Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * linux/net/sunrpc/sched.c
   4 *
   5 * Scheduling for synchronous and asynchronous RPC requests.
   6 *
   7 * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
   8 *
   9 * TCP NFS related read + write fixes
  10 * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
  11 */
  12
  13#include <linux/module.h>
  14
  15#include <linux/sched.h>
  16#include <linux/interrupt.h>
  17#include <linux/slab.h>
  18#include <linux/mempool.h>
  19#include <linux/smp.h>
  20#include <linux/spinlock.h>
  21#include <linux/mutex.h>
  22#include <linux/freezer.h>
  23#include <linux/sched/mm.h>
  24
  25#include <linux/sunrpc/clnt.h>
  26#include <linux/sunrpc/metrics.h>
  27
  28#include "sunrpc.h"
  29
  30#if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
  31#define RPCDBG_FACILITY		RPCDBG_SCHED
  32#endif
  33
  34#define CREATE_TRACE_POINTS
  35#include <trace/events/sunrpc.h>
  36
  37/*
  38 * RPC slabs and memory pools
  39 */
  40#define RPC_BUFFER_MAXSIZE	(2048)
  41#define RPC_BUFFER_POOLSIZE	(8)
  42#define RPC_TASK_POOLSIZE	(8)
  43static struct kmem_cache	*rpc_task_slabp __read_mostly;
  44static struct kmem_cache	*rpc_buffer_slabp __read_mostly;
  45static mempool_t	*rpc_task_mempool __read_mostly;
  46static mempool_t	*rpc_buffer_mempool __read_mostly;
  47
  48static void			rpc_async_schedule(struct work_struct *);
  49static void			 rpc_release_task(struct rpc_task *task);
  50static void __rpc_queue_timer_fn(struct work_struct *);
  51
  52/*
  53 * RPC tasks sit here while waiting for conditions to improve.
  54 */
  55static struct rpc_wait_queue delay_queue;
  56
  57/*
  58 * rpciod-related stuff
  59 */
  60struct workqueue_struct *rpciod_workqueue __read_mostly;
  61struct workqueue_struct *xprtiod_workqueue __read_mostly;
  62EXPORT_SYMBOL_GPL(xprtiod_workqueue);
  63
  64unsigned long
  65rpc_task_timeout(const struct rpc_task *task)
  66{
  67	unsigned long timeout = READ_ONCE(task->tk_timeout);
  68
  69	if (timeout != 0) {
  70		unsigned long now = jiffies;
  71		if (time_before(now, timeout))
  72			return timeout - now;
  73	}
  74	return 0;
  75}
  76EXPORT_SYMBOL_GPL(rpc_task_timeout);
  77
  78/*
  79 * Disable the timer for a given RPC task. Should be called with
  80 * queue->lock and bh_disabled in order to avoid races within
  81 * rpc_run_timer().
  82 */
  83static void
  84__rpc_disable_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
  85{
  86	if (list_empty(&task->u.tk_wait.timer_list))
  87		return;
  88	dprintk("RPC: %5u disabling timer\n", task->tk_pid);
  89	task->tk_timeout = 0;
  90	list_del(&task->u.tk_wait.timer_list);
  91	if (list_empty(&queue->timer_list.list))
  92		cancel_delayed_work(&queue->timer_list.dwork);
  93}
  94
  95static void
  96rpc_set_queue_timer(struct rpc_wait_queue *queue, unsigned long expires)
  97{
  98	unsigned long now = jiffies;
  99	queue->timer_list.expires = expires;
 100	if (time_before_eq(expires, now))
 101		expires = 0;
 102	else
 103		expires -= now;
 104	mod_delayed_work(rpciod_workqueue, &queue->timer_list.dwork, expires);
 105}
 106
 107/*
 108 * Set up a timer for the current task.
 109 */
 110static void
 111__rpc_add_timer(struct rpc_wait_queue *queue, struct rpc_task *task,
 112		unsigned long timeout)
 113{
 114	dprintk("RPC: %5u setting alarm for %u ms\n",
 115		task->tk_pid, jiffies_to_msecs(timeout - jiffies));
 116
 117	task->tk_timeout = timeout;
 118	if (list_empty(&queue->timer_list.list) || time_before(timeout, queue->timer_list.expires))
 119		rpc_set_queue_timer(queue, timeout);
 120	list_add(&task->u.tk_wait.timer_list, &queue->timer_list.list);
 121}
 122
 123static void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
 124{
 125	if (queue->priority != priority) {
 126		queue->priority = priority;
 127		queue->nr = 1U << priority;
 128	}
 129}
 130
 131static void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
 132{
 133	rpc_set_waitqueue_priority(queue, queue->maxpriority);
 
 134}
 135
 136/*
 137 * Add a request to a queue list
 138 */
 139static void
 140__rpc_list_enqueue_task(struct list_head *q, struct rpc_task *task)
 
 141{
 
 142	struct rpc_task *t;
 143
 
 
 
 
 144	list_for_each_entry(t, q, u.tk_wait.list) {
 145		if (t->tk_owner == task->tk_owner) {
 146			list_add_tail(&task->u.tk_wait.links,
 147					&t->u.tk_wait.links);
 148			/* Cache the queue head in task->u.tk_wait.list */
 149			task->u.tk_wait.list.next = q;
 150			task->u.tk_wait.list.prev = NULL;
 151			return;
 152		}
 153	}
 154	INIT_LIST_HEAD(&task->u.tk_wait.links);
 155	list_add_tail(&task->u.tk_wait.list, q);
 156}
 157
 158/*
 159 * Remove request from a queue list
 160 */
 161static void
 162__rpc_list_dequeue_task(struct rpc_task *task)
 163{
 164	struct list_head *q;
 165	struct rpc_task *t;
 166
 167	if (task->u.tk_wait.list.prev == NULL) {
 168		list_del(&task->u.tk_wait.links);
 169		return;
 170	}
 171	if (!list_empty(&task->u.tk_wait.links)) {
 172		t = list_first_entry(&task->u.tk_wait.links,
 173				struct rpc_task,
 174				u.tk_wait.links);
 175		/* Assume __rpc_list_enqueue_task() cached the queue head */
 176		q = t->u.tk_wait.list.next;
 177		list_add_tail(&t->u.tk_wait.list, q);
 178		list_del(&task->u.tk_wait.links);
 179	}
 180	list_del(&task->u.tk_wait.list);
 181}
 182
 183/*
 184 * Add new request to a priority queue.
 185 */
 186static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue,
 187		struct rpc_task *task,
 188		unsigned char queue_priority)
 189{
 190	if (unlikely(queue_priority > queue->maxpriority))
 191		queue_priority = queue->maxpriority;
 192	__rpc_list_enqueue_task(&queue->tasks[queue_priority], task);
 193}
 194
 195/*
 196 * Add new request to wait queue.
 197 *
 198 * Swapper tasks always get inserted at the head of the queue.
 199 * This should avoid many nasty memory deadlocks and hopefully
 200 * improve overall performance.
 201 * Everyone else gets appended to the queue to ensure proper FIFO behavior.
 202 */
 203static void __rpc_add_wait_queue(struct rpc_wait_queue *queue,
 204		struct rpc_task *task,
 205		unsigned char queue_priority)
 206{
 207	INIT_LIST_HEAD(&task->u.tk_wait.timer_list);
 
 208	if (RPC_IS_PRIORITY(queue))
 209		__rpc_add_wait_queue_priority(queue, task, queue_priority);
 210	else if (RPC_IS_SWAPPER(task))
 211		list_add(&task->u.tk_wait.list, &queue->tasks[0]);
 212	else
 213		list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
 214	task->tk_waitqueue = queue;
 215	queue->qlen++;
 216	/* barrier matches the read in rpc_wake_up_task_queue_locked() */
 217	smp_wmb();
 218	rpc_set_queued(task);
 219
 220	dprintk("RPC: %5u added to queue %p \"%s\"\n",
 221			task->tk_pid, queue, rpc_qname(queue));
 222}
 223
 224/*
 225 * Remove request from a priority queue.
 226 */
 227static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
 228{
 229	__rpc_list_dequeue_task(task);
 
 
 
 
 
 
 230}
 231
 232/*
 233 * Remove request from queue.
 234 * Note: must be called with spin lock held.
 235 */
 236static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
 237{
 238	__rpc_disable_timer(queue, task);
 239	if (RPC_IS_PRIORITY(queue))
 240		__rpc_remove_wait_queue_priority(task);
 241	else
 242		list_del(&task->u.tk_wait.list);
 243	queue->qlen--;
 244	dprintk("RPC: %5u removed from queue %p \"%s\"\n",
 245			task->tk_pid, queue, rpc_qname(queue));
 246}
 247
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 248static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues)
 249{
 250	int i;
 251
 252	spin_lock_init(&queue->lock);
 253	for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
 254		INIT_LIST_HEAD(&queue->tasks[i]);
 255	queue->maxpriority = nr_queues - 1;
 256	rpc_reset_waitqueue_priority(queue);
 257	queue->qlen = 0;
 258	queue->timer_list.expires = 0;
 259	INIT_DELAYED_WORK(&queue->timer_list.dwork, __rpc_queue_timer_fn);
 260	INIT_LIST_HEAD(&queue->timer_list.list);
 261	rpc_assign_waitqueue_name(queue, qname);
 
 
 262}
 263
 264void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
 265{
 266	__rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY);
 267}
 268EXPORT_SYMBOL_GPL(rpc_init_priority_wait_queue);
 269
 270void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
 271{
 272	__rpc_init_priority_wait_queue(queue, qname, 1);
 273}
 274EXPORT_SYMBOL_GPL(rpc_init_wait_queue);
 275
 276void rpc_destroy_wait_queue(struct rpc_wait_queue *queue)
 277{
 278	cancel_delayed_work_sync(&queue->timer_list.dwork);
 279}
 280EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue);
 281
 282static int rpc_wait_bit_killable(struct wait_bit_key *key, int mode)
 283{
 284	freezable_schedule_unsafe();
 285	if (signal_pending_state(mode, current))
 286		return -ERESTARTSYS;
 
