Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * drivers/usb/core/usb.c
   4 *
   5 * (C) Copyright Linus Torvalds 1999
   6 * (C) Copyright Johannes Erdfelt 1999-2001
   7 * (C) Copyright Andreas Gal 1999
   8 * (C) Copyright Gregory P. Smith 1999
   9 * (C) Copyright Deti Fliegl 1999 (new USB architecture)
  10 * (C) Copyright Randy Dunlap 2000
  11 * (C) Copyright David Brownell 2000-2004
  12 * (C) Copyright Yggdrasil Computing, Inc. 2000
  13 *     (usb_device_id matching changes by Adam J. Richter)
  14 * (C) Copyright Greg Kroah-Hartman 2002-2003
  15 *
  16 * Released under the GPLv2 only.
  17 *
  18 * NOTE! This is not actually a driver at all, rather this is
  19 * just a collection of helper routines that implement the
  20 * generic USB things that the real drivers can use..
  21 *
  22 * Think of this as a "USB library" rather than anything else,
  23 * with no callbacks.  Callbacks are evil.
 
  24 */
  25
  26#include <linux/module.h>
  27#include <linux/moduleparam.h>
  28#include <linux/string.h>
  29#include <linux/bitops.h>
  30#include <linux/slab.h>
  31#include <linux/interrupt.h>  /* for in_interrupt() */
  32#include <linux/kmod.h>
  33#include <linux/init.h>
  34#include <linux/spinlock.h>
  35#include <linux/errno.h>
  36#include <linux/usb.h>
  37#include <linux/usb/hcd.h>
  38#include <linux/mutex.h>
  39#include <linux/workqueue.h>
  40#include <linux/debugfs.h>
  41#include <linux/usb/of.h>
  42
  43#include <asm/io.h>
  44#include <linux/scatterlist.h>
  45#include <linux/mm.h>
  46#include <linux/dma-mapping.h>
  47
  48#include "hub.h"
 
  49
  50const char *usbcore_name = "usbcore";
  51
  52static bool nousb;	/* Disable USB when built into kernel image */
  53
  54module_param(nousb, bool, 0444);
  55
  56/*
  57 * for external read access to <nousb>
  58 */
  59int usb_disabled(void)
  60{
  61	return nousb;
  62}
  63EXPORT_SYMBOL_GPL(usb_disabled);
  64
  65#ifdef	CONFIG_PM
  66/* Default delay value, in seconds */
  67static int usb_autosuspend_delay = CONFIG_USB_AUTOSUSPEND_DELAY;
  68module_param_named(autosuspend, usb_autosuspend_delay, int, 0644);
  69MODULE_PARM_DESC(autosuspend, "default autosuspend delay");
  70
  71#else
  72#define usb_autosuspend_delay		0
  73#endif
  74
  75static bool match_endpoint(struct usb_endpoint_descriptor *epd,
  76		struct usb_endpoint_descriptor **bulk_in,
  77		struct usb_endpoint_descriptor **bulk_out,
  78		struct usb_endpoint_descriptor **int_in,
  79		struct usb_endpoint_descriptor **int_out)
  80{
  81	switch (usb_endpoint_type(epd)) {
  82	case USB_ENDPOINT_XFER_BULK:
  83		if (usb_endpoint_dir_in(epd)) {
  84			if (bulk_in && !*bulk_in) {
  85				*bulk_in = epd;
  86				break;
  87			}
  88		} else {
  89			if (bulk_out && !*bulk_out) {
  90				*bulk_out = epd;
  91				break;
  92			}
  93		}
  94
  95		return false;
  96	case USB_ENDPOINT_XFER_INT:
  97		if (usb_endpoint_dir_in(epd)) {
  98			if (int_in && !*int_in) {
  99				*int_in = epd;
 100				break;
 101			}
 102		} else {
 103			if (int_out && !*int_out) {
 104				*int_out = epd;
 105				break;
 106			}
 107		}
 108
 109		return false;
 110	default:
 111		return false;
 112	}
 113
 114	return (!bulk_in || *bulk_in) && (!bulk_out || *bulk_out) &&
 115			(!int_in || *int_in) && (!int_out || *int_out);
 116}
 117
 118/**
 119 * usb_find_common_endpoints() -- look up common endpoint descriptors
 120 * @alt:	alternate setting to search
 121 * @bulk_in:	pointer to descriptor pointer, or NULL
 122 * @bulk_out:	pointer to descriptor pointer, or NULL
 123 * @int_in:	pointer to descriptor pointer, or NULL
 124 * @int_out:	pointer to descriptor pointer, or NULL
 125 *
 126 * Search the alternate setting's endpoint descriptors for the first bulk-in,
 127 * bulk-out, interrupt-in and interrupt-out endpoints and return them in the
 128 * provided pointers (unless they are NULL).
 129 *
 130 * If a requested endpoint is not found, the corresponding pointer is set to
 131 * NULL.
 132 *
 133 * Return: Zero if all requested descriptors were found, or -ENXIO otherwise.
 134 */
 135int usb_find_common_endpoints(struct usb_host_interface *alt,
 136		struct usb_endpoint_descriptor **bulk_in,
 137		struct usb_endpoint_descriptor **bulk_out,
 138		struct usb_endpoint_descriptor **int_in,
 139		struct usb_endpoint_descriptor **int_out)
 140{
 141	struct usb_endpoint_descriptor *epd;
 142	int i;
 143
 144	if (bulk_in)
 145		*bulk_in = NULL;
 146	if (bulk_out)
 147		*bulk_out = NULL;
 148	if (int_in)
 149		*int_in = NULL;
 150	if (int_out)
 151		*int_out = NULL;
 152
 153	for (i = 0; i < alt->desc.bNumEndpoints; ++i) {
 154		epd = &alt->endpoint[i].desc;
 155
 156		if (match_endpoint(epd, bulk_in, bulk_out, int_in, int_out))
 157			return 0;
 158	}
 159
 160	return -ENXIO;
 161}
 162EXPORT_SYMBOL_GPL(usb_find_common_endpoints);
 163
 164/**
 165 * usb_find_common_endpoints_reverse() -- look up common endpoint descriptors
 166 * @alt:	alternate setting to search
 167 * @bulk_in:	pointer to descriptor pointer, or NULL
 168 * @bulk_out:	pointer to descriptor pointer, or NULL
 169 * @int_in:	pointer to descriptor pointer, or NULL
 170 * @int_out:	pointer to descriptor pointer, or NULL
 171 *
 172 * Search the alternate setting's endpoint descriptors for the last bulk-in,
 173 * bulk-out, interrupt-in and interrupt-out endpoints and return them in the
 174 * provided pointers (unless they are NULL).
 175 *
 176 * If a requested endpoint is not found, the corresponding pointer is set to
 177 * NULL.
 178 *
 179 * Return: Zero if all requested descriptors were found, or -ENXIO otherwise.
 180 */
 181int usb_find_common_endpoints_reverse(struct usb_host_interface *alt,
 182		struct usb_endpoint_descriptor **bulk_in,
 183		struct usb_endpoint_descriptor **bulk_out,
 184		struct usb_endpoint_descriptor **int_in,
 185		struct usb_endpoint_descriptor **int_out)
 186{
 187	struct usb_endpoint_descriptor *epd;
 188	int i;
 189
 190	if (bulk_in)
 191		*bulk_in = NULL;
 192	if (bulk_out)
 193		*bulk_out = NULL;
 194	if (int_in)
 195		*int_in = NULL;
 196	if (int_out)
 197		*int_out = NULL;
 198
 199	for (i = alt->desc.bNumEndpoints - 1; i >= 0; --i) {
 200		epd = &alt->endpoint[i].desc;
 201
 202		if (match_endpoint(epd, bulk_in, bulk_out, int_in, int_out))
 203			return 0;
 204	}
 205
 206	return -ENXIO;
 207}
 208EXPORT_SYMBOL_GPL(usb_find_common_endpoints_reverse);
 209
 210/**
 211 * usb_find_alt_setting() - Given a configuration, find the alternate setting
 212 * for the given interface.
 213 * @config: the configuration to search (not necessarily the current config).
 214 * @iface_num: interface number to search in
 215 * @alt_num: alternate interface setting number to search for.
 216 *
 217 * Search the configuration's interface cache for the given alt setting.
 218 *
 219 * Return: The alternate setting, if found. %NULL otherwise.
 220 */
 221struct usb_host_interface *usb_find_alt_setting(
 222		struct usb_host_config *config,
 223		unsigned int iface_num,
 224		unsigned int alt_num)
 225{
 226	struct usb_interface_cache *intf_cache = NULL;
 227	int i;
 228
 229	if (!config)
 230		return NULL;
 231	for (i = 0; i < config->desc.bNumInterfaces; i++) {
 232		if (config->intf_cache[i]->altsetting[0].desc.bInterfaceNumber
 233				== iface_num) {
 234			intf_cache = config->intf_cache[i];
 235			break;
 236		}
 237	}
 238	if (!intf_cache)
 239		return NULL;
 240	for (i = 0; i < intf_cache->num_altsetting; i++)
 241		if (intf_cache->altsetting[i].desc.bAlternateSetting == alt_num)
 242			return &intf_cache->altsetting[i];
 243
 244	printk(KERN_DEBUG "Did not find alt setting %u for intf %u, "
 245			"config %u\n", alt_num, iface_num,
 246			config->desc.bConfigurationValue);
 247	return NULL;
 248}
 249EXPORT_SYMBOL_GPL(usb_find_alt_setting);
 250
 251/**
 252 * usb_ifnum_to_if - get the interface object with a given interface number
 253 * @dev: the device whose current configuration is considered
 254 * @ifnum: the desired interface
 255 *
 256 * This walks the device descriptor for the currently active configuration
 257 * to find the interface object with the particular interface number.
 258 *
 259 * Note that configuration descriptors are not required to assign interface
 260 * numbers sequentially, so that it would be incorrect to assume that
 261 * the first interface in that descriptor corresponds to interface zero.
 262 * This routine helps device drivers avoid such mistakes.
 263 * However, you should make sure that you do the right thing with any
 264 * alternate settings available for this interfaces.
 265 *
 266 * Don't call this function unless you are bound to one of the interfaces
 267 * on this device or you have locked the device!
 268 *
 269 * Return: A pointer to the interface that has @ifnum as interface number,
 270 * if found. %NULL otherwise.
 271 */
 272struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
 273				      unsigned ifnum)
 274{
 275	struct usb_host_config *config = dev->actconfig;
 276	int i;
 277
 278	if (!config)
 279		return NULL;
 280	for (i = 0; i < config->desc.bNumInterfaces; i++)
 281		if (config->interface[i]->altsetting[0]
 282				.desc.bInterfaceNumber == ifnum)
 283			return config->interface[i];
 284
 285	return NULL;
 286}
 287EXPORT_SYMBOL_GPL(usb_ifnum_to_if);
 288
 289/**
 290 * usb_altnum_to_altsetting - get the altsetting structure with a given alternate setting number.
 291 * @intf: the interface containing the altsetting in question
 292 * @altnum: the desired alternate setting number
 293 *
 294 * This searches the altsetting array of the specified interface for
 295 * an entry with the correct bAlternateSetting value.
 296 *
 297 * Note that altsettings need not be stored sequentially by number, so
 298 * it would be incorrect to assume that the first altsetting entry in
 299 * the array corresponds to altsetting zero.  This routine helps device
 300 * drivers avoid such mistakes.
 301 *
 302 * Don't call this function unless you are bound to the intf interface
 303 * or you have locked the device!
 304 *
 305 * Return: A pointer to the entry of the altsetting array of @intf that
 306 * has @altnum as the alternate setting number. %NULL if not found.
 307 */
 308struct usb_host_interface *usb_altnum_to_altsetting(
 309					const struct usb_interface *intf,
 310					unsigned int altnum)
 311{
 312	int i;
 313
 314	for (i = 0; i < intf->num_altsetting; i++) {
 315		if (intf->altsetting[i].desc.bAlternateSetting == altnum)
 316			return &intf->altsetting[i];
 317	}
 318	return NULL;
 319}
 320EXPORT_SYMBOL_GPL(usb_altnum_to_altsetting);
 321
 322struct find_interface_arg {
 323	int minor;
 324	struct device_driver *drv;
 325};
 326
 327static int __find_interface(struct device *dev, const void *data)
 328{
 329	const struct find_interface_arg *arg = data;
 330	struct usb_interface *intf;
 331
 332	if (!is_usb_interface(dev))
 333		return 0;
 334
 335	if (dev->driver != arg->drv)
 336		return 0;
 337	intf = to_usb_interface(dev);
 338	return intf->minor == arg->minor;
 339}
 340
 341/**
 342 * usb_find_interface - find usb_interface pointer for driver and device
 343 * @drv: the driver whose current configuration is considered
 344 * @minor: the minor number of the desired device
 345 *
 346 * This walks the bus device list and returns a pointer to the interface
 347 * with the matching minor and driver.  Note, this only works for devices
 348 * that share the USB major number.
 349 *
 350 * Return: A pointer to the interface with the matching major and @minor.
 351 */
 352struct usb_interface *usb_find_interface(struct usb_driver *drv, int minor)
 353{
 354	struct find_interface_arg argb;
 355	struct device *dev;
 356
 357	argb.minor = minor;
 358	argb.drv = &drv->drvwrap.driver;
 359
 360	dev = bus_find_device(&usb_bus_type, NULL, &argb, __find_interface);
 361
 362	/* Drop reference count from bus_find_device */
 363	put_device(dev);
 364
 365	return dev ? to_usb_interface(dev) : NULL;
 366}
 367EXPORT_SYMBOL_GPL(usb_find_interface);
 368
 369struct each_dev_arg {
 370	void *data;
 371	int (*fn)(struct usb_device *, void *);
 372};
 373
 374static int __each_dev(struct device *dev, void *data)
 375{
 376	struct each_dev_arg *arg = (struct each_dev_arg *)data;
 377
 378	/* There are struct usb_interface on the same bus, filter them out */
 379	if (!is_usb_device(dev))
 380		return 0;
 381
 382	return arg->fn(to_usb_device(dev), arg->data);
 383}
 384
 385/**
 386 * usb_for_each_dev - iterate over all USB devices in the system
 387 * @data: data pointer that will be handed to the callback function
 388 * @fn: callback function to be called for each USB device
 389 *
 390 * Iterate over all USB devices and call @fn for each, passing it @data. If it
 391 * returns anything other than 0, we break the iteration prematurely and return
 392 * that value.
 393 */
 394int usb_for_each_dev(void *data, int (*fn)(struct usb_device *, void *))
 395{
 396	struct each_dev_arg arg = {data, fn};
 397
 398	return bus_for_each_dev(&usb_bus_type, NULL, &arg, __each_dev);
 399}
 400EXPORT_SYMBOL_GPL(usb_for_each_dev);
 401
 402/**
 403 * usb_release_dev - free a usb device structure when all users of it are finished.
 404 * @dev: device that's been disconnected
 405 *
 406 * Will be called only by the device core when all users of this usb device are
 407 * done.
 408 */
 409static void usb_release_dev(struct device *dev)
 410{
 411	struct usb_device *udev;
 412	struct usb_hcd *hcd;
 413
 414	udev = to_usb_device(dev);
 415	hcd = bus_to_hcd(udev->bus);
 416
 417	usb_destroy_configuration(udev);
 418	usb_release_bos_descriptor(udev);
 419	of_node_put(dev->of_node);
 420	usb_put_hcd(hcd);
 421	kfree(udev->product);
 422	kfree(udev->manufacturer);
 423	kfree(udev->serial);
 424	kfree(udev);
 425}
 426
 427static int usb_dev_uevent(struct device *dev, struct kobj_uevent_env *env)
 428{
 429	struct usb_device *usb_dev;
 430
 431	usb_dev = to_usb_device(dev);
 432
 433	if (add_uevent_var(env, "BUSNUM=%03d", usb_dev->bus->busnum))
 434		return -ENOMEM;
 435
 436	if (add_uevent_var(env, "DEVNUM=%03d", usb_dev->devnum))
 437		return -ENOMEM;
 438
 439	return 0;
 440}
 441
 442#ifdef	CONFIG_PM
 443
 444/* USB device Power-Management thunks.
 445 * There's no need to distinguish here between quiescing a USB device
 446 * and powering it down; the generic_suspend() routine takes care of
 447 * it by skipping the usb_port_suspend() call for a quiesce.  And for
 448 * USB interfaces there's no difference at all.
 449 */
 450
 451static int usb_dev_prepare(struct device *dev)
 452{
 453	return 0;		/* Implement eventually? */
 454}
 455
 456static void usb_dev_complete(struct device *dev)
 457{
 458	/* Currently used only for rebinding interfaces */
 459	usb_resume_complete(dev);
 460}
 461
 462static int usb_dev_suspend(struct device *dev)
 463{
 464	return usb_suspend(dev, PMSG_SUSPEND);
 465}
 466
 467static int usb_dev_resume(struct device *dev)
 468{
 469	return usb_resume(dev, PMSG_RESUME);
 470}
 471
 472static int usb_dev_freeze(struct device *dev)
 473{
 474	return usb_suspend(dev, PMSG_FREEZE);
 475}
 476
 477static int usb_dev_thaw(struct device *dev)
 478{
 479	return usb_resume(dev, PMSG_THAW);
 480}
 481
 482static int usb_dev_poweroff(struct device *dev)
 483{
 484	return usb_suspend(dev, PMSG_HIBERNATE);
 485}
 486
 487static int usb_dev_restore(struct device *dev)
 488{
 489	return usb_resume(dev, PMSG_RESTORE);
 490}
 491
 492static const struct dev_pm_ops usb_device_pm_ops = {
 493	.prepare =	usb_dev_prepare,
 494	.complete =	usb_dev_complete,
 495	.suspend =	usb_dev_suspend,
 496	.resume =	usb_dev_resume,
 497	.freeze =	usb_dev_freeze,
 498	.thaw =		usb_dev_thaw,
 499	.poweroff =	usb_dev_poweroff,
 500	.restore =	usb_dev_restore,
 
