Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/drivers/mmc/core/core.c
   4 *
   5 *  Copyright (C) 2003-2004 Russell King, All Rights Reserved.
   6 *  SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
   7 *  Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
   8 *  MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
 
 
 
 
   9 */
  10#include <linux/module.h>
  11#include <linux/init.h>
  12#include <linux/interrupt.h>
  13#include <linux/completion.h>
  14#include <linux/device.h>
  15#include <linux/delay.h>
  16#include <linux/pagemap.h>
  17#include <linux/err.h>
  18#include <linux/leds.h>
  19#include <linux/scatterlist.h>
  20#include <linux/log2.h>
 
  21#include <linux/pm_runtime.h>
  22#include <linux/pm_wakeup.h>
  23#include <linux/suspend.h>
  24#include <linux/fault-inject.h>
  25#include <linux/random.h>
  26#include <linux/slab.h>
  27#include <linux/of.h>
  28
  29#include <linux/mmc/card.h>
  30#include <linux/mmc/host.h>
  31#include <linux/mmc/mmc.h>
  32#include <linux/mmc/sd.h>
  33#include <linux/mmc/slot-gpio.h>
  34
  35#define CREATE_TRACE_POINTS
  36#include <trace/events/mmc.h>
  37
  38#include "core.h"
  39#include "card.h"
  40#include "bus.h"
  41#include "host.h"
  42#include "sdio_bus.h"
  43#include "pwrseq.h"
  44
  45#include "mmc_ops.h"
  46#include "sd_ops.h"
  47#include "sdio_ops.h"
  48
  49/* The max erase timeout, used when host->max_busy_timeout isn't specified */
  50#define MMC_ERASE_TIMEOUT_MS	(60 * 1000) /* 60 s */
  51#define SD_DISCARD_TIMEOUT_MS	(250)
 
 
 
 
 
  52
 
  53static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
  54
  55/*
  56 * Enabling software CRCs on the data blocks can be a significant (30%)
  57 * performance cost, and for other reasons may not always be desired.
  58 * So we allow it it to be disabled.
  59 */
  60bool use_spi_crc = 1;
  61module_param(use_spi_crc, bool, 0);
  62
 
 
 
  63static int mmc_schedule_delayed_work(struct delayed_work *work,
  64				     unsigned long delay)
  65{
  66	/*
  67	 * We use the system_freezable_wq, because of two reasons.
  68	 * First, it allows several works (not the same work item) to be
  69	 * executed simultaneously. Second, the queue becomes frozen when
  70	 * userspace becomes frozen during system PM.
  71	 */
  72	return queue_delayed_work(system_freezable_wq, work, delay);
 
 
  73}
  74
  75#ifdef CONFIG_FAIL_MMC_REQUEST
  76
  77/*
  78 * Internal function. Inject random data errors.
  79 * If mmc_data is NULL no errors are injected.
  80 */
  81static void mmc_should_fail_request(struct mmc_host *host,
  82				    struct mmc_request *mrq)
  83{
  84	struct mmc_command *cmd = mrq->cmd;
  85	struct mmc_data *data = mrq->data;
  86	static const int data_errors[] = {
  87		-ETIMEDOUT,
  88		-EILSEQ,
  89		-EIO,
  90	};
  91
  92	if (!data)
  93		return;
  94
  95	if ((cmd && cmd->error) || data->error ||
  96	    !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
  97		return;
  98
  99	data->error = data_errors[prandom_u32() % ARRAY_SIZE(data_errors)];
 100	data->bytes_xfered = (prandom_u32() % (data->bytes_xfered >> 9)) << 9;
 101}
 102
 103#else /* CONFIG_FAIL_MMC_REQUEST */
 104
 105static inline void mmc_should_fail_request(struct mmc_host *host,
 106					   struct mmc_request *mrq)
 107{
 108}
 109
 110#endif /* CONFIG_FAIL_MMC_REQUEST */
 111
 112static inline void mmc_complete_cmd(struct mmc_request *mrq)
 113{
 114	if (mrq->cap_cmd_during_tfr && !completion_done(&mrq->cmd_completion))
 115		complete_all(&mrq->cmd_completion);
 116}
 117
 118void mmc_command_done(struct mmc_host *host, struct mmc_request *mrq)
 119{
 120	if (!mrq->cap_cmd_during_tfr)
 121		return;
 122
 123	mmc_complete_cmd(mrq);
 124
 125	pr_debug("%s: cmd done, tfr ongoing (CMD%u)\n",
 126		 mmc_hostname(host), mrq->cmd->opcode);
 127}
 128EXPORT_SYMBOL(mmc_command_done);
 129
 130/**
 131 *	mmc_request_done - finish processing an MMC request
 132 *	@host: MMC host which completed request
 133 *	@mrq: MMC request which request
 134 *
 135 *	MMC drivers should call this function when they have completed
 136 *	their processing of a request.
 137 */
 138void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
 139{
 140	struct mmc_command *cmd = mrq->cmd;
 141	int err = cmd->error;
 142
 143	/* Flag re-tuning needed on CRC errors */
 144	if (cmd->opcode != MMC_SEND_TUNING_BLOCK &&
 145	    cmd->opcode != MMC_SEND_TUNING_BLOCK_HS200 &&
 146	    !host->retune_crc_disable &&
 147	    (err == -EILSEQ || (mrq->sbc && mrq->sbc->error == -EILSEQ) ||
 148	    (mrq->data && mrq->data->error == -EILSEQ) ||
 149	    (mrq->stop && mrq->stop->error == -EILSEQ)))
 150		mmc_retune_needed(host);
 151
 152	if (err && cmd->retries && mmc_host_is_spi(host)) {
 153		if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
 154			cmd->retries = 0;
 155	}
 156
 157	if (host->ongoing_mrq == mrq)
 158		host->ongoing_mrq = NULL;
 159
 160	mmc_complete_cmd(mrq);
 161
 162	trace_mmc_request_done(host, mrq);
 163
 164	/*
 165	 * We list various conditions for the command to be considered
 166	 * properly done:
 167	 *
 168	 * - There was no error, OK fine then
 169	 * - We are not doing some kind of retry
 170	 * - The card was removed (...so just complete everything no matter
 171	 *   if there are errors or retries)
 172	 */
 173	if (!err || !cmd->retries || mmc_card_removed(host->card)) {
 174		mmc_should_fail_request(host, mrq);
 175
 176		if (!host->ongoing_mrq)
 177			led_trigger_event(host->led, LED_OFF);
 178
 179		if (mrq->sbc) {
 180			pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n",
 181				mmc_hostname(host), mrq->sbc->opcode,
 182				mrq->sbc->error,
 183				mrq->sbc->resp[0], mrq->sbc->resp[1],
 184				mrq->sbc->resp[2], mrq->sbc->resp[3]);
 185		}
 186
 187		pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
 188			mmc_hostname(host), cmd->opcode, err,
 189			cmd->resp[0], cmd->resp[1],
 190			cmd->resp[2], cmd->resp[3]);
 191
 192		if (mrq->data) {
 193			pr_debug("%s:     %d bytes transferred: %d\n",
 194				mmc_hostname(host),
 195				mrq->data->bytes_xfered, mrq->data->error);
 196		}
 197
 198		if (mrq->stop) {
 199			pr_debug("%s:     (CMD%u): %d: %08x %08x %08x %08x\n",
 200				mmc_hostname(host), mrq->stop->opcode,
 201				mrq->stop->error,
 202				mrq->stop->resp[0], mrq->stop->resp[1],
 203				mrq->stop->resp[2], mrq->stop->resp[3]);
 204		}
 
 
 
 
 
 205	}
 206	/*
 207	 * Request starter must handle retries - see
 208	 * mmc_wait_for_req_done().
 209	 */
 210	if (mrq->done)
 211		mrq->done(mrq);
 212}
 213
 214EXPORT_SYMBOL(mmc_request_done);
 215
 216static void __mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
 
 217{
 218	int err;
 219
 220	/* Assumes host controller has been runtime resumed by mmc_claim_host */
 221	err = mmc_retune(host);
 222	if (err) {
 223		mrq->cmd->error = err;
 224		mmc_request_done(host, mrq);
 225		return;
 226	}
 227
 228	/*
 229	 * For sdio rw commands we must wait for card busy otherwise some
 230	 * sdio devices won't work properly.
 231	 * And bypass I/O abort, reset and bus suspend operations.
 232	 */
 233	if (sdio_is_io_busy(mrq->cmd->opcode, mrq->cmd->arg) &&
 234	    host->ops->card_busy) {
 235		int tries = 500; /* Wait aprox 500ms at maximum */
 236
 237		while (host->ops->card_busy(host) && --tries)
 238			mmc_delay(1);
 239
 240		if (tries == 0) {
 241			mrq->cmd->error = -EBUSY;
 242			mmc_request_done(host, mrq);
 243			return;
 244		}
 245	}
 246
 247	if (mrq->cap_cmd_during_tfr) {
 248		host->ongoing_mrq = mrq;
 249		/*
 250		 * Retry path could come through here without having waiting on
 251		 * cmd_completion, so ensure it is reinitialised.
 252		 */
 253		reinit_completion(&mrq->cmd_completion);
 254	}
 255
 256	trace_mmc_request_start(host, mrq);
 257
 258	if (host->cqe_on)
 259		host->cqe_ops->cqe_off(host);
 260
 261	host->ops->request(host, mrq);
 262}
 263
 264static void mmc_mrq_pr_debug(struct mmc_host *host, struct mmc_request *mrq,
 265			     bool cqe)
 266{
 267	if (mrq->sbc) {
 268		pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
 269			 mmc_hostname(host), mrq->sbc->opcode,
 270			 mrq->sbc->arg, mrq->sbc->flags);
 271	}
 272
 273	if (mrq->cmd) {
 274		pr_debug("%s: starting %sCMD%u arg %08x flags %08x\n",
 275			 mmc_hostname(host), cqe ? "CQE direct " : "",
 276			 mrq->cmd->opcode, mrq->cmd->arg, mrq->cmd->flags);
 277	} else if (cqe) {
 278		pr_debug("%s: starting CQE transfer for tag %d blkaddr %u\n",
 279			 mmc_hostname(host), mrq->tag, mrq->data->blk_addr);
 280	}
 281
 282	if (mrq->data) {
 283		pr_debug("%s:     blksz %d blocks %d flags %08x "
 284			"tsac %d ms nsac %d\n",
 285			mmc_hostname(host), mrq->data->blksz,
 286			mrq->data->blocks, mrq->data->flags,
 287			mrq->data->timeout_ns / 1000000,
 288			mrq->data->timeout_clks);
 289	}
 290
 291	if (mrq->stop) {
 292		pr_debug("%s:     CMD%u arg %08x flags %08x\n",
 293			 mmc_hostname(host), mrq->stop->opcode,
 294			 mrq->stop->arg, mrq->stop->flags);
 295	}
 296}
 297
 298static int mmc_mrq_prep(struct mmc_host *host, struct mmc_request *mrq)
 299{
 300	unsigned int i, sz = 0;
 301	struct scatterlist *sg;
 302
 303	if (mrq->cmd) {
 304		mrq->cmd->error = 0;
 305		mrq->cmd->mrq = mrq;
 306		mrq->cmd->data = mrq->data;
 307	}
 308	if (mrq->sbc) {
 309		mrq->sbc->error = 0;
 310		mrq->sbc->mrq = mrq;
 311	}
 312	if (mrq->data) {
 313		if (mrq->data->blksz > host->max_blk_size ||
 314		    mrq->data->blocks > host->max_blk_count ||
 315		    mrq->data->blocks * mrq->data->blksz > host->max_req_size)
 316			return -EINVAL;
 317
 
 
 318		for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
 319			sz += sg->length;
 320		if (sz != mrq->data->blocks * mrq->data->blksz)
 321			return -EINVAL;
 322
 
 323		mrq->data->error = 0;
 324		mrq->data->mrq = mrq;
 325		if (mrq->stop) {
 326			mrq->data->stop = mrq->stop;
 327			mrq->stop->error = 0;
 328			mrq->stop->mrq = mrq;
 329		}
 330	}
 331
 332	return 0;
 
 333}
 334
 335int mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
 
 
 
 
 
 
 
 
 
 
 336{
 337	int err;
 
 
 338
 339	init_completion(&mrq->cmd_completion);
 340
 341	mmc_retune_hold(host);
 
 342
 343	if (mmc_card_removed(host->card))
 344		return -ENOMEDIUM;
 
 
 
 
 345
 346	mmc_mrq_pr_debug(host, mrq, false);
 
 347
 348	WARN_ON(!host->claimed);
 
 
 349
 350	err = mmc_mrq_prep(host, mrq);
 351	if (err)
 352		return err;
 
 
 
 
 
 353
 354	led_trigger_event(host->led, LED_FULL);
 355	__mmc_start_request(host, mrq);
 
 
 
 
 
 
 356
 357	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 358}
 359EXPORT_SYMBOL(mmc_start_request);
 360
 361static void mmc_wait_done(struct mmc_request *mrq)
 362{
 363	complete(&mrq->completion);
 364}
 365
 366static inline void mmc_wait_ongoing_tfr_cmd(struct mmc_host *host)
 
 
 
 
 
 
 
 
 367{
 368	struct mmc_request *ongoing_mrq = READ_ONCE(host->ongoing_mrq);
 
 
 
 
 
 
 
 369
 370	/*
 371	 * If there is an ongoing transfer, wait for the command line to become
 372	 * available.
 373	 */
 374	if (ongoing_mrq && !completion_done(&ongoing_mrq->cmd_completion))
 375		wait_for_completion(&ongoing_mrq->cmd_completion);
 376}
 377
 378static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
 379{
 380	int err;
 381
 382	mmc_wait_ongoing_tfr_cmd(host);
 383
 384	init_completion(&mrq->completion);
 385	mrq->done = mmc_wait_done;
 386
 387	err = mmc_start_request(host, mrq);
 388	if (err) {
 389		mrq->cmd->error = err;
 390		mmc_complete_cmd(mrq);
 391		complete(&mrq->completion);
 
 392	}
 
 
 
 393
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 394	return err;
 395}
 396
 397void mmc_wait_for_req_done(struct mmc_host *host, struct mmc_request *mrq)
 
 398{
 399	struct mmc_command *cmd;
 400
 401	while (1) {
 402		wait_for_completion(&mrq->completion);
 403
 404		cmd = mrq->cmd;
 405
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 406		if (!cmd->error || !cmd->retries ||
 407		    mmc_card_removed(host->card))
 408			break;
 409
 410		mmc_retune_recheck(host);
 411
 412		pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
 413			 mmc_hostname(host), cmd->opcode, cmd->error);
 414		cmd->retries--;
 415		cmd->error = 0;
 416		__mmc_start_request(host, mrq);
 417	}
 
 418
 419	mmc_retune_release(host);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 420}
 421EXPORT_SYMBOL(mmc_wait_for_req_done);
 422
 423/*
 424 * mmc_cqe_start_req - Start a CQE request.
 425 * @host: MMC host to start the request
 426 * @mrq: request to start
 
 427 *
 428 * Start the request, re-tuning if needed and it is possible. Returns an error
 429 * code if the request fails to start or -EBUSY if CQE is busy.
 430 */
 431int mmc_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
 
 432{
 433	int err;
 434
 435	/*
 436	 * CQE cannot process re-tuning commands. Caller must hold retuning
 437	 * while CQE is in use.  Re-tuning can happen here only when CQE has no
 438	 * active requests i.e. this is the first.  Note, re-tuning will call
 439	 * ->cqe_off().
 440	 */
 441	err = mmc_retune(host);
 442	if (err)
 443		goto out_err;
 444
 445	mrq->host = host;
 446
 447	mmc_mrq_pr_debug(host, mrq, true);
 448
 449	err = mmc_mrq_prep(host, mrq);
 450	if (err)
 451		goto out_err;
 452
 453	err = host->cqe_ops->cqe_request(host, mrq);
 454	if (err)
 455		goto out_err;
 456
 457	trace_mmc_request_start(host, mrq);
 458
 459	return 0;
 460
 461out_err:
 462	if (mrq->cmd) {
 463		pr_debug("%s: failed to start CQE direct CMD%u, error %d\n",
 464			 mmc_hostname(host), mrq->cmd->opcode, err);
 465	} else {
 466		pr_debug("%s: failed to start CQE transfer for tag %d, error %d\n",
 467			 mmc_hostname(host), mrq->tag, err);
 468	}
 469	return err;
 470}
 471EXPORT_SYMBOL(mmc_cqe_start_req);
 472
 473/**
 474 *	mmc_cqe_request_done - CQE has finished processing an MMC request
 475 *	@host: MMC host which completed request
 476 *	@mrq: MMC request which completed
 
 477 *
 478 *	CQE drivers should call this function when they have completed
 479 *	their processing of a request.
 
 
 
 
 
 
 
 480 */
 481void mmc_cqe_request_done(struct mmc_host *host, struct mmc_request *mrq)
 
 482{
 483	mmc_should_fail_request(host, mrq);
 484
 485	/* Flag re-tuning needed on CRC errors */
 486	if ((mrq->cmd && mrq->cmd->error == -EILSEQ) ||
 487	    (mrq->data && mrq->data->error == -EILSEQ))
 488		mmc_retune_needed(host);
 489
 490	trace_mmc_request_done(host, mrq);
 491
 492	if (mrq->cmd) {
 493		pr_debug("%s: CQE req done (direct CMD%u): %d\n",
 494			 mmc_hostname(host), mrq->cmd->opcode, mrq->cmd->error);
 495	} else {
 496		pr_debug("%s: CQE transfer done tag %d\n",
 497			 mmc_hostname(host), mrq->tag);
 498	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 499
 500	if (mrq->data) {
 501		pr_debug("%s:     %d bytes transferred: %d\n",
 502			 mmc_hostname(host),
 503			 mrq->data->bytes_xfered, mrq->data->error);
 504	}
 505
 506	mrq->done(mrq);
 
 
 507}
 508EXPORT_SYMBOL(mmc_cqe_request_done);
 509
 510/**
 511 *	mmc_cqe_post_req - CQE post process of a completed MMC request
 512 *	@host: MMC host
 513 *	@mrq: MMC request to be processed
 
 
 
 
 514 */
 515void mmc_cqe_post_req(struct mmc_host *host, struct mmc_request *mrq)
 516{
 517	if (host->cqe_ops->cqe_post_req)
 518		host->cqe_ops->cqe_post_req(host, mrq);
 519}
 520EXPORT_SYMBOL(mmc_cqe_post_req);
 521
 522/* Arbitrary 1 second timeout */
 523#define MMC_CQE_RECOVERY_TIMEOUT	1000
 524
 525/*
 526 * mmc_cqe_recovery - Recover from CQE errors.
 527 * @host: MMC host to recover
 528 *
 529 * Recovery consists of stopping CQE, stopping eMMC, discarding the queue in
 530 * in eMMC, and discarding the queue in CQE. CQE must call
 531 * mmc_cqe_request_done() on all requests. An error is returned if the eMMC
 532 * fails to discard its queue.
 533 */
 534int mmc_cqe_recovery(struct mmc_host *host)
 535{
 536	struct mmc_command cmd;
 537	int err;
 
 
 538
 539	mmc_retune_hold_now(host);
 540
 541	/*
 542	 * Recovery is expected seldom, if at all, but it reduces performance,
 543	 * so make sure it is not completely silent.
 544	 */
 545	pr_warn("%s: running CQE recovery\n", mmc_hostname(host));
 546
 547	host->cqe_ops->cqe_recovery_start(host);
 
 
 
 
 
 548
 549	memset(&cmd, 0, sizeof(cmd));
 550	cmd.opcode       = MMC_STOP_TRANSMISSION,
 551	cmd.flags        = MMC_RSP_R1B | MMC_CMD_AC,
 552	cmd.flags       &= ~MMC_RSP_CRC; /* Ignore CRC */
 553	cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT,
 554	mmc_wait_for_cmd(host, &cmd, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 555
 556	memset(&cmd, 0, sizeof(cmd));
 557	cmd.opcode       = MMC_CMDQ_TASK_MGMT;
 558	cmd.arg          = 1; /* Discard entire queue */
 559	cmd.flags        = MMC_RSP_R1B | MMC_CMD_AC;
 560	cmd.flags       &= ~MMC_RSP_CRC; /* Ignore CRC */
 561	cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT,
 562	err = mmc_wait_for_cmd(host, &cmd, 0);
 563
 564	host->cqe_ops->cqe_recovery_finish(host);
 
 
 565
 566	mmc_retune_release(host);
 
 
 