 287	return 0;
 288}
 289
 290#if IS_ENABLED(CONFIG_SUNRPC_DEBUG) || IS_ENABLED(CONFIG_TRACEPOINTS)
 291static void rpc_task_set_debuginfo(struct rpc_task *task)
 292{
 293	static atomic_t rpc_pid;
 294
 295	task->tk_pid = atomic_inc_return(&rpc_pid);
 296}
 297#else
 298static inline void rpc_task_set_debuginfo(struct rpc_task *task)
 299{
 300}
 301#endif
 302
 303static void rpc_set_active(struct rpc_task *task)
 304{
 305	rpc_task_set_debuginfo(task);
 306	set_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
 307	trace_rpc_task_begin(task, NULL);
 308}
 309
 310/*
 311 * Mark an RPC call as having completed by clearing the 'active' bit
 312 * and then waking up all tasks that were sleeping.
 313 */
 314static int rpc_complete_task(struct rpc_task *task)
 315{
 316	void *m = &task->tk_runstate;
 317	wait_queue_head_t *wq = bit_waitqueue(m, RPC_TASK_ACTIVE);
 318	struct wait_bit_key k = __WAIT_BIT_KEY_INITIALIZER(m, RPC_TASK_ACTIVE);
 319	unsigned long flags;
 320	int ret;
 321
 322	trace_rpc_task_complete(task, NULL);
 323
 324	spin_lock_irqsave(&wq->lock, flags);
 325	clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
 326	ret = atomic_dec_and_test(&task->tk_count);
 327	if (waitqueue_active(wq))
 328		__wake_up_locked_key(wq, TASK_NORMAL, &k);
 329	spin_unlock_irqrestore(&wq->lock, flags);
 330	return ret;
 331}
 332
 333/*
 334 * Allow callers to wait for completion of an RPC call
 335 *
 336 * Note the use of out_of_line_wait_on_bit() rather than wait_on_bit()
 337 * to enforce taking of the wq->lock and hence avoid races with
 338 * rpc_complete_task().
 339 */
 340int __rpc_wait_for_completion_task(struct rpc_task *task, wait_bit_action_f *action)
 341{
 342	if (action == NULL)
 343		action = rpc_wait_bit_killable;
 344	return out_of_line_wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
 345			action, TASK_KILLABLE);
 346}
 347EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task);
 348
 349/*
 350 * Make an RPC task runnable.
 351 *
 352 * Note: If the task is ASYNC, and is being made runnable after sitting on an
 353 * rpc_wait_queue, this must be called with the queue spinlock held to protect
 354 * the wait queue operation.
 355 * Note the ordering of rpc_test_and_set_running() and rpc_clear_queued(),
 356 * which is needed to ensure that __rpc_execute() doesn't loop (due to the
 357 * lockless RPC_IS_QUEUED() test) before we've had a chance to test
 358 * the RPC_TASK_RUNNING flag.
 359 */
 360static void rpc_make_runnable(struct workqueue_struct *wq,
 361		struct rpc_task *task)
 362{
 363	bool need_wakeup = !rpc_test_and_set_running(task);
 364
 365	rpc_clear_queued(task);
 366	if (!need_wakeup)
 367		return;
 368	if (RPC_IS_ASYNC(task)) {
 369		INIT_WORK(&task->u.tk_work, rpc_async_schedule);
 370		queue_work(wq, &task->u.tk_work);
 371	} else
 372		wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
 373}
 374
 375/*
 376 * Prepare for sleeping on a wait queue.
 377 * By always appending tasks to the list we ensure FIFO behavior.
 378 * NB: An RPC task will only receive interrupt-driven events as long
 379 * as it's on a wait queue.
 380 */
 381static void __rpc_do_sleep_on_priority(struct rpc_wait_queue *q,
 382		struct rpc_task *task,
 
 383		unsigned char queue_priority)
 384{
 385	dprintk("RPC: %5u sleep_on(queue \"%s\" time %lu)\n",
 386			task->tk_pid, rpc_qname(q), jiffies);
 387
 388	trace_rpc_task_sleep(task, q);
 389
 390	__rpc_add_wait_queue(q, task, queue_priority);
 391
 
 
 
 392}
 393
 394static void __rpc_sleep_on_priority(struct rpc_wait_queue *q,
 395		struct rpc_task *task,
 396		unsigned char queue_priority)
 397{
 398	if (WARN_ON_ONCE(RPC_IS_QUEUED(task)))
 399		return;
 400	__rpc_do_sleep_on_priority(q, task, queue_priority);
 401}
 402
 403static void __rpc_sleep_on_priority_timeout(struct rpc_wait_queue *q,
 404		struct rpc_task *task, unsigned long timeout,
 405		unsigned char queue_priority)
 406{
 407	if (WARN_ON_ONCE(RPC_IS_QUEUED(task)))
 408		return;
 409	if (time_is_after_jiffies(timeout)) {
 410		__rpc_do_sleep_on_priority(q, task, queue_priority);
 411		__rpc_add_timer(q, task, timeout);
 412	} else
 413		task->tk_status = -ETIMEDOUT;
 414}
 415
 416static void rpc_set_tk_callback(struct rpc_task *task, rpc_action action)
 417{
 418	if (action && !WARN_ON_ONCE(task->tk_callback != NULL))
 419		task->tk_callback = action;
 420}
 421
 422static bool rpc_sleep_check_activated(struct rpc_task *task)
 423{
 424	/* We shouldn't ever put an inactive task to sleep */
 425	if (WARN_ON_ONCE(!RPC_IS_ACTIVATED(task))) {
 426		task->tk_status = -EIO;
 427		rpc_put_task_async(task);
 428		return false;
 429	}
 430	return true;
 431}
 432
 433void rpc_sleep_on_timeout(struct rpc_wait_queue *q, struct rpc_task *task,
 434				rpc_action action, unsigned long timeout)
 435{
 436	if (!rpc_sleep_check_activated(task))
 437		return;
 438
 439	rpc_set_tk_callback(task, action);
 440
 441	/*
 442	 * Protect the queue operations.
 443	 */
 444	spin_lock(&q->lock);
 445	__rpc_sleep_on_priority_timeout(q, task, timeout, task->tk_priority);
 446	spin_unlock(&q->lock);
 447}
 448EXPORT_SYMBOL_GPL(rpc_sleep_on_timeout);
 449
 450void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
 451				rpc_action action)
 452{
 453	if (!rpc_sleep_check_activated(task))
 454		return;
 455
 456	rpc_set_tk_callback(task, action);
 457
 458	WARN_ON_ONCE(task->tk_timeout != 0);
 459	/*
 460	 * Protect the queue operations.
 461	 */
 462	spin_lock(&q->lock);
 463	__rpc_sleep_on_priority(q, task, task->tk_priority);
 464	spin_unlock(&q->lock);
 465}
 466EXPORT_SYMBOL_GPL(rpc_sleep_on);
 467
 468void rpc_sleep_on_priority_timeout(struct rpc_wait_queue *q,
 469		struct rpc_task *task, unsigned long timeout, int priority)
 470{
 471	if (!rpc_sleep_check_activated(task))
 472		return;
 473
 474	priority -= RPC_PRIORITY_LOW;
 475	/*
 476	 * Protect the queue operations.
 477	 */
 478	spin_lock(&q->lock);
 479	__rpc_sleep_on_priority_timeout(q, task, timeout, priority);
 480	spin_unlock(&q->lock);
 481}
 482EXPORT_SYMBOL_GPL(rpc_sleep_on_priority_timeout);
 483
 484void rpc_sleep_on_priority(struct rpc_wait_queue *q, struct rpc_task *task,
 485		int priority)
 486{
 487	if (!rpc_sleep_check_activated(task))
 488		return;
 489
 490	WARN_ON_ONCE(task->tk_timeout != 0);
 491	priority -= RPC_PRIORITY_LOW;
 492	/*
 493	 * Protect the queue operations.
 494	 */
 495	spin_lock(&q->lock);
 496	__rpc_sleep_on_priority(q, task, priority);
 497	spin_unlock(&q->lock);
 498}
 499EXPORT_SYMBOL_GPL(rpc_sleep_on_priority);
 500
 501/**
 502 * __rpc_do_wake_up_task_on_wq - wake up a single rpc_task
 503 * @wq: workqueue on which to run task
 504 * @queue: wait queue
 505 * @task: task to be woken up
 506 *
 507 * Caller must hold queue->lock, and have cleared the task queued flag.
 508 */
 509static void __rpc_do_wake_up_task_on_wq(struct workqueue_struct *wq,
 510		struct rpc_wait_queue *queue,
 511		struct rpc_task *task)
 512{
 513	dprintk("RPC: %5u __rpc_wake_up_task (now %lu)\n",
 514			task->tk_pid, jiffies);
 515
 516	/* Has the task been executed yet? If not, we cannot wake it up! */
 517	if (!RPC_IS_ACTIVATED(task)) {
 518		printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
 519		return;
 520	}
 521
 522	trace_rpc_task_wakeup(task, queue);
 523
 524	__rpc_remove_wait_queue(queue, task);
 525
 526	rpc_make_runnable(wq, task);
 527
 528	dprintk("RPC:       __rpc_wake_up_task done\n");
 529}
 530
 531/*
 532 * Wake up a queued task while the queue lock is being held
 533 */
 534static struct rpc_task *
 535rpc_wake_up_task_on_wq_queue_action_locked(struct workqueue_struct *wq,
 536		struct rpc_wait_queue *queue, struct rpc_task *task,
 537		bool (*action)(struct rpc_task *, void *), void *data)
 538{
 539	if (RPC_IS_QUEUED(task)) {
 540		smp_rmb();
 541		if (task->tk_waitqueue == queue) {
 542			if (action == NULL || action(task, data)) {
 543				__rpc_do_wake_up_task_on_wq(wq, queue, task);
 544				return task;
 545			}
 546		}
 547	}
 548	return NULL;
 549}
 550
 551/*
 552 * Wake up a queued task while the queue lock is being held
 553 */
 554static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue,
 555					  struct rpc_task *task)
 556{
 557	rpc_wake_up_task_on_wq_queue_action_locked(rpciod_workqueue, queue,
 558						   task, NULL, NULL);
 
 
 