 501	.runtime_suspend =	usb_runtime_suspend,
 502	.runtime_resume =	usb_runtime_resume,
 503	.runtime_idle =		usb_runtime_idle,
 
 504};
 505
 506#endif	/* CONFIG_PM */
 507
 508
 509static char *usb_devnode(struct device *dev,
 510			 umode_t *mode, kuid_t *uid, kgid_t *gid)
 511{
 512	struct usb_device *usb_dev;
 513
 514	usb_dev = to_usb_device(dev);
 515	return kasprintf(GFP_KERNEL, "bus/usb/%03d/%03d",
 516			 usb_dev->bus->busnum, usb_dev->devnum);
 517}
 518
 519struct device_type usb_device_type = {
 520	.name =		"usb_device",
 521	.release =	usb_release_dev,
 522	.uevent =	usb_dev_uevent,
 523	.devnode = 	usb_devnode,
 524#ifdef CONFIG_PM
 525	.pm =		&usb_device_pm_ops,
 526#endif
 527};
 528
 529
 530/* Returns 1 if @usb_bus is WUSB, 0 otherwise */
 531static unsigned usb_bus_is_wusb(struct usb_bus *bus)
 532{
 533	struct usb_hcd *hcd = bus_to_hcd(bus);
 534	return hcd->wireless;
 535}
 536
 537static bool usb_dev_authorized(struct usb_device *dev, struct usb_hcd *hcd)
 538{
 539	struct usb_hub *hub;
 540
 541	if (!dev->parent)
 542		return true; /* Root hub always ok [and always wired] */
 543
 544	switch (hcd->dev_policy) {
 545	case USB_DEVICE_AUTHORIZE_NONE:
 546	default:
 547		return false;
 548
 549	case USB_DEVICE_AUTHORIZE_ALL:
 550		return true;
 551
 552	case USB_DEVICE_AUTHORIZE_INTERNAL:
 553		hub = usb_hub_to_struct_hub(dev->parent);
 554		return hub->ports[dev->portnum - 1]->connect_type ==
 555				USB_PORT_CONNECT_TYPE_HARD_WIRED;
 556	}
 557}
 558
 559/**
 560 * usb_alloc_dev - usb device constructor (usbcore-internal)
 561 * @parent: hub to which device is connected; null to allocate a root hub
 562 * @bus: bus used to access the device
 563 * @port1: one-based index of port; ignored for root hubs
 564 * Context: !in_interrupt()
 565 *
 566 * Only hub drivers (including virtual root hub drivers for host
 567 * controllers) should ever call this.
 568 *
 569 * This call may not be used in a non-sleeping context.
 570 *
 571 * Return: On success, a pointer to the allocated usb device. %NULL on
 572 * failure.
 573 */
 574struct usb_device *usb_alloc_dev(struct usb_device *parent,
 575				 struct usb_bus *bus, unsigned port1)
 576{
 577	struct usb_device *dev;
 578	struct usb_hcd *usb_hcd = bus_to_hcd(bus);
 579	unsigned root_hub = 0;
 580	unsigned raw_port = port1;
 581
 582	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
 583	if (!dev)
 584		return NULL;
 585
 586	if (!usb_get_hcd(usb_hcd)) {
 587		kfree(dev);
 588		return NULL;
 589	}
 590	/* Root hubs aren't true devices, so don't allocate HCD resources */
 591	if (usb_hcd->driver->alloc_dev && parent &&
 592		!usb_hcd->driver->alloc_dev(usb_hcd, dev)) {
 593		usb_put_hcd(bus_to_hcd(bus));
 594		kfree(dev);
 595		return NULL;
 596	}
 597
 598	device_initialize(&dev->dev);
 599	dev->dev.bus = &usb_bus_type;
 600	dev->dev.type = &usb_device_type;
 601	dev->dev.groups = usb_device_groups;
 602	/*
 603	 * Fake a dma_mask/offset for the USB device:
 604	 * We cannot really use the dma-mapping API (dma_alloc_* and
 605	 * dma_map_*) for USB devices but instead need to use
 606	 * usb_alloc_coherent and pass data in 'urb's, but some subsystems
 607	 * manually look into the mask/offset pair to determine whether
 608	 * they need bounce buffers.
 609	 * Note: calling dma_set_mask() on a USB device would set the
 610	 * mask for the entire HCD, so don't do that.
 611	 */
 612	dev->dev.dma_mask = bus->sysdev->dma_mask;
 613	dev->dev.dma_pfn_offset = bus->sysdev->dma_pfn_offset;
 614	set_dev_node(&dev->dev, dev_to_node(bus->sysdev));
 615	dev->state = USB_STATE_ATTACHED;
 616	dev->lpm_disable_count = 1;
 617	atomic_set(&dev->urbnum, 0);
 618
 619	INIT_LIST_HEAD(&dev->ep0.urb_list);
 620	dev->ep0.desc.bLength = USB_DT_ENDPOINT_SIZE;
 621	dev->ep0.desc.bDescriptorType = USB_DT_ENDPOINT;
 622	/* ep0 maxpacket comes later, from device descriptor */
 623	usb_enable_endpoint(dev, &dev->ep0, false);
 624	dev->can_submit = 1;
 625
 626	/* Save readable and stable topology id, distinguishing devices
 627	 * by location for diagnostics, tools, driver model, etc.  The
 628	 * string is a path along hub ports, from the root.  Each device's
 629	 * dev->devpath will be stable until USB is re-cabled, and hubs
 630	 * are often labeled with these port numbers.  The name isn't
 631	 * as stable:  bus->busnum changes easily from modprobe order,
 632	 * cardbus or pci hotplugging, and so on.
 633	 */
 634	if (unlikely(!parent)) {
 635		dev->devpath[0] = '0';
 636		dev->route = 0;
 637
 638		dev->dev.parent = bus->controller;
 639		device_set_of_node_from_dev(&dev->dev, bus->sysdev);
 640		dev_set_name(&dev->dev, "usb%d", bus->busnum);
 641		root_hub = 1;
 642	} else {
 643		/* match any labeling on the hubs; it's one-based */
 644		if (parent->devpath[0] == '0') {
 645			snprintf(dev->devpath, sizeof dev->devpath,
 646				"%d", port1);
 647			/* Root ports are not counted in route string */
 648			dev->route = 0;
 649		} else {
 650			snprintf(dev->devpath, sizeof dev->devpath,
 651				"%s.%d", parent->devpath, port1);
 652			/* Route string assumes hubs have less than 16 ports */
 653			if (port1 < 15)
 654				dev->route = parent->route +
 655					(port1 << ((parent->level - 1)*4));
 656			else
 657				dev->route = parent->route +
 658					(15 << ((parent->level - 1)*4));
 659		}
 660
 661		dev->dev.parent = &parent->dev;
 662		dev_set_name(&dev->dev, "%d-%s", bus->busnum, dev->devpath);
 663
 664		if (!parent->parent) {
 665			/* device under root hub's port */
 666			raw_port = usb_hcd_find_raw_port_number(usb_hcd,
 667				port1);
 668		}
 669		dev->dev.of_node = usb_of_get_device_node(parent, raw_port);
 670
 671		/* hub driver sets up TT records */
 672	}
 673
 674	dev->portnum = port1;
 675	dev->bus = bus;
 676	dev->parent = parent;
 677	INIT_LIST_HEAD(&dev->filelist);
 678
 679#ifdef	CONFIG_PM
 680	pm_runtime_set_autosuspend_delay(&dev->dev,
 681			usb_autosuspend_delay * 1000);
 682	dev->connect_time = jiffies;
 683	dev->active_duration = -jiffies;
 684#endif
 685
 686	dev->authorized = usb_dev_authorized(dev, usb_hcd);
 687	if (!root_hub)
 