 
 567
 
 
 568	return err;
 569}
 570EXPORT_SYMBOL(mmc_cqe_recovery);
 571
 572/**
 573 *	mmc_is_req_done - Determine if a 'cap_cmd_during_tfr' request is done
 574 *	@host: MMC host
 575 *	@mrq: MMC request
 576 *
 577 *	mmc_is_req_done() is used with requests that have
 578 *	mrq->cap_cmd_during_tfr = true. mmc_is_req_done() must be called after
 579 *	starting a request and before waiting for it to complete. That is,
 580 *	either in between calls to mmc_start_req(), or after mmc_wait_for_req()
 581 *	and before mmc_wait_for_req_done(). If it is called at other times the
 582 *	result is not meaningful.
 583 */
 584bool mmc_is_req_done(struct mmc_host *host, struct mmc_request *mrq)
 585{
 586	return completion_done(&mrq->completion);
 587}
 588EXPORT_SYMBOL(mmc_is_req_done);
 589
 590/**
 591 *	mmc_wait_for_req - start a request and wait for completion
 592 *	@host: MMC host to start command
 593 *	@mrq: MMC request to start
 594 *
 595 *	Start a new MMC custom command request for a host, and wait
 596 *	for the command to complete. In the case of 'cap_cmd_during_tfr'
 597 *	requests, the transfer is ongoing and the caller can issue further
 598 *	commands that do not use the data lines, and then wait by calling
 599 *	mmc_wait_for_req_done().
 600 *	Does not attempt to parse the response.
 601 */
 602void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
 603{
 604	__mmc_start_req(host, mrq);
 605
 606	if (!mrq->cap_cmd_during_tfr)
 607		mmc_wait_for_req_done(host, mrq);
 608}
 609EXPORT_SYMBOL(mmc_wait_for_req);
 610
 611/**
 612 *	mmc_wait_for_cmd - start a command and wait for completion
 613 *	@host: MMC host to start command
 614 *	@cmd: MMC command to start
 615 *	@retries: maximum number of retries
 616 *
 617 *	Start a new MMC command for a host, and wait for the command
 618 *	to complete.  Return any error that occurred while the command
 619 *	was executing.  Do not attempt to parse the response.
 620 */
 621int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
 622{
 623	struct mmc_request mrq = {};
 624
 625	WARN_ON(!host->claimed);
 626
 627	memset(cmd->resp, 0, sizeof(cmd->resp));
 628	cmd->retries = retries;
 629
 630	mrq.cmd = cmd;
 631	cmd->data = NULL;
 632
 633	mmc_wait_for_req(host, &mrq);
 634
 635	return cmd->error;
 636}
 637
 638EXPORT_SYMBOL(mmc_wait_for_cmd);
 639
 640/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 641 *	mmc_set_data_timeout - set the timeout for a data command
 642 *	@data: data phase for command
 643 *	@card: the MMC card associated with the data transfer
 644 *
 645 *	Computes the data timeout parameters according to the
 646 *	correct algorithm given the card type.
 647 */
 648void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
 649{
 650	unsigned int mult;
 651
 652	/*
 653	 * SDIO cards only define an upper 1 s limit on access.
 654	 */
 655	if (mmc_card_sdio(card)) {
 656		data->timeout_ns = 1000000000;
 657		data->timeout_clks = 0;
 658		return;
 659	}
 660
 661	/*
 662	 * SD cards use a 100 multiplier rather than 10
 663	 */
 664	mult = mmc_card_sd(card) ? 100 : 10;
 665
 666	/*
 667	 * Scale up the multiplier (and therefore the timeout) by
 668	 * the r2w factor for writes.
 669	 */
 670	if (data->flags & MMC_DATA_WRITE)
 671		mult <<= card->csd.r2w_factor;
 672
 673	data->timeout_ns = card->csd.taac_ns * mult;
 674	data->timeout_clks = card->csd.taac_clks * mult;
 675
 676	/*
 677	 * SD cards also have an upper limit on the timeout.
 678	 */
 679	if (mmc_card_sd(card)) {
 680		unsigned int timeout_us, limit_us;
 681
 682		timeout_us = data->timeout_ns / 1000;
 683		if (card->host->ios.clock)
 684			timeout_us += data->timeout_clks * 1000 /
 685				(card->host->ios.clock / 1000);
 686
 687		if (data->flags & MMC_DATA_WRITE)
 688			/*
 689			 * The MMC spec "It is strongly recommended
 690			 * for hosts to implement more than 500ms
 691			 * timeout value even if the card indicates
 692			 * the 250ms maximum busy length."  Even the
 693			 * previous value of 300ms is known to be
 694			 * insufficient for some cards.
 695			 */
 696			limit_us = 3000000;
 697		else
 698			limit_us = 100000;
 699
 700		/*
 701		 * SDHC cards always use these fixed values.
 702		 */
 703		if (timeout_us > limit_us) {
 704			data->timeout_ns = limit_us * 1000;
 705			data->timeout_clks = 0;
 706		}
 707
 708		/* assign limit value if invalid */
 709		if (timeout_us == 0)
 710			data->timeout_ns = limit_us * 1000;
 711	}
 712
 713	/*
 714	 * Some cards require longer data read timeout than indicated in CSD.
 715	 * Address this by setting the read timeout to a "reasonably high"
 716	 * value. For the cards tested, 600ms has proven enough. If necessary,
 717	 * this value can be increased if other problematic cards require this.
 718	 */
 719	if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
 720		data->timeout_ns = 600000000;
 721		data->timeout_clks = 0;
 722	}
 723
 724	/*
 725	 * Some cards need very high timeouts if driven in SPI mode.
 726	 * The worst observed timeout was 900ms after writing a
 727	 * continuous stream of data until the internal logic
 728	 * overflowed.
 729	 */
 730	if (mmc_host_is_spi(card->host)) {
 731		if (data->flags & MMC_DATA_WRITE) {
 732			if (data->timeout_ns < 1000000000)
 733				data->timeout_ns = 1000000000;	/* 1s */
 734		} else {
 735			if (data->timeout_ns < 100000000)
 736				data->timeout_ns =  100000000;	/* 100ms */
 737		}
 738	}
 739}
 740EXPORT_SYMBOL(mmc_set_data_timeout);
 741
 742/*
 743 * Allow claiming an already claimed host if the context is the same or there is
 744 * no context but the task is the same.
 
 
 
 
 
 
 
 
 
 
 745 */
 746static inline bool mmc_ctx_matches(struct mmc_host *host, struct mmc_ctx *ctx,
 747				   struct task_struct *task)
 748{
 749	return host->claimer == ctx ||
 750	       (!ctx && task && host->claimer->task == task);
 751}
 
 
 
 752
 753static inline void mmc_ctx_set_claimer(struct mmc_host *host,
 754				       struct mmc_ctx *ctx,
 755				       struct task_struct *task)
 756{
 757	if (!host->claimer) {
 758		if (ctx)
 759			host->claimer = ctx;
 760		else
 761			host->claimer = &host->default_ctx;
 762	}
 763	if (task)
 764		host->claimer->task = task;
 765}
 
 766
 767/**
 768 *	__mmc_claim_host - exclusively claim a host
 769 *	@host: mmc host to claim
 770 *	@ctx: context that claims the host or NULL in which case the default
 771 *	context will be used
 772 *	@abort: whether or not the operation should be aborted
 773 *
 774 *	Claim a host for a set of operations.  If @abort is non null and
 775 *	dereference a non-zero value then this will return prematurely with
 776 *	that non-zero value without acquiring the lock.  Returns zero
 777 *	with the lock held otherwise.
 778 */
 779int __mmc_claim_host(struct mmc_host *host, struct mmc_ctx *ctx,
 780		     atomic_t *abort)
 781{
 782	struct task_struct *task = ctx ? NULL : current;
 783	DECLARE_WAITQUEUE(wait, current);
 784	unsigned long flags;
 785	int stop;
 786	bool pm = false;
 787
 788	might_sleep();
 789
 790	add_wait_queue(&host->wq, &wait);
 791	spin_lock_irqsave(&host->lock, flags);
 792	while (1) {
 793		set_current_state(TASK_UNINTERRUPTIBLE);
 794		stop = abort ? atomic_read(abort) : 0;
 795		if (stop || !host->claimed || mmc_ctx_matches(host, ctx, task))
 796			break;
 797		spin_unlock_irqrestore(&host->lock, flags);
 798		schedule();
 799		spin_lock_irqsave(&host->lock, flags);
 800	}
 801	set_current_state(TASK_RUNNING);
 802	if (!stop) {
 803		host->claimed = 1;
 804		mmc_ctx_set_claimer(host, ctx, task);
 805		host->claim_cnt += 1;
 806		if (host->claim_cnt == 1)
 807			pm = true;
 808	} else
 809		wake_up(&host->wq);
 810	spin_unlock_irqrestore(&host->lock, flags);
 811	remove_wait_queue(&host->wq, &wait);
 812
 813	if (pm)
 814		pm_runtime_get_sync(mmc_dev(host));
 815
 816	return stop;
 817}
 
 818EXPORT_SYMBOL(__mmc_claim_host);
 819
 820/**
 821 *	mmc_release_host - release a host
 822 *	@host: mmc host to release
 823 *
 824 *	Release a MMC host, allowing others to claim the host
 825 *	for their operations.
 826 */
 827void mmc_release_host(struct mmc_host *host)
 828{
 829	unsigned long flags;
 830
 831	WARN_ON(!host->claimed);
 832
 
 
 
 833	spin_lock_irqsave(&host->lock, flags);
 834	if (--host->claim_cnt) {
 835		/* Release for nested claim */
 836		spin_unlock_irqrestore(&host->lock, flags);
 837	} else {
 838		host->claimed = 0;
 839		host->claimer->task = NULL;
 840		host->claimer = NULL;
 841		spin_unlock_irqrestore(&host->lock, flags);
 842		wake_up(&host->wq);
 843		pm_runtime_mark_last_busy(mmc_dev(host));
 844		if (host->caps & MMC_CAP_SYNC_RUNTIME_PM)
 845			pm_runtime_put_sync_suspend(mmc_dev(host));
 846		else
 847			pm_runtime_put_autosuspend(mmc_dev(host));
 848	}
 849}
 850EXPORT_SYMBOL(mmc_release_host);
 851
 852/*
 853 * This is a helper function, which fetches a runtime pm reference for the
 854 * card device and also claims the host.
 855 */
 856void mmc_get_card(struct mmc_card *card, struct mmc_ctx *ctx)
 857{
 858	pm_runtime_get_sync(&card->dev);
 859	__mmc_claim_host(card->host, ctx, NULL);
 860}
 861EXPORT_SYMBOL(mmc_get_card);
 862
 863/*
 864 * This is a helper function, which releases the host and drops the runtime
 865 * pm reference for the card device.
 866 */
 867void mmc_put_card(struct mmc_card *card, struct mmc_ctx *ctx)
 868{
 869	struct mmc_host *host = card->host;
 870
 871	WARN_ON(ctx && host->claimer != ctx);
 872
 873	mmc_release_host(host);
 874	pm_runtime_mark_last_busy(&card->dev);
 875	pm_runtime_put_autosuspend(&card->dev);
 876}
 877EXPORT_SYMBOL(mmc_put_card);
 878
 879/*
 880 * Internal function that does the actual ios call to the host driver,
 881 * optionally printing some debug output.
 882 */
 883static inline void mmc_set_ios(struct mmc_host *host)
 884{
 885	struct mmc_ios *ios = &host->ios;
 886
 887	pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
 888		"width %u timing %u\n",
 889		 mmc_hostname(host), ios->clock, ios->bus_mode,
 890		 ios->power_mode, ios->chip_select, ios->vdd,
 891		 1 << ios->bus_width, ios->timing);
 892
 
 
 893	host->ops->set_ios(host, ios);
 894}
 895
 896/*
 897 * Control chip select pin on a host.
 898 */
 899void mmc_set_chip_select(struct mmc_host *host, int mode)
 900{
 
 901	host->ios.chip_select = mode;
 902	mmc_set_ios(host);
 
 903}
 904
 905/*
 906 * Sets the host clock to the highest possible frequency that
 907 * is below "hz".
 908 */
 909void mmc_set_clock(struct mmc_host *host, unsigned int hz)
 910{
 911	WARN_ON(hz && hz < host->f_min);
 912
 913	if (hz > host->f_max)
 914		hz = host->f_max;
 915
 916	host->ios.clock = hz;
 917	mmc_set_ios(host);
 918}
 919
 920int mmc_execute_tuning(struct mmc_card *card)
 921{
 922	struct mmc_host *host = card->host;
 923	u32 opcode;
 924	int err;
 
 925
 926	if (!host->ops->execute_tuning)
 927		return 0;
 
 
 
 
 
 928
 929	if (host->cqe_on)
 930		host->cqe_ops->cqe_off(host);
 
 
 
 
 
 931
 932	if (mmc_card_mmc(card))
 933		opcode = MMC_SEND_TUNING_BLOCK_HS200;
 934	else
 935		opcode = MMC_SEND_TUNING_BLOCK;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 936
 937	err = host->ops->execute_tuning(host, opcode);
 
 
 938
 939	if (err)
 940		pr_err("%s: tuning execution failed: %d\n",
 941			mmc_hostname(host), err);
 942	else
 943		mmc_retune_enable(host);
 
 
 
 944
 945	return err;
 
 
 946}
 
 947
 948/*
 949 * Change the bus mode (open drain/push-pull) of a host.
 950 */
 951void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
 952{
 
 953	host->ios.bus_mode = mode;
 954	mmc_set_ios(host);
 
 955}
 956
 957/*
 958 * Change data bus width of a host.
 959 */
 960void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
 961{
 
 962	host->ios.bus_width = width;
 963	mmc_set_ios(host);
 964}
 965
 966/*
 967 * Set initial state after a power cycle or a hw_reset.
 968 */
 969void mmc_set_initial_state(struct mmc_host *host)
 970{
 971	if (host->cqe_on)
 972		host->cqe_ops->cqe_off(host);
 973
 974	mmc_retune_disable(host);
 975
 976	if (mmc_host_is_spi(host))
 977		host->ios.chip_select = MMC_CS_HIGH;
 978	else
 979		host->ios.chip_select = MMC_CS_DONTCARE;
 980	host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
 981	host->ios.bus_width = MMC_BUS_WIDTH_1;
 982	host->ios.timing = MMC_TIMING_LEGACY;
 983	host->ios.drv_type = 0;
 984	host->ios.enhanced_strobe = false;
 985
 986	/*
 987	 * Make sure we are in non-enhanced strobe mode before we
 988	 * actually enable it in ext_csd.
 989	 */
 990	if ((host->caps2 & MMC_CAP2_HS400_ES) &&
 991	     host->ops->hs400_enhanced_strobe)
 992		host->ops->hs400_enhanced_strobe(host, &host->ios);
 993
 994	mmc_set_ios(host);
 995}
 996
 997/**
 998 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
 999 * @vdd:	voltage (mV)
1000 * @low_bits:	prefer low bits in boundary cases
1001 *
1002 * This function returns the OCR bit number according to the provided @vdd
1003 * value. If conversion is not possible a negative errno value returned.
1004 *
1005 * Depending on the @low_bits flag the function prefers low or high OCR bits
1006 * on boundary voltages. For example,
1007 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1008 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1009 *
1010 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1011 */
1012static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
1013{
1014	const int max_bit = ilog2(MMC_VDD_35_36);
1015	int bit;
1016
1017	if (vdd < 1650 || vdd > 3600)
1018		return -EINVAL;
1019
1020	if (vdd >= 1650 && vdd <= 1950)
1021		return ilog2(MMC_VDD_165_195);
1022
1023	if (low_bits)
1024		vdd -= 1;
1025
1026	/* Base 2000 mV, step 100 mV, bit's base 8. */
1027	bit = (vdd - 2000) / 100 + 8;
1028	if (bit > max_bit)
1029		return max_bit;
1030	return bit;
1031}
1032
1033/**
1034 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1035 * @vdd_min:	minimum voltage value (mV)
1036 * @vdd_max:	maximum voltage value (mV)
1037 *
1038 * This function returns the OCR mask bits according to the provided @vdd_min
1039 * and @vdd_max values. If conversion is not possible the function returns 0.
1040 *
1041 * Notes wrt boundary cases:
1042 * This function sets the OCR bits for all boundary voltages, for example
1043 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1044 * MMC_VDD_34_35 mask.
1045 */
1046u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1047{
1048	u32 mask = 0;
1049
1050	if (vdd_max < vdd_min)
1051		return 0;
1052
1053	/* Prefer high bits for the boundary vdd_max values. */
1054	vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1055	if (vdd_max < 0)
1056		return 0;
1057
1058	/* Prefer low bits for the boundary vdd_min values. */
1059	vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1060	if (vdd_min < 0)
1061		return 0;
1062
1063	/* Fill the mask, from max bit to min bit. */
1064	while (vdd_max >= vdd_min)
1065		mask |= 1 << vdd_max--;
1066
1067	return mask;
1068}
 
 
 
1069
1070static int mmc_of_get_func_num(struct device_node *node)
 
 
 
 
 
 
 
 
1071{
1072	u32 reg;
1073	int ret;
1074
1075	ret = of_property_read_u32(node, "reg", &reg);
1076	if (ret < 0)
1077		return ret;
 
 
 
1078
1079	return reg;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1080}
 
 
 
 
 
1081
1082struct device_node *mmc_of_find_child_device(struct mmc_host *host,
1083		unsigned func_num)
 
 
 
 
 
 
 
 
1084{
1085	struct device_node *node;
 
 
 
 
 
 
 
 
 
 
1086
1087	if (!host->parent || !host->parent->of_node)
1088		return NULL;
 
1089
1090	for_each_child_of_node(host->parent->of_node, node) {
1091		if (mmc_of_get_func_num(node) == func_num)
1092			return node;
1093	}
1094
1095	return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1096}
 
 
 
1097
1098/*
1099 * Mask off any voltages we don't support and select
1100 * the lowest voltage
1101 */
1102u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1103{
1104	int bit;
1105
1106	/*
1107	 * Sanity check the voltages that the card claims to
1108	 * support.
1109	 */
1110	if (ocr & 0x7F) {
1111		dev_warn(mmc_dev(host),
1112		"card claims to support voltages below defined range\n");
1113		ocr &= ~0x7F;
1114	}
1115
1116	ocr &= host->ocr_avail;
1117	if (!ocr) {
1118		dev_warn(mmc_dev(host), "no support for card's volts\n");
1119		return 0;
1120	}
1121
1122	if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) {
1123		bit = ffs(ocr) - 1;
1124		ocr &= 3 << bit;
1125		mmc_power_cycle(host, ocr);
1126	} else {
1127		bit = fls(ocr) - 1;
1128		ocr &= 3 << bit;
1129		if (bit != host->ios.vdd)
1130			dev_warn(mmc_dev(host), "exceeding card's volts\n");
1131	}
1132
1133	return ocr;
1134}
1135
1136int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
1137{
1138	int err = 0;
1139	int old_signal_voltage = host->ios.signal_voltage;
1140
1141	host->ios.signal_voltage = signal_voltage;
1142	if (host->ops->start_signal_voltage_switch)
 
1143		err = host->ops->start_signal_voltage_switch(host, &host->ios);
 
 
1144
1145	if (err)
1146		host->ios.signal_voltage = old_signal_voltage;
1147
1148	return err;
1149
1150}
1151
1152void mmc_set_initial_signal_voltage(struct mmc_host *host)
1153{
1154	/* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */
1155	if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330))
1156		dev_dbg(mmc_dev(host), "Initial signal voltage of 3.3v\n");
1157	else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1158		dev_dbg(mmc_dev(host), "Initial signal voltage of 1.8v\n");
1159	else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120))
1160		dev_dbg(mmc_dev(host), "Initial signal voltage of 1.2v\n");
1161}
1162
1163int mmc_host_set_uhs_voltage(struct mmc_host *host)
1164{
 
 
1165	u32 clock;
1166
 
 
1167	/*
1168	 * During a signal voltage level switch, the clock must be gated
1169	 * for 5 ms according to the SD spec
1170	 */
1171	clock = host->ios.clock;
1172	host->ios.clock = 0;
1173	mmc_set_ios(host);
1174
1175	if (mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1176		return -EAGAIN;
1177
1178	/* Keep clock gated for at least 10 ms, though spec only says 5 ms */
1179	mmc_delay(10);
1180	host->ios.clock = clock;
1181	mmc_set_ios(host);
1182
1183	return 0;
1184}
1185
1186int mmc_set_uhs_voltage(struct mmc_host *host, u32 ocr)
1187{
1188	struct mmc_command cmd = {};
1189	int err = 0;
1190
1191	/*
1192	 * If we cannot switch voltages, return failure so the caller
1193	 * can continue without UHS mode
1194	 */
1195	if (!host->ops->start_signal_voltage_switch)
1196		return -EPERM;
1197	if (!host->ops->card_busy)
1198		pr_warn("%s: cannot verify signal voltage switch\n",
1199			mmc_hostname(host));
1200
1201	cmd.opcode = SD_SWITCH_VOLTAGE;
1202	cmd.arg = 0;
1203	cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1204
1205	err = mmc_wait_for_cmd(host, &cmd, 0);
1206	if (err)
1207		return err;
1208
1209	if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1210		return -EIO;
1211
 
1212	/*
1213	 * The card should drive cmd and dat[0:3] low immediately
1214	 * after the response of cmd11, but wait 1 ms to be sure
1215	 */
1216	mmc_delay(1);
1217	if (host->ops->card_busy && !host->ops->card_busy(host)) {
1218		err = -EAGAIN;
1219		goto power_cycle;
1220	}
 
 
 
 
 
 
 
1221
1222	if (mmc_host_set_uhs_voltage(host)) {
1223		/*
1224		 * Voltages may not have been switched, but we've already
1225		 * sent CMD11, so a power cycle is required anyway
1226		 */
1227		err = -EAGAIN;
1228		goto power_cycle;
1229	}
1230
 
 
 
 
 
1231	/* Wait for at least 1 ms according to spec */
1232	mmc_delay(1);
1233
1234	/*
1235	 * Failure to switch is indicated by the card holding
1236	 * dat[0:3] low
1237	 */
1238	if (host->ops->card_busy && host->ops->card_busy(host))
1239		err = -EAGAIN;
1240
1241power_cycle:
1242	if (err) {
1243		pr_debug("%s: Signal voltage switch failed, "
1244			"power cycling card\n", mmc_hostname(host));
1245		mmc_power_cycle(host, ocr);
1246	}
1247
 
 
1248	return err;
1249}
1250
1251/*
1252 * Select timing parameters for host.
1253 */
1254void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1255{
 
1256	host->ios.timing = timing;
1257	mmc_set_ios(host);
 
1258}
1259
1260/*
1261 * Select appropriate driver type for host.
1262 */
1263void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1264{
 
