4005	struct btrfs_ioctl_balance_args *bargs;
4006	struct btrfs_balance_control *bctl;
4007	bool need_unlock; /* for mut. excl. ops lock */
4008	int ret;
4009
4010	if (!capable(CAP_SYS_ADMIN))
4011		return -EPERM;
4012
4013	ret = mnt_want_write_file(file);
4014	if (ret)
4015		return ret;
4016
4017again:
4018	if (!atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1)) {
4019		mutex_lock(&fs_info->volume_mutex);
4020		mutex_lock(&fs_info->balance_mutex);
4021		need_unlock = true;
4022		goto locked;
4023	}
4024
4025	/*
4026	 * mut. excl. ops lock is locked.  Three possibilites:
4027	 *   (1) some other op is running
4028	 *   (2) balance is running
4029	 *   (3) balance is paused -- special case (think resume)
4030	 */
4031	mutex_lock(&fs_info->balance_mutex);
4032	if (fs_info->balance_ctl) {
4033		/* this is either (2) or (3) */
4034		if (!atomic_read(&fs_info->balance_running)) {
4035			mutex_unlock(&fs_info->balance_mutex);
4036			if (!mutex_trylock(&fs_info->volume_mutex))
4037				goto again;
 
 
4038			mutex_lock(&fs_info->balance_mutex);
4039
4040			if (fs_info->balance_ctl &&
4041			    !atomic_read(&fs_info->balance_running)) {
4042				/* this is (3) */
4043				need_unlock = false;
4044				goto locked;
4045			}
4046
4047			mutex_unlock(&fs_info->balance_mutex);
4048			mutex_unlock(&fs_info->volume_mutex);
4049			goto again;
4050		} else {
4051			/* this is (2) */
4052			mutex_unlock(&fs_info->balance_mutex);
4053			ret = -EINPROGRESS;
4054			goto out;
4055		}
4056	} else {
4057		/* this is (1) */
4058		mutex_unlock(&fs_info->balance_mutex);
4059		ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4060		goto out;
4061	}
4062
4063locked:
4064	BUG_ON(!atomic_read(&fs_info->mutually_exclusive_operation_running));
4065
4066	if (arg) {
4067		bargs = memdup_user(arg, sizeof(*bargs));
4068		if (IS_ERR(bargs)) {
4069			ret = PTR_ERR(bargs);
4070			goto out_unlock;
4071		}
4072
4073		if (bargs->flags & BTRFS_BALANCE_RESUME) {
4074			if (!fs_info->balance_ctl) {
4075				ret = -ENOTCONN;
4076				goto out_bargs;
4077			}
4078
4079			bctl = fs_info->balance_ctl;
4080			spin_lock(&fs_info->balance_lock);
4081			bctl->flags |= BTRFS_BALANCE_RESUME;
4082			spin_unlock(&fs_info->balance_lock);
4083
4084			goto do_balance;
4085		}
4086	} else {
4087		bargs = NULL;
4088	}
4089
4090	if (fs_info->balance_ctl) {
4091		ret = -EINPROGRESS;
4092		goto out_bargs;
4093	}
4094
4095	bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4096	if (!bctl) {
4097		ret = -ENOMEM;
4098		goto out_bargs;
4099	}
4100
4101	bctl->fs_info = fs_info;
4102	if (arg) {
4103		memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
4104		memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
4105		memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
4106
4107		bctl->flags = bargs->flags;
4108	} else {
4109		/* balance everything - no filters */
4110		bctl->flags |= BTRFS_BALANCE_TYPE_MASK;
4111	}
4112
 
 
 
 
 
4113do_balance:
4114	/*
4115	 * Ownership of bctl and mutually_exclusive_operation_running
4116	 * goes to to btrfs_balance.  bctl is freed in __cancel_balance,
4117	 * or, if restriper was paused all the way until unmount, in
4118	 * free_fs_info.  mutually_exclusive_operation_running is
4119	 * cleared in __cancel_balance.
4120	 */
4121	need_unlock = false;
4122
4123	ret = btrfs_balance(bctl, bargs);
 
4124
4125	if (arg) {
4126		if (copy_to_user(arg, bargs, sizeof(*bargs)))
4127			ret = -EFAULT;
4128	}
4129
 