 688		dev->wusb = usb_bus_is_wusb(bus) ? 1 : 0;
 689
 690	return dev;
 691}
 692EXPORT_SYMBOL_GPL(usb_alloc_dev);
 693
 694/**
 695 * usb_get_dev - increments the reference count of the usb device structure
 696 * @dev: the device being referenced
 697 *
 698 * Each live reference to a device should be refcounted.
 699 *
 700 * Drivers for USB interfaces should normally record such references in
 701 * their probe() methods, when they bind to an interface, and release
 702 * them by calling usb_put_dev(), in their disconnect() methods.
 703 *
 704 * Return: A pointer to the device with the incremented reference counter.
 705 */
 706struct usb_device *usb_get_dev(struct usb_device *dev)
 707{
 708	if (dev)
 709		get_device(&dev->dev);
 710	return dev;
 711}
 712EXPORT_SYMBOL_GPL(usb_get_dev);
 713
 714/**
 715 * usb_put_dev - release a use of the usb device structure
 716 * @dev: device that's been disconnected
 717 *
 718 * Must be called when a user of a device is finished with it.  When the last
 719 * user of the device calls this function, the memory of the device is freed.
 720 */
 721void usb_put_dev(struct usb_device *dev)
 722{
 723	if (dev)
 724		put_device(&dev->dev);
 725}
 726EXPORT_SYMBOL_GPL(usb_put_dev);
 727
 728/**
 729 * usb_get_intf - increments the reference count of the usb interface structure
 730 * @intf: the interface being referenced
 731 *
 732 * Each live reference to a interface must be refcounted.
 733 *
 734 * Drivers for USB interfaces should normally record such references in
 735 * their probe() methods, when they bind to an interface, and release
 736 * them by calling usb_put_intf(), in their disconnect() methods.
 737 *
 738 * Return: A pointer to the interface with the incremented reference counter.
 739 */
 740struct usb_interface *usb_get_intf(struct usb_interface *intf)
 741{
 742	if (intf)
 743		get_device(&intf->dev);
 744	return intf;
 745}
 746EXPORT_SYMBOL_GPL(usb_get_intf);
 747
 748/**
 749 * usb_put_intf - release a use of the usb interface structure
 750 * @intf: interface that's been decremented
 751 *
 752 * Must be called when a user of an interface is finished with it.  When the
 753 * last user of the interface calls this function, the memory of the interface
 754 * is freed.
 755 */
 756void usb_put_intf(struct usb_interface *intf)
 757{
 758	if (intf)
 759		put_device(&intf->dev);
 760}
 761EXPORT_SYMBOL_GPL(usb_put_intf);
 762
 763/*			USB device locking
 764 *
 765 * USB devices and interfaces are locked using the semaphore in their
 766 * embedded struct device.  The hub driver guarantees that whenever a
 767 * device is connected or disconnected, drivers are called with the
 768 * USB device locked as well as their particular interface.
 769 *
 770 * Complications arise when several devices are to be locked at the same
 771 * time.  Only hub-aware drivers that are part of usbcore ever have to
 772 * do this; nobody else needs to worry about it.  The rule for locking
 773 * is simple:
 774 *
 775 *	When locking both a device and its parent, always lock the
 776 *	the parent first.
 777 */
 778
 779/**
 780 * usb_lock_device_for_reset - cautiously acquire the lock for a usb device structure
 781 * @udev: device that's being locked
 782 * @iface: interface bound to the driver making the request (optional)
 783 *
 784 * Attempts to acquire the device lock, but fails if the device is
 785 * NOTATTACHED or SUSPENDED, or if iface is specified and the interface
 786 * is neither BINDING nor BOUND.  Rather than sleeping to wait for the
 787 * lock, the routine polls repeatedly.  This is to prevent deadlock with
 788 * disconnect; in some drivers (such as usb-storage) the disconnect()
 789 * or suspend() method will block waiting for a device reset to complete.
 790 *
 791 * Return: A negative error code for failure, otherwise 0.
 792 */
 793int usb_lock_device_for_reset(struct usb_device *udev,
 794			      const struct usb_interface *iface)
 795{
 796	unsigned long jiffies_expire = jiffies + HZ;
 797
 798	if (udev->state == USB_STATE_NOTATTACHED)
 799		return -ENODEV;
 800	if (udev->state == USB_STATE_SUSPENDED)
 801		return -EHOSTUNREACH;
 802	if (iface && (iface->condition == USB_INTERFACE_UNBINDING ||
 803			iface->condition == USB_INTERFACE_UNBOUND))
 804		return -EINTR;
 805
 806	while (!usb_trylock_device(udev)) {
 807
 808		/* If we can't acquire the lock after waiting one second,
 809		 * we're probably deadlocked */
 810		if (time_after(jiffies, jiffies_expire))
 811			return -EBUSY;
 812
 813		msleep(15);
 814		if (udev->state == USB_STATE_NOTATTACHED)
 815			return -ENODEV;
 816		if (udev->state == USB_STATE_SUSPENDED)
 817			return -EHOSTUNREACH;
 818		if (iface && (iface->condition == USB_INTERFACE_UNBINDING ||
 819				iface->condition == USB_INTERFACE_UNBOUND))
 820			return -EINTR;
 821	}
 822	return 0;
 823}
 824EXPORT_SYMBOL_GPL(usb_lock_device_for_reset);
 825
 826/**
 827 * usb_get_current_frame_number - return current bus frame number
 828 * @dev: the device whose bus is being queried
 829 *
 830 * Return: The current frame number for the USB host controller used
 831 * with the given USB device. This can be used when scheduling
 832 * isochronous requests.
 833 *
 834 * Note: Different kinds of host controller have different "scheduling
 835 * horizons". While one type might support scheduling only 32 frames
 836 * into the future, others could support scheduling up to 1024 frames
 837 * into the future.
 838 *
 839 */
 840int usb_get_current_frame_number(struct usb_device *dev)
 841{
 842	return usb_hcd_get_frame_number(dev);
 843}
 844EXPORT_SYMBOL_GPL(usb_get_current_frame_number);
 845
 846/*-------------------------------------------------------------------*/
 847/*
 848 * __usb_get_extra_descriptor() finds a descriptor of specific type in the
 849 * extra field of the interface and endpoint descriptor structs.
 850 */
 851
 852int __usb_get_extra_descriptor(char *buffer, unsigned size,
 853			       unsigned char type, void **ptr, size_t minsize)
 854{
 855	struct usb_descriptor_header *header;
 856
 857	while (size >= sizeof(struct usb_descriptor_header)) {
 858		header = (struct usb_descriptor_header *)buffer;
 859
 860		if (header->bLength < 2 || header->bLength > size) {
 861			printk(KERN_ERR
 862				"%s: bogus descriptor, type %d length %d\n",
 863				usbcore_name,
 864				header->bDescriptorType,
 865				header->bLength);
 866			return -1;
 867		}
 868
 869		if (header->bDescriptorType == type && header->bLength >= minsize) {
 870			*ptr = header;
 871			return 0;
 872		}
 873
 874		buffer += header->bLength;
 875		size -= header->bLength;
 876	}
 877	return -1;
 878}
 879EXPORT_SYMBOL_GPL(__usb_get_extra_descriptor);
 880
 881/**
 882 * usb_alloc_coherent - allocate dma-consistent buffer for URB_NO_xxx_DMA_MAP
 883 * @dev: device the buffer will be used with
 884 * @size: requested buffer size
 885 * @mem_flags: affect whether allocation may block
 886 * @dma: used to return DMA address of buffer
 887 *
 888 * Return: Either null (indicating no buffer could be allocated), or the
 889 * cpu-space pointer to a buffer that may be used to perform DMA to the
 890 * specified device.  Such cpu-space buffers are returned along with the DMA
 891 * address (through the pointer provided).
 892 *
 893 * Note:
 894 * These buffers are used with URB_NO_xxx_DMA_MAP set in urb->transfer_flags
 895 * to avoid behaviors like using "DMA bounce buffers", or thrashing IOMMU
 896 * hardware during URB completion/resubmit.  The implementation varies between
 897 * platforms, depending on details of how DMA will work to this device.
 898 * Using these buffers also eliminates cacheline sharing problems on
 899 * architectures where CPU caches are not DMA-coherent.  On systems without
 900 * bus-snooping caches, these buffers are uncached.
 901 *
 902 * When the buffer is no longer used, free it with usb_free_coherent().
 903 */
 904void *usb_alloc_coherent(struct usb_device *dev, size_t size, gfp_t mem_flags,
 905			 dma_addr_t *dma)
 906{
 907	if (!dev || !dev->bus)
 908		return NULL;
 909	return hcd_buffer_alloc(dev->bus, size, mem_flags, dma);
 910}
 911EXPORT_SYMBOL_GPL(usb_alloc_coherent);
 912
 913/**
 914 * usb_free_coherent - free memory allocated with usb_alloc_coherent()
 915 * @dev: device the buffer was used with
 916 * @size: requested buffer size
 917 * @addr: CPU address of buffer
 918 * @dma: DMA address of buffer
 919 *
 920 * This reclaims an I/O buffer, letting it be reused.  The memory must have
 921 * been allocated using usb_alloc_coherent(), and the parameters must match
 922 * those provided in that allocation request.
 923 */
 924void usb_free_coherent(struct usb_device *dev, size_t size, void *addr,
 925		       dma_addr_t dma)
 926{
 927	if (!dev || !dev->bus)
 928		return;
 929	if (!addr)
 930		return;
 931	hcd_buffer_free(dev->bus, size, addr, dma);
 932}
 933EXPORT_SYMBOL_GPL(usb_free_coherent);
 934
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 935/*
 936 * Notifications of device and interface registration
 937 */
 938static int usb_bus_notify(struct notifier_block *nb, unsigned long action,
 939		void *data)
 940{
 941	struct device *dev = data;
 942
 943	switch (action) {
 944	case BUS_NOTIFY_ADD_DEVICE:
 945		if (dev->type == &usb_device_type)
 946			(void) usb_create_sysfs_dev_files(to_usb_device(dev));
 947		else if (dev->type == &usb_if_device_type)
 948			usb_create_sysfs_intf_files(to_usb_interface(dev));
 949		break;
 950
 951	case BUS_NOTIFY_DEL_DEVICE:
 952		if (dev->type == &usb_device_type)
 953			usb_remove_sysfs_dev_files(to_usb_device(dev));
 954		else if (dev->type == &usb_if_device_type)
 955			usb_remove_sysfs_intf_files(to_usb_interface(dev));
 956		break;
 957	}
 958	return 0;
 959}
 960
 961static struct notifier_block usb_bus_nb = {
 962	.notifier_call = usb_bus_notify,
 963};
 964
 965static struct dentry *usb_devices_root;
 
 966
 967static void usb_debugfs_init(void)
 
 
 968{
 969	usb_devices_root = debugfs_create_file("devices", 0444, usb_debug_root,
 970					       NULL, &usbfs_devices_fops);
 
 
 
 
 
 
 
 
 
 
 
 
 971}
 972
 973static void usb_debugfs_cleanup(void)
 974{
 975	debugfs_remove(usb_devices_root);
 
 976}
 977
 978/*
 979 * Init
 980 */
 981static int __init usb_init(void)
 982{
 983	int retval;
 984	if (usb_disabled()) {
 985		pr_info("%s: USB support disabled\n", usbcore_name);
 986		return 0;
 987	}
 988	usb_init_pool_max();
 989
 990	usb_debugfs_init();
 
 
 991
 992	usb_acpi_register();
 993	retval = bus_register(&usb_bus_type);
 994	if (retval)
 995		goto bus_register_failed;
 996	retval = bus_register_notifier(&usb_bus_type, &usb_bus_nb);
 997	if (retval)
 998		goto bus_notifier_failed;
 999	retval = usb_major_init();
1000	if (retval)
1001		goto major_init_failed;
1002	retval = usb_register(&usbfs_driver);
1003	if (retval)
1004		goto driver_register_failed;
1005	retval = usb_devio_init();
1006	if (retval)
1007		goto usb_devio_init_failed;
1008	retval = usb_hub_init();
1009	if (retval)
1010		goto hub_init_failed;
1011	retval = usb_register_device_driver(&usb_generic_driver, THIS_MODULE);
1012	if (!retval)
1013		goto out;
1014
1015	usb_hub_cleanup();
1016hub_init_failed:
1017	usb_devio_cleanup();
1018usb_devio_init_failed:
1019	usb_deregister(&usbfs_driver);
1020driver_register_failed:
1021	usb_major_cleanup();
1022major_init_failed:
1023	bus_unregister_notifier(&usb_bus_type, &usb_bus_nb);
1024bus_notifier_failed:
1025	bus_unregister(&usb_bus_type);
1026bus_register_failed:
1027	usb_acpi_unregister();
1028	usb_debugfs_cleanup();
1029out:
1030	return retval;
1031}
1032
1033/*
1034 * Cleanup
1035 */
1036static void __exit usb_exit(void)
1037{
1038	/* This will matter if shutdown/reboot does exitcalls. */
1039	if (usb_disabled())
1040		return;
1041
1042	usb_release_quirk_list();
1043	usb_deregister_device_driver(&usb_generic_driver);
1044	usb_major_cleanup();
1045	usb_deregister(&usbfs_driver);
1046	usb_devio_cleanup();
1047	usb_hub_cleanup();
1048	bus_unregister_notifier(&usb_bus_type, &usb_bus_nb);
1049	bus_unregister(&usb_bus_type);
1050	usb_acpi_unregister();
1051	usb_debugfs_cleanup();
1052	idr_destroy(&usb_bus_idr);
1053}
1054
1055subsys_initcall(usb_init);
1056module_exit(usb_exit);
1057MODULE_LICENSE("GPL");
v3.15
 
   1/*
   2 * drivers/usb/core/usb.c
   3 *
   4 * (C) Copyright Linus Torvalds 1999
   5 * (C) Copyright Johannes Erdfelt 1999-2001
   6 * (C) Copyright Andreas Gal 1999
   7 * (C) Copyright Gregory P. Smith 1999
   8 * (C) Copyright Deti Fliegl 1999 (new USB architecture)
   9 * (C) Copyright Randy Dunlap 2000
  10 * (C) Copyright David Brownell 2000-2004
  11 * (C) Copyright Yggdrasil Computing, Inc. 2000
  12 *     (usb_device_id matching changes by Adam J. Richter)
  13 * (C) Copyright Greg Kroah-Hartman 2002-2003
  14 *
 
