Linux Audio

Check our new training course

Loading...
v5.9
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Tty buffer allocation management
  4 */
  5
  6#include <linux/types.h>
  7#include <linux/errno.h>
  8#include <linux/tty.h>
  9#include <linux/tty_driver.h>
 10#include <linux/tty_flip.h>
 11#include <linux/timer.h>
 12#include <linux/string.h>
 13#include <linux/slab.h>
 14#include <linux/sched.h>
 15#include <linux/wait.h>
 16#include <linux/bitops.h>
 17#include <linux/delay.h>
 18#include <linux/module.h>
 19#include <linux/ratelimit.h>
 20
 21
 22#define MIN_TTYB_SIZE	256
 23#define TTYB_ALIGN_MASK	255
 24
 25/*
 26 * Byte threshold to limit memory consumption for flip buffers.
 27 * The actual memory limit is > 2x this amount.
 28 */
 29#define TTYB_DEFAULT_MEM_LIMIT	(640 * 1024UL)
 30
 31/*
 32 * We default to dicing tty buffer allocations to this many characters
 33 * in order to avoid multiple page allocations. We know the size of
 34 * tty_buffer itself but it must also be taken into account that the
 35 * the buffer is 256 byte aligned. See tty_buffer_find for the allocation
 36 * logic this must match
 37 */
 38
 39#define TTY_BUFFER_PAGE	(((PAGE_SIZE - sizeof(struct tty_buffer)) / 2) & ~0xFF)
 40
 