 
 559}
 
 560
 561/*
 562 * Wake up a task on a specific queue
 563 */
 564void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task)
 565{
 566	if (!RPC_IS_QUEUED(task))
 567		return;
 568	spin_lock(&queue->lock);
 569	rpc_wake_up_task_queue_locked(queue, task);
 570	spin_unlock(&queue->lock);
 571}
 572EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task);
 573
 574static bool rpc_task_action_set_status(struct rpc_task *task, void *status)
 575{
 576	task->tk_status = *(int *)status;
 577	return true;
 578}
 579
 580static void
 581rpc_wake_up_task_queue_set_status_locked(struct rpc_wait_queue *queue,
 582		struct rpc_task *task, int status)
 583{
 584	rpc_wake_up_task_on_wq_queue_action_locked(rpciod_workqueue, queue,
 585			task, rpc_task_action_set_status, &status);
 586}
 587
 588/**
 589 * rpc_wake_up_queued_task_set_status - wake up a task and set task->tk_status
 590 * @queue: pointer to rpc_wait_queue
 591 * @task: pointer to rpc_task
 592 * @status: integer error value
 593 *
 594 * If @task is queued on @queue, then it is woken up, and @task->tk_status is
 595 * set to the value of @status.
 596 */
 597void
 598rpc_wake_up_queued_task_set_status(struct rpc_wait_queue *queue,
 599		struct rpc_task *task, int status)
 600{
 601	if (!RPC_IS_QUEUED(task))
 602		return;
 603	spin_lock(&queue->lock);
 604	rpc_wake_up_task_queue_set_status_locked(queue, task, status);
 605	spin_unlock(&queue->lock);
 606}
 607
 608/*
 609 * Wake up the next task on a priority queue.
 610 */
 611static struct rpc_task *__rpc_find_next_queued_priority(struct rpc_wait_queue *queue)
 612{
 613	struct list_head *q;
 614	struct rpc_task *task;
 615
 616	/*
 617	 * Service a batch of tasks from a single owner.
 618	 */
 619	q = &queue->tasks[queue->priority];
 620	if (!list_empty(q) && --queue->nr) {
 621		task = list_first_entry(q, struct rpc_task, u.tk_wait.list);
 622		goto out;
 
 
 
 
 
 
 
 
 
 623	}
 624
 625	/*
 626	 * Service the next queue.
 627	 */
 628	do {
 629		if (q == &queue->tasks[0])
 630			q = &queue->tasks[queue->maxpriority];
 631		else
 632			q = q - 1;
 633		if (!list_empty(q)) {
 634			task = list_first_entry(q, struct rpc_task, u.tk_wait.list);
 635			goto new_queue;
 636		}
 637	} while (q != &queue->tasks[queue->priority]);
 638
 639	rpc_reset_waitqueue_priority(queue);
 640	return NULL;
 641
 642new_queue:
 643	rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
 
 
 644out:
 
 645	return task;
 646}
 647
 648static struct rpc_task *__rpc_find_next_queued(struct rpc_wait_queue *queue)
 649{
 650	if (RPC_IS_PRIORITY(queue))
 651		return __rpc_find_next_queued_priority(queue);
 652	if (!list_empty(&queue->tasks[0]))
 653		return list_first_entry(&queue->tasks[0], struct rpc_task, u.tk_wait.list);
 654	return NULL;
 655}
 656
 657/*
 658 * Wake up the first task on the wait queue.
 659 */
 660struct rpc_task *rpc_wake_up_first_on_wq(struct workqueue_struct *wq,
 661		struct rpc_wait_queue *queue,
 662		bool (*func)(struct rpc_task *, void *), void *data)
 663{
 664	struct rpc_task	*task = NULL;
 665
 666	dprintk("RPC:       wake_up_first(%p \"%s\")\n",
 667			queue, rpc_qname(queue));
 668	spin_lock(&queue->lock);
 669	task = __rpc_find_next_queued(queue);
 670	if (task != NULL)
 671		task = rpc_wake_up_task_on_wq_queue_action_locked(wq, queue,
 672				task, func, data);
 673	spin_unlock(&queue->lock);
 
 
 674
 675	return task;
 676}
 677
 678/*
 679 * Wake up the first task on the wait queue.
 680 */
 681struct rpc_task *rpc_wake_up_first(struct rpc_wait_queue *queue,
 682		bool (*func)(struct rpc_task *, void *), void *data)
 683{
 684	return rpc_wake_up_first_on_wq(rpciod_workqueue, queue, func, data);
 685}
 686EXPORT_SYMBOL_GPL(rpc_wake_up_first);
 687
 688static bool rpc_wake_up_next_func(struct rpc_task *task, void *data)
 689{
 690	return true;
 691}
 692
 693/*
 694 * Wake up the next task on the wait queue.
 695*/
 696struct rpc_task *rpc_wake_up_next(struct rpc_wait_queue *queue)
 697{
 698	return rpc_wake_up_first(queue, rpc_wake_up_next_func, NULL);
 699}
 700EXPORT_SYMBOL_GPL(rpc_wake_up_next);
 701
 702/**
 703 * rpc_wake_up - wake up all rpc_tasks
 704 * @queue: rpc_wait_queue on which the tasks are sleeping
 705 *
 706 * Grabs queue->lock
 707 */
 708void rpc_wake_up(struct rpc_wait_queue *queue)
 709{
 
 710	struct list_head *head;
 711
 712	spin_lock(&queue->lock);
 713	head = &queue->tasks[queue->maxpriority];
 714	for (;;) {
 715		while (!list_empty(head)) {
 716			struct rpc_task *task;
 717			task = list_first_entry(head,
 718					struct rpc_task,
 719					u.tk_wait.list);
 720			rpc_wake_up_task_queue_locked(queue, task);
 721		}
 722		if (head == &queue->tasks[0])
 723			break;
 724		head--;
 725	}
 726	spin_unlock(&queue->lock);
 727}
 728EXPORT_SYMBOL_GPL(rpc_wake_up);
 729
 730/**
 731 * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
 732 * @queue: rpc_wait_queue on which the tasks are sleeping
 733 * @status: status value to set
 734 *
 735 * Grabs queue->lock
 736 */
 737void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
 738{
 
 739	struct list_head *head;
 740
 741	spin_lock(&queue->lock);
 742	head = &queue->tasks[queue->maxpriority];
 743	for (;;) {
 744		while (!list_empty(head)) {
 745			struct rpc_task *task;
 746			task = list_first_entry(head,
 747					struct rpc_task,
 748					u.tk_wait.list);
 749			task->tk_status = status;
 750			rpc_wake_up_task_queue_locked(queue, task);
 751		}
 752		if (head == &queue->tasks[0])
 753			break;
 754		head--;
 755	}
 756	spin_unlock(&queue->lock);
 757}
 758EXPORT_SYMBOL_GPL(rpc_wake_up_status);
 759
 760static void __rpc_queue_timer_fn(struct work_struct *work)
 761{
 762	struct rpc_wait_queue *queue = container_of(work,
 763			struct rpc_wait_queue,
 764			timer_list.dwork.work);
 765	struct rpc_task *task, *n;
 766	unsigned long expires, now, timeo;
 767
 768	spin_lock(&queue->lock);
 769	expires = now = jiffies;
 770	list_for_each_entry_safe(task, n, &queue->timer_list.list, u.tk_wait.timer_list) {
 771		timeo = task->tk_timeout;
 772		if (time_after_eq(now, timeo)) {
 773			dprintk("RPC: %5u timeout\n", task->tk_pid);
 774			task->tk_status = -ETIMEDOUT;
 775			rpc_wake_up_task_queue_locked(queue, task);
 776			continue;
 777		}
 778		if (expires == now || time_after(expires, timeo))
 779			expires = timeo;
 780	}
 781	if (!list_empty(&queue->timer_list.list))
 782		rpc_set_queue_timer(queue, expires);
 783	spin_unlock(&queue->lock);
 784}
 785
 786static void __rpc_atrun(struct rpc_task *task)
 787{
 788	if (task->tk_status == -ETIMEDOUT)
 789		task->tk_status = 0;
 790}
 791
 792/*
 793 * Run a task at a later time
 794 */
 795void rpc_delay(struct rpc_task *task, unsigned long delay)
 796{
 797	rpc_sleep_on_timeout(&delay_queue, task, __rpc_atrun, jiffies + delay);
 
 798}
 799EXPORT_SYMBOL_GPL(rpc_delay);
 800
 801/*
 802 * Helper to call task->tk_ops->rpc_call_prepare
 803 */
 804void rpc_prepare_task(struct rpc_task *task)
 805{
 806	task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
 807}
 808
 809static void
 810rpc_init_task_statistics(struct rpc_task *task)
 811{
 812	/* Initialize retry counters */
 813	task->tk_garb_retry = 2;
 814	task->tk_cred_retry = 2;
 815	task->tk_rebind_retry = 2;
 816
 817	/* starting timestamp */
 818	task->tk_start = ktime_get();
 819}
 820
 821static void
 822rpc_reset_task_statistics(struct rpc_task *task)
 823{
 824	task->tk_timeouts = 0;
 825	task->tk_flags &= ~(RPC_CALL_MAJORSEEN|RPC_TASK_SENT);
 826	rpc_init_task_statistics(task);
 827}
 828
 829/*
 830 * Helper that calls task->tk_ops->rpc_call_done if it exists
 831 */
 832void rpc_exit_task(struct rpc_task *task)
 833{
 834	trace_rpc_task_end(task, task->tk_action);
 835	task->tk_action = NULL;
 836	if (task->tk_ops->rpc_count_stats)
 837		task->tk_ops->rpc_count_stats(task, task->tk_calldata);
 838	else if (task->tk_client)
 839		rpc_count_iostats(task, task->tk_client->cl_metrics);
 840	if (task->tk_ops->rpc_call_done != NULL) {
 841		task->tk_ops->rpc_call_done(task, task->tk_calldata);
 842		if (task->tk_action != NULL) {
 
 843			/* Always release the RPC slot and buffer memory */
 844			xprt_release(task);
 845			rpc_reset_task_statistics(task);
 846		}
 847	}
 848}
 849
 850void rpc_signal_task(struct rpc_task *task)
 851{
 852	struct rpc_wait_queue *queue;
 853
 854	if (!RPC_IS_ACTIVATED(task))
 855		return;
 856
 857	trace_rpc_task_signalled(task, task->tk_action);
 858	set_bit(RPC_TASK_SIGNALLED, &task->tk_runstate);
 859	smp_mb__after_atomic();
 860	queue = READ_ONCE(task->tk_waitqueue);
 861	if (queue)
 862		rpc_wake_up_queued_task_set_status(queue, task, -ERESTARTSYS);
 863}
 864
 865void rpc_exit(struct rpc_task *task, int status)
 866{
 867	task->tk_status = status;
 868	task->tk_action = rpc_exit_task;
 869	rpc_wake_up_queued_task(task->tk_waitqueue, task);
 