 
  15 * NOTE! This is not actually a driver at all, rather this is
  16 * just a collection of helper routines that implement the
  17 * generic USB things that the real drivers can use..
  18 *
  19 * Think of this as a "USB library" rather than anything else.
  20 * It should be considered a slave, with no callbacks. Callbacks
  21 * are evil.
  22 */
  23
  24#include <linux/module.h>
  25#include <linux/moduleparam.h>
  26#include <linux/string.h>
  27#include <linux/bitops.h>
  28#include <linux/slab.h>
  29#include <linux/interrupt.h>  /* for in_interrupt() */
  30#include <linux/kmod.h>
  31#include <linux/init.h>
  32#include <linux/spinlock.h>
  33#include <linux/errno.h>
  34#include <linux/usb.h>
  35#include <linux/usb/hcd.h>
  36#include <linux/mutex.h>
  37#include <linux/workqueue.h>
  38#include <linux/debugfs.h>
 
  39
  40#include <asm/io.h>
  41#include <linux/scatterlist.h>
  42#include <linux/mm.h>
  43#include <linux/dma-mapping.h>
  44
  45#include "usb.h"
  46
  47
  48const char *usbcore_name = "usbcore";
  49
  50static bool nousb;	/* Disable USB when built into kernel image */
  51
  52#ifdef	CONFIG_PM_RUNTIME
  53static int usb_autosuspend_delay = 2;		/* Default delay value,
  54						 * in seconds */
 
 
 
 
 
 
 
 
 
 
 
  55module_param_named(autosuspend, usb_autosuspend_delay, int, 0644);
  56MODULE_PARM_DESC(autosuspend, "default autosuspend delay");
  57
  58#else
  59#define usb_autosuspend_delay		0
  60#endif
  61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  62
  63/**
  64 * usb_find_alt_setting() - Given a configuration, find the alternate setting
  65 * for the given interface.
  66 * @config: the configuration to search (not necessarily the current config).
  67 * @iface_num: interface number to search in
  68 * @alt_num: alternate interface setting number to search for.
  69 *
  70 * Search the configuration's interface cache for the given alt setting.
  71 *
  72 * Return: The alternate setting, if found. %NULL otherwise.
  73 */
  74struct usb_host_interface *usb_find_alt_setting(
  75		struct usb_host_config *config,
  76		unsigned int iface_num,
  77		unsigned int alt_num)
  78{
  79	struct usb_interface_cache *intf_cache = NULL;
  80	int i;
  81
 
 
  82	for (i = 0; i < config->desc.bNumInterfaces; i++) {
  83		if (config->intf_cache[i]->altsetting[0].desc.bInterfaceNumber
  84				== iface_num) {
  85			intf_cache = config->intf_cache[i];
  86			break;
  87		}
  88	}
  89	if (!intf_cache)
  90		return NULL;
  91	for (i = 0; i < intf_cache->num_altsetting; i++)
  92		if (intf_cache->altsetting[i].desc.bAlternateSetting == alt_num)
  93			return &intf_cache->altsetting[i];
  94
  95	printk(KERN_DEBUG "Did not find alt setting %u for intf %u, "
  96			"config %u\n", alt_num, iface_num,
  97			config->desc.bConfigurationValue);
  98	return NULL;
  99}
 100EXPORT_SYMBOL_GPL(usb_find_alt_setting);
 101
 102/**
 103 * usb_ifnum_to_if - get the interface object with a given interface number
 104 * @dev: the device whose current configuration is considered
 105 * @ifnum: the desired interface
 106 *
 107 * This walks the device descriptor for the currently active configuration
 108 * to find the interface object with the particular interface number.
 109 *
 110 * Note that configuration descriptors are not required to assign interface
 111 * numbers sequentially, so that it would be incorrect to assume that
 112 * the first interface in that descriptor corresponds to interface zero.
 113 * This routine helps device drivers avoid such mistakes.
 114 * However, you should make sure that you do the right thing with any
 115 * alternate settings available for this interfaces.
 116 *
 117 * Don't call this function unless you are bound to one of the interfaces
 118 * on this device or you have locked the device!
 119 *
 120 * Return: A pointer to the interface that has @ifnum as interface number,
 121 * if found. %NULL otherwise.
 122 */
 123struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
 124				      unsigned ifnum)
 125{
 126	struct usb_host_config *config = dev->actconfig;
 127	int i;
 128
 129	if (!config)
 130		return NULL;
 131	for (i = 0; i < config->desc.bNumInterfaces; i++)
 132		if (config->interface[i]->altsetting[0]
 133				.desc.bInterfaceNumber == ifnum)
 134			return config->interface[i];
 135
 136	return NULL;
 137}
 138EXPORT_SYMBOL_GPL(usb_ifnum_to_if);
 139
 140/**
 141 * usb_altnum_to_altsetting - get the altsetting structure with a given alternate setting number.
 142 * @intf: the interface containing the altsetting in question
 143 * @altnum: the desired alternate setting number
 144 *
 145 * This searches the altsetting array of the specified interface for
 146 * an entry with the correct bAlternateSetting value.
 147 *
 148 * Note that altsettings need not be stored sequentially by number, so
 149 * it would be incorrect to assume that the first altsetting entry in
 150 * the array corresponds to altsetting zero.  This routine helps device
 151 * drivers avoid such mistakes.
 152 *
 153 * Don't call this function unless you are bound to the intf interface
 154 * or you have locked the device!
 155 *
 156 * Return: A pointer to the entry of the altsetting array of @intf that
 157 * has @altnum as the alternate setting number. %NULL if not found.
 158 */
 159struct usb_host_interface *usb_altnum_to_altsetting(
 160					const struct usb_interface *intf,
 161					unsigned int altnum)
 162{
 163	int i;
 164
 165	for (i = 0; i < intf->num_altsetting; i++) {
 166		if (intf->altsetting[i].desc.bAlternateSetting == altnum)
 167			return &intf->altsetting[i];
 168	}
 169	return NULL;
 170}
 171EXPORT_SYMBOL_GPL(usb_altnum_to_altsetting);
 172
 173struct find_interface_arg {
 174	int minor;
 175	struct device_driver *drv;
 176};
 177
 178static int __find_interface(struct device *dev, void *data)
 179{
 180	struct find_interface_arg *arg = data;
 181	struct usb_interface *intf;
 182
 183	if (!is_usb_interface(dev))
 184		return 0;
 185
 186	if (dev->driver != arg->drv)
 187		return 0;
 188	intf = to_usb_interface(dev);
 189	return intf->minor == arg->minor;
 190}
 191
 192/**
 193 * usb_find_interface - find usb_interface pointer for driver and device
 194 * @drv: the driver whose current configuration is considered
 195 * @minor: the minor number of the desired device
 196 *
 197 * This walks the bus device list and returns a pointer to the interface
 198 * with the matching minor and driver.  Note, this only works for devices
 199 * that share the USB major number.
 200 *
 201 * Return: A pointer to the interface with the matching major and @minor.
 202 */
 203struct usb_interface *usb_find_interface(struct usb_driver *drv, int minor)
 204{
 205	struct find_interface_arg argb;
 206	struct device *dev;
 207
 208	argb.minor = minor;
 209	argb.drv = &drv->drvwrap.driver;
 210
 211	dev = bus_find_device(&usb_bus_type, NULL, &argb, __find_interface);
 212
 213	/* Drop reference count from bus_find_device */
 214	put_device(dev);
 215
 216	return dev ? to_usb_interface(dev) : NULL;
 217}
 218EXPORT_SYMBOL_GPL(usb_find_interface);
 219
 220struct each_dev_arg {
 221	void *data;
 222	int (*fn)(struct usb_device *, void *);
 223};
 224
 225static int __each_dev(struct device *dev, void *data)
 226{
 227	struct each_dev_arg *arg = (struct each_dev_arg *)data;
 228
 229	/* There are struct usb_interface on the same bus, filter them out */
 230	if (!is_usb_device(dev))
 231		return 0;
 232
 233	return arg->fn(container_of(dev, struct usb_device, dev), arg->data);
 234}
 235
 236/**
 237 * usb_for_each_dev - iterate over all USB devices in the system
 238 * @data: data pointer that will be handed to the callback function
 239 * @fn: callback function to be called for each USB device
 240 *
 241 * Iterate over all USB devices and call @fn for each, passing it @data. If it
 242 * returns anything other than 0, we break the iteration prematurely and return
 243 * that value.
 244 */
 245int usb_for_each_dev(void *data, int (*fn)(struct usb_device *, void *))
 246{
 247	struct each_dev_arg arg = {data, fn};
 248
 249	return bus_for_each_dev(&usb_bus_type, NULL, &arg, __each_dev);
 250}
 251EXPORT_SYMBOL_GPL(usb_for_each_dev);
 252
 253/**
 254 * usb_release_dev - free a usb device structure when all users of it are finished.
 255 * @dev: device that's been disconnected
 256 *
 257 * Will be called only by the device core when all users of this usb device are
 258 * done.
 259 */
 260static void usb_release_dev(struct device *dev)
 261{
 262	struct usb_device *udev;
 263	struct usb_hcd *hcd;
 264
 265	udev = to_usb_device(dev);
 266	hcd = bus_to_hcd(udev->bus);
 267
 268	usb_destroy_configuration(udev);
 269	usb_release_bos_descriptor(udev);
 