 
4130out_bargs:
4131	kfree(bargs);
4132out_unlock:
4133	mutex_unlock(&fs_info->balance_mutex);
4134	mutex_unlock(&fs_info->volume_mutex);
4135	if (need_unlock)
4136		atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
4137out:
4138	mnt_drop_write_file(file);
4139	return ret;
4140}
4141
4142static long btrfs_ioctl_balance_ctl(struct btrfs_root *root, int cmd)
4143{
4144	if (!capable(CAP_SYS_ADMIN))
4145		return -EPERM;
4146
4147	switch (cmd) {
4148	case BTRFS_BALANCE_CTL_PAUSE:
4149		return btrfs_pause_balance(root->fs_info);
4150	case BTRFS_BALANCE_CTL_CANCEL:
4151		return btrfs_cancel_balance(root->fs_info);
4152	}
4153
4154	return -EINVAL;
4155}
4156
4157static long btrfs_ioctl_balance_progress(struct btrfs_root *root,
4158					 void __user *arg)
4159{
4160	struct btrfs_fs_info *fs_info = root->fs_info;
4161	struct btrfs_ioctl_balance_args *bargs;
4162	int ret = 0;
4163
4164	if (!capable(CAP_SYS_ADMIN))
4165		return -EPERM;
4166
4167	mutex_lock(&fs_info->balance_mutex);
4168	if (!fs_info->balance_ctl) {
4169		ret = -ENOTCONN;
4170		goto out;
4171	}
4172
4173	bargs = kzalloc(sizeof(*bargs), GFP_NOFS);
4174	if (!bargs) {
4175		ret = -ENOMEM;
4176		goto out;
4177	}
4178
4179	update_ioctl_balance_args(fs_info, 1, bargs);
4180
4181	if (copy_to_user(arg, bargs, sizeof(*bargs)))
4182		ret = -EFAULT;
4183
4184	kfree(bargs);
4185out:
4186	mutex_unlock(&fs_info->balance_mutex);
4187	return ret;
4188}
4189
4190static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
4191{
4192	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
 
4193	struct btrfs_ioctl_quota_ctl_args *sa;
4194	struct btrfs_trans_handle *trans = NULL;
4195	int ret;
4196	int err;
4197
4198	if (!capable(CAP_SYS_ADMIN))
4199		return -EPERM;
4200
4201	ret = mnt_want_write_file(file);
4202	if (ret)
4203		return ret;
4204
4205	sa = memdup_user(arg, sizeof(*sa));
4206	if (IS_ERR(sa)) {
4207		ret = PTR_ERR(sa);
4208		goto drop_write;
4209	}
4210
4211	down_write(&root->fs_info->subvol_sem);
4212	trans = btrfs_start_transaction(root->fs_info->tree_root, 2);
4213	if (IS_ERR(trans)) {
4214		ret = PTR_ERR(trans);
4215		goto out;
4216	}
4217
4218	switch (sa->cmd) {
4219	case BTRFS_QUOTA_CTL_ENABLE:
4220		ret = btrfs_quota_enable(trans, root->fs_info);
4221		break;
4222	case BTRFS_QUOTA_CTL_DISABLE:
4223		ret = btrfs_quota_disable(trans, root->fs_info);
4224		break;
4225	default:
4226		ret = -EINVAL;
4227		break;
4228	}
4229
4230	err = btrfs_commit_transaction(trans, root->fs_info->tree_root);
4231	if (err && !ret)
4232		ret = err;
4233out:
4234	kfree(sa);
4235	up_write(&root->fs_info->subvol_sem);
4236drop_write:
4237	mnt_drop_write_file(file);
4238	return ret;
4239}
4240
4241static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
4242{
4243	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
 
 
4244	struct btrfs_ioctl_qgroup_assign_args *sa;
4245	struct btrfs_trans_handle *trans;
4246	int ret;
4247	int err;
4248
4249	if (!capable(CAP_SYS_ADMIN))
4250		return -EPERM;
4251
4252	ret = mnt_want_write_file(file);
4253	if (ret)
4254		return ret;
4255
4256	sa = memdup_user(arg, sizeof(*sa));
4257	if (IS_ERR(sa)) {
4258		ret = PTR_ERR(sa);
4259		goto drop_write;
4260	}
4261
4262	trans = btrfs_join_transaction(root);
4263	if (IS_ERR(trans)) {
4264		ret = PTR_ERR(trans);
4265		goto out;
4266	}
4267
4268	/* FIXME: check if the IDs really exist */
4269	if (sa->assign) {
4270		ret = btrfs_add_qgroup_relation(trans, root->fs_info,
4271						sa->src, sa->dst);
4272	} else {
4273		ret = btrfs_del_qgroup_relation(trans, root->fs_info,
4274						sa->src, sa->dst);
4275	}
4276
4277	err = btrfs_end_transaction(trans, root);
 
