Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * PowerMac G5 SMU driver
   4 *
   5 * Copyright 2004 J. Mayer <l_indien@magic.fr>
   6 * Copyright 2005 Benjamin Herrenschmidt, IBM Corp.
 
 
   7 */
   8
   9/*
  10 * TODO:
  11 *  - maybe add timeout to commands ?
  12 *  - blocking version of time functions
  13 *  - polling version of i2c commands (including timer that works with
  14 *    interrupts off)
  15 *  - maybe avoid some data copies with i2c by directly using the smu cmd
  16 *    buffer and a lower level internal interface
  17 *  - understand SMU -> CPU events and implement reception of them via
  18 *    the userland interface
  19 */
  20
  21#include <linux/types.h>
  22#include <linux/kernel.h>
  23#include <linux/device.h>
  24#include <linux/dmapool.h>
  25#include <linux/memblock.h>
  26#include <linux/vmalloc.h>
  27#include <linux/highmem.h>
  28#include <linux/jiffies.h>
  29#include <linux/interrupt.h>
  30#include <linux/rtc.h>
  31#include <linux/completion.h>
  32#include <linux/miscdevice.h>
  33#include <linux/delay.h>
  34#include <linux/poll.h>
  35#include <linux/mutex.h>
  36#include <linux/of_device.h>
  37#include <linux/of_irq.h>
  38#include <linux/of_platform.h>
  39#include <linux/slab.h>
  40#include <linux/sched/signal.h>
  41
  42#include <asm/byteorder.h>
  43#include <asm/io.h>
  44#include <asm/prom.h>
  45#include <asm/machdep.h>
  46#include <asm/pmac_feature.h>
  47#include <asm/smu.h>
  48#include <asm/sections.h>
  49#include <linux/uaccess.h>
  50
  51#define VERSION "0.7"
  52#define AUTHOR  "(c) 2005 Benjamin Herrenschmidt, IBM Corp."
  53
  54#undef DEBUG_SMU
  55
  56#ifdef DEBUG_SMU
  57#define DPRINTK(fmt, args...) do { printk(KERN_DEBUG fmt , ##args); } while (0)
  58#else
  59#define DPRINTK(fmt, args...) do { } while (0)
  60#endif
  61
  62/*
  63 * This is the command buffer passed to the SMU hardware
  64 */
  65#define SMU_MAX_DATA	254
  66
  67struct smu_cmd_buf {
  68	u8 cmd;
  69	u8 length;
  70	u8 data[SMU_MAX_DATA];
  71};
  72
  73struct smu_device {
  74	spinlock_t		lock;
  75	struct device_node	*of_node;
  76	struct platform_device	*of_dev;
  77	int			doorbell;	/* doorbell gpio */
  78	u32 __iomem		*db_buf;	/* doorbell buffer */
  79	struct device_node	*db_node;
  80	unsigned int		db_irq;
  81	int			msg;
  82	struct device_node	*msg_node;
  83	unsigned int		msg_irq;
  84	struct smu_cmd_buf	*cmd_buf;	/* command buffer virtual */
  85	u32			cmd_buf_abs;	/* command buffer absolute */
  86	struct list_head	cmd_list;
  87	struct smu_cmd		*cmd_cur;	/* pending command */
  88	int			broken_nap;
  89	struct list_head	cmd_i2c_list;
  90	struct smu_i2c_cmd	*cmd_i2c_cur;	/* pending i2c command */
  91	struct timer_list	i2c_timer;
  92};
  93
  94/*
  95 * I don't think there will ever be more than one SMU, so
  96 * for now, just hard code that
  97 */
  98static DEFINE_MUTEX(smu_mutex);
  99static struct smu_device	*smu;
 100static DEFINE_MUTEX(smu_part_access);
 101static int smu_irq_inited;
 102static unsigned long smu_cmdbuf_abs;
 103
 104static void smu_i2c_retry(struct timer_list *t);
 105
 106/*
 107 * SMU driver low level stuff
 108 */
 109
 110static void smu_start_cmd(void)
 111{
 112	unsigned long faddr, fend;
 113	struct smu_cmd *cmd;
 114
 115	if (list_empty(&smu->cmd_list))
 116		return;
 117
 118	/* Fetch first command in queue */
 119	cmd = list_entry(smu->cmd_list.next, struct smu_cmd, link);
 120	smu->cmd_cur = cmd;
 121	list_del(&cmd->link);
 122
 123	DPRINTK("SMU: starting cmd %x, %d bytes data\n", cmd->cmd,
 124		cmd->data_len);
 125	DPRINTK("SMU: data buffer: %8ph\n", cmd->data_buf);
 126
 127	/* Fill the SMU command buffer */
 128	smu->cmd_buf->cmd = cmd->cmd;
 129	smu->cmd_buf->length = cmd->data_len;
 130	memcpy(smu->cmd_buf->data, cmd->data_buf, cmd->data_len);
 131
 132	/* Flush command and data to RAM */
 133	faddr = (unsigned long)smu->cmd_buf;
 134	fend = faddr + smu->cmd_buf->length + 2;
 135	flush_dcache_range(faddr, fend);
 136
 137
 138	/* We also disable NAP mode for the duration of the command
 139	 * on U3 based machines.
 140	 * This is slightly racy as it can be written back to 1 by a sysctl
 141	 * but that never happens in practice. There seem to be an issue with
 142	 * U3 based machines such as the iMac G5 where napping for the
 143	 * whole duration of the command prevents the SMU from fetching it
 144	 * from memory. This might be related to the strange i2c based
 145	 * mechanism the SMU uses to access memory.
 146	 */
 147	if (smu->broken_nap)
 148		powersave_nap = 0;
 149
 150	/* This isn't exactly a DMA mapping here, I suspect
 151	 * the SMU is actually communicating with us via i2c to the
 152	 * northbridge or the CPU to access RAM.
 153	 */
 154	writel(smu->cmd_buf_abs, smu->db_buf);
 155
 156	/* Ring the SMU doorbell */
 157	pmac_do_feature_call(PMAC_FTR_WRITE_GPIO, NULL, smu->doorbell, 4);
 158}
 159
 160
 161static irqreturn_t smu_db_intr(int irq, void *arg)
 162{
 163	unsigned long flags;
 164	struct smu_cmd *cmd;
 165	void (*done)(struct smu_cmd *cmd, void *misc) = NULL;
 166	void *misc = NULL;
 167	u8 gpio;
 168	int rc = 0;
 169
 170	/* SMU completed the command, well, we hope, let's make sure
 171	 * of it
 172	 */
 173	spin_lock_irqsave(&smu->lock, flags);
 174
 175	gpio = pmac_do_feature_call(PMAC_FTR_READ_GPIO, NULL, smu->doorbell);
 176	if ((gpio & 7) != 7) {
 177		spin_unlock_irqrestore(&smu->lock, flags);
 178		return IRQ_HANDLED;
 179	}
 180
 181	cmd = smu->cmd_cur;
 182	smu->cmd_cur = NULL;
 183	if (cmd == NULL)
 184		goto bail;
 185
 186	if (rc == 0) {
 187		unsigned long faddr;
 188		int reply_len;
 189		u8 ack;
 190
 191		/* CPU might have brought back the cache line, so we need
 192		 * to flush again before peeking at the SMU response. We
 193		 * flush the entire buffer for now as we haven't read the
 194		 * reply length (it's only 2 cache lines anyway)
 195		 */
 196		faddr = (unsigned long)smu->cmd_buf;
 197		flush_dcache_range(faddr, faddr + 256);
 198
 199		/* Now check ack */
 200		ack = (~cmd->cmd) & 0xff;
 201		if (ack != smu->cmd_buf->cmd) {
 202			DPRINTK("SMU: incorrect ack, want %x got %x\n",
 203				ack, smu->cmd_buf->cmd);
 204			rc = -EIO;
 205		}
 206		reply_len = rc == 0 ? smu->cmd_buf->length : 0;
 207		DPRINTK("SMU: reply len: %d\n", reply_len);
 208		if (reply_len > cmd->reply_len) {
 209			printk(KERN_WARNING "SMU: reply buffer too small,"
 210			       "got %d bytes for a %d bytes buffer\n",
 211			       reply_len, cmd->reply_len);
 212			reply_len = cmd->reply_len;
 213		}
 214		cmd->reply_len = reply_len;
 215		if (cmd->reply_buf && reply_len)
 216			memcpy(cmd->reply_buf, smu->cmd_buf->data, reply_len);
 217	}
 218
 219	/* Now complete the command. Write status last in order as we lost
 220	 * ownership of the command structure as soon as it's no longer -1
 221	 */
 222	done = cmd->done;
 223	misc = cmd->misc;
 224	mb();
 225	cmd->status = rc;
 226
 227	/* Re-enable NAP mode */
 228	if (smu->broken_nap)
 229		powersave_nap = 1;
 230 bail:
 231	/* Start next command if any */
 232	smu_start_cmd();
 233	spin_unlock_irqrestore(&smu->lock, flags);
 234
 235	/* Call command completion handler if any */
 236	if (done)
 237		done(cmd, misc);
 238
 239	/* It's an edge interrupt, nothing to do */
 240	return IRQ_HANDLED;
 241}
 242
 243
 244static irqreturn_t smu_msg_intr(int irq, void *arg)
 245{
 246	/* I don't quite know what to do with this one, we seem to never
 247	 * receive it, so I suspect we have to arm it someway in the SMU
 248	 * to start getting events that way.
 249	 */
 250
 251	printk(KERN_INFO "SMU: message interrupt !\n");
 252
 253	/* It's an edge interrupt, nothing to do */
 254	return IRQ_HANDLED;
 255}
 256
 257
 258/*
 259 * Queued command management.
 260 *
 261 */
 262
 263int smu_queue_cmd(struct smu_cmd *cmd)
 264{
 265	unsigned long flags;
 266
 267	if (smu == NULL)
 268		return -ENODEV;
 269	if (cmd->data_len > SMU_MAX_DATA ||
 270	    cmd->reply_len > SMU_MAX_DATA)
 271		return -EINVAL;
 272
 273	cmd->status = 1;
 274	spin_lock_irqsave(&smu->lock, flags);
 275	list_add_tail(&cmd->link, &smu->cmd_list);
 276	if (smu->cmd_cur == NULL)
 277		smu_start_cmd();
 278	spin_unlock_irqrestore(&smu->lock, flags);
 279
 280	/* Workaround for early calls when irq isn't available */
 281	if (!smu_irq_inited || !smu->db_irq)
 282		smu_spinwait_cmd(cmd);
 283
 284	return 0;
 285}
 286EXPORT_SYMBOL(smu_queue_cmd);
 287
 288
 289int smu_queue_simple(struct smu_simple_cmd *scmd, u8 command,
 290		     unsigned int data_len,
 291		     void (*done)(struct smu_cmd *cmd, void *misc),
 292		     void *misc, ...)