 270	usb_put_hcd(hcd);
 271	kfree(udev->product);
 272	kfree(udev->manufacturer);
 273	kfree(udev->serial);
 274	kfree(udev);
 275}
 276
 277static int usb_dev_uevent(struct device *dev, struct kobj_uevent_env *env)
 278{
 279	struct usb_device *usb_dev;
 280
 281	usb_dev = to_usb_device(dev);
 282
 283	if (add_uevent_var(env, "BUSNUM=%03d", usb_dev->bus->busnum))
 284		return -ENOMEM;
 285
 286	if (add_uevent_var(env, "DEVNUM=%03d", usb_dev->devnum))
 287		return -ENOMEM;
 288
 289	return 0;
 290}
 291
 292#ifdef	CONFIG_PM
 293
 294/* USB device Power-Management thunks.
 295 * There's no need to distinguish here between quiescing a USB device
 296 * and powering it down; the generic_suspend() routine takes care of
 297 * it by skipping the usb_port_suspend() call for a quiesce.  And for
 298 * USB interfaces there's no difference at all.
 299 */
 300
 301static int usb_dev_prepare(struct device *dev)
 302{
 303	return 0;		/* Implement eventually? */
 304}
 305
 306static void usb_dev_complete(struct device *dev)
 307{
 308	/* Currently used only for rebinding interfaces */
 309	usb_resume_complete(dev);
 310}
 311
 312static int usb_dev_suspend(struct device *dev)
 313{
 314	return usb_suspend(dev, PMSG_SUSPEND);
 315}
 316
 317static int usb_dev_resume(struct device *dev)
 318{
 319	return usb_resume(dev, PMSG_RESUME);
 320}
 321
 322static int usb_dev_freeze(struct device *dev)
 323{
 324	return usb_suspend(dev, PMSG_FREEZE);
 325}
 326
 327static int usb_dev_thaw(struct device *dev)
 328{
 329	return usb_resume(dev, PMSG_THAW);
 330}
 331
 332static int usb_dev_poweroff(struct device *dev)
 333{
 334	return usb_suspend(dev, PMSG_HIBERNATE);
 335}
 336
 337static int usb_dev_restore(struct device *dev)
 338{
 339	return usb_resume(dev, PMSG_RESTORE);
 340}
 341
 342static const struct dev_pm_ops usb_device_pm_ops = {
 343	.prepare =	usb_dev_prepare,
 344	.complete =	usb_dev_complete,
 345	.suspend =	usb_dev_suspend,
 346	.resume =	usb_dev_resume,
 347	.freeze =	usb_dev_freeze,
 348	.thaw =		usb_dev_thaw,
 349	.poweroff =	usb_dev_poweroff,
 350	.restore =	usb_dev_restore,
 351#ifdef CONFIG_PM_RUNTIME
 352	.runtime_suspend =	usb_runtime_suspend,
 353	.runtime_resume =	usb_runtime_resume,
 354	.runtime_idle =		usb_runtime_idle,
 355#endif
 356};
 357
 358#endif	/* CONFIG_PM */
 359
 360
 361static char *usb_devnode(struct device *dev,
 362			 umode_t *mode, kuid_t *uid, kgid_t *gid)
 363{
 364	struct usb_device *usb_dev;
 365
 366	usb_dev = to_usb_device(dev);
 367	return kasprintf(GFP_KERNEL, "bus/usb/%03d/%03d",
 368			 usb_dev->bus->busnum, usb_dev->devnum);
 369}
 370
 371struct device_type usb_device_type = {
 372	.name =		"usb_device",
 373	.release =	usb_release_dev,
 374	.uevent =	usb_dev_uevent,
 375	.devnode = 	usb_devnode,
 376#ifdef CONFIG_PM
 377	.pm =		&usb_device_pm_ops,
 378#endif
 379};
 380
 381
 382/* Returns 1 if @usb_bus is WUSB, 0 otherwise */
 383static unsigned usb_bus_is_wusb(struct usb_bus *bus)
 384{
 385	struct usb_hcd *hcd = container_of(bus, struct usb_hcd, self);
 386	return hcd->wireless;
 387}
 388
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 389
 390/**
 391 * usb_alloc_dev - usb device constructor (usbcore-internal)
 392 * @parent: hub to which device is connected; null to allocate a root hub
 393 * @bus: bus used to access the device
 394 * @port1: one-based index of port; ignored for root hubs
 395 * Context: !in_interrupt()
 396 *
 397 * Only hub drivers (including virtual root hub drivers for host
 398 * controllers) should ever call this.
 399 *
 400 * This call may not be used in a non-sleeping context.
 401 *
 402 * Return: On success, a pointer to the allocated usb device. %NULL on
 403 * failure.
 404 */
 405struct usb_device *usb_alloc_dev(struct usb_device *parent,
 406				 struct usb_bus *bus, unsigned port1)
 407{
 408	struct usb_device *dev;
 409	struct usb_hcd *usb_hcd = bus_to_hcd(bus);
 410	unsigned root_hub = 0;
 
 411
 412	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
 413	if (!dev)
 414		return NULL;
 415
 416	if (!usb_get_hcd(usb_hcd)) {
 417		kfree(dev);
 418		return NULL;
 419	}
 420	/* Root hubs aren't true devices, so don't allocate HCD resources */
 421	if (usb_hcd->driver->alloc_dev && parent &&
 422		!usb_hcd->driver->alloc_dev(usb_hcd, dev)) {
 423		usb_put_hcd(bus_to_hcd(bus));
 424		kfree(dev);
 425		return NULL;
 426	}
 427
 428	device_initialize(&dev->dev);
 429	dev->dev.bus = &usb_bus_type;
 430	dev->dev.type = &usb_device_type;
 431	dev->dev.groups = usb_device_groups;
 432	dev->dev.dma_mask = bus->controller->dma_mask;
 433	set_dev_node(&dev->dev, dev_to_node(bus->controller));
 
 
 
 
 
 
 
 
 
 
 
 434	dev->state = USB_STATE_ATTACHED;
 435	dev->lpm_disable_count = 1;
 436	atomic_set(&dev->urbnum, 0);
 437
 438	INIT_LIST_HEAD(&dev->ep0.urb_list);
 439	dev->ep0.desc.bLength = USB_DT_ENDPOINT_SIZE;
 440	dev->ep0.desc.bDescriptorType = USB_DT_ENDPOINT;
 441	/* ep0 maxpacket comes later, from device descriptor */
 442	usb_enable_endpoint(dev, &dev->ep0, false);
 443	dev->can_submit = 1;
 444
 445	/* Save readable and stable topology id, distinguishing devices
 446	 * by location for diagnostics, tools, driver model, etc.  The
 447	 * string is a path along hub ports, from the root.  Each device's
 448	 * dev->devpath will be stable until USB is re-cabled, and hubs
 449	 * are often labeled with these port numbers.  The name isn't
 450	 * as stable:  bus->busnum changes easily from modprobe order,
 451	 * cardbus or pci hotplugging, and so on.
 452	 */
 453	if (unlikely(!parent)) {
 454		dev->devpath[0] = '0';
 455		dev->route = 0;
 456
 457		dev->dev.parent = bus->controller;
 
 458		dev_set_name(&dev->dev, "usb%d", bus->busnum);
 459		root_hub = 1;
 460	} else {
 461		/* match any labeling on the hubs; it's one-based */
 462		if (parent->devpath[0] == '0') {
 463			snprintf(dev->devpath, sizeof dev->devpath,
 464				"%d", port1);
 465			/* Root ports are not counted in route string */
 466			dev->route = 0;
 467		} else {
 468			snprintf(dev->devpath, sizeof dev->devpath,
 469				"%s.%d", parent->devpath, port1);
 470			/* Route string assumes hubs have less than 16 ports */
 471			if (port1 < 15)
 472				dev->route = parent->route +
 473					(port1 << ((parent->level - 1)*4));
 474			else
 475				dev->route = parent->route +
 476					(15 << ((parent->level - 1)*4));
 477		}
 478
 479		dev->dev.parent = &parent->dev;
 480		dev_set_name(&dev->dev, "%d-%s", bus->busnum, dev->devpath);
 481
 
 
 
 
 
 
 
 482		/* hub driver sets up TT records */
 483	}
 484
 485	dev->portnum = port1;
 486	dev->bus = bus;
 487	dev->parent = parent;
 488	INIT_LIST_HEAD(&dev->filelist);
 489
 490#ifdef	CONFIG_PM
 491	pm_runtime_set_autosuspend_delay(&dev->dev,
 492			usb_autosuspend_delay * 1000);
 493	dev->connect_time = jiffies;
 494	dev->active_duration = -jiffies;
 495#endif
 496	if (root_hub)	/* Root hub always ok [and always wired] */
 497		dev->authorized = 1;
 498	else {
 499		dev->authorized = usb_hcd->authorized_default;
 500		dev->wusb = usb_bus_is_wusb(bus) ? 1 : 0;
 501	}
 502	return dev;
 503}
 