 41/**
 42 *	tty_buffer_lock_exclusive	-	gain exclusive access to buffer
 43 *	tty_buffer_unlock_exclusive	-	release exclusive access
 44 *
 45 *	@port - tty_port owning the flip buffer
 46 *
 47 *	Guarantees safe use of the line discipline's receive_buf() method by
 48 *	excluding the buffer work and any pending flush from using the flip
 49 *	buffer. Data can continue to be added concurrently to the flip buffer
 50 *	from the driver side.
 51 *
 52 *	On release, the buffer work is restarted if there is data in the
 53 *	flip buffer
 54 */
 55
 56void tty_buffer_lock_exclusive(struct tty_port *port)
 57{
 58	struct tty_bufhead *buf = &port->buf;
 59
 60	atomic_inc(&buf->priority);
 61	mutex_lock(&buf->lock);
 62}
 63EXPORT_SYMBOL_GPL(tty_buffer_lock_exclusive);
 64
 65void tty_buffer_unlock_exclusive(struct tty_port *port)
 66{
 67	struct tty_bufhead *buf = &port->buf;
 68	int restart;
 69
 70	restart = buf->head->commit != buf->head->read;
 71
 72	atomic_dec(&buf->priority);
 73	mutex_unlock(&buf->lock);
 74	if (restart)
 75		queue_work(system_unbound_wq, &buf->work);
 76}
 77EXPORT_SYMBOL_GPL(tty_buffer_unlock_exclusive);
 78
 79/**
 80 *	tty_buffer_space_avail	-	return unused buffer space
 81 *	@port - tty_port owning the flip buffer
 82 *
 83 *	Returns the # of bytes which can be written by the driver without
 84 *	reaching the buffer limit.
 85 *
 86 *	Note: this does not guarantee that memory is available to write
 87 *	the returned # of bytes (use tty_prepare_flip_string_xxx() to
 88 *	pre-allocate if memory guarantee is required).
 89 */
 90
 91int tty_buffer_space_avail(struct tty_port *port)
 92{
 93	int space = port->buf.mem_limit - atomic_read(&port->buf.mem_used);
 94	return max(space, 0);
 95}
 96EXPORT_SYMBOL_GPL(tty_buffer_space_avail);
 97
 98static void tty_buffer_reset(struct tty_buffer *p, size_t size)
 99{
100	p->used = 0;
101	p->size = size;
102	p->next = NULL;
103	p->commit = 0;
104	p->read = 0;
105	p->flags = 0;
106}
107
108/**
109 *	tty_buffer_free_all		-	free buffers used by a tty
110 *	@tty: tty to free from
111 *
112 *	Remove all the buffers pending on a tty whether queued with data
113 *	or in the free ring. Must be called when the tty is no longer in use
114 */
115
116void tty_buffer_free_all(struct tty_port *port)
117{
118	struct tty_bufhead *buf = &port->buf;
119	struct tty_buffer *p, *next;
120	struct llist_node *llist;
121	unsigned int freed = 0;
122	int still_used;
123
124	while ((p = buf->head) != NULL) {
125		buf->head = p->next;
126		freed += p->size;
127		if (p->size > 0)
128			kfree(p);
129	}
130	llist = llist_del_all(&buf->free);
131	llist_for_each_entry_safe(p, next, llist, free)
132		kfree(p);
133
134	tty_buffer_reset(&buf->sentinel, 0);
135	buf->head = &buf->sentinel;
136	buf->tail = &buf->sentinel;
137
138	still_used = atomic_xchg(&buf->mem_used, 0);
139	WARN(still_used != freed, "we still have not freed %d bytes!",
140			still_used - freed);
141}
142
143/**
144 *	tty_buffer_alloc	-	allocate a tty buffer
145 *	@tty: tty device
146 *	@size: desired size (characters)
147 *
148 *	Allocate a new tty buffer to hold the desired number of characters.
149 *	We round our buffers off in 256 character chunks to get better
150 *	allocation behaviour.
151 *	Return NULL if out of memory or the allocation would exceed the
152 *	per device queue
153 */
154
155static struct tty_buffer *tty_buffer_alloc(struct tty_port *port, size_t size)
156{
157	struct llist_node *free;
158	struct tty_buffer *p;
159
160	/* Round the buffer size out */
161	size = __ALIGN_MASK(size, TTYB_ALIGN_MASK);
162
163	if (size <= MIN_TTYB_SIZE) {
164		free = llist_del_first(&port->buf.free);
165		if (free) {
166			p = llist_entry(free, struct tty_buffer, free);
167			goto found;
168		}
169	}
170
171	/* Should possibly check if this fails for the largest buffer we
172	   have queued and recycle that ? */
173	if (atomic_read(&port->buf.mem_used) > port->buf.mem_limit)
174		return NULL;
175	p = kmalloc(sizeof(struct tty_buffer) + 2 * size, GFP_ATOMIC);
176	if (p == NULL)
177		return NULL;
178
179found:
180	tty_buffer_reset(p, size);
181	atomic_add(size, &port->buf.mem_used);
182	return p;
183}
184
185/**
186 *	tty_buffer_free		-	free a tty buffer
187 *	@tty: tty owning the buffer
188 *	@b: the buffer to free
189 *
190 *	Free a tty buffer, or add it to the free list according to our
191 *	internal strategy
192 */
193
194static void tty_buffer_free(struct tty_port *port, struct tty_buffer *b)
195{
196	struct tty_bufhead *buf = &port->buf;
197
198	/* Dumb strategy for now - should keep some stats */
199	WARN_ON(atomic_sub_return(b->size, &buf->mem_used) < 0);
200
201	if (b->size > MIN_TTYB_SIZE)
202		kfree(b);
203	else if (b->size > 0)
204		llist_add(&b->free, &buf->free);
205}
206
207/**
208 *	tty_buffer_flush		-	flush full tty buffers
209 *	@tty: tty to flush
210 *	@ld:  optional ldisc ptr (must be referenced)
211 *
212 *	flush all the buffers containing receive data. If ld != NULL,
213 *	flush the ldisc input buffer.
214 *
215 *	Locking: takes buffer lock to ensure single-threaded flip buffer
216 *		 'consumer'
217 */
218
219void tty_buffer_flush(struct tty_struct *tty, struct tty_ldisc *ld)
220{
221	struct tty_port *port = tty->port;
222	struct tty_bufhead *buf = &port->buf;
223	struct tty_buffer *next;
224
225	atomic_inc(&buf->priority);
226
227	mutex_lock(&buf->lock);
228	/* paired w/ release in __tty_buffer_request_room; ensures there are
229	 * no pending memory accesses to the freed buffer
230	 */
231	while ((next = smp_load_acquire(&buf->head->next)) != NULL) {
232		tty_buffer_free(port, buf->head);
233		buf->head = next;
234	}
235	buf->head->read = buf->head->commit;
236
237	if (ld && ld->ops->flush_buffer)
238		ld->ops->flush_buffer(tty);
239
240	atomic_dec(&buf->priority);
241	mutex_unlock(&buf->lock);
242}
243
244/**
245 *	tty_buffer_request_room		-	grow tty buffer if needed
246 *	@tty: tty structure
247 *	@size: size desired
248 *	@flags: buffer flags if new buffer allocated (default = 0)
249 *
250 *	Make at least size bytes of linear space available for the tty
251 *	buffer. If we fail return the size we managed to find.
252 *
253 *	Will change over to a new buffer if the current buffer is encoded as
254 *	TTY_NORMAL (so has no flags buffer) and the new buffer requires
255 *	a flags buffer.
256 */
257static int __tty_buffer_request_room(struct tty_port *port, size_t size,
258				     int flags)
259{
260	struct tty_bufhead *buf = &port->buf;
261	struct tty_buffer *b, *n;
262	int left, change;
263
264	b = buf->tail;
265	if (b->flags & TTYB_NORMAL)
266		left = 2 * b->size - b->used;
267	else
268		left = b->size - b->used;
269
270	change = (b->flags & TTYB_NORMAL) && (~flags & TTYB_NORMAL);
271	if (change || left < size) {
272		/* This is the slow path - looking for new buffers to use */
273		n = tty_buffer_alloc(port, size);
274		if (n != NULL) {
275			n->flags = flags;
276			buf->tail = n;
277			/* paired w/ acquire in flush_to_ldisc(); ensures
278			 * flush_to_ldisc() sees buffer data.
279			 */
280			smp_store_release(&b->commit, b->used);
281			/* paired w/ acquire in flush_to_ldisc(); ensures the
282			 * latest commit value can be read before the head is
283			 * advanced to the next buffer
284			 */
285			smp_store_release(&b->next, n);
 