 
 
 
 
4278	if (err && !ret)
4279		ret = err;
4280
4281out:
4282	kfree(sa);
4283drop_write:
4284	mnt_drop_write_file(file);
4285	return ret;
4286}
4287
4288static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
4289{
4290	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
 
4291	struct btrfs_ioctl_qgroup_create_args *sa;
4292	struct btrfs_trans_handle *trans;
4293	int ret;
4294	int err;
4295
4296	if (!capable(CAP_SYS_ADMIN))
4297		return -EPERM;
4298
4299	ret = mnt_want_write_file(file);
4300	if (ret)
4301		return ret;
4302
4303	sa = memdup_user(arg, sizeof(*sa));
4304	if (IS_ERR(sa)) {
4305		ret = PTR_ERR(sa);
4306		goto drop_write;
4307	}
4308
4309	if (!sa->qgroupid) {
4310		ret = -EINVAL;
4311		goto out;
4312	}
4313
4314	trans = btrfs_join_transaction(root);
4315	if (IS_ERR(trans)) {
4316		ret = PTR_ERR(trans);
4317		goto out;
4318	}
4319
4320	/* FIXME: check if the IDs really exist */
4321	if (sa->create) {
4322		ret = btrfs_create_qgroup(trans, root->fs_info, sa->qgroupid,
4323					  NULL);
4324	} else {
4325		ret = btrfs_remove_qgroup(trans, root->fs_info, sa->qgroupid);
4326	}
4327
4328	err = btrfs_end_transaction(trans, root);
4329	if (err && !ret)
4330		ret = err;
4331
4332out:
4333	kfree(sa);
4334drop_write:
4335	mnt_drop_write_file(file);
4336	return ret;
4337}
4338
4339static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
4340{
4341	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
 
4342	struct btrfs_ioctl_qgroup_limit_args *sa;
4343	struct btrfs_trans_handle *trans;
4344	int ret;
4345	int err;
4346	u64 qgroupid;
4347
4348	if (!capable(CAP_SYS_ADMIN))
4349		return -EPERM;
4350
4351	ret = mnt_want_write_file(file);
4352	if (ret)
4353		return ret;
4354
4355	sa = memdup_user(arg, sizeof(*sa));
4356	if (IS_ERR(sa)) {
4357		ret = PTR_ERR(sa);
4358		goto drop_write;
4359	}
4360
4361	trans = btrfs_join_transaction(root);
4362	if (IS_ERR(trans)) {
4363		ret = PTR_ERR(trans);
4364		goto out;
4365	}
4366
4367	qgroupid = sa->qgroupid;
4368	if (!qgroupid) {
4369		/* take the current subvol as qgroup */
4370		qgroupid = root->root_key.objectid;
4371	}
4372
4373	/* FIXME: check if the IDs really exist */
4374	ret = btrfs_limit_qgroup(trans, root->fs_info, qgroupid, &sa->lim);
4375
4376	err = btrfs_end_transaction(trans, root);
4377	if (err && !ret)
4378		ret = err;
4379
4380out:
4381	kfree(sa);
4382drop_write:
4383	mnt_drop_write_file(file);
4384	return ret;
4385}
4386
4387static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
4388{
4389	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
 
4390	struct btrfs_ioctl_quota_rescan_args *qsa;
4391	int ret;
4392
4393	if (!capable(CAP_SYS_ADMIN))
4394		return -EPERM;
4395
4396	ret = mnt_want_write_file(file);
4397	if (ret)
4398		return ret;
4399
4400	qsa = memdup_user(arg, sizeof(*qsa));
4401	if (IS_ERR(qsa)) {
4402		ret = PTR_ERR(qsa);
4403		goto drop_write;
4404	}
4405
4406	if (qsa->flags) {
4407		ret = -EINVAL;
4408		goto out;
4409	}
4410
4411	ret = btrfs_qgroup_rescan(root->fs_info);
4412
4413out:
4414	kfree(qsa);
4415drop_write:
4416	mnt_drop_write_file(file);
4417	return ret;
4418}
4419
4420static long btrfs_ioctl_quota_rescan_status(struct file *file, void __user *arg)
 