 870}
 871EXPORT_SYMBOL_GPL(rpc_exit);
 872
 873void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata)
 874{
 875	if (ops->rpc_release != NULL)
 876		ops->rpc_release(calldata);
 877}
 878
 879/*
 880 * This is the RPC `scheduler' (or rather, the finite state machine).
 881 */
 882static void __rpc_execute(struct rpc_task *task)
 883{
 884	struct rpc_wait_queue *queue;
 885	int task_is_async = RPC_IS_ASYNC(task);
 886	int status = 0;
 887
 888	dprintk("RPC: %5u __rpc_execute flags=0x%x\n",
 889			task->tk_pid, task->tk_flags);
 890
 891	WARN_ON_ONCE(RPC_IS_QUEUED(task));
 892	if (RPC_IS_QUEUED(task))
 893		return;
 894
 895	for (;;) {
 896		void (*do_action)(struct rpc_task *);
 897
 898		/*
 899		 * Perform the next FSM step or a pending callback.
 900		 *
 901		 * tk_action may be NULL if the task has been killed.
 902		 * In particular, note that rpc_killall_tasks may
 903		 * do this at any time, so beware when dereferencing.
 904		 */
 905		do_action = task->tk_action;
 906		if (task->tk_callback) {
 907			do_action = task->tk_callback;
 908			task->tk_callback = NULL;
 
 
 
 
 
 
 
 
 909		}
 910		if (!do_action)
 911			break;
 912		trace_rpc_task_run_action(task, do_action);
 913		do_action(task);
 914
 915		/*
 916		 * Lockless check for whether task is sleeping or not.
 917		 */
 918		if (!RPC_IS_QUEUED(task))
 919			continue;
 920
 921		/*
 922		 * Signalled tasks should exit rather than sleep.
 923		 */
 924		if (RPC_SIGNALLED(task)) {
 925			task->tk_rpc_status = -ERESTARTSYS;
 926			rpc_exit(task, -ERESTARTSYS);
 927		}
 928
 929		/*
 930		 * The queue->lock protects against races with
 931		 * rpc_make_runnable().
 932		 *
 933		 * Note that once we clear RPC_TASK_RUNNING on an asynchronous
 934		 * rpc_task, rpc_make_runnable() can assign it to a
 935		 * different workqueue. We therefore cannot assume that the
 936		 * rpc_task pointer may still be dereferenced.
 937		 */
 938		queue = task->tk_waitqueue;
 939		spin_lock(&queue->lock);
 940		if (!RPC_IS_QUEUED(task)) {
 941			spin_unlock(&queue->lock);
 942			continue;
 943		}
 944		rpc_clear_running(task);
 945		spin_unlock(&queue->lock);
 946		if (task_is_async)
 947			return;
 948
 949		/* sync task: sleep here */
 950		dprintk("RPC: %5u sync task going to sleep\n", task->tk_pid);
 951		status = out_of_line_wait_on_bit(&task->tk_runstate,
 952				RPC_TASK_QUEUED, rpc_wait_bit_killable,
 953				TASK_KILLABLE);
 954		if (status < 0) {
 955			/*
 956			 * When a sync task receives a signal, it exits with
 957			 * -ERESTARTSYS. In order to catch any callbacks that
 958			 * clean up after sleeping on some queue, we don't
 959			 * break the loop here, but go around once more.
 960			 */
 961			trace_rpc_task_signalled(task, task->tk_action);
 962			set_bit(RPC_TASK_SIGNALLED, &task->tk_runstate);
 963			task->tk_rpc_status = -ERESTARTSYS;
 964			rpc_exit(task, -ERESTARTSYS);
 965		}
 
 966		dprintk("RPC: %5u sync task resuming\n", task->tk_pid);
 967	}
 968
 969	dprintk("RPC: %5u return %d, status %d\n", task->tk_pid, status,
 970			task->tk_status);
 971	/* Release all resources associated with the task */
 972	rpc_release_task(task);
 973}
 974
 975/*
 976 * User-visible entry point to the scheduler.
 977 *
 978 * This may be called recursively if e.g. an async NFS task updates
 979 * the attributes and finds that dirty pages must be flushed.
 980 * NOTE: Upon exit of this function the task is guaranteed to be
 981 *	 released. In particular note that tk_release() will have
 982 *	 been called, so your task memory may have been freed.
 983 */
 984void rpc_execute(struct rpc_task *task)
 985{
 986	bool is_async = RPC_IS_ASYNC(task);
 987
 988	rpc_set_active(task);
 989	rpc_make_runnable(rpciod_workqueue, task);
 990	if (!is_async)
 991		__rpc_execute(task);
 992}
 993
 994static void rpc_async_schedule(struct work_struct *work)
 995{
 996	unsigned int pflags = memalloc_nofs_save();
 997
 998	__rpc_execute(container_of(work, struct rpc_task, u.tk_work));
 999	memalloc_nofs_restore(pflags);
1000}
1001
1002/**
1003 * rpc_malloc - allocate RPC buffer resources
1004 * @task: RPC task
1005 *
1006 * A single memory region is allocated, which is split between the
1007 * RPC call and RPC reply that this task is being used for. When
1008 * this RPC is retired, the memory is released by calling rpc_free.
1009 *
1010 * To prevent rpciod from hanging, this allocator never sleeps,
1011 * returning -ENOMEM and suppressing warning if the request cannot
1012 * be serviced immediately. The caller can arrange to sleep in a
1013 * way that is safe for rpciod.
1014 *
1015 * Most requests are 'small' (under 2KiB) and can be serviced from a
1016 * mempool, ensuring that NFS reads and writes can always proceed,
1017 * and that there is good locality of reference for these buffers.
 
 
 
1018 */
1019int rpc_malloc(struct rpc_task *task)
1020{
1021	struct rpc_rqst *rqst = task->tk_rqstp;
1022	size_t size = rqst->rq_callsize + rqst->rq_rcvsize;
1023	struct rpc_buffer *buf;
1024	gfp_t gfp = GFP_NOFS;
1025
1026	if (RPC_IS_SWAPPER(task))
1027		gfp = __GFP_MEMALLOC | GFP_NOWAIT | __GFP_NOWARN;
1028
1029	size += sizeof(struct rpc_buffer);
1030	if (size <= RPC_BUFFER_MAXSIZE)
1031		buf = mempool_alloc(rpc_buffer_mempool, gfp);
1032	else
1033		buf = kmalloc(size, gfp);
1034
1035	if (!buf)
1036		return -ENOMEM;
1037
1038	buf->len = size;
1039	dprintk("RPC: %5u allocated buffer of size %zu at %p\n",
1040			task->tk_pid, size, buf);
1041	rqst->rq_buffer = buf->data;
1042	rqst->rq_rbuffer = (char *)rqst->rq_buffer + rqst->rq_callsize;
1043	return 0;
1044}
1045EXPORT_SYMBOL_GPL(rpc_malloc);
1046
1047/**
1048 * rpc_free - free RPC buffer resources allocated via rpc_malloc
1049 * @task: RPC task
1050 *
1051 */
1052void rpc_free(struct rpc_task *task)
1053{
1054	void *buffer = task->tk_rqstp->rq_buffer;
1055	size_t size;
1056	struct rpc_buffer *buf;
1057
 
 
 
1058	buf = container_of(buffer, struct rpc_buffer, data);
1059	size = buf->len;
1060
1061	dprintk("RPC:       freeing buffer of size %zu at %p\n",
1062			size, buf);
1063
1064	if (size <= RPC_BUFFER_MAXSIZE)
1065		mempool_free(buf, rpc_buffer_mempool);
1066	else
1067		kfree(buf);
1068}
1069EXPORT_SYMBOL_GPL(rpc_free);
1070
1071/*
1072 * Creation and deletion of RPC task structures
1073 */
1074static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data)
1075{
1076	memset(task, 0, sizeof(*task));
1077	atomic_set(&task->tk_count, 1);
1078	task->tk_flags  = task_setup_data->flags;
1079	task->tk_ops = task_setup_data->callback_ops;
1080	task->tk_calldata = task_setup_data->callback_data;
1081	INIT_LIST_HEAD(&task->tk_task);
1082
 
 
 
 
 
1083	task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW;
1084	task->tk_owner = current->tgid;
1085
1086	/* Initialize workqueue for async tasks */
1087	task->tk_workqueue = task_setup_data->workqueue;
1088
1089	task->tk_xprt = rpc_task_get_xprt(task_setup_data->rpc_client,
1090			xprt_get(task_setup_data->rpc_xprt));
1091
1092	task->tk_op_cred = get_rpccred(task_setup_data->rpc_op_cred);
1093
1094	if (task->tk_ops->rpc_call_prepare != NULL)
1095		task->tk_action = rpc_prepare_task;
1096
1097	rpc_init_task_statistics(task);
 
1098
1099	dprintk("RPC:       new task initialized, procpid %u\n",
1100				task_pid_nr(current));
1101}
1102
1103static struct rpc_task *
1104rpc_alloc_task(void)
1105{
1106	return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOFS);
1107}
1108
1109/*
1110 * Create a new task for the specified client.
1111 */
1112struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data)
1113{
1114	struct rpc_task	*task = setup_data->task;
1115	unsigned short flags = 0;
1116
1117	if (task == NULL) {
1118		task = rpc_alloc_task();
 
 
 
 
 
1119		flags = RPC_TASK_DYNAMIC;
1120	}
1121
1122	rpc_init_task(task, setup_data);
1123	task->tk_flags |= flags;
1124	dprintk("RPC:       allocated task %p\n", task);
1125	return task;
1126}
1127
1128/*
1129 * rpc_free_task - release rpc task and perform cleanups
1130 *
1131 * Note that we free up the rpc_task _after_ rpc_release_calldata()
1132 * in order to work around a workqueue dependency issue.
1133 *
1134 * Tejun Heo states:
1135 * "Workqueue currently considers two work items to be the same if they're
1136 * on the same address and won't execute them concurrently - ie. it
1137 * makes a work item which is queued again while being executed wait
1138 * for the previous execution to complete.
1139 *
1140 * If a work function frees the work item, and then waits for an event
1141 * which should be performed by another work item and *that* work item
1142 * recycles the freed work item, it can create a false dependency loop.
1143 * There really is no reliable way to detect this short of verifying
1144 * every memory free."
1145 *
1146 */
1147static void rpc_free_task(struct rpc_task *task)
1148{
1149	unsigned short tk_flags = task->tk_flags;
 
1150
1151	put_rpccred(task->tk_op_cred);
1152	rpc_release_calldata(task->tk_ops, task->tk_calldata);
1153
1154	if (tk_flags & RPC_TASK_DYNAMIC) {
1155		dprintk("RPC: %5u freeing task\n", task->tk_pid);
1156		mempool_free(task, rpc_task_mempool);
1157	}
 
1158}
1159
1160static void rpc_async_release(struct work_struct *work)
1161{
1162	unsigned int pflags = memalloc_nofs_save();
1163
1164	rpc_free_task(container_of(work, struct rpc_task, u.tk_work));
1165	memalloc_nofs_restore(pflags);
1166}
1167
1168static void rpc_release_resources_task(struct rpc_task *task)
1169{
1170	xprt_release(task);
 