286		} else if (change)
287			size = 0;
288		else
289			size = left;
290	}
291	return size;
292}
293
294int tty_buffer_request_room(struct tty_port *port, size_t size)
295{
296	return __tty_buffer_request_room(port, size, 0);
297}
298EXPORT_SYMBOL_GPL(tty_buffer_request_room);
299
300/**
301 *	tty_insert_flip_string_fixed_flag - Add characters to the tty buffer
302 *	@port: tty port
303 *	@chars: characters
304 *	@flag: flag value for each character
305 *	@size: size
306 *
307 *	Queue a series of bytes to the tty buffering. All the characters
308 *	passed are marked with the supplied flag. Returns the number added.
309 */
310
311int tty_insert_flip_string_fixed_flag(struct tty_port *port,
312		const unsigned char *chars, char flag, size_t size)
313{
314	int copied = 0;
315	do {
316		int goal = min_t(size_t, size - copied, TTY_BUFFER_PAGE);
317		int flags = (flag == TTY_NORMAL) ? TTYB_NORMAL : 0;
318		int space = __tty_buffer_request_room(port, goal, flags);
319		struct tty_buffer *tb = port->buf.tail;
320		if (unlikely(space == 0))
321			break;
322		memcpy(char_buf_ptr(tb, tb->used), chars, space);
323		if (~tb->flags & TTYB_NORMAL)
324			memset(flag_buf_ptr(tb, tb->used), flag, space);
325		tb->used += space;
326		copied += space;
327		chars += space;
328		/* There is a small chance that we need to split the data over
329		   several buffers. If this is the case we must loop */
330	} while (unlikely(size > copied));
331	return copied;
332}
333EXPORT_SYMBOL(tty_insert_flip_string_fixed_flag);
334
335/**
336 *	tty_insert_flip_string_flags	-	Add characters to the tty buffer
337 *	@port: tty port
338 *	@chars: characters
339 *	@flags: flag bytes
340 *	@size: size
341 *
342 *	Queue a series of bytes to the tty buffering. For each character
343 *	the flags array indicates the status of the character. Returns the
344 *	number added.
345 */
346
347int tty_insert_flip_string_flags(struct tty_port *port,
348		const unsigned char *chars, const char *flags, size_t size)
349{
350	int copied = 0;
351	do {
352		int goal = min_t(size_t, size - copied, TTY_BUFFER_PAGE);
353		int space = tty_buffer_request_room(port, goal);
354		struct tty_buffer *tb = port->buf.tail;
355		if (unlikely(space == 0))
356			break;
357		memcpy(char_buf_ptr(tb, tb->used), chars, space);
358		memcpy(flag_buf_ptr(tb, tb->used), flags, space);
359		tb->used += space;
360		copied += space;
361		chars += space;
362		flags += space;
363		/* There is a small chance that we need to split the data over
364		   several buffers. If this is the case we must loop */
365	} while (unlikely(size > copied));
366	return copied;
367}
368EXPORT_SYMBOL(tty_insert_flip_string_flags);
369
370/**
371 *	__tty_insert_flip_char   -	Add one character to the tty buffer
372 *	@port: tty port
373 *	@ch: character
374 *	@flag: flag byte
375 *
376 *	Queue a single byte to the tty buffering, with an optional flag.
377 *	This is the slow path of tty_insert_flip_char.
378 */
379int __tty_insert_flip_char(struct tty_port *port, unsigned char ch, char flag)
380{
381	struct tty_buffer *tb;
382	int flags = (flag == TTY_NORMAL) ? TTYB_NORMAL : 0;
383
384	if (!__tty_buffer_request_room(port, 1, flags))
385		return 0;
386
387	tb = port->buf.tail;
388	if (~tb->flags & TTYB_NORMAL)
389		*flag_buf_ptr(tb, tb->used) = flag;
390	*char_buf_ptr(tb, tb->used++) = ch;
391
392	return 1;
393}
394EXPORT_SYMBOL(__tty_insert_flip_char);
395
396/**
397 *	tty_schedule_flip	-	push characters to ldisc
398 *	@port: tty port to push from
399 *
400 *	Takes any pending buffers and transfers their ownership to the
401 *	ldisc side of the queue. It then schedules those characters for
402 *	processing by the line discipline.
403 */
404
405void tty_schedule_flip(struct tty_port *port)
406{
407	struct tty_bufhead *buf = &port->buf;
408
409	/* paired w/ acquire in flush_to_ldisc(); ensures
410	 * flush_to_ldisc() sees buffer data.
411	 */
412	smp_store_release(&buf->tail->commit, buf->tail->used);
413	queue_work(system_unbound_wq, &buf->work);
414}
415EXPORT_SYMBOL(tty_schedule_flip);
416
417/**
418 *	tty_prepare_flip_string		-	make room for characters
419 *	@port: tty port
420 *	@chars: return pointer for character write area
421 *	@size: desired size
422 *
423 *	Prepare a block of space in the buffer for data. Returns the length
424 *	available and buffer pointer to the space which is now allocated and
425 *	accounted for as ready for normal characters. This is used for drivers
426 *	that need their own block copy routines into the buffer. There is no
427 *	guarantee the buffer is a DMA target!
428 */
429
430int tty_prepare_flip_string(struct tty_port *port, unsigned char **chars,
431		size_t size)
432{
433	int space = __tty_buffer_request_room(port, size, TTYB_NORMAL);
434	if (likely(space)) {
435		struct tty_buffer *tb = port->buf.tail;
436		*chars = char_buf_ptr(tb, tb->used);
437		if (~tb->flags & TTYB_NORMAL)
438			memset(flag_buf_ptr(tb, tb->used), TTY_NORMAL, space);
439		tb->used += space;
440	}
441	return space;
442}
443EXPORT_SYMBOL_GPL(tty_prepare_flip_string);
444
445/**
446 *	tty_ldisc_receive_buf		-	forward data to line discipline
447 *	@ld:	line discipline to process input
448 *	@p:	char buffer
449 *	@f:	TTY_* flags buffer
450 *	@count:	number of bytes to process
451 *
452 *	Callers other than flush_to_ldisc() need to exclude the kworker
453 *	from concurrent use of the line discipline, see paste_selection().
454 *
455 *	Returns the number of bytes processed
456 */
457int tty_ldisc_receive_buf(struct tty_ldisc *ld, const unsigned char *p,
458			  char *f, int count)
459{
460	if (ld->ops->receive_buf2)
461		count = ld->ops->receive_buf2(ld->tty, p, f, count);
462	else {
463		count = min_t(int, count, ld->tty->receive_room);
464		if (count && ld->ops->receive_buf)
465			ld->ops->receive_buf(ld->tty, p, f, count);
466	}
467	return count;
468}
469EXPORT_SYMBOL_GPL(tty_ldisc_receive_buf);
470
471static int
472receive_buf(struct tty_port *port, struct tty_buffer *head, int count)
473{
 