 293{
 294	struct smu_cmd *cmd = &scmd->cmd;
 295	va_list list;
 296	int i;
 297
 298	if (data_len > sizeof(scmd->buffer))
 299		return -EINVAL;
 300
 301	memset(scmd, 0, sizeof(*scmd));
 302	cmd->cmd = command;
 303	cmd->data_len = data_len;
 304	cmd->data_buf = scmd->buffer;
 305	cmd->reply_len = sizeof(scmd->buffer);
 306	cmd->reply_buf = scmd->buffer;
 307	cmd->done = done;
 308	cmd->misc = misc;
 309
 310	va_start(list, misc);
 311	for (i = 0; i < data_len; ++i)
 312		scmd->buffer[i] = (u8)va_arg(list, int);
 313	va_end(list);
 314
 315	return smu_queue_cmd(cmd);
 316}
 317EXPORT_SYMBOL(smu_queue_simple);
 318
 319
 320void smu_poll(void)
 321{
 322	u8 gpio;
 323
 324	if (smu == NULL)
 325		return;
 326
 327	gpio = pmac_do_feature_call(PMAC_FTR_READ_GPIO, NULL, smu->doorbell);
 328	if ((gpio & 7) == 7)
 329		smu_db_intr(smu->db_irq, smu);
 330}
 331EXPORT_SYMBOL(smu_poll);
 332
 333
 334void smu_done_complete(struct smu_cmd *cmd, void *misc)
 335{
 336	struct completion *comp = misc;
 337
 338	complete(comp);
 339}
 340EXPORT_SYMBOL(smu_done_complete);
 341
 342
 343void smu_spinwait_cmd(struct smu_cmd *cmd)
 344{
 345	while(cmd->status == 1)
 346		smu_poll();
 347}
 348EXPORT_SYMBOL(smu_spinwait_cmd);
 349
 350
 351/* RTC low level commands */
 352static inline int bcd2hex (int n)
 353{
 354	return (((n & 0xf0) >> 4) * 10) + (n & 0xf);
 355}
 356
 357
 358static inline int hex2bcd (int n)
 359{
 360	return ((n / 10) << 4) + (n % 10);
 361}
 362
 363
 364static inline void smu_fill_set_rtc_cmd(struct smu_cmd_buf *cmd_buf,
 365					struct rtc_time *time)
 366{
 367	cmd_buf->cmd = 0x8e;
 368	cmd_buf->length = 8;
 369	cmd_buf->data[0] = 0x80;
 370	cmd_buf->data[1] = hex2bcd(time->tm_sec);
 371	cmd_buf->data[2] = hex2bcd(time->tm_min);
 372	cmd_buf->data[3] = hex2bcd(time->tm_hour);
 373	cmd_buf->data[4] = time->tm_wday;
 374	cmd_buf->data[5] = hex2bcd(time->tm_mday);
 375	cmd_buf->data[6] = hex2bcd(time->tm_mon) + 1;
 376	cmd_buf->data[7] = hex2bcd(time->tm_year - 100);
 377}
 378
 379
 380int smu_get_rtc_time(struct rtc_time *time, int spinwait)
 381{
 382	struct smu_simple_cmd cmd;
 383	int rc;
 384
 385	if (smu == NULL)
 386		return -ENODEV;
 387
 388	memset(time, 0, sizeof(struct rtc_time));
 389	rc = smu_queue_simple(&cmd, SMU_CMD_RTC_COMMAND, 1, NULL, NULL,
 390			      SMU_CMD_RTC_GET_DATETIME);
 391	if (rc)
 392		return rc;
 393	smu_spinwait_simple(&cmd);
 394
 395	time->tm_sec = bcd2hex(cmd.buffer[0]);
 396	time->tm_min = bcd2hex(cmd.buffer[1]);
 397	time->tm_hour = bcd2hex(cmd.buffer[2]);
 398	time->tm_wday = bcd2hex(cmd.buffer[3]);
 399	time->tm_mday = bcd2hex(cmd.buffer[4]);
 400	time->tm_mon = bcd2hex(cmd.buffer[5]) - 1;
 401	time->tm_year = bcd2hex(cmd.buffer[6]) + 100;
 402
 403	return 0;
 404}
 405
 406
 407int smu_set_rtc_time(struct rtc_time *time, int spinwait)
 408{
 409	struct smu_simple_cmd cmd;
 410	int rc;
 411
 412	if (smu == NULL)
 413		return -ENODEV;
 414
 415	rc = smu_queue_simple(&cmd, SMU_CMD_RTC_COMMAND, 8, NULL, NULL,
 416			      SMU_CMD_RTC_SET_DATETIME,
 417			      hex2bcd(time->tm_sec),
 418			      hex2bcd(time->tm_min),
 419			      hex2bcd(time->tm_hour),
 420			      time->tm_wday,
 421			      hex2bcd(time->tm_mday),
 422			      hex2bcd(time->tm_mon) + 1,
 423			      hex2bcd(time->tm_year - 100));
 424	if (rc)
 425		return rc;
 426	smu_spinwait_simple(&cmd);
 427
 428	return 0;
 429}
 430
 431
 432void smu_shutdown(void)
 433{
 434	struct smu_simple_cmd cmd;
 435
 436	if (smu == NULL)
 437		return;
 438
 439	if (smu_queue_simple(&cmd, SMU_CMD_POWER_COMMAND, 9, NULL, NULL,
 440			     'S', 'H', 'U', 'T', 'D', 'O', 'W', 'N', 0))
 441		return;
 442	smu_spinwait_simple(&cmd);
 443	for (;;)
 444		;
 445}
 446
 447
 448void smu_restart(void)
 449{
 450	struct smu_simple_cmd cmd;
 451
 452	if (smu == NULL)
 453		return;
 454
 455	if (smu_queue_simple(&cmd, SMU_CMD_POWER_COMMAND, 8, NULL, NULL,
 456			     'R', 'E', 'S', 'T', 'A', 'R', 'T', 0))
 457		return;
 458	smu_spinwait_simple(&cmd);
 459	for (;;)
 460		;
 461}
 462
 463
 464int smu_present(void)
 465{
 466	return smu != NULL;
 467}
 468EXPORT_SYMBOL(smu_present);
 469
 470
 471int __init smu_init (void)
 472{
 473	struct device_node *np;
 474	const u32 *data;
 475	int ret = 0;
 476
 477        np = of_find_node_by_type(NULL, "smu");
 478        if (np == NULL)
 479		return -ENODEV;
 480
 481	printk(KERN_INFO "SMU: Driver %s %s\n", VERSION, AUTHOR);
 482
 483	/*
 484	 * SMU based G5s need some memory below 2Gb. Thankfully this is
 485	 * called at a time where memblock is still available.
 486	 */
 487	smu_cmdbuf_abs = memblock_phys_alloc_range(4096, 4096, 0, 0x80000000UL);
 488	if (smu_cmdbuf_abs == 0) {
 489		printk(KERN_ERR "SMU: Command buffer allocation failed !\n");
 490		ret = -EINVAL;
 491		goto fail_np;
 492	}
 493
 494	smu = memblock_alloc(sizeof(struct smu_device), SMP_CACHE_BYTES);
 495	if (!smu)
 496		panic("%s: Failed to allocate %zu bytes\n", __func__,
 497		      sizeof(struct smu_device));
 498
 499	spin_lock_init(&smu->lock);
 500	INIT_LIST_HEAD(&smu->cmd_list);
 501	INIT_LIST_HEAD(&smu->cmd_i2c_list);
 502	smu->of_node = np;
 503	smu->db_irq = 0;
 504	smu->msg_irq = 0;
 505
 506	/* smu_cmdbuf_abs is in the low 2G of RAM, can be converted to a
 507	 * 32 bits value safely
 508	 */
 509	smu->cmd_buf_abs = (u32)smu_cmdbuf_abs;
 510	smu->cmd_buf = __va(smu_cmdbuf_abs);
 511
 512	smu->db_node = of_find_node_by_name(NULL, "smu-doorbell");
 513	if (smu->db_node == NULL) {
 514		printk(KERN_ERR "SMU: Can't find doorbell GPIO !\n");
 515		ret = -ENXIO;
 516		goto fail_bootmem;
 517	}
 518	data = of_get_property(smu->db_node, "reg", NULL);
 519	if (data == NULL) {
 520		printk(KERN_ERR "SMU: Can't find doorbell GPIO address !\n");
 521		ret = -ENXIO;
 522		goto fail_db_node;
 523	}
 524
 525	/* Current setup has one doorbell GPIO that does both doorbell
 526	 * and ack. GPIOs are at 0x50, best would be to find that out
 527	 * in the device-tree though.
 528	 */
 529	smu->doorbell = *data;
 530	if (smu->doorbell < 0x50)
 531		smu->doorbell += 0x50;
 532
 533	/* Now look for the smu-interrupt GPIO */
 534	do {
 535		smu->msg_node = of_find_node_by_name(NULL, "smu-interrupt");
 536		if (smu->msg_node == NULL)
 537			break;
 538		data = of_get_property(smu->msg_node, "reg", NULL);
 539		if (data == NULL) {
 540			of_node_put(smu->msg_node);
 541			smu->msg_node = NULL;
 542			break;
 543		}
 544		smu->msg = *data;
 545		if (smu->msg < 0x50)
 546			smu->msg += 0x50;
 547	} while(0);
 548
 549	/* Doorbell buffer is currently hard-coded, I didn't find a proper
 550	 * device-tree entry giving the address. Best would probably to use
 551	 * an offset for K2 base though, but let's do it that way for now.
 552	 */
 553	smu->db_buf = ioremap(0x8000860c, 0x1000);
 554	if (smu->db_buf == NULL) {
 555		printk(KERN_ERR "SMU: Can't map doorbell buffer pointer !\n");
 556		ret = -ENXIO;
 557		goto fail_msg_node;
 558	}
 559
 560	/* U3 has an issue with NAP mode when issuing SMU commands */
 561	smu->broken_nap = pmac_get_uninorth_variant() < 4;
 562	if (smu->broken_nap)
 563		printk(KERN_INFO "SMU: using NAP mode workaround\n");
 564
 565	sys_ctrler = SYS_CTRLER_SMU;
 566	return 0;
 567
 568fail_msg_node:
 569	of_node_put(smu->msg_node);
 
 570fail_db_node:
 571	of_node_put(smu->db_node);
 572fail_bootmem:
 573	memblock_free(__pa(smu), sizeof(struct smu_device));
 574	smu = NULL;
 575fail_np:
 576	of_node_put(np);
 577	return ret;
 578}
 579
 580
 581static int smu_late_init(void)
 582{
 583	if (!smu)
 584		return 0;
 585
 586	timer_setup(&smu->i2c_timer, smu_i2c_retry, 0);
 
 
 587
 588	if (smu->db_node) {
 589		smu->db_irq = irq_of_parse_and_map(smu->db_node, 0);
 590		if (!smu->db_irq)
 591			printk(KERN_ERR "smu: failed to map irq for node %pOF\n",
 592			       smu->db_node);
 593	}
 594	if (smu->msg_node) {
 595		smu->msg_irq = irq_of_parse_and_map(smu->msg_node, 0);
 596		if (!smu->msg_irq)
 597			printk(KERN_ERR "smu: failed to map irq for node %pOF\n",
 598			       smu->msg_node);
 599	}
 600
 601	/*
 602	 * Try to request the interrupts
 603	 */
 604
 605	if (smu->db_irq) {
 606		if (request_irq(smu->db_irq, smu_db_intr,
 607				IRQF_SHARED, "SMU doorbell", smu) < 0) {
 608			printk(KERN_WARNING "SMU: can't "
 609			       "request interrupt %d\n",
 610			       smu->db_irq);
 611			smu->db_irq = 0;
 612		}
 613	}
 614
 615	if (smu->msg_irq) {
 616		if (request_irq(smu->msg_irq, smu_msg_intr,
 617				IRQF_SHARED, "SMU message", smu) < 0) {
 618			printk(KERN_WARNING "SMU: can't "
 619			       "request interrupt %d\n",
 620			       smu->msg_irq);
 621			smu->msg_irq = 0;
 622		}
 623	}
 624
 625	smu_irq_inited = 1;
 626	return 0;
 627}
 628/* This has to be before arch_initcall as the low i2c stuff relies on the
 629 * above having been done before we reach arch_initcalls
 630 */
 631core_initcall(smu_late_init);
 632
 633/*
 634 * sysfs visibility
 635 */
 636
 637static void smu_expose_childs(struct work_struct *unused)
 638{
 639	struct device_node *np;
 640
 641	for (np = NULL; (np = of_get_next_child(smu->of_node, np)) != NULL;)
 642		if (of_device_is_compatible(np, "smu-sensors"))
 643			of_platform_device_create(np, "smu-sensors",
 644						  &smu->of_dev->dev);
 645}
 646
 647static DECLARE_WORK(smu_expose_childs_work, smu_expose_childs);
 648
 649static int smu_platform_probe(struct platform_device* dev)