1171	if (task->tk_msg.rpc_cred) {
1172		if (!(task->tk_flags & RPC_TASK_CRED_NOREF))
1173			put_cred(task->tk_msg.rpc_cred);
1174		task->tk_msg.rpc_cred = NULL;
1175	}
1176	rpc_task_release_client(task);
1177}
1178
1179static void rpc_final_put_task(struct rpc_task *task,
1180		struct workqueue_struct *q)
1181{
1182	if (q != NULL) {
1183		INIT_WORK(&task->u.tk_work, rpc_async_release);
1184		queue_work(q, &task->u.tk_work);
1185	} else
1186		rpc_free_task(task);
1187}
1188
1189static void rpc_do_put_task(struct rpc_task *task, struct workqueue_struct *q)
1190{
1191	if (atomic_dec_and_test(&task->tk_count)) {
1192		rpc_release_resources_task(task);
1193		rpc_final_put_task(task, q);
1194	}
1195}
1196
1197void rpc_put_task(struct rpc_task *task)
1198{
1199	rpc_do_put_task(task, NULL);
1200}
1201EXPORT_SYMBOL_GPL(rpc_put_task);
1202
1203void rpc_put_task_async(struct rpc_task *task)
1204{
1205	rpc_do_put_task(task, task->tk_workqueue);
1206}
1207EXPORT_SYMBOL_GPL(rpc_put_task_async);
1208
1209static void rpc_release_task(struct rpc_task *task)
1210{
1211	dprintk("RPC: %5u release task\n", task->tk_pid);
1212
1213	WARN_ON_ONCE(RPC_IS_QUEUED(task));
1214
1215	rpc_release_resources_task(task);
1216
1217	/*
1218	 * Note: at this point we have been removed from rpc_clnt->cl_tasks,
1219	 * so it should be safe to use task->tk_count as a test for whether
1220	 * or not any other processes still hold references to our rpc_task.
1221	 */
1222	if (atomic_read(&task->tk_count) != 1 + !RPC_IS_ASYNC(task)) {
1223		/* Wake up anyone who may be waiting for task completion */
1224		if (!rpc_complete_task(task))
1225			return;
1226	} else {
1227		if (!atomic_dec_and_test(&task->tk_count))
1228			return;
1229	}
1230	rpc_final_put_task(task, task->tk_workqueue);
1231}
1232
1233int rpciod_up(void)
1234{
1235	return try_module_get(THIS_MODULE) ? 0 : -EINVAL;
1236}
1237
1238void rpciod_down(void)
1239{
1240	module_put(THIS_MODULE);
1241}
1242
1243/*
1244 * Start up the rpciod workqueue.
1245 */
1246static int rpciod_start(void)
1247{
1248	struct workqueue_struct *wq;
1249
1250	/*
1251	 * Create the rpciod thread and wait for it to start.
1252	 */
1253	dprintk("RPC:       creating workqueue rpciod\n");
1254	wq = alloc_workqueue("rpciod", WQ_MEM_RECLAIM | WQ_UNBOUND, 0);
1255	if (!wq)
1256		goto out_failed;
1257	rpciod_workqueue = wq;
1258	/* Note: highpri because network receive is latency sensitive */
1259	wq = alloc_workqueue("xprtiod", WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_HIGHPRI, 0);
1260	if (!wq)
1261		goto free_rpciod;
1262	xprtiod_workqueue = wq;
1263	return 1;
1264free_rpciod:
1265	wq = rpciod_workqueue;
1266	rpciod_workqueue = NULL;
1267	destroy_workqueue(wq);
1268out_failed:
1269	return 0;
1270}
1271
1272static void rpciod_stop(void)
1273{
1274	struct workqueue_struct *wq = NULL;
1275
1276	if (rpciod_workqueue == NULL)
1277		return;
1278	dprintk("RPC:       destroying workqueue rpciod\n");
1279
1280	wq = rpciod_workqueue;
1281	rpciod_workqueue = NULL;
1282	destroy_workqueue(wq);
1283	wq = xprtiod_workqueue;
1284	xprtiod_workqueue = NULL;
1285	destroy_workqueue(wq);
1286}
1287
1288void
1289rpc_destroy_mempool(void)
1290{
1291	rpciod_stop();
1292	mempool_destroy(rpc_buffer_mempool);
1293	mempool_destroy(rpc_task_mempool);
1294	kmem_cache_destroy(rpc_task_slabp);
1295	kmem_cache_destroy(rpc_buffer_slabp);
 
 
 
 
1296	rpc_destroy_wait_queue(&delay_queue);
1297}
1298
1299int
1300rpc_init_mempool(void)
1301{
1302	/*
1303	 * The following is not strictly a mempool initialisation,
1304	 * but there is no harm in doing it here
1305	 */
1306	rpc_init_wait_queue(&delay_queue, "delayq");
1307	if (!rpciod_start())
1308		goto err_nomem;
1309
1310	rpc_task_slabp = kmem_cache_create("rpc_tasks",
1311					     sizeof(struct rpc_task),
1312					     0, SLAB_HWCACHE_ALIGN,
1313					     NULL);
1314	if (!rpc_task_slabp)
1315		goto err_nomem;
1316	rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
1317					     RPC_BUFFER_MAXSIZE,
1318					     0, SLAB_HWCACHE_ALIGN,
1319					     NULL);
1320	if (!rpc_buffer_slabp)
1321		goto err_nomem;
1322	rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE,
1323						    rpc_task_slabp);
1324	if (!rpc_task_mempool)
1325		goto err_nomem;
1326	rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE,
1327						      rpc_buffer_slabp);
1328	if (!rpc_buffer_mempool)
1329		goto err_nomem;
1330	return 0;
1331err_nomem:
1332	rpc_destroy_mempool();
1333	return -ENOMEM;
1334}
v3.1
 
   1/*
   2 * linux/net/sunrpc/sched.c
   3 *
   4 * Scheduling for synchronous and asynchronous RPC requests.
   5 *
   6 * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
   7 *
   8 * TCP NFS related read + write fixes
   9 * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
  10 */
  11
  12#include <linux/module.h>
  13
  14#include <linux/sched.h>
  15#include <linux/interrupt.h>
  16#include <linux/slab.h>
  17#include <linux/mempool.h>
  18#include <linux/smp.h>
  19#include <linux/spinlock.h>
  20#include <linux/mutex.h>
 
 
  21
  22#include <linux/sunrpc/clnt.h>
 
  23
  24#include "sunrpc.h"
  25
  26#ifdef RPC_DEBUG
  27#define RPCDBG_FACILITY		RPCDBG_SCHED
  28#endif
  29
 
 
 
  30/*
  31 * RPC slabs and memory pools
  32 */
  33#define RPC_BUFFER_MAXSIZE	(2048)
  34#define RPC_BUFFER_POOLSIZE	(8)
  35#define RPC_TASK_POOLSIZE	(8)
  36static struct kmem_cache	*rpc_task_slabp __read_mostly;
  37static struct kmem_cache	*rpc_buffer_slabp __read_mostly;
  38static mempool_t	*rpc_task_mempool __read_mostly;
  39static mempool_t	*rpc_buffer_mempool __read_mostly;
  40
  41static void			rpc_async_schedule(struct work_struct *);
  42static void			 rpc_release_task(struct rpc_task *task);
  43static void __rpc_queue_timer_fn(unsigned long ptr);
  44
  45/*
  46 * RPC tasks sit here while waiting for conditions to improve.
  47 */
  48static struct rpc_wait_queue delay_queue;
  49
  50/*
  51 * rpciod-related stuff
  52 */
  53struct workqueue_struct *rpciod_workqueue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  54
  55/*
  56 * Disable the timer for a given RPC task. Should be called with
  57 * queue->lock and bh_disabled in order to avoid races within
  58 * rpc_run_timer().
  59 */
  60static void
  61__rpc_disable_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
  62{
  63	if (task->tk_timeout == 0)
  64		return;
  65	dprintk("RPC: %5u disabling timer\n", task->tk_pid);
  66	task->tk_timeout = 0;
  67	list_del(&task->u.tk_wait.timer_list);
  68	if (list_empty(&queue->timer_list.list))
  69		del_timer(&queue->timer_list.timer);
  70}
  71
  72static void
  73rpc_set_queue_timer(struct rpc_wait_queue *queue, unsigned long expires)
  74{
 
  75	queue->timer_list.expires = expires;
  76	mod_timer(&queue->timer_list.timer, expires);
 
 
 
 
  77}
  78
  79/*
  80 * Set up a timer for the current task.
  81 */
  82static void
  83__rpc_add_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
 
  84{
  85	if (!task->tk_timeout)
  86		return;
 
 
 
 
 
 
  87
  88	dprintk("RPC: %5u setting alarm for %lu ms\n",
  89			task->tk_pid, task->tk_timeout * 1000 / HZ);
 
 
 
 
 
  90
  91	task->u.tk_wait.expires = jiffies + task->tk_timeout;
  92	if (list_empty(&queue->timer_list.list) || time_before(task->u.tk_wait.expires, queue->timer_list.expires))
  93		rpc_set_queue_timer(queue, task->u.tk_wait.expires);
  94	list_add(&task->u.tk_wait.timer_list, &queue->timer_list.list);
  95}
  96
  97/*
  98 * Add new request to a priority queue.
  99 */
 100static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue,
 101		struct rpc_task *task,
 102		unsigned char queue_priority)
 103{
 104	struct list_head *q;
 105	struct rpc_task *t;
 106
 107	INIT_LIST_HEAD(&task->u.tk_wait.links);
 108	q = &queue->tasks[queue_priority];
 109	if (unlikely(queue_priority > queue->maxpriority))
 110		q = &queue->tasks[queue->maxpriority];
 111	list_for_each_entry(t, q, u.tk_wait.list) {
 112		if (t->tk_owner == task->tk_owner) {
 113			list_add_tail(&task->u.tk_wait.list, &t->u.tk_wait.links);
 
 
 
 
 114			return;
 115		}
 116	}
 
 117	list_add_tail(&task->u.tk_wait.list, q);
 118}
 119
 120/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 121 * Add new request to wait queue.
 122 *
 123 * Swapper tasks always get inserted at the head of the queue.
 124 * This should avoid many nasty memory deadlocks and hopefully
 125 * improve overall performance.
 126 * Everyone else gets appended to the queue to ensure proper FIFO behavior.
 127 */
 128static void __rpc_add_wait_queue(struct rpc_wait_queue *queue,
 129		struct rpc_task *task,
 130		unsigned char queue_priority)
 131{
 132	BUG_ON (RPC_IS_QUEUED(task));
 133
 134	if (RPC_IS_PRIORITY(queue))
 135		__rpc_add_wait_queue_priority(queue, task, queue_priority);
 136	else if (RPC_IS_SWAPPER(task))
 137		list_add(&task->u.tk_wait.list, &queue->tasks[0]);
 138	else
 139		list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
 140	task->tk_waitqueue = queue;
 141	queue->qlen++;
 