474	unsigned char *p = char_buf_ptr(head, head->read);
475	char	      *f = NULL;
476	int n;
477
478	if (~head->flags & TTYB_NORMAL)
479		f = flag_buf_ptr(head, head->read);
480
481	n = port->client_ops->receive_buf(port, p, f, count);
482	if (n > 0)
483		memset(p, 0, n);
484	return n;
 
 
 
 
 
485}
486
487/**
488 *	flush_to_ldisc
489 *	@work: tty structure passed from work queue.
490 *
491 *	This routine is called out of the software interrupt to flush data
492 *	from the buffer chain to the line discipline.
493 *
494 *	The receive_buf method is single threaded for each tty instance.
495 *
496 *	Locking: takes buffer lock to ensure single-threaded flip buffer
497 *		 'consumer'
498 */
499
500static void flush_to_ldisc(struct work_struct *work)
501{
502	struct tty_port *port = container_of(work, struct tty_port, buf.work);
503	struct tty_bufhead *buf = &port->buf;
 
 
 
 
 
 
 
 
 
 
504
505	mutex_lock(&buf->lock);
506
507	while (1) {
508		struct tty_buffer *head = buf->head;
509		struct tty_buffer *next;
510		int count;
511
512		/* Ldisc or user is trying to gain exclusive access */
513		if (atomic_read(&buf->priority))
514			break;
515
516		/* paired w/ release in __tty_buffer_request_room();
 
517		 * ensures commit value read is not stale if the head
518		 * is advancing to the next buffer
519		 */
520		next = smp_load_acquire(&head->next);
521		/* paired w/ release in __tty_buffer_request_room() or in
522		 * tty_buffer_flush(); ensures we see the committed buffer data
523		 */
524		count = smp_load_acquire(&head->commit) - head->read;
525		if (!count) {
526			if (next == NULL)
527				break;
528			buf->head = next;
529			tty_buffer_free(port, head);
530			continue;
531		}
532
533		count = receive_buf(port, head, count);
534		if (!count)
535			break;
536		head->read += count;
537	}
538
539	mutex_unlock(&buf->lock);
540
 
 
 
 
 
 
 
 
 
 
 
 
 