1265	host->ios.drv_type = drv_type;
1266	mmc_set_ios(host);
1267}
1268
1269int mmc_select_drive_strength(struct mmc_card *card, unsigned int max_dtr,
1270			      int card_drv_type, int *drv_type)
1271{
1272	struct mmc_host *host = card->host;
1273	int host_drv_type = SD_DRIVER_TYPE_B;
1274
1275	*drv_type = 0;
1276
1277	if (!host->ops->select_drive_strength)
1278		return 0;
1279
1280	/* Use SD definition of driver strength for hosts */
1281	if (host->caps & MMC_CAP_DRIVER_TYPE_A)
1282		host_drv_type |= SD_DRIVER_TYPE_A;
1283
1284	if (host->caps & MMC_CAP_DRIVER_TYPE_C)
1285		host_drv_type |= SD_DRIVER_TYPE_C;
1286
1287	if (host->caps & MMC_CAP_DRIVER_TYPE_D)
1288		host_drv_type |= SD_DRIVER_TYPE_D;
1289
1290	/*
1291	 * The drive strength that the hardware can support
1292	 * depends on the board design.  Pass the appropriate
1293	 * information and let the hardware specific code
1294	 * return what is possible given the options
1295	 */
1296	return host->ops->select_drive_strength(card, max_dtr,
1297						host_drv_type,
1298						card_drv_type,
1299						drv_type);
1300}
1301
1302/*
1303 * Apply power to the MMC stack.  This is a two-stage process.
1304 * First, we enable power to the card without the clock running.
1305 * We then wait a bit for the power to stabilise.  Finally,
1306 * enable the bus drivers and clock to the card.
1307 *
1308 * We must _NOT_ enable the clock prior to power stablising.
1309 *
1310 * If a host does all the power sequencing itself, ignore the
1311 * initial MMC_POWER_UP stage.
1312 */
1313void mmc_power_up(struct mmc_host *host, u32 ocr)
1314{
1315	if (host->ios.power_mode == MMC_POWER_ON)
1316		return;
1317
1318	mmc_pwrseq_pre_power_on(host);
1319
1320	host->ios.vdd = fls(ocr) - 1;
 
 
 
 
 
1321	host->ios.power_mode = MMC_POWER_UP;
1322	/* Set initial state and call mmc_set_ios */
1323	mmc_set_initial_state(host);
 
1324
1325	mmc_set_initial_signal_voltage(host);
 
1326
1327	/*
1328	 * This delay should be sufficient to allow the power supply
1329	 * to reach the minimum voltage.
1330	 */
1331	mmc_delay(host->ios.power_delay_ms);
1332
1333	mmc_pwrseq_post_power_on(host);
1334
1335	host->ios.clock = host->f_init;
1336
1337	host->ios.power_mode = MMC_POWER_ON;
1338	mmc_set_ios(host);
1339
1340	/*
1341	 * This delay must be at least 74 clock sizes, or 1 ms, or the
1342	 * time required to reach a stable voltage.
1343	 */
1344	mmc_delay(host->ios.power_delay_ms);
 
 
1345}
1346
1347void mmc_power_off(struct mmc_host *host)
1348{
1349	if (host->ios.power_mode == MMC_POWER_OFF)
1350		return;
1351
1352	mmc_pwrseq_power_off(host);
1353
1354	host->ios.clock = 0;
1355	host->ios.vdd = 0;
1356
 
 
 
 
1357	host->ios.power_mode = MMC_POWER_OFF;
1358	/* Set initial state and call mmc_set_ios */
1359	mmc_set_initial_state(host);
 
1360
1361	/*
1362	 * Some configurations, such as the 802.11 SDIO card in the OLPC
1363	 * XO-1.5, require a short delay after poweroff before the card
1364	 * can be successfully turned on again.
1365	 */
1366	mmc_delay(1);
 
 
1367}
1368
1369void mmc_power_cycle(struct mmc_host *host, u32 ocr)
1370{
1371	mmc_power_off(host);
1372	/* Wait at least 1 ms according to SD spec */
1373	mmc_delay(1);
1374	mmc_power_up(host, ocr);
1375}
1376
1377/*
1378 * Cleanup when the last reference to the bus operator is dropped.
1379 */
1380static void __mmc_release_bus(struct mmc_host *host)
1381{
1382	WARN_ON(!host->bus_dead);
 
 
1383
1384	host->bus_ops = NULL;
1385}
1386
1387/*
1388 * Increase reference count of bus operator
1389 */
1390static inline void mmc_bus_get(struct mmc_host *host)
1391{
1392	unsigned long flags;
1393
1394	spin_lock_irqsave(&host->lock, flags);
1395	host->bus_refs++;
1396	spin_unlock_irqrestore(&host->lock, flags);
1397}
1398
1399/*
1400 * Decrease reference count of bus operator and free it if
1401 * it is the last reference.
1402 */
1403static inline void mmc_bus_put(struct mmc_host *host)
1404{
1405	unsigned long flags;
1406
1407	spin_lock_irqsave(&host->lock, flags);
1408	host->bus_refs--;
1409	if ((host->bus_refs == 0) && host->bus_ops)
1410		__mmc_release_bus(host);
1411	spin_unlock_irqrestore(&host->lock, flags);
1412}
1413
1414/*
1415 * Assign a mmc bus handler to a host. Only one bus handler may control a
1416 * host at any given time.
1417 */
1418void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1419{
1420	unsigned long flags;
1421
 
 
 
1422	WARN_ON(!host->claimed);
1423
1424	spin_lock_irqsave(&host->lock, flags);
1425
1426	WARN_ON(host->bus_ops);
1427	WARN_ON(host->bus_refs);
1428
1429	host->bus_ops = ops;
1430	host->bus_refs = 1;
1431	host->bus_dead = 0;
1432
1433	spin_unlock_irqrestore(&host->lock, flags);
1434}
1435
1436/*
1437 * Remove the current bus handler from a host.
1438 */
1439void mmc_detach_bus(struct mmc_host *host)
1440{
1441	unsigned long flags;
1442
 
 
1443	WARN_ON(!host->claimed);
1444	WARN_ON(!host->bus_ops);
1445
1446	spin_lock_irqsave(&host->lock, flags);
1447
1448	host->bus_dead = 1;
1449
1450	spin_unlock_irqrestore(&host->lock, flags);
1451
1452	mmc_bus_put(host);
1453}
1454
1455void _mmc_detect_change(struct mmc_host *host, unsigned long delay, bool cd_irq)
 
1456{
 
 
 
 
 
 
 
1457	/*
1458	 * Prevent system sleep for 5s to allow user space to consume the
1459	 * corresponding uevent. This is especially useful, when CD irq is used
1460	 * as a system wakeup, but doesn't hurt in other cases.
1461	 */
1462	if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL))
1463		__pm_wakeup_event(host->ws, 5000);
 
1464
1465	host->detect_change = 1;
1466	mmc_schedule_delayed_work(&host->detect, delay);
1467}
1468
1469/**
1470 *	mmc_detect_change - process change of state on a MMC socket
1471 *	@host: host which changed state.
1472 *	@delay: optional delay to wait before detection (jiffies)
1473 *
1474 *	MMC drivers should call this when they detect a card has been
1475 *	inserted or removed. The MMC layer will confirm that any
1476 *	present card is still functional, and initialize any newly
1477 *	inserted.
1478 */
1479void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1480{
1481	_mmc_detect_change(host, delay, true);
1482}
1483EXPORT_SYMBOL(mmc_detect_change);
1484
1485void mmc_init_erase(struct mmc_card *card)
1486{
1487	unsigned int sz;
1488
1489	if (is_power_of_2(card->erase_size))
1490		card->erase_shift = ffs(card->erase_size) - 1;
1491	else
1492		card->erase_shift = 0;
1493
1494	/*
1495	 * It is possible to erase an arbitrarily large area of an SD or MMC
1496	 * card.  That is not desirable because it can take a long time
1497	 * (minutes) potentially delaying more important I/O, and also the
1498	 * timeout calculations become increasingly hugely over-estimated.
1499	 * Consequently, 'pref_erase' is defined as a guide to limit erases
1500	 * to that size and alignment.
1501	 *
1502	 * For SD cards that define Allocation Unit size, limit erases to one
1503	 * Allocation Unit at a time.
1504	 * For MMC, have a stab at ai good value and for modern cards it will
1505	 * end up being 4MiB. Note that if the value is too small, it can end
1506	 * up taking longer to erase. Also note, erase_size is already set to
1507	 * High Capacity Erase Size if available when this function is called.
1508	 */
1509	if (mmc_card_sd(card) && card->ssr.au) {
1510		card->pref_erase = card->ssr.au;
1511		card->erase_shift = ffs(card->ssr.au) - 1;
1512	} else if (card->erase_size) {
 
 
1513		sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1514		if (sz < 128)
1515			card->pref_erase = 512 * 1024 / 512;
1516		else if (sz < 512)
1517			card->pref_erase = 1024 * 1024 / 512;
1518		else if (sz < 1024)
1519			card->pref_erase = 2 * 1024 * 1024 / 512;
1520		else
1521			card->pref_erase = 4 * 1024 * 1024 / 512;
1522		if (card->pref_erase < card->erase_size)
1523			card->pref_erase = card->erase_size;
1524		else {
1525			sz = card->pref_erase % card->erase_size;
1526			if (sz)
1527				card->pref_erase += card->erase_size - sz;
1528		}
1529	} else
1530		card->pref_erase = 0;
1531}
1532
1533static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1534				          unsigned int arg, unsigned int qty)
1535{
1536	unsigned int erase_timeout;
1537
1538	if (arg == MMC_DISCARD_ARG ||
1539	    (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
1540		erase_timeout = card->ext_csd.trim_timeout;
1541	} else if (card->ext_csd.erase_group_def & 1) {
1542		/* High Capacity Erase Group Size uses HC timeouts */
1543		if (arg == MMC_TRIM_ARG)
1544			erase_timeout = card->ext_csd.trim_timeout;
1545		else
1546			erase_timeout = card->ext_csd.hc_erase_timeout;
1547	} else {
1548		/* CSD Erase Group Size uses write timeout */
1549		unsigned int mult = (10 << card->csd.r2w_factor);
1550		unsigned int timeout_clks = card->csd.taac_clks * mult;
1551		unsigned int timeout_us;
1552
1553		/* Avoid overflow: e.g. taac_ns=80000000 mult=1280 */
1554		if (card->csd.taac_ns < 1000000)
1555			timeout_us = (card->csd.taac_ns * mult) / 1000;
1556		else
1557			timeout_us = (card->csd.taac_ns / 1000) * mult;
1558
1559		/*
1560		 * ios.clock is only a target.  The real clock rate might be
1561		 * less but not that much less, so fudge it by multiplying by 2.
1562		 */
1563		timeout_clks <<= 1;
1564		timeout_us += (timeout_clks * 1000) /
1565			      (card->host->ios.clock / 1000);
1566
1567		erase_timeout = timeout_us / 1000;
1568
1569		/*
1570		 * Theoretically, the calculation could underflow so round up
1571		 * to 1ms in that case.
1572		 */
1573		if (!erase_timeout)
1574			erase_timeout = 1;
1575	}
1576
1577	/* Multiplier for secure operations */
1578	if (arg & MMC_SECURE_ARGS) {
1579		if (arg == MMC_SECURE_ERASE_ARG)
1580			erase_timeout *= card->ext_csd.sec_erase_mult;
1581		else
1582			erase_timeout *= card->ext_csd.sec_trim_mult;
1583	}
1584
1585	erase_timeout *= qty;
1586
1587	/*
1588	 * Ensure at least a 1 second timeout for SPI as per
1589	 * 'mmc_set_data_timeout()'
1590	 */
1591	if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1592		erase_timeout = 1000;
1593
1594	return erase_timeout;
1595}
1596
1597static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1598					 unsigned int arg,
1599					 unsigned int qty)
1600{
1601	unsigned int erase_timeout;
1602
1603	/* for DISCARD none of the below calculation applies.
1604	 * the busy timeout is 250msec per discard command.
1605	 */
1606	if (arg == SD_DISCARD_ARG)
1607		return SD_DISCARD_TIMEOUT_MS;
1608
1609	if (card->ssr.erase_timeout) {
1610		/* Erase timeout specified in SD Status Register (SSR) */
1611		erase_timeout = card->ssr.erase_timeout * qty +
1612				card->ssr.erase_offset;
1613	} else {
1614		/*
1615		 * Erase timeout not specified in SD Status Register (SSR) so
1616		 * use 250ms per write block.
1617		 */
1618		erase_timeout = 250 * qty;
1619	}
1620
1621	/* Must not be less than 1 second */
1622	if (erase_timeout < 1000)
1623		erase_timeout = 1000;
1624
1625	return erase_timeout;
1626}
1627
1628static unsigned int mmc_erase_timeout(struct mmc_card *card,
1629				      unsigned int arg,
1630				      unsigned int qty)
1631{
1632	if (mmc_card_sd(card))
1633		return mmc_sd_erase_timeout(card, arg, qty);
1634	else
1635		return mmc_mmc_erase_timeout(card, arg, qty);
1636}
1637
1638static int mmc_do_erase(struct mmc_card *card, unsigned int from,
1639			unsigned int to, unsigned int arg)
1640{
1641	struct mmc_command cmd = {};
1642	unsigned int qty = 0, busy_timeout = 0;
1643	bool use_r1b_resp = false;
1644	int err;
1645
1646	mmc_retune_hold(card->host);
1647
1648	/*
1649	 * qty is used to calculate the erase timeout which depends on how many
1650	 * erase groups (or allocation units in SD terminology) are affected.
1651	 * We count erasing part of an erase group as one erase group.
1652	 * For SD, the allocation units are always a power of 2.  For MMC, the
1653	 * erase group size is almost certainly also power of 2, but it does not
1654	 * seem to insist on that in the JEDEC standard, so we fall back to
1655	 * division in that case.  SD may not specify an allocation unit size,
1656	 * in which case the timeout is based on the number of write blocks.
1657	 *
1658	 * Note that the timeout for secure trim 2 will only be correct if the
1659	 * number of erase groups specified is the same as the total of all
1660	 * preceding secure trim 1 commands.  Since the power may have been
1661	 * lost since the secure trim 1 commands occurred, it is generally
1662	 * impossible to calculate the secure trim 2 timeout correctly.
1663	 */
1664	if (card->erase_shift)
1665		qty += ((to >> card->erase_shift) -
1666			(from >> card->erase_shift)) + 1;
1667	else if (mmc_card_sd(card))
1668		qty += to - from + 1;
1669	else
1670		qty += ((to / card->erase_size) -
1671			(from / card->erase_size)) + 1;
1672
1673	if (!mmc_card_blockaddr(card)) {
1674		from <<= 9;
1675		to <<= 9;
1676	}
1677
1678	if (mmc_card_sd(card))
1679		cmd.opcode = SD_ERASE_WR_BLK_START;
1680	else
1681		cmd.opcode = MMC_ERASE_GROUP_START;
1682	cmd.arg = from;
1683	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1684	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1685	if (err) {
1686		pr_err("mmc_erase: group start error %d, "
1687		       "status %#x\n", err, cmd.resp[0]);
1688		err = -EIO;
1689		goto out;
1690	}
1691
1692	memset(&cmd, 0, sizeof(struct mmc_command));
1693	if (mmc_card_sd(card))
1694		cmd.opcode = SD_ERASE_WR_BLK_END;
1695	else
1696		cmd.opcode = MMC_ERASE_GROUP_END;
1697	cmd.arg = to;
1698	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1699	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1700	if (err) {
1701		pr_err("mmc_erase: group end error %d, status %#x\n",
1702		       err, cmd.resp[0]);
1703		err = -EIO;
1704		goto out;
1705	}
1706
1707	memset(&cmd, 0, sizeof(struct mmc_command));
1708	cmd.opcode = MMC_ERASE;
1709	cmd.arg = arg;
1710	busy_timeout = mmc_erase_timeout(card, arg, qty);
1711	/*
1712	 * If the host controller supports busy signalling and the timeout for
1713	 * the erase operation does not exceed the max_busy_timeout, we should
1714	 * use R1B response. Or we need to prevent the host from doing hw busy
1715	 * detection, which is done by converting to a R1 response instead.
1716	 * Note, some hosts requires R1B, which also means they are on their own
1717	 * when it comes to deal with the busy timeout.
1718	 */
1719	if (!(card->host->caps & MMC_CAP_NEED_RSP_BUSY) &&
1720	    card->host->max_busy_timeout &&
1721	    busy_timeout > card->host->max_busy_timeout) {
1722		cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1723	} else {
1724		cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1725		cmd.busy_timeout = busy_timeout;
1726		use_r1b_resp = true;
1727	}
1728
1729	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1730	if (err) {
1731		pr_err("mmc_erase: erase error %d, status %#x\n",
1732		       err, cmd.resp[0]);
1733		err = -EIO;
1734		goto out;
1735	}
1736
1737	if (mmc_host_is_spi(card->host))
1738		goto out;
1739
1740	/*
1741	 * In case of when R1B + MMC_CAP_WAIT_WHILE_BUSY is used, the polling
1742	 * shall be avoided.
1743	 */
1744	if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp)
1745		goto out;
 
 
 
 
 
 
 
 
1746
1747	/* Let's poll to find out when the erase operation completes. */
1748	err = mmc_poll_for_busy(card, busy_timeout, MMC_BUSY_ERASE);
 
 
 
 
 
 
 
1749
 
 
1750out:
1751	mmc_retune_release(card->host);
1752	return err;
1753}
1754
1755static unsigned int mmc_align_erase_size(struct mmc_card *card,
1756					 unsigned int *from,
1757					 unsigned int *to,
1758					 unsigned int nr)
1759{
1760	unsigned int from_new = *from, nr_new = nr, rem;
1761
1762	/*
1763	 * When the 'card->erase_size' is power of 2, we can use round_up/down()
1764	 * to align the erase size efficiently.
1765	 */
1766	if (is_power_of_2(card->erase_size)) {
1767		unsigned int temp = from_new;
1768
1769		from_new = round_up(temp, card->erase_size);
1770		rem = from_new - temp;
1771
1772		if (nr_new > rem)
1773			nr_new -= rem;
1774		else
1775			return 0;
1776
1777		nr_new = round_down(nr_new, card->erase_size);
1778	} else {
1779		rem = from_new % card->erase_size;
1780		if (rem) {
1781			rem = card->erase_size - rem;
1782			from_new += rem;
1783			if (nr_new > rem)
1784				nr_new -= rem;
1785			else
1786				return 0;
1787		}
1788
1789		rem = nr_new % card->erase_size;
1790		if (rem)
1791			nr_new -= rem;
1792	}
1793
1794	if (nr_new == 0)
1795		return 0;
1796
1797	*to = from_new + nr_new;
1798	*from = from_new;
1799
1800	return nr_new;
1801}
1802
1803/**
1804 * mmc_erase - erase sectors.
1805 * @card: card to erase
1806 * @from: first sector to erase
1807 * @nr: number of sectors to erase
1808 * @arg: erase command argument
1809 *
1810 * Caller must claim host before calling this function.
1811 */
1812int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
1813	      unsigned int arg)
1814{
1815	unsigned int rem, to = from + nr;
1816	int err;
1817
1818	if (!(card->csd.cmdclass & CCC_ERASE))
 
1819		return -EOPNOTSUPP;
1820
1821	if (!card->erase_size)
1822		return -EOPNOTSUPP;
1823
1824	if (mmc_card_sd(card) && arg != SD_ERASE_ARG && arg != SD_DISCARD_ARG)
1825		return -EOPNOTSUPP;
1826
1827	if (mmc_card_mmc(card) && (arg & MMC_SECURE_ARGS) &&
1828	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
1829		return -EOPNOTSUPP;
1830
1831	if (mmc_card_mmc(card) && (arg & MMC_TRIM_ARGS) &&
1832	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
1833		return -EOPNOTSUPP;
1834
1835	if (arg == MMC_SECURE_ERASE_ARG) {
1836		if (from % card->erase_size || nr % card->erase_size)
1837			return -EINVAL;
1838	}
1839
1840	if (arg == MMC_ERASE_ARG)
1841		nr = mmc_align_erase_size(card, &from, &to, nr);
 
 
 
 
 
 
 
 
 
 
 
 
1842
1843	if (nr == 0)
1844		return 0;
1845
 
 
1846	if (to <= from)
1847		return -EINVAL;
1848
1849	/* 'from' and 'to' are inclusive */
1850	to -= 1;
1851
1852	/*
1853	 * Special case where only one erase-group fits in the timeout budget:
1854	 * If the region crosses an erase-group boundary on this particular
1855	 * case, we will be trimming more than one erase-group which, does not
1856	 * fit in the timeout budget of the controller, so we need to split it
1857	 * and call mmc_do_erase() twice if necessary. This special case is
1858	 * identified by the card->eg_boundary flag.
1859	 */
1860	rem = card->erase_size - (from % card->erase_size);
1861	if ((arg & MMC_TRIM_ARGS) && (card->eg_boundary) && (nr > rem)) {
1862		err = mmc_do_erase(card, from, from + rem - 1, arg);
1863		from += rem;
1864		if ((err) || (to <= from))
1865			return err;
1866	}
1867
1868	return mmc_do_erase(card, from, to, arg);
1869}
1870EXPORT_SYMBOL(mmc_erase);
1871
1872int mmc_can_erase(struct mmc_card *card)
1873{
1874	if (card->csd.cmdclass & CCC_ERASE && card->erase_size)
 