 504
 505/**
 506 * usb_get_dev - increments the reference count of the usb device structure
 507 * @dev: the device being referenced
 508 *
 509 * Each live reference to a device should be refcounted.
 510 *
 511 * Drivers for USB interfaces should normally record such references in
 512 * their probe() methods, when they bind to an interface, and release
 513 * them by calling usb_put_dev(), in their disconnect() methods.
 514 *
 515 * Return: A pointer to the device with the incremented reference counter.
 516 */
 517struct usb_device *usb_get_dev(struct usb_device *dev)
 518{
 519	if (dev)
 520		get_device(&dev->dev);
 521	return dev;
 522}
 523EXPORT_SYMBOL_GPL(usb_get_dev);
 524
 525/**
 526 * usb_put_dev - release a use of the usb device structure
 527 * @dev: device that's been disconnected
 528 *
 529 * Must be called when a user of a device is finished with it.  When the last
 530 * user of the device calls this function, the memory of the device is freed.
 531 */
 532void usb_put_dev(struct usb_device *dev)
 533{
 534	if (dev)
 535		put_device(&dev->dev);
 536}
 537EXPORT_SYMBOL_GPL(usb_put_dev);
 538
 539/**
 540 * usb_get_intf - increments the reference count of the usb interface structure
 541 * @intf: the interface being referenced
 542 *
 543 * Each live reference to a interface must be refcounted.
 544 *
 545 * Drivers for USB interfaces should normally record such references in
 546 * their probe() methods, when they bind to an interface, and release
 547 * them by calling usb_put_intf(), in their disconnect() methods.
 548 *
 549 * Return: A pointer to the interface with the incremented reference counter.
 550 */
 551struct usb_interface *usb_get_intf(struct usb_interface *intf)
 552{
 553	if (intf)
 554		get_device(&intf->dev);
 555	return intf;
 556}
 557EXPORT_SYMBOL_GPL(usb_get_intf);
 558
 559/**
 560 * usb_put_intf - release a use of the usb interface structure
 561 * @intf: interface that's been decremented
 562 *
 563 * Must be called when a user of an interface is finished with it.  When the
 564 * last user of the interface calls this function, the memory of the interface
 565 * is freed.
 566 */
 567void usb_put_intf(struct usb_interface *intf)
 568{
 569	if (intf)
 570		put_device(&intf->dev);
 571}
 572EXPORT_SYMBOL_GPL(usb_put_intf);
 573
 574/*			USB device locking
 575 *
 576 * USB devices and interfaces are locked using the semaphore in their
 577 * embedded struct device.  The hub driver guarantees that whenever a
 578 * device is connected or disconnected, drivers are called with the
 579 * USB device locked as well as their particular interface.
 580 *
 581 * Complications arise when several devices are to be locked at the same
 582 * time.  Only hub-aware drivers that are part of usbcore ever have to
 583 * do this; nobody else needs to worry about it.  The rule for locking
 584 * is simple:
 585 *
 586 *	When locking both a device and its parent, always lock the
 587 *	the parent first.
 588 */
 589
 590/**
 591 * usb_lock_device_for_reset - cautiously acquire the lock for a usb device structure
 592 * @udev: device that's being locked
 593 * @iface: interface bound to the driver making the request (optional)
 594 *
 595 * Attempts to acquire the device lock, but fails if the device is
 596 * NOTATTACHED or SUSPENDED, or if iface is specified and the interface
 597 * is neither BINDING nor BOUND.  Rather than sleeping to wait for the
 598 * lock, the routine polls repeatedly.  This is to prevent deadlock with
 599 * disconnect; in some drivers (such as usb-storage) the disconnect()
 600 * or suspend() method will block waiting for a device reset to complete.
 601 *
 602 * Return: A negative error code for failure, otherwise 0.
 603 */
 604int usb_lock_device_for_reset(struct usb_device *udev,
 605			      const struct usb_interface *iface)
 606{
 607	unsigned long jiffies_expire = jiffies + HZ;
 608
 609	if (udev->state == USB_STATE_NOTATTACHED)
 610		return -ENODEV;
 611	if (udev->state == USB_STATE_SUSPENDED)
 612		return -EHOSTUNREACH;
 613	if (iface && (iface->condition == USB_INTERFACE_UNBINDING ||
 614			iface->condition == USB_INTERFACE_UNBOUND))
 615		return -EINTR;
 616
 617	while (!usb_trylock_device(udev)) {
 618
 619		/* If we can't acquire the lock after waiting one second,
 620		 * we're probably deadlocked */
 621		if (time_after(jiffies, jiffies_expire))
 622			return -EBUSY;
 623
 624		msleep(15);
 625		if (udev->state == USB_STATE_NOTATTACHED)
 626			return -ENODEV;
 627		if (udev->state == USB_STATE_SUSPENDED)
 628			return -EHOSTUNREACH;
 629		if (iface && (iface->condition == USB_INTERFACE_UNBINDING ||
 630				iface->condition == USB_INTERFACE_UNBOUND))
 631			return -EINTR;
 632	}
 633	return 0;
 634}
 635EXPORT_SYMBOL_GPL(usb_lock_device_for_reset);
 636
 637/**
 638 * usb_get_current_frame_number - return current bus frame number
 639 * @dev: the device whose bus is being queried
 640 *
 641 * Return: The current frame number for the USB host controller used
 642 * with the given USB device. This can be used when scheduling
 643 * isochronous requests.
 644 *
 645 * Note: Different kinds of host controller have different "scheduling
 646 * horizons". While one type might support scheduling only 32 frames
 647 * into the future, others could support scheduling up to 1024 frames
 648 * into the future.
 649 *
 650 */
 651int usb_get_current_frame_number(struct usb_device *dev)
 652{
 653	return usb_hcd_get_frame_number(dev);
 654}
 655EXPORT_SYMBOL_GPL(usb_get_current_frame_number);
 656
 657/*-------------------------------------------------------------------*/
 658/*
 659 * __usb_get_extra_descriptor() finds a descriptor of specific type in the
 660 * extra field of the interface and endpoint descriptor structs.
 661 */
 662
 663int __usb_get_extra_descriptor(char *buffer, unsigned size,
 664			       unsigned char type, void **ptr)
 665{
 666	struct usb_descriptor_header *header;
 667
 668	while (size >= sizeof(struct usb_descriptor_header)) {
 669		header = (struct usb_descriptor_header *)buffer;
 670
 671		if (header->bLength < 2) {
 672			printk(KERN_ERR
 673				"%s: bogus descriptor, type %d length %d\n",
 674				usbcore_name,
 675				header->bDescriptorType,
 676				header->bLength);
 677			return -1;
 678		}
 679
 680		if (header->bDescriptorType == type) {
 681			*ptr = header;
 682			return 0;
 683		}
 684
 685		buffer += header->bLength;
 686		size -= header->bLength;
 687	}
 688	return -1;
 689}
 690EXPORT_SYMBOL_GPL(__usb_get_extra_descriptor);
 691
 692/**
 693 * usb_alloc_coherent - allocate dma-consistent buffer for URB_NO_xxx_DMA_MAP
 694 * @dev: device the buffer will be used with
 695 * @size: requested buffer size
 696 * @mem_flags: affect whether allocation may block
 697 * @dma: used to return DMA address of buffer
 698 *
 699 * Return: Either null (indicating no buffer could be allocated), or the
 700 * cpu-space pointer to a buffer that may be used to perform DMA to the
 701 * specified device.  Such cpu-space buffers are returned along with the DMA
 702 * address (through the pointer provided).
 703 *
 704 * Note:
 705 * These buffers are used with URB_NO_xxx_DMA_MAP set in urb->transfer_flags
 706 * to avoid behaviors like using "DMA bounce buffers", or thrashing IOMMU
 707 * hardware during URB completion/resubmit.  The implementation varies between
 708 * platforms, depending on details of how DMA will work to this device.
 709 * Using these buffers also eliminates cacheline sharing problems on
 710 * architectures where CPU caches are not DMA-coherent.  On systems without
 711 * bus-snooping caches, these buffers are uncached.
 712 *
 713 * When the buffer is no longer used, free it with usb_free_coherent().
 714 */
 715void *usb_alloc_coherent(struct usb_device *dev, size_t size, gfp_t mem_flags,
 716			 dma_addr_t *dma)
 717{
 718	if (!dev || !dev->bus)
 719		return NULL;
 720	return hcd_buffer_alloc(dev->bus, size, mem_flags, dma);
 721}
 722EXPORT_SYMBOL_GPL(usb_alloc_coherent);
 723
 724/**
 725 * usb_free_coherent - free memory allocated with usb_alloc_coherent()
 726 * @dev: device the buffer was used with
 727 * @size: requested buffer size
 728 * @addr: CPU address of buffer
 729 * @dma: DMA address of buffer
 730 *
 731 * This reclaims an I/O buffer, letting it be reused.  The memory must have
 732 * been allocated using usb_alloc_coherent(), and the parameters must match
 733 * those provided in that allocation request.
 734 */
 735void usb_free_coherent(struct usb_device *dev, size_t size, void *addr,
 736		       dma_addr_t dma)
 737{
 738	if (!dev || !dev->bus)
 739		return;
 740	if (!addr)
 741		return;
 742	hcd_buffer_free(dev->bus, size, addr, dma);
 743}
 744EXPORT_SYMBOL_GPL(usb_free_coherent);
 745
 746/**
 747 * usb_buffer_map - create DMA mapping(s) for an urb
 748 * @urb: urb whose transfer_buffer/setup_packet will be mapped
 749 *
 750 * URB_NO_TRANSFER_DMA_MAP is added to urb->transfer_flags if the operation
 751 * succeeds. If the device is connected to this system through a non-DMA
 752 * controller, this operation always succeeds.
 753 *
 754 * This call would normally be used for an urb which is reused, perhaps
 755 * as the target of a large periodic transfer, with usb_buffer_dmasync()