 
541}
542
543/**
544 *	tty_flip_buffer_push	-	terminal
545 *	@port: tty port to push
546 *
547 *	Queue a push of the terminal flip buffers to the line discipline.
548 *	Can be called from IRQ/atomic context.
549 *
550 *	In the event of the queue being busy for flipping the work will be
551 *	held off and retried later.
552 */
553
554void tty_flip_buffer_push(struct tty_port *port)
555{
556	tty_schedule_flip(port);
557}
558EXPORT_SYMBOL(tty_flip_buffer_push);
559
560/**
561 *	tty_buffer_init		-	prepare a tty buffer structure
562 *	@tty: tty to initialise
563 *
564 *	Set up the initial state of the buffer management for a tty device.
565 *	Must be called before the other tty buffer functions are used.
566 */
567
568void tty_buffer_init(struct tty_port *port)
569{
570	struct tty_bufhead *buf = &port->buf;
571
572	mutex_init(&buf->lock);
573	tty_buffer_reset(&buf->sentinel, 0);
574	buf->head = &buf->sentinel;
575	buf->tail = &buf->sentinel;
576	init_llist_head(&buf->free);
577	atomic_set(&buf->mem_used, 0);
578	atomic_set(&buf->priority, 0);
579	INIT_WORK(&buf->work, flush_to_ldisc);
580	buf->mem_limit = TTYB_DEFAULT_MEM_LIMIT;
581}
582
583/**
584 *	tty_buffer_set_limit	-	change the tty buffer memory limit
585 *	@port: tty port to change
586 *
587 *	Change the tty buffer memory limit.
588 *	Must be called before the other tty buffer functions are used.
589 */
590
591int tty_buffer_set_limit(struct tty_port *port, int limit)
592{
593	if (limit < MIN_TTYB_SIZE)
594		return -EINVAL;
595	port->buf.mem_limit = limit;
596	return 0;
597}
598EXPORT_SYMBOL_GPL(tty_buffer_set_limit);
599
600/* slave ptys can claim nested buffer lock when handling BRK and INTR */
601void tty_buffer_set_lock_subclass(struct tty_port *port)
602{
603	lockdep_set_subclass(&port->buf.lock, TTY_LOCK_SLAVE);
604}
605
606bool tty_buffer_restart_work(struct tty_port *port)
607{
608	return queue_work(system_unbound_wq, &port->buf.work);
609}
610
611bool tty_buffer_cancel_work(struct tty_port *port)
612{
613	return cancel_work_sync(&port->buf.work);
614}
615
616void tty_buffer_flush_work(struct tty_port *port)
617{
618	flush_work(&port->buf.work);
619}
v3.15
 
  1/*
  2 * Tty buffer allocation management
  3 */
  4
  5#include <linux/types.h>
  6#include <linux/errno.h>
  7#include <linux/tty.h>
  8#include <linux/tty_driver.h>
  9#include <linux/tty_flip.h>
 10#include <linux/timer.h>
 11#include <linux/string.h>
 12#include <linux/slab.h>
 13#include <linux/sched.h>
 14#include <linux/wait.h>
 15#include <linux/bitops.h>
 16#include <linux/delay.h>
 17#include <linux/module.h>
 18#include <linux/ratelimit.h>
 19
 20
 21#define MIN_TTYB_SIZE	256
 22#define TTYB_ALIGN_MASK	255
 23
 24/*
 25 * Byte threshold to limit memory consumption for flip buffers.
 26 * The actual memory limit is > 2x this amount.
 27 */
 28#define TTYB_DEFAULT_MEM_LIMIT	65536
 29
 30/*
 31 * We default to dicing tty buffer allocations to this many characters
 32 * in order to avoid multiple page allocations. We know the size of
 33 * tty_buffer itself but it must also be taken into account that the
 34 * the buffer is 256 byte aligned. See tty_buffer_find for the allocation
 35 * logic this must match
 36 */
 37
 38#define TTY_BUFFER_PAGE	(((PAGE_SIZE - sizeof(struct tty_buffer)) / 2) & ~0xFF)
 39
 40
 41/**
 42 *	tty_buffer_lock_exclusive	-	gain exclusive access to buffer
 43 *	tty_buffer_unlock_exclusive	-	release exclusive access
 44 *
 45 *	@port - tty_port owning the flip buffer
 46 *
 47 *	Guarantees safe use of the line discipline's receive_buf() method by
 48 *	excluding the buffer work and any pending flush from using the flip
 49 *	buffer. Data can continue to be added concurrently to the flip buffer
 50 *	from the driver side.
 51 *
 52 *	On release, the buffer work is restarted if there is data in the
 53 *	flip buffer
 54 */
 55
 56void tty_buffer_lock_exclusive(struct tty_port *port)
 57{
 58	struct tty_bufhead *buf = &port->buf;
 59
 60	atomic_inc(&buf->priority);
 61	mutex_lock(&buf->lock);
 62}
 63EXPORT_SYMBOL_GPL(tty_buffer_lock_exclusive);
 64
 65void tty_buffer_unlock_exclusive(struct tty_port *port)
 66{
 67	struct tty_bufhead *buf = &port->buf;
 68	int restart;
 69
 70	restart = buf->head->commit != buf->head->read;
 71
 72	atomic_dec(&buf->priority);
 73	mutex_unlock(&buf->lock);
 74	if (restart)
 75		queue_work(system_unbound_wq, &buf->work);
 76}
 77EXPORT_SYMBOL_GPL(tty_buffer_unlock_exclusive);
 78
 79/**
 80 *	tty_buffer_space_avail	-	return unused buffer space
 81 *	@port - tty_port owning the flip buffer
 82 *
 83 *	Returns the # of bytes which can be written by the driver without
 84 *	reaching the buffer limit.
 85 *
 86 *	Note: this does not guarantee that memory is available to write
 87 *	the returned # of bytes (use tty_prepare_flip_string_xxx() to
 88 *	pre-allocate if memory guarantee is required).
 89 */
 90
 91int tty_buffer_space_avail(struct tty_port *port)
 92{
 93	int space = port->buf.mem_limit - atomic_read(&port->buf.mem_used);
 94	return max(space, 0);
 95}
 96EXPORT_SYMBOL_GPL(tty_buffer_space_avail);
 97
 98static void tty_buffer_reset(struct tty_buffer *p, size_t size)
 99{
100	p->used = 0;
101	p->size = size;
102	p->next = NULL;
103	p->commit = 0;
104	p->read = 0;
105	p->flags = 0;
106}
107
108/**
109 *	tty_buffer_free_all		-	free buffers used by a tty
110 *	@tty: tty to free from
111 *
112 *	Remove all the buffers pending on a tty whether queued with data
113 *	or in the free ring. Must be called when the tty is no longer in use
114 */
115
116void tty_buffer_free_all(struct tty_port *port)
117{
118	struct tty_bufhead *buf = &port->buf;
119	struct tty_buffer *p, *next;
120	struct llist_node *llist;
 