1875		return 1;
1876	return 0;
1877}
1878EXPORT_SYMBOL(mmc_can_erase);
1879
1880int mmc_can_trim(struct mmc_card *card)
1881{
1882	if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN) &&
1883	    (!(card->quirks & MMC_QUIRK_TRIM_BROKEN)))
1884		return 1;
1885	return 0;
1886}
1887EXPORT_SYMBOL(mmc_can_trim);
1888
1889int mmc_can_discard(struct mmc_card *card)
1890{
1891	/*
1892	 * As there's no way to detect the discard support bit at v4.5
1893	 * use the s/w feature support filed.
1894	 */
1895	if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
1896		return 1;
1897	return 0;
1898}
1899EXPORT_SYMBOL(mmc_can_discard);
1900
1901int mmc_can_sanitize(struct mmc_card *card)
1902{
1903	if (!mmc_can_trim(card) && !mmc_can_erase(card))
1904		return 0;
1905	if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
1906		return 1;
1907	return 0;
1908}
 
1909
1910int mmc_can_secure_erase_trim(struct mmc_card *card)
1911{
1912	if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) &&
1913	    !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN))
1914		return 1;
1915	return 0;
1916}
1917EXPORT_SYMBOL(mmc_can_secure_erase_trim);
1918
1919int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
1920			    unsigned int nr)
1921{
1922	if (!card->erase_size)
1923		return 0;
1924	if (from % card->erase_size || nr % card->erase_size)
1925		return 0;
1926	return 1;
1927}
1928EXPORT_SYMBOL(mmc_erase_group_aligned);
1929
1930static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
1931					    unsigned int arg)
1932{
1933	struct mmc_host *host = card->host;
1934	unsigned int max_discard, x, y, qty = 0, max_qty, min_qty, timeout;
1935	unsigned int last_timeout = 0;
1936	unsigned int max_busy_timeout = host->max_busy_timeout ?
1937			host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS;
1938
1939	if (card->erase_shift) {
1940		max_qty = UINT_MAX >> card->erase_shift;
1941		min_qty = card->pref_erase >> card->erase_shift;
1942	} else if (mmc_card_sd(card)) {
1943		max_qty = UINT_MAX;
1944		min_qty = card->pref_erase;
1945	} else {
1946		max_qty = UINT_MAX / card->erase_size;
1947		min_qty = card->pref_erase / card->erase_size;
1948	}
1949
1950	/*
1951	 * We should not only use 'host->max_busy_timeout' as the limitation
1952	 * when deciding the max discard sectors. We should set a balance value
1953	 * to improve the erase speed, and it can not get too long timeout at
1954	 * the same time.
1955	 *
1956	 * Here we set 'card->pref_erase' as the minimal discard sectors no
1957	 * matter what size of 'host->max_busy_timeout', but if the
1958	 * 'host->max_busy_timeout' is large enough for more discard sectors,
1959	 * then we can continue to increase the max discard sectors until we
1960	 * get a balance value. In cases when the 'host->max_busy_timeout'
1961	 * isn't specified, use the default max erase timeout.
1962	 */
1963	do {
1964		y = 0;
1965		for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
1966			timeout = mmc_erase_timeout(card, arg, qty + x);
1967
1968			if (qty + x > min_qty && timeout > max_busy_timeout)
1969				break;
1970
1971			if (timeout < last_timeout)
1972				break;
1973			last_timeout = timeout;
1974			y = x;
1975		}
1976		qty += y;
1977	} while (y);
1978
1979	if (!qty)
1980		return 0;
1981
1982	/*
1983	 * When specifying a sector range to trim, chances are we might cross
1984	 * an erase-group boundary even if the amount of sectors is less than
1985	 * one erase-group.
1986	 * If we can only fit one erase-group in the controller timeout budget,
1987	 * we have to care that erase-group boundaries are not crossed by a
1988	 * single trim operation. We flag that special case with "eg_boundary".
1989	 * In all other cases we can just decrement qty and pretend that we
1990	 * always touch (qty + 1) erase-groups as a simple optimization.
1991	 */
1992	if (qty == 1)
1993		card->eg_boundary = 1;
1994	else
1995		qty--;
1996
1997	/* Convert qty to sectors */
1998	if (card->erase_shift)
1999		max_discard = qty << card->erase_shift;
2000	else if (mmc_card_sd(card))
2001		max_discard = qty + 1;
2002	else
2003		max_discard = qty * card->erase_size;
2004
2005	return max_discard;
2006}
2007
2008unsigned int mmc_calc_max_discard(struct mmc_card *card)
2009{
2010	struct mmc_host *host = card->host;
2011	unsigned int max_discard, max_trim;
2012
 
 
 
2013	/*
2014	 * Without erase_group_def set, MMC erase timeout depends on clock
2015	 * frequence which can change.  In that case, the best choice is
2016	 * just the preferred erase size.
2017	 */
2018	if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
2019		return card->pref_erase;
2020
2021	max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
2022	if (mmc_can_trim(card)) {
2023		max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
2024		if (max_trim < max_discard || max_discard == 0)
2025			max_discard = max_trim;
2026	} else if (max_discard < card->erase_size) {
2027		max_discard = 0;
2028	}
2029	pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
2030		mmc_hostname(host), max_discard, host->max_busy_timeout ?
2031		host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS);
2032	return max_discard;
2033}
2034EXPORT_SYMBOL(mmc_calc_max_discard);
2035
2036bool mmc_card_is_blockaddr(struct mmc_card *card)
2037{
2038	return card ? mmc_card_blockaddr(card) : false;
2039}
2040EXPORT_SYMBOL(mmc_card_is_blockaddr);
2041
2042int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
2043{
2044	struct mmc_command cmd = {};
2045
2046	if (mmc_card_blockaddr(card) || mmc_card_ddr52(card) ||
2047	    mmc_card_hs400(card) || mmc_card_hs400es(card))
2048		return 0;
2049
2050	cmd.opcode = MMC_SET_BLOCKLEN;
2051	cmd.arg = blocklen;
2052	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2053	return mmc_wait_for_cmd(card->host, &cmd, 5);
2054}
2055EXPORT_SYMBOL(mmc_set_blocklen);
2056
2057static void mmc_hw_reset_for_init(struct mmc_host *host)
 
2058{
2059	mmc_pwrseq_reset(host);
 
 
 
 
 
 
 
 
 
2060
 
 
2061	if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
2062		return;
 
2063	host->ops->hw_reset(host);
 
2064}
2065
2066int mmc_hw_reset(struct mmc_host *host)
2067{
2068	int ret;
2069
2070	if (!host->card)
2071		return -EINVAL;
 
 
 
 
 
 
2072
2073	mmc_bus_get(host);
2074	if (!host->bus_ops || host->bus_dead || !host->bus_ops->hw_reset) {
2075		mmc_bus_put(host);
 
 
2076		return -EOPNOTSUPP;
2077	}
2078
2079	ret = host->bus_ops->hw_reset(host);
2080	mmc_bus_put(host);
2081
2082	if (ret < 0)
2083		pr_warn("%s: tried to HW reset card, got error %d\n",
2084			mmc_hostname(host), ret);
2085
2086	return ret;
2087}
2088EXPORT_SYMBOL(mmc_hw_reset);
2089
2090int mmc_sw_reset(struct mmc_host *host)
2091{
2092	int ret;
2093
2094	if (!host->card)
2095		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
2096
2097	mmc_bus_get(host);
2098	if (!host->bus_ops || host->bus_dead || !host->bus_ops->sw_reset) {
2099		mmc_bus_put(host);
2100		return -EOPNOTSUPP;
 
 
 
2101	}
 
 
 
2102
2103	ret = host->bus_ops->sw_reset(host);
2104	mmc_bus_put(host);
2105
2106	if (ret)
2107		pr_warn("%s: tried to SW reset card, got error %d\n",
2108			mmc_hostname(host), ret);
2109
2110	return ret;
 
 
2111}
2112EXPORT_SYMBOL(mmc_sw_reset);
 
 
 
 
 
 
2113
2114static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
2115{
2116	host->f_init = freq;
2117
2118	pr_debug("%s: %s: trying to init card at %u Hz\n",
 
2119		mmc_hostname(host), __func__, host->f_init);
2120
2121	mmc_power_up(host, host->ocr_avail);
2122
2123	/*
2124	 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2125	 * do a hardware reset if possible.
2126	 */
2127	mmc_hw_reset_for_init(host);
2128
2129	/*
2130	 * sdio_reset sends CMD52 to reset card.  Since we do not know
2131	 * if the card is being re-initialized, just send it.  CMD52
2132	 * should be ignored by SD/eMMC cards.
2133	 * Skip it if we already know that we do not support SDIO commands
2134	 */
2135	if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2136		sdio_reset(host);
2137
2138	mmc_go_idle(host);
2139
2140	if (!(host->caps2 & MMC_CAP2_NO_SD))
2141		mmc_send_if_cond(host, host->ocr_avail);
2142
2143	/* Order's important: probe SDIO, then SD, then MMC */
2144	if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2145		if (!mmc_attach_sdio(host))
2146			return 0;
2147
2148	if (!(host->caps2 & MMC_CAP2_NO_SD))
2149		if (!mmc_attach_sd(host))
2150			return 0;
2151
2152	if (!(host->caps2 & MMC_CAP2_NO_MMC))
2153		if (!mmc_attach_mmc(host))
2154			return 0;
2155
2156	mmc_power_off(host);
2157	return -EIO;
2158}
2159
2160int _mmc_detect_card_removed(struct mmc_host *host)
2161{
2162	int ret;
2163
 
 
 
2164	if (!host->card || mmc_card_removed(host->card))
2165		return 1;
2166
2167	ret = host->bus_ops->alive(host);
2168
2169	/*
2170	 * Card detect status and alive check may be out of sync if card is
2171	 * removed slowly, when card detect switch changes while card/slot
2172	 * pads are still contacted in hardware (refer to "SD Card Mechanical
2173	 * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2174	 * detect work 200ms later for this case.
2175	 */
2176	if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) {
2177		mmc_detect_change(host, msecs_to_jiffies(200));
2178		pr_debug("%s: card removed too slowly\n", mmc_hostname(host));
2179	}
2180
2181	if (ret) {
2182		mmc_card_set_removed(host->card);
2183		pr_debug("%s: card remove detected\n", mmc_hostname(host));
2184	}
2185
2186	return ret;
2187}
2188
2189int mmc_detect_card_removed(struct mmc_host *host)
2190{
2191	struct mmc_card *card = host->card;
2192	int ret;
2193
2194	WARN_ON(!host->claimed);
2195
2196	if (!card)
2197		return 1;
2198
2199	if (!mmc_card_is_removable(host))
2200		return 0;
2201
2202	ret = mmc_card_removed(card);
2203	/*
2204	 * The card will be considered unchanged unless we have been asked to
2205	 * detect a change or host requires polling to provide card detection.
2206	 */
2207	if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL))
2208		return ret;
2209
2210	host->detect_change = 0;
2211	if (!ret) {
2212		ret = _mmc_detect_card_removed(host);
2213		if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) {
2214			/*
2215			 * Schedule a detect work as soon as possible to let a
2216			 * rescan handle the card removal.
2217			 */
2218			cancel_delayed_work(&host->detect);
2219			_mmc_detect_change(host, 0, false);
2220		}
2221	}
2222
2223	return ret;
2224}
2225EXPORT_SYMBOL(mmc_detect_card_removed);
2226
2227void mmc_rescan(struct work_struct *work)
2228{
2229	struct mmc_host *host =
2230		container_of(work, struct mmc_host, detect.work);
2231	int i;
2232
2233	if (host->rescan_disable)
2234		return;
2235
2236	/* If there is a non-removable card registered, only scan once */
2237	if (!mmc_card_is_removable(host) && host->rescan_entered)
2238		return;
2239	host->rescan_entered = 1;
2240
2241	if (host->trigger_card_event && host->ops->card_event) {
2242		mmc_claim_host(host);
2243		host->ops->card_event(host);
2244		mmc_release_host(host);
2245		host->trigger_card_event = false;
2246	}
2247
2248	mmc_bus_get(host);
2249
2250	/* Verify a registered card to be functional, else remove it. */
2251	if (host->bus_ops && !host->bus_dead)
 
 
 
 
2252		host->bus_ops->detect(host);
2253
2254	host->detect_change = 0;
2255
2256	/*
2257	 * Let mmc_bus_put() free the bus/bus_ops if we've found that
2258	 * the card is no longer present.
2259	 */
2260	mmc_bus_put(host);
2261	mmc_bus_get(host);
2262
2263	/* if there still is a card present, stop here */
2264	if (host->bus_ops != NULL) {
2265		mmc_bus_put(host);
2266		goto out;
2267	}
2268
2269	/*
2270	 * Only we can add a new handler, so it's safe to
2271	 * release the lock here.
2272	 */
2273	mmc_bus_put(host);
2274
2275	mmc_claim_host(host);
2276	if (mmc_card_is_removable(host) && host->ops->get_cd &&
2277			host->ops->get_cd(host) == 0) {
 
2278		mmc_power_off(host);
2279		mmc_release_host(host);
2280		goto out;
2281	}
2282
 
2283	for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2284		unsigned int freq = freqs[i];
2285		if (freq > host->f_max) {
2286			if (i + 1 < ARRAY_SIZE(freqs))
2287				continue;
2288			freq = host->f_max;
2289		}
2290		if (!mmc_rescan_try_freq(host, max(freq, host->f_min)))
2291			break;
2292		if (freqs[i] <= host->f_min)
2293			break;
2294	}
2295	mmc_release_host(host);
2296
2297 out:
2298	if (host->caps & MMC_CAP_NEEDS_POLL)
2299		mmc_schedule_delayed_work(&host->detect, HZ);
2300}
2301
2302void mmc_start_host(struct mmc_host *host)
2303{
2304	host->f_init = max(min(freqs[0], host->f_max), host->f_min);
2305	host->rescan_disable = 0;
2306
2307	if (!(host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP)) {
2308		mmc_claim_host(host);
2309		mmc_power_up(host, host->ocr_avail);
2310		mmc_release_host(host);
2311	}
2312
2313	mmc_gpiod_request_cd_irq(host);
2314	_mmc_detect_change(host, 0, false);
2315}
2316
2317void mmc_stop_host(struct mmc_host *host)
2318{
2319	if (host->slot.cd_irq >= 0) {
2320		mmc_gpio_set_cd_wake(host, false);
 
 
 
 
 
2321		disable_irq(host->slot.cd_irq);
2322	}
2323
2324	host->rescan_disable = 1;
2325	cancel_delayed_work_sync(&host->detect);
 
2326
2327	/* clear pm flags now and let card drivers set them as needed */
2328	host->pm_flags = 0;
2329
2330	mmc_bus_get(host);
2331	if (host->bus_ops && !host->bus_dead) {
2332		/* Calling bus_ops->remove() with a claimed host can deadlock */
2333		host->bus_ops->remove(host);
2334		mmc_claim_host(host);
2335		mmc_detach_bus(host);
2336		mmc_power_off(host);
2337		mmc_release_host(host);
2338		mmc_bus_put(host);
2339		return;
2340	}
2341	mmc_bus_put(host);
2342
2343	mmc_claim_host(host);
 
2344	mmc_power_off(host);
2345	mmc_release_host(host);
2346}
2347
2348#ifdef CONFIG_PM_SLEEP
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2349/* Do the card removal on suspend if card is assumed removeable
2350 * Do that in pm notifier while userspace isn't yet frozen, so we will be able
2351   to sync the card.
2352*/
2353static int mmc_pm_notify(struct notifier_block *notify_block,
2354			unsigned long mode, void *unused)
2355{
2356	struct mmc_host *host = container_of(
2357		notify_block, struct mmc_host, pm_notify);
2358	unsigned long flags;
2359	int err = 0;
2360
2361	switch (mode) {
2362	case PM_HIBERNATION_PREPARE:
2363	case PM_SUSPEND_PREPARE:
2364	case PM_RESTORE_PREPARE:
2365		spin_lock_irqsave(&host->lock, flags);
2366		host->rescan_disable = 1;
2367		spin_unlock_irqrestore(&host->lock, flags);
2368		cancel_delayed_work_sync(&host->detect);
2369
2370		if (!host->bus_ops)
2371			break;
2372
2373		/* Validate prerequisites for suspend */
2374		if (host->bus_ops->pre_suspend)
2375			err = host->bus_ops->pre_suspend(host);
2376		if (!err)
2377			break;
2378
2379		if (!mmc_card_is_removable(host)) {
2380			dev_warn(mmc_dev(host),
2381				 "pre_suspend failed for non-removable host: "
2382				 "%d\n", err);
2383			/* Avoid removing non-removable hosts */
2384			break;
2385		}
2386
2387		/* Calling bus_ops->remove() with a claimed host can deadlock */
2388		host->bus_ops->remove(host);
2389		mmc_claim_host(host);
2390		mmc_detach_bus(host);
2391		mmc_power_off(host);
2392		mmc_release_host(host);
2393		host->pm_flags = 0;
2394		break;
2395
2396	case PM_POST_SUSPEND:
2397	case PM_POST_HIBERNATION:
2398	case PM_POST_RESTORE:
2399
2400		spin_lock_irqsave(&host->lock, flags);
2401		host->rescan_disable = 0;
2402		spin_unlock_irqrestore(&host->lock, flags);
2403		_mmc_detect_change(host, 0, false);
2404
2405	}
2406
2407	return 0;
2408}
 
2409
2410void mmc_register_pm_notifier(struct mmc_host *host)
2411{
2412	host->pm_notify.notifier_call = mmc_pm_notify;
2413	register_pm_notifier(&host->pm_notify);
2414}
2415
2416void mmc_unregister_pm_notifier(struct mmc_host *host)
2417{
2418	unregister_pm_notifier(&host->pm_notify);
 
 
 
 
 
 
2419}
2420#endif
2421
2422static int __init mmc_init(void)
2423{
2424	int ret;
2425
 
 
 
 
2426	ret = mmc_register_bus();
2427	if (ret)
2428		return ret;
2429
2430	ret = mmc_register_host_class();
2431	if (ret)
2432		goto unregister_bus;
2433
2434	ret = sdio_register_bus();
2435	if (ret)
2436		goto unregister_host_class;
2437
2438	return 0;
2439
2440unregister_host_class:
2441	mmc_unregister_host_class();
2442unregister_bus:
2443	mmc_unregister_bus();
 
 
 
2444	return ret;
2445}
2446
2447static void __exit mmc_exit(void)
2448{
2449	sdio_unregister_bus();
2450	mmc_unregister_host_class();
2451	mmc_unregister_bus();
 
2452}
2453
2454subsys_initcall(mmc_init);
2455module_exit(mmc_exit);
2456
2457MODULE_LICENSE("GPL");
v3.15
 
   1/*
   2 *  linux/drivers/mmc/core/core.c
   3 *
   4 *  Copyright (C) 2003-2004 Russell King, All Rights Reserved.
   5 *  SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
   6 *  Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
   7 *  MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License version 2 as
  11 * published by the Free Software Foundation.
  12 */
  13#include <linux/module.h>
  14#include <linux/init.h>
  15#include <linux/interrupt.h>
  16#include <linux/completion.h>
  17#include <linux/device.h>
  18#include <linux/delay.h>
  19#include <linux/pagemap.h>
  20#include <linux/err.h>
  21#include <linux/leds.h>
  22#include <linux/scatterlist.h>
  23#include <linux/log2.h>
  24#include <linux/regulator/consumer.h>
  25#include <linux/pm_runtime.h>
  26#include <linux/pm_wakeup.h>
  27#include <linux/suspend.h>
  28#include <linux/fault-inject.h>
  29#include <linux/random.h>
  30#include <linux/slab.h>
  31#include <linux/of.h>
  32
  33#include <linux/mmc/card.h>
  34#include <linux/mmc/host.h>
  35#include <linux/mmc/mmc.h>
  36#include <linux/mmc/sd.h>
  37#include <linux/mmc/slot-gpio.h>
  38
 
 
 
  39#include "core.h"
 
  40#include "bus.h"
  41#include "host.h"
  42#include "sdio_bus.h"
 
  43
  44#include "mmc_ops.h"
  45#include "sd_ops.h"
  46#include "sdio_ops.h"
  47
  48/* If the device is not responding */
  49#define MMC_CORE_TIMEOUT_MS	(10 * 60 * 1000) /* 10 minute timeout */
  50
  51/*
  52 * Background operations can take a long time, depending on the housekeeping
  53 * operations the card has to perform.
  54 */
  55#define MMC_BKOPS_MAX_TIMEOUT	(4 * 60 * 1000) /* max time to wait in ms */
  56
  57static struct workqueue_struct *workqueue;
  58static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
  59
  60/*
  61 * Enabling software CRCs on the data blocks can be a significant (30%)
  62 * performance cost, and for other reasons may not always be desired.
  63 * So we allow it it to be disabled.
  64 */
  65bool use_spi_crc = 1;
  66module_param(use_spi_crc, bool, 0);
  67
  68/*
  69 * Internal function. Schedule delayed work in the MMC work queue.
  70 */
  71static int mmc_schedule_delayed_work(struct delayed_work *work,
  72				     unsigned long delay)
  73{
  74	return queue_delayed_work(workqueue, work, delay);
  75}
  76
  77/*
  78 * Internal function. Flush all scheduled work from the MMC work queue.
  79 */
  80static void mmc_flush_scheduled_work(void)
  81{
  82	flush_workqueue(workqueue);
  83}
  84
  85#ifdef CONFIG_FAIL_MMC_REQUEST
  86
  87/*
  88 * Internal function. Inject random data errors.
  89 * If mmc_data is NULL no errors are injected.
  90 */
  91static void mmc_should_fail_request(struct mmc_host *host,
  92				    struct mmc_request *mrq)
  93{
  94	struct mmc_command *cmd = mrq->cmd;
  95	struct mmc_data *data = mrq->data;
  96	static const int data_errors[] = {
  97		-ETIMEDOUT,
  98		-EILSEQ,
  99		-EIO,
 100	};
 101
 102	if (!data)
 103		return;
 104
 105	if (cmd->error || data->error ||
 106	    !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
 107		return;
 108
 109	data->error = data_errors[prandom_u32() % ARRAY_SIZE(data_errors)];
 110	data->bytes_xfered = (prandom_u32() % (data->bytes_xfered >> 9)) << 9;
 111}
 112
 113#else /* CONFIG_FAIL_MMC_REQUEST */
 114
 115static inline void mmc_should_fail_request(struct mmc_host *host,
 116					   struct mmc_request *mrq)
 117{
 118}
 119
 120#endif /* CONFIG_FAIL_MMC_REQUEST */
 121
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 122/**
 123 *	mmc_request_done - finish processing an MMC request
 124 *	@host: MMC host which completed request
 125 *	@mrq: MMC request which request
 126 *
 127 *	MMC drivers should call this function when they have completed
 128 *	their processing of a request.
 129 */
 130void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
 131{
 132	struct mmc_command *cmd = mrq->cmd;
 133	int err = cmd->error;
 134
 