 
 142	rpc_set_queued(task);
 143
 144	dprintk("RPC: %5u added to queue %p \"%s\"\n",
 145			task->tk_pid, queue, rpc_qname(queue));
 146}
 147
 148/*
 149 * Remove request from a priority queue.
 150 */
 151static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
 152{
 153	struct rpc_task *t;
 154
 155	if (!list_empty(&task->u.tk_wait.links)) {
 156		t = list_entry(task->u.tk_wait.links.next, struct rpc_task, u.tk_wait.list);
 157		list_move(&t->u.tk_wait.list, &task->u.tk_wait.list);
 158		list_splice_init(&task->u.tk_wait.links, &t->u.tk_wait.links);
 159	}
 160}
 161
 162/*
 163 * Remove request from queue.
 164 * Note: must be called with spin lock held.
 165 */
 166static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
 167{
 168	__rpc_disable_timer(queue, task);
 169	if (RPC_IS_PRIORITY(queue))
 170		__rpc_remove_wait_queue_priority(task);
 171	list_del(&task->u.tk_wait.list);
 
 172	queue->qlen--;
 173	dprintk("RPC: %5u removed from queue %p \"%s\"\n",
 174			task->tk_pid, queue, rpc_qname(queue));
 175}
 176
 177static inline void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
 178{
 179	queue->priority = priority;
 180	queue->count = 1 << (priority * 2);
 181}
 182
 183static inline void rpc_set_waitqueue_owner(struct rpc_wait_queue *queue, pid_t pid)
 184{
 185	queue->owner = pid;
 186	queue->nr = RPC_BATCH_COUNT;
 187}
 188
 189static inline void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
 190{
 191	rpc_set_waitqueue_priority(queue, queue->maxpriority);
 192	rpc_set_waitqueue_owner(queue, 0);
 193}
 194
 195static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues)
 196{
 197	int i;
 198
 199	spin_lock_init(&queue->lock);
 200	for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
 201		INIT_LIST_HEAD(&queue->tasks[i]);
 202	queue->maxpriority = nr_queues - 1;
 203	rpc_reset_waitqueue_priority(queue);
 204	queue->qlen = 0;
 205	setup_timer(&queue->timer_list.timer, __rpc_queue_timer_fn, (unsigned long)queue);
 
 206	INIT_LIST_HEAD(&queue->timer_list.list);
 207#ifdef RPC_DEBUG
 208	queue->name = qname;
 209#endif
 210}
 211
 212void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
 213{
 214	__rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY);
 215}
 216EXPORT_SYMBOL_GPL(rpc_init_priority_wait_queue);
 217
 218void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
 219{
 220	__rpc_init_priority_wait_queue(queue, qname, 1);
 221}
 222EXPORT_SYMBOL_GPL(rpc_init_wait_queue);
 223
 224void rpc_destroy_wait_queue(struct rpc_wait_queue *queue)
 225{
 226	del_timer_sync(&queue->timer_list.timer);
 227}
 228EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue);
 229
 230static int rpc_wait_bit_killable(void *word)
 231{
 232	if (fatal_signal_pending(current))
 
 233		return -ERESTARTSYS;
 234	schedule();
 235	return 0;
 236}
 237
 238#ifdef RPC_DEBUG
 239static void rpc_task_set_debuginfo(struct rpc_task *task)
 240{
 241	static atomic_t rpc_pid;
 242
 243	task->tk_pid = atomic_inc_return(&rpc_pid);
 244}
 245#else
 246static inline void rpc_task_set_debuginfo(struct rpc_task *task)
 247{
 248}
 249#endif
 250
 251static void rpc_set_active(struct rpc_task *task)
 252{
 253	rpc_task_set_debuginfo(task);
 254	set_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
 
 255}
 256
 257/*
 258 * Mark an RPC call as having completed by clearing the 'active' bit
 259 * and then waking up all tasks that were sleeping.
 260 */
 261static int rpc_complete_task(struct rpc_task *task)
 262{
 263	void *m = &task->tk_runstate;
 264	wait_queue_head_t *wq = bit_waitqueue(m, RPC_TASK_ACTIVE);
 265	struct wait_bit_key k = __WAIT_BIT_KEY_INITIALIZER(m, RPC_TASK_ACTIVE);
 266	unsigned long flags;
 267	int ret;
 268
 
 
 269	spin_lock_irqsave(&wq->lock, flags);
 270	clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
 271	ret = atomic_dec_and_test(&task->tk_count);
 272	if (waitqueue_active(wq))
 273		__wake_up_locked_key(wq, TASK_NORMAL, &k);
 274	spin_unlock_irqrestore(&wq->lock, flags);
 275	return ret;
 276}
 277
 278/*
 279 * Allow callers to wait for completion of an RPC call
 280 *
 281 * Note the use of out_of_line_wait_on_bit() rather than wait_on_bit()
 282 * to enforce taking of the wq->lock and hence avoid races with
 283 * rpc_complete_task().
 284 */
 285int __rpc_wait_for_completion_task(struct rpc_task *task, int (*action)(void *))
 286{
 287	if (action == NULL)
 288		action = rpc_wait_bit_killable;
 289	return out_of_line_wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
 290			action, TASK_KILLABLE);
 291}
 292EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task);
 293
 294/*
 295 * Make an RPC task runnable.
 296 *
 297 * Note: If the task is ASYNC, this must be called with
 298 * the spinlock held to protect the wait queue operation.
 
 
 
 
 
 299 */
 300static void rpc_make_runnable(struct rpc_task *task)
 
 301{
 
 
 302	rpc_clear_queued(task);
 303	if (rpc_test_and_set_running(task))
 304		return;
 305	if (RPC_IS_ASYNC(task)) {
 306		INIT_WORK(&task->u.tk_work, rpc_async_schedule);
 307		queue_work(rpciod_workqueue, &task->u.tk_work);
 308	} else
 309		wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
 310}
 311
 312/*
 313 * Prepare for sleeping on a wait queue.
 314 * By always appending tasks to the list we ensure FIFO behavior.
 315 * NB: An RPC task will only receive interrupt-driven events as long
 316 * as it's on a wait queue.
 317 */
 318static void __rpc_sleep_on_priority(struct rpc_wait_queue *q,
 319		struct rpc_task *task,
 320		rpc_action action,
 321		unsigned char queue_priority)
 322{
 323	dprintk("RPC: %5u sleep_on(queue \"%s\" time %lu)\n",
 324			task->tk_pid, rpc_qname(q), jiffies);
 325
 
 
 326	__rpc_add_wait_queue(q, task, queue_priority);
 327
 328	BUG_ON(task->tk_callback != NULL);
 329	task->tk_callback = action;
 330	__rpc_add_timer(q, task);
 331}
 332
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 333void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
 334				rpc_action action)
 335{
 336	/* We shouldn't ever put an inactive task to sleep */
 337	BUG_ON(!RPC_IS_ACTIVATED(task));
 
 
 338
 
 339	/*
 340	 * Protect the queue operations.
 341	 */
 342	spin_lock_bh(&q->lock);
 343	__rpc_sleep_on_priority(q, task, action, task->tk_priority);
 344	spin_unlock_bh(&q->lock);
 345}
 346EXPORT_SYMBOL_GPL(rpc_sleep_on);
 347
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 348void rpc_sleep_on_priority(struct rpc_wait_queue *q, struct rpc_task *task,
 349		rpc_action action, int priority)
 350{
 351	/* We shouldn't ever put an inactive task to sleep */
 352	BUG_ON(!RPC_IS_ACTIVATED(task));
 353
 
 
 354	/*
 355	 * Protect the queue operations.
 356	 */
 357	spin_lock_bh(&q->lock);
 358	__rpc_sleep_on_priority(q, task, action, priority - RPC_PRIORITY_LOW);
 359	spin_unlock_bh(&q->lock);
 360}
 
 361
 362/**
 363 * __rpc_do_wake_up_task - wake up a single rpc_task
 
 364 * @queue: wait queue
 365 * @task: task to be woken up
 366 *
 367 * Caller must hold queue->lock, and have cleared the task queued flag.
 368 */
 369static void __rpc_do_wake_up_task(struct rpc_wait_queue *queue, struct rpc_task *task)
 
 
 370{
 371	dprintk("RPC: %5u __rpc_wake_up_task (now %lu)\n",
 372			task->tk_pid, jiffies);
 373
 374	/* Has the task been executed yet? If not, we cannot wake it up! */
 375	if (!RPC_IS_ACTIVATED(task)) {
 376		printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
 377		return;
 378	}
 379
 
 
 380	__rpc_remove_wait_queue(queue, task);
 381
 382	rpc_make_runnable(task);
 383
 384	dprintk("RPC:       __rpc_wake_up_task done\n");
 385}
 386
 387/*
 388 * Wake up a queued task while the queue lock is being held
 389 */
 390static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue, struct rpc_task *task)
 391{
 392	if (RPC_IS_QUEUED(task) && task->tk_waitqueue == queue)
 393		__rpc_do_wake_up_task(queue, task);
 
 
 
 
 
 
 
 
 
 
 
 394}
 395
 396/*
 397 * Tests whether rpc queue is empty
 398 */
 399int rpc_queue_empty(struct rpc_wait_queue *queue)
 
 400{
 401	int res;
 402
 403	spin_lock_bh(&queue->lock);
 404	res = queue->qlen;
 405	spin_unlock_bh(&queue->lock);
 406	return res == 0;
 407}
 408EXPORT_SYMBOL_GPL(rpc_queue_empty);
 409
 410/*
 411 * Wake up a task on a specific queue
 412 */
 413void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task)
 414{
 415	spin_lock_bh(&queue->lock);
 