4421{
4422	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4423	struct btrfs_ioctl_quota_rescan_args *qsa;
4424	int ret = 0;
4425
4426	if (!capable(CAP_SYS_ADMIN))
4427		return -EPERM;
4428
4429	qsa = kzalloc(sizeof(*qsa), GFP_NOFS);
4430	if (!qsa)
4431		return -ENOMEM;
4432
4433	if (root->fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
4434		qsa->flags = 1;
4435		qsa->progress = root->fs_info->qgroup_rescan_progress.objectid;
4436	}
4437
4438	if (copy_to_user(arg, qsa, sizeof(*qsa)))
4439		ret = -EFAULT;
4440
4441	kfree(qsa);
4442	return ret;
4443}
4444
4445static long btrfs_ioctl_quota_rescan_wait(struct file *file, void __user *arg)
 
4446{
4447	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4448
4449	if (!capable(CAP_SYS_ADMIN))
4450		return -EPERM;
4451
4452	return btrfs_qgroup_wait_for_completion(root->fs_info);
4453}
4454
4455static long _btrfs_ioctl_set_received_subvol(struct file *file,
4456					    struct btrfs_ioctl_received_subvol_args *sa)
4457{
4458	struct inode *inode = file_inode(file);
 
4459	struct btrfs_root *root = BTRFS_I(inode)->root;
4460	struct btrfs_root_item *root_item = &root->root_item;
4461	struct btrfs_trans_handle *trans;
4462	struct timespec ct = CURRENT_TIME;
4463	int ret = 0;
4464	int received_uuid_changed;
4465
4466	if (!inode_owner_or_capable(inode))
4467		return -EPERM;
4468
4469	ret = mnt_want_write_file(file);
4470	if (ret < 0)
4471		return ret;
4472
4473	down_write(&root->fs_info->subvol_sem);
4474
4475	if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
4476		ret = -EINVAL;
4477		goto out;
4478	}
4479
4480	if (btrfs_root_readonly(root)) {
4481		ret = -EROFS;
4482		goto out;
4483	}
4484
4485	/*
4486	 * 1 - root item
4487	 * 2 - uuid items (received uuid + subvol uuid)
4488	 */
4489	trans = btrfs_start_transaction(root, 3);
4490	if (IS_ERR(trans)) {
4491		ret = PTR_ERR(trans);
4492		trans = NULL;
4493		goto out;
4494	}
4495
4496	sa->rtransid = trans->transid;
4497	sa->rtime.sec = ct.tv_sec;
4498	sa->rtime.nsec = ct.tv_nsec;
4499
4500	received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
4501				       BTRFS_UUID_SIZE);
4502	if (received_uuid_changed &&
4503	    !btrfs_is_empty_uuid(root_item->received_uuid))
4504		btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root,
4505				    root_item->received_uuid,
4506				    BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4507				    root->root_key.objectid);
 
 
 
 
 
4508	memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
4509	btrfs_set_root_stransid(root_item, sa->stransid);
4510	btrfs_set_root_rtransid(root_item, sa->rtransid);
4511	btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
4512	btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
4513	btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
4514	btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
4515
4516	ret = btrfs_update_root(trans, root->fs_info->tree_root,
4517				&root->root_key, &root->root_item);
4518	if (ret < 0) {
4519		btrfs_end_transaction(trans, root);
4520		goto out;
4521	}
4522	if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
4523		ret = btrfs_uuid_tree_add(trans, root->fs_info->uuid_root,
4524					  sa->uuid,
4525					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4526					  root->root_key.objectid);
4527		if (ret < 0 && ret != -EEXIST) {
4528			btrfs_abort_transaction(trans, root, ret);
 