 650{
 651	if (!smu)
 652		return -ENODEV;
 653	smu->of_dev = dev;
 654
 655	/*
 656	 * Ok, we are matched, now expose all i2c busses. We have to defer
 657	 * that unfortunately or it would deadlock inside the device model
 658	 */
 659	schedule_work(&smu_expose_childs_work);
 660
 661	return 0;
 662}
 663
 664static const struct of_device_id smu_platform_match[] =
 665{
 666	{
 667		.type		= "smu",
 668	},
 669	{},
 670};
 671
 672static struct platform_driver smu_of_platform_driver =
 673{
 674	.driver = {
 675		.name = "smu",
 
 676		.of_match_table = smu_platform_match,
 677	},
 678	.probe		= smu_platform_probe,
 679};
 680
 681static int __init smu_init_sysfs(void)
 682{
 683	/*
 684	 * For now, we don't power manage machines with an SMU chip,
 685	 * I'm a bit too far from figuring out how that works with those
 686	 * new chipsets, but that will come back and bite us
 687	 */
 688	platform_driver_register(&smu_of_platform_driver);
 689	return 0;
 690}
 691
 692device_initcall(smu_init_sysfs);
 693
 694struct platform_device *smu_get_ofdev(void)
 695{
 696	if (!smu)
 697		return NULL;
 698	return smu->of_dev;
 699}
 700
 701EXPORT_SYMBOL_GPL(smu_get_ofdev);
 702
 703/*
 704 * i2c interface
 705 */
 706
 707static void smu_i2c_complete_command(struct smu_i2c_cmd *cmd, int fail)
 708{
 709	void (*done)(struct smu_i2c_cmd *cmd, void *misc) = cmd->done;
 710	void *misc = cmd->misc;
 711	unsigned long flags;
 712
 713	/* Check for read case */
 714	if (!fail && cmd->read) {
 715		if (cmd->pdata[0] < 1)
 716			fail = 1;
 717		else
 718			memcpy(cmd->info.data, &cmd->pdata[1],
 719			       cmd->info.datalen);
 720	}
 721
 722	DPRINTK("SMU: completing, success: %d\n", !fail);
 723
 724	/* Update status and mark no pending i2c command with lock
 725	 * held so nobody comes in while we dequeue an eventual
 726	 * pending next i2c command
 727	 */
 728	spin_lock_irqsave(&smu->lock, flags);
 729	smu->cmd_i2c_cur = NULL;
 730	wmb();
 731	cmd->status = fail ? -EIO : 0;
 732
 733	/* Is there another i2c command waiting ? */
 734	if (!list_empty(&smu->cmd_i2c_list)) {
 735		struct smu_i2c_cmd *newcmd;
 736
 737		/* Fetch it, new current, remove from list */
 738		newcmd = list_entry(smu->cmd_i2c_list.next,
 739				    struct smu_i2c_cmd, link);
 740		smu->cmd_i2c_cur = newcmd;
 741		list_del(&cmd->link);
 742
 743		/* Queue with low level smu */
 744		list_add_tail(&cmd->scmd.link, &smu->cmd_list);
 745		if (smu->cmd_cur == NULL)
 746			smu_start_cmd();
 747	}
 748	spin_unlock_irqrestore(&smu->lock, flags);
 749
 750	/* Call command completion handler if any */
 751	if (done)
 752		done(cmd, misc);
 753
 754}
 755
 756
 757static void smu_i2c_retry(struct timer_list *unused)
 758{
 759	struct smu_i2c_cmd	*cmd = smu->cmd_i2c_cur;
 760
 761	DPRINTK("SMU: i2c failure, requeuing...\n");
 762
 763	/* requeue command simply by resetting reply_len */
 764	cmd->pdata[0] = 0xff;
 765	cmd->scmd.reply_len = sizeof(cmd->pdata);
 766	smu_queue_cmd(&cmd->scmd);
 767}
 768
 769
 770static void smu_i2c_low_completion(struct smu_cmd *scmd, void *misc)
 771{
 772	struct smu_i2c_cmd	*cmd = misc;
 773	int			fail = 0;
 774
 775	DPRINTK("SMU: i2c compl. stage=%d status=%x pdata[0]=%x rlen: %x\n",
 776		cmd->stage, scmd->status, cmd->pdata[0], scmd->reply_len);
 777
 778	/* Check for possible status */
 779	if (scmd->status < 0)
 780		fail = 1;
 781	else if (cmd->read) {
 782		if (cmd->stage == 0)
 783			fail = cmd->pdata[0] != 0;
 784		else
 785			fail = cmd->pdata[0] >= 0x80;
 786	} else {
 787		fail = cmd->pdata[0] != 0;
 788	}
 789
 790	/* Handle failures by requeuing command, after 5ms interval
 791	 */
 792	if (fail && --cmd->retries > 0) {
 793		DPRINTK("SMU: i2c failure, starting timer...\n");
 794		BUG_ON(cmd != smu->cmd_i2c_cur);
 795		if (!smu_irq_inited) {
 796			mdelay(5);
 797			smu_i2c_retry(NULL);
 798			return;
 799		}
 800		mod_timer(&smu->i2c_timer, jiffies + msecs_to_jiffies(5));
 801		return;
 802	}
 803
 804	/* If failure or stage 1, command is complete */
 805	if (fail || cmd->stage != 0) {
 806		smu_i2c_complete_command(cmd, fail);
 807		return;
 808	}
 809
 810	DPRINTK("SMU: going to stage 1\n");
 811
 812	/* Ok, initial command complete, now poll status */
 813	scmd->reply_buf = cmd->pdata;
 814	scmd->reply_len = sizeof(cmd->pdata);
 815	scmd->data_buf = cmd->pdata;
 816	scmd->data_len = 1;
 817	cmd->pdata[0] = 0;
 818	cmd->stage = 1;
 819	cmd->retries = 20;
 820	smu_queue_cmd(scmd);
 821}
 822
 823
 824int smu_queue_i2c(struct smu_i2c_cmd *cmd)
 825{
 826	unsigned long flags;
 827
 828	if (smu == NULL)
 829		return -ENODEV;
 830
 831	/* Fill most fields of scmd */
 832	cmd->scmd.cmd = SMU_CMD_I2C_COMMAND;
 833	cmd->scmd.done = smu_i2c_low_completion;
 834	cmd->scmd.misc = cmd;
 835	cmd->scmd.reply_buf = cmd->pdata;
 836	cmd->scmd.reply_len = sizeof(cmd->pdata);
 837	cmd->scmd.data_buf = (u8 *)(char *)&cmd->info;
 838	cmd->scmd.status = 1;
 839	cmd->stage = 0;
 840	cmd->pdata[0] = 0xff;
 841	cmd->retries = 20;
 842	cmd->status = 1;
 843
 844	/* Check transfer type, sanitize some "info" fields
 845	 * based on transfer type and do more checking
 846	 */
 847	cmd->info.caddr = cmd->info.devaddr;
 848	cmd->read = cmd->info.devaddr & 0x01;
 849	switch(cmd->info.type) {
 850	case SMU_I2C_TRANSFER_SIMPLE:
 851		memset(&cmd->info.sublen, 0, 4);
 852		break;
 853	case SMU_I2C_TRANSFER_COMBINED:
 854		cmd->info.devaddr &= 0xfe;
 855		fallthrough;
 856	case SMU_I2C_TRANSFER_STDSUB:
 857		if (cmd->info.sublen > 3)
 858			return -EINVAL;
 859		break;
 860	default:
 861		return -EINVAL;
 862	}
 863
 864	/* Finish setting up command based on transfer direction
 865	 */
 866	if (cmd->read) {
 867		if (cmd->info.datalen > SMU_I2C_READ_MAX)
 868			return -EINVAL;
 869		memset(cmd->info.data, 0xff, cmd->info.datalen);
 870		cmd->scmd.data_len = 9;
 871	} else {
 872		if (cmd->info.datalen > SMU_I2C_WRITE_MAX)
 873			return -EINVAL;
 874		cmd->scmd.data_len = 9 + cmd->info.datalen;
 875	}
 876
 877	DPRINTK("SMU: i2c enqueuing command\n");
 878	DPRINTK("SMU:   %s, len=%d bus=%x addr=%x sub0=%x type=%x\n",
 879		cmd->read ? "read" : "write", cmd->info.datalen,
 880		cmd->info.bus, cmd->info.caddr,
 881		cmd->info.subaddr[0], cmd->info.type);
 882
 883
 884	/* Enqueue command in i2c list, and if empty, enqueue also in
 885	 * main command list
 886	 */
 887	spin_lock_irqsave(&smu->lock, flags);
 888	if (smu->cmd_i2c_cur == NULL) {
 889		smu->cmd_i2c_cur = cmd;
 890		list_add_tail(&cmd->scmd.link, &smu->cmd_list);
 891		if (smu->cmd_cur == NULL)
 892			smu_start_cmd();
 893	} else
 894		list_add_tail(&cmd->link, &smu->cmd_i2c_list);
 895	spin_unlock_irqrestore(&smu->lock, flags);
 896
 897	return 0;
 898}
 899
 900/*
 901 * Handling of "partitions"
 902 */
 903
 904static int smu_read_datablock(u8 *dest, unsigned int addr, unsigned int len)
 905{
 906	DECLARE_COMPLETION_ONSTACK(comp);
 907	unsigned int chunk;
 908	struct smu_cmd cmd;
 909	int rc;
 910	u8 params[8];
 911
 912	/* We currently use a chunk size of 0xe. We could check the
 913	 * SMU firmware version and use bigger sizes though
 914	 */
 915	chunk = 0xe;
 916
 917	while (len) {
 918		unsigned int clen = min(len, chunk);
 919
 920		cmd.cmd = SMU_CMD_MISC_ee_COMMAND;
 921		cmd.data_len = 7;
 922		cmd.data_buf = params;
 923		cmd.reply_len = chunk;
 924		cmd.reply_buf = dest;
 925		cmd.done = smu_done_complete;
 926		cmd.misc = &comp;
 927		params[0] = SMU_CMD_MISC_ee_GET_DATABLOCK_REC;
 928		params[1] = 0x4;
 929		*((u32 *)&params[2]) = addr;
 930		params[6] = clen;
 931
 932		rc = smu_queue_cmd(&cmd);
 933		if (rc)
 934			return rc;
 935		wait_for_completion(&comp);
 936		if (cmd.status != 0)
 937			return rc;
 938		if (cmd.reply_len != clen) {
 939			printk(KERN_DEBUG "SMU: short read in "
 940			       "smu_read_datablock, got: %d, want: %d\n",
 941			       cmd.reply_len, clen);
 942			return -EIO;
 943		}
 944		len -= clen;
 945		addr += clen;
 946		dest += clen;
 947	}
 948	return 0;
 949}
 950
 951static struct smu_sdbp_header *smu_create_sdb_partition(int id)
 952{
 953	DECLARE_COMPLETION_ONSTACK(comp);
 954	struct smu_simple_cmd cmd;
 955	unsigned int addr, len, tlen;
 956	struct smu_sdbp_header *hdr;
 957	struct property *prop;
 958
 959	/* First query the partition info */
 960	DPRINTK("SMU: Query partition infos ... (irq=%d)\n", smu->db_irq);
 961	smu_queue_simple(&cmd, SMU_CMD_PARTITION_COMMAND, 2,
 962			 smu_done_complete, &comp,
 963			 SMU_CMD_PARTITION_LATEST, id);
 964	wait_for_completion(&comp);
 965	DPRINTK("SMU: done, status: %d, reply_len: %d\n",
 966		cmd.cmd.status, cmd.cmd.reply_len);
 967
 968	/* Partition doesn't exist (or other error) */
 969	if (cmd.cmd.status != 0 || cmd.cmd.reply_len != 6)
 970		return NULL;
 971
 972	/* Fetch address and length from reply */
 973	addr = *((u16 *)cmd.buffer);
 974	len = cmd.buffer[3] << 2;
 975	/* Calucluate total length to allocate, including the 17 bytes
 976	 * for "sdb-partition-XX" that we append at the end of the buffer
 977	 */
 978	tlen = sizeof(struct property) + len + 18;
 979
 980	prop = kzalloc(tlen, GFP_KERNEL);
 981	if (prop == NULL)
 982		return NULL;
 983	hdr = (struct smu_sdbp_header *)(prop + 1);
 984	prop->name = ((char *)prop) + tlen - 18;
 985	sprintf(prop->name, "sdb-partition-%02x", id);
 986	prop->length = len;
 987	prop->value = hdr;
 988	prop->next = NULL;
 989