 
121
122	while ((p = buf->head) != NULL) {
123		buf->head = p->next;
 
124		if (p->size > 0)
125			kfree(p);
126	}
127	llist = llist_del_all(&buf->free);
128	llist_for_each_entry_safe(p, next, llist, free)
129		kfree(p);
130
131	tty_buffer_reset(&buf->sentinel, 0);
132	buf->head = &buf->sentinel;
133	buf->tail = &buf->sentinel;
134
135	atomic_set(&buf->mem_used, 0);
 
 
136}
137
138/**
139 *	tty_buffer_alloc	-	allocate a tty buffer
140 *	@tty: tty device
141 *	@size: desired size (characters)
142 *
143 *	Allocate a new tty buffer to hold the desired number of characters.
144 *	We round our buffers off in 256 character chunks to get better
145 *	allocation behaviour.
146 *	Return NULL if out of memory or the allocation would exceed the
147 *	per device queue
148 */
149
150static struct tty_buffer *tty_buffer_alloc(struct tty_port *port, size_t size)
151{
152	struct llist_node *free;
153	struct tty_buffer *p;
154
155	/* Round the buffer size out */
156	size = __ALIGN_MASK(size, TTYB_ALIGN_MASK);
157
158	if (size <= MIN_TTYB_SIZE) {
159		free = llist_del_first(&port->buf.free);
160		if (free) {
161			p = llist_entry(free, struct tty_buffer, free);
162			goto found;
163		}
164	}
165
166	/* Should possibly check if this fails for the largest buffer we
167	   have queued and recycle that ? */
168	if (atomic_read(&port->buf.mem_used) > port->buf.mem_limit)
169		return NULL;
170	p = kmalloc(sizeof(struct tty_buffer) + 2 * size, GFP_ATOMIC);
171	if (p == NULL)
172		return NULL;
173
174found:
175	tty_buffer_reset(p, size);
176	atomic_add(size, &port->buf.mem_used);
177	return p;
178}
179
180/**
181 *	tty_buffer_free		-	free a tty buffer
182 *	@tty: tty owning the buffer
183 *	@b: the buffer to free
184 *
185 *	Free a tty buffer, or add it to the free list according to our
186 *	internal strategy
187 */
188
189static void tty_buffer_free(struct tty_port *port, struct tty_buffer *b)
190{
191	struct tty_bufhead *buf = &port->buf;
192
193	/* Dumb strategy for now - should keep some stats */
194	WARN_ON(atomic_sub_return(b->size, &buf->mem_used) < 0);
195
196	if (b->size > MIN_TTYB_SIZE)
197		kfree(b);
198	else if (b->size > 0)
199		llist_add(&b->free, &buf->free);
200}
201
202/**
203 *	tty_buffer_flush		-	flush full tty buffers
204 *	@tty: tty to flush
 
205 *
206 *	flush all the buffers containing receive data.
 
207 *
208 *	Locking: takes buffer lock to ensure single-threaded flip buffer
209 *		 'consumer'
210 */
211
212void tty_buffer_flush(struct tty_struct *tty)
213{
214	struct tty_port *port = tty->port;
215	struct tty_bufhead *buf = &port->buf;
216	struct tty_buffer *next;
217
218	atomic_inc(&buf->priority);
219
220	mutex_lock(&buf->lock);
221	while ((next = buf->head->next) != NULL) {
 
 
 
222		tty_buffer_free(port, buf->head);
223		buf->head = next;
224	}
225	buf->head->read = buf->head->commit;
 
 
 
 
226	atomic_dec(&buf->priority);
227	mutex_unlock(&buf->lock);
228}
229
230/**
231 *	tty_buffer_request_room		-	grow tty buffer if needed
232 *	@tty: tty structure
233 *	@size: size desired
234 *	@flags: buffer flags if new buffer allocated (default = 0)
235 *
236 *	Make at least size bytes of linear space available for the tty
237 *	buffer. If we fail return the size we managed to find.
238 *
239 *	Will change over to a new buffer if the current buffer is encoded as
240 *	TTY_NORMAL (so has no flags buffer) and the new buffer requires
241 *	a flags buffer.
242 */
243static int __tty_buffer_request_room(struct tty_port *port, size_t size,
244				     int flags)
245{
246	struct tty_bufhead *buf = &port->buf;
247	struct tty_buffer *b, *n;
248	int left, change;
249
250	b = buf->tail;
251	if (b->flags & TTYB_NORMAL)
252		left = 2 * b->size - b->used;
253	else
254		left = b->size - b->used;
255
256	change = (b->flags & TTYB_NORMAL) && (~flags & TTYB_NORMAL);
257	if (change || left < size) {
258		/* This is the slow path - looking for new buffers to use */
259		if ((n = tty_buffer_alloc(port, size)) != NULL) {
 