4529			goto out;
4530		}
4531	}
4532	ret = btrfs_commit_transaction(trans, root);
4533	if (ret < 0) {
4534		btrfs_abort_transaction(trans, root, ret);
4535		goto out;
4536	}
4537
4538out:
4539	up_write(&root->fs_info->subvol_sem);
4540	mnt_drop_write_file(file);
4541	return ret;
4542}
4543
4544#ifdef CONFIG_64BIT
4545static long btrfs_ioctl_set_received_subvol_32(struct file *file,
4546						void __user *arg)
4547{
4548	struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
4549	struct btrfs_ioctl_received_subvol_args *args64 = NULL;
4550	int ret = 0;
4551
4552	args32 = memdup_user(arg, sizeof(*args32));
4553	if (IS_ERR(args32)) {
4554		ret = PTR_ERR(args32);
4555		args32 = NULL;
4556		goto out;
4557	}
4558
4559	args64 = kmalloc(sizeof(*args64), GFP_NOFS);
4560	if (!args64) {
4561		ret = -ENOMEM;
4562		goto out;
4563	}
4564
4565	memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
4566	args64->stransid = args32->stransid;
4567	args64->rtransid = args32->rtransid;
4568	args64->stime.sec = args32->stime.sec;
4569	args64->stime.nsec = args32->stime.nsec;
4570	args64->rtime.sec = args32->rtime.sec;
4571	args64->rtime.nsec = args32->rtime.nsec;
4572	args64->flags = args32->flags;
4573
4574	ret = _btrfs_ioctl_set_received_subvol(file, args64);
4575	if (ret)
4576		goto out;
4577
4578	memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
4579	args32->stransid = args64->stransid;
4580	args32->rtransid = args64->rtransid;
4581	args32->stime.sec = args64->stime.sec;
4582	args32->stime.nsec = args64->stime.nsec;
4583	args32->rtime.sec = args64->rtime.sec;
4584	args32->rtime.nsec = args64->rtime.nsec;
4585	args32->flags = args64->flags;
4586
4587	ret = copy_to_user(arg, args32, sizeof(*args32));
4588	if (ret)
4589		ret = -EFAULT;
4590
4591out:
4592	kfree(args32);
4593	kfree(args64);
4594	return ret;
4595}
4596#endif
4597
4598static long btrfs_ioctl_set_received_subvol(struct file *file,
4599					    void __user *arg)
4600{
4601	struct btrfs_ioctl_received_subvol_args *sa = NULL;
4602	int ret = 0;
4603
4604	sa = memdup_user(arg, sizeof(*sa));
4605	if (IS_ERR(sa)) {
4606		ret = PTR_ERR(sa);
4607		sa = NULL;
4608		goto out;
4609	}
4610
4611	ret = _btrfs_ioctl_set_received_subvol(file, sa);
4612
4613	if (ret)
4614		goto out;
4615
4616	ret = copy_to_user(arg, sa, sizeof(*sa));
4617	if (ret)
4618		ret = -EFAULT;
4619
4620out:
4621	kfree(sa);
4622	return ret;
4623}
4624
4625static int btrfs_ioctl_get_fslabel(struct file *file, void __user *arg)
 
4626{
4627	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4628	size_t len;
4629	int ret;
4630	char label[BTRFS_LABEL_SIZE];
4631
4632	spin_lock(&root->fs_info->super_lock);
4633	memcpy(label, root->fs_info->super_copy->label, BTRFS_LABEL_SIZE);
4634	spin_unlock(&root->fs_info->super_lock);
4635
4636	len = strnlen(label, BTRFS_LABEL_SIZE);
4637
4638	if (len == BTRFS_LABEL_SIZE) {
4639		btrfs_warn(root->fs_info,
4640			"label is too long, return the first %zu bytes", --len);
 
4641	}
4642
4643	ret = copy_to_user(arg, label, len);
4644
4645	return ret ? -EFAULT : 0;
4646}
4647
4648static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
4649{
4650	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4651	struct btrfs_super_block *super_block = root->fs_info->super_copy;
 
 
4652	struct btrfs_trans_handle *trans;
4653	char label[BTRFS_LABEL_SIZE];
4654	int ret;
4655
4656	if (!capable(CAP_SYS_ADMIN))
4657		return -EPERM;
4658
4659	if (copy_from_user(label, arg, sizeof(label)))
4660		return -EFAULT;
4661
4662	if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
4663		btrfs_err(root->fs_info, "unable to set label with more than %d bytes",
4664		       BTRFS_LABEL_SIZE - 1);
 
4665		return -EINVAL;
4666	}
4667
4668	ret = mnt_want_write_file(file);
4669	if (ret)
4670		return ret;
4671
4672	trans = btrfs_start_transaction(root, 0);
4673	if (IS_ERR(trans)) {
4674		ret = PTR_ERR(trans);
4675		goto out_unlock;
4676	}
4677
4678	spin_lock(&root->fs_info->super_lock);
4679	strcpy(super_block->label, label);
4680	spin_unlock(&root->fs_info->super_lock);
4681	ret = btrfs_commit_transaction(trans, root);
4682
4683out_unlock:
4684	mnt_drop_write_file(file);
4685	return ret;
4686}
4687
4688#define INIT_FEATURE_FLAGS(suffix) \
4689	{ .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
4690	  .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
4691	  .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
4692
4693static int btrfs_ioctl_get_supported_features(struct file *file,
4694					      void __user *arg)
4695{
4696	static struct btrfs_ioctl_feature_flags features[3] = {
4697		INIT_FEATURE_FLAGS(SUPP),
4698		INIT_FEATURE_FLAGS(SAFE_SET),
4699		INIT_FEATURE_FLAGS(SAFE_CLEAR)
4700	};
4701
4702	if (copy_to_user(arg, &features, sizeof(features)))
4703		return -EFAULT;
4704
4705	return 0;
4706}
4707
4708static int btrfs_ioctl_get_features(struct file *file, void __user *arg)
 