 990	/* Read the datablock */
 991	if (smu_read_datablock((u8 *)hdr, addr, len)) {
 992		printk(KERN_DEBUG "SMU: datablock read failed while reading "
 993		       "partition %02x !\n", id);
 994		goto failure;
 995	}
 996
 997	/* Got it, check a few things and create the property */
 998	if (hdr->id != id) {
 999		printk(KERN_DEBUG "SMU: Reading partition %02x and got "
1000		       "%02x !\n", id, hdr->id);
1001		goto failure;
1002	}
1003	if (of_add_property(smu->of_node, prop)) {
1004		printk(KERN_DEBUG "SMU: Failed creating sdb-partition-%02x "
1005		       "property !\n", id);
1006		goto failure;
1007	}
1008
1009	return hdr;
1010 failure:
1011	kfree(prop);
1012	return NULL;
1013}
1014
1015/* Note: Only allowed to return error code in pointers (using ERR_PTR)
1016 * when interruptible is 1
1017 */
1018const struct smu_sdbp_header *__smu_get_sdb_partition(int id,
1019		unsigned int *size, int interruptible)
1020{
1021	char pname[32];
1022	const struct smu_sdbp_header *part;
1023
1024	if (!smu)
1025		return NULL;
1026
1027	sprintf(pname, "sdb-partition-%02x", id);
1028
1029	DPRINTK("smu_get_sdb_partition(%02x)\n", id);
1030
1031	if (interruptible) {
1032		int rc;
1033		rc = mutex_lock_interruptible(&smu_part_access);
1034		if (rc)
1035			return ERR_PTR(rc);
1036	} else
1037		mutex_lock(&smu_part_access);
1038
1039	part = of_get_property(smu->of_node, pname, size);
1040	if (part == NULL) {
1041		DPRINTK("trying to extract from SMU ...\n");
1042		part = smu_create_sdb_partition(id);
1043		if (part != NULL && size)
1044			*size = part->len << 2;
1045	}
1046	mutex_unlock(&smu_part_access);
1047	return part;
1048}
1049
1050const struct smu_sdbp_header *smu_get_sdb_partition(int id, unsigned int *size)
1051{
1052	return __smu_get_sdb_partition(id, size, 0);
1053}
1054EXPORT_SYMBOL(smu_get_sdb_partition);
1055
1056
1057/*
1058 * Userland driver interface
1059 */
1060
1061
1062static LIST_HEAD(smu_clist);
1063static DEFINE_SPINLOCK(smu_clist_lock);
1064
1065enum smu_file_mode {
1066	smu_file_commands,
1067	smu_file_events,
1068	smu_file_closing
1069};
1070
1071struct smu_private
1072{
1073	struct list_head	list;
1074	enum smu_file_mode	mode;
1075	int			busy;
1076	struct smu_cmd		cmd;
1077	spinlock_t		lock;
1078	wait_queue_head_t	wait;
1079	u8			buffer[SMU_MAX_DATA];
1080};
1081
1082
1083static int smu_open(struct inode *inode, struct file *file)
1084{
1085	struct smu_private *pp;
1086	unsigned long flags;
1087
1088	pp = kzalloc(sizeof(struct smu_private), GFP_KERNEL);
1089	if (pp == 0)
1090		return -ENOMEM;
1091	spin_lock_init(&pp->lock);
1092	pp->mode = smu_file_commands;
1093	init_waitqueue_head(&pp->wait);
1094
1095	mutex_lock(&smu_mutex);
1096	spin_lock_irqsave(&smu_clist_lock, flags);
1097	list_add(&pp->list, &smu_clist);
1098	spin_unlock_irqrestore(&smu_clist_lock, flags);
1099	file->private_data = pp;
1100	mutex_unlock(&smu_mutex);
1101
1102	return 0;
1103}
1104
1105
1106static void smu_user_cmd_done(struct smu_cmd *cmd, void *misc)
1107{
1108	struct smu_private *pp = misc;
1109
1110	wake_up_all(&pp->wait);
1111}
1112
1113
1114static ssize_t smu_write(struct file *file, const char __user *buf,
1115			 size_t count, loff_t *ppos)
1116{
1117	struct smu_private *pp = file->private_data;
1118	unsigned long flags;
1119	struct smu_user_cmd_hdr hdr;
1120	int rc = 0;
1121
1122	if (pp->busy)
1123		return -EBUSY;
1124	else if (copy_from_user(&hdr, buf, sizeof(hdr)))
1125		return -EFAULT;
1126	else if (hdr.cmdtype == SMU_CMDTYPE_WANTS_EVENTS) {
1127		pp->mode = smu_file_events;
1128		return 0;
1129	} else if (hdr.cmdtype == SMU_CMDTYPE_GET_PARTITION) {
1130		const struct smu_sdbp_header *part;
1131		part = __smu_get_sdb_partition(hdr.cmd, NULL, 1);
1132		if (part == NULL)
1133			return -EINVAL;
1134		else if (IS_ERR(part))
1135			return PTR_ERR(part);
1136		return 0;
1137	} else if (hdr.cmdtype != SMU_CMDTYPE_SMU)
1138		return -EINVAL;
1139	else if (pp->mode != smu_file_commands)
1140		return -EBADFD;
1141	else if (hdr.data_len > SMU_MAX_DATA)
1142		return -EINVAL;
1143
1144	spin_lock_irqsave(&pp->lock, flags);
1145	if (pp->busy) {
1146		spin_unlock_irqrestore(&pp->lock, flags);
1147		return -EBUSY;
1148	}
1149	pp->busy = 1;
1150	pp->cmd.status = 1;
1151	spin_unlock_irqrestore(&pp->lock, flags);
1152
1153	if (copy_from_user(pp->buffer, buf + sizeof(hdr), hdr.data_len)) {
1154		pp->busy = 0;
1155		return -EFAULT;
1156	}
1157
1158	pp->cmd.cmd = hdr.cmd;
1159	pp->cmd.data_len = hdr.data_len;
1160	pp->cmd.reply_len = SMU_MAX_DATA;
1161	pp->cmd.data_buf = pp->buffer;
1162	pp->cmd.reply_buf = pp->buffer;
1163	pp->cmd.done = smu_user_cmd_done;
1164	pp->cmd.misc = pp;
1165	rc = smu_queue_cmd(&pp->cmd);
1166	if (rc < 0)
1167		return rc;
1168	return count;
1169}
1170
1171
1172static ssize_t smu_read_command(struct file *file, struct smu_private *pp,
1173				char __user *buf, size_t count)
1174{
1175	DECLARE_WAITQUEUE(wait, current);
1176	struct smu_user_reply_hdr hdr;
1177	unsigned long flags;
1178	int size, rc = 0;
1179
1180	if (!pp->busy)
1181		return 0;
1182	if (count < sizeof(struct smu_user_reply_hdr))
1183		return -EOVERFLOW;
1184	spin_lock_irqsave(&pp->lock, flags);
1185	if (pp->cmd.status == 1) {
1186		if (file->f_flags & O_NONBLOCK) {
1187			spin_unlock_irqrestore(&pp->lock, flags);
1188			return -EAGAIN;
1189		}
1190		add_wait_queue(&pp->wait, &wait);
1191		for (;;) {
1192			set_current_state(TASK_INTERRUPTIBLE);
1193			rc = 0;
1194			if (pp->cmd.status != 1)
1195				break;
1196			rc = -ERESTARTSYS;
1197			if (signal_pending(current))
1198				break;
1199			spin_unlock_irqrestore(&pp->lock, flags);
1200			schedule();
1201			spin_lock_irqsave(&pp->lock, flags);
1202		}
1203		set_current_state(TASK_RUNNING);
1204		remove_wait_queue(&pp->wait, &wait);
1205	}
1206	spin_unlock_irqrestore(&pp->lock, flags);
1207	if (rc)
1208		return rc;
1209	if (pp->cmd.status != 0)
1210		pp->cmd.reply_len = 0;
1211	size = sizeof(hdr) + pp->cmd.reply_len;
1212	if (count < size)
1213		size = count;
1214	rc = size;
1215	hdr.status = pp->cmd.status;
1216	hdr.reply_len = pp->cmd.reply_len;
1217	if (copy_to_user(buf, &hdr, sizeof(hdr)))
1218		return -EFAULT;
1219	size -= sizeof(hdr);
1220	if (size && copy_to_user(buf + sizeof(hdr), pp->buffer, size))
1221		return -EFAULT;
1222	pp->busy = 0;
1223
1224	return rc;
1225}
1226
1227
1228static ssize_t smu_read_events(struct file *file, struct smu_private *pp,
1229			       char __user *buf, size_t count)
1230{
1231	/* Not implemented */
1232	msleep_interruptible(1000);
1233	return 0;
1234}
1235
1236
1237static ssize_t smu_read(struct file *file, char __user *buf,
1238			size_t count, loff_t *ppos)
1239{
1240	struct smu_private *pp = file->private_data;
1241
1242	if (pp->mode == smu_file_commands)
1243		return smu_read_command(file, pp, buf, count);
1244	if (pp->mode == smu_file_events)
1245		return smu_read_events(file, pp, buf, count);
1246
1247	return -EBADFD;
1248}
1249
1250static __poll_t smu_fpoll(struct file *file, poll_table *wait)
1251{
1252	struct smu_private *pp = file->private_data;
1253	__poll_t mask = 0;
1254	unsigned long flags;
1255
1256	if (pp == 0)
1257		return 0;
1258
1259	if (pp->mode == smu_file_commands) {
1260		poll_wait(file, &pp->wait, wait);
1261
1262		spin_lock_irqsave(&pp->lock, flags);
1263		if (pp->busy && pp->cmd.status != 1)
1264			mask |= EPOLLIN;
1265		spin_unlock_irqrestore(&pp->lock, flags);
1266	}
1267	if (pp->mode == smu_file_events) {
1268		/* Not yet implemented */
1269	}
1270	return mask;
1271}
1272
1273static int smu_release(struct inode *inode, struct file *file)
1274{
1275	struct smu_private *pp = file->private_data;
1276	unsigned long flags;
1277	unsigned int busy;
1278
1279	if (pp == 0)
1280		return 0;
1281
1282	file->private_data = NULL;
1283
1284	/* Mark file as closing to avoid races with new request */
1285	spin_lock_irqsave(&pp->lock, flags);
1286	pp->mode = smu_file_closing;
1287	busy = pp->busy;
1288
1289	/* Wait for any pending request to complete */
1290	if (busy && pp->cmd.status == 1) {
1291		DECLARE_WAITQUEUE(wait, current);
1292
1293		add_wait_queue(&pp->wait, &wait);
1294		for (;;) {
1295			set_current_state(TASK_UNINTERRUPTIBLE);
1296			if (pp->cmd.status != 1)
1297				break;
1298			spin_unlock_irqrestore(&pp->lock, flags);
1299			schedule();
1300			spin_lock_irqsave(&pp->lock, flags);
1301		}
1302		set_current_state(TASK_RUNNING);
1303		remove_wait_queue(&pp->wait, &wait);
1304	}
1305	spin_unlock_irqrestore(&pp->lock, flags);
1306
1307	spin_lock_irqsave(&smu_clist_lock, flags);
1308	list_del(&pp->list);
1309	spin_unlock_irqrestore(&smu_clist_lock, flags);
1310	kfree(pp);
1311
1312	return 0;
1313}
1314
1315
1316static const struct file_operations smu_device_fops = {
1317	.llseek		= no_llseek,
1318	.read		= smu_read,
1319	.write		= smu_write,
1320	.poll		= smu_fpoll,
1321	.open		= smu_open,
1322	.release	= smu_release,
1323};
1324
1325static struct miscdevice pmu_device = {
1326	MISC_DYNAMIC_MINOR, "smu", &smu_device_fops
1327};
1328
1329static int smu_device_init(void)
1330{
1331	if (!smu)
1332		return -ENODEV;
1333	if (misc_register(&pmu_device) < 0)
1334		printk(KERN_ERR "via-pmu: cannot register misc device.\n");
1335	return 0;
1336}
1337device_initcall(smu_device_init);
v3.15
 
   1/*
   2 * PowerMac G5 SMU driver
   3 *
   4 * Copyright 2004 J. Mayer <l_indien@magic.fr>
   5 * Copyright 2005 Benjamin Herrenschmidt, IBM Corp.