 
 
 
 
 
 
 
 
 135	if (err && cmd->retries && mmc_host_is_spi(host)) {
 136		if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
 137			cmd->retries = 0;
 138	}
 139
 140	if (err && cmd->retries && !mmc_card_removed(host->card)) {
 141		/*
 142		 * Request starter must handle retries - see
 143		 * mmc_wait_for_req_done().
 144		 */
 145		if (mrq->done)
 146			mrq->done(mrq);
 147	} else {
 
 
 
 
 
 
 
 
 
 148		mmc_should_fail_request(host, mrq);
 149
 150		led_trigger_event(host->led, LED_OFF);
 
 
 
 
 
 
 
 
 
 151
 152		pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
 153			mmc_hostname(host), cmd->opcode, err,
 154			cmd->resp[0], cmd->resp[1],
 155			cmd->resp[2], cmd->resp[3]);
 156
 157		if (mrq->data) {
 158			pr_debug("%s:     %d bytes transferred: %d\n",
 159				mmc_hostname(host),
 160				mrq->data->bytes_xfered, mrq->data->error);
 161		}
 162
 163		if (mrq->stop) {
 164			pr_debug("%s:     (CMD%u): %d: %08x %08x %08x %08x\n",
 165				mmc_hostname(host), mrq->stop->opcode,
 166				mrq->stop->error,
 167				mrq->stop->resp[0], mrq->stop->resp[1],
 168				mrq->stop->resp[2], mrq->stop->resp[3]);
 169		}
 170
 171		if (mrq->done)
 172			mrq->done(mrq);
 173
 174		mmc_host_clk_release(host);
 175	}
 
 
 
 
 
 
 176}
 177
 178EXPORT_SYMBOL(mmc_request_done);
 179
 180static void
 181mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
 182{
 183#ifdef CONFIG_MMC_DEBUG
 184	unsigned int i, sz;
 185	struct scatterlist *sg;
 186#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 187
 
 
 
 188	if (mrq->sbc) {
 189		pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
 190			 mmc_hostname(host), mrq->sbc->opcode,
 191			 mrq->sbc->arg, mrq->sbc->flags);
 192	}
 193
 194	pr_debug("%s: starting CMD%u arg %08x flags %08x\n",
 195		 mmc_hostname(host), mrq->cmd->opcode,
 196		 mrq->cmd->arg, mrq->cmd->flags);
 
 
 
 
 
 197
 198	if (mrq->data) {
 199		pr_debug("%s:     blksz %d blocks %d flags %08x "
 200			"tsac %d ms nsac %d\n",
 201			mmc_hostname(host), mrq->data->blksz,
 202			mrq->data->blocks, mrq->data->flags,
 203			mrq->data->timeout_ns / 1000000,
 204			mrq->data->timeout_clks);
 205	}
 206
 207	if (mrq->stop) {
 208		pr_debug("%s:     CMD%u arg %08x flags %08x\n",
 209			 mmc_hostname(host), mrq->stop->opcode,
 210			 mrq->stop->arg, mrq->stop->flags);
 211	}
 
 212
 213	WARN_ON(!host->claimed);
 
 
 
 214
 215	mrq->cmd->error = 0;
 216	mrq->cmd->mrq = mrq;
 
 
 
 
 
 
 
 217	if (mrq->data) {
 218		BUG_ON(mrq->data->blksz > host->max_blk_size);
 219		BUG_ON(mrq->data->blocks > host->max_blk_count);
 220		BUG_ON(mrq->data->blocks * mrq->data->blksz >
 221			host->max_req_size);
 222
 223#ifdef CONFIG_MMC_DEBUG
 224		sz = 0;
 225		for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
 226			sz += sg->length;
 227		BUG_ON(sz != mrq->data->blocks * mrq->data->blksz);
 228#endif
 229
 230		mrq->cmd->data = mrq->data;
 231		mrq->data->error = 0;
 232		mrq->data->mrq = mrq;
 233		if (mrq->stop) {
 234			mrq->data->stop = mrq->stop;
 235			mrq->stop->error = 0;
 236			mrq->stop->mrq = mrq;
 237		}
 238	}
 239	mmc_host_clk_hold(host);
 240	led_trigger_event(host->led, LED_FULL);
 241	host->ops->request(host, mrq);
 242}
 243
 244/**
 245 *	mmc_start_bkops - start BKOPS for supported cards
 246 *	@card: MMC card to start BKOPS
 247 *	@form_exception: A flag to indicate if this function was
 248 *			 called due to an exception raised by the card
 249 *
 250 *	Start background operations whenever requested.
 251 *	When the urgent BKOPS bit is set in a R1 command response
 252 *	then background operations should be started immediately.
 253*/
 254void mmc_start_bkops(struct mmc_card *card, bool from_exception)
 255{
 256	int err;
 257	int timeout;
 258	bool use_busy_signal;
 259
 260	BUG_ON(!card);
 261
 262	if (!card->ext_csd.bkops_en || mmc_card_doing_bkops(card))
 263		return;
 264
 265	err = mmc_read_bkops_status(card);
 266	if (err) {
 267		pr_err("%s: Failed to read bkops status: %d\n",
 268		       mmc_hostname(card->host), err);
 269		return;
 270	}
 271
 272	if (!card->ext_csd.raw_bkops_status)
 273		return;
 274
 275	if (card->ext_csd.raw_bkops_status < EXT_CSD_BKOPS_LEVEL_2 &&
 276	    from_exception)
 277		return;
 278
 279	mmc_claim_host(card->host);
 280	if (card->ext_csd.raw_bkops_status >= EXT_CSD_BKOPS_LEVEL_2) {
 281		timeout = MMC_BKOPS_MAX_TIMEOUT;
 282		use_busy_signal = true;
 283	} else {
 284		timeout = 0;
 285		use_busy_signal = false;
 286	}
 287
 288	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
 289			EXT_CSD_BKOPS_START, 1, timeout,
 290			use_busy_signal, true, false);
 291	if (err) {
 292		pr_warn("%s: Error %d starting bkops\n",
 293			mmc_hostname(card->host), err);
 294		goto out;
 295	}
 296
 297	/*
 298	 * For urgent bkops status (LEVEL_2 and more)
 299	 * bkops executed synchronously, otherwise
 300	 * the operation is in progress
 301	 */
 302	if (!use_busy_signal)
 303		mmc_card_set_doing_bkops(card);
 304out:
 305	mmc_release_host(card->host);
 306}
 307EXPORT_SYMBOL(mmc_start_bkops);
 308
 309/*
 310 * mmc_wait_data_done() - done callback for data request
 311 * @mrq: done data request
 312 *
 313 * Wakes up mmc context, passed as a callback to host controller driver
 314 */
 315static void mmc_wait_data_done(struct mmc_request *mrq)
 316{
 317	mrq->host->context_info.is_done_rcv = true;
 318	wake_up_interruptible(&mrq->host->context_info.wait);
 319}
 
 320
 321static void mmc_wait_done(struct mmc_request *mrq)
 322{
 323	complete(&mrq->completion);
 324}
 325
 326/*
 327 *__mmc_start_data_req() - starts data request
 328 * @host: MMC host to start the request
 329 * @mrq: data request to start
 330 *
 331 * Sets the done callback to be called when request is completed by the card.
 332 * Starts data mmc request execution
 333 */
 334static int __mmc_start_data_req(struct mmc_host *host, struct mmc_request *mrq)
 335{
 336	mrq->done = mmc_wait_data_done;
 337	mrq->host = host;
 338	if (mmc_card_removed(host->card)) {
 339		mrq->cmd->error = -ENOMEDIUM;
 340		mmc_wait_data_done(mrq);
 341		return -ENOMEDIUM;
 342	}
 343	mmc_start_request(host, mrq);
 344
 345	return 0;
 
 
 
 
 
 346}
 347
 348static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
 349{
 
 
 
 
 350	init_completion(&mrq->completion);
 351	mrq->done = mmc_wait_done;
 352	if (mmc_card_removed(host->card)) {
 353		mrq->cmd->error = -ENOMEDIUM;
 
 
 
 354		complete(&mrq->completion);
 355		return -ENOMEDIUM;
 356	}
 357	mmc_start_request(host, mrq);
 358	return 0;
 359}
 360
 361/*
 362 * mmc_wait_for_data_req_done() - wait for request completed
 363 * @host: MMC host to prepare the command.
 364 * @mrq: MMC request to wait for
 365 *
 366 * Blocks MMC context till host controller will ack end of data request
 367 * execution or new request notification arrives from the block layer.
 368 * Handles command retries.
 369 *
 370 * Returns enum mmc_blk_status after checking errors.
 371 */
 372static int mmc_wait_for_data_req_done(struct mmc_host *host,
 373				      struct mmc_request *mrq,
 374				      struct mmc_async_req *next_req)
 375{
 376	struct mmc_command *cmd;
 377	struct mmc_context_info *context_info = &host->context_info;
 378	int err;
 379	unsigned long flags;
 380
 381	while (1) {
 382		wait_event_interruptible(context_info->wait,
 383				(context_info->is_done_rcv ||
 384				 context_info->is_new_req));
 385		spin_lock_irqsave(&context_info->lock, flags);
 386		context_info->is_waiting_last_req = false;
 387		spin_unlock_irqrestore(&context_info->lock, flags);
 388		if (context_info->is_done_rcv) {
 389			context_info->is_done_rcv = false;
 390			context_info->is_new_req = false;
 391			cmd = mrq->cmd;
 392
 393			if (!cmd->error || !cmd->retries ||
 394			    mmc_card_removed(host->card)) {
 395				err = host->areq->err_check(host->card,
 396							    host->areq);
 397				break; /* return err */
 398			} else {
 399				pr_info("%s: req failed (CMD%u): %d, retrying...\n",
 400					mmc_hostname(host),
 401					cmd->opcode, cmd->error);
 402				cmd->retries--;
 403				cmd->error = 0;
 404				host->ops->request(host, mrq);
 405				continue; /* wait for done/new event again */
 406			}
 407		} else if (context_info->is_new_req) {
 408			context_info->is_new_req = false;
 409			if (!next_req) {
 410				err = MMC_BLK_NEW_REQUEST;
 411				break; /* return err */
 412			}
 413		}
 414	}
 415	return err;
 416}
 417
 418static void mmc_wait_for_req_done(struct mmc_host *host,
 419				  struct mmc_request *mrq)
 420{
 421	struct mmc_command *cmd;
 422
 423	while (1) {
 424		wait_for_completion(&mrq->completion);
 425
 426		cmd = mrq->cmd;
 427
 428		/*
 429		 * If host has timed out waiting for the sanitize
 430		 * to complete, card might be still in programming state
 431		 * so let's try to bring the card out of programming
 432		 * state.
 433		 */
 434		if (cmd->sanitize_busy && cmd->error == -ETIMEDOUT) {
 435			if (!mmc_interrupt_hpi(host->card)) {
 436				pr_warning("%s: %s: Interrupted sanitize\n",
 437					   mmc_hostname(host), __func__);
 438				cmd->error = 0;
 439				break;
 440			} else {
 441				pr_err("%s: %s: Failed to interrupt sanitize\n",
 442				       mmc_hostname(host), __func__);
 443			}
 444		}
 445		if (!cmd->error || !cmd->retries ||
 446		    mmc_card_removed(host->card))
 447			break;
 448
 
 
 449		pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
 450			 mmc_hostname(host), cmd->opcode, cmd->error);
 451		cmd->retries--;
 452		cmd->error = 0;
 453		host->ops->request(host, mrq);
 454	}
 455}
 456
 457/**
 458 *	mmc_pre_req - Prepare for a new request
 459 *	@host: MMC host to prepare command
 460 *	@mrq: MMC request to prepare for
 461 *	@is_first_req: true if there is no previous started request
 462 *                     that may run in parellel to this call, otherwise false
 463 *
 464 *	mmc_pre_req() is called in prior to mmc_start_req() to let
 465 *	host prepare for the new request. Preparation of a request may be
 466 *	performed while another request is running on the host.
 467 */
 468static void mmc_pre_req(struct mmc_host *host, struct mmc_request *mrq,
 469		 bool is_first_req)
 470{
 471	if (host->ops->pre_req) {
 472		mmc_host_clk_hold(host);
 473		host->ops->pre_req(host, mrq, is_first_req);
 474		mmc_host_clk_release(host);
 475	}
 476}
 
 477
 478/**
 479 *	mmc_post_req - Post process a completed request
 480 *	@host: MMC host to post process command
 481 *	@mrq: MMC request to post process for
 482 *	@err: Error, if non zero, clean up any resources made in pre_req
 483 *
 484 *	Let the host post process a completed request. Post processing of
 485 *	a request may be performed while another reuqest is running.
 486 */
 487static void mmc_post_req(struct mmc_host *host, struct mmc_request *mrq,
 488			 int err)
 489{
 490	if (host->ops->post_req) {
 491		mmc_host_clk_hold(host);
 492		host->ops->post_req(host, mrq, err);
 493		mmc_host_clk_release(host);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 494	}
 
 495}
 
 496
 497/**
 498 *	mmc_start_req - start a non-blocking request
 499 *	@host: MMC host to start command
 500 *	@areq: async request to start
 501 *	@error: out parameter returns 0 for success, otherwise non zero
 502 *
 503 *	Start a new MMC custom command request for a host.
 504 *	If there is on ongoing async request wait for completion
 505 *	of that request and start the new one and return.
 506 *	Does not wait for the new request to complete.
 507 *
 508 *      Returns the completed request, NULL in case of none completed.
 509 *	Wait for the an ongoing request (previoulsy started) to complete and
 510 *	return the completed request. If there is no ongoing request, NULL
 511 *	is returned without waiting. NULL is not an error condition.
 512 */
 513struct mmc_async_req *mmc_start_req(struct mmc_host *host,
 514				    struct mmc_async_req *areq, int *error)
 515{
 516	int err = 0;
 517	int start_err = 0;
 518	struct mmc_async_req *data = host->areq;
 
 
 
 
 
 519
 520	/* Prepare a new request */
 521	if (areq)
 522		mmc_pre_req(host, areq->mrq, !host->areq);
 523
 524	if (host->areq) {
 525		err = mmc_wait_for_data_req_done(host, host->areq->mrq,	areq);
 526		if (err == MMC_BLK_NEW_REQUEST) {
 527			if (error)
 528				*error = err;
 529			/*
 530			 * The previous request was not completed,
 531			 * nothing to return
 532			 */
 533			return NULL;
 534		}
 535		/*
 536		 * Check BKOPS urgency for each R1 response
 537		 */
 538		if (host->card && mmc_card_mmc(host->card) &&
 539		    ((mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1) ||
 540		     (mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1B)) &&
 541		    (host->areq->mrq->cmd->resp[0] & R1_EXCEPTION_EVENT))
 542			mmc_start_bkops(host->card, true);
 543	}
 544
 545	if (!err && areq)
 546		start_err = __mmc_start_data_req(host, areq->mrq);
 547
 548	if (host->areq)
 549		mmc_post_req(host, host->areq->mrq, 0);
 550
 551	 /* Cancel a prepared request if it was not started. */
 552	if ((err || start_err) && areq)
 553		mmc_post_req(host, areq->mrq, -EINVAL);
 554
 555	if (err)
 556		host->areq = NULL;
 557	else
 558		host->areq = areq;
 
 559
 560	if (error)
 561		*error = err;
 562	return data;
 563}
 564EXPORT_SYMBOL(mmc_start_req);
 565
 566/**
 567 *	mmc_wait_for_req - start a request and wait for completion
 568 *	@host: MMC host to start command
 569 *	@mrq: MMC request to start
 570 *
 571 *	Start a new MMC custom command request for a host, and wait
 572 *	for the command to complete. Does not attempt to parse the
 573 *	response.
 574 */
 575void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
 576{
 577	__mmc_start_req(host, mrq);
 578	mmc_wait_for_req_done(host, mrq);
 579}
 580EXPORT_SYMBOL(mmc_wait_for_req);
 
 
 
 581
 582/**
 583 *	mmc_interrupt_hpi - Issue for High priority Interrupt
 584 *	@card: the MMC card associated with the HPI transfer
 585 *
 586 *	Issued High Priority Interrupt, and check for card status
 587 *	until out-of prg-state.
 
 
 588 */
 589int mmc_interrupt_hpi(struct mmc_card *card)
 590{
 
 591	int err;
 592	u32 status;
 593	unsigned long prg_wait;
 594
 595	BUG_ON(!card);
 596
 597	if (!card->ext_csd.hpi_en) {
 598		pr_info("%s: HPI enable bit unset\n", mmc_hostname(card->host));
 599		return 1;
 600	}
 
 601
 602	mmc_claim_host(card->host);
 603	err = mmc_send_status(card, &status);
 604	if (err) {
 605		pr_err("%s: Get card status fail\n", mmc_hostname(card->host));
 606		goto out;
 607	}
 608
 609	switch (R1_CURRENT_STATE(status)) {
 610	case R1_STATE_IDLE:
 611	case R1_STATE_READY:
 612	case R1_STATE_STBY:
 613	case R1_STATE_TRAN:
 614		/*
 615		 * In idle and transfer states, HPI is not needed and the caller
 616		 * can issue the next intended command immediately
 617		 */
 618		goto out;
 619	case R1_STATE_PRG:
 620		break;
 621	default:
 622		/* In all other states, it's illegal to issue HPI */
 623		pr_debug("%s: HPI cannot be sent. Card state=%d\n",
 624			mmc_hostname(card->host), R1_CURRENT_STATE(status));
 625		err = -EINVAL;
 626		goto out;
 627	}
 628
 629	err = mmc_send_hpi_cmd(card, &status);
 630	if (err)
 631		goto out;
 
 
 
 
 632
 633	prg_wait = jiffies + msecs_to_jiffies(card->ext_csd.out_of_int_time);
 634	do {
 635		err = mmc_send_status(card, &status);
 636
 637		if (!err && R1_CURRENT_STATE(status) == R1_STATE_TRAN)
 638			break;
 639		if (time_after(jiffies, prg_wait))
 640			err = -ETIMEDOUT;
 641	} while (!err);
 642
 643out:
 644	mmc_release_host(card->host);
 645	return err;
 646}
 647EXPORT_SYMBOL(mmc_interrupt_hpi);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 648
 649/**
 650 *	mmc_wait_for_cmd - start a command and wait for completion
 651 *	@host: MMC host to start command
 652 *	@cmd: MMC command to start
 653 *	@retries: maximum number of retries
 654 *
 655 *	Start a new MMC command for a host, and wait for the command
 656 *	to complete.  Return any error that occurred while the command
 657 *	was executing.  Do not attempt to parse the response.
 658 */
 659int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
 660{
 661	struct mmc_request mrq = {NULL};
 662
 663	WARN_ON(!host->claimed);
 664
 665	memset(cmd->resp, 0, sizeof(cmd->resp));
 666	cmd->retries = retries;
 667
 668	mrq.cmd = cmd;
 669	cmd->data = NULL;
 670
 671	mmc_wait_for_req(host, &mrq);
 672
 673	return cmd->error;
 674}
 675
 676EXPORT_SYMBOL(mmc_wait_for_cmd);
 677
 678/**
 679 *	mmc_stop_bkops - stop ongoing BKOPS
 680 *	@card: MMC card to check BKOPS
 681 *
 682 *	Send HPI command to stop ongoing background operations to
 683 *	allow rapid servicing of foreground operations, e.g. read/
 684 *	writes. Wait until the card comes out of the programming state
 685 *	to avoid errors in servicing read/write requests.
 686 */
 687int mmc_stop_bkops(struct mmc_card *card)
 688{
 689	int err = 0;
 690
 691	BUG_ON(!card);
 692	err = mmc_interrupt_hpi(card);
 693
 694	/*
 695	 * If err is EINVAL, we can't issue an HPI.
 696	 * It should complete the BKOPS.
 697	 */
 698	if (!err || (err == -EINVAL)) {
 699		mmc_card_clr_doing_bkops(card);
 700		err = 0;
 701	}
 702
 703	return err;
 704}
 705EXPORT_SYMBOL(mmc_stop_bkops);
 706
 707int mmc_read_bkops_status(struct mmc_card *card)
 708{
 709	int err;
 710	u8 *ext_csd;
 711
 712	/*
 713	 * In future work, we should consider storing the entire ext_csd.
 714	 */
 715	ext_csd = kmalloc(512, GFP_KERNEL);
 716	if (!ext_csd) {
 717		pr_err("%s: could not allocate buffer to receive the ext_csd.\n",
 718		       mmc_hostname(card->host));
 719		return -ENOMEM;
 720	}
 721
 722	mmc_claim_host(card->host);
 723	err = mmc_send_ext_csd(card, ext_csd);
 724	mmc_release_host(card->host);
 725	if (err)
 726		goto out;
 727
 728	card->ext_csd.raw_bkops_status = ext_csd[EXT_CSD_BKOPS_STATUS];
 729	card->ext_csd.raw_exception_status = ext_csd[EXT_CSD_EXP_EVENTS_STATUS];
 730out:
 731	kfree(ext_csd);
 732	return err;
 733}
 734EXPORT_SYMBOL(mmc_read_bkops_status);
 735
 736/**
 737 *	mmc_set_data_timeout - set the timeout for a data command
 738 *	@data: data phase for command
 739 *	@card: the MMC card associated with the data transfer
 740 *
 741 *	Computes the data timeout parameters according to the
 742 *	correct algorithm given the card type.
 743 */
 744void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
 745{
 746	unsigned int mult;
 747
 748	/*
 749	 * SDIO cards only define an upper 1 s limit on access.
 750	 */
 751	if (mmc_card_sdio(card)) {
 752		data->timeout_ns = 1000000000;
 753		data->timeout_clks = 0;
 754		return;
 755	}
 756
 757	/*
 758	 * SD cards use a 100 multiplier rather than 10
 759	 */
 760	mult = mmc_card_sd(card) ? 100 : 10;
 761
 762	/*
 763	 * Scale up the multiplier (and therefore the timeout) by
 764	 * the r2w factor for writes.
 765	 */
 766	if (data->flags & MMC_DATA_WRITE)
 767		mult <<= card->csd.r2w_factor;
 768
 769	data->timeout_ns = card->csd.tacc_ns * mult;
 770	data->timeout_clks = card->csd.tacc_clks * mult;
 771
 772	/*
 773	 * SD cards also have an upper limit on the timeout.
 774	 */
 775	if (mmc_card_sd(card)) {
 776		unsigned int timeout_us, limit_us;
 777
 778		timeout_us = data->timeout_ns / 1000;
 779		if (mmc_host_clk_rate(card->host))
 780			timeout_us += data->timeout_clks * 1000 /
 781				(mmc_host_clk_rate(card->host) / 1000);
 782
 783		if (data->flags & MMC_DATA_WRITE)
 784			/*
 785			 * The MMC spec "It is strongly recommended
 786			 * for hosts to implement more than 500ms
 787			 * timeout value even if the card indicates
 788			 * the 250ms maximum busy length."  Even the
 789			 * previous value of 300ms is known to be
 790			 * insufficient for some cards.
 791			 */
 792			limit_us = 3000000;
 793		else
 794			limit_us = 100000;
 795
 796		/*
 797		 * SDHC cards always use these fixed values.
 798		 */
 799		if (timeout_us > limit_us || mmc_card_blockaddr(card)) {
 800			data->timeout_ns = limit_us * 1000;
 801			data->timeout_clks = 0;
 802		}
 