4709{
4710	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4711	struct btrfs_super_block *super_block = root->fs_info->super_copy;
4712	struct btrfs_ioctl_feature_flags features;
4713
4714	features.compat_flags = btrfs_super_compat_flags(super_block);
4715	features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
4716	features.incompat_flags = btrfs_super_incompat_flags(super_block);
4717
4718	if (copy_to_user(arg, &features, sizeof(features)))
4719		return -EFAULT;
4720
4721	return 0;
4722}
4723
4724static int check_feature_bits(struct btrfs_root *root,
4725			      enum btrfs_feature_set set,
4726			      u64 change_mask, u64 flags, u64 supported_flags,
4727			      u64 safe_set, u64 safe_clear)
4728{
4729	const char *type = btrfs_feature_set_names[set];
4730	char *names;
4731	u64 disallowed, unsupported;
4732	u64 set_mask = flags & change_mask;
4733	u64 clear_mask = ~flags & change_mask;
4734
4735	unsupported = set_mask & ~supported_flags;
4736	if (unsupported) {
4737		names = btrfs_printable_features(set, unsupported);
4738		if (names) {
4739			btrfs_warn(root->fs_info,
4740			   "this kernel does not support the %s feature bit%s",
4741			   names, strchr(names, ',') ? "s" : "");
4742			kfree(names);
4743		} else
4744			btrfs_warn(root->fs_info,
4745			   "this kernel does not support %s bits 0x%llx",
4746			   type, unsupported);
4747		return -EOPNOTSUPP;
4748	}
4749
4750	disallowed = set_mask & ~safe_set;
4751	if (disallowed) {
4752		names = btrfs_printable_features(set, disallowed);
4753		if (names) {
4754			btrfs_warn(root->fs_info,
4755			   "can't set the %s feature bit%s while mounted",
4756			   names, strchr(names, ',') ? "s" : "");
4757			kfree(names);
4758		} else
4759			btrfs_warn(root->fs_info,
4760			   "can't set %s bits 0x%llx while mounted",
4761			   type, disallowed);
4762		return -EPERM;
4763	}
4764
4765	disallowed = clear_mask & ~safe_clear;
4766	if (disallowed) {
4767		names = btrfs_printable_features(set, disallowed);
4768		if (names) {
4769			btrfs_warn(root->fs_info,
4770			   "can't clear the %s feature bit%s while mounted",
4771			   names, strchr(names, ',') ? "s" : "");
4772			kfree(names);
4773		} else
4774			btrfs_warn(root->fs_info,
4775			   "can't clear %s bits 0x%llx while mounted",
4776			   type, disallowed);
4777		return -EPERM;
4778	}
4779
4780	return 0;
4781}
4782
4783#define check_feature(root, change_mask, flags, mask_base)	\
4784check_feature_bits(root, FEAT_##mask_base, change_mask, flags,	\
4785		   BTRFS_FEATURE_ ## mask_base ## _SUPP,	\
4786		   BTRFS_FEATURE_ ## mask_base ## _SAFE_SET,	\
4787		   BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
4788
4789static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
4790{
4791	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4792	struct btrfs_super_block *super_block = root->fs_info->super_copy;
 
 
4793	struct btrfs_ioctl_feature_flags flags[2];
4794	struct btrfs_trans_handle *trans;
4795	u64 newflags;
4796	int ret;
4797
4798	if (!capable(CAP_SYS_ADMIN))
4799		return -EPERM;
4800
4801	if (copy_from_user(flags, arg, sizeof(flags)))
4802		return -EFAULT;
4803
4804	/* Nothing to do */
4805	if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
4806	    !flags[0].incompat_flags)
4807		return 0;
4808
4809	ret = check_feature(root, flags[0].compat_flags,
4810			    flags[1].compat_flags, COMPAT);
4811	if (ret)
4812		return ret;
4813
4814	ret = check_feature(root, flags[0].compat_ro_flags,
4815			    flags[1].compat_ro_flags, COMPAT_RO);
4816	if (ret)
4817		return ret;
4818
4819	ret = check_feature(root, flags[0].incompat_flags,
4820			    flags[1].incompat_flags, INCOMPAT);
4821	if (ret)
4822		return ret;
4823
 