   6 *
   7 * Released under the term of the GNU GPL v2.
   8 */
   9
  10/*
  11 * TODO:
  12 *  - maybe add timeout to commands ?
  13 *  - blocking version of time functions
  14 *  - polling version of i2c commands (including timer that works with
  15 *    interrupts off)
  16 *  - maybe avoid some data copies with i2c by directly using the smu cmd
  17 *    buffer and a lower level internal interface
  18 *  - understand SMU -> CPU events and implement reception of them via
  19 *    the userland interface
  20 */
  21
  22#include <linux/types.h>
  23#include <linux/kernel.h>
  24#include <linux/device.h>
  25#include <linux/dmapool.h>
  26#include <linux/bootmem.h>
  27#include <linux/vmalloc.h>
  28#include <linux/highmem.h>
  29#include <linux/jiffies.h>
  30#include <linux/interrupt.h>
  31#include <linux/rtc.h>
  32#include <linux/completion.h>
  33#include <linux/miscdevice.h>
  34#include <linux/delay.h>
  35#include <linux/poll.h>
  36#include <linux/mutex.h>
  37#include <linux/of_device.h>
  38#include <linux/of_irq.h>
  39#include <linux/of_platform.h>
  40#include <linux/slab.h>
 
  41
  42#include <asm/byteorder.h>
  43#include <asm/io.h>
  44#include <asm/prom.h>
  45#include <asm/machdep.h>
  46#include <asm/pmac_feature.h>
  47#include <asm/smu.h>
  48#include <asm/sections.h>
  49#include <asm/uaccess.h>
  50
  51#define VERSION "0.7"
  52#define AUTHOR  "(c) 2005 Benjamin Herrenschmidt, IBM Corp."
  53
  54#undef DEBUG_SMU
  55
  56#ifdef DEBUG_SMU
  57#define DPRINTK(fmt, args...) do { printk(KERN_DEBUG fmt , ##args); } while (0)
  58#else
  59#define DPRINTK(fmt, args...) do { } while (0)
  60#endif
  61
  62/*
  63 * This is the command buffer passed to the SMU hardware
  64 */
  65#define SMU_MAX_DATA	254
  66
  67struct smu_cmd_buf {
  68	u8 cmd;
  69	u8 length;
  70	u8 data[SMU_MAX_DATA];
  71};
  72
  73struct smu_device {
  74	spinlock_t		lock;
  75	struct device_node	*of_node;
  76	struct platform_device	*of_dev;
  77	int			doorbell;	/* doorbell gpio */
  78	u32 __iomem		*db_buf;	/* doorbell buffer */
  79	struct device_node	*db_node;
  80	unsigned int		db_irq;
  81	int			msg;
  82	struct device_node	*msg_node;
  83	unsigned int		msg_irq;
  84	struct smu_cmd_buf	*cmd_buf;	/* command buffer virtual */
  85	u32			cmd_buf_abs;	/* command buffer absolute */
  86	struct list_head	cmd_list;
  87	struct smu_cmd		*cmd_cur;	/* pending command */
  88	int			broken_nap;
  89	struct list_head	cmd_i2c_list;
  90	struct smu_i2c_cmd	*cmd_i2c_cur;	/* pending i2c command */
  91	struct timer_list	i2c_timer;
  92};
  93
  94/*
  95 * I don't think there will ever be more than one SMU, so
  96 * for now, just hard code that
  97 */
  98static DEFINE_MUTEX(smu_mutex);
  99static struct smu_device	*smu;
 100static DEFINE_MUTEX(smu_part_access);
 101static int smu_irq_inited;
 
 102
 103static void smu_i2c_retry(unsigned long data);
 104
 105/*
 106 * SMU driver low level stuff
 107 */
 108
 109static void smu_start_cmd(void)
 110{
 111	unsigned long faddr, fend;
 112	struct smu_cmd *cmd;
 113
 114	if (list_empty(&smu->cmd_list))
 115		return;
 116
 117	/* Fetch first command in queue */
 118	cmd = list_entry(smu->cmd_list.next, struct smu_cmd, link);
 119	smu->cmd_cur = cmd;
 120	list_del(&cmd->link);
 121
 122	DPRINTK("SMU: starting cmd %x, %d bytes data\n", cmd->cmd,
 123		cmd->data_len);
 124	DPRINTK("SMU: data buffer: %8ph\n", cmd->data_buf);
 125
 126	/* Fill the SMU command buffer */
 127	smu->cmd_buf->cmd = cmd->cmd;
 128	smu->cmd_buf->length = cmd->data_len;
 129	memcpy(smu->cmd_buf->data, cmd->data_buf, cmd->data_len);
 130
 131	/* Flush command and data to RAM */
 132	faddr = (unsigned long)smu->cmd_buf;
 133	fend = faddr + smu->cmd_buf->length + 2;
 134	flush_inval_dcache_range(faddr, fend);
 135
 136
 137	/* We also disable NAP mode for the duration of the command
 138	 * on U3 based machines.
 139	 * This is slightly racy as it can be written back to 1 by a sysctl
 140	 * but that never happens in practice. There seem to be an issue with
 141	 * U3 based machines such as the iMac G5 where napping for the
 142	 * whole duration of the command prevents the SMU from fetching it
 143	 * from memory. This might be related to the strange i2c based
 144	 * mechanism the SMU uses to access memory.
 145	 */
 146	if (smu->broken_nap)
 147		powersave_nap = 0;
 148
 149	/* This isn't exactly a DMA mapping here, I suspect
 150	 * the SMU is actually communicating with us via i2c to the
 151	 * northbridge or the CPU to access RAM.
 152	 */
 153	writel(smu->cmd_buf_abs, smu->db_buf);
 154
 155	/* Ring the SMU doorbell */
 156	pmac_do_feature_call(PMAC_FTR_WRITE_GPIO, NULL, smu->doorbell, 4);
 157}
 158
 159
 160static irqreturn_t smu_db_intr(int irq, void *arg)
 161{
 162	unsigned long flags;
 163	struct smu_cmd *cmd;
 164	void (*done)(struct smu_cmd *cmd, void *misc) = NULL;
 165	void *misc = NULL;
 166	u8 gpio;
 167	int rc = 0;
 168
 169	/* SMU completed the command, well, we hope, let's make sure
 170	 * of it
 171	 */
 172	spin_lock_irqsave(&smu->lock, flags);
 173
 174	gpio = pmac_do_feature_call(PMAC_FTR_READ_GPIO, NULL, smu->doorbell);
 175	if ((gpio & 7) != 7) {
 176		spin_unlock_irqrestore(&smu->lock, flags);
 177		return IRQ_HANDLED;
 178	}
 179
 180	cmd = smu->cmd_cur;
 181	smu->cmd_cur = NULL;
 182	if (cmd == NULL)
 183		goto bail;
 184
 185	if (rc == 0) {
 186		unsigned long faddr;
 187		int reply_len;
 188		u8 ack;
 189
 190		/* CPU might have brought back the cache line, so we need
 191		 * to flush again before peeking at the SMU response. We
 192		 * flush the entire buffer for now as we haven't read the
 193		 * reply length (it's only 2 cache lines anyway)
 194		 */
 195		faddr = (unsigned long)smu->cmd_buf;
 196		flush_inval_dcache_range(faddr, faddr + 256);
 197
 198		/* Now check ack */
 199		ack = (~cmd->cmd) & 0xff;
 200		if (ack != smu->cmd_buf->cmd) {
 201			DPRINTK("SMU: incorrect ack, want %x got %x\n",
 202				ack, smu->cmd_buf->cmd);
 203			rc = -EIO;
 204		}
 205		reply_len = rc == 0 ? smu->cmd_buf->length : 0;
 206		DPRINTK("SMU: reply len: %d\n", reply_len);
 207		if (reply_len > cmd->reply_len) {
 208			printk(KERN_WARNING "SMU: reply buffer too small,"
 209			       "got %d bytes for a %d bytes buffer\n",
 210			       reply_len, cmd->reply_len);
 211			reply_len = cmd->reply_len;
 212		}
 213		cmd->reply_len = reply_len;
 214		if (cmd->reply_buf && reply_len)
 215			memcpy(cmd->reply_buf, smu->cmd_buf->data, reply_len);
 216	}
 217
 218	/* Now complete the command. Write status last in order as we lost
 219	 * ownership of the command structure as soon as it's no longer -1
 220	 */
 221	done = cmd->done;
 222	misc = cmd->misc;
 223	mb();
 224	cmd->status = rc;
 225
 226	/* Re-enable NAP mode */
 227	if (smu->broken_nap)
 228		powersave_nap = 1;
 229 bail:
 230	/* Start next command if any */
 231	smu_start_cmd();
 232	spin_unlock_irqrestore(&smu->lock, flags);
 233
 234	/* Call command completion handler if any */
 235	if (done)
 236		done(cmd, misc);
 237
 238	/* It's an edge interrupt, nothing to do */
 239	return IRQ_HANDLED;
 240}
 241
 242
 243static irqreturn_t smu_msg_intr(int irq, void *arg)
 244{
 245	/* I don't quite know what to do with this one, we seem to never
 246	 * receive it, so I suspect we have to arm it someway in the SMU
 247	 * to start getting events that way.
 248	 */
 249
 250	printk(KERN_INFO "SMU: message interrupt !\n");
 251
 252	/* It's an edge interrupt, nothing to do */
 253	return IRQ_HANDLED;
 254}
 255
 256
 257/*
 258 * Queued command management.
 259 *
 260 */
 261
 262int smu_queue_cmd(struct smu_cmd *cmd)
 263{
 264	unsigned long flags;
 265
 266	if (smu == NULL)
 267		return -ENODEV;
 268	if (cmd->data_len > SMU_MAX_DATA ||
 269	    cmd->reply_len > SMU_MAX_DATA)
 270		return -EINVAL;
 271
 272	cmd->status = 1;
 273	spin_lock_irqsave(&smu->lock, flags);
 274	list_add_tail(&cmd->link, &smu->cmd_list);
 275	if (smu->cmd_cur == NULL)
 276		smu_start_cmd();
 277	spin_unlock_irqrestore(&smu->lock, flags);
 278
 279	/* Workaround for early calls when irq isn't available */
 280	if (!smu_irq_inited || smu->db_irq == NO_IRQ)
 281		smu_spinwait_cmd(cmd);
 282
 283	return 0;
 284}
 285EXPORT_SYMBOL(smu_queue_cmd);
 286
 287
 288int smu_queue_simple(struct smu_simple_cmd *scmd, u8 command,
 289		     unsigned int data_len,
 290		     void (*done)(struct smu_cmd *cmd, void *misc),
 291		     void *misc, ...)