 
 416	rpc_wake_up_task_queue_locked(queue, task);
 417	spin_unlock_bh(&queue->lock);
 418}
 419EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task);
 420
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 421/*
 422 * Wake up the next task on a priority queue.
 423 */
 424static struct rpc_task * __rpc_wake_up_next_priority(struct rpc_wait_queue *queue)
 425{
 426	struct list_head *q;
 427	struct rpc_task *task;
 428
 429	/*
 430	 * Service a batch of tasks from a single owner.
 431	 */
 432	q = &queue->tasks[queue->priority];
 433	if (!list_empty(q)) {
 434		task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
 435		if (queue->owner == task->tk_owner) {
 436			if (--queue->nr)
 437				goto out;
 438			list_move_tail(&task->u.tk_wait.list, q);
 439		}
 440		/*
 441		 * Check if we need to switch queues.
 442		 */
 443		if (--queue->count)
 444			goto new_owner;
 445	}
 446
 447	/*
 448	 * Service the next queue.
 449	 */
 450	do {
 451		if (q == &queue->tasks[0])
 452			q = &queue->tasks[queue->maxpriority];
 453		else
 454			q = q - 1;
 455		if (!list_empty(q)) {
 456			task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
 457			goto new_queue;
 458		}
 459	} while (q != &queue->tasks[queue->priority]);
 460
 461	rpc_reset_waitqueue_priority(queue);
 462	return NULL;
 463
 464new_queue:
 465	rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
 466new_owner:
 467	rpc_set_waitqueue_owner(queue, task->tk_owner);
 468out:
 469	rpc_wake_up_task_queue_locked(queue, task);
 470	return task;
 471}
 472
 
 
 
 
 
 
 
 
 
 473/*
 474 * Wake up the next task on the wait queue.
 475 */
 476struct rpc_task * rpc_wake_up_next(struct rpc_wait_queue *queue)
 
 
 477{
 478	struct rpc_task	*task = NULL;
 479
 480	dprintk("RPC:       wake_up_next(%p \"%s\")\n",
 481			queue, rpc_qname(queue));
 482	spin_lock_bh(&queue->lock);
 483	if (RPC_IS_PRIORITY(queue))
 484		task = __rpc_wake_up_next_priority(queue);
 485	else {
 486		task_for_first(task, &queue->tasks[0])
 487			rpc_wake_up_task_queue_locked(queue, task);
 488	}
 489	spin_unlock_bh(&queue->lock);
 490
 491	return task;
 492}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 493EXPORT_SYMBOL_GPL(rpc_wake_up_next);
 494
 495/**
 496 * rpc_wake_up - wake up all rpc_tasks
 497 * @queue: rpc_wait_queue on which the tasks are sleeping
 498 *
 499 * Grabs queue->lock
 500 */
 501void rpc_wake_up(struct rpc_wait_queue *queue)
 502{
 503	struct rpc_task *task, *next;
 504	struct list_head *head;
 505
 506	spin_lock_bh(&queue->lock);
 507	head = &queue->tasks[queue->maxpriority];
 508	for (;;) {
 509		list_for_each_entry_safe(task, next, head, u.tk_wait.list)
 
 
 
 
 510			rpc_wake_up_task_queue_locked(queue, task);
 
 511		if (head == &queue->tasks[0])
 512			break;
 513		head--;
 514	}
 515	spin_unlock_bh(&queue->lock);
 516}
 517EXPORT_SYMBOL_GPL(rpc_wake_up);
 518
 519/**
 520 * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
 521 * @queue: rpc_wait_queue on which the tasks are sleeping
 522 * @status: status value to set
 523 *
 524 * Grabs queue->lock
 525 */
 526void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
 527{
 528	struct rpc_task *task, *next;
 529	struct list_head *head;
 530
 531	spin_lock_bh(&queue->lock);
 532	head = &queue->tasks[queue->maxpriority];
 533	for (;;) {
 534		list_for_each_entry_safe(task, next, head, u.tk_wait.list) {
 
 
 
 
 535			task->tk_status = status;
 536			rpc_wake_up_task_queue_locked(queue, task);
 537		}
 538		if (head == &queue->tasks[0])
 539			break;
 540		head--;
 541	}
 542	spin_unlock_bh(&queue->lock);
 543}
 544EXPORT_SYMBOL_GPL(rpc_wake_up_status);
 545
 546static void __rpc_queue_timer_fn(unsigned long ptr)
 547{
 548	struct rpc_wait_queue *queue = (struct rpc_wait_queue *)ptr;
 
 
 549	struct rpc_task *task, *n;
 550	unsigned long expires, now, timeo;
 551
 552	spin_lock(&queue->lock);
 553	expires = now = jiffies;
 554	list_for_each_entry_safe(task, n, &queue->timer_list.list, u.tk_wait.timer_list) {
 555		timeo = task->u.tk_wait.expires;
 556		if (time_after_eq(now, timeo)) {
 557			dprintk("RPC: %5u timeout\n", task->tk_pid);
 558			task->tk_status = -ETIMEDOUT;
 559			rpc_wake_up_task_queue_locked(queue, task);
 560			continue;
 561		}
 562		if (expires == now || time_after(expires, timeo))
 563			expires = timeo;
 564	}
 565	if (!list_empty(&queue->timer_list.list))
 566		rpc_set_queue_timer(queue, expires);
 567	spin_unlock(&queue->lock);
 568}
 569
 570static void __rpc_atrun(struct rpc_task *task)
 571{
 572	task->tk_status = 0;
 
 573}
 574
 575/*
 576 * Run a task at a later time
 577 */
 578void rpc_delay(struct rpc_task *task, unsigned long delay)
 579{
 580	task->tk_timeout = delay;
 581	rpc_sleep_on(&delay_queue, task, __rpc_atrun);
 582}
 583EXPORT_SYMBOL_GPL(rpc_delay);
 584
 585/*
 586 * Helper to call task->tk_ops->rpc_call_prepare
 587 */
 588void rpc_prepare_task(struct rpc_task *task)
 589{
 590	task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
 591}
 592
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 593/*
 594 * Helper that calls task->tk_ops->rpc_call_done if it exists
 595 */
 596void rpc_exit_task(struct rpc_task *task)
 597{
 
 598	task->tk_action = NULL;
 
 
 
 
 599	if (task->tk_ops->rpc_call_done != NULL) {
 600		task->tk_ops->rpc_call_done(task, task->tk_calldata);
 601		if (task->tk_action != NULL) {
 602			WARN_ON(RPC_ASSASSINATED(task));
 603			/* Always release the RPC slot and buffer memory */
 604			xprt_release(task);
 
 605		}
 606	}
 607}
 608
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 609void rpc_exit(struct rpc_task *task, int status)
 610{
 611	task->tk_status = status;
 612	task->tk_action = rpc_exit_task;
 613	if (RPC_IS_QUEUED(task))
 614		rpc_wake_up_queued_task(task->tk_waitqueue, task);
 615}
 616EXPORT_SYMBOL_GPL(rpc_exit);
 617
 618void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata)
 619{
 620	if (ops->rpc_release != NULL)
 621		ops->rpc_release(calldata);
 622}
 623
 624/*
 625 * This is the RPC `scheduler' (or rather, the finite state machine).
 626 */
 627static void __rpc_execute(struct rpc_task *task)
 628{
 629	struct rpc_wait_queue *queue;
 630	int task_is_async = RPC_IS_ASYNC(task);
 631	int status = 0;
 632
 633	dprintk("RPC: %5u __rpc_execute flags=0x%x\n",
 634			task->tk_pid, task->tk_flags);
 635
 636	BUG_ON(RPC_IS_QUEUED(task));
 
 
 637
 638	for (;;) {
 639		void (*do_action)(struct rpc_task *);
 640
 641		/*
 642		 * Execute any pending callback first.
 
 
 
 
 643		 */
 644		do_action = task->tk_callback;
 645		task->tk_callback = NULL;
 646		if (do_action == NULL) {
 647			/*
 648			 * Perform the next FSM step.
 649			 * tk_action may be NULL if the task has been killed.
 650			 * In particular, note that rpc_killall_tasks may
 651			 * do this at any time, so beware when dereferencing.
 652			 */
 653			do_action = task->tk_action;
 654			if (do_action == NULL)
 655				break;
 656		}
 
 
 
 657		do_action(task);
 658
 659		/*
 660		 * Lockless check for whether task is sleeping or not.
 661		 */
 662		if (!RPC_IS_QUEUED(task))
 663			continue;
 
 
 
 
 
 
 
 
 
 664		/*
 665		 * The queue->lock protects against races with
 666		 * rpc_make_runnable().
 667		 *
 668		 * Note that once we clear RPC_TASK_RUNNING on an asynchronous
 669		 * rpc_task, rpc_make_runnable() can assign it to a
 670		 * different workqueue. We therefore cannot assume that the
 671		 * rpc_task pointer may still be dereferenced.
 672		 */
 673		queue = task->tk_waitqueue;
 674		spin_lock_bh(&queue->lock);
 675		if (!RPC_IS_QUEUED(task)) {
 676			spin_unlock_bh(&queue->lock);
 677			continue;
 678		}
 679		rpc_clear_running(task);
 680		spin_unlock_bh(&queue->lock);
 681		if (task_is_async)
 682			return;
 683
 684		/* sync task: sleep here */
 685		dprintk("RPC: %5u sync task going to sleep\n", task->tk_pid);
 686		status = out_of_line_wait_on_bit(&task->tk_runstate,
 687				RPC_TASK_QUEUED, rpc_wait_bit_killable,
 688				TASK_KILLABLE);
 689		if (status == -ERESTARTSYS) {
 690			/*
 691			 * When a sync task receives a signal, it exits with
 692			 * -ERESTARTSYS. In order to catch any callbacks that
 693			 * clean up after sleeping on some queue, we don't
 694			 * break the loop here, but go around once more.
 695			 */
 696			dprintk("RPC: %5u got signal\n", task->tk_pid);
 697			task->tk_flags |= RPC_TASK_KILLED;
 
 698			rpc_exit(task, -ERESTARTSYS);
 699		}
 700		rpc_set_running(task);
 701		dprintk("RPC: %5u sync task resuming\n", task->tk_pid);
 702	}
 703
 704	dprintk("RPC: %5u return %d, status %d\n", task->tk_pid, status,
 705			task->tk_status);
 706	/* Release all resources associated with the task */
 707	rpc_release_task(task);
 708}
 709
 710/*
 711 * User-visible entry point to the scheduler.
 712 *
 713 * This may be called recursively if e.g. an async NFS task updates
 714 * the attributes and finds that dirty pages must be flushed.
 715 * NOTE: Upon exit of this function the task is guaranteed to be
 716 *	 released. In particular note that tk_release() will have
 717 *	 been called, so your task memory may have been freed.
 718 */
 719void rpc_execute(struct rpc_task *task)
 720{
 
 
 721	rpc_set_active(task);
 722	rpc_make_runnable(task);
 723	if (!RPC_IS_ASYNC(task))
 724		__rpc_execute(task);
 725}
 726
 727static void rpc_async_schedule(struct work_struct *work)
 728{
 
 
 729	__rpc_execute(container_of(work, struct rpc_task, u.tk_work));
 
 730}
 731
 732/**
 733 * rpc_malloc - allocate an RPC buffer
 734 * @task: RPC task that will use this buffer
 735 * @size: requested byte size
 
 
 
 736 *
 737 * To prevent rpciod from hanging, this allocator never sleeps,
 738 * returning NULL if the request cannot be serviced immediately.
 739 * The caller can arrange to sleep in a way that is safe for rpciod.
 