260			n->flags = flags;
261			buf->tail = n;
262			b->commit = b->used;
263			/* paired w/ barrier in flush_to_ldisc(); ensures the
 
 
 
264			 * latest commit value can be read before the head is
265			 * advanced to the next buffer
266			 */
267			smp_wmb();
268			b->next = n;
269		} else if (change)
270			size = 0;
271		else
272			size = left;
273	}
274	return size;
275}
276
277int tty_buffer_request_room(struct tty_port *port, size_t size)
278{
279	return __tty_buffer_request_room(port, size, 0);
280}
281EXPORT_SYMBOL_GPL(tty_buffer_request_room);
282
283/**
284 *	tty_insert_flip_string_fixed_flag - Add characters to the tty buffer
285 *	@port: tty port
286 *	@chars: characters
287 *	@flag: flag value for each character
288 *	@size: size
289 *
290 *	Queue a series of bytes to the tty buffering. All the characters
291 *	passed are marked with the supplied flag. Returns the number added.
292 */
293
294int tty_insert_flip_string_fixed_flag(struct tty_port *port,
295		const unsigned char *chars, char flag, size_t size)
296{
297	int copied = 0;
298	do {
299		int goal = min_t(size_t, size - copied, TTY_BUFFER_PAGE);
300		int flags = (flag == TTY_NORMAL) ? TTYB_NORMAL : 0;
301		int space = __tty_buffer_request_room(port, goal, flags);
302		struct tty_buffer *tb = port->buf.tail;
303		if (unlikely(space == 0))
304			break;
305		memcpy(char_buf_ptr(tb, tb->used), chars, space);
306		if (~tb->flags & TTYB_NORMAL)
307			memset(flag_buf_ptr(tb, tb->used), flag, space);
308		tb->used += space;
309		copied += space;
310		chars += space;
311		/* There is a small chance that we need to split the data over
312		   several buffers. If this is the case we must loop */
313	} while (unlikely(size > copied));
314	return copied;
315}
316EXPORT_SYMBOL(tty_insert_flip_string_fixed_flag);
317
318/**
319 *	tty_insert_flip_string_flags	-	Add characters to the tty buffer
320 *	@port: tty port
321 *	@chars: characters
322 *	@flags: flag bytes
323 *	@size: size
324 *
325 *	Queue a series of bytes to the tty buffering. For each character
326 *	the flags array indicates the status of the character. Returns the
327 *	number added.
328 */
329
330int tty_insert_flip_string_flags(struct tty_port *port,
331		const unsigned char *chars, const char *flags, size_t size)
332{
333	int copied = 0;
334	do {
335		int goal = min_t(size_t, size - copied, TTY_BUFFER_PAGE);
336		int space = tty_buffer_request_room(port, goal);
337		struct tty_buffer *tb = port->buf.tail;
338		if (unlikely(space == 0))
339			break;
340		memcpy(char_buf_ptr(tb, tb->used), chars, space);
341		memcpy(flag_buf_ptr(tb, tb->used), flags, space);
342		tb->used += space;
343		copied += space;
344		chars += space;
345		flags += space;
346		/* There is a small chance that we need to split the data over
347		   several buffers. If this is the case we must loop */
348	} while (unlikely(size > copied));
349	return copied;
350}
351EXPORT_SYMBOL(tty_insert_flip_string_flags);
352
353/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
354 *	tty_schedule_flip	-	push characters to ldisc
355 *	@port: tty port to push from
356 *
357 *	Takes any pending buffers and transfers their ownership to the
358 *	ldisc side of the queue. It then schedules those characters for
359 *	processing by the line discipline.
360 */
361
362void tty_schedule_flip(struct tty_port *port)
363{
364	struct tty_bufhead *buf = &port->buf;
365
366	buf->tail->commit = buf->tail->used;
367	schedule_work(&buf->work);
 
 
 
368}
369EXPORT_SYMBOL(tty_schedule_flip);
370
371/**
372 *	tty_prepare_flip_string		-	make room for characters
373 *	@port: tty port
374 *	@chars: return pointer for character write area
375 *	@size: desired size
376 *
377 *	Prepare a block of space in the buffer for data. Returns the length
378 *	available and buffer pointer to the space which is now allocated and
379 *	accounted for as ready for normal characters. This is used for drivers
380 *	that need their own block copy routines into the buffer. There is no
381 *	guarantee the buffer is a DMA target!
382 */
383
384int tty_prepare_flip_string(struct tty_port *port, unsigned char **chars,
385		size_t size)
386{
387	int space = __tty_buffer_request_room(port, size, TTYB_NORMAL);
388	if (likely(space)) {
389		struct tty_buffer *tb = port->buf.tail;
390		*chars = char_buf_ptr(tb, tb->used);
391		if (~tb->flags & TTYB_NORMAL)
392			memset(flag_buf_ptr(tb, tb->used), TTY_NORMAL, space);
393		tb->used += space;
394	}
395	return space;
396}
397EXPORT_SYMBOL_GPL(tty_prepare_flip_string);
398
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
399
400static int
401receive_buf(struct tty_struct *tty, struct tty_buffer *head, int count)
402{
403	struct tty_ldisc *disc = tty->ldisc;
404	unsigned char *p = char_buf_ptr(head, head->read);
405	char	      *f = NULL;
 