 292{
 293	struct smu_cmd *cmd = &scmd->cmd;
 294	va_list list;
 295	int i;
 296
 297	if (data_len > sizeof(scmd->buffer))
 298		return -EINVAL;
 299
 300	memset(scmd, 0, sizeof(*scmd));
 301	cmd->cmd = command;
 302	cmd->data_len = data_len;
 303	cmd->data_buf = scmd->buffer;
 304	cmd->reply_len = sizeof(scmd->buffer);
 305	cmd->reply_buf = scmd->buffer;
 306	cmd->done = done;
 307	cmd->misc = misc;
 308
 309	va_start(list, misc);
 310	for (i = 0; i < data_len; ++i)
 311		scmd->buffer[i] = (u8)va_arg(list, int);
 312	va_end(list);
 313
 314	return smu_queue_cmd(cmd);
 315}
 316EXPORT_SYMBOL(smu_queue_simple);
 317
 318
 319void smu_poll(void)
 320{
 321	u8 gpio;
 322
 323	if (smu == NULL)
 324		return;
 325
 326	gpio = pmac_do_feature_call(PMAC_FTR_READ_GPIO, NULL, smu->doorbell);
 327	if ((gpio & 7) == 7)
 328		smu_db_intr(smu->db_irq, smu);
 329}
 330EXPORT_SYMBOL(smu_poll);
 331
 332
 333void smu_done_complete(struct smu_cmd *cmd, void *misc)
 334{
 335	struct completion *comp = misc;
 336
 337	complete(comp);
 338}
 339EXPORT_SYMBOL(smu_done_complete);
 340
 341
 342void smu_spinwait_cmd(struct smu_cmd *cmd)
 343{
 344	while(cmd->status == 1)
 345		smu_poll();
 346}
 347EXPORT_SYMBOL(smu_spinwait_cmd);
 348
 349
 350/* RTC low level commands */
 351static inline int bcd2hex (int n)
 352{
 353	return (((n & 0xf0) >> 4) * 10) + (n & 0xf);
 354}
 355
 356
 357static inline int hex2bcd (int n)
 358{
 359	return ((n / 10) << 4) + (n % 10);
 360}
 361
 362
 363static inline void smu_fill_set_rtc_cmd(struct smu_cmd_buf *cmd_buf,
 364					struct rtc_time *time)
 365{
 366	cmd_buf->cmd = 0x8e;
 367	cmd_buf->length = 8;
 368	cmd_buf->data[0] = 0x80;
 369	cmd_buf->data[1] = hex2bcd(time->tm_sec);
 370	cmd_buf->data[2] = hex2bcd(time->tm_min);
 371	cmd_buf->data[3] = hex2bcd(time->tm_hour);
 372	cmd_buf->data[4] = time->tm_wday;
 373	cmd_buf->data[5] = hex2bcd(time->tm_mday);
 374	cmd_buf->data[6] = hex2bcd(time->tm_mon) + 1;
 375	cmd_buf->data[7] = hex2bcd(time->tm_year - 100);
 376}
 377
 378
 379int smu_get_rtc_time(struct rtc_time *time, int spinwait)
 380{
 381	struct smu_simple_cmd cmd;
 382	int rc;
 383
 384	if (smu == NULL)
 385		return -ENODEV;
 386
 387	memset(time, 0, sizeof(struct rtc_time));
 388	rc = smu_queue_simple(&cmd, SMU_CMD_RTC_COMMAND, 1, NULL, NULL,
 389			      SMU_CMD_RTC_GET_DATETIME);
 390	if (rc)
 391		return rc;
 392	smu_spinwait_simple(&cmd);
 393
 394	time->tm_sec = bcd2hex(cmd.buffer[0]);
 395	time->tm_min = bcd2hex(cmd.buffer[1]);
 396	time->tm_hour = bcd2hex(cmd.buffer[2]);
 397	time->tm_wday = bcd2hex(cmd.buffer[3]);
 398	time->tm_mday = bcd2hex(cmd.buffer[4]);
 399	time->tm_mon = bcd2hex(cmd.buffer[5]) - 1;
 400	time->tm_year = bcd2hex(cmd.buffer[6]) + 100;
 401
 402	return 0;
 403}
 404
 405
 406int smu_set_rtc_time(struct rtc_time *time, int spinwait)
 407{
 408	struct smu_simple_cmd cmd;
 409	int rc;
 410
 411	if (smu == NULL)
 412		return -ENODEV;
 413
 414	rc = smu_queue_simple(&cmd, SMU_CMD_RTC_COMMAND, 8, NULL, NULL,
 415			      SMU_CMD_RTC_SET_DATETIME,
 416			      hex2bcd(time->tm_sec),
 417			      hex2bcd(time->tm_min),
 418			      hex2bcd(time->tm_hour),
 419			      time->tm_wday,
 420			      hex2bcd(time->tm_mday),
 421			      hex2bcd(time->tm_mon) + 1,
 422			      hex2bcd(time->tm_year - 100));
 423	if (rc)
 424		return rc;
 425	smu_spinwait_simple(&cmd);
 426
 427	return 0;
 428}
 429
 430
 431void smu_shutdown(void)
 432{
 433	struct smu_simple_cmd cmd;
 434
 435	if (smu == NULL)
 436		return;
 437
 438	if (smu_queue_simple(&cmd, SMU_CMD_POWER_COMMAND, 9, NULL, NULL,
 439			     'S', 'H', 'U', 'T', 'D', 'O', 'W', 'N', 0))
 440		return;
 441	smu_spinwait_simple(&cmd);
 442	for (;;)
 443		;
 444}
 445
 446
 447void smu_restart(void)
 448{
 449	struct smu_simple_cmd cmd;
 450
 451	if (smu == NULL)
 452		return;
 453
 454	if (smu_queue_simple(&cmd, SMU_CMD_POWER_COMMAND, 8, NULL, NULL,
 455			     'R', 'E', 'S', 'T', 'A', 'R', 'T', 0))
 456		return;
 457	smu_spinwait_simple(&cmd);
 458	for (;;)
 459		;
 460}
 461
 462
 463int smu_present(void)
 464{
 465	return smu != NULL;
 466}
 467EXPORT_SYMBOL(smu_present);
 468
 469
 470int __init smu_init (void)
 471{
 472	struct device_node *np;
 473	const u32 *data;
 474	int ret = 0;
 475
 476        np = of_find_node_by_type(NULL, "smu");
 477        if (np == NULL)
 478		return -ENODEV;
 479
 480	printk(KERN_INFO "SMU: Driver %s %s\n", VERSION, AUTHOR);
 481
 
 
 
 
 
 482	if (smu_cmdbuf_abs == 0) {
 483		printk(KERN_ERR "SMU: Command buffer not allocated !\n");
 484		ret = -EINVAL;
 485		goto fail_np;
 486	}
 487
 488	smu = alloc_bootmem(sizeof(struct smu_device));
 
 
 
 489
 490	spin_lock_init(&smu->lock);
 491	INIT_LIST_HEAD(&smu->cmd_list);
 492	INIT_LIST_HEAD(&smu->cmd_i2c_list);
 493	smu->of_node = np;
 494	smu->db_irq = NO_IRQ;
 495	smu->msg_irq = NO_IRQ;
 496
 497	/* smu_cmdbuf_abs is in the low 2G of RAM, can be converted to a
 498	 * 32 bits value safely
 499	 */
 500	smu->cmd_buf_abs = (u32)smu_cmdbuf_abs;
 501	smu->cmd_buf = __va(smu_cmdbuf_abs);
 502
 503	smu->db_node = of_find_node_by_name(NULL, "smu-doorbell");
 504	if (smu->db_node == NULL) {
 505		printk(KERN_ERR "SMU: Can't find doorbell GPIO !\n");
 506		ret = -ENXIO;
 507		goto fail_bootmem;
 508	}
 509	data = of_get_property(smu->db_node, "reg", NULL);
 510	if (data == NULL) {
 511		printk(KERN_ERR "SMU: Can't find doorbell GPIO address !\n");
 512		ret = -ENXIO;
 513		goto fail_db_node;
 514	}
 515
 516	/* Current setup has one doorbell GPIO that does both doorbell
 517	 * and ack. GPIOs are at 0x50, best would be to find that out
 518	 * in the device-tree though.
 519	 */
 520	smu->doorbell = *data;
 521	if (smu->doorbell < 0x50)
 522		smu->doorbell += 0x50;
 523
 524	/* Now look for the smu-interrupt GPIO */
 525	do {
 526		smu->msg_node = of_find_node_by_name(NULL, "smu-interrupt");
 527		if (smu->msg_node == NULL)
 528			break;
 529		data = of_get_property(smu->msg_node, "reg", NULL);
 530		if (data == NULL) {
 531			of_node_put(smu->msg_node);
 532			smu->msg_node = NULL;
 533			break;
 534		}
 535		smu->msg = *data;
 536		if (smu->msg < 0x50)
 537			smu->msg += 0x50;
 538	} while(0);
 539
 540	/* Doorbell buffer is currently hard-coded, I didn't find a proper
 541	 * device-tree entry giving the address. Best would probably to use
 542	 * an offset for K2 base though, but let's do it that way for now.
 543	 */
 544	smu->db_buf = ioremap(0x8000860c, 0x1000);
 545	if (smu->db_buf == NULL) {
 546		printk(KERN_ERR "SMU: Can't map doorbell buffer pointer !\n");
 547		ret = -ENXIO;
 548		goto fail_msg_node;
 549	}
 550
 551	/* U3 has an issue with NAP mode when issuing SMU commands */
 552	smu->broken_nap = pmac_get_uninorth_variant() < 4;
 553	if (smu->broken_nap)
 554		printk(KERN_INFO "SMU: using NAP mode workaround\n");
 555
 556	sys_ctrler = SYS_CTRLER_SMU;
 557	return 0;
 558
 559fail_msg_node:
 560	if (smu->msg_node)
 561		of_node_put(smu->msg_node);
 562fail_db_node:
 563	of_node_put(smu->db_node);
 564fail_bootmem:
 565	free_bootmem(__pa(smu), sizeof(struct smu_device));
 566	smu = NULL;
 567fail_np:
 568	of_node_put(np);
 569	return ret;
 570}
 571
 572
 573static int smu_late_init(void)
 574{
 575	if (!smu)
 576		return 0;
 577
 578	init_timer(&smu->i2c_timer);
 579	smu->i2c_timer.function = smu_i2c_retry;
 580	smu->i2c_timer.data = (unsigned long)smu;
 581
 582	if (smu->db_node) {
 583		smu->db_irq = irq_of_parse_and_map(smu->db_node, 0);
 584		if (smu->db_irq == NO_IRQ)
 585			printk(KERN_ERR "smu: failed to map irq for node %s\n",
 586			       smu->db_node->full_name);
 587	}
 588	if (smu->msg_node) {
 589		smu->msg_irq = irq_of_parse_and_map(smu->msg_node, 0);
 590		if (smu->msg_irq == NO_IRQ)
 591			printk(KERN_ERR "smu: failed to map irq for node %s\n",
 592			       smu->msg_node->full_name);
 593	}
 594
 595	/*
 596	 * Try to request the interrupts
 597	 */
 598
 599	if (smu->db_irq != NO_IRQ) {
 600		if (request_irq(smu->db_irq, smu_db_intr,
 601				IRQF_SHARED, "SMU doorbell", smu) < 0) {
 602			printk(KERN_WARNING "SMU: can't "
 603			       "request interrupt %d\n",
 604			       smu->db_irq);
 605			smu->db_irq = NO_IRQ;
 606		}
 607	}
 608
 609	if (smu->msg_irq != NO_IRQ) {
 610		if (request_irq(smu->msg_irq, smu_msg_intr,
 611				IRQF_SHARED, "SMU message", smu) < 0) {
 612			printk(KERN_WARNING "SMU: can't "
 613			       "request interrupt %d\n",
 614			       smu->msg_irq);
 615			smu->msg_irq = NO_IRQ;
 616		}
 617	}
 618
 619	smu_irq_inited = 1;
 620	return 0;
 621}
 622/* This has to be before arch_initcall as the low i2c stuff relies on the
 623 * above having been done before we reach arch_initcalls
 624 */
 625core_initcall(smu_late_init);
 626
 627/*
 628 * sysfs visibility
 629 */
 630
 631static void smu_expose_childs(struct work_struct *unused)
 632{
 633	struct device_node *np;
 634
 635	for (np = NULL; (np = of_get_next_child(smu->of_node, np)) != NULL;)
 636		if (of_device_is_compatible(np, "smu-sensors"))
 637			of_platform_device_create(np, "smu-sensors",
 638						  &smu->of_dev->dev);
 639}
 640
 641static DECLARE_WORK(smu_expose_childs_work, smu_expose_childs);
 642
 643static int smu_platform_probe(struct platform_device* dev)
 644{
 645	if (!smu)
 646		return -ENODEV;