 740 *
 741 * Most requests are 'small' (under 2KiB) and can be serviced from a
 742 * mempool, ensuring that NFS reads and writes can always proceed,
 743 * and that there is good locality of reference for these buffers.
 744 *
 745 * In order to avoid memory starvation triggering more writebacks of
 746 * NFS requests, we avoid using GFP_KERNEL.
 747 */
 748void *rpc_malloc(struct rpc_task *task, size_t size)
 749{
 
 
 750	struct rpc_buffer *buf;
 751	gfp_t gfp = RPC_IS_SWAPPER(task) ? GFP_ATOMIC : GFP_NOWAIT;
 
 
 
 752
 753	size += sizeof(struct rpc_buffer);
 754	if (size <= RPC_BUFFER_MAXSIZE)
 755		buf = mempool_alloc(rpc_buffer_mempool, gfp);
 756	else
 757		buf = kmalloc(size, gfp);
 758
 759	if (!buf)
 760		return NULL;
 761
 762	buf->len = size;
 763	dprintk("RPC: %5u allocated buffer of size %zu at %p\n",
 764			task->tk_pid, size, buf);
 765	return &buf->data;
 
 
 766}
 767EXPORT_SYMBOL_GPL(rpc_malloc);
 768
 769/**
 770 * rpc_free - free buffer allocated via rpc_malloc
 771 * @buffer: buffer to free
 772 *
 773 */
 774void rpc_free(void *buffer)
 775{
 
 776	size_t size;
 777	struct rpc_buffer *buf;
 778
 779	if (!buffer)
 780		return;
 781
 782	buf = container_of(buffer, struct rpc_buffer, data);
 783	size = buf->len;
 784
 785	dprintk("RPC:       freeing buffer of size %zu at %p\n",
 786			size, buf);
 787
 788	if (size <= RPC_BUFFER_MAXSIZE)
 789		mempool_free(buf, rpc_buffer_mempool);
 790	else
 791		kfree(buf);
 792}
 793EXPORT_SYMBOL_GPL(rpc_free);
 794
 795/*
 796 * Creation and deletion of RPC task structures
 797 */
 798static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data)
 799{
 800	memset(task, 0, sizeof(*task));
 801	atomic_set(&task->tk_count, 1);
 802	task->tk_flags  = task_setup_data->flags;
 803	task->tk_ops = task_setup_data->callback_ops;
 804	task->tk_calldata = task_setup_data->callback_data;
 805	INIT_LIST_HEAD(&task->tk_task);
 806
 807	/* Initialize retry counters */
 808	task->tk_garb_retry = 2;
 809	task->tk_cred_retry = 2;
 810	task->tk_rebind_retry = 2;
 811
 812	task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW;
 813	task->tk_owner = current->tgid;
 814
 815	/* Initialize workqueue for async tasks */
 816	task->tk_workqueue = task_setup_data->workqueue;
 817
 
 
 
 
 
 818	if (task->tk_ops->rpc_call_prepare != NULL)
 819		task->tk_action = rpc_prepare_task;
 820
 821	/* starting timestamp */
 822	task->tk_start = ktime_get();
 823
 824	dprintk("RPC:       new task initialized, procpid %u\n",
 825				task_pid_nr(current));
 826}
 827
 828static struct rpc_task *
 829rpc_alloc_task(void)
 830{
 831	return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOFS);
 832}
 833
 834/*
 835 * Create a new task for the specified client.
 836 */
 837struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data)
 838{
 839	struct rpc_task	*task = setup_data->task;
 840	unsigned short flags = 0;
 841
 842	if (task == NULL) {
 843		task = rpc_alloc_task();
 844		if (task == NULL) {
 845			rpc_release_calldata(setup_data->callback_ops,
 846					setup_data->callback_data);
 847			return ERR_PTR(-ENOMEM);
 848		}
 849		flags = RPC_TASK_DYNAMIC;
 850	}
 851
 852	rpc_init_task(task, setup_data);
 853	task->tk_flags |= flags;
 854	dprintk("RPC:       allocated task %p\n", task);
 855	return task;
 856}
 857
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 858static void rpc_free_task(struct rpc_task *task)
 859{
 860	const struct rpc_call_ops *tk_ops = task->tk_ops;
 861	void *calldata = task->tk_calldata;
 862
 863	if (task->tk_flags & RPC_TASK_DYNAMIC) {
 
 
 
 864		dprintk("RPC: %5u freeing task\n", task->tk_pid);
 865		mempool_free(task, rpc_task_mempool);
 866	}
 867	rpc_release_calldata(tk_ops, calldata);
 868}
 869
 870static void rpc_async_release(struct work_struct *work)
 871{
 
 
 872	rpc_free_task(container_of(work, struct rpc_task, u.tk_work));
 
 873}
 874
 875static void rpc_release_resources_task(struct rpc_task *task)
 876{
 877	if (task->tk_rqstp)
 878		xprt_release(task);
 879	if (task->tk_msg.rpc_cred) {
 880		put_rpccred(task->tk_msg.rpc_cred);
 
 881		task->tk_msg.rpc_cred = NULL;
 882	}
 883	rpc_task_release_client(task);
 884}
 885
 886static void rpc_final_put_task(struct rpc_task *task,
 887		struct workqueue_struct *q)
 888{
 889	if (q != NULL) {
 890		INIT_WORK(&task->u.tk_work, rpc_async_release);
 891		queue_work(q, &task->u.tk_work);
 892	} else
 893		rpc_free_task(task);
 894}
 895
 896static void rpc_do_put_task(struct rpc_task *task, struct workqueue_struct *q)
 897{
 898	if (atomic_dec_and_test(&task->tk_count)) {
 899		rpc_release_resources_task(task);
 900		rpc_final_put_task(task, q);
 901	}
 902}
 903
 904void rpc_put_task(struct rpc_task *task)
 905{
 906	rpc_do_put_task(task, NULL);
 907}
 908EXPORT_SYMBOL_GPL(rpc_put_task);
 909
 910void rpc_put_task_async(struct rpc_task *task)
 911{
 912	rpc_do_put_task(task, task->tk_workqueue);
 913}
 914EXPORT_SYMBOL_GPL(rpc_put_task_async);
 915
 916static void rpc_release_task(struct rpc_task *task)
 917{
 918	dprintk("RPC: %5u release task\n", task->tk_pid);
 919
 920	BUG_ON (RPC_IS_QUEUED(task));
 921
 922	rpc_release_resources_task(task);
 923
 924	/*
 925	 * Note: at this point we have been removed from rpc_clnt->cl_tasks,
 926	 * so it should be safe to use task->tk_count as a test for whether
 927	 * or not any other processes still hold references to our rpc_task.
 928	 */
 929	if (atomic_read(&task->tk_count) != 1 + !RPC_IS_ASYNC(task)) {
 930		/* Wake up anyone who may be waiting for task completion */
 931		if (!rpc_complete_task(task))
 932			return;
 933	} else {
 934		if (!atomic_dec_and_test(&task->tk_count))
 935			return;
 936	}
 937	rpc_final_put_task(task, task->tk_workqueue);
 938}
 939
 940int rpciod_up(void)
 941{
 942	return try_module_get(THIS_MODULE) ? 0 : -EINVAL;
 943}
 944
 945void rpciod_down(void)
 946{
 947	module_put(THIS_MODULE);
 948}
 949
 950/*
 951 * Start up the rpciod workqueue.
 952 */
 953static int rpciod_start(void)
 954{
 955	struct workqueue_struct *wq;
 956
 957	/*
 958	 * Create the rpciod thread and wait for it to start.
 959	 */
 960	dprintk("RPC:       creating workqueue rpciod\n");
 961	wq = alloc_workqueue("rpciod", WQ_MEM_RECLAIM, 0);
 
 
 962	rpciod_workqueue = wq;
 963	return rpciod_workqueue != NULL;
 
 
 
 
 
 
 
 
 
 
 
 964}
 965
 966static void rpciod_stop(void)
 967{
 968	struct workqueue_struct *wq = NULL;
 969
 970	if (rpciod_workqueue == NULL)
 971		return;
 972	dprintk("RPC:       destroying workqueue rpciod\n");
 973
 974	wq = rpciod_workqueue;
 975	rpciod_workqueue = NULL;
 976	destroy_workqueue(wq);
 
 
 
 977}
 978
 979void
 980rpc_destroy_mempool(void)
 981{
 982	rpciod_stop();
 983	if (rpc_buffer_mempool)
 984		mempool_destroy(rpc_buffer_mempool);
 985	if (rpc_task_mempool)
 986		mempool_destroy(rpc_task_mempool);
 987	if (rpc_task_slabp)
 988		kmem_cache_destroy(rpc_task_slabp);
 989	if (rpc_buffer_slabp)
 990		kmem_cache_destroy(rpc_buffer_slabp);
 991	rpc_destroy_wait_queue(&delay_queue);
 992}
 993
 994int
 995rpc_init_mempool(void)
 996{
 997	/*
 998	 * The following is not strictly a mempool initialisation,
 999	 * but there is no harm in doing it here
1000	 */
1001	rpc_init_wait_queue(&delay_queue, "delayq");
1002	if (!rpciod_start())
1003		goto err_nomem;
1004
1005	rpc_task_slabp = kmem_cache_create("rpc_tasks",
1006					     sizeof(struct rpc_task),
1007					     0, SLAB_HWCACHE_ALIGN,
1008					     NULL);
1009	if (!rpc_task_slabp)
1010		goto err_nomem;
1011	rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
1012					     RPC_BUFFER_MAXSIZE,
1013					     0, SLAB_HWCACHE_ALIGN,
1014					     NULL);
1015	if (!rpc_buffer_slabp)
1016		goto err_nomem;
1017	rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE,
1018						    rpc_task_slabp);
1019	if (!rpc_task_mempool)
1020		goto err_nomem;
1021	rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE,
1022						      rpc_buffer_slabp);
1023	if (!rpc_buffer_mempool)
1024		goto err_nomem;
1025	return 0;
1026err_nomem:
1027	rpc_destroy_mempool();
1028	return -ENOMEM;
1029}