406
407	if (~head->flags & TTYB_NORMAL)
408		f = flag_buf_ptr(head, head->read);
409
410	if (disc->ops->receive_buf2)
411		count = disc->ops->receive_buf2(tty, p, f, count);
412	else {
413		count = min_t(int, count, tty->receive_room);
414		if (count)
415			disc->ops->receive_buf(tty, p, f, count);
416	}
417	head->read += count;
418	return count;
419}
420
421/**
422 *	flush_to_ldisc
423 *	@work: tty structure passed from work queue.
424 *
425 *	This routine is called out of the software interrupt to flush data
426 *	from the buffer chain to the line discipline.
427 *
428 *	The receive_buf method is single threaded for each tty instance.
429 *
430 *	Locking: takes buffer lock to ensure single-threaded flip buffer
431 *		 'consumer'
432 */
433
434static void flush_to_ldisc(struct work_struct *work)
435{
436	struct tty_port *port = container_of(work, struct tty_port, buf.work);
437	struct tty_bufhead *buf = &port->buf;
438	struct tty_struct *tty;
439	struct tty_ldisc *disc;
440
441	tty = port->itty;
442	if (tty == NULL)
443		return;
444
445	disc = tty_ldisc_ref(tty);
446	if (disc == NULL)
447		return;
448
449	mutex_lock(&buf->lock);
450
451	while (1) {
452		struct tty_buffer *head = buf->head;
453		struct tty_buffer *next;
454		int count;
455
456		/* Ldisc or user is trying to gain exclusive access */
457		if (atomic_read(&buf->priority))
458			break;
459
460		next = head->next;
461		/* paired w/ barrier in __tty_buffer_request_room();
462		 * ensures commit value read is not stale if the head
463		 * is advancing to the next buffer
464		 */
465		smp_rmb();
466		count = head->commit - head->read;
 
 
 
467		if (!count) {
468			if (next == NULL)
469				break;
470			buf->head = next;
471			tty_buffer_free(port, head);
472			continue;
473		}
474
475		count = receive_buf(tty, head, count);
476		if (!count)
477			break;
 
478	}
479
480	mutex_unlock(&buf->lock);
481
482	tty_ldisc_deref(disc);
483}
484
485/**
486 *	tty_flush_to_ldisc
487 *	@tty: tty to push
488 *
489 *	Push the terminal flip buffers to the line discipline.
490 *
491 *	Must not be called from IRQ context.
492 */
493void tty_flush_to_ldisc(struct tty_struct *tty)
494{
495	flush_work(&tty->port->buf.work);
496}
497
498/**
499 *	tty_flip_buffer_push	-	terminal
500 *	@port: tty port to push
501 *
502 *	Queue a push of the terminal flip buffers to the line discipline.
503 *	Can be called from IRQ/atomic context.
504 *
505 *	In the event of the queue being busy for flipping the work will be
506 *	held off and retried later.
507 */
508
509void tty_flip_buffer_push(struct tty_port *port)
510{
511	tty_schedule_flip(port);
512}
513EXPORT_SYMBOL(tty_flip_buffer_push);
514
515/**
516 *	tty_buffer_init		-	prepare a tty buffer structure
517 *	@tty: tty to initialise
518 *
519 *	Set up the initial state of the buffer management for a tty device.
520 *	Must be called before the other tty buffer functions are used.
521 */
522
523void tty_buffer_init(struct tty_port *port)
524{
525	struct tty_bufhead *buf = &port->buf;
526
527	mutex_init(&buf->lock);
528	tty_buffer_reset(&buf->sentinel, 0);
529	buf->head = &buf->sentinel;
530	buf->tail = &buf->sentinel;
531	init_llist_head(&buf->free);
532	atomic_set(&buf->mem_used, 0);
533	atomic_set(&buf->priority, 0);
534	INIT_WORK(&buf->work, flush_to_ldisc);
535	buf->mem_limit = TTYB_DEFAULT_MEM_LIMIT;
536}
537
538/**
539 *	tty_buffer_set_limit	-	change the tty buffer memory limit
540 *	@port: tty port to change
541 *
542 *	Change the tty buffer memory limit.
543 *	Must be called before the other tty buffer functions are used.
544 */
545
546int tty_buffer_set_limit(struct tty_port *port, int limit)
547{
548	if (limit < MIN_TTYB_SIZE)
549		return -EINVAL;
550	port->buf.mem_limit = limit;
551	return 0;
552}
553EXPORT_SYMBOL_GPL(tty_buffer_set_limit);