 647	smu->of_dev = dev;
 648
 649	/*
 650	 * Ok, we are matched, now expose all i2c busses. We have to defer
 651	 * that unfortunately or it would deadlock inside the device model
 652	 */
 653	schedule_work(&smu_expose_childs_work);
 654
 655	return 0;
 656}
 657
 658static const struct of_device_id smu_platform_match[] =
 659{
 660	{
 661		.type		= "smu",
 662	},
 663	{},
 664};
 665
 666static struct platform_driver smu_of_platform_driver =
 667{
 668	.driver = {
 669		.name = "smu",
 670		.owner = THIS_MODULE,
 671		.of_match_table = smu_platform_match,
 672	},
 673	.probe		= smu_platform_probe,
 674};
 675
 676static int __init smu_init_sysfs(void)
 677{
 678	/*
 679	 * For now, we don't power manage machines with an SMU chip,
 680	 * I'm a bit too far from figuring out how that works with those
 681	 * new chipsets, but that will come back and bite us
 682	 */
 683	platform_driver_register(&smu_of_platform_driver);
 684	return 0;
 685}
 686
 687device_initcall(smu_init_sysfs);
 688
 689struct platform_device *smu_get_ofdev(void)
 690{
 691	if (!smu)
 692		return NULL;
 693	return smu->of_dev;
 694}
 695
 696EXPORT_SYMBOL_GPL(smu_get_ofdev);
 697
 698/*
 699 * i2c interface
 700 */
 701
 702static void smu_i2c_complete_command(struct smu_i2c_cmd *cmd, int fail)
 703{
 704	void (*done)(struct smu_i2c_cmd *cmd, void *misc) = cmd->done;
 705	void *misc = cmd->misc;
 706	unsigned long flags;
 707
 708	/* Check for read case */
 709	if (!fail && cmd->read) {
 710		if (cmd->pdata[0] < 1)
 711			fail = 1;
 712		else
 713			memcpy(cmd->info.data, &cmd->pdata[1],
 714			       cmd->info.datalen);
 715	}
 716
 717	DPRINTK("SMU: completing, success: %d\n", !fail);
 718
 719	/* Update status and mark no pending i2c command with lock
 720	 * held so nobody comes in while we dequeue an eventual
 721	 * pending next i2c command
 722	 */
 723	spin_lock_irqsave(&smu->lock, flags);
 724	smu->cmd_i2c_cur = NULL;
 725	wmb();
 726	cmd->status = fail ? -EIO : 0;
 727
 728	/* Is there another i2c command waiting ? */
 729	if (!list_empty(&smu->cmd_i2c_list)) {
 730		struct smu_i2c_cmd *newcmd;
 731
 732		/* Fetch it, new current, remove from list */
 733		newcmd = list_entry(smu->cmd_i2c_list.next,
 734				    struct smu_i2c_cmd, link);
 735		smu->cmd_i2c_cur = newcmd;
 736		list_del(&cmd->link);
 737
 738		/* Queue with low level smu */
 739		list_add_tail(&cmd->scmd.link, &smu->cmd_list);
 740		if (smu->cmd_cur == NULL)
 741			smu_start_cmd();
 742	}
 743	spin_unlock_irqrestore(&smu->lock, flags);
 744
 745	/* Call command completion handler if any */
 746	if (done)
 747		done(cmd, misc);
 748
 749}
 750
 751
 752static void smu_i2c_retry(unsigned long data)
 753{
 754	struct smu_i2c_cmd	*cmd = smu->cmd_i2c_cur;
 755
 756	DPRINTK("SMU: i2c failure, requeuing...\n");
 757
 758	/* requeue command simply by resetting reply_len */
 759	cmd->pdata[0] = 0xff;
 760	cmd->scmd.reply_len = sizeof(cmd->pdata);
 761	smu_queue_cmd(&cmd->scmd);
 762}
 763
 764
 765static void smu_i2c_low_completion(struct smu_cmd *scmd, void *misc)
 766{
 767	struct smu_i2c_cmd	*cmd = misc;
 768	int			fail = 0;
 769
 770	DPRINTK("SMU: i2c compl. stage=%d status=%x pdata[0]=%x rlen: %x\n",
 771		cmd->stage, scmd->status, cmd->pdata[0], scmd->reply_len);
 772
 773	/* Check for possible status */
 774	if (scmd->status < 0)
 775		fail = 1;
 776	else if (cmd->read) {
 777		if (cmd->stage == 0)
 778			fail = cmd->pdata[0] != 0;
 779		else
 780			fail = cmd->pdata[0] >= 0x80;
 781	} else {
 782		fail = cmd->pdata[0] != 0;
 783	}
 784
 785	/* Handle failures by requeuing command, after 5ms interval
 786	 */
 787	if (fail && --cmd->retries > 0) {
 788		DPRINTK("SMU: i2c failure, starting timer...\n");
 789		BUG_ON(cmd != smu->cmd_i2c_cur);
 790		if (!smu_irq_inited) {
 791			mdelay(5);
 792			smu_i2c_retry(0);
 793			return;
 794		}
 795		mod_timer(&smu->i2c_timer, jiffies + msecs_to_jiffies(5));
 796		return;
 797	}
 798
 799	/* If failure or stage 1, command is complete */
 800	if (fail || cmd->stage != 0) {
 801		smu_i2c_complete_command(cmd, fail);
 802		return;
 803	}
 804
 805	DPRINTK("SMU: going to stage 1\n");
 806
 807	/* Ok, initial command complete, now poll status */
 808	scmd->reply_buf = cmd->pdata;
 809	scmd->reply_len = sizeof(cmd->pdata);
 810	scmd->data_buf = cmd->pdata;
 811	scmd->data_len = 1;
 812	cmd->pdata[0] = 0;
 813	cmd->stage = 1;
 814	cmd->retries = 20;
 815	smu_queue_cmd(scmd);
 816}
 817
 818
 819int smu_queue_i2c(struct smu_i2c_cmd *cmd)
 820{
 821	unsigned long flags;
 822
 823	if (smu == NULL)
 824		return -ENODEV;
 825
 826	/* Fill most fields of scmd */
 827	cmd->scmd.cmd = SMU_CMD_I2C_COMMAND;
 828	cmd->scmd.done = smu_i2c_low_completion;
 829	cmd->scmd.misc = cmd;
 830	cmd->scmd.reply_buf = cmd->pdata;
 831	cmd->scmd.reply_len = sizeof(cmd->pdata);
 832	cmd->scmd.data_buf = (u8 *)(char *)&cmd->info;
 833	cmd->scmd.status = 1;
 834	cmd->stage = 0;
 835	cmd->pdata[0] = 0xff;
 836	cmd->retries = 20;
 837	cmd->status = 1;
 838
 839	/* Check transfer type, sanitize some "info" fields
 840	 * based on transfer type and do more checking
 841	 */
 842	cmd->info.caddr = cmd->info.devaddr;
 843	cmd->read = cmd->info.devaddr & 0x01;
 844	switch(cmd->info.type) {
 845	case SMU_I2C_TRANSFER_SIMPLE:
 846		memset(&cmd->info.sublen, 0, 4);
 847		break;
 848	case SMU_I2C_TRANSFER_COMBINED:
 849		cmd->info.devaddr &= 0xfe;
 
 850	case SMU_I2C_TRANSFER_STDSUB:
 851		if (cmd->info.sublen > 3)
 852			return -EINVAL;
 853		break;
 854	default:
 855		return -EINVAL;
 856	}
 857
 858	/* Finish setting up command based on transfer direction
 859	 */
 860	if (cmd->read) {
 861		if (cmd->info.datalen > SMU_I2C_READ_MAX)
 862			return -EINVAL;
 863		memset(cmd->info.data, 0xff, cmd->info.datalen);
 864		cmd->scmd.data_len = 9;
 865	} else {
 866		if (cmd->info.datalen > SMU_I2C_WRITE_MAX)
 867			return -EINVAL;
 868		cmd->scmd.data_len = 9 + cmd->info.datalen;
 869	}
 870
 871	DPRINTK("SMU: i2c enqueuing command\n");
 872	DPRINTK("SMU:   %s, len=%d bus=%x addr=%x sub0=%x type=%x\n",
 873		cmd->read ? "read" : "write", cmd->info.datalen,
 874		cmd->info.bus, cmd->info.caddr,
 875		cmd->info.subaddr[0], cmd->info.type);
 876
 877
 878	/* Enqueue command in i2c list, and if empty, enqueue also in
 879	 * main command list
 880	 */
 881	spin_lock_irqsave(&smu->lock, flags);
 882	if (smu->cmd_i2c_cur == NULL) {
 883		smu->cmd_i2c_cur = cmd;
 884		list_add_tail(&cmd->scmd.link, &smu->cmd_list);
 885		if (smu->cmd_cur == NULL)
 886			smu_start_cmd();
 887	} else
 888		list_add_tail(&cmd->link, &smu->cmd_i2c_list);
 889	spin_unlock_irqrestore(&smu->lock, flags);
 890
 891	return 0;
 892}
 893
 894/*
 895 * Handling of "partitions"
 896 */
 897
 898static int smu_read_datablock(u8 *dest, unsigned int addr, unsigned int len)
 899{
 900	DECLARE_COMPLETION_ONSTACK(comp);
 901	unsigned int chunk;
 902	struct smu_cmd cmd;
 903	int rc;
 904	u8 params[8];
 905
 906	/* We currently use a chunk size of 0xe. We could check the
 907	 * SMU firmware version and use bigger sizes though
 908	 */
 909	chunk = 0xe;
 910
 911	while (len) {
 912		unsigned int clen = min(len, chunk);
 913
 914		cmd.cmd = SMU_CMD_MISC_ee_COMMAND;
 915		cmd.data_len = 7;
 916		cmd.data_buf = params;
 917		cmd.reply_len = chunk;
 918		cmd.reply_buf = dest;
 919		cmd.done = smu_done_complete;
 920		cmd.misc = &comp;
 921		params[0] = SMU_CMD_MISC_ee_GET_DATABLOCK_REC;
 922		params[1] = 0x4;
 923		*((u32 *)&params[2]) = addr;
 924		params[6] = clen;
 925
 926		rc = smu_queue_cmd(&cmd);
 927		if (rc)
 928			return rc;
 929		wait_for_completion(&comp);
 930		if (cmd.status != 0)
 931			return rc;
 932		if (cmd.reply_len != clen) {
 933			printk(KERN_DEBUG "SMU: short read in "
 934			       "smu_read_datablock, got: %d, want: %d\n",
 935			       cmd.reply_len, clen);
 936			return -EIO;
 937		}
 938		len -= clen;
 939		addr += clen;
 940		dest += clen;
 941	}
 942	return 0;
 943}
 944
 945static struct smu_sdbp_header *smu_create_sdb_partition(int id)
 946{
 947	DECLARE_COMPLETION_ONSTACK(comp);
 948	struct smu_simple_cmd cmd;
 949	unsigned int addr, len, tlen;
 950	struct smu_sdbp_header *hdr;
 951	struct property *prop;
 952
 953	/* First query the partition info */
 954	DPRINTK("SMU: Query partition infos ... (irq=%d)\n", smu->db_irq);
 955	smu_queue_simple(&cmd, SMU_CMD_PARTITION_COMMAND, 2,
 956			 smu_done_complete, &comp,
 957			 SMU_CMD_PARTITION_LATEST, id);
 958	wait_for_completion(&comp);
 959	DPRINTK("SMU: done, status: %d, reply_len: %d\n",
 960		cmd.cmd.status, cmd.cmd.reply_len);
 961
 962	/* Partition doesn't exist (or other error) */
 963	if (cmd.cmd.status != 0 || cmd.cmd.reply_len != 6)
 964		return NULL;
 965
 966	/* Fetch address and length from reply */
 967	addr = *((u16 *)cmd.buffer);
 968	len = cmd.buffer[3] << 2;
 969	/* Calucluate total length to allocate, including the 17 bytes
 970	 * for "sdb-partition-XX" that we append at the end of the buffer
 971	 */
 972	tlen = sizeof(struct property) + len + 18;
 973
 974	prop = kzalloc(tlen, GFP_KERNEL);
 975	if (prop == NULL)
 976		return NULL;
 977	hdr = (struct smu_sdbp_header *)(prop + 1);
 978	prop->name = ((char *)prop) + tlen - 18;
 979	sprintf(prop->name, "sdb-partition-%02x", id);
 980	prop->length = len;