 
 
 
4824	trans = btrfs_start_transaction(root, 0);
4825	if (IS_ERR(trans))
4826		return PTR_ERR(trans);
 
 
4827
4828	spin_lock(&root->fs_info->super_lock);
4829	newflags = btrfs_super_compat_flags(super_block);
4830	newflags |= flags[0].compat_flags & flags[1].compat_flags;
4831	newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
4832	btrfs_set_super_compat_flags(super_block, newflags);
4833
4834	newflags = btrfs_super_compat_ro_flags(super_block);
4835	newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
4836	newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
4837	btrfs_set_super_compat_ro_flags(super_block, newflags);
4838
4839	newflags = btrfs_super_incompat_flags(super_block);
4840	newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
4841	newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
4842	btrfs_set_super_incompat_flags(super_block, newflags);
4843	spin_unlock(&root->fs_info->super_lock);
4844
4845	return btrfs_commit_transaction(trans, root);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4846}
4847
4848long btrfs_ioctl(struct file *file, unsigned int
4849		cmd, unsigned long arg)
4850{
4851	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
 
 
4852	void __user *argp = (void __user *)arg;
4853
4854	switch (cmd) {
4855	case FS_IOC_GETFLAGS:
4856		return btrfs_ioctl_getflags(file, argp);
4857	case FS_IOC_SETFLAGS:
4858		return btrfs_ioctl_setflags(file, argp);
4859	case FS_IOC_GETVERSION:
4860		return btrfs_ioctl_getversion(file, argp);
 
 
 
 
4861	case FITRIM:
4862		return btrfs_ioctl_fitrim(file, argp);
4863	case BTRFS_IOC_SNAP_CREATE:
4864		return btrfs_ioctl_snap_create(file, argp, 0);
4865	case BTRFS_IOC_SNAP_CREATE_V2:
4866		return btrfs_ioctl_snap_create_v2(file, argp, 0);
4867	case BTRFS_IOC_SUBVOL_CREATE:
4868		return btrfs_ioctl_snap_create(file, argp, 1);
4869	case BTRFS_IOC_SUBVOL_CREATE_V2:
4870		return btrfs_ioctl_snap_create_v2(file, argp, 1);
4871	case BTRFS_IOC_SNAP_DESTROY:
4872		return btrfs_ioctl_snap_destroy(file, argp);
 
 
4873	case BTRFS_IOC_SUBVOL_GETFLAGS:
4874		return btrfs_ioctl_subvol_getflags(file, argp);
4875	case BTRFS_IOC_SUBVOL_SETFLAGS:
4876		return btrfs_ioctl_subvol_setflags(file, argp);
4877	case BTRFS_IOC_DEFAULT_SUBVOL:
4878		return btrfs_ioctl_default_subvol(file, argp);
4879	case BTRFS_IOC_DEFRAG:
4880		return btrfs_ioctl_defrag(file, NULL);
4881	case BTRFS_IOC_DEFRAG_RANGE:
4882		return btrfs_ioctl_defrag(file, argp);
4883	case BTRFS_IOC_RESIZE:
4884		return btrfs_ioctl_resize(file, argp);
4885	case BTRFS_IOC_ADD_DEV:
4886		return btrfs_ioctl_add_dev(root, argp);
4887	case BTRFS_IOC_RM_DEV:
4888		return btrfs_ioctl_rm_dev(file, argp);
 
 
4889	case BTRFS_IOC_FS_INFO:
4890		return btrfs_ioctl_fs_info(root, argp);
4891	case BTRFS_IOC_DEV_INFO:
4892		return btrfs_ioctl_dev_info(root, argp);
4893	case BTRFS_IOC_BALANCE:
4894		return btrfs_ioctl_balance(file, NULL);
4895	case BTRFS_IOC_CLONE:
4896		return btrfs_ioctl_clone(file, arg, 0, 0, 0);
4897	case BTRFS_IOC_CLONE_RANGE:
4898		return btrfs_ioctl_clone_range(file, argp);
4899	case BTRFS_IOC_TRANS_START:
4900		return btrfs_ioctl_trans_start(file);
4901	case BTRFS_IOC_TRANS_END:
4902		return btrfs_ioctl_trans_end(file);
4903	case BTRFS_IOC_TREE_SEARCH:
4904		return btrfs_ioctl_tree_search(file, argp);
 