 756 * calls to synchronize memory and dma state.
 757 *
 758 * Reverse the effect of this call with usb_buffer_unmap().
 759 *
 760 * Return: Either %NULL (indicating no buffer could be mapped), or @urb.
 761 *
 762 */
 763#if 0
 764struct urb *usb_buffer_map(struct urb *urb)
 765{
 766	struct usb_bus		*bus;
 767	struct device		*controller;
 768
 769	if (!urb
 770			|| !urb->dev
 771			|| !(bus = urb->dev->bus)
 772			|| !(controller = bus->controller))
 773		return NULL;
 774
 775	if (controller->dma_mask) {
 776		urb->transfer_dma = dma_map_single(controller,
 777			urb->transfer_buffer, urb->transfer_buffer_length,
 778			usb_pipein(urb->pipe)
 779				? DMA_FROM_DEVICE : DMA_TO_DEVICE);
 780	/* FIXME generic api broken like pci, can't report errors */
 781	/* if (urb->transfer_dma == DMA_ADDR_INVALID) return 0; */
 782	} else
 783		urb->transfer_dma = ~0;
 784	urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
 785	return urb;
 786}
 787EXPORT_SYMBOL_GPL(usb_buffer_map);
 788#endif  /*  0  */
 789
 790/* XXX DISABLED, no users currently.  If you wish to re-enable this
 791 * XXX please determine whether the sync is to transfer ownership of
 792 * XXX the buffer from device to cpu or vice verse, and thusly use the
 793 * XXX appropriate _for_{cpu,device}() method.  -DaveM
 794 */
 795#if 0
 796
 797/**
 798 * usb_buffer_dmasync - synchronize DMA and CPU view of buffer(s)
 799 * @urb: urb whose transfer_buffer/setup_packet will be synchronized
 800 */
 801void usb_buffer_dmasync(struct urb *urb)
 802{
 803	struct usb_bus		*bus;
 804	struct device		*controller;
 805
 806	if (!urb
 807			|| !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)
 808			|| !urb->dev
 809			|| !(bus = urb->dev->bus)
 810			|| !(controller = bus->controller))
 811		return;
 812
 813	if (controller->dma_mask) {
 814		dma_sync_single_for_cpu(controller,
 815			urb->transfer_dma, urb->transfer_buffer_length,
 816			usb_pipein(urb->pipe)
 817				? DMA_FROM_DEVICE : DMA_TO_DEVICE);
 818		if (usb_pipecontrol(urb->pipe))
 819			dma_sync_single_for_cpu(controller,
 820					urb->setup_dma,
 821					sizeof(struct usb_ctrlrequest),
 822					DMA_TO_DEVICE);
 823	}
 824}
 825EXPORT_SYMBOL_GPL(usb_buffer_dmasync);
 826#endif
 827
 828/**
 829 * usb_buffer_unmap - free DMA mapping(s) for an urb
 830 * @urb: urb whose transfer_buffer will be unmapped
 831 *
 832 * Reverses the effect of usb_buffer_map().
 833 */
 834#if 0
 835void usb_buffer_unmap(struct urb *urb)
 836{
 837	struct usb_bus		*bus;
 838	struct device		*controller;
 839
 840	if (!urb
 841			|| !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)
 842			|| !urb->dev
 843			|| !(bus = urb->dev->bus)
 844			|| !(controller = bus->controller))
 845		return;
 846
 847	if (controller->dma_mask) {
 848		dma_unmap_single(controller,
 849			urb->transfer_dma, urb->transfer_buffer_length,
 850			usb_pipein(urb->pipe)
 851				? DMA_FROM_DEVICE : DMA_TO_DEVICE);
 852	}
 853	urb->transfer_flags &= ~URB_NO_TRANSFER_DMA_MAP;
 854}
 855EXPORT_SYMBOL_GPL(usb_buffer_unmap);
 856#endif  /*  0  */
 857
 858#if 0
 859/**
 860 * usb_buffer_map_sg - create scatterlist DMA mapping(s) for an endpoint
 861 * @dev: device to which the scatterlist will be mapped
 862 * @is_in: mapping transfer direction
 863 * @sg: the scatterlist to map
 864 * @nents: the number of entries in the scatterlist
 865 *
 866 * Return: Either < 0 (indicating no buffers could be mapped), or the
 867 * number of DMA mapping array entries in the scatterlist.
 868 *
 869 * Note:
 870 * The caller is responsible for placing the resulting DMA addresses from
 871 * the scatterlist into URB transfer buffer pointers, and for setting the
 872 * URB_NO_TRANSFER_DMA_MAP transfer flag in each of those URBs.
 873 *
 874 * Top I/O rates come from queuing URBs, instead of waiting for each one
 875 * to complete before starting the next I/O.   This is particularly easy
 876 * to do with scatterlists.  Just allocate and submit one URB for each DMA
 877 * mapping entry returned, stopping on the first error or when all succeed.
 878 * Better yet, use the usb_sg_*() calls, which do that (and more) for you.
 879 *
 880 * This call would normally be used when translating scatterlist requests,
 881 * rather than usb_buffer_map(), since on some hardware (with IOMMUs) it
 882 * may be able to coalesce mappings for improved I/O efficiency.
 883 *
 884 * Reverse the effect of this call with usb_buffer_unmap_sg().
 885 */
 886int usb_buffer_map_sg(const struct usb_device *dev, int is_in,
 887		      struct scatterlist *sg, int nents)
 888{
 889	struct usb_bus		*bus;
 890	struct device		*controller;
 891
 892	if (!dev
 893			|| !(bus = dev->bus)
 894			|| !(controller = bus->controller)
 895			|| !controller->dma_mask)
 896		return -EINVAL;
 897
 898	/* FIXME generic api broken like pci, can't report errors */
 899	return dma_map_sg(controller, sg, nents,
 900			is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE) ? : -ENOMEM;
 901}
 902EXPORT_SYMBOL_GPL(usb_buffer_map_sg);
 903#endif
 904
 905/* XXX DISABLED, no users currently.  If you wish to re-enable this
 906 * XXX please determine whether the sync is to transfer ownership of
 907 * XXX the buffer from device to cpu or vice verse, and thusly use the
 908 * XXX appropriate _for_{cpu,device}() method.  -DaveM
 909 */
 910#if 0
 911
 912/**
 913 * usb_buffer_dmasync_sg - synchronize DMA and CPU view of scatterlist buffer(s)
 914 * @dev: device to which the scatterlist will be mapped
 915 * @is_in: mapping transfer direction
 916 * @sg: the scatterlist to synchronize
 917 * @n_hw_ents: the positive return value from usb_buffer_map_sg
 918 *
 919 * Use this when you are re-using a scatterlist's data buffers for
 920 * another USB request.
 921 */
 922void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in,
 923			   struct scatterlist *sg, int n_hw_ents)
 924{
 925	struct usb_bus		*bus;
 926	struct device		*controller;
 927
 928	if (!dev
 929			|| !(bus = dev->bus)
 930			|| !(controller = bus->controller)
 931			|| !controller->dma_mask)
 932		return;
 933
 934	dma_sync_sg_for_cpu(controller, sg, n_hw_ents,
 935			    is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
 936}
 937EXPORT_SYMBOL_GPL(usb_buffer_dmasync_sg);
 938#endif
 939
 940#if 0
 941/**
 942 * usb_buffer_unmap_sg - free DMA mapping(s) for a scatterlist
 943 * @dev: device to which the scatterlist will be mapped
 944 * @is_in: mapping transfer direction
 945 * @sg: the scatterlist to unmap
 946 * @n_hw_ents: the positive return value from usb_buffer_map_sg
 947 *
 948 * Reverses the effect of usb_buffer_map_sg().
 949 */
 950void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in,
 951			 struct scatterlist *sg, int n_hw_ents)
 952{
 953	struct usb_bus		*bus;
 954	struct device		*controller;
 955
 956	if (!dev
 957			|| !(bus = dev->bus)
 958			|| !(controller = bus->controller)
 959			|| !controller->dma_mask)
 960		return;
 961
 962	dma_unmap_sg(controller, sg, n_hw_ents,
 963			is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
 964}
 965EXPORT_SYMBOL_GPL(usb_buffer_unmap_sg);
 966#endif
 967
 968/* To disable USB, kernel command line is 'nousb' not 'usbcore.nousb' */
 969#ifdef MODULE
 970module_param(nousb, bool, 0444);
 971#else
 972core_param(nousb, nousb, bool, 0444);
 973#endif
 974
 975/*
 976 * for external read access to <nousb>
 977 */
 978int usb_disabled(void)
 979{
 980	return nousb;
 981}
 982EXPORT_SYMBOL_GPL(usb_disabled);
 983
 984/*
 985 * Notifications of device and interface registration
 986 */
 987static int usb_bus_notify(struct notifier_block *nb, unsigned long action,
 988		void *data)
 989{
 990	struct device *dev = data;
 991
 992	switch (action) {
 993	case BUS_NOTIFY_ADD_DEVICE:
 994		if (dev->type == &usb_device_type)
 995			(void) usb_create_sysfs_dev_files(to_usb_device(dev));
 996		else if (dev->type == &usb_if_device_type)
 997			usb_create_sysfs_intf_files(to_usb_interface(dev));
 998		break;
 999
1000	case BUS_NOTIFY_DEL_DEVICE:
1001		if (dev->type == &usb_device_type)
1002			usb_remove_sysfs_dev_files(to_usb_device(dev));
1003		else if (dev->type == &usb_if_device_type)
1004			usb_remove_sysfs_intf_files(to_usb_interface(dev));
1005		break;
1006	}
1007	return 0;
1008}
1009
1010static struct notifier_block usb_bus_nb = {
1011	.notifier_call = usb_bus_notify,
1012};
1013
1014struct dentry *usb_debug_root;
1015EXPORT_SYMBOL_GPL(usb_debug_root);
1016
1017static struct dentry *usb_debug_devices;
1018
1019static int usb_debugfs_init(void)
1020{
1021	usb_debug_root = debugfs_create_dir("usb", NULL);
1022	if (!usb_debug_root)
1023		return -ENOENT;
1024
1025	usb_debug_devices = debugfs_create_file("devices", 0444,
1026						usb_debug_root, NULL,
1027						&usbfs_devices_fops);
1028	if (!usb_debug_devices) {
1029		debugfs_remove(usb_debug_root);
1030		usb_debug_root = NULL;
1031		return -ENOENT;
1032	}
1033
1034	return 0;
1035}
1036
1037static void usb_debugfs_cleanup(void)
1038{
1039	debugfs_remove(usb_debug_devices);
1040	debugfs_remove(usb_debug_root);
1041}
1042
1043/*
1044 * Init
1045 */
1046static int __init usb_init(void)
1047{
1048	int retval;
1049	if (nousb) {
1050		pr_info("%s: USB support disabled\n", usbcore_name);
1051		return 0;
1052	}
 