 
 
 
 803	}
 804
 805	/*
 806	 * Some cards require longer data read timeout than indicated in CSD.
 807	 * Address this by setting the read timeout to a "reasonably high"
 808	 * value. For the cards tested, 300ms has proven enough. If necessary,
 809	 * this value can be increased if other problematic cards require this.
 810	 */
 811	if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
 812		data->timeout_ns = 300000000;
 813		data->timeout_clks = 0;
 814	}
 815
 816	/*
 817	 * Some cards need very high timeouts if driven in SPI mode.
 818	 * The worst observed timeout was 900ms after writing a
 819	 * continuous stream of data until the internal logic
 820	 * overflowed.
 821	 */
 822	if (mmc_host_is_spi(card->host)) {
 823		if (data->flags & MMC_DATA_WRITE) {
 824			if (data->timeout_ns < 1000000000)
 825				data->timeout_ns = 1000000000;	/* 1s */
 826		} else {
 827			if (data->timeout_ns < 100000000)
 828				data->timeout_ns =  100000000;	/* 100ms */
 829		}
 830	}
 831}
 832EXPORT_SYMBOL(mmc_set_data_timeout);
 833
 834/**
 835 *	mmc_align_data_size - pads a transfer size to a more optimal value
 836 *	@card: the MMC card associated with the data transfer
 837 *	@sz: original transfer size
 838 *
 839 *	Pads the original data size with a number of extra bytes in
 840 *	order to avoid controller bugs and/or performance hits
 841 *	(e.g. some controllers revert to PIO for certain sizes).
 842 *
 843 *	Returns the improved size, which might be unmodified.
 844 *
 845 *	Note that this function is only relevant when issuing a
 846 *	single scatter gather entry.
 847 */
 848unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz)
 
 849{
 850	/*
 851	 * FIXME: We don't have a system for the controller to tell
 852	 * the core about its problems yet, so for now we just 32-bit
 853	 * align the size.
 854	 */
 855	sz = ((sz + 3) / 4) * 4;
 856
 857	return sz;
 
 
 
 
 
 
 
 
 
 
 
 858}
 859EXPORT_SYMBOL(mmc_align_data_size);
 860
 861/**
 862 *	__mmc_claim_host - exclusively claim a host
 863 *	@host: mmc host to claim
 
 
 864 *	@abort: whether or not the operation should be aborted
 865 *
 866 *	Claim a host for a set of operations.  If @abort is non null and
 867 *	dereference a non-zero value then this will return prematurely with
 868 *	that non-zero value without acquiring the lock.  Returns zero
 869 *	with the lock held otherwise.
 870 */
 871int __mmc_claim_host(struct mmc_host *host, atomic_t *abort)
 
 872{
 
 873	DECLARE_WAITQUEUE(wait, current);
 874	unsigned long flags;
 875	int stop;
 
 876
 877	might_sleep();
 878
 879	add_wait_queue(&host->wq, &wait);
 880	spin_lock_irqsave(&host->lock, flags);
 881	while (1) {
 882		set_current_state(TASK_UNINTERRUPTIBLE);
 883		stop = abort ? atomic_read(abort) : 0;
 884		if (stop || !host->claimed || host->claimer == current)
 885			break;
 886		spin_unlock_irqrestore(&host->lock, flags);
 887		schedule();
 888		spin_lock_irqsave(&host->lock, flags);
 889	}
 890	set_current_state(TASK_RUNNING);
 891	if (!stop) {
 892		host->claimed = 1;
 893		host->claimer = current;
 894		host->claim_cnt += 1;
 
 
 895	} else
 896		wake_up(&host->wq);
 897	spin_unlock_irqrestore(&host->lock, flags);
 898	remove_wait_queue(&host->wq, &wait);
 899	if (host->ops->enable && !stop && host->claim_cnt == 1)
 900		host->ops->enable(host);
 
 
 901	return stop;
 902}
 903
 904EXPORT_SYMBOL(__mmc_claim_host);
 905
 906/**
 907 *	mmc_release_host - release a host
 908 *	@host: mmc host to release
 909 *
 910 *	Release a MMC host, allowing others to claim the host
 911 *	for their operations.
 912 */
 913void mmc_release_host(struct mmc_host *host)
 914{
 915	unsigned long flags;
 916
 917	WARN_ON(!host->claimed);
 918
 919	if (host->ops->disable && host->claim_cnt == 1)
 920		host->ops->disable(host);
 921
 922	spin_lock_irqsave(&host->lock, flags);
 923	if (--host->claim_cnt) {
 924		/* Release for nested claim */
 925		spin_unlock_irqrestore(&host->lock, flags);
 926	} else {
 927		host->claimed = 0;
 
 928		host->claimer = NULL;
 929		spin_unlock_irqrestore(&host->lock, flags);
 930		wake_up(&host->wq);
 
 
 
 
 
 931	}
 932}
 933EXPORT_SYMBOL(mmc_release_host);
 934
 935/*
 936 * This is a helper function, which fetches a runtime pm reference for the
 937 * card device and also claims the host.
 938 */
 939void mmc_get_card(struct mmc_card *card)
 940{
 941	pm_runtime_get_sync(&card->dev);
 942	mmc_claim_host(card->host);
 943}
 944EXPORT_SYMBOL(mmc_get_card);
 945
 946/*
 947 * This is a helper function, which releases the host and drops the runtime
 948 * pm reference for the card device.
 949 */
 950void mmc_put_card(struct mmc_card *card)
 951{
 952	mmc_release_host(card->host);
 
 
 
 
 953	pm_runtime_mark_last_busy(&card->dev);
 954	pm_runtime_put_autosuspend(&card->dev);
 955}
 956EXPORT_SYMBOL(mmc_put_card);
 957
 958/*
 959 * Internal function that does the actual ios call to the host driver,
 960 * optionally printing some debug output.
 961 */
 962static inline void mmc_set_ios(struct mmc_host *host)
 963{
 964	struct mmc_ios *ios = &host->ios;
 965
 966	pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
 967		"width %u timing %u\n",
 968		 mmc_hostname(host), ios->clock, ios->bus_mode,
 969		 ios->power_mode, ios->chip_select, ios->vdd,
 970		 ios->bus_width, ios->timing);
 971
 972	if (ios->clock > 0)
 973		mmc_set_ungated(host);
 974	host->ops->set_ios(host, ios);
 975}
 976
 977/*
 978 * Control chip select pin on a host.
 979 */
 980void mmc_set_chip_select(struct mmc_host *host, int mode)
 981{
 982	mmc_host_clk_hold(host);
 983	host->ios.chip_select = mode;
 984	mmc_set_ios(host);
 985	mmc_host_clk_release(host);
 986}
 987
 988/*
 989 * Sets the host clock to the highest possible frequency that
 990 * is below "hz".
 991 */
 992static void __mmc_set_clock(struct mmc_host *host, unsigned int hz)
 993{
 994	WARN_ON(hz < host->f_min);
 995
 996	if (hz > host->f_max)
 997		hz = host->f_max;
 998
 999	host->ios.clock = hz;
1000	mmc_set_ios(host);
1001}
1002
1003void mmc_set_clock(struct mmc_host *host, unsigned int hz)
1004{
1005	mmc_host_clk_hold(host);
1006	__mmc_set_clock(host, hz);
1007	mmc_host_clk_release(host);
1008}
1009
1010#ifdef CONFIG_MMC_CLKGATE
1011/*
1012 * This gates the clock by setting it to 0 Hz.
1013 */
1014void mmc_gate_clock(struct mmc_host *host)
1015{
1016	unsigned long flags;
1017
1018	spin_lock_irqsave(&host->clk_lock, flags);
1019	host->clk_old = host->ios.clock;
1020	host->ios.clock = 0;
1021	host->clk_gated = true;
1022	spin_unlock_irqrestore(&host->clk_lock, flags);
1023	mmc_set_ios(host);
1024}
1025
1026/*
1027 * This restores the clock from gating by using the cached
1028 * clock value.
1029 */
1030void mmc_ungate_clock(struct mmc_host *host)
1031{
1032	/*
1033	 * We should previously have gated the clock, so the clock shall
1034	 * be 0 here! The clock may however be 0 during initialization,
1035	 * when some request operations are performed before setting
1036	 * the frequency. When ungate is requested in that situation
1037	 * we just ignore the call.
1038	 */
1039	if (host->clk_old) {
1040		BUG_ON(host->ios.clock);
1041		/* This call will also set host->clk_gated to false */
1042		__mmc_set_clock(host, host->clk_old);
1043	}
1044}
1045
1046void mmc_set_ungated(struct mmc_host *host)
1047{
1048	unsigned long flags;
1049
1050	/*
1051	 * We've been given a new frequency while the clock is gated,
1052	 * so make sure we regard this as ungating it.
1053	 */
1054	spin_lock_irqsave(&host->clk_lock, flags);
1055	host->clk_gated = false;
1056	spin_unlock_irqrestore(&host->clk_lock, flags);
1057}
1058
1059#else
1060void mmc_set_ungated(struct mmc_host *host)
1061{
1062}
1063#endif
1064
1065/*
1066 * Change the bus mode (open drain/push-pull) of a host.
1067 */
1068void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
1069{
1070	mmc_host_clk_hold(host);
1071	host->ios.bus_mode = mode;
1072	mmc_set_ios(host);
1073	mmc_host_clk_release(host);
1074}
1075
1076/*
1077 * Change data bus width of a host.
1078 */
1079void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
1080{
1081	mmc_host_clk_hold(host);
1082	host->ios.bus_width = width;
1083	mmc_set_ios(host);
1084	mmc_host_clk_release(host);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1085}
1086
1087/**
1088 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1089 * @vdd:	voltage (mV)
1090 * @low_bits:	prefer low bits in boundary cases
1091 *
1092 * This function returns the OCR bit number according to the provided @vdd
1093 * value. If conversion is not possible a negative errno value returned.
1094 *
1095 * Depending on the @low_bits flag the function prefers low or high OCR bits
1096 * on boundary voltages. For example,
1097 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1098 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1099 *
1100 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1101 */
1102static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
1103{
1104	const int max_bit = ilog2(MMC_VDD_35_36);
1105	int bit;
1106
1107	if (vdd < 1650 || vdd > 3600)
1108		return -EINVAL;
1109
1110	if (vdd >= 1650 && vdd <= 1950)
1111		return ilog2(MMC_VDD_165_195);
1112
1113	if (low_bits)
1114		vdd -= 1;
1115
1116	/* Base 2000 mV, step 100 mV, bit's base 8. */
1117	bit = (vdd - 2000) / 100 + 8;
1118	if (bit > max_bit)
1119		return max_bit;
1120	return bit;
1121}
1122
1123/**
1124 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1125 * @vdd_min:	minimum voltage value (mV)
1126 * @vdd_max:	maximum voltage value (mV)
1127 *
1128 * This function returns the OCR mask bits according to the provided @vdd_min
1129 * and @vdd_max values. If conversion is not possible the function returns 0.
1130 *
1131 * Notes wrt boundary cases:
1132 * This function sets the OCR bits for all boundary voltages, for example
1133 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1134 * MMC_VDD_34_35 mask.
1135 */
1136u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1137{
1138	u32 mask = 0;
1139
1140	if (vdd_max < vdd_min)
1141		return 0;
1142
1143	/* Prefer high bits for the boundary vdd_max values. */
1144	vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1145	if (vdd_max < 0)
1146		return 0;
1147
1148	/* Prefer low bits for the boundary vdd_min values. */
1149	vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1150	if (vdd_min < 0)
1151		return 0;
1152
1153	/* Fill the mask, from max bit to min bit. */
1154	while (vdd_max >= vdd_min)
1155		mask |= 1 << vdd_max--;
1156
1157	return mask;
1158}
1159EXPORT_SYMBOL(mmc_vddrange_to_ocrmask);
1160
1161#ifdef CONFIG_OF
1162
1163/**
1164 * mmc_of_parse_voltage - return mask of supported voltages
1165 * @np: The device node need to be parsed.
1166 * @mask: mask of voltages available for MMC/SD/SDIO
1167 *
1168 * 1. Return zero on success.
1169 * 2. Return negative errno: voltage-range is invalid.
1170 */
1171int mmc_of_parse_voltage(struct device_node *np, u32 *mask)
1172{
1173	const u32 *voltage_ranges;
1174	int num_ranges, i;
1175
1176	voltage_ranges = of_get_property(np, "voltage-ranges", &num_ranges);
1177	num_ranges = num_ranges / sizeof(*voltage_ranges) / 2;
1178	if (!voltage_ranges || !num_ranges) {
1179		pr_info("%s: voltage-ranges unspecified\n", np->full_name);
1180		return -EINVAL;
1181	}
1182
1183	for (i = 0; i < num_ranges; i++) {
1184		const int j = i * 2;
1185		u32 ocr_mask;
1186
1187		ocr_mask = mmc_vddrange_to_ocrmask(
1188				be32_to_cpu(voltage_ranges[j]),
1189				be32_to_cpu(voltage_ranges[j + 1]));
1190		if (!ocr_mask) {
1191			pr_err("%s: voltage-range #%d is invalid\n",
1192				np->full_name, i);
1193			return -EINVAL;
1194		}
1195		*mask |= ocr_mask;
1196	}
1197
1198	return 0;
1199}
1200EXPORT_SYMBOL(mmc_of_parse_voltage);
1201
1202#endif /* CONFIG_OF */
1203
1204#ifdef CONFIG_REGULATOR
1205
1206/**
1207 * mmc_regulator_get_ocrmask - return mask of supported voltages
1208 * @supply: regulator to use
1209 *
1210 * This returns either a negative errno, or a mask of voltages that
1211 * can be provided to MMC/SD/SDIO devices using the specified voltage
1212 * regulator.  This would normally be called before registering the
1213 * MMC host adapter.
1214 */
1215int mmc_regulator_get_ocrmask(struct regulator *supply)
1216{
1217	int			result = 0;
1218	int			count;
1219	int			i;
1220
1221	count = regulator_count_voltages(supply);
1222	if (count < 0)
1223		return count;
1224
1225	for (i = 0; i < count; i++) {
1226		int		vdd_uV;
1227		int		vdd_mV;
1228
1229		vdd_uV = regulator_list_voltage(supply, i);
1230		if (vdd_uV <= 0)
1231			continue;
1232
1233		vdd_mV = vdd_uV / 1000;
1234		result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
 
1235	}
1236
1237	return result;
1238}
1239EXPORT_SYMBOL_GPL(mmc_regulator_get_ocrmask);
1240
1241/**
1242 * mmc_regulator_set_ocr - set regulator to match host->ios voltage
1243 * @mmc: the host to regulate
1244 * @supply: regulator to use
1245 * @vdd_bit: zero for power off, else a bit number (host->ios.vdd)
1246 *
1247 * Returns zero on success, else negative errno.
1248 *
1249 * MMC host drivers may use this to enable or disable a regulator using
1250 * a particular supply voltage.  This would normally be called from the
1251 * set_ios() method.
1252 */
1253int mmc_regulator_set_ocr(struct mmc_host *mmc,
1254			struct regulator *supply,
1255			unsigned short vdd_bit)
1256{
1257	int			result = 0;
1258	int			min_uV, max_uV;
1259
1260	if (vdd_bit) {
1261		int		tmp;
1262		int		voltage;
1263
1264		/*
1265		 * REVISIT mmc_vddrange_to_ocrmask() may have set some
1266		 * bits this regulator doesn't quite support ... don't
1267		 * be too picky, most cards and regulators are OK with
1268		 * a 0.1V range goof (it's a small error percentage).
1269		 */
1270		tmp = vdd_bit - ilog2(MMC_VDD_165_195);
1271		if (tmp == 0) {
1272			min_uV = 1650 * 1000;
1273			max_uV = 1950 * 1000;
1274		} else {
1275			min_uV = 1900 * 1000 + tmp * 100 * 1000;
1276			max_uV = min_uV + 100 * 1000;
1277		}
1278
1279		/*
1280		 * If we're using a fixed/static regulator, don't call
1281		 * regulator_set_voltage; it would fail.
1282		 */
1283		voltage = regulator_get_voltage(supply);
1284
1285		if (!regulator_can_change_voltage(supply))
1286			min_uV = max_uV = voltage;
1287
1288		if (voltage < 0)
1289			result = voltage;
1290		else if (voltage < min_uV || voltage > max_uV)
1291			result = regulator_set_voltage(supply, min_uV, max_uV);
1292		else
1293			result = 0;
1294
1295		if (result == 0 && !mmc->regulator_enabled) {
1296			result = regulator_enable(supply);
1297			if (!result)
1298				mmc->regulator_enabled = true;
1299		}
1300	} else if (mmc->regulator_enabled) {
1301		result = regulator_disable(supply);
1302		if (result == 0)
1303			mmc->regulator_enabled = false;
1304	}
1305
1306	if (result)
1307		dev_err(mmc_dev(mmc),
1308			"could not set regulator OCR (%d)\n", result);
1309	return result;
1310}
1311EXPORT_SYMBOL_GPL(mmc_regulator_set_ocr);
1312
1313int mmc_regulator_get_supply(struct mmc_host *mmc)
1314{
1315	struct device *dev = mmc_dev(mmc);
1316	struct regulator *supply;
1317	int ret;
1318
1319	supply = devm_regulator_get(dev, "vmmc");
1320	mmc->supply.vmmc = supply;
1321	mmc->supply.vqmmc = devm_regulator_get_optional(dev, "vqmmc");
1322
1323	if (IS_ERR(supply))
1324		return PTR_ERR(supply);
1325
1326	ret = mmc_regulator_get_ocrmask(supply);
1327	if (ret > 0)
1328		mmc->ocr_avail = ret;
1329	else
1330		dev_warn(mmc_dev(mmc), "Failed getting OCR mask: %d\n", ret);
1331
1332	return 0;
1333}
1334EXPORT_SYMBOL_GPL(mmc_regulator_get_supply);
1335
1336#endif /* CONFIG_REGULATOR */
1337
1338/*
1339 * Mask off any voltages we don't support and select
1340 * the lowest voltage
1341 */
1342u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1343{
1344	int bit;
1345
1346	/*
1347	 * Sanity check the voltages that the card claims to
1348	 * support.
1349	 */
1350	if (ocr & 0x7F) {
1351		dev_warn(mmc_dev(host),
1352		"card claims to support voltages below defined range\n");
1353		ocr &= ~0x7F;
1354	}
1355
1356	ocr &= host->ocr_avail;
1357	if (!ocr) {
1358		dev_warn(mmc_dev(host), "no support for card's volts\n");
1359		return 0;
1360	}
1361
1362	if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) {
1363		bit = ffs(ocr) - 1;
1364		ocr &= 3 << bit;
1365		mmc_power_cycle(host, ocr);
1366	} else {
1367		bit = fls(ocr) - 1;
1368		ocr &= 3 << bit;
1369		if (bit != host->ios.vdd)
1370			dev_warn(mmc_dev(host), "exceeding card's volts\n");
1371	}
1372
1373	return ocr;
1374}
1375
1376int __mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
1377{
1378	int err = 0;
1379	int old_signal_voltage = host->ios.signal_voltage;
1380
1381	host->ios.signal_voltage = signal_voltage;
1382	if (host->ops->start_signal_voltage_switch) {
1383		mmc_host_clk_hold(host);
1384		err = host->ops->start_signal_voltage_switch(host, &host->ios);
1385		mmc_host_clk_release(host);
1386	}
1387
1388	if (err)
1389		host->ios.signal_voltage = old_signal_voltage;
1390
1391	return err;
1392
1393}
1394
1395int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage, u32 ocr)
 