 981	prop->value = hdr;
 982	prop->next = NULL;
 983
 984	/* Read the datablock */
 985	if (smu_read_datablock((u8 *)hdr, addr, len)) {
 986		printk(KERN_DEBUG "SMU: datablock read failed while reading "
 987		       "partition %02x !\n", id);
 988		goto failure;
 989	}
 990
 991	/* Got it, check a few things and create the property */
 992	if (hdr->id != id) {
 993		printk(KERN_DEBUG "SMU: Reading partition %02x and got "
 994		       "%02x !\n", id, hdr->id);
 995		goto failure;
 996	}
 997	if (of_add_property(smu->of_node, prop)) {
 998		printk(KERN_DEBUG "SMU: Failed creating sdb-partition-%02x "
 999		       "property !\n", id);
1000		goto failure;
1001	}
1002
1003	return hdr;
1004 failure:
1005	kfree(prop);
1006	return NULL;
1007}
1008
1009/* Note: Only allowed to return error code in pointers (using ERR_PTR)
1010 * when interruptible is 1
1011 */
1012const struct smu_sdbp_header *__smu_get_sdb_partition(int id,
1013		unsigned int *size, int interruptible)
1014{
1015	char pname[32];
1016	const struct smu_sdbp_header *part;
1017
1018	if (!smu)
1019		return NULL;
1020
1021	sprintf(pname, "sdb-partition-%02x", id);
1022
1023	DPRINTK("smu_get_sdb_partition(%02x)\n", id);
1024
1025	if (interruptible) {
1026		int rc;
1027		rc = mutex_lock_interruptible(&smu_part_access);
1028		if (rc)
1029			return ERR_PTR(rc);
1030	} else
1031		mutex_lock(&smu_part_access);
1032
1033	part = of_get_property(smu->of_node, pname, size);
1034	if (part == NULL) {
1035		DPRINTK("trying to extract from SMU ...\n");
1036		part = smu_create_sdb_partition(id);
1037		if (part != NULL && size)
1038			*size = part->len << 2;
1039	}
1040	mutex_unlock(&smu_part_access);
1041	return part;
1042}
1043
1044const struct smu_sdbp_header *smu_get_sdb_partition(int id, unsigned int *size)
1045{
1046	return __smu_get_sdb_partition(id, size, 0);
1047}
1048EXPORT_SYMBOL(smu_get_sdb_partition);
1049
1050
1051/*
1052 * Userland driver interface
1053 */
1054
1055
1056static LIST_HEAD(smu_clist);
1057static DEFINE_SPINLOCK(smu_clist_lock);
1058
1059enum smu_file_mode {
1060	smu_file_commands,
1061	smu_file_events,
1062	smu_file_closing
1063};
1064
1065struct smu_private
1066{
1067	struct list_head	list;
1068	enum smu_file_mode	mode;
1069	int			busy;
1070	struct smu_cmd		cmd;
1071	spinlock_t		lock;
1072	wait_queue_head_t	wait;
1073	u8			buffer[SMU_MAX_DATA];
1074};
1075
1076
1077static int smu_open(struct inode *inode, struct file *file)
1078{
1079	struct smu_private *pp;
1080	unsigned long flags;
1081
1082	pp = kzalloc(sizeof(struct smu_private), GFP_KERNEL);
1083	if (pp == 0)
1084		return -ENOMEM;
1085	spin_lock_init(&pp->lock);
1086	pp->mode = smu_file_commands;
1087	init_waitqueue_head(&pp->wait);
1088
1089	mutex_lock(&smu_mutex);
1090	spin_lock_irqsave(&smu_clist_lock, flags);
1091	list_add(&pp->list, &smu_clist);
1092	spin_unlock_irqrestore(&smu_clist_lock, flags);
1093	file->private_data = pp;
1094	mutex_unlock(&smu_mutex);
1095
1096	return 0;
1097}
1098
1099
1100static void smu_user_cmd_done(struct smu_cmd *cmd, void *misc)
1101{
1102	struct smu_private *pp = misc;
1103
1104	wake_up_all(&pp->wait);
1105}
1106
1107
1108static ssize_t smu_write(struct file *file, const char __user *buf,
1109			 size_t count, loff_t *ppos)
1110{
1111	struct smu_private *pp = file->private_data;
1112	unsigned long flags;
1113	struct smu_user_cmd_hdr hdr;
1114	int rc = 0;
1115
1116	if (pp->busy)
1117		return -EBUSY;
1118	else if (copy_from_user(&hdr, buf, sizeof(hdr)))
1119		return -EFAULT;
1120	else if (hdr.cmdtype == SMU_CMDTYPE_WANTS_EVENTS) {
1121		pp->mode = smu_file_events;
1122		return 0;
1123	} else if (hdr.cmdtype == SMU_CMDTYPE_GET_PARTITION) {
1124		const struct smu_sdbp_header *part;
1125		part = __smu_get_sdb_partition(hdr.cmd, NULL, 1);
1126		if (part == NULL)
1127			return -EINVAL;
1128		else if (IS_ERR(part))
1129			return PTR_ERR(part);
1130		return 0;
1131	} else if (hdr.cmdtype != SMU_CMDTYPE_SMU)
1132		return -EINVAL;
1133	else if (pp->mode != smu_file_commands)
1134		return -EBADFD;
1135	else if (hdr.data_len > SMU_MAX_DATA)
1136		return -EINVAL;
1137
1138	spin_lock_irqsave(&pp->lock, flags);
1139	if (pp->busy) {
1140		spin_unlock_irqrestore(&pp->lock, flags);
1141		return -EBUSY;
1142	}
1143	pp->busy = 1;
1144	pp->cmd.status = 1;
1145	spin_unlock_irqrestore(&pp->lock, flags);
1146
1147	if (copy_from_user(pp->buffer, buf + sizeof(hdr), hdr.data_len)) {
1148		pp->busy = 0;
1149		return -EFAULT;
1150	}
1151
1152	pp->cmd.cmd = hdr.cmd;
1153	pp->cmd.data_len = hdr.data_len;
1154	pp->cmd.reply_len = SMU_MAX_DATA;
1155	pp->cmd.data_buf = pp->buffer;
1156	pp->cmd.reply_buf = pp->buffer;
1157	pp->cmd.done = smu_user_cmd_done;
1158	pp->cmd.misc = pp;
1159	rc = smu_queue_cmd(&pp->cmd);
1160	if (rc < 0)
1161		return rc;
1162	return count;
1163}
1164
1165
1166static ssize_t smu_read_command(struct file *file, struct smu_private *pp,
1167				char __user *buf, size_t count)
1168{
1169	DECLARE_WAITQUEUE(wait, current);
1170	struct smu_user_reply_hdr hdr;
1171	unsigned long flags;
1172	int size, rc = 0;
1173
1174	if (!pp->busy)
1175		return 0;
1176	if (count < sizeof(struct smu_user_reply_hdr))
1177		return -EOVERFLOW;
1178	spin_lock_irqsave(&pp->lock, flags);
1179	if (pp->cmd.status == 1) {
1180		if (file->f_flags & O_NONBLOCK) {
1181			spin_unlock_irqrestore(&pp->lock, flags);
1182			return -EAGAIN;
1183		}
1184		add_wait_queue(&pp->wait, &wait);
1185		for (;;) {
1186			set_current_state(TASK_INTERRUPTIBLE);
1187			rc = 0;
1188			if (pp->cmd.status != 1)
1189				break;
1190			rc = -ERESTARTSYS;
1191			if (signal_pending(current))
1192				break;
1193			spin_unlock_irqrestore(&pp->lock, flags);
1194			schedule();
1195			spin_lock_irqsave(&pp->lock, flags);
1196		}
1197		set_current_state(TASK_RUNNING);
1198		remove_wait_queue(&pp->wait, &wait);
1199	}
1200	spin_unlock_irqrestore(&pp->lock, flags);
1201	if (rc)
1202		return rc;
1203	if (pp->cmd.status != 0)
1204		pp->cmd.reply_len = 0;
1205	size = sizeof(hdr) + pp->cmd.reply_len;
1206	if (count < size)
1207		size = count;
1208	rc = size;
1209	hdr.status = pp->cmd.status;
1210	hdr.reply_len = pp->cmd.reply_len;
1211	if (copy_to_user(buf, &hdr, sizeof(hdr)))
1212		return -EFAULT;
1213	size -= sizeof(hdr);
1214	if (size && copy_to_user(buf + sizeof(hdr), pp->buffer, size))
1215		return -EFAULT;
1216	pp->busy = 0;
1217
1218	return rc;
1219}
1220
1221
1222static ssize_t smu_read_events(struct file *file, struct smu_private *pp,
1223			       char __user *buf, size_t count)
1224{
1225	/* Not implemented */
1226	msleep_interruptible(1000);
1227	return 0;
1228}
1229
1230
1231static ssize_t smu_read(struct file *file, char __user *buf,
1232			size_t count, loff_t *ppos)
1233{
1234	struct smu_private *pp = file->private_data;
1235
1236	if (pp->mode == smu_file_commands)
1237		return smu_read_command(file, pp, buf, count);
1238	if (pp->mode == smu_file_events)
1239		return smu_read_events(file, pp, buf, count);
1240
1241	return -EBADFD;
1242}
1243
1244static unsigned int smu_fpoll(struct file *file, poll_table *wait)
1245{
1246	struct smu_private *pp = file->private_data;
1247	unsigned int mask = 0;
1248	unsigned long flags;
1249
1250	if (pp == 0)
1251		return 0;
1252
1253	if (pp->mode == smu_file_commands) {
1254		poll_wait(file, &pp->wait, wait);
1255
1256		spin_lock_irqsave(&pp->lock, flags);
1257		if (pp->busy && pp->cmd.status != 1)
1258			mask |= POLLIN;
1259		spin_unlock_irqrestore(&pp->lock, flags);
1260	} if (pp->mode == smu_file_events) {
 
1261		/* Not yet implemented */
1262	}
1263	return mask;
1264}
1265
1266static int smu_release(struct inode *inode, struct file *file)
1267{
1268	struct smu_private *pp = file->private_data;
1269	unsigned long flags;
1270	unsigned int busy;
1271
1272	if (pp == 0)
1273		return 0;
1274
1275	file->private_data = NULL;
1276
1277	/* Mark file as closing to avoid races with new request */
1278	spin_lock_irqsave(&pp->lock, flags);
1279	pp->mode = smu_file_closing;
1280	busy = pp->busy;
1281
1282	/* Wait for any pending request to complete */
1283	if (busy && pp->cmd.status == 1) {
1284		DECLARE_WAITQUEUE(wait, current);
1285
1286		add_wait_queue(&pp->wait, &wait);
1287		for (;;) {
1288			set_current_state(TASK_UNINTERRUPTIBLE);
1289			if (pp->cmd.status != 1)
1290				break;
1291			spin_unlock_irqrestore(&pp->lock, flags);
1292			schedule();
1293			spin_lock_irqsave(&pp->lock, flags);
1294		}
1295		set_current_state(TASK_RUNNING);
1296		remove_wait_queue(&pp->wait, &wait);
1297	}
1298	spin_unlock_irqrestore(&pp->lock, flags);
1299
1300	spin_lock_irqsave(&smu_clist_lock, flags);
1301	list_del(&pp->list);
1302	spin_unlock_irqrestore(&smu_clist_lock, flags);
1303	kfree(pp);
1304
1305	return 0;
1306}
1307
1308
1309static const struct file_operations smu_device_fops = {
1310	.llseek		= no_llseek,
1311	.read		= smu_read,
1312	.write		= smu_write,
1313	.poll		= smu_fpoll,
1314	.open		= smu_open,
1315	.release	= smu_release,
1316};
1317
1318static struct miscdevice pmu_device = {
1319	MISC_DYNAMIC_MINOR, "smu", &smu_device_fops
1320};
1321
1322static int smu_device_init(void)
1323{
1324	if (!smu)
1325		return -ENODEV;
1326	if (misc_register(&pmu_device) < 0)
1327		printk(KERN_ERR "via-pmu: cannot register misc device.\n");
1328	return 0;
1329}
1330device_initcall(smu_device_init);