1053
1054	retval = usb_debugfs_init();
1055	if (retval)
1056		goto out;
1057
1058	usb_acpi_register();
1059	retval = bus_register(&usb_bus_type);
1060	if (retval)
1061		goto bus_register_failed;
1062	retval = bus_register_notifier(&usb_bus_type, &usb_bus_nb);
1063	if (retval)
1064		goto bus_notifier_failed;
1065	retval = usb_major_init();
1066	if (retval)
1067		goto major_init_failed;
1068	retval = usb_register(&usbfs_driver);
1069	if (retval)
1070		goto driver_register_failed;
1071	retval = usb_devio_init();
1072	if (retval)
1073		goto usb_devio_init_failed;
1074	retval = usb_hub_init();
1075	if (retval)
1076		goto hub_init_failed;
1077	retval = usb_register_device_driver(&usb_generic_driver, THIS_MODULE);
1078	if (!retval)
1079		goto out;
1080
1081	usb_hub_cleanup();
1082hub_init_failed:
1083	usb_devio_cleanup();
1084usb_devio_init_failed:
1085	usb_deregister(&usbfs_driver);
1086driver_register_failed:
1087	usb_major_cleanup();
1088major_init_failed:
1089	bus_unregister_notifier(&usb_bus_type, &usb_bus_nb);
1090bus_notifier_failed:
1091	bus_unregister(&usb_bus_type);
1092bus_register_failed:
1093	usb_acpi_unregister();
1094	usb_debugfs_cleanup();
1095out:
1096	return retval;
1097}
1098
1099/*
1100 * Cleanup
1101 */
1102static void __exit usb_exit(void)
1103{
1104	/* This will matter if shutdown/reboot does exitcalls. */
1105	if (nousb)
1106		return;
1107
 
1108	usb_deregister_device_driver(&usb_generic_driver);
1109	usb_major_cleanup();
1110	usb_deregister(&usbfs_driver);
1111	usb_devio_cleanup();
1112	usb_hub_cleanup();
1113	bus_unregister_notifier(&usb_bus_type, &usb_bus_nb);
1114	bus_unregister(&usb_bus_type);
1115	usb_acpi_unregister();
1116	usb_debugfs_cleanup();
 
1117}
1118
1119subsys_initcall(usb_init);
1120module_exit(usb_exit);
1121MODULE_LICENSE("GPL");