 
 
 
 
 
 
 
 
 
 
1396{
1397	struct mmc_command cmd = {0};
1398	int err = 0;
1399	u32 clock;
1400
1401	BUG_ON(!host);
1402
1403	/*
1404	 * Send CMD11 only if the request is to switch the card to
1405	 * 1.8V signalling.
1406	 */
1407	if (signal_voltage == MMC_SIGNAL_VOLTAGE_330)
1408		return __mmc_set_signal_voltage(host, signal_voltage);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1409
1410	/*
1411	 * If we cannot switch voltages, return failure so the caller
1412	 * can continue without UHS mode
1413	 */
1414	if (!host->ops->start_signal_voltage_switch)
1415		return -EPERM;
1416	if (!host->ops->card_busy)
1417		pr_warning("%s: cannot verify signal voltage switch\n",
1418				mmc_hostname(host));
1419
1420	cmd.opcode = SD_SWITCH_VOLTAGE;
1421	cmd.arg = 0;
1422	cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1423
1424	err = mmc_wait_for_cmd(host, &cmd, 0);
1425	if (err)
1426		return err;
1427
1428	if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1429		return -EIO;
1430
1431	mmc_host_clk_hold(host);
1432	/*
1433	 * The card should drive cmd and dat[0:3] low immediately
1434	 * after the response of cmd11, but wait 1 ms to be sure
1435	 */
1436	mmc_delay(1);
1437	if (host->ops->card_busy && !host->ops->card_busy(host)) {
1438		err = -EAGAIN;
1439		goto power_cycle;
1440	}
1441	/*
1442	 * During a signal voltage level switch, the clock must be gated
1443	 * for 5 ms according to the SD spec
1444	 */
1445	clock = host->ios.clock;
1446	host->ios.clock = 0;
1447	mmc_set_ios(host);
1448
1449	if (__mmc_set_signal_voltage(host, signal_voltage)) {
1450		/*
1451		 * Voltages may not have been switched, but we've already
1452		 * sent CMD11, so a power cycle is required anyway
1453		 */
1454		err = -EAGAIN;
1455		goto power_cycle;
1456	}
1457
1458	/* Keep clock gated for at least 5 ms */
1459	mmc_delay(5);
1460	host->ios.clock = clock;
1461	mmc_set_ios(host);
1462
1463	/* Wait for at least 1 ms according to spec */
1464	mmc_delay(1);
1465
1466	/*
1467	 * Failure to switch is indicated by the card holding
1468	 * dat[0:3] low
1469	 */
1470	if (host->ops->card_busy && host->ops->card_busy(host))
1471		err = -EAGAIN;
1472
1473power_cycle:
1474	if (err) {
1475		pr_debug("%s: Signal voltage switch failed, "
1476			"power cycling card\n", mmc_hostname(host));
1477		mmc_power_cycle(host, ocr);
1478	}
1479
1480	mmc_host_clk_release(host);
1481
1482	return err;
1483}
1484
1485/*
1486 * Select timing parameters for host.
1487 */
1488void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1489{
1490	mmc_host_clk_hold(host);
1491	host->ios.timing = timing;
1492	mmc_set_ios(host);
1493	mmc_host_clk_release(host);
1494}
1495
1496/*
1497 * Select appropriate driver type for host.
1498 */
1499void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1500{
1501	mmc_host_clk_hold(host);
1502	host->ios.drv_type = drv_type;
1503	mmc_set_ios(host);
1504	mmc_host_clk_release(host);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1505}
1506
1507/*
1508 * Apply power to the MMC stack.  This is a two-stage process.
1509 * First, we enable power to the card without the clock running.
1510 * We then wait a bit for the power to stabilise.  Finally,
1511 * enable the bus drivers and clock to the card.
1512 *
1513 * We must _NOT_ enable the clock prior to power stablising.
1514 *
1515 * If a host does all the power sequencing itself, ignore the
1516 * initial MMC_POWER_UP stage.
1517 */
1518void mmc_power_up(struct mmc_host *host, u32 ocr)
1519{
1520	if (host->ios.power_mode == MMC_POWER_ON)
1521		return;
1522
1523	mmc_host_clk_hold(host);
1524
1525	host->ios.vdd = fls(ocr) - 1;
1526	if (mmc_host_is_spi(host))
1527		host->ios.chip_select = MMC_CS_HIGH;
1528	else
1529		host->ios.chip_select = MMC_CS_DONTCARE;
1530	host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
1531	host->ios.power_mode = MMC_POWER_UP;
1532	host->ios.bus_width = MMC_BUS_WIDTH_1;
1533	host->ios.timing = MMC_TIMING_LEGACY;
1534	mmc_set_ios(host);
1535
1536	/* Set signal voltage to 3.3V */
1537	__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330);
1538
1539	/*
1540	 * This delay should be sufficient to allow the power supply
1541	 * to reach the minimum voltage.
1542	 */
1543	mmc_delay(10);
 
 
1544
1545	host->ios.clock = host->f_init;
1546
1547	host->ios.power_mode = MMC_POWER_ON;
1548	mmc_set_ios(host);
1549
1550	/*
1551	 * This delay must be at least 74 clock sizes, or 1 ms, or the
1552	 * time required to reach a stable voltage.
1553	 */
1554	mmc_delay(10);
1555
1556	mmc_host_clk_release(host);
1557}
1558
1559void mmc_power_off(struct mmc_host *host)
1560{
1561	if (host->ios.power_mode == MMC_POWER_OFF)
1562		return;
1563
1564	mmc_host_clk_hold(host);
1565
1566	host->ios.clock = 0;
1567	host->ios.vdd = 0;
1568
1569	if (!mmc_host_is_spi(host)) {
1570		host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
1571		host->ios.chip_select = MMC_CS_DONTCARE;
1572	}
1573	host->ios.power_mode = MMC_POWER_OFF;
1574	host->ios.bus_width = MMC_BUS_WIDTH_1;
1575	host->ios.timing = MMC_TIMING_LEGACY;
1576	mmc_set_ios(host);
1577
1578	/*
1579	 * Some configurations, such as the 802.11 SDIO card in the OLPC
1580	 * XO-1.5, require a short delay after poweroff before the card
1581	 * can be successfully turned on again.
1582	 */
1583	mmc_delay(1);
1584
1585	mmc_host_clk_release(host);
1586}
1587
1588void mmc_power_cycle(struct mmc_host *host, u32 ocr)
1589{
1590	mmc_power_off(host);
1591	/* Wait at least 1 ms according to SD spec */
1592	mmc_delay(1);
1593	mmc_power_up(host, ocr);
1594}
1595
1596/*
1597 * Cleanup when the last reference to the bus operator is dropped.
1598 */
1599static void __mmc_release_bus(struct mmc_host *host)
1600{
1601	BUG_ON(!host);
1602	BUG_ON(host->bus_refs);
1603	BUG_ON(!host->bus_dead);
1604
1605	host->bus_ops = NULL;
1606}
1607
1608/*
1609 * Increase reference count of bus operator
1610 */
1611static inline void mmc_bus_get(struct mmc_host *host)
1612{
1613	unsigned long flags;
1614
1615	spin_lock_irqsave(&host->lock, flags);
1616	host->bus_refs++;
1617	spin_unlock_irqrestore(&host->lock, flags);
1618}
1619
1620/*
1621 * Decrease reference count of bus operator and free it if
1622 * it is the last reference.
1623 */
1624static inline void mmc_bus_put(struct mmc_host *host)
1625{
1626	unsigned long flags;
1627
1628	spin_lock_irqsave(&host->lock, flags);
1629	host->bus_refs--;
1630	if ((host->bus_refs == 0) && host->bus_ops)
1631		__mmc_release_bus(host);
1632	spin_unlock_irqrestore(&host->lock, flags);
1633}
1634
1635/*
1636 * Assign a mmc bus handler to a host. Only one bus handler may control a
1637 * host at any given time.
1638 */
1639void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1640{
1641	unsigned long flags;
1642
1643	BUG_ON(!host);
1644	BUG_ON(!ops);
1645
1646	WARN_ON(!host->claimed);
1647
1648	spin_lock_irqsave(&host->lock, flags);
1649
1650	BUG_ON(host->bus_ops);
1651	BUG_ON(host->bus_refs);
1652
1653	host->bus_ops = ops;
1654	host->bus_refs = 1;
1655	host->bus_dead = 0;
1656
1657	spin_unlock_irqrestore(&host->lock, flags);
1658}
1659
1660/*
1661 * Remove the current bus handler from a host.
1662 */
1663void mmc_detach_bus(struct mmc_host *host)
1664{
1665	unsigned long flags;
1666
1667	BUG_ON(!host);
1668
1669	WARN_ON(!host->claimed);
1670	WARN_ON(!host->bus_ops);
1671
1672	spin_lock_irqsave(&host->lock, flags);
1673
1674	host->bus_dead = 1;
1675
1676	spin_unlock_irqrestore(&host->lock, flags);
1677
1678	mmc_bus_put(host);
1679}
1680
1681static void _mmc_detect_change(struct mmc_host *host, unsigned long delay,
1682				bool cd_irq)
1683{
1684#ifdef CONFIG_MMC_DEBUG
1685	unsigned long flags;
1686	spin_lock_irqsave(&host->lock, flags);
1687	WARN_ON(host->removed);
1688	spin_unlock_irqrestore(&host->lock, flags);
1689#endif
1690
1691	/*
1692	 * If the device is configured as wakeup, we prevent a new sleep for
1693	 * 5 s to give provision for user space to consume the event.
 
1694	 */
1695	if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL) &&
1696		device_can_wakeup(mmc_dev(host)))
1697		pm_wakeup_event(mmc_dev(host), 5000);
1698
1699	host->detect_change = 1;
1700	mmc_schedule_delayed_work(&host->detect, delay);
1701}
1702
1703/**
1704 *	mmc_detect_change - process change of state on a MMC socket
1705 *	@host: host which changed state.
1706 *	@delay: optional delay to wait before detection (jiffies)
1707 *
1708 *	MMC drivers should call this when they detect a card has been
1709 *	inserted or removed. The MMC layer will confirm that any
1710 *	present card is still functional, and initialize any newly
1711 *	inserted.
1712 */
1713void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1714{
1715	_mmc_detect_change(host, delay, true);
1716}
1717EXPORT_SYMBOL(mmc_detect_change);
1718
1719void mmc_init_erase(struct mmc_card *card)
1720{
1721	unsigned int sz;
1722
1723	if (is_power_of_2(card->erase_size))
1724		card->erase_shift = ffs(card->erase_size) - 1;
1725	else
1726		card->erase_shift = 0;
1727
1728	/*
1729	 * It is possible to erase an arbitrarily large area of an SD or MMC
1730	 * card.  That is not desirable because it can take a long time
1731	 * (minutes) potentially delaying more important I/O, and also the
1732	 * timeout calculations become increasingly hugely over-estimated.
1733	 * Consequently, 'pref_erase' is defined as a guide to limit erases
1734	 * to that size and alignment.
1735	 *
1736	 * For SD cards that define Allocation Unit size, limit erases to one
1737	 * Allocation Unit at a time.  For MMC cards that define High Capacity
1738	 * Erase Size, whether it is switched on or not, limit to that size.
1739	 * Otherwise just have a stab at a good value.  For modern cards it
1740	 * will end up being 4MiB.  Note that if the value is too small, it
1741	 * can end up taking longer to erase.
1742	 */
1743	if (mmc_card_sd(card) && card->ssr.au) {
1744		card->pref_erase = card->ssr.au;
1745		card->erase_shift = ffs(card->ssr.au) - 1;
1746	} else if (card->ext_csd.hc_erase_size) {
1747		card->pref_erase = card->ext_csd.hc_erase_size;
1748	} else {
1749		sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1750		if (sz < 128)
1751			card->pref_erase = 512 * 1024 / 512;
1752		else if (sz < 512)
1753			card->pref_erase = 1024 * 1024 / 512;
1754		else if (sz < 1024)
1755			card->pref_erase = 2 * 1024 * 1024 / 512;
1756		else
1757			card->pref_erase = 4 * 1024 * 1024 / 512;
1758		if (card->pref_erase < card->erase_size)
1759			card->pref_erase = card->erase_size;
1760		else {
1761			sz = card->pref_erase % card->erase_size;
1762			if (sz)
1763				card->pref_erase += card->erase_size - sz;
1764		}
1765	}
 
1766}
1767
1768static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1769				          unsigned int arg, unsigned int qty)
1770{
1771	unsigned int erase_timeout;
1772
1773	if (arg == MMC_DISCARD_ARG ||
1774	    (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
1775		erase_timeout = card->ext_csd.trim_timeout;
1776	} else if (card->ext_csd.erase_group_def & 1) {
1777		/* High Capacity Erase Group Size uses HC timeouts */
1778		if (arg == MMC_TRIM_ARG)
1779			erase_timeout = card->ext_csd.trim_timeout;
1780		else
1781			erase_timeout = card->ext_csd.hc_erase_timeout;
1782	} else {
1783		/* CSD Erase Group Size uses write timeout */
1784		unsigned int mult = (10 << card->csd.r2w_factor);
1785		unsigned int timeout_clks = card->csd.tacc_clks * mult;
1786		unsigned int timeout_us;
1787
1788		/* Avoid overflow: e.g. tacc_ns=80000000 mult=1280 */
1789		if (card->csd.tacc_ns < 1000000)
1790			timeout_us = (card->csd.tacc_ns * mult) / 1000;
1791		else
1792			timeout_us = (card->csd.tacc_ns / 1000) * mult;
1793
1794		/*
1795		 * ios.clock is only a target.  The real clock rate might be
1796		 * less but not that much less, so fudge it by multiplying by 2.
1797		 */
1798		timeout_clks <<= 1;
1799		timeout_us += (timeout_clks * 1000) /
1800			      (mmc_host_clk_rate(card->host) / 1000);
1801
1802		erase_timeout = timeout_us / 1000;
1803
1804		/*
1805		 * Theoretically, the calculation could underflow so round up
1806		 * to 1ms in that case.
1807		 */
1808		if (!erase_timeout)
1809			erase_timeout = 1;
1810	}
1811
1812	/* Multiplier for secure operations */
1813	if (arg & MMC_SECURE_ARGS) {
1814		if (arg == MMC_SECURE_ERASE_ARG)
1815			erase_timeout *= card->ext_csd.sec_erase_mult;
1816		else
1817			erase_timeout *= card->ext_csd.sec_trim_mult;
1818	}
1819
1820	erase_timeout *= qty;
1821
1822	/*
1823	 * Ensure at least a 1 second timeout for SPI as per
1824	 * 'mmc_set_data_timeout()'
1825	 */
1826	if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1827		erase_timeout = 1000;
1828
1829	return erase_timeout;
1830}
1831
1832static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1833					 unsigned int arg,
1834					 unsigned int qty)
1835{
1836	unsigned int erase_timeout;
1837
 
 
 
 
 
 
1838	if (card->ssr.erase_timeout) {
1839		/* Erase timeout specified in SD Status Register (SSR) */
1840		erase_timeout = card->ssr.erase_timeout * qty +
1841				card->ssr.erase_offset;
1842	} else {
1843		/*
1844		 * Erase timeout not specified in SD Status Register (SSR) so
1845		 * use 250ms per write block.
1846		 */
1847		erase_timeout = 250 * qty;
1848	}
1849
1850	/* Must not be less than 1 second */
1851	if (erase_timeout < 1000)
1852		erase_timeout = 1000;
1853
1854	return erase_timeout;
1855}
1856
1857static unsigned int mmc_erase_timeout(struct mmc_card *card,
1858				      unsigned int arg,
1859				      unsigned int qty)
1860{
1861	if (mmc_card_sd(card))
1862		return mmc_sd_erase_timeout(card, arg, qty);
1863	else
1864		return mmc_mmc_erase_timeout(card, arg, qty);
1865}
1866
1867static int mmc_do_erase(struct mmc_card *card, unsigned int from,
1868			unsigned int to, unsigned int arg)
1869{
1870	struct mmc_command cmd = {0};
1871	unsigned int qty = 0;
1872	unsigned long timeout;
1873	int err;
1874
 
 
1875	/*
1876	 * qty is used to calculate the erase timeout which depends on how many
1877	 * erase groups (or allocation units in SD terminology) are affected.
1878	 * We count erasing part of an erase group as one erase group.
1879	 * For SD, the allocation units are always a power of 2.  For MMC, the
1880	 * erase group size is almost certainly also power of 2, but it does not
1881	 * seem to insist on that in the JEDEC standard, so we fall back to
1882	 * division in that case.  SD may not specify an allocation unit size,
1883	 * in which case the timeout is based on the number of write blocks.
1884	 *
1885	 * Note that the timeout for secure trim 2 will only be correct if the
1886	 * number of erase groups specified is the same as the total of all
1887	 * preceding secure trim 1 commands.  Since the power may have been
1888	 * lost since the secure trim 1 commands occurred, it is generally
1889	 * impossible to calculate the secure trim 2 timeout correctly.
1890	 */
1891	if (card->erase_shift)
1892		qty += ((to >> card->erase_shift) -
1893			(from >> card->erase_shift)) + 1;
1894	else if (mmc_card_sd(card))
1895		qty += to - from + 1;
1896	else
1897		qty += ((to / card->erase_size) -
1898			(from / card->erase_size)) + 1;
1899
1900	if (!mmc_card_blockaddr(card)) {
1901		from <<= 9;
1902		to <<= 9;
1903	}
1904
1905	if (mmc_card_sd(card))
1906		cmd.opcode = SD_ERASE_WR_BLK_START;
1907	else
1908		cmd.opcode = MMC_ERASE_GROUP_START;
1909	cmd.arg = from;
1910	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1911	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1912	if (err) {
1913		pr_err("mmc_erase: group start error %d, "
1914		       "status %#x\n", err, cmd.resp[0]);
1915		err = -EIO;
1916		goto out;
1917	}
1918
1919	memset(&cmd, 0, sizeof(struct mmc_command));
1920	if (mmc_card_sd(card))
1921		cmd.opcode = SD_ERASE_WR_BLK_END;
1922	else
1923		cmd.opcode = MMC_ERASE_GROUP_END;
1924	cmd.arg = to;
1925	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1926	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1927	if (err) {
1928		pr_err("mmc_erase: group end error %d, status %#x\n",
1929		       err, cmd.resp[0]);
1930		err = -EIO;
1931		goto out;
1932	}
1933
1934	memset(&cmd, 0, sizeof(struct mmc_command));
1935	cmd.opcode = MMC_ERASE;
1936	cmd.arg = arg;
1937	cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1938	cmd.busy_timeout = mmc_erase_timeout(card, arg, qty);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1939	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1940	if (err) {
1941		pr_err("mmc_erase: erase error %d, status %#x\n",
1942		       err, cmd.resp[0]);
1943		err = -EIO;
1944		goto out;
1945	}
1946
1947	if (mmc_host_is_spi(card->host))
1948		goto out;
1949
1950	timeout = jiffies + msecs_to_jiffies(MMC_CORE_TIMEOUT_MS);
1951	do {
1952		memset(&cmd, 0, sizeof(struct mmc_command));
1953		cmd.opcode = MMC_SEND_STATUS;
1954		cmd.arg = card->rca << 16;
1955		cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1956		/* Do not retry else we can't see errors */
1957		err = mmc_wait_for_cmd(card->host, &cmd, 0);
1958		if (err || (cmd.resp[0] & 0xFDF92000)) {
1959			pr_err("error %d requesting status %#x\n",
1960				err, cmd.resp[0]);
1961			err = -EIO;
1962			goto out;
1963		}
1964
1965		/* Timeout if the device never becomes ready for data and
1966		 * never leaves the program state.
1967		 */
1968		if (time_after(jiffies, timeout)) {
1969			pr_err("%s: Card stuck in programming state! %s\n",
1970				mmc_hostname(card->host), __func__);
1971			err =  -EIO;
1972			goto out;
1973		}
1974
1975	} while (!(cmd.resp[0] & R1_READY_FOR_DATA) ||
1976		 (R1_CURRENT_STATE(cmd.resp[0]) == R1_STATE_PRG));
1977out:
 
1978	return err;
1979}
1980
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1981/**
1982 * mmc_erase - erase sectors.
1983 * @card: card to erase
1984 * @from: first sector to erase
1985 * @nr: number of sectors to erase
1986 * @arg: erase command argument (SD supports only %MMC_ERASE_ARG)
1987 *
1988 * Caller must claim host before calling this function.
1989 */
1990int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
1991	      unsigned int arg)
1992{
1993	unsigned int rem, to = from + nr;
 