 
4905	case BTRFS_IOC_INO_LOOKUP:
4906		return btrfs_ioctl_ino_lookup(file, argp);
4907	case BTRFS_IOC_INO_PATHS:
4908		return btrfs_ioctl_ino_to_path(root, argp);
4909	case BTRFS_IOC_LOGICAL_INO:
4910		return btrfs_ioctl_logical_to_ino(root, argp);
 
 
4911	case BTRFS_IOC_SPACE_INFO:
4912		return btrfs_ioctl_space_info(root, argp);
4913	case BTRFS_IOC_SYNC: {
4914		int ret;
4915
4916		ret = btrfs_start_delalloc_roots(root->fs_info, 0, -1);
4917		if (ret)
4918			return ret;
4919		ret = btrfs_sync_fs(file->f_dentry->d_sb, 1);
 
 
 
 
 
 
4920		return ret;
4921	}
4922	case BTRFS_IOC_START_SYNC:
4923		return btrfs_ioctl_start_sync(root, argp);
4924	case BTRFS_IOC_WAIT_SYNC:
4925		return btrfs_ioctl_wait_sync(root, argp);
4926	case BTRFS_IOC_SCRUB:
4927		return btrfs_ioctl_scrub(file, argp);
4928	case BTRFS_IOC_SCRUB_CANCEL:
4929		return btrfs_ioctl_scrub_cancel(root, argp);
4930	case BTRFS_IOC_SCRUB_PROGRESS:
4931		return btrfs_ioctl_scrub_progress(root, argp);
4932	case BTRFS_IOC_BALANCE_V2:
4933		return btrfs_ioctl_balance(file, argp);
4934	case BTRFS_IOC_BALANCE_CTL:
4935		return btrfs_ioctl_balance_ctl(root, arg);
4936	case BTRFS_IOC_BALANCE_PROGRESS:
4937		return btrfs_ioctl_balance_progress(root, argp);
4938	case BTRFS_IOC_SET_RECEIVED_SUBVOL:
4939		return btrfs_ioctl_set_received_subvol(file, argp);
4940#ifdef CONFIG_64BIT
4941	case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
4942		return btrfs_ioctl_set_received_subvol_32(file, argp);
4943#endif
4944	case BTRFS_IOC_SEND:
4945		return btrfs_ioctl_send(file, argp);
 
 
 
 
4946	case BTRFS_IOC_GET_DEV_STATS:
4947		return btrfs_ioctl_get_dev_stats(root, argp);
4948	case BTRFS_IOC_QUOTA_CTL:
4949		return btrfs_ioctl_quota_ctl(file, argp);
4950	case BTRFS_IOC_QGROUP_ASSIGN:
4951		return btrfs_ioctl_qgroup_assign(file, argp);
4952	case BTRFS_IOC_QGROUP_CREATE:
4953		return btrfs_ioctl_qgroup_create(file, argp);
4954	case BTRFS_IOC_QGROUP_LIMIT:
4955		return btrfs_ioctl_qgroup_limit(file, argp);
4956	case BTRFS_IOC_QUOTA_RESCAN:
4957		return btrfs_ioctl_quota_rescan(file, argp);
4958	case BTRFS_IOC_QUOTA_RESCAN_STATUS:
4959		return btrfs_ioctl_quota_rescan_status(file, argp);
4960	case BTRFS_IOC_QUOTA_RESCAN_WAIT:
4961		return btrfs_ioctl_quota_rescan_wait(file, argp);
4962	case BTRFS_IOC_DEV_REPLACE:
4963		return btrfs_ioctl_dev_replace(root, argp);
4964	case BTRFS_IOC_GET_FSLABEL:
4965		return btrfs_ioctl_get_fslabel(file, argp);
4966	case BTRFS_IOC_SET_FSLABEL:
4967		return btrfs_ioctl_set_fslabel(file, argp);
4968	case BTRFS_IOC_FILE_EXTENT_SAME:
4969		return btrfs_ioctl_file_extent_same(file, argp);
4970	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
4971		return btrfs_ioctl_get_supported_features(file, argp);
4972	case BTRFS_IOC_GET_FEATURES:
4973		return btrfs_ioctl_get_features(file, argp);
4974	case BTRFS_IOC_SET_FEATURES:
4975		return btrfs_ioctl_set_features(file, argp);
 
 
 
 
 
 
 
 
 
 
4976	}
4977
4978	return -ENOTTY;
4979}