1994
1995	if (!(card->host->caps & MMC_CAP_ERASE) ||
1996	    !(card->csd.cmdclass & CCC_ERASE))
1997		return -EOPNOTSUPP;
1998
1999	if (!card->erase_size)
2000		return -EOPNOTSUPP;
2001
2002	if (mmc_card_sd(card) && arg != MMC_ERASE_ARG)
2003		return -EOPNOTSUPP;
2004
2005	if ((arg & MMC_SECURE_ARGS) &&
2006	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
2007		return -EOPNOTSUPP;
2008
2009	if ((arg & MMC_TRIM_ARGS) &&
2010	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
2011		return -EOPNOTSUPP;
2012
2013	if (arg == MMC_SECURE_ERASE_ARG) {
2014		if (from % card->erase_size || nr % card->erase_size)
2015			return -EINVAL;
2016	}
2017
2018	if (arg == MMC_ERASE_ARG) {
2019		rem = from % card->erase_size;
2020		if (rem) {
2021			rem = card->erase_size - rem;
2022			from += rem;
2023			if (nr > rem)
2024				nr -= rem;
2025			else
2026				return 0;
2027		}
2028		rem = nr % card->erase_size;
2029		if (rem)
2030			nr -= rem;
2031	}
2032
2033	if (nr == 0)
2034		return 0;
2035
2036	to = from + nr;
2037
2038	if (to <= from)
2039		return -EINVAL;
2040
2041	/* 'from' and 'to' are inclusive */
2042	to -= 1;
2043
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2044	return mmc_do_erase(card, from, to, arg);
2045}
2046EXPORT_SYMBOL(mmc_erase);
2047
2048int mmc_can_erase(struct mmc_card *card)
2049{
2050	if ((card->host->caps & MMC_CAP_ERASE) &&
2051	    (card->csd.cmdclass & CCC_ERASE) && card->erase_size)
2052		return 1;
2053	return 0;
2054}
2055EXPORT_SYMBOL(mmc_can_erase);
2056
2057int mmc_can_trim(struct mmc_card *card)
2058{
2059	if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN)
 
2060		return 1;
2061	return 0;
2062}
2063EXPORT_SYMBOL(mmc_can_trim);
2064
2065int mmc_can_discard(struct mmc_card *card)
2066{
2067	/*
2068	 * As there's no way to detect the discard support bit at v4.5
2069	 * use the s/w feature support filed.
2070	 */
2071	if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
2072		return 1;
2073	return 0;
2074}
2075EXPORT_SYMBOL(mmc_can_discard);
2076
2077int mmc_can_sanitize(struct mmc_card *card)
2078{
2079	if (!mmc_can_trim(card) && !mmc_can_erase(card))
2080		return 0;
2081	if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
2082		return 1;
2083	return 0;
2084}
2085EXPORT_SYMBOL(mmc_can_sanitize);
2086
2087int mmc_can_secure_erase_trim(struct mmc_card *card)
2088{
2089	if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN)
 
2090		return 1;
2091	return 0;
2092}
2093EXPORT_SYMBOL(mmc_can_secure_erase_trim);
2094
2095int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
2096			    unsigned int nr)
2097{
2098	if (!card->erase_size)
2099		return 0;
2100	if (from % card->erase_size || nr % card->erase_size)
2101		return 0;
2102	return 1;
2103}
2104EXPORT_SYMBOL(mmc_erase_group_aligned);
2105
2106static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
2107					    unsigned int arg)
2108{
2109	struct mmc_host *host = card->host;
2110	unsigned int max_discard, x, y, qty = 0, max_qty, timeout;
2111	unsigned int last_timeout = 0;
 
 
2112
2113	if (card->erase_shift)
2114		max_qty = UINT_MAX >> card->erase_shift;
2115	else if (mmc_card_sd(card))
 
2116		max_qty = UINT_MAX;
2117	else
 
2118		max_qty = UINT_MAX / card->erase_size;
 
 
2119
2120	/* Find the largest qty with an OK timeout */
 
 
 
 
 
 
 
 
 
 
 
 
2121	do {
2122		y = 0;
2123		for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
2124			timeout = mmc_erase_timeout(card, arg, qty + x);
2125			if (timeout > host->max_busy_timeout)
 
2126				break;
 
2127			if (timeout < last_timeout)
2128				break;
2129			last_timeout = timeout;
2130			y = x;
2131		}
2132		qty += y;
2133	} while (y);
2134
2135	if (!qty)
2136		return 0;
2137
 
 
 
 
 
 
 
 
 
 
2138	if (qty == 1)
2139		return 1;
 
 
2140
2141	/* Convert qty to sectors */
2142	if (card->erase_shift)
2143		max_discard = --qty << card->erase_shift;
2144	else if (mmc_card_sd(card))
2145		max_discard = qty;
2146	else
2147		max_discard = --qty * card->erase_size;
2148
2149	return max_discard;
2150}
2151
2152unsigned int mmc_calc_max_discard(struct mmc_card *card)
2153{
2154	struct mmc_host *host = card->host;
2155	unsigned int max_discard, max_trim;
2156
2157	if (!host->max_busy_timeout)
2158		return UINT_MAX;
2159
2160	/*
2161	 * Without erase_group_def set, MMC erase timeout depends on clock
2162	 * frequence which can change.  In that case, the best choice is
2163	 * just the preferred erase size.
2164	 */
2165	if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
2166		return card->pref_erase;
2167
2168	max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
2169	if (mmc_can_trim(card)) {
2170		max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
2171		if (max_trim < max_discard)
2172			max_discard = max_trim;
2173	} else if (max_discard < card->erase_size) {
2174		max_discard = 0;
2175	}
2176	pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
2177		 mmc_hostname(host), max_discard, host->max_busy_timeout);
 
2178	return max_discard;
2179}
2180EXPORT_SYMBOL(mmc_calc_max_discard);
2181
 
 
 
 
 
 
2182int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
2183{
2184	struct mmc_command cmd = {0};
2185
2186	if (mmc_card_blockaddr(card) || mmc_card_ddr_mode(card))
 
2187		return 0;
2188
2189	cmd.opcode = MMC_SET_BLOCKLEN;
2190	cmd.arg = blocklen;
2191	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2192	return mmc_wait_for_cmd(card->host, &cmd, 5);
2193}
2194EXPORT_SYMBOL(mmc_set_blocklen);
2195
2196int mmc_set_blockcount(struct mmc_card *card, unsigned int blockcount,
2197			bool is_rel_write)
2198{
2199	struct mmc_command cmd = {0};
2200
2201	cmd.opcode = MMC_SET_BLOCK_COUNT;
2202	cmd.arg = blockcount & 0x0000FFFF;
2203	if (is_rel_write)
2204		cmd.arg |= 1 << 31;
2205	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2206	return mmc_wait_for_cmd(card->host, &cmd, 5);
2207}
2208EXPORT_SYMBOL(mmc_set_blockcount);
2209
2210static void mmc_hw_reset_for_init(struct mmc_host *host)
2211{
2212	if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
2213		return;
2214	mmc_host_clk_hold(host);
2215	host->ops->hw_reset(host);
2216	mmc_host_clk_release(host);
2217}
2218
2219int mmc_can_reset(struct mmc_card *card)
2220{
2221	u8 rst_n_function;
2222
2223	if (!mmc_card_mmc(card))
2224		return 0;
2225	rst_n_function = card->ext_csd.rst_n_function;
2226	if ((rst_n_function & EXT_CSD_RST_N_EN_MASK) != EXT_CSD_RST_N_ENABLED)
2227		return 0;
2228	return 1;
2229}
2230EXPORT_SYMBOL(mmc_can_reset);
2231
2232static int mmc_do_hw_reset(struct mmc_host *host, int check)
2233{
2234	struct mmc_card *card = host->card;
2235
2236	if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
2237		return -EOPNOTSUPP;
 
2238
2239	if (!card)
2240		return -EINVAL;
2241
2242	if (!mmc_can_reset(card))
2243		return -EOPNOTSUPP;
 
2244
2245	mmc_host_clk_hold(host);
2246	mmc_set_clock(host, host->f_init);
 
2247
2248	host->ops->hw_reset(host);
 
 
2249
2250	/* If the reset has happened, then a status command will fail */
2251	if (check) {
2252		struct mmc_command cmd = {0};
2253		int err;
2254
2255		cmd.opcode = MMC_SEND_STATUS;
2256		if (!mmc_host_is_spi(card->host))
2257			cmd.arg = card->rca << 16;
2258		cmd.flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC;
2259		err = mmc_wait_for_cmd(card->host, &cmd, 0);
2260		if (!err) {
2261			mmc_host_clk_release(host);
2262			return -ENOSYS;
2263		}
2264	}
2265
2266	host->card->state &= ~(MMC_STATE_HIGHSPEED | MMC_STATE_HIGHSPEED_DDR);
2267	if (mmc_host_is_spi(host)) {
2268		host->ios.chip_select = MMC_CS_HIGH;
2269		host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
2270	} else {
2271		host->ios.chip_select = MMC_CS_DONTCARE;
2272		host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
2273	}
2274	host->ios.bus_width = MMC_BUS_WIDTH_1;
2275	host->ios.timing = MMC_TIMING_LEGACY;
2276	mmc_set_ios(host);
2277
2278	mmc_host_clk_release(host);
 
2279
2280	return host->bus_ops->power_restore(host);
2281}
 
2282
2283int mmc_hw_reset(struct mmc_host *host)
2284{
2285	return mmc_do_hw_reset(host, 0);
2286}
2287EXPORT_SYMBOL(mmc_hw_reset);
2288
2289int mmc_hw_reset_check(struct mmc_host *host)
2290{
2291	return mmc_do_hw_reset(host, 1);
2292}
2293EXPORT_SYMBOL(mmc_hw_reset_check);
2294
2295static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
2296{
2297	host->f_init = freq;
2298
2299#ifdef CONFIG_MMC_DEBUG
2300	pr_info("%s: %s: trying to init card at %u Hz\n",
2301		mmc_hostname(host), __func__, host->f_init);
2302#endif
2303	mmc_power_up(host, host->ocr_avail);
2304
2305	/*
2306	 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2307	 * do a hardware reset if possible.
2308	 */
2309	mmc_hw_reset_for_init(host);
2310
2311	/*
2312	 * sdio_reset sends CMD52 to reset card.  Since we do not know
2313	 * if the card is being re-initialized, just send it.  CMD52
2314	 * should be ignored by SD/eMMC cards.
 
2315	 */
2316	sdio_reset(host);
 
 
2317	mmc_go_idle(host);
2318
2319	mmc_send_if_cond(host, host->ocr_avail);
 
2320
2321	/* Order's important: probe SDIO, then SD, then MMC */
2322	if (!mmc_attach_sdio(host))
2323		return 0;
2324	if (!mmc_attach_sd(host))
2325		return 0;
2326	if (!mmc_attach_mmc(host))
2327		return 0;
 
 
 
 
 
2328
2329	mmc_power_off(host);
2330	return -EIO;
2331}
2332
2333int _mmc_detect_card_removed(struct mmc_host *host)
2334{
2335	int ret;
2336
2337	if (host->caps & MMC_CAP_NONREMOVABLE)
2338		return 0;
2339
2340	if (!host->card || mmc_card_removed(host->card))
2341		return 1;
2342
2343	ret = host->bus_ops->alive(host);
2344
2345	/*
2346	 * Card detect status and alive check may be out of sync if card is
2347	 * removed slowly, when card detect switch changes while card/slot
2348	 * pads are still contacted in hardware (refer to "SD Card Mechanical
2349	 * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2350	 * detect work 200ms later for this case.
2351	 */
2352	if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) {
2353		mmc_detect_change(host, msecs_to_jiffies(200));
2354		pr_debug("%s: card removed too slowly\n", mmc_hostname(host));
2355	}
2356
2357	if (ret) {
2358		mmc_card_set_removed(host->card);
2359		pr_debug("%s: card remove detected\n", mmc_hostname(host));
2360	}
2361
2362	return ret;
2363}
2364
2365int mmc_detect_card_removed(struct mmc_host *host)
2366{
2367	struct mmc_card *card = host->card;
2368	int ret;
2369
2370	WARN_ON(!host->claimed);
2371
2372	if (!card)
2373		return 1;
2374
 
 
 
2375	ret = mmc_card_removed(card);
2376	/*
2377	 * The card will be considered unchanged unless we have been asked to
2378	 * detect a change or host requires polling to provide card detection.
2379	 */
2380	if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL))
2381		return ret;
2382
2383	host->detect_change = 0;
2384	if (!ret) {
2385		ret = _mmc_detect_card_removed(host);
2386		if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) {
2387			/*
2388			 * Schedule a detect work as soon as possible to let a
2389			 * rescan handle the card removal.
2390			 */
2391			cancel_delayed_work(&host->detect);
2392			_mmc_detect_change(host, 0, false);
2393		}
2394	}
2395
2396	return ret;
2397}
2398EXPORT_SYMBOL(mmc_detect_card_removed);
2399
2400void mmc_rescan(struct work_struct *work)
2401{
2402	struct mmc_host *host =
2403		container_of(work, struct mmc_host, detect.work);
2404	int i;
2405
2406	if (host->rescan_disable)
2407		return;
2408
2409	/* If there is a non-removable card registered, only scan once */
2410	if ((host->caps & MMC_CAP_NONREMOVABLE) && host->rescan_entered)
2411		return;
2412	host->rescan_entered = 1;
2413
 
 
 
 
 
 
 
2414	mmc_bus_get(host);
2415
2416	/*
2417	 * if there is a _removable_ card registered, check whether it is
2418	 * still present
2419	 */
2420	if (host->bus_ops && !host->bus_dead
2421	    && !(host->caps & MMC_CAP_NONREMOVABLE))
2422		host->bus_ops->detect(host);
2423
2424	host->detect_change = 0;
2425
2426	/*
2427	 * Let mmc_bus_put() free the bus/bus_ops if we've found that
2428	 * the card is no longer present.
2429	 */
2430	mmc_bus_put(host);
2431	mmc_bus_get(host);
2432
2433	/* if there still is a card present, stop here */
2434	if (host->bus_ops != NULL) {
2435		mmc_bus_put(host);
2436		goto out;
2437	}
2438
2439	/*
2440	 * Only we can add a new handler, so it's safe to
2441	 * release the lock here.
2442	 */
2443	mmc_bus_put(host);
2444
2445	if (!(host->caps & MMC_CAP_NONREMOVABLE) && host->ops->get_cd &&
 
2446			host->ops->get_cd(host) == 0) {
2447		mmc_claim_host(host);
2448		mmc_power_off(host);
2449		mmc_release_host(host);
2450		goto out;
2451	}
2452
2453	mmc_claim_host(host);
2454	for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2455		if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min)))
 
 
 
 
 
 
2456			break;
2457		if (freqs[i] <= host->f_min)
2458			break;
2459	}
2460	mmc_release_host(host);
2461
2462 out:
2463	if (host->caps & MMC_CAP_NEEDS_POLL)
2464		mmc_schedule_delayed_work(&host->detect, HZ);
2465}
2466
2467void mmc_start_host(struct mmc_host *host)
2468{
2469	host->f_init = max(freqs[0], host->f_min);
2470	host->rescan_disable = 0;
2471	if (host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP)
2472		mmc_power_off(host);
2473	else
2474		mmc_power_up(host, host->ocr_avail);
 
 
 
2475	mmc_gpiod_request_cd_irq(host);
2476	_mmc_detect_change(host, 0, false);
2477}
2478
2479void mmc_stop_host(struct mmc_host *host)
2480{
2481#ifdef CONFIG_MMC_DEBUG
2482	unsigned long flags;
2483	spin_lock_irqsave(&host->lock, flags);
2484	host->removed = 1;
2485	spin_unlock_irqrestore(&host->lock, flags);
2486#endif
2487	if (host->slot.cd_irq >= 0)
2488		disable_irq(host->slot.cd_irq);
 
2489
2490	host->rescan_disable = 1;
2491	cancel_delayed_work_sync(&host->detect);
2492	mmc_flush_scheduled_work();
2493
2494	/* clear pm flags now and let card drivers set them as needed */
2495	host->pm_flags = 0;
2496
2497	mmc_bus_get(host);
2498	if (host->bus_ops && !host->bus_dead) {
2499		/* Calling bus_ops->remove() with a claimed host can deadlock */
2500		host->bus_ops->remove(host);
2501		mmc_claim_host(host);
2502		mmc_detach_bus(host);
2503		mmc_power_off(host);
2504		mmc_release_host(host);
2505		mmc_bus_put(host);
2506		return;
2507	}
2508	mmc_bus_put(host);
2509
2510	BUG_ON(host->card);
2511
2512	mmc_power_off(host);
 
2513}
2514
2515int mmc_power_save_host(struct mmc_host *host)
2516{
2517	int ret = 0;
2518
2519#ifdef CONFIG_MMC_DEBUG
2520	pr_info("%s: %s: powering down\n", mmc_hostname(host), __func__);
2521#endif
2522
2523	mmc_bus_get(host);
2524
2525	if (!host->bus_ops || host->bus_dead) {
2526		mmc_bus_put(host);
2527		return -EINVAL;
2528	}
2529
2530	if (host->bus_ops->power_save)
2531		ret = host->bus_ops->power_save(host);
2532
2533	mmc_bus_put(host);
2534
2535	mmc_power_off(host);
2536
2537	return ret;
2538}
2539EXPORT_SYMBOL(mmc_power_save_host);
2540
2541int mmc_power_restore_host(struct mmc_host *host)
2542{
2543	int ret;
2544
2545#ifdef CONFIG_MMC_DEBUG
2546	pr_info("%s: %s: powering up\n", mmc_hostname(host), __func__);
2547#endif
2548
2549	mmc_bus_get(host);
2550
2551	if (!host->bus_ops || host->bus_dead) {
2552		mmc_bus_put(host);
2553		return -EINVAL;
2554	}
2555
2556	mmc_power_up(host, host->card->ocr);
2557	ret = host->bus_ops->power_restore(host);
2558
2559	mmc_bus_put(host);
2560
2561	return ret;
2562}
2563EXPORT_SYMBOL(mmc_power_restore_host);
2564
2565/*
2566 * Flush the cache to the non-volatile storage.
2567 */
2568int mmc_flush_cache(struct mmc_card *card)
2569{
2570	int err = 0;
2571
2572	if (mmc_card_mmc(card) &&
2573			(card->ext_csd.cache_size > 0) &&
2574			(card->ext_csd.cache_ctrl & 1)) {
2575		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
2576				EXT_CSD_FLUSH_CACHE, 1, 0);
2577		if (err)
2578			pr_err("%s: cache flush error %d\n",
2579					mmc_hostname(card->host), err);
2580	}
2581
2582	return err;
2583}
2584EXPORT_SYMBOL(mmc_flush_cache);
2585
2586#ifdef CONFIG_PM
2587
2588/* Do the card removal on suspend if card is assumed removeable
2589 * Do that in pm notifier while userspace isn't yet frozen, so we will be able
2590   to sync the card.
2591*/
2592int mmc_pm_notify(struct notifier_block *notify_block,
2593					unsigned long mode, void *unused)
2594{
2595	struct mmc_host *host = container_of(
2596		notify_block, struct mmc_host, pm_notify);
2597	unsigned long flags;
2598	int err = 0;
2599
2600	switch (mode) {
2601	case PM_HIBERNATION_PREPARE:
2602	case PM_SUSPEND_PREPARE:
 
2603		spin_lock_irqsave(&host->lock, flags);
2604		host->rescan_disable = 1;
2605		spin_unlock_irqrestore(&host->lock, flags);
2606		cancel_delayed_work_sync(&host->detect);
2607
2608		if (!host->bus_ops)
2609			break;
2610
2611		/* Validate prerequisites for suspend */
2612		if (host->bus_ops->pre_suspend)
2613			err = host->bus_ops->pre_suspend(host);
2614		if (!err)
2615			break;
2616
 
 
 
 
 
 
 
 
2617		/* Calling bus_ops->remove() with a claimed host can deadlock */
2618		host->bus_ops->remove(host);
2619		mmc_claim_host(host);
2620		mmc_detach_bus(host);
2621		mmc_power_off(host);
2622		mmc_release_host(host);
2623		host->pm_flags = 0;
2624		break;
2625
2626	case PM_POST_SUSPEND:
2627	case PM_POST_HIBERNATION:
2628	case PM_POST_RESTORE:
2629
2630		spin_lock_irqsave(&host->lock, flags);
2631		host->rescan_disable = 0;
2632		spin_unlock_irqrestore(&host->lock, flags);
2633		_mmc_detect_change(host, 0, false);
2634
2635	}
2636
2637	return 0;
2638}
2639#endif
2640
2641/**
2642 * mmc_init_context_info() - init synchronization context
2643 * @host: mmc host
2644 *
2645 * Init struct context_info needed to implement asynchronous
2646 * request mechanism, used by mmc core, host driver and mmc requests
2647 * supplier.
2648 */
2649void mmc_init_context_info(struct mmc_host *host)
2650{
2651	spin_lock_init(&host->context_info.lock);
2652	host->context_info.is_new_req = false;
2653	host->context_info.is_done_rcv = false;
2654	host->context_info.is_waiting_last_req = false;
2655	init_waitqueue_head(&host->context_info.wait);
2656}
 
2657
2658static int __init mmc_init(void)
2659{
2660	int ret;
2661
2662	workqueue = alloc_ordered_workqueue("kmmcd", 0);
2663	if (!workqueue)
2664		return -ENOMEM;
2665
2666	ret = mmc_register_bus();
2667	if (ret)
2668		goto destroy_workqueue;
2669
2670	ret = mmc_register_host_class();
2671	if (ret)
2672		goto unregister_bus;
2673
2674	ret = sdio_register_bus();
2675	if (ret)
2676		goto unregister_host_class;
2677
2678	return 0;
2679
2680unregister_host_class:
2681	mmc_unregister_host_class();
2682unregister_bus:
2683	mmc_unregister_bus();
2684destroy_workqueue:
2685	destroy_workqueue(workqueue);
2686
2687	return ret;
2688}
2689
2690static void __exit mmc_exit(void)
2691{
2692	sdio_unregister_bus();
2693	mmc_unregister_host_class();
2694	mmc_unregister_bus();
2695	destroy_workqueue(workqueue);
2696}
2697
2698subsys_initcall(mmc_init);
2699module_exit(mmc_exit);
2700
2701MODULE_LICENSE